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ABSTRACT

ESTIMATING FOREST CANOPY ATTRIBUTES VIA AIRBORNE,

HIGH-RESOLUTION, MULTISPECTRAL IMAGERY

IN MIDWEST FOREST TYPES

By

Demetrios Gatziolis

An investigation ofthe utility ofhigh spatial resolution (sub-meter), 16-bit,

multispectral, airborne digital imageryforforest land cover mapping in the

heterogeneous and structurally complexforested landscapes ofnorthern Michigan is

presented. Imageryframe registration and georeferencing issues are presented and a

novel approachfor bi-directional reflectance distributionfunction (BRDF) effects

correction and between-frame brightness normalization is introduced. Maximum

likelihood classification offive cover type classes is performed over various geographic

aggregates of34 plots established in the study area that were designed according to the

Forest Inventory and Analysis protocol. Classification accuracy estimates show that

although band registration and BRDF corrections and brightness normalization provide

an approximately 5% improvement over the raw imagery data, overall classification

accuracy remains relatively low, barely exceeding 50%. Computed kappa coefficients

reveal no statistical differences among classification trials. Classification results appear

to be independent ofgeographic aggregations ofsampling plots.

Estimation offorest stand canopy parameterparameters (stem density, canopy

closure, and mean crown diameter) is based on quantz’jying the spatial autocorrelation

amongpixel digital numbers (DN) using variogram analysis and slope break analysis, an
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alternative non-parametric approach. Parameter estimation and cover type classification

proceedfrom the identification oftree apexes. Parameter accuracy assessment is

evaluated via value comparison with a spatially precise set offield observations. In

general, slope-break-basedparameter estimates are superior to those obtained using

variograms. Estimated root mean square errors at the plot levelfor theformer average

6.5%for stem density, 3.5%for canopy closure and 2.5%for mean crown diameter,

which are less than or equal to error rates obtained via traditionalforest stand cruising

by experiencedpersonnel. The employed methodology entails parsimonious

parameterization and is supportive ofautomation. Overall cover type classification

accuracy increasesfrom approximately 70% when using original imagery DNs to over

85% when band registration problems are corrected and variable brightness regimes

among imageryframes are normalized. Limiting cover type classification to pixels

identified as tree apexes isfound to improve traditional classification approaches that

use allpixels by 35%.

Image—texture analysis based on intensity co-occurrence provides a quantitative

evaluation ofsecond order image texturefeatures that carry discriminatory potentialfor

forest cover type classification purposes. Procedure development and evaluation is based

on two independent data sets. Classification accuracies exceeding 60% can potentially be

achieved by using only image texture information. In its current level ofdevelopment,

procedure applicability may be limited because ofsubstantial computational cost,

absence ofcomputer softwarefor automation, and the complexity ofmethodologies

integral to thefeature selection process.
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INTRODUCTION
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1.1. Background

Remote sensing has been synoptically defined as the detection, recognition, or

evaluation of objects by means of distant sensing or recording devices. Formally, the

American Society for Photogrammetry and Remote Sensing defined remote sensing as

“the measurement or acquisition of information of some property of an object or

phenomenon, by a recording device that is not in physical or immediate contact with the

object or phenomenon under study” (Colwell, 1983). In forestry, the information that can

be gleaned from visual interpretation of analog aerial photographs is well-understood,

frequently used, and routinely integrated in forest planning and management. Information

extracted from digital remote sensing data, however, is less commonly used. Many forest

managers maintain that the majority of digital remotely sensed data and the methods of

analysis are too complex to be of adequate utility to them. Furthermore, the effective use

of digital imagery often requires substantial investment in technological infrastructure.

Today, more than ever, forest management challenges are multiscale and

intricately linked to society’s need to measure, preserve, and manage for multiple, ofien

incompatible, values. Population growth and climate change are likely to catalyze these

ever increasing pressures on forests. The forest ecosystem itself is complex and

multifaceted. Understanding its functional structure requires information at a range of

spatial and temporal scales. Remote sensing information, integrated with other spatial and

non-spatial data sets, could form the information base upon which sound forest

management decisions can be made.

Remotely sensed imagery on its own is probably of little value to forest managers.

It is rather the interpretation of information extracted from those data that is used to
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address management challenges. Converting data to information is not a straightforward

task. It requires an understanding of the laws of physics and principles that govern the

formulation of remote sensing data and expertise in selecting the appropriate data

analysis methodology. It is oflen assumed that if an element of interest can be “seen” in a

digital remote sensing image, there would shortly be an automated procedure capable of

translating that visual impression into a usable piece of information. Practice has shown

that such optimism if frequently unfounded.

Forestry remote sensing began with manual methods of analysis applied to analog

aerial photographs (Silva, 1978). Relative to information content, analog aerial

photographs are inexpensive and easy to use (Caylor, 2000). Comprehensibility and

economic considerations make airphotos the most common form of remote sensing in

forestry. As new types of imagery and analyses emerge, digital remote sensing will

become increasingly useful for forest managers (Wynne et al., 2000). Clearly, the onus is

on the remote sensing community to provide forest managers with examples of

applications that are cost-effective and easily implemented. These considerations are the

primary motivation for this dissertation. Using remote sensing data carrying some of the

most advanced characteristics currently available, a series of methodologies were

developed or refined that translated these data into information needed in operational

forest management. The chapter begins with an outline of the dissertation’s objectives.

Then forest attributes retrievable by remote sensing are discussed, and characteristics of

imagery acquisition systems are presented. A brief overview of the current and projected

operational remote sensing applications follows. Finally, image processing and analysis
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methods emphasizing the extraction of forest canopy characteristics and inventory

variables are introduced.

1.2. Dissertation Objectives

The goal of this study was to evaluate the utility of airborne, high resolution,

multispectral digital imagery for forest management decision-making in the structurally

complex forested landscapes of the upper Midwest. To ensure that the findings would be

representative, all dominant cover types in the region were included in the investigation.

Development and testing of methodologies was based on detailed and precise field

observations. The potential for automation, where promising, guided the methodology

choices.

The three objectives of this dissertation were:

0 Evaluate the influence of airborne image acquisition

characteristics/idiosyncrasies on traditional, spectrally-based forest

classification efforts.

0 Assess the ability of image spatial analysis to reveal the horizontal

structure of the forest canopy and to enhance classification accuracies.

0 Evaluate the role image texture can have in stand classification.

1.3. Formation and Characteristics of Remote Sensing Data

A basic understanding of the characteristics of remote sensing data is essential

when considering its relevance to providing forest information products. In an ideal

world, a remote sensing image would be formed only from the energy reflected from a

target, and received by a perfect sensor. In practice, image formation is a rather
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complicated process. Gerstl (1990), Richard and Jia (1999), and Jensen (2000) offer a

summary ofthe principles that govern the interaction of light energy with forests, as

those are manifested in digital imagery. Other sources such as the energy reflected by

objects in the vicinity of the target and the contribution from atmospheric constituents are

exogenous to target radiance. The image formation process is also affected by the spectral

(wavelength-range specific) reflectance characteristics of the target, viewing geometry

(which describes the position of the sensor relative to the target), and illumination

geometry (which for optical remote sensing describes the position of the sun in relation to

the target). To complicate the process further, spectral target reflectance, and viewing and

illumination geometry factors are not independent. Rather, they operate synergistically

and regulate target reflectance in a spatial pattern referred to as the bi-directional

reflectance distribution function (BRDF). Forests in particular, because of their

complicated structure, cause a strongly directional reflectance. Accounting for the effects

of illumination geometry, atmosphere, and BRDF, would help the interpretation of

remote sensing image in forest applications.

Remotely sensed data are typically presented to the user in the form of digital

numbers (DN). Digital numbers are the quantification of energy recorded by the sensor

via an analog-to-digital converter. Because DNs are consistent within the imagery, in the

sense that higher DNs correspond to a higher amount of energy or density of photons

intercepted in unit time, they can be used in image analysis without further processing

(Franklin and Giles, 1995). The assumption made is that analog-to-digital converters

translate photon density to DNs monotonically. A more rigorous assumption is that

PhOton density and DNS are related linearly. The coefficient that describes the
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relationship is commonly known as the gain of the sensor. Knowing the gain coefficient

facilitates imagery comparisons acquired using the same or different sensors at different

times, and the comparison between satellite, airborne and field-based sensor

measurements. Most satellite sensors provide calibration information embedded in the

header of the imagery. Digital airborne imagery acquired by commercial vendors ofien

completely lacks information on sensor calibration thereby depriving the user of the

opportunity to fully explore the information content of the imagery. The implications

might be more serious for multispectral array scanners, which are in essence a collection

of theoretically identical detectors arranged on a grid. Many array scanners currently in

use, including those employed in the acquisition of the imagery used in this dissertation,

are equipped with a million or more such detectors across the matrix and the assumption

that all of them are operationally identical is undoubtedly improbable. Calibrating

detector is practically infeasible though, and image analysis usually proceeds assuming

that sensitivity and gain differences among detectors are negligible.

Sensor resolution is a compound term comprising spectral, spatial, radiometric,

and temporal dimensions. Spectral resolution denotes the number and width of specific

wavelength intervals, known as bands or channels, of the electromagnetic spectrum to

which the sensor is sensitive. Particular intervals, sometimes as narrow as Snm, are

optimal for uncovering certain biophysical information. Broadband multispectral sensors

are designed to detect radiance across a 50 to 100nm, usually non-overlapping, intervals

in a few different areas of the spectrum. Hyperspectral sensors detect radiance over very

narrow intervals (e.g., 2 to 4 nm wide).
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Spatial resolution is the projection of the detector element through the sensor

optics onto the landscape forming the instantaneous field of view (IFOV). It corresponds

to the smallest separation distance between objects that can be distinguished by the

sensor. The higher the spatial resolution the smaller the objects that can be detected. The

spatial resolution of airborne platforms is dependent on the flight altitude. Irrespective of

altitude, the energy intercepted by a single detector, is represented, after its quantification

to DN, as an image or picture element (pixel).

Frequently, remote sensing data are distinguished in terms of their spatial

dimension as of L(ow)- or H(igh)-resolution (Strahler, 1986). This characterization is in

reference to the size of the object(s) of interest. It is possible the same imagery set to be

L-resolution for one application and H-resolution for another. In forestry remote sensing,

typical satellite data are L-resolution (2 20-30m pixels). In this case, the dominant scene

objects (trees) are smaller than the pixel size and the sensor records the composite

radiance emanating from a collection of trees within the pixel area. Airborne data are

usually H-resolution (S 2m pixels), with a single, average-sized tree crown being larger

than the pixel size. Therefore, radiance measured for a given pixel location is likely to be

directly related to the reflectance characteristics of an individual tree crown or portion of

a crown.

Radiometric resolution is related to the sensor’s ability to detect differences in the

Signal strength of intercepted energy in specific wavelengths. Greater radiometric

resolution allows smaller differences in reflectance to be discriminated. Sensor

radiometric resolution in expressed in bits (2") where the value of n is usually between 8
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and 16. Thus, a l6-bit sensor is theoretically capable of discriminating 216 (= 65,536)

radiance increments within its sensitivity range.

With the exception of temporal resolution (the ability to provide repeated

coverage of a particular area), which can be considered as an independent dimension,

there are certain trade-offs among the remaining three imagery resolution dimensions. An

increase in the number ofbands or channels is often accompanied by a decrease in spatial

resolution. To acquire more or narrower bands, a sensor must view an area on the ground

for a longer period of time, and therefore, the size of the area viewed increases from a

constant altitude. If the radiometric resolution is increased so that smaller differences in

radiance can be detected, then the spatial resolution, the number of bands, the narrowness

of the bands, or all three, must be reduced. This is because the amount of energy that is

reflected from the area viewed is fixed. If the amount of energy is divided into too many

bands (spectral resolution) using many increments (radiometric resolution) over too small

an area (spatial resolution), then the energy signal becomes unacceptably weak compared

to the always-present system noise. In sensor design, it is the signal-to-noise ratio that

should be maximized, rather than any of the spectral, spatial, or radiometric resolutions.

1.4. Remote Sensing Platforms

Digital remote sensing data of forests can be acquired from field-based, airborne,

and satellite platforms and might comprise a variety of imagery types (Chen et al., 1991)

or non-imaging spectroscopy measurements (Miller et al., 1976). Many types of ground

platforms have been used in remote sensing of forest canopy spectral reflectance

(Blackburn and Milton, 1997). Field spectroscopy can be used in remote sensing in at

least three ways (Milton et al., 1995): 1) to provide data for developing and testing of
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models of spectral reflectance, 2) to collect calibration information for airborne or

satellite image acquisition (Wulder etal., 1996), and 3) as a remote sensing tool of its

own (Blackburn, 2000).

A variety of free-flying airborne platforms have been used in collecting remote

sensing observations. The ones most commonly used include low- and high-altitude

flying aircrafts and satellites. Sensors on airborne platforms typically offer greatly

enhanced spatial and spectral resolution over their satellite counterparts, coupled with the

ability to more closely control experimental design during image acquisition. For

example, they allow control over flight path azimuth or they can operate under clouds

and at different altitudes from low and slow survey flights (McCreight et al., 1994) and to

high-altitude reconnaissance flights (Moore and Pozlin, 1990). Airborne sensors usually

exceed satellite system capabilities in terms of their combined spatial resolution, spectral

resolution, and signal-to—noise ratio performance (Anger, 1999). As a result, satellite

imagery cannot be expected to replace digital airborne imagery by providing the same

type of forestry information (Roller, 2000). Basically, airborne data are of higher quality.

Airborne sensors allow longer exposure or dwell times, they often offer a customizable

sampling of the electromagnetic spectrum to fit the needs of the user, and their

measurements can be calibrated and atmospherically corrected by simultaneous ground-

based measurements over deployed reflectance targets. Compared to satellite imagery

however, airborne digital imagery has higher acquisition cost per unit area covered,

inferior sensor calibration, smaller area footprint, ofien ambiguous data documentation,

and only rarely availability of imagery archives at frequencies higher than once in 5-10

years.
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Much of the cost of remote sensing is embedded in the analysis of the imagery to

produce information products. Generally, imagery quality is more important that the

initial acquisition cost, particularly in applications where the final cost of the information

product is critical (Agner, 1999). Often a better quality, and therefore more expensive, set

of images can yield information more economically, simply because it requires less

processing. The challenge is to optimize the choice of an imagery type to meet the needs

of the user (King, 1995). Bergen et al., (2000) presented a list of criteria that can be used

to assess the cost-effectiveness of information using the characteristics of the derived

information and the cost of producing such information. In cases where remotely sensed

information mandatory for the development of management plans can replace what is

typically acquired with field visits, the cost savings can be very significant. Even if

remote sensing information can only partially replace field-collected information, the use

of remote sensing technology could still be economically prudent.

1.5. Imagery Calibration

Remote sensing data contain a series of distortions produced by sensor

imperfections, atmospheric effects, viewing and illumination conditions, and topography.

In general, in digital analysis, failure to normalize these radiometric and geometric

distortions could lead to inaccurate remote sensing output products (Yang and Vidal,

1990), especially in the presence of significant relief (Sandmeier and Itten, 1997).

Radiometric imagery correction can be a multi-stage process in which DNs are in

succession converted to at-sensor radiances, at-sensor reflectances, and finally to target

reflectances using atmosphere and illumination models (Sandmeier and Itten, 1997). All

steps are not always necessary. Often, only internally consistent calibration to at-sensor

10
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radiances (Wilson et al., 1994; Wolter et al., 1995) is sufficient. In some cases there may

be no need to perform any radiometric correction at all (Cohen et al., 1998). The number

of image radiometric correction stages that should be implemented is a function of the

availability of calibration information, analysis objectives, and the experience of the

analyst.

The complexity of atmospheric and topographic effects increases by the strongly

directional reflectance patterns of forest canopies. Because BRDF effects are target-

specific, information on canopy characteristics is required prior to its correction. At the

same time, extracting canopy information such as cover type requires atmospheric and

BRDF effects to be normalized first, which gives rise to a tautology. To avoid the

tautology, it is common practice to assume that canopies exhibit Lambertian behavior

(Sandmeier and Itten, 1997), which in turn renders topographic and atmospheric

corrections only marginally successful. Geometric distortions are related to sensor and

imaging geometry and topography (Fogel and Tinney, 1996). Corrections can applied to

provide locational accuracy (Burkholder, 1999), but they necessitate image resampling

which is known to alter pixel spectral characteristics proportionally to the spatial relation

between the input and output grids.

The forms of imagery distortions mentioned above are usually more pronounced

in imagery acquired by airborne platforms, especially those flying at low altitudes,

because of the large parallax present and the sometimes substantial variation in platform

altitude, velocity, and attitude. Distortion correction requires a substantial effort

investment by experienced analysts, especially for digital airborne imagery acquired

using array scanners. Contrary to satellite imagery, where each image frame typically

11
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encompasses tens of thousands of hectares, airborne digital imagery frames extend over

an average of only 100 hectares. Hence, airborne imagery covering a watershed or a

National Forest, usually comprises several hundred to thousand frames. Such large

imagery frame sets have coordinate systems of variable orientation, are characterized by

varying target reflectance and brightness regimes. In the forests of the upper Midwest in

particular, which are characterized by intense fragmentation and cover type variability,

and by fi'equent presence of swamps, wetlands, and lakes, such brightness variability

even between image frames acquired in sequence is prominent. Although in theory

brightness variability could be easily normalized across the entire imagery set by using

the spectral gain factor effective during each image frame acquisition, practical

limitations originating at the sensor’s sensitivity adjustment at the analog system

component (i.e. prior to signal conversion from analog to digital format), typically result

in imagery sets for which the per-frame gain factor remains unknown. To date, there are

no known examples of research investigations that attempted a simultaneous correction

of BRDF effects, geometric distortions, and variable brightness regimes using more than

a handful of array scanner imagery frames. Perhaps the difficulty in correcting those

distortions has discouraged such efforts; or perhaps the preoccupation with the relatively

coarse resolution spatial imagery obtained from satellite platforms has prevented a more

concerted effort in the airborne arena. Those issues are addressed in this dissertation. A

methodology was developed, capable of substantially reducing distortion magnitude and

allowing for significant improvements in the quality of subsequent analysis products.
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1.6. Current and Projected Operational Forestry Remote

Sensing Applications

Remote sensing has the potential of playing a critical role in forest management in

many different settings - operational forest cover mapping, forest structure and change

analysis, and forest inventory assessment. A minimal list ofprobable, near-future

operational forest remote sensing applications could include (Wynne and Carter, 1997):

a. Forest cover type characterization, b. Determination of forest stand conditions and

forest health, c. Site characterization, and d. Fire monitoring. If emphasis is shifted from

applications to the fundamental concepts of digital remote sensing, additional

applications in forestry could be considered operational (Cohen et al., 1996): e. Mapping

forest cover, f. Measuring and monitoring structure, function, and composition of

vegetation, and g. Detecting change in these conditions over time. An additional set of

applications appears to be on the threshold of operational status: landscape structure

modeling, defoliation monitoring, and biophysical forest inventory. It is expected that by

2008 a complete set of operational remote sensing applications in forestry, will become

increasingly apparent, with major contributions primarily from analysis of high-

resolution imagery (Wynne and Oderwald, 1998).

1.7. Analysis Methods of Remotely Sensed Data in Forestry

Most forestry remote sensing analysis methods are either experimental or

normative. The former operate on the assumption that the control of variables influencing

a phenomenon under investigation is feasible. In forest remote sensing applications the

experimental method is used to improve our understanding of the relationship between a

forest condition of interest and the information available about that condition extracted
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from remote sensing data. In this context, the analysis can be viewed as an experiment

where the remote sensing data are the dependent variables and the forest condition(s) of

interest form the independent variables. If control could be exerted on all the independent

variables, then it could be expected that a strong relationship be identified between the

independent and dependent variables. The identified relationship could then be treated as

a precise and accurate predictive model that, when inverted, could provide reliable

estimates of the forest condition under investigation using only remote sensing data

(Bracher and Murtha, 1994).

Controlling all confounding variables is perhaps feasible in a laboratory setting. In

an actual image acquisition mission over a forested area though, it is impossible to know

all the variables that influenced the remote sensing measurements. These influences

cannot be uniquely determined, but can certainly overwhelm the signal from the

condition of interest. Hence, the actual relationship between a forest condition and

remotely sensed data is typically much less predictable than those obtained by standard

experimental methods (Blackburn, 2000). Because of this limitation, the normative

(Haring, 1992) method is often employed.

Under the normative approach there is typically a lack of control of the

independent variables that influence the image characteristics. This makes the

relationships found subject to caveats and constraints that must be carefully documented

and described. Although the normative approach supports the development of

relationships under less than ideal conditions, it suffers from the lack of generality that

could lead to highly spurious local insights, especially where there is very little

theoretical foundation in support of an identified relationship.

14
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Both experimental and normative remote sensing analysis methodologies are, in

essence, modeling efforts. A unique characteristic of the remote-sensing-based models is

that, in their inverted mode, all their independent variables are derived from sensor

measurements of energy reflected (or backseattered) from an object or condition. The

models operate under the implicit assumption that object or condition variates cause a

predictable variation on sensor measurements. In digital remote sensing over forested

landscapes this assumption may not necessarily hold. For example, the energy reflected

from a forest stand canopy in a leaf-on condition, is basically unaffected by the stand

stem wood mass. If the objective were to estimate wood biomass using remote sensing, it

would seem more reasonable to use one or more surrogate variables (e.g., crown

diameter, tree height, species association) for which more accurate quantitative estimates

can be derived using remote sensing data and then use these surrogate variables to predict

stand woody biomass. Such considerations have raised concerns that perhaps the

application ofremote sensing technology to routine forest management is not feasible, at

least in the short term (Battaglia and Sands, 1998). From a remote sensing analyst’s

perspective, it is frequently the absence of explicit and complete problem definition that

has precluded wide acceptance of remote sensing as a forest management tool (English

and Dale, 1999). Despite reservations by certain forest managers, there appears to be a

general consensus that the synoptic and repetitive biophysical vegetation information

requirements for large geographic areas over long periods of time can only be provided

by remote sensing.

Several studies in the 19803 established that low-resolution satellite data can be

classified for forest cover, stand age, and crown closure (Walsh, 1980; Horler and Ahem,

15
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1986). In most studies since then, correlations to height, basal area, and biomass were

good to moderate (e.g., Kovats, 1997; Shettigara and Sumerling, 1998); correlations to

density, size diversity, mean diameter, and number of species were moderate (e.g., Roy et

al., 1996; Cohen et al., 2001; Franco-Lopez, 2001); and correlations to understory

measures such as number of seedlings, and understory cover were weak (e.g., Stenback

and Congalton, 1990; Jakubauskas and Price, 1997; Hall et al., 2000). Even the better

correlations though were usually too weak to allow them to be used in forest management

and planning. The main problem is rooted in the fact that the optical sensor only detects

reflectance from the top of the canopy (Holmgren and Thuresson, 1998) effectively

precluding assessment of attributes that are physically demonstrable only beneath the

canopy. In many forests, crown closure will reach a maximum while basal area and

structural complexity will continue to increase, but the optical remotely sensed signal,

particularly from low-resolution imagery, is not significantly affected by these changes

(Franklin, 1986).

High spatial or spectal resolution digital imagery is subject to similar restrictions

in terms of its beneath-canopy, forest-stand structure information content. However, it

offers a much more detailed view of the horizontal structure of the canopy. In particular,

it provides explicit information on the amount and spatial distribution of shadowing in

the stand, which can exert a dominant influence on the stand’s reflectance (St-Onge and

Cavayas, 1995). A pixel in this type of imagery would characterize only a small part of

the tree crown, shadow, or the understory. The spatial detail present in high-resolution

imagery allows individual tree-crown delineation (Gougeon, 1995; Brandtberg, 1997),

and could improve estimates of crown closure, stem density, and species composition by

16
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exploring image texture (Gerylo et al., 1998). Identification of individual trees has been

successful with images having spatial resolution of 0.6m or smaller, but conceivably will

work well enough with 1m satellite data to justify more extensive use and development

(Wulder, 1999). Most investigations of individual tree identification have been reported

in pure or mixed conifer stands where the conical shape of crowns generates abrupt

distinctions between sunlit and shadowed portions of crowns and facilitates accurate tree

identification. In deciduous stands, tree crowns usually defy formal shape conventions,

have multiple crown maxima and less distinct edges, making tree identification much

more challenging (Warner et al., 1999). Although imagery with lm or finer spatial

resolution has been available from airborne platforms for decades, and is now becoming

available from satellite platforms, there are very few examples of projects using this type

of imagery for stand structure, species composition, and crown closure mapping.

In this dissertation the normative analysis approach was used. The concerns

aforementioned and related to the ability of optical remotely sensed imagery to provide

accurate and reliable information on forest structure, even in the presence of high

resolution imagery, guided the early stages of dissertation objective formulation. In

response to those concerns, analyses focused on canopy cover type classification and on

quantifying canopy surface attributes including stem density, canopy closure, and crown

size. Were other types of forest structure information to be pursued (e.g., tree height,

composition of understory vegetation, basal area, etc.), non-optical remotely sensed

imagery (microwave, lidar) would have been explored as more promising for delivering

those types of information (Dubayah and Drake, 2000; Fransson et al., 2000). To improve

the chances of regional methodology applicability, analyses techniques were based on
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canopy morphological characteristics extracted from the imagery, rather than, for

example, identified mathematical relationships.

1.8. Image Information Extraction by Spectral Analysis

The extraction of information from remotely sensed data is usually based on

differentiating spectral response patterns in the landscape. The three more common types

of information of interest in forest management applications are: a). Continuous forest

variable estimation, b). Forest classification information, and c). Forest change or

difference information. A plethora of image analysis techniques has been proposed for

deriving such information, and each technique has spawned numerous options, that will

likely continue to evolve. A common characteristic among analysis methods is that they

are oriented towards providing information at the stand level, which should not come as a

surprise given that most methodologies were developed for L-resolution imagery. Using

essentially those same techniques with H-resolution imagery can potentially be

imprudent, given that the information content in H- and L-resolution imagery is

organized at different spatial levels. To confirm the hypothesis that indeed high spatial

resolution imagery is a unique information source for forestry applications that requires

the use of specific analysis methods, this research investigated the second type of forest

applications mentioned above (forest classification) in a dual spatial scope: at the stand-

level and at the individual tree level.

Continuous variable estimation occurs primarily by one of the few common forms

of inversion modeling, including regression analysis, neural networks, reflectance

modeling, or radiative transfer modeling. These approaches follow traditional, albeit

sometimes unconventional, statistical probability design where two sets of variables, one

18



derived from the imagery and the second from field observations or ancillary

information, are related. Because however, these methods do not account for the position

of the pixels within the forest stand examined, and offer no theoretical justification for

the form of the models produced, the accuracy of the continuous variables they estimate

is largely dependent on the quality and comprehensiveness of the input training data

(Salvador and Pons, 1998) and tends to drop substantially when used at stand conditions

other than those used to developed the models. To improve the robustness of derived

continuous variable estimates in this research, model formulation was spatially explicit,

in the sense that the spatial relationships among adjacent pixels determined model output.

Positionally explicit information for model development and evaluation, however,

is rather costly, especially at the individual tree level. Very few cases are known (Warner

et al., 1999; Pouliot et al., 2002; Wulder et al., 2002) for which spatially explicit stem

information was used, and all involved a single stand. Tree stem location information

probably suffices for an evaluation of methods aiming at predicting stem density but is

likely inadequate for models developed to estimate canopy structure variables, such as

canopy closure and mean tree diameter. Those concerns led to an ambitious endeavor that

by using survey equipment and methodology mapped precisely the horizontal canopy

structure ofplots installed in 34 stands, stratified across major cover types of the Midwest

region. It was assumed that the detailed field observations could lead to interesting

insights related to how canopy structure is manifested in high-resolution imagery and

permit canopy structure model tuning to account for those insights. Whether the expenses

associated with such an endeavor were justified, can be judged by observing associated
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research findings, not only in terms of estimate accuracy obtained but also in regard to

the value and generalized applicability of the methodologies employed.

A major trend in remotely sensed data analysis in forestry has been the emphasis

on automation. However, it is still the case that most techniques, even when supported by

software package routines, require substantial human intervention, judgment, and

guidance in order to operate successfully, prerequisites that defy automation. The

importance of automation is more pronounced in the analysis of high-resolution imagery

in part because of the small footprint and therefore the large number of image frames that

need to be processed. Possibly the only area in forestry remote sensing where automation

and standardization has been achieved is the assessment of classification accuracy in the

form of a contingency table or confusion matrix (Congalton and Green, 1999).

1.9. Beyond Spectral Analysis

Despite numerous achievements associated with information product extraction

from digital imagery in forestry, the accuracy ofproduct attributes are usually inferior to

those achieved by experienced interpreters of analog aerial photographs. This might be,

in part, because digital imagery rarely supports stereoscopic view of the forest but

probably also because attribute value estimation is usually based strictly on the per-pixel

spectral response of the forest. Photointerpreters, on the other hand, in addition to tonal

characteristics, are accustomed to using a variety of textural, pattern, shape, object,

shadow, and topographical evidence. Improvements in the use of these texture/context

descriptors in digital remote sensing analysis may allow canopy structure parameter

estimates obtained from digital imagery to rival the accuracy levels that manual

photointerpretation achieves (Green, 2000). Development of such methodologies is
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emphasized by the need for forest classification and inventory parameter product

integration with other forms of digital information usually provided via Geographic

Information Systems, and the steady decline in the number of experienced

photointerpreters available to perform those tasks.

One of the most promising alternatives to spectrally-based analysis of digital

imagery in forestry is to consider classification in a spatial context. The premise is that a

pixel’s most probable classification, when viewed in isolation, may change when viewed

in some context (Haralick and 100, 1986). The simplest context classifiers use

neighboring pixels to decide, confirm, or change the classification or labeling of the pixel

at the center of the neighborhood. Attempts to broaden context classifier algorithms have

included incorporating the spatial correlation function between pixels (Khazanie and

Crawford, 1990) and contextual parameters (Chen, 1999). These concepts are closely

related to image texture analysis. Image texture is the quantification of the spatial

variation of image tones, often referred to as gray levels, that defies precise definition

because of its perceptual character (Hay et al., 1996).

Human vision possesses a powerful innate ability to recognize textural

differences, although the complex neural and psychological processes by which this is

accomplished have so far evaded detailed scientific explanation. The interest in

quantifying texture in digital domains has led analysts to focus on the structural and

statistical properties of textures (Haralick, 1986). It is expected that by combining per-

pixel and area-based texture processing, more accurate classifications of remotely sensed

imagery can be generated (Ryherd and Woodcock, 1997). Parallel to the use of texture in

classification, interest has developed in texture itself as a variable in forest applications
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(Coops and Culvenor, 2000). Texture has been shown to be directly related to different

aspects of forest stand structure, including age, density, and leaf area index (Wulder et

al., 1996; St-Onge and Cavayas, 1997).

Image texture, however, is an abstract term. Its quantification has been attempted

in a variety of disciplines including machine vision, pattern recognition, and remote

sensing, resulting in a large number of approaches and an even larger number of texture

metrics. Their value for forestry remote sensing applications is, at large, unknown.

Today, there are few guidelines to help analysts decide which of these approaches and

metrics may be better suited, if suited at all, for a particular forestry application. A

chapter of this dissertation is devoted in providing such guidelines towards forest cover

type classification using a branch of texture quantification methods known as gray level

co—occurrence analysis. Instead of simply relaying analysis results for the metrics used in

the investigation, as is the usual case, the chapter provides a detailed presentation of

methodology options encountered at every step of the multistage procedure employed.

1.10. Dissertation Outline

The current chapter described the motivation behind the dissertation research, the

study objectives, and a brief exposure to the factors that affect remote sensing imagery

formation, calibration, and analysis used in forestry applications. Chapter 2 deals the

detection, quantification, and correction of a series of imagery imperfections that are

customarily encountered in a digital airborne imagery set. It presents a novel approach

that allows for a simultaneous correction of BRDF and variable brightness regimes

among imagery frames and a technique for reducing band registration problems. The

impact of geometric and radiometric imperfections on the accuracy of forest cover type
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classification based on the popular, maximum likelihood method is assessed by

comparing classification results obtained using the original imagery set and one obtained

after correction/ normalization of the imperfections. It is shown that although corrections

do improve classification results, the classification accuracy even for the corrected set

remains too low to be of any utility.

Chapter 3 describes a parametric method known as variogram analysis and the

development of a non-parametric metric, both capable of quantifying pixel brightness

autocorrelation and used for the identification of tree apexes, the number of which is

subsequently converted to an estimate of stand density. Further investigations of canopy

reflectance patterns based on identified tree apexes, yield estimates of canopy closure and

mean crown diameter. Estimate accuracies were found to be comparable, if not superior,

to those obtained with field observations, especially when tree apexes are identified using

the non-parametric approach. The Chapter also describes cover type classification

scenarios involving only pixels identified as tree apexes. It is shown that a remarkable

accuracy improvement of more than 30 percentage points is achieved compared to the

traditional, non-spatially explicit approach used in Chapter 2. Classification accuracies

achieved using the corrected imagery (>85%) are found to approach operational status.

Chapter 4 describes the use of image texture for forest cover type classification

purposes. It introduces a multistage procedure, which shows that the quantitative

evaluation of texture-related cover type discrimination power associated with image

bands, necessary image pre-processing choices, texture measures, and finally texture

features can provide classification accuracies similar to those obtained using spectral

classification ofraw (uncorrected) imagery.

23



Chapter 5 provides a critique of analysis methods used in this dissertation and an

evaluation of analysis results. It also describes a framework that can be used to combine

spectral, textural, and canopy structural characteristics for potential improvements in

cover type classification accuracy. Insights regarding field data collection methodologies

and a projection of additional research investigations in the study area are also presented.
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CHAPTER 2

AN EVALUATION OF BAND REGISTRATION, BRIGHTNESS VARIABILITY, AND

BI-DIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION EFFECTS ON

FOREST COVER TYPE CLASSIFICATION USING HIGH SPATIAL RESOLUTION,

MULTISPECTRAL IMAGERY
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Abstract

An investigation ofthe utility ofhigh spatial resolution (sub-meter), 1 6-bit, multispectral,

airborne digital imageryforforest land cover mapping in the heterogeneous and

structurally complexforested landscapes ofnorthern Michigan is presented. The Chapter

addresses imageryframe registration and georeferencing issues and introduces a novel

approachfor bi-directional reflectance distributionfunction (BRDF) eflects correction

and between-frame brightness normalization. Maximum likelihood classification offive

cover type classes is performed over various geographic aggregates of34 plots

established in the study area that were designed according to the Forest Inventory and

Analysis protocol. Classification accuracy estimates derivedfrom confusion matrices

show that although band registration and BRDF corrections and brightness

normalization provide an approximately 5% improvement over the raw imagery data,

overall classification accuracy remains relatively low, barely exceeding 50%. Computed

kappa coeflicients reveal no statistical differences among classification trials.

Classification results appear to be independent ofgeographic aggregations ofsampling

plots. The low overall classification accuracies are attributed to the cover type-invariant

spectral properties ofcrown portions in shadows.

2.1. Introduction

The most common use of digital remote sensing data in forestry is for cover type

classification of forested landscapes. Its importance is demonstrated by the fact that there

are forest classification precedents in virtually all the major biomes of the world

(Darvishsefat, 1995; Foody and Hill, 1996; Hansen et at. 2001). The purpose of the

classification effort is often to allow contiguous areas covered with forests to be depicted
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in their natural state, thus making a single classification scheme appropriate for these

areas. Level II classification of Anderson et al. (1976) is an example of a generic scheme

oflen imposed in such cases. In practice though, rarely would a general purpose

classification serve specialized purposes equally well (Bailey, 1996), resulting in forest

cover type classification challenges in certain areas of the world to be better understood

than in others because of the extensive prior work performed there or the presence of

long-term research initiatives (Shoshany, 2000).

Most remote sensing-based forest cover type classification efforts use L-

resolution multispectral satellite imagery (Strahler et al., 1986), in part because of the

reasonable cost and extensive archives many satellite platforms offer (White et al., 1995;

Archard et a1, 2001; Woodcock et al., 2001), and have traditionally been spectrally based.

Pixel values in L-resolution imagery correspond to the composite reflectance of many

objects and therefore mask the spatial arrangement of objects within the pixel and allow

only broader spatial patterns to be identifiable, thereby limiting the utility of spatial and

textural investigations to the stand level or beyond. On the other hand, operational forest

management decisions are almost exclusively based on information extracted from

analog infrared or color infrared aerial photographs (Wynne and Oderwald ,1998). The

use of analog aerial photographs in forest classification, however, is subject to

constraints, including availability of experienced photointerpreters, lack of photographic

enhancement capabilities, and difficulty in photographic reproduction, mosaicing, and

overlay with other forms of spatial data. The increasing popularity of digital airborne

imagery over the last decade can be regarded as an attempt to combine the merits of

satellite L-resolution imagery with the rich information content of large-scale
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photography, and the flexibility of processing options characteristic of digital

information. Recent technological advancements have allowed H-resolution imagery

(Strahler etal., 1986) to be available even from satellite platforms (e.g. IKONOS-Space

Imaging, QuickBird—Eurimage), at least at the panchromatic level, thus allowing growing

optimism that improvements in our ability to extract enhanced information on the types

and attributes of forests from airborne digital data could be directly applicable to future,

economical satellite H-resolution data.

In contrast to the popularity of L-resolution satellite imagery for forest cover type

mapping, there is only a handful of examples that have employed airborne, high-spatial-

resolution, multispectral imagery for that purpose (Coulter et al., 2000; Lefsky et al.,

2001) and none ofthem in the forests of the Midwest region. The few known examples

typically involve a very limited number of cover type classes, often only one coniferous

and one deciduous class, utilize a single image (frame), and use information derived from

large-scale aerial photography for evaluating classification results (Biging et al., 1995).

Little justification is usually offered, other than perhaps financial constraints, for the

tendency to rely upon assessed information as opposed to direct observations when

evaluating classification accuracy. Such practices are likely to foster propagation of

errors and introduce uncertainty in information treated as “ground-truth” which is not

accounted for in derived classification products.

Spectral classifications of airborne, high-spatial resolution, multispectral imagery

are subject to the H-resolution challenge (Hay et al., 1996), which implies that as the

spatial resolution of the sensor increases (i.e. the pixel size becomes smaller), so does the

within-class spectral variability of surface features, resulting in a reduction of class
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separability and a consequent reduction in classification accuracy. The latter is often

attributed, in part, to the spectral properties of pixels that represent the shadowed portions

of tree crowns (Woodcock and Strahler, 1987; Marceau et al., 1990). However, a few

studies have argued that although shadows mutually cast between tree crowns reduce the

spectral differences between cover types, shadow pixels maintain adequate information

content that would permit cover type classification with reasonable accuracy levels,

especially for l6-bit imagery (Gwinner and Schaale, 1997).

In forest classifications, the H—resolution challenge is further intensified because

of similarities in the spectral reflectance characteristics among forest cover types relative

to non-forested ones. An additional level of complexity is introduced by the strong,

directionally anisotropic reflectance, known as the bi-directional reflectance distribution

function (BRDF) effect, that forests exhibit due to their complex horizontal and vertical

structure and by topographic effects where present. In contrast, Landsat scene (or frame)

which encompasses millions of hectares, a very large number of digital airborne imagery

frames are required to cover even a relatively small sample area, spanning an extensive

range of solar illumination conditions. In geographic regions characterized by forest

cover type variability, such as those typical in upper Midwest, airborne imagery frames

are subject to considerable variation in scene brightness. H-resolution airborne digital

imagery is often delivered to the analyst with substantial georeferencing errors introduced

by imprecise aircrafi internal navigation systems, inadequate camera calibration

information, or with noticeable registration discrepancies between bands, especially when

a multi-camera arrangement is used for imagery acquisition. All of these

factors/characteristics of airborne digital imagery operate synergistically and the extent to
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which they affect forest cover type classification products is unknown, or at least it is

subject to speculation.

The objectives of this study are to 1) develop a procedure for detecting,

quantifying, and correcting the geometric and spectral distortions that are often present in

airborne, digital imagery (multispectal and multiframe, high spatial resolution), and 2)

evaluate the extent to which camera and sensor-related imperfections and idiosyncracies

affect forest cover type classification while considering frame proximity issues, BRDF

effects, and brightness variations among imagery frames. Evaluation is based on spatially

accurate and precise field observations at the individual tree level for five forest cover

types common in the Great Lakes region.

2.2. Methods

2.2.1. Site characteristics

The study area comprises two sites, the one in the south-central part of Grand

Traverse County (Site I) and the other in the northern part of Wexford County (Site 11),

Michigan (Figure 2.1). Note that figures in this dissertation often contain color. The sites

are separated by about 10km in the northwest-southeast direction and extend over 8,805

and 12,626 hectares of land, respectively. More than half (56%) of the study area is

owned and managed by the Michigan Department ofNatural Resources. Most of the

study area consists of forests and wetlands (82%), while agricultural use, mainly row

crops, represents 8%. Other land use classes include orchards (4%) and residential areas

(4%). Residential development is concentrated in the northwestern part of site I.

Geomorphic features include moraines and outwash plains. The average slope, calculated

by using the finite differences algorithm on a 10m, 1:24,000 USGS Digital Elevation
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Model available for the area is 3.5% and 2.7% for sites I and II respectively. Relief is

more pronounced along the Manistee River, which crosses site II from northeast to

southwest.

The study area is characterized by pronounced spatial heterogeneity of forest

cover types. For that reason, it was selected in 1999 by the Michigan Department of

Natural Resources (MDNR) as one of the pilot areas used for evaluating the utility of

digital remote sensing data for monitoring and mapping state-owned forest resources. The

associated effort is formally known as the Integrated Forest Mapping and Planning

(IFMAP) project. The majority of the forest cover types extant in the northern Lower

Peninsula of Michigan are present in the forested part of the study sites. The five cover

types used in this study are listed in Table 2.1. The study area also contains cedar swamps

dominated by Northern White Cedar (Thuja occidentalis).

The primary forest management objectives of the MDNR include timber

production, wildlife habitat enhancement, recreation opportunities, and aspen

preservation. Several private land owners offer seasonal horseback riding and

snowmobiling opportunities.

2.2.2. Description of Imagery Set

The imagery data set used in this study was acquired on August 11, 1999, using

the Digital Airborne Imaging System (DAIS [Space Imaging, 1999]), a sensor which

provides imagery in four bands (three visible and one near infrared) via frame (digital

array) cameras equipped with appropriate band-specific filters mounted in a 2x2

arrangement. Appendix 1, Table A.1 contains detailed information on the technical

specifications of the system. The 394- frame imagery set was delivered by the vendor
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georeferenced in TIFF uncompressed format and was accompanied by limited, per-frame

metadata on flight direction, acquisition time, and flight height above the ground. The

latter averaged 2,170m (st.dev = 25m) for site I and 2,195m (st.dev = 7m) for site 11.

Average frame endlap was 24.26% (st.dev = 0.74%) along flight lines, sidelap averaged

22.28% (st.dev = 1.41%) between flight lines. Flight line orientation and resulting spatial

arrangement of frames in each of the two study sites are shown in Appendix 1, Figure

A.1. Pixel size ranged from 0.893m to 0.949m (mean = 0.926m, st.dev = 0.018m). 36

frames contained clouds and/or cloud shadows. DAIS automatically adjusts the sensor

sensitivity (sometimes known as sensor “gain”) for each band immediately prior to image

capture in order to prevent saturation or underexposure due to rapid changes in target

reflectance. The system, however, does not record the spectral gain coefficients used for

each frame.

2.2.3. Sampling Scheme

A total of 34 plots, 16 in site I and 18 in site II, were established stratified across

the major forest cover types present in the study area with the exception of cedar swamps

which were excluded due to difficult accessibility. Seven plots were installed in each of

the northern hardwoods, aspen, red pine plantations, and natural pine cover types while 6

plots were located in the oak cover type. Plots were installed on level land, within

homogeneous stands, and away from cover type ecotones. Stand homogeneity was

evaluated by field inspections. A minimum 60% crown closure threshold was imposed by

the MDNR as a selection criterion. Stands in the vicinity of image frame centers were

given sampling priority. All plots were situated within the inner quarter area of the

associated image frame, which resulted in a maximum view angle of 865° at plot-center.
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2.2.4. Field Measurements

Field observations were obtained in a collaborative effort with the MDNR and the

Forest Health Monitoring (FHM) program during the summer of 2000, exactly one year

after image acquisition. Since its initiation in 1990, FHM has collected an expansive set

of forest attributes (USDA FS, 1997) and it is since May 1998 integrated with the Forest

Inventory and Analysis (FIA) program at the plot level. Adoption of the FIA/FHM field

protocols ensured compatibility of data used in this study with a wealth of archived and

soon-to-be-collected FIA data, greatly enhancing the potential for wide application of the

study findings. Each plot in the FIA/FHM protocol consists of four subplots located at the

center and vertices of an equilateral triangle with side length of 62.18m (Appendix 1,

Figure A.2). The base of the triangle is oriented East-West. Although in the standard

design subplots have a radius of 7.32m, recent protocol modifications have allowed for a

large subplot, for example to increase the number of large trees sampled in oldgrowth

stands. For this study, subplot diameters ranged from 10m to 15m but were consistent for

all subplots belonging to any given plot.

Following the installation of a plot center, which coincides with the center of

subplot 1, center points for subplots 2-4 were located using a theodolite and range finder.

The center of subplot 1 served as the origin of a plot—specific coordinate system oriented

to the cardinal directions. Direction was identified using a tripod-mounted survey

compass adjusted for magnetic declination. Transects were subsequently used to link the

subplot centers to the centroids of small reference objects that were clearly identifiable on

the image frames. These reference points, usually small, short shrubs, had a horizontal

footprint smaller that a pixel, contrasted well with surrounding vegetation, and were
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selected so as to avoid confusion among reference and non-reference objects. Reference

points were assigned plot coordinates using Euclidean geometry and distance/direction

measurements (in three dimensions) between transect vertices. Subsequently, the plot

coordinates associated with objects on each plot were translated into image frame

coordinates by using these reference point coordinates. The Root Mean Square Error

(RMSE) ofplot-to-image coordinate translations calculated using subplot centers for each

of the 34 plots had a mean of 18.2cm (st.dev = 5.3cm), or about 0.2 pixels. The precision

of the theodolite and range finder measurements were evaluated by establishing, ten (two

per cover type), closed transects of considerable total length (> 1km) with many vertices

(>25) and comparing the positional discrepancy between the first and last vertex, which,

in the absence of any measurement error, should coincide. The RMSE for the 10 trials

was 4.20m (st.dev = 2.9cm), or 0.045 pixels.

Spatial and attribute data were collected for all trees within each subplot having

diameter at breast height (DBH) of at least 5cm. Spatial data included the azimuth and

distance of the stem center from the subplot center, and the periphery of the visible-from-

above tree crown projected to the ground. Crown portions of trees with stems outside the

subplot were also recorded (Appendix 1, Figure A.3). The horizontal extent of a crown

was projected to the ground using clinometers and measured as distance from the stem

center using a tape. For regularly shaped crowns only four distance measurements along

the cardinal directions were taken. Irregularly shaped crowns necessitated a larger

number of angular and distance measurements. Attribute data included species, DBH,

foliage vigor rating and presence or absence of tree membership in the canopy

dominance/co-dominance class. For two trees in each subplot the total height was
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measured. Spatial measurements were organized as polygon or point layers in a

geographic information system (618) using plot coordinates. The methods used to

delineate crowns from point measurements, and subsequently identify crown centroids

and calculate crown diameters are described in Appendix 1. All GIS crown and tree stem

layers, initially represented in plot coordinates were ultimately translated in image

coordinates.

2.2.5. Image preprocessing

Examination of the spectral properties of pixels on line transects chosen randomly

in image frames revealed imperfections in the geometric alignment (registration) of the

bands. Further, overall brightness differences among image frames were very apparent.

Depending on their magnitude, such image deficiencies could seriously degrade the

quality of the subsequent image analysis products. The steps taken to correct band

registration problems and normalize the spectral brightness among image frames are

outlined below.

2.2.5.1. Band Registration

Transparent materials such as atmospheric gases, refract wavelengths of

electromagnetic radiation to different degrees, such that a point source in the image plane

(i.e., the plane of the object) is recorded as multiple or almost-coalesced points in the

focal plane (i.e., the plane at which the digital camera records the image), thereby

producing band misregistrations. Band misregistration may also occur as the result of

physical misalignment of cameras or their optical components at the focal plane. The

traditional approach for correcting band registration problems is to identify areas of

intense spectral gradient (i.e. edges), and attempt to align them (Tian and Huhns, 1986).
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The proper displacement (or registration) vector is identified as the one that maximizes

the correlation coefficient between the two bands processed. However, between-band

correlation is strongly affected by the types of objects depicted in the imagery. It is

indeed possible for two bands to be highly collinear for a given combination of surfaces

and practically unrelated for another. Because the reflectance regimes ofmost natural

objects and surfaces present in the blue, green, and red bands are highly collinear,

correlation-based investigations are expected to reduce the magnitude of registration

problems. Such optimism though cannot be extended to include the near infrared band,

because the abrupt increase in the reflectance of healthy vegetation in that band is not

accompanied by similar reflectance behavior in other types of surfaces.

Spectral correlation computations were restricted to include only the darkest

pixels per frame band. The appropriate digital number (DN) threshold for classifying a

pixel as ‘dark’ was identified by examining the DN histogram for the NIR band. For

unirnodal NIR histograms, the pixels with a DN smaller than the 2nd percentile were

selected. For bimodal histograms, characteristic of frames containing water features, first

the DN corresponding to the trough between histogram modes was identified, and then

the threshold was set to include the 2% ofpixels in the frame with DN value larger than

the trough DN (Figure 2.2b). This approach effectively masked all pixels not positioned

in deep shadows or water (Figure 2.2c). Subsequently, with the NIR band kept stationary,

all other bands in a frame were shifted up to 5 pixels, in whole pixel increments, around

the center of an 11x1 1 window. Shorter (subpixel) intervals could be used for frame

shifting, but subpixel intervals would have necessitated pixel interpolation, which is

known'to distort image features and spectral attributes. For each band shift, the
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correlation coefficient with the ‘dark’ pixels in the NIR band was calculated. The optimal

displacement offset, henceforward known as registration vector, was identified as the one

that maximized this correlation. The NIR band was selected to remain stationary because

of its lower sensitivity to atmospheric refraction of light in comparison to the visible

bands. To evaluate the robustness of this registration vector identification method, the

procedure was repeated for 20 frames, this time keeping the red band stationary.

It was discovered that the presence of large clusters of pixels identified as dark,

might affect the ability ofband correlation computations to reveal and correct registration

problems. This can be particularly important in cases where the direction of the

misregistration coincides with the main axis of elongated clusters of dark pixels, such as

those occurring along stand edges or streams. Thus, prior to band shifting, dark pixel

clusters containing more than 10 pixels where eliminated (2.2d). Cluster identification

and membership calculations were performed using the connected components algorithm

(Shapiro and Stockman, 2001) with the four-neighbor option. To investigate the potential

presence of variable registration accuracy across a frame, spectral correlations were

computed for every 1/16th (128 x 128 pixels) of a frame, and, for frames containing a

plot, for a 300 x 300 pixel window centered on each plot center.

2.2.5.2. Normalization of spectral frame brightness

In the absence of l) the sensor’s spectral gain coefficients per frame and 2) the

spectral reflectance of any targets, between-frame brightness normalization efforts

explored alternative approaches. Preliminary investigations revealed that targets believed

to have invariant reflectance during the course of image acquisition (such as ponds or

unpaved roads on sandy soils), and therefore well suited to the normalization process,
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were either only sporadically available in the study area (ponds) or had significant

spectral variability (unpaved roads). Because of these limitations, normalization efforts

focused on overlapping regions between adjacent frames. It was assumed that the

difference in the mean DN value ofpixels positioned in the overlapping region of a pair

of adjacent frames would be representative of the overall spectral brightness difference

between respective frames.

To determine the spatial extent of overlapping regions, adjacent frames needed to

be properly georeferenced. To improve the poor registration accuracy of the imagery

provided by the commercial vendor, often found to exceed 100m, image frames were

georeferenced manually using leaf-on and leaf-off, 1:12,000-scale Digital Ortho

Quadrangles (DOQs) available for the study area (Michigan Department of Natural

Resources, 2001) and nearest neighbor pixel interpolation. Frame georeferencing using

this method produced an RMSE of 1.9m or approximately two pixels.

Image portions close to the edge of frames are acquired with the largest view

angles in an imagery set, and therefore are susceptible to stronger BRDF effects

compared to other frame portions. Differences in DNs due to BRDF effects are likely to

be further accentuated for overlapping frame regions, since in such circumstances the

difference in relative viewing azimuth angles (Figure A.4, Appendix 1) for pixels in these

regions approaches 180°. Failure to mitigate BRDF effects prior to calculating mean DN

values for the overlapping region between frames would make successful brightness

normalization unlikely.

A semi-empirical model applicable to heterogeneous surfaces, developed by

Roujean et al. (1992), was used for BRDF correction of overlapping frame regions. It
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considers the surface spectral reflectance to be the outcome of two main processes: a

diffuse reflection component that accounts for the geometric structure of opaque

reflectors on the surface of objects and scattering from the object’s volume. Both

components are represented in the model via three, surface-type-specific parameters, k0,

k,, and k2. BRDF correction coefficients are computed as the fraction of surface

reflectance of standard over actual viewing and illumination geometry. Details on model

structure, and an illustration of viewing and illumination geometry are in Appendix 1.

BRDF corrections were computed for the portion of overlapping frame regions occupied

by deciduous forest. It was assumed that the anisotropic reflectance of coniferous forests

due to BRDF effects was similar to that of deciduous forests. The extent of deciduous

forests was determined by spatial overlays of georeferenced image frames with a beta

version ofthe IFMAP classification maps. Proper model parameter values were identified

by using a simplistic optimization method to be discussed shortly. Other land use / land

cover types available in the study area such as coniferous forest and grassland were not

considered because they were present in fewer than half of the overlapping frame regions.

The optimization method entailed resolving band misregistration (if any) for each

of the overlapping frame regions, correcting BRDF effects for deciduous forests at those

regions, calculating the region’s mean pixel DN values for the deciduous forest portion of

each frame in an adjacent pair, computing the difference of the means for each frame

pair, and finally summing the differences along a closed path that traversed many frames.

The method operated under the assumption that BRDF differences among deciduous

forest cover types were minimal. Since each of the paths originated and terminated at the

same frame, and given that BRDF effects were considered normalized, the sum ofmean
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DN differences between adjacent frames along the path should be close to zero. Any

discrepancies could be attributed to an improper combination ofBRDF model parameter

values. Ten closed paths were established, 5 per study site, each originating at different

locations within the respective sites and traversing 15 to 20 frames. Established paths

avoided frames with clouds or cloud shadows. Note that deciduous forests, unlike other

forest cover and land use types, were present in each overlapping frame region along

every path. Using published spectral model parameter values for deciduous forests as

seed values (Table A.2, Appendix 1) a large number (> 1,200) of k0, k], and k2 value

combinations were tested for each band, each resulting in pixel-specific spectral

correction coefficients to be used for BRDF normalization. BRDF correction coefficients

are defined as the ratio of model predictions for standard over actual illumination and

viewing conditions (Table A3, Appendix 1). Smaller increments in the values of k0, k],

and kg were examined as the model-parameter combinations being evaluated produced

progressively smaller sums of DN differences along the paths. The combination that

minimized the differences among all established paths while consistently providing

spectral correction coefficients within the 0.7 to 1.3 range was identified as the one that

provided the optimum BRDF correction and was subsequently used for brightness

adjustment (Table A.2, Appendix 1). Spectral correction coefficients outside the 0.7 to

1.3 range were considered improbable. Brightness variation adjustment was also

examined for individual paths. The optimum model coefficient values were used to

determine the spectral brightness difference between a frame and its neighbors based on

the brightness differences detected within the overlapping regions. The effectiveness of

the method in correcting brightness variations among frames was evaluated by comparing
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the DN difference sums along the established paths after the BRDF normalization to the

DN difference sums obtained using the original DN values.

With the relative brightness difference among adjacent frames known, frame DN

values for each band were adjusted relative to those of a frame in the middle of sites I and

II respectively. Adjustments progressed radially away from the site centers.

Subsequently, the mean per-band value for all frame portions occupied by forest was

computed for each site. It was assumed that the ratio of spectral reflectance between

deciduous and coniferous forests was constant. Finally, spectral DNs for the frames at

site I were adjusted a second time so that their mean value over forested landscapes

would match the mean DN value of forested landscapes in site II. All BRDF corrections

and brightness normalization procedures were performed using Arc Macro Language

(AML) scripts in ArcInfo (ESRI, 2001 ).

2.2.6. Image Classification

As mentioned earlier, all major cover types present in the study area, with the

exception of Cedar swamps, were represented in the field data set. In the presence of a

known forest cover type classification scheme, a supervised classification approach was

selected. The maximum likelihood (ML) option was used primarily because of its

parametric structure. Initial investigations of cover type spectral signatures, both with and

. without registration correction and BRDF/brightness normalization, showed that non-

parametric classification options (e.g., parallelepiped) would result in significant

signature overlaps and greater classification confusion rates.

Classification was conducted on the subplot level. Subplot pixel membership was

determined via spatial overlays of image frames with vector subplot boundaries in image
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coordinates. Pixels split by a boundary were considered to be subplot members if 50% or

more of their area was within the subplot. In the ML classification process, pixels in each

subplot were assigned to one of the five classes (Aspen, Northern Hardwoods, Oak, Red

Pine Plantations, or Natural Pine). A cross-validation approach (Lachenbruch and

Mickey, 1968) was undertaken for signature development involving two geographic

extents: i) site-specific, and ii) global. A subplot Q2 (belonging to plot Q) in site I for

example, was classified via three sets of spectral signatures developed: 1) using all pixels

in the remaining subplots at site I except those in the related subplots (Q1, Q3, and Q4)

and all the subplots in site II, 2) using the pixels in the remaining (unrelated) subplots of

site I only, and 3) using all pixels in site II subplots but no pixels from site I subplots.

Subplots in site II were classified in a similar fashion for a total of five classification

products. Absent this cross-validation approach, it would be difficult to ensure that the

potentially low spectral variability within a plot compared to the variability among plots

of the same cover type would not inflate classification accuracy estimates. Subplot

classification was applied to both raw DNs and to a dataset that had been corrected for

between-band misregistration and normalized for BRDF/brightness variability, for a total

of 10 classification trials (scenarios).

Classification outputs were post-processed with subplot-specific pixel majority

filters that assigned a single class (cover type) to each subplot. Classification accuracy

estimates were derived from confusion matrices and associated indicators (percent of

subplots correctly classified and kappa coefficients) (Congalton, 1991) computed after

the application of majority filters. Differences in the classification performance were

evaluated using parametric statistical tests. Details on the tests and the computation of
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confusion matrices and accuracy indicators are provided in Appendix 1. The power of

each classification output was evaluated by imposing several different minimal

probability thresholds (none, 0.1, 0.25, 0.50, 0.75) for class membership. Pixels with all

class conditional probabilities below the imposed threshold remained unclassified.

2.3. Results

2.3.1. Band Registration

Between-band registrations errors (Figure 2.3a) identified by correlation-based

investigations and quantified by using the length of calculated registration vectors

revealed that, in general, the shorter the wavelength of the visible band the larger its

registration discrepancy relative to the near infrared band (Table 2.2). For individual

frames, spectral misregistration was practically random both in magnitude (vector length)

and orientation (vector azimuth) (Figure 2.3b). The absence of any detectable pattern of

misregistration among frames and bands remained even when the frames were arranged

in acquisition time sequence. Spectral registration vectors computed for tiles arranged in

a 4x4, non-overlapping formation within the frame (i.e. each tile covering a unique 1/16th

of the frame), revealed substantial within-frame vector variability and spatially correlated

vector azimuth and length (Figure 2.4). Such variability in spectral registration cannot be

attributed to varying atmospheric optical depth and spectral refraction rates, or to

markedly different spectral reflectances among cover types, especially in the absence of

significant topographic variations. It is, rather, an indication of imperfect alignment of the

focal planes of the cameras used in the acquisition of imagery. The lack of consistent

registration vector attributes (azimuth and length) between corresponding tiles in

sequentially acquired frames could potentially be explained by an unstable mounting of
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the camera set on the aircraft body, which would leave the alignment of the optical axes

and focal planes of the cameras vulnerable to aircraft fuselage vibration and wind

pressure.

Ranking of the band correlation coefficient values computed for different vectors,

either for an entire frame or for a portion of it, revealed that, for many frames, a single

vector would offer a correlation value clearly larger (by as much as 0.10) than any other

vector. For many other frames, there were two vectors offering high correlation values,

while the next best correlation values were substantially smaller than the two higher ones.

In the latter case, vector length and relative azimuth difference was always one length

unit and 450 respectively thus providing a strong indication that registration discrepancy

for the band pair tested for the frame in question was about half a pixel.

Comparisons of registration vectors computed with the NIR band stationary to

those computed by keeping the red band stationary revealed that vector length and

azimuth convergence for the two alternatives was achieved only when the DN band

histogram threshold used to assign a pixel to the ‘dark’ class was appropriately low.

Eliminating large clusters of ‘dark’ pixels allowed vector attribute convergence even

when the DN histogram threshold was set to the 3rd percentile. Maintaining large clusters

had occasionally necessitated setting the DN threshold to the lSt percentile.

2.3.2. Normalization of Frame Brightness

Brightness variations among frames in the original imagery were found to be

significant. The sums ofmean brightness differences (expressed in DNs) for overlapping

regions along each the 10 close multi-frame paths established for testing varied between

—6,3 15 and 4,989 DNS for the NIR band in the original imagery (Table 2.3). When scaled
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to the number of frames present in the path, brightness variations among all established

paths stretched from —421 to 301 DNs for a range of 722 and a mean of 285 DNs for the

NIR band. The mean per frame brightness variation among paths for the blue, green, and

red bands was 238, 319, and 255 DNs, respectively. The latter values could be considered

as systematic errors that would accumulate in the process of adjusting frame spectral

brightness starting from the frame in the center of each site and progressing to the frames

on the periphery. Accordingly, the brightness adjustment for a frame positioned 10

frames from the center of each study site should be expected to sustain an average error

of 2380, 3190, 2550, and 2850 DNs for the blue, green, red, and NIR bands. Those values

correspond to approximately 12%, 15%, 13%, and 9% of the effective DN range for

healthy forest vegetation and therefore should be considered substantial. It should be

noted that these values correspond to the average per frame brightness correction error

and errors in individual frame brightness adjustments could be larger.

Compared to the original imagery spectral DNs, post-normalization brightness

variations calculated along the closed multi-frame paths, were on the average two orders

of magnitude smaller (Table 2.3). For the NIR band, the mean per path brightness

variation among the established paths had a range of 250 DNS or about 1/45th of the same

range without normalization. For the blue, green, and red bands, the reduction in along-

path brightness variation achieved with the normalization process amounted to 93.9%,

93.7%, and 95.0% respectively; when expressed on a per-frame basis, post-adjustment

mean brightness variations were practically absent. For pairs of adjacent frames, the

mean DN difference of their overlapping regions occupied by deciduous forests was

always less than 1% of the effective range for healthy forest vegetation after brightness
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normalization. Note that if the normalization process involved individual paths,

additional reductions in mean, per path brightness variation are attainable. However, the

optimal BRDF correction coefficients computed for individual paths, would, generally,

produce slightly larger brightness variations when applied to the other paths than those

produced when optimizing simultaneously for all the paths. The differences in the site-

specific, mean spectral brightness of forested land between the two sites ranged from

— 175 for the NIR band to 83 for the green band (Figure 2.5). These differences in the

spectral means were used to adjust the frames of site I to those of site 11. These

discrepancies between site spectral means originated primarily from the mean brightness

difference of the two frames at the respective site centers that were used for brightness

adjustment. Brightness adjustment resulted in leptokurtic distributions of frame means

with a range of about 1,000 DNs for the visible bands. For the NIR band, the distribution

of frame means was approximately Gaussian with a range of 2,500 (Figure 2.5). It should

be noted that some variability in spectral frame means was expected because of

differences in the composition of forest types in each frame (deciduous vs. coniferous).

2.3.3. Image Classification

Classification accuracy estimates derived from computed confusion matrices were

unacceptably low. Overall classification accuracies ranged from 43.1% to 48.4% when

the original imagery was used and from 50.0% to 53.1% after brightness normalization

(Table 2.4a-j). The average improvement in overall classification accuracy offered by

brightness normalization was 5.66% with a coefficient of variation of 0.39, and was

larger within each of the two sites (8.3% for site I and 6.3% for site II) than across them

(6.9% for site I and 3.1% for site II). Overall kappa coefficients values followed a similar
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trend, ranging from 0.29 to 0.36 for the original imagery and from 0.38 to 0.41 after

brightness normalization (Table 2.4a-j). Correcting for brightness variations improved the

overall classification kappas by an average of 0.070 with a 0.40 coefficient of variation.

Again, the improvement was larger within sites (0.103 for site I and 0.077 for site 11) than

across sites (0.087 for site I and 0.037 for site II). Classification was significant at a=0.01

(Zk, Z-score of kappa, > 2.576) for all scenarios. However, all pair-wise comparisons of

classification outcomes (overall, within and across sites, pre- and post-brightness

normalization) based on the computation of standardized differences of respective kappa

coefficients showed no statistical significance even at a = 0.10 (Table 2.5).

Class-conditional kappa coefficients computed before and after brightness

normalization showed that correction of brightness variations generally resulted in

increased coefficients (Table 2.6). Averaged across all five classification scenarios, the

improvement was substantial for northern hardwoods subplots (0.150) and about half that

amount for aspen (0.071), oak (0.065) and red pine plantations (0.066). This trend was

absent in natural pine where brightness correction led to decreases in kappa coefficients

for three of the five classification scenarios, however. Within-site brightness correction

for natural pine increased the kappa coefficients. The largest coefficient increases

observed included the classification scenarios of all northern hardwoods subplots from

0.29 to 0.51, of northern hardwoods in site I with signatures developed within the site

from 0.23 to 0.40, of aspen in site I with signatures developed in site II from 0.24 to 0.40;

and of oak in site I with signatures developed in site I from 0.14 to 0.30.

Class-conditional kappas computed prior to correcting for brightness variations

among frames did not reveal any patterns related to whether the signatures for subplot
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classification were developed within the subplot’s site or not. In four scenarios (aspen

and red pine plantations in site I, aspen and northern hardwoods in site II), within-site

signatures yielded larger kappas, but in five others (northern hardwoods and oak in site I,

and oak, red pine plantations and natural pine in site II) the kappas where higher for

signatures from across sites. For one classification scenario (natural pine in site I), the

kappa was the same within and across sites. After brightness normalization, in seven

classification scenarios within and across sites signature development produced the same

kappa. Once kappa was larger across sites (northern hardwoods in site I) and three times

was larger within the site (natural pine in site I, and aspen and natural pine in site II).

Confusion matrices calculated for each of the classification scenarios (Table 2.4a-

j) showed that there were substantial confusion rates among all five cover types.

Confusion rates for aspen, northern hardwoods, and oak were higher within the deciduous

cover type group (i.e. where a deciduous cover type subplot was assigned to a deciduous

cover type other than the correct one) while red pine plantations and natural pine

exhibited comparable error rates between themselves and the deciduous cover types

(Table 2.7). This is an indication of overlapping signatures in the four dimensional

feature space that is not limited to only coniferous or only deciduous cover types, as it is

usually the case in traditional L-resolution imagery classification. Commission and

omission errors calculated from the confusion matrices (Table 2.4a-j) suggested that

signatures developed using all pixels in the training areas do a poor job of capturing the

spectral identity of cover types or cover type groups known to be spectrally discernable in

L-resolution imagery. Further, subplots assigned to the wrong cover type class in each

classification scenario did not, in general, belong to the same plot. For most plots, one
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and rarely two of its subplots were misclassified. Evidently, the classification errors

observed cannot be solely attributed to the spectral variability between plots of the same

cover type.

Interesting insights into the structure of the spectral signatures were gained by

examining the percentage of pixels that are classified for various maximum likelihood

thresholds (Table 2.4a-j). Even small (<= 0.10) probability thresholds left large

percentages of pixels unclassified. The proportion of unclassified pixels was

approximately 50% for a threshold of 0.25 and exceeded 80% when the threshold was set

to 0.50. Hence, for the majority of pixels in a subplot, pixel assignment to a cover type

was based on a weak association between the pixel’s spectral profile and the structure of

the signature of the assigned cover type class. A maximum likelihood threshold of 0.75

allowed only 2-5% of the pixels in a subplot to be classified, and these were always

positioned approximately half way between the sunlit portion of the crown and the

shadowed areas between crowns. Progressive threshold decreases resulted in a gradual

expansion of classified pixel clusters positioned between the sunlit and shadowed areas;

at very low thresholds, only the center of sunlit areas and deep shadows remained

unclassified.

2.4. Discussion

2.4.1. Band Registration

The proposed method for correction ofband registration errors is computationally

efficient when the main cause of misregistration is imperfect alignment of the focal

planes of cameras used in the acquisition of multispectral, low or medium altitude

imagery. In the absence of significant topography, variation in image platform altitude
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and overly heterogeneous conditions, focal plane misalignment can be expected to

generate a consistent band misregistration among sequentially acquired frames. Under

these circumstances, registration vectors identified for portions of one frame could be

applied to all corresponding frame portions in the same flight path, thereby significantly

reducing the computation load, while permitting reduction in registration errors for

portions of frames in which spectral profiles do not support correlation optimization

computations. When focal plan misalignment varies among fi'ames or when image

acquisition conditions result in variable registration accuracy regimes within frames, the

presence of an adequate number of multispectrally ‘dark’ pixels in all frame regions is

crucial if the correlation-based methodology employed in this study is to produce

satisfactory corrections. The absence of ‘dark’ pixels in a portion of a frame occupied by

forest, and for which registration correction is required, is common in stands with a

smooth canopy surface and high canopy closure. In such cases, increasing the DN

threshold that assigns a pixel to the ‘dark’ class and applying the correlation method

would likely yield satisfactory correction of misregistration for the visible bands, but not

for the infrared band.

Discrepancies in the magnitude and orientation of registration vectors that

maximized band correlations for different choices of stationary bands and DN histogram

thresholds used to identify ‘dark’ pixels emphasize the need for a careful DN threshold

selection. The 2nd DN histogram percentile and the subsequent processing of ‘dark’ pixels

with the connected components algorithm were found to be good choices for the imagery

in this study. Very low DN histogram percentiles, for example 0.5%, would eliminate any

dependencies of the method to differences in reflectance characteristics among objects in
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a frame. However, they would also reduce the number of ‘dark’ pixels used in the

computation ofband correlation thereby increasing the susceptibility of the registration

vectors to errors introduced by the variable, non-linear spectral gain effect that sensors

exhibit at the lower range of their spectral sensitivity.

, Because the method is designed to evaluate band registration only in whole-pixel

increments along the axes of digital arrays, it is incapable of correcting misregistration

caused by relative rotation between the arrays. Further, the proximity or coincidence of

principal points in each spectral component in a frame could, in the presence ofband

rotation, lead to gross underestimates of misregistration magnitude because pixels

positioned symmetrically away from the principal points would tend to produce local

registration vectors of similar length but opposite orientation. Therefore, in the presence

ofband rotation, registration vectors would vary among different frame portions. The

only realistic option for correcting or reducing such misregistration that does not involve

frame resampling would be to restrict correction to each frame portion separately -- a less

than ideal solution because of ensuing band registration discontinuities at flame

partitioning boundaries. When applied properly, in terms of ‘dark’ pixel identification

and frame portion extent, the method would eliminate any band registration errors larger

than 0.5 pixels, while preserving the spectral profiles of objects of interest.

2.4.2. Normalization of Frame Brightness

BRDF model coefficients optimized during the brightness adjustment procedure

are not necessarily appropriate for any deciduous forest. The Roujean’s et al. (1992)

model, as well as many others, is designed to standardize reflectance of an object for

various illumination and viewing geometries. Without information on spectral gain
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coefficients and radiometric field measurements, however, the only alternative is to base

classification on DNs. In this study, thebrightness adjustment operated under the

potentially unrealistic assumption that object reflectance could be approximated as a

linear transformation of DNs intrinsic to the BRDF correction process, with the linearity

assumption imposed by the kemel-based structure of the BRDF model. The fact that

theBRDF model coefficient values converge to minimize brightness differences for the

overlapping regions along frame paths and that the vast variations in brightness among

frames for the original DNs are practically eliminated by the brightness adjustment are

encouraging, albeit qualitative indications that these assumptions are valid. Coefficient

generalization could be further restricted by the fact that optimization was based only on

larger viewing zenith angles (i.e. those that corresponded to overlapping frame regions).

Note that although only deciduous forests were used as a basis for the brightness

adjustment, normalization was based on all forested land. In landscapes where coniferous

stands are ubiquitous in the overlapping regions of frames, a separate, independent

brightness adjustment could be derived, which would permit an assessment of the

method’s dependence on and ability to provide brightness normalization for another class

of vegetation.

2.4.3. Image Classification

The classification approach used in this study, although conceptually similar,

differs from traditional classifications of L-resolution imagery in the sense that the

classification unit (a single pixel) corresponds to small portions of tree crowns rather than

multiple crown aggregates. The differences in spatial scale between the imagery unit

(pixel) and the classification unit (subplot) have important implications for classification

58



results because, unless a fuzzy classification scheme is employed, it necessitates

elimination of the within-subplot pixel class variability. The classification accuracy

estimates that were derived do not account for the fact that the confusion table entries are

not assigned directly by the ML classifier on a pixel basis, but are in addition post-

processed with a majority filter on the subplot level. As such, the classification accuracy

estimates could be seriously overestimated. Concerns about accuracy estimate bias are

accentuated by the low maximum likelihood probabilities of the most probable class

determined by the classifier.

The observations made on the spatial allocation of classified pixels for various

maximum likelihood thresholds, the variability of assigned classes for subplots in the

same plot, and the analysis of the confusion matrices all suggest that the spectral

signatures for each cover type class are ‘contaminated’ by the presence of a significant

number of spectrally dark pixels with DNs that are not exclusively associated with any

one class. The spectral signature for each of the five cover types classes could be

regarded as approximating a hyperellipse in four-dimensional space in which the dark

pixels that correspond to shadowed crown portions or small canopy openings occupy the

volume around one of the ellipse’s focus while the pixels for the sunlit portions ofcrowns

are centered around the other focus. The signature mean, positioned approximately half

way between the two foci, corresponds to crown portions located at the fringe of direct

and diffuse illumination. Moreover, the dark foci of ellipses for different cover types tend

to be proximal in four-dimensional space thereby indicating that there is little, if any,

spectral separability between shadowed portions of the five cover types. By contrast, the

bright foci for the five cover type signatures represented in this study tend to exhibit
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mutual inhibition, thus causing a rotation of the main ellipse axis around its respective

dark focus. Hence, when all cover types are simultaneously considered, only the brighter

components of their ellipsoid volumes do not overlap. Because signature means are

positioned much closer to dark foci rather than bright foci, the relative signature ellipse

rotation produces smaller spectral separation between signature means than the distance

between the bright foci thereby decreasing the accuracy ofmaximum likelihood

classification, given that the latter is based on the spectral distance of a pixel from

signature means (Appendix 1, Equation A.l9).

While the presence of shadows and resulting spectrally dark pixels in high spatial

resolution digital imagery over forested landscapes affects the means of spectral

signatures, brightness variations and BRDF effects are primarily related to the structure

of covariance matrices (Appendix 1, Equation A.l9) and inflate the volume those

signatures occupy in multi-dimensional space and hence the extent of overlap. The

approximately 5% improvement in classification accuracy achieved after BRDF

corrections and brightness adjustments is most likely the result of a reduction in the 4-

dimensional volume of the cover type signatures involved.

The larger variability of classification accuracy estimates for individual cover

type classes compared to the variability of estimates for the pooled subplot set can be

partially attributed to differences in the number of subplots considered in each scenario,

but also to differences in canopy roughness within cover types. Even with invariable

canopy density, foliage composition and orientation of leaves or needle bundles,

differences in canopy surface roughness occasionally present between and within plots of

the same cover type will generate variability in the size and darkness of shadows cast
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between crowns of adjacent trees and hence alter the degree to which dark pixels

influence the composition of respective cover type signatures. Note that the significance

ofkappa coefficient differences between the various geographic extents of signature

development and brightness correction alternatives cannot be evaluated at the cover type

level because the kappa coefficient variance estimates necessary for the associated

statistical testing are known to be unstable and biased when the sample size is relatively

small.

2.5. Conclusion

The low overall accuracy of all classification products obtained using all subplot

pixels, found to be considerably inferior to the accuracy traditionally obtained using L-

resolution, mid-summer imagery for similar classification schemes, suggests that their

value for cover type classification and support of forest management decisions is fairly

limited. The spectral profiles of pixels corresponding to shadowed portions of forest

stand canopies are instrumental in minimizing the spectral separability of signatures for

the five forest cover types of this study. At the same time though, they emphasize the

potential of signature development conditional to crown portions to offer significant

improvements in their power to discern cover types. The merits of the latter approach are

investigated in detail in Chapter 3. The approach used in this Chapter, however, is

computationally more efficient and does not require a shift of classification focus from

the subplot level to individual trees, nor does it necessitate identification of individual

tree crowns.

Signature development based on variable geographic extents was found to have

minimal impact on classification accuracy, but it should be kept in mind that there is only
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marginal variability in the ecological gradients (edaphic, climatic, and topographic) that

influence forest growth between the two sites used in this study. It was shown that the

noticeable decline in classification accuracy that results from band misregistration and

variable frame brightness conditions can be avoided, but the associated computation cost,

analyst expertise and time investment, and ancillary information requirements necessary

for error correction and brightness normalization could be prohibitive. Depending on the

type of registration errors, absolute corrections may be impossible unless compromises

related to the objects’ spectral profiles are made (i.e. resampling). However, it should be

expected that the process of correcting band misregistration could be simplified if

technical problems such as camera focal plane alignment imperfections were to be

eliminated. Similarly, simply recording the spectral gain coefficients used for the

acquisition of each image frame would have permitted reflectance- rather than DN-based

classification and would have allowed for theoretically sound BRDF correction rather

than the empirical approximation used. It should be expected that as commercial vendors

of airborne, multispectral, high resolution digital imagery gain experience, such technical

problems would diminish, ultimately increasing the potential utilization of this type of

imagery for forest land cover classification.
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Tables

Table 2.1. Cover types and their major species components in the study area.

 

Cover Type Major species present

 

Common name Latin name

 

Aspen Big Tooth Aspen (Populus grandidentata), and

Quaking Aspen (Populus tremuloides)

Northern hardwoods Sugar Maple (Acer saccharum),

Red Maple (Acer rubrum),

American Beech (Fagus americana),

Black Cherry (Prunus serotina),

 

Basswood (Tilia americana), and

White Ash (Fraxinus americana)

Oak White Oak (Quercus alba), and

Red Oak (Quercus rubra)

Red Pine Plantation Red Pine (Pinus resinosa)

Natural Pine White Pine (Pinus strobes)
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Table 2.2. Spectral registration vector components and length at plot centers calculated

as those that maximized between-band correlation using dark pixels of the NIR band.

Band correlation was evaluated within a 300 x 300 window centered at respective plot

centers.

 

 

 

 

    

NIR-BLUE NIR-GREEN NIR-RED

Vector component 7:123: Vector component £3133: Vector component £233:

00 00 OD

‘5 ‘5 E "a? 5 iii ‘3
'5‘. :33 z m 2 1.1.1 2

1 0 -1 1 00 0 0 0.00 0 0 0.00

2 0 -1 1 .00 -1 0 1 .00 0 0 0.00

3 -2 -1 224 0 0 0.00 0 0 0.00

4 0 1 1 .00 -1 0 1.00 0 -1 1 .00

5 0 0 0.00 0 -2 2.00 1 1 1 41

6 0 0 0.00 1 0 1 .00 -1 0 1.00

7 -1 0 1.00 2 1 2.24 0 0 0.00

8 -1 1 1.41 0 0 0.00 -1 0 1.00

9 -2 -1 2.24 1 1 1.41 1 1 1.41

10 0 1 1.00 1 0 1.00 1 -1 1.41

11 -1 0 1 .00 0 1 1.00 0 -1 1.00

12 -1 -1 1.41 0 1 1 .00 0 0 0.00

13 1 -1 1.41 -2 -1 2.24 1 1 1.41

14 0 0 0.00 0 1 1.00 0 -1 1 .00

15 0 0 0.00 -1 0 1 .00 -1 -1 1 .41

16 1 -1 1.41 0 -1 1 .00 -1 0 1 .00

17 0 0 0.00 -1 -1 1.41 1 1 1 4.1

18 1 -1 1.41 1 0 1 .00 0 0 0.00

19 -1 0 1 .00 0 -1 1 .00 -1 0 1.00

20 0 1 1 .00 -1 -2 2.24 0 1 1 .00

21 0 1 1 .00 -1 -1 1.41 1 1 1 .41

22 0 -1 1.00 -1 0 1.00 0 0 0.00

23 0 0 0.00 -1 1 1.41 0 0 0.00

24 0 -2 2.00 0 0 0.00 1 0 1.00

25 2 0 2.00 0 0 0.00 0 1 1.00

26 -1 1 1.41 2 0 200 0 0 0.00

27 2 1 2.24 0 1 1 00 1 0 1.00

23 1 -1 1.41 0 1 1.00 0 -1 1.00

29 1 -1 1.41 1 0 1 .00 1 0 1.00

30 -2 1 2.24 0 0 0.00 0 0 0.00

31 -2 -2 2.83 0 1 1.00 0 0 0.00

32 0 -1 1.00 -1 0 1.00 1 -1 1.41

33 0 2 200 1 1 1.41 1 0 1 .00

34 -1 2 2.24 1 0 1.00 -1 0 1 .00

T°ta1 42.32 35.78 26.31   
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Table 2.3. Sums of spectral DN value differences between DN means of overlapping

regions ofadjacent frames along closed multi-frame paths calculated before and after

BRDF/Brightness adjustment. DN means were computed using only the portion of

overlapping regions occupied by deciduous forests. BRDF coefficients of the Roujean et

al. model, integral to the normalization process and optimized to minimize spectral

column sums, are shown.

 

 

 

 

  
 

 

 

 

 

 

       

Brightness Variability Within a Frame Path (DN)

Blue Green Red NIR

c... 1:: 'o 1:: -o
O C'- — d.) .— d) —. O .— 0

1.. "" “I .§ ‘3 .5 ‘3 .5 ‘3 .5

g =5 3 8 =9 .5, "a ‘50 '5 ~50 '5 ~50 "a
m 5"; g g a '5: E 5 E '5 E '5 E

z "= 2 2’ 2 2

I 1 16 1279 -44 -2730 54 3460 -98 4813 143

I 2 18 -2384 130 -1238 46 1107 -38 3085 -75

I 3 17 1137 182 -3320 276 1729 212 -4695 -91

I 4 20 -2259 24 -169 30 -3251 30 1926 -28

I 5 20 3720 -192 -2829 ~112 -2910 -142 -4l66 52

II 6 18 -1252 -6 3774 -56 3778 110 2865 -107

II 7 15 1260 -114 3549 -l74 -2323 148 4185 -104

II 8 1 5 3466 80 3542 ~24 -508 72 -63 15 6

II 9 15 -2092 -38 2282 42 1466 -128 -975 83

II 10 20 886 44 1350 38 1298 -62 4989 77

Column Sum 3761 66 4211 120 3846 104 5712 -44

Column Range 6104 374 7094 450 7029 354 11304 250

Mean (among paths)

per frame brightness 238 2 319 6 255 8 285 -1

variability

Range (among paths)

of per frame 370 21 432 28 379 21 722 16

brightness variability

.,, k0 0.153 0.183 0.147 0.281
'O H

o G

.51 ”r .93

g a {5’ k, 0.115 0.147 0.099 0.058

8- ‘” 5
k2 0.036 0.052 0.058 0.301

 

68

 



Table 2.4a. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for all subplots with signatures

developed from sites I and 11 using original DNs.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 12 5 4 2 2 25

E Northern Hardwoods (NH) 7 13 4 3 30

E Oak 10 2 3 26

5 Red Pine Plantation (RPP) 1 4 16 8 31

Natural Pine (NP) 3 2 5 12 24

Column Total 28 28 24 28 28 136

Accuracy (%) Errors (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 42.86 48.00 46.43 57.14 0.00 0.00

NH 46.43 43.33 60.71 53.57 0.10 21.30

Oak 41.67 38.46 66.67 58.33 0.25 48.20

RPP 57.14 51.61 53.57 42.86 0.50 87.60

NP 42.86 50.00 42.86 57.14 0.75 98.20

Class Conditional Kappa

ASP 0.3452 Overall Accuracy (%) 0.4632

NH 0.2864 Kappa Coefficient 0.3288

Oak 0.2527 szk 0.0019

RPP 0.3907 zk 7.5535‘

NP 0.3704 ' Significant at or = 0.01

 

 



Table 2.4b. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in site I using original

DN site I signatures.

 

 

 

   
 

  

 

 
 

         
 

 

 

   

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 7 2 2 3 1 15

E Northern Hardwoods (NH) 4 5 3 0 2 14

E Oak 3 3 4 2 2 14

.53 Red Pine Plantation (RPP) 0 1 2 8 4 15

Natural Pine (NP) 2 1 1 3 7 14

Column Total 16 12 12 16 16 72

Accuracy (%) EITOFS (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 43.75 46.67 56.25 50.00 0.00 0.00

NH 41.67 35.71 58.33 75.00 0.10 23.50

Oak 33.33 28.57 66.67 83.33 0.25 50.10

RPP 50.00 53.33 50.00 43.75 0.50 86.60

NP 43.75 50.00 56.25 43.75 0.75 97.50

Class Conditional Kappa

ASP 0.3143 Overall Accuracy (%) 0.4306

NH 0.2286 Kappa Coefficient 0.2876

Oak 0.1429 $2k 0.0035

RPP 0.4000 zk 4.8617'

NP 0.3571 ‘ Significant at a = 0.01   
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Table 2.4c. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in site I using original

DN site II signatures.

 

 

 

 

  
 

  

 

  

         
 

 

 

   

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 7 3 3 3 1 17

E Northern Hardwoods (NH) 4 5 2 0 I 12

'9; Oak 3 2 4 2 2 l3

'5 Red Pine Plantation (RPP) 1 1 1 7 4 14

Natural Pine (NP) 1 1 2 4 8 16

Column Total 16 12 12 16 16 72

Accuracy (%) Errors (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 43.75 41.18 56.25 62.50 0.00 0.00

NH 41.67 41.67 58.33 58.33 0.10 21.30

Oak 33.33 30.77 66.67 75.00 0.25 48.20

RPP 43.75 50.00 56.25 43.75 0.50 87.60

NP 50.00 50.00 50.00 50.00 0.75 98.20

Class Conditional Kappa

ASP 0.2437 Overall Accuracy (%) 0.4306

NH 0.3000 Kappa Coefficient 0.2856

Oak 0.1692 82.. 0.0035

RPP 0.3571 zk 4.8183‘

NP 0.3571 ’ Significant at a = 0.01   
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Table 2.4d. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in site II using original

DN site II signatures.

 

 

 

 

   
 
 

 

 

         
 

 

 

    

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 5 3 2 1 l 12

E Northern Hardwoods (NH) 2 7 3 0 0 12

"'3‘ Oak 3 4 5 0 l 13

5 Red Pine Plantation (RPP) 0 I 1 7 4 13

Natural Pine (NP) 2 1 1 4 6 l4

Column Total 12 16 12 12 12 64

Accuracy (%) Errors (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 41.67 41.67 58.33 58.33 0.00 0.00

NH 43.75 58.33 56.25 31.25 0.10 19.50

Oak 41.67 38.46 58.33 66.67 0.25 47.20

RPP 58.33 53.85 41.67 50.00 0.50 82.80

NP 50.00 42.86 50.00 66.67 0.75 96.40

Class Conditional Kappa

ASP 0.2821 Overall Accuracy (%) 0.4688

NH 0.4444 Kappa Coefficient 0.3366

Oak 0.2426 s2. 0.0040

RPP 0.4320 zk 5.2889‘

NP 0.2967 ’ Significant at a = 0.01  
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Table 2.4e. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in site II using original

DN Site I signatures.

 

 

 

    
 

 

 

      
 

 

 

   

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 5 4 2 2 1 14

E Northern Hardwoods (NH) 2 6 3 0 0 11

'fi Oak 4 4 6 0 0 14

'8 Red Pine Plantation (RPP) 0 1 0 6 3 10

Natural Pine (NP) 1 l 1 4 8 15

Column Total 12 16 12 12 12 64

Accuracy (%) EITOI’S (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 41.67 35.71 58.33 75.00 0.00 0.00

NH 37.50 54.55 62.50 31.25 0.10 19.10

Oak 50.00 42.86 50.00 66.67 0.25 48.60

RPP 50.00 60.00 50.00 33.33 0.50 83.20

NP 66.67 53.33 33.33 58.33 0.75 95.40

Class Conditional Kappa

ASP 0.2088 Overall Accuracy (%) 0.4844

NH 0.3939 Kappa Coefficient 0.3569

Oak 0.2967 52;, 0.0041

RPP 0.5077 2.. 5.5768'

NP 0.4256 ’ Significant at a = 0.01   
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Table 2.4f. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for all subplots using post-

brightness normalization Signatures from Site I.

 

 

 

 

   
 

 

 

    
  
 

 

 

   

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 15 5 4 2 3 29

3 Northern Hardwoods (NH) 5 14 2 1 l 23

E Oak 4 6 11 2 5 28

6 Red Pine Plantation (RPP) l l 4 l6 7 29

Natural Pine (NP) 3 2 3 7 12 27

Column Total 28 28 24 28 28 136

Accuracy (%) EITOYS (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 53.57 51.72 46.43 50.00 0.00 0.00

NH 50.00 60.87 50.00 32.14 0.10 18.10

Oak 45.83 39.29 54.17 70.83 0.25 41.20

RPP 57.14 55.17 42.86 46.43 0.50 83.20

NP 42.86 44.44 57.14 53.57 0.75 94.80

Class Conditional Kappa

ASP 0.3921 Overall Accuracy (%) 0.5000

NH 0.5072 Kappa Coefficient 0.3751

Oak 0.2628 s2. 0.0019

RPP 0.4355 z, 8.5801‘

NP 0.3004 ’ Significant at a = 0.01   

74



Table 2.4g. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in site I using post-

brightness normalization signatures from site I.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 8 2 2 2 1 15

E Northern Hardwoods (NH) 3 7 3 0 l 14

'3‘ Oak 3 2 5 l 1 12

'5 Red Pine Plantation (RPP) l 0 1 9 5 16

Natural Pine (NP) 1 1 1 4 8 15

Column Total 16 12 12 l6 16 72

Accuracy (%) Errors (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 50.00 53.33 50.00 43.75 0.00 0.00

NH 58.33 50.00 41.67 58.33 0.10 25.60

Oak 41.67 41.67 58.33 58.33 0.25 50.90

RPP 56.25 56.25 43.75 43.75 0.50 83.40

NP 50.00 53.33 50.00 43.75 0.75 97.50

Class Conditional Kappa

ASP 0.4000 Overall Accuracy (%) 0.5139

NH 0.4000 Kappa Coefficient 0.3907

Oak 0.3000 0.0036

RPP 0.4375 6.5202‘

NP 0.4000 " Significant at at = 0.01

 

 



Table 2.4b. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in site I using post-

brightness normalization signatures from site II.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 8 2 2 l 2 15

33 Northern Hardwoods (NH) 2 7 3 0 1 13

'fi Oak 3 3 5 0 1 12

'5 Red Pine Plantation (RPP) 1 0 1 9 5 16

Natural Pine (NP) 2 0 1 6 7 16

Column Total 16 12 12 l6 16 72

Accuracy (%) Errors (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 50.00 53.33 50.00 43.75 0.00 0.00

NH 58.33 53.85 41.67 50.00 0.10 23.50

Oak 41.67 41.67 58.33 58.33 0.25 50.10

RPP 56.25 56.25 43.75 43.75 0.50 86.60

NP 43.75 43.75 56.25 56.25 0.75 97.30

Class Conditional Kappa

ASP 0.4000 Overall Accuracy (%) 0.5000

NH 0.4462 Kappa Coefficient 0.3727

Oak 0.3000 s2k 0.0036

RPP 0.4375 zk 6.1910.

NP 0.2768 ‘ Significant at a = 0.01
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Table 2.4i. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in site 11 using post-

brightness normalization signatures from site II.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 6 3 2 2 l 14

32 Northern Hardwoods (NH) 2 9 3 0 0 14

'g Oak 3 3 5 O l 12

'3 Red Pine Plantation (RPP) 0 0 l 7 3 11

Natural Pine (NP) 1 1 1 3 7 l3

Column Total 12 16 12 12 12 64

Accuracy (%) Errors (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 50.00 42.86 50.00 66.67 0.00 0.00

NH 56.25 64.29 43.75 31.25 0.10 19.50

Oak 41.67 41.67 58.33 58.33 0.25 47.20

RPP 58.33 63.64 41.67 33.33 0.50 82.80

NP 58.33 53.85 41.67 50.00 0.75 96.40

Class Conditional Kappa

ASP 0.2967 Overall Accuracy (%) 0.5313

NH 0.5238 Kappa Coefficient 0.4132

Oak 0.2821 s2k 0.0040

RPP 0.5524 2.. 6.5028‘

NP 0.4320 ' Significant at a = 0.01

 

 



Table 2.4j. Maximum Likelihood classification results and associated accuracy

assessment parameters obtained with cross validation for subplots in Site 11 using post-

brightness normalization signatures form site I.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 6 4 2 1 2 15

3 Northern Hardwoods (NH) 2 9 3 0 0 14

5 Oak 3 2 5 1 1 12

5 Red Pine Plantation (RPP) 0 0 1 7 3 11

Natural Pine (NP) 1 l 1 3 6 12

Column Total 12 16 12 12 12 64

Accuracy (%) Errors (%) ML Probability Unclassified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 50.00 40.00 50.00 75.00 0.00 0.00

NH 56.25 64.29 43.75 31.25 0.10 20.00

Oak 41.67 41.67 58.33 58.33 0.25 48.40

RPP 58.33 63.64 41.67 33.33 0.50 80.90

NP 50.00 50.00 50.00 50.00 0.75 95.10

Class Conditional Kappa

ASP 0.2615 Overall Accuracy (%) 0.5156

NH 0.5238 Kappa Coefficient 0.3936

Oak 0.2821 52.. 0.0041

RPP 0.5524 2.. 6.1819.

NP 0.3846 ’ Significant at a = 0.01
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Table 2.6. Change in class-conditional kappa coefficients computed before and after

brightness normalization.

 

Cover Original Brightness

 

 

 

 

 

 

  

Type DNS Corrected AKappa

ASP 0.3452 0.3921 0.0469

NH 0.2864 0.5072 0.2208

All subplots using signatures from site 1 and 11 Oak 0.2527 0.2628 0.0101

RPP 0.3907 0.4355 0.0448

NP 0.3704 0.3004 -0.0700

ASP 0.3143 0.4000 0,0357

NH 0.2286 0.4000 01714

Site I subplots using site I signatures Oak 01429 03000 0.1571

RPP 0.4000 0.4375 0,0375

NP 0.3571 0.4000 0,0429

ASP 0.2821 0.2967 0,0145

NH 0.4444 0.5238 00794

Site 11 subplots using site II signatures Oak 0.2426 0.2821 0.0395

RPP 0.4320 0.5524 0,1204

NP 0.2967 0.4320 0. 1353

ASP 0.2437 0.4000 0.1563

NH 0.3000 0.4462 0.1462

Site I subplots using site II signatures Oak 0.1692 0.3000 0.1308

RPP 0.3571 0.4375 0,0304

NP 0.3571 0.2768 -0.0803

ASP 0.2088 0.2615 0,0527

NH 0.3939 0.5238 01299

Site 11 subplots using site 1 signatures Oak 02967 02821 -0.0146

RPP 0.5072 0.5529 0,0452

NP 0.4256 0.3846 -00410

ASP 0.0712

NH 0.1495

Average across all five classification scenarios Oak 0.0646

RPP 0.0657

NP -0.0026
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Table 2.7. Classification error rates of subplots conditional upon cover type group

(deciduous or coniferous) produced with maximum-likelihood based cross validation for

all plots in the study area before and after brightness normalization.

 

 

 

 

 
 

AS en Northern Oak Red Pine Natural

p Hardwoods Plantation Pine

Deciduous 12(43%) 11 (39%) 8(33%) 7(25%) 8(29%)

Original DNS

Coniferous 404%) 404%) 6(25%) 508%) 8(29%)

Brightness Deciduous 9(32%) 11 (39%) 6(25%) 508%) 9(32%)

“mnaliza‘i” Coniferous 404%) 3 (11%) 7(29%) 7(25%) 7(25%)        
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Figure 2.1. Study area map portraying hydrological features.
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4080 < DN (Non-Water Dark Pixelaf 6383

Non-Water Dark Pixels = 2% of the image    
(a) (b)

Binary Reclassification of Image Binary Image Processed with the

Based on Histogram Information Connected Components Algorithm
 

      
(c) (d)
  
Figure 2.2. a. Original near infrared image frame, b. Image histogram with

characteristic bimodal form, typical in the presence of water bodies, c. Binary

reclassification of original image produced by using the upper dark pixel range DN as

reclassification threshold, and d. Elimination of dark pixel clusters in the binary image

with processing with the connected components algorithm for clusters with pixel

membership exceeding 10.
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Figure 2.3a. Spectral frame portions of original imagery featuring a 3x3 pixels square

window superimposed on each frame and corresponding to the same frame row and

column indices. The 3x3 grid shows the location of the darkest pixel within the square

window for each band.

84



 

 

Blue Band Green Band

Red Band

 

 

     
 

 

 

All

+ bands
      
  
 

Figure 2.3b. Spectral frame portions of imagery corrected for registration errors featuring

a 3x3 pixels square window superimposed on each frame and corresponding to the same

frame row and column indices. The 3x3 grid shows the location of the darkest pixel

within the square window.
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Figure 2.4. Registration vectors that maximized correlation between the NIR band and

each of the visible bands for the image frame hosting plot 21. Correlation was calculated

using the NIR band dark pixels for every 1/16th frame portion. Vector colors correspond

to respective bands.
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Figure 2.5. Post-brightness-adjustment mean spectral frame DNS for Site I (top) and

Site 11 (bottom) and ensuing between-Site mean spectral brightness differences.
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CHAPTER 3

FOREST STAND CANOPY STRUCTURE PARAMETER VALUE ESTIMATION AND

COVER TYPE CLASSIFICATION VIA DIGITAL NUMBER AUTOCORRELATION

TECHNIQUES IN HIGH-SPATIAL RESOLUTION MULTISPECTRAL DIGITAL

AIRBORNE IMAGERY
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Abstract

A study offorest stand canopy parameter assessment and cover type classification using

digital, airborne, multispectral imagery is presented. The estimatedparameters include

stem density, canopy closure, and mean crown diameter. Parameter estimation is based

on quantifying the spatial autocorrelation among pixel digital numbers (DN) using

variogram analysis and an alternative, non-parametric approach known as slope-break

analysis. Parameter estimation and cover type classification proceedfrom the

identification oftree apexes. Parameter accuracy assessment is evaluated via value

comparison with a spatially precise set offield observations over 34 plots installed in 5

cover types common in the Midwest region. Results show that, in general, slope-break-

basedparameter estimates are superior to those obtained using variograms. Estimated

root mean square errors at the plot levelfor theformer average 6.5%for stem density,

3.5%for canopy closure and 2.5%for mean crown diameter, which are less than or

equal to error rates obtained via traditionalforest stand cruising by experienced

personnel. The employed methodology entails parsimonious parameterization and is

supportive ofautomation. Overall cover type classification accuracy remains stable

among classification scenarios across varying geographic extents and increasesfrom

approximately 70% when using original imagery DNS to over 85% when band

registration problems are corrected and variable brightness regimes among imagery

frames are normalized. Limiting cover type classification to pixels identified as tree

apexes isfound to improve traditional classification approaches that use all pixels by a

remarkable 35%.
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3.1. Introduction

High spatial resolution digital imagery holds a promising potential for the

extraction of forest inventory and canopy structure information including the delineation

of individual tree crowns, canopy closure, stem density, stand species composition and

crown classification (Franklin and McDermid, 1993; Gougeon, 1995a; Brandtberg, 1997;

Dralle and Rudemo, 1997; Larsen, 1997; Gerylo et al., 1998; Larsen 1998; Quackenbush

et al., 1999; Sheng et a1, 2001). Traditionally, forest canopy structure parameters have

been derived from aerial photographs (King, 2000; Wulder et al., 2002). A series of trials

conducted by the Canadian Forest Management Institute three decades ago revealed that

aerial photographs are rich in information content for individual-tree-based forest

inventory purposes (Aldred and Kippen, 1967; Brun, 1972; Bonnor, 1977; Sayn-

Wittgenstein, 1978). However, information extraction from aerial photographs is based

on manual interpretation, a process known to be time consuming, labor intensive, and

error-prone (Biging et al., 1991). Lately, due to increasing requirements on quantitative

forest inventory information, a decrease in the popularity of aerial photographs for forest

management decision-making has been observed (Hyyppéi et al., 2000). Digital, high-

Spatial-resolution imagery, sometimes known as H-resolution imagery (Strahler eta1.,

1986), acquired from airborne platforms and recently available from satellites (QuickBird

[Aplin et al., 1997] and IKONOS [Mangold, 1999]) is well suited to producing

quantitative estimates of inventory variables and canopy structure attributes, and to

Process automation (Gong et al., 1999). Due to the large geographic extent of forests,

automation is a practical prerequisite for full exploitation of the H-resolution digital
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imagery in forest applications (Gougeon, 1995b; McGraw etal., 1998; Pouliot et al.,

2002)

In high-spatial-resolution digital imagery of forested landscapes, each tree crown

is represented by multiple pixels. Some ofthem correspond to the sunlit portion of the

crowns while others represent crown portions in shadow. View and illumination angles,

tree geometry, foliage orientation and bidirectional reflectance operate synergistically to

create a variation of radiance, represented by pixel digital numbers (DN), at different

locations within an individual crown (Leckie etal., 1992). Spectral DN values also vary

as a function of the tree crown depth being greater near the tree center and lessening

towards the crown edges (Li and Strahler, 1992). As a result, individual trees may be

discerned as localized regions ofhigh DN values. Individual tree identification based on

high-DN-value digital image regions has been accomplished with a variety oftechniques

including valley following (Gougeon, 1995a), threshold-based clustering (Culvenor,

2002), template matching (Pollock, 1996; Larsen and Rudemo, 1997; Larsen, 1999),

mathematical morphology (Walsworth and King, 1999), minimum cost route selection

(Warner etal., 2000), maximum filtering (Brandtberg, 1997; Culvenor et al., 1999;

Niemann et al., 1999; Pinz, 1999, Wulder et al., 2000), Spatial autocorrelation (Treitz,

2001), or combinations of these approaches (Wulder et al., 2002).

Individual tree identification Offers a potentially superior alternative to traditional

per-pixel-based classification of forest cover types since it allows spectral signature

Construction using only the brightest pixels of a crown, or the average of the sunlit

Portion of a crown, or even the mean value within the identified crown (Gougeon, 1997).

It has also been used for forest stand delineation and to provide estimates of forest stand
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canopy structure parameters such as crown size, stem density, and canopy closure

(Gougeon, 1997; Gerylo, 1998). These canopy structure parameters are important inputs

to forest models (Sprinz and Burkhart, 1987; Gering and May, 1995; Deutschman et al.,

1997; Pereira et al., 1997; Trichon, 2001) and are critical in modeling forest fires (Keane

et al., 1999).

Individual tree crown identification appears to work best with digital imagery

having a spatial resolution less than 1m, but it is expected to work well enough with 1m

airborne and satellite digital imagery to justify more extensive development and use of

the H-resolution, digital remote sensing technology (Wulder, 1999). Most of the

techniques mentioned above have been tested in pure or mixed coniferous stands, or

stands with only simple combinations of one or two conifer and deciduous species

(Gerylo et al., 1998). In such circumstances, the conical shape of crowns produces a

rough canopy surface with distinct tree apexes and shadowed portions that facilitate

individual crown delineation. Conversely, deciduous tree crowns typically defy

conformal shapes, often have multiple maxima, usually exhibit a relatively smooth

canopy surface and less distinct edges, and thus are more difficult to delineate (Warner et

al., 1999).

Despite sporadic successes in utilizing H-resolution imagery in forest stand

classification and canopy structure parameter estimation, “. .. this area of image analysis

in forestry appears surprisingly poorly developed” (Franklin, 2001, p. 260). The few

studies that have used this technology in forest inventory parameter estimation usually

operated on a single image (frame) and a single forest stand, or a very small number of,

typically coniferous, adjacent stands. Hence, little is known about whether high-spatial-
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resolution imagery can reliably be used to predict forest inventory parameter values for

stands of variable, deciduous forest cover types. Spatially extended investigations have

been hindered by 1) frame geometric correction and registration requirements (Franklin,

2001, p.260); 2) logistic concerns related to the acquisition of necessary canopy

parameter information in the field (Gong et al., 1999); 3) brightness variations among

imagery frames (Mikkola and Pellikka, 2002; Chapter 2, this dissertation), and 4) a dearth

ofprocess automation paradigms (McGraw et al., 1998).

The objective of the research presented in this chapter is to investigate the utility

of airborne, high-spatial-resolution, multispectral digital imagery for cover type

classification and canopy structure parameter estimation while addressing all of the

aforementioned factors known to hinder information extraction at the multiple stand

scale. Two hypotheses are evaluated: 1) spectral classification of forest cover types based

on signatures derived from selected tree crown portions improves classification accuracy

obtained using spectral signatures of all pixels in a forest stand (the traditional approach),

and 2) estimates of stand canopy structure parameters (stem density, average crown

diameter, canopy closure) can be reliably obtained via pixel DN spatial autocorrelation

structure analysis. These hypotheses were evaluated for five cover types common in the

Midwest region using a detailed set of field observations obtained from multiple, non-

adjacent stands.

3.2. Individual Tree Identification

At present, algorithms that detect individual trees in H-resolution imagery are

based on the association of a tree apex with a local maximum in image brightness value.

This spectral reflectance pattern of tree crowns constitutes the main structural element for
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every forest stand canopy and when viewed in three dimensions it can be perceived as a

convex shape. For coniferous species, the shape of individual crowns could be

approximated by a cone. Hence, high-resolution imagery of a forest stand is composed of

contiguous pixel regions, which represent trees or clusters of trees. The variety of

techniques for processing individual trees from high-spatial-resolution imagery

mentioned earlier, all attempt to capture the differing image spatial structure that emerges

from the complex relationships between image spatial resolution and canopy structural

characteristics. The ratio of crown size to resolution is sometimes used as an indicator

capable of quantifying such relationships and thus for determining the image analysis

technique best suited for individual crown identification (Pouliot et al., 2002). For

example, at ratio values of 30 or larger the morphology of individual trees may be

detected (Brandtberg, 1997). Ratio values between 8 and 30 appear to justify use of the

valley following algorithm, while for ratio values in the range of 2 to 8 the most

appropriate processing technique appears to be local maximum filtering (LMF) (Wulder,

1998). The latter case is typical of imagery sets acquired with a spatial resolution of 0.6-

1.0m.

In medium to densely forested areas on high-spatial-resolution imagery,

individual trees may be discerned as regions of high reflectance (i.e. high DNS). For

conifers, the spatial structure of this reflectance pattern results in a single local maximum

DN value found at or near the center of tree crowns (Wulder et al., 2000). Deciduous

Species, on the other hand, generally exhibit larger within-crown brightness variation due

to the effect ofbranches, branch bundles, and branch shadow patterns on the spectral

response of the crown, which is often characterized by multiple maxima and non-
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monotonic change in brightness from the crown center to its periphery (Franklin et al.,

1996). In the LMF approach for tree identification, 3 window is passed over all pixels of

a forest stand to determine if a given pixel is of higher DN than all other pixels within the

window (Dralle and Rudemo, 1997). Pixels identified as the largest DN within the

window are noted as stem locations. However, when a window of fixed size is passed

over a forest stand it does not account for the presence of trees with different crown sizes.

Therefore a fixed sized window is incapable of accounting for the object-resolution

relationship that exists between the trees (objects) and the image spatial resolution

(Franklin, 1996). As a result, the presence of trees with a crown size larger than the fixed

window would tend to inflate the number of trees identified and increase the tree

commission error rate while trees with a crown size smaller than the fixed window would

often be missed thus increasing the omission error rate. In fixed-size windows, a

reduction in the one type of error typically results in an increase in the other error type

(Wulder, 2002). In forest stands characterized by highly variable tree crown sizes, fixed-

size windows were found to perform very poorly, often correctly identifying fewer than

half of the total number of dominant and co—dominant trees present (Wulder, 2000). A

simultaneous reduction in commission and omission error rates of identified trees is

possible when the size of the window used in LMF is adjusted to reflect the brightness

variability in the vicinity of the processed pixel (Pouliot et al., 2002). Such a pixel-

specific conditioning of window size can be accomplished by examining the form of

spatial autocorrelation among pixels. A quantification of spatial autocorrelation can be

performed by several techniques and corresponding measures (Deutsch and Joumel,

1992, p.40), including variogram analysis.
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3.2.1. Parametric quantification of image autocorrelation

Variogram analysis is a well understood and frequently applied image-processing

technique in remote sensing (Curran and Atkinson, 1998). It can be used to provide a

quantitative assessment of spatial dependency for continuously varying phenomena

Warekamp et al., 1996). A variogram describes the magnitude, Spatial scale and general

form of the variation among spatially distributed, continuous variables (Matheron, 1963),

but it can be modified to accommodate the analysis of spatial dependency for phenomena

sampled at regular intervals, such as the spectral reflectance or brightness regimes in

digital imagery (Curran and Atkinson, 1998). Variogram analysis entails the computation

of relationships between pixel pairs. The relationship between pairs of pixels found h

pixels apart (the “lag” distance), is quantified as half the average square difference

between pixel pair values and it is known as the semivariance for that lag. Hence the

semivariogram, )(h), is a plot of semivariance as a function of lag and is computed

(Curran, 1988) as

rlh)=-;-E[Z(x)-Z(x-h)]2 (3.1)

where Z denotes a pixel value at location x. When computed on digital imagery, x is a

two element vector of the pixel’s row and column indices. The lag h indexes the distance

between pixel pairs for comparison. The prefix “semi” in semivariance denotes the fact

that each pixel in a pair enters the computation of (1) twice, once as Z(x) (head value) and

once as Z(x-h) (tail value). A division by two is necessary to adjust )(h) to its proper

value. It should be noted that the terms variogram and semivariogram are treated as

equivalent in the literature and are used interchangeably unless specifically mentioned
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otherwise. When the semivariogram is computed for an imagery region R, its value for a

given lag h is an estimate of the semivariance for that lag and represents a measure of

dissimilarity between Spatially separated pixels (Jupp et al., 1988). The lag-Specific

semivariance estimate is computed as

m(h)

ilh)=l 212(40- 2(x -h)] (3.2)
2m(h)_

where m(h) is the number of pixels within R separated by h. In the presence of spatial

structure, a semivariogram would reveal that semivariance rises with increasing h, until

reaching an asymptote known as the “Sill”, which indicates the maximum variability

between pixels. The “range” of the semivariogram is the number of lags, or distance to

the sill (Curran and Atkinson, 1998). Within the range, spatial dependence is indicated;

pixels separated by distances larger than the range are understood to be spatially

independent (uncorrelated) (Levesque and King, 1996). The range of semivariograms

computed on digital imagery represents the average size of the structural elements

depicted in the imagery, which, in the case ofmedium- to high-density forests and H-

resolution, equals the mean crown diameter (Cohen et al., 1990). Therefore, the range of

the semivariogram computed for the neighborhood R around individual pixels might be

useful for determining the appropriate size of the window for identifying individual trees

(Wulder et al., 2000).

Although conceptually, semivariogram range computation is associated with a

number of logistical concerns and theoretical constraints (Daley et al., 1998). It assumes

that the second-order spatial autocorrelation ofpixels within R is stationary, and first-

order autocorrelation (trend) is absent. If a trend is indeed present and not accounted for,
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unbounded or overestimated semivariogram ranges should be expected (Deutsch and

Journel, 1992). Further, because solar illumination is strongly directional, mutual

shadowing between adjacent crowns causes anisotropic reflectance autocorrelation

patterns. Empirical semivariograms computed parallel to the solar plane over forest in H-

resolution digital imagery tend to have Shorter ranges than those computed across the

solar plane. To avoid a systematic bias in range value computation, it is important to

either identify the proper orientation for directional semivariogram computation or

equally weight all possible directions, thus producing an omnidirectional semivariogram

(Franklin et al., 1996). In addition, because the reliability of semivariance estimates is

known to decrease with increasing lag (Curran and Atkinson, 1998), the size (largest

dimension) ofR around a processed pixel should be at least three times the maximum

expected range value so that an adequate number of pixels pairs contribute to the

computation of semivariance estimates for lag distances that approximate the expected

range (Isaaks and Srivastava, 1989). Assuming a forest stand with dominant and co-

dominant trees ofmaximum crown diameter of 8m, and with a 1m imagery spatial

resolution, a reliable range estimation would necessitate a region of 24 x 24 = 576 pixels

to be examined for each processed pixel, thereby resulting in substantial computational

cost. A region of such Size would allow pixels belonging to crowns non-adjacent to the

crown in which the processed pixel belongs to influence the semivariogram range value

computed for the latter pixel. Semivariograms, therefore, provide a quantification of

autocorrelation that has a regional rather than local scope and may thus be a biased

estimator of the appropriate window size for individual tree identification in stands

characterized by variable crown sizes.
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3.2.2 Non-parametric quantification of image autocorrelation

Alternative, local estimates of image autocorrelation can be Obtained by relaxing

the parametric structure of the variogram, sometimes known as slope breaks (Wulder et

al., 2000). They are a simple means of measuring the region of dependence around a

pixel and their use is based on the assumption that every pixel in the image may

correspond to a local brightness or reflectance maximum and therefore a tree apex. For

each pixel in the imagery an omnidirectional set of transects can be analyzed to assess the

distance (in whole pixel increments) at which a minimum DN is encountered. Slope

breaks may also be described as the first inflection point in the gradient of reflectance or

brightness along a transect. Although a large number of transects can be considered, in

practice slope breaks are computed along the 8 cardinal directions. The appropriate size

of the window for LMF image processing is determined as the average distance from the

center of the processed pixel to the inflection points along all transects. In addition to

providing tree-specific estimates of autocorrelation, slope break computation offers

substantial improvement in computation efficiency when compared to LMF window sizes

estimated via variogram range. However, since fewer pixels are engaged in the

computation of slope breaks it is likely that window size is more susceptible to bias

introduced by random noise embedded in pixel DNS (Pouliot et al., 2002).

3.3 Individual Tree Classification

The variability in reflectance among portions of a single tree crown and, hence, in

the DNS of pixels representing it in H-resolution imagery, has implications on the ability

to accurately classify a particular crown to a cover type class. As demonstrated in

Chapter 2, crown pixels in shadow reduce the separability of cover type signatures while
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bright pixels located at or near the crown apex tend to improve it. Crown apexes

identified with the LMF approach enable the partitioning of the, usually overlapping,

cover type signatures to include only the brightest pixels, thus contributing to signature

compactness and separability, and increasing the potential of improved classification

accuracy. However, the reduction in the number of pixels that participate in signature

development when only tree apexes are considered may enhance the influence of the

geometric errors and spectral noise often present in H-resolution, digital, airborne

imagery on the resulting classification accuracy.

When signature development is performed in the traditional approach, pixels

contributing to signature development form clusters, each one of which extends over

several trees and is sometimes as large as a forest stand. Even in the presence of

substantial band registration errors, and assuming that the magnitude of the registration

vectors is much smaller than the size of the pixel clusters used for signature development,

there would be major spatial overlap of such clusters for each band in the imagery set.

Therefore, even in the presence of misregistration, all tree crown portions would be

represented equally well in signature development following the traditional approach. In

tree-apex-based signature development, however, band misregistration of a Single pixel

could cause inclusion in the Signature of pixels in one or more bands that actually

represent crown parts other than the apex, particularly for coniferous species with conical

crowns. Given that reflectance declines rapidly from the tree apex to the crown periphery,

but at directionally variable rates (Pellikka et al., 2000), the classification accuracy of

identified tree apexes in imagery characterized by different spectral registration vectors

than those present at the signature training areas could be substantially inferior to one
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Obtained using Signatures generated and used in imagery free ofband registration

problems. In addition, for some crown shapes a pixel identified via the LMF approach as

a tree apex, might in reality be the center of the sunlit portion of the crown (Franklin et

al., 1996; Wulder et al., 2000). This problem is a function of illumination direction and,

hence, subject to image acquisition timing. As a result, signatures developed from such

pixels may have inherited BRDF effects related more to the morphology of the crown

than the relation between illumination and viewing directions. It Should be noted that

current algorithms embedded in BRDF correction models do not account for target

surface inclination and thus are incapable of normalizing BRDF effects within a crown

(Mikkola and Pellikka, 2002). To date, the effect of imagery inferiorities and BRDF on

the potential of tree-apex-based classification to provide improved cover type

classification accuracy is Speculative. This study attempts to quantify those effects by

comparing tree-apex-based cover type classification results prior to and alter elimination

ofband misregistration and normalization of variable brightness/BRDF regimes.

3.4 Methods

3.4.1 Study Site Characteristics and Description of Imagery Set

The study area comprises two sites, the one in the south-central part of Grand

Traverse County (Site I) and the other in the northern part of Wexford County (Site 11),

Michigan (Figure 2.1). Note that figures in this dissertation often contain color. The sites

are separated by about 10km in the northwest-southeast direction and extend over 8,805

and 12,626 hectares of land, respectively. More than half (56%) of the study area is

owned and managed by the Michigan Department of Natural Resource. Most of the study

area consists of forests and wetlands (82%), while agricultural use, mainly row crops,
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represents 8%. Other land use classes include orchards (4%) and residential areas (4%).

Residential development is concentrated in the northwestern part of site I. Geomorphic

features include moraines and outwash. The average slope, calculated by using the finite

differences algorithm on a 10m, 1:24,000 USGS Digital Elevation Model available for

the area is 3.5% and 2.7% for sites I and II respectively. Relief is more prominent along

the Manistee River, which crosses site II from northeast to southwest.

The study area is characterized by pronounced spatial heterogeneity of forest

cover types. The majority of the forest cover types extant in the northern Lower

Peninsula of Michigan are present in the forested part of the study sites. These include: 1.

Aspen, consisting of Big Tooth (Populus grandidentata) and Quaking (Populus

tremuloides) aspen; 2. Northern hardwoods, consisting primarily of Sugar Maple (Acer

saccharum), Red Maple (Acer rubrum), American Beech (Fagus americana), Black

Cherry (Prunus serotina), Basswood (Tilia americana) and White Ash (Fraxinus

americana); 3. Oak, consisting of White (Quercus alba) and Red (Quercus rubra) oak; 4.

Natural Pine, mainly White Pine (Pinus strobus); 5. Pine plantations consisting primarin

of Red Pine (Pinus resinosa); and 6. Cedar swamps dominated by Northern White Cedar

(Thuja occidentalis). The main forest management objectives of the MDNR include

timber production, enhancement of wildlife habitat, recreation, preservation of aspen, and

riparian best management practices. Several private land owners offer a network of tracts

used seasonally for horseback riding and snowmobiling.

The imagery data set used in this study was acquired on August 11, 1999, using

the Digital Airborne Imaging System (DAIS [Space Imaging, 1999]). It contains four

bands, three in the visible and one near infrared that were acquired by frame (digital
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array) cameras equipped with appropriate band-Specific filters in a 2x2 arrangement.

Appendix 1 contains detailed information on the technical Specifications of the system

(Table A.1), flight line orientation, and the spatial arrangement of frames in each study

site (Figure A.1).

3.4.2. Field Measurements

A total of 34 plots, 16 in site I and 18 in site II, were established stratified across

the major forest cover types present in the study area with the exception of cedar swamps

that were excluded due to accessibility issues. Plots were allocated on level land, within

homogeneous stands, and away from cover type ecotone zones. Stand homogeneity was

evaluated with field inspections. A minimum 60% canopy closure threshold was imposed

by the MDNR as a selection criterion. All plots were situated within the inner quarter

area of the associated image frame, resulting in plot-center view angles less than 10°.

Field measurements were obtained in the summer of 2000, exactly a year after the

acquisition of imagery, following the FIA/FHM field protocols (Appendix 1, Figure A.2).

To ensure an adequate number of trees within a subplot, its radius was increased from the

standard 7.32m, proportional to the size of trees present. Subplot diameter was kept equal

within plots, but ranged from 10m to 15m between plots. Subsequent to plot center

allocation, canopy structure parameters including the horizontal extent of individual tree

crowns and stem locations were recorded using field survey techniques. All Spatial and

tabular data on tree crowns and stem locations were organized as geographic information

system (GIS) layers translated into the image coordinate system. Details on the

methodologies employed are available in Chapter 2.
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3.4.3. Imagery Processing

Preliminary examinations of the 394-frame imagery set showed apparent variation

in brightness, even among adjacent frames. Further investigations revealed imperfections

in the geometric alignment (registration) of the frame bands and a non-stationary spatial

distribution of registration vectors. In addition, BRDF effects were detected, principally

along frame edges. A pair of novel techniques was developed to correct these imagery

imperfections. The first was used to correct for band misregistration by using information

extracted from spectral histograms of frames, and then by examining the magnitude of

autocorrelation among the spectrally darkest pixels in a frame. The second technique,

aimed at a simultaneous correction of BRDF effects and brightness variability, optimized

the parameters of a popular BRDF model applied to the overlapping regions between

adjacent frames. Both techniques are described in detail in Chapter 2.

3.4.4. Window Size Computation for LMF Imagery Processing

The computation of variable, locally adjusted window sizes for LMF processing

of multispectral, H-resolution imagery and the subsequent identification of pixels

believed to represent tree apexes are processes with many embedded parameters. In the

interest of reducing the analysis load to manageable levels in this research, choices were

made regarding the version of imagery to be used (original vs. corrected for band

misregistration and variable brightness), and the bands to be considered.

Because window size computation is in essence an effort to quantify the extent of

reflectance or DN autocorrelation, and hence of local, sub-frame scope, it is unlikely that

it would be affected by BRDF effects or brightness variability, given that both of those

phenomena are governed by processes with large, frame or multi-frame scope. It is
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evident from a careful evaluation of equation (3.2) that the addition or subtraction of a

constant (similar to the average brightness difference among two image flames) from

each pixel DN value would not affect the shape, and therefore the range, of the computed

empirical variograms. It can be shown (Appendix 2) that imagery processing with a

kernel function similar to those employed in popular BRDF effect correction models

(including the one by Roujean et al. (1992) used in Chapter 2), would not affect the range

of variograms computed for the same image region before and after processing with the

kernel. Window size computation via slope breaks, a spatial operation with even

narrower spatial scope compared to the variogram, would be expected to produce the

same window sizes regardless of the presence or absence ofbrightness variations and

BRDF effects. However, to eliminate discrepancies in the position of identified tree

apexes among different bands (later used in tree-apex cover type classification) due to

registration problems, it was decided to proceed with the brightness/BRDF-normalized

version of the imagery.

Visual inspection of empirical variograms computed for each of the four bands

and every subplot revealed that the variogram ranges were often either unbounded (i.e.

increased monotonically with lag distance, never reaching an asymptote) or were

substantially larger than the mean tree crown diameter in corresponding subplots. Those

observations were consistent with findings reported by Treitz (2001) using H-resolution,

airborne, digital imagery ofboreal forests in northern Ontario. Similar observations were

made by Franklin and Wulder (1996) in British Columbia. They decided to truncate the

range of unbounded variograms to a predefined maximum value in order to avoid

unrealistically large window sizes. In addition, the assessed range of computed
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variograms were found to occasionally differ among bands for the same subplot, although

no patterns could be identified.

In the course of investigating the cause of unbounded variogram ranges and their

apparent dependence on wavelength, imagery portions corresponding to subplots were

examined for the presence of trend in pixel DNS. The procedure, sometimes known as

trend surface analysis (Bailey and Gatrell, 1995, p. 168) and described in Appendix 2,

regards pixel DNS as the product of a linear association between a function of image row

and column indices known as the trend or first-order autocorrelation and a model of

second-rder, or local, autocorrelation. In this study, the second order autocorrelation

embedded as a component of the imagery DNS was assumed to represent the spatial

pattern of reflectance formed by tree crowns. Imagery processing for the removal of

potential trend would enable quantification of reflectance autocorrelation independent of

non-tree-crown related influences. Post-trend-processed empirical variogram ranges were

always bounded and of a magnitude within the range of dominant/co-dominant tree

crown diameters present in the subplots (Appendix 2, Figure 8.2). At the same time,

trend removal eliminated differences in range magnitude among bands (Appendix 2,

Figure 8.3). Subsequent variogram analyses were performed strictly on imagery

processed for trend using only the NIR band.

Variogram range computation ofpost-trend-processed imagery was automated by

fitting a cubic spline (Hastie and Tibshirani, 1990) to the estimates of semivariance. The

spline operated as a semivariance smoothing function, capable of eliminating sporadic

non-monotonic fluctuations of semivariance estimates considered to be artifacts of a

relatively small numbers of pixel pairs separated by short lag distances. The range was
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subsequently calculated as the lag distance for which the slope of the corresponding

spline segment was smaller than 5%. Reducing the length of lag increments to 1/3rd of the

pixel size allowed for a more precise range calculation. Range values rounded to the

closest integer were used as the proper window sizes for LMF imagery processing.

The appropriate window size for each subplot pixel was derived by modifying the

standard slope break approach used by Wulder et al. (2000) to include a set of heuristic

rules. Initial investigations had revealed that slope breaks computed as the first upward

inflection point in DN value along a transect (the standard approach) were consistently

overestimating crown, and hence window, size by extending slope break distances to the

center of small canopy openings usually positioned in shadow. In the modified approach

designed to correct for such bias, the processed pixel was placed in the middle, rather

than at the origin, Of a 30-pixel directional transect and a local regression (Cleveland and

Devlin, 1988) was fitted to the DNS of the transect pixels. Placement of the processed

pixel in the middle of the transect would eliminate transect-end-related biases in local

regression predictions. The length of the diagonal transects (SW-NE and NW-SE) was set

to 21 pixels to account for larger pixel spacing in those directions. The use of a local

regression along each transect, in essence a UN smoothing function similar to the spline

fitted on semivariance estimates mentioned previously, aimed at providing a monotonic

decrease in DN from crown apex to crown periphery. It should be noted that fitting a

spline instead of using local regression would be inappropriate due to the large variability

in DNS of adjacent pixels along the transects.

The Slope break value sbpi, for a transect centered at the processed pixel and

oriented towards each Of the 8 cardinal directions was computed as

107



560:! =

Where 1' (

local-reg

and D”

SlOpe bl

Sb : im

“here '1



 

  

f (51-1 > 13,.) and(13i+] > 1'51.) (3.3a)

Vi 6 [15,30] |

. . (D. > D. > 13. ), and (3.3b) Dir e (N, E, s, W}
“1111(1) 1—1 1 1+1

SbDir = for 01' ~ 5 and

which (—.é——‘—1)>2( .." —l),and (3.3c) Vielllilll
Di DI.+1 Dir 6 (NE, SE,

~ ~ sw, NW}
D — D . ‘

~ ~ TR(max) TR(mm)

K Di > [DTR(min) 2 ] 63‘”

where i denotes the distance in pixel increments from the origin of the transect, 5'. the

local-regression-fitted DN value for a pixel at distance i from the origin of the transect,

and DTR . and 5 the minimum and maximum 5. of all pixels in the transect. The
(min) TR(max) t

Slope break value for the processed pixel was subsequently computed as

sb = int(é—Zszir ), VDir e {N, NE, E, SE, S, sw, w, NW} (3.4)

where int() represents a function that rounds a real value to the closest integer.

The set of heuristic rules embedded in equations (3.3b) and (3.3c) shorten sz,-, in

the presence of an abrupt reduction in the Slope of the local, directional reflectance

gradient often found to occur at the periphery of canopy openings. Equation (3.3d)

dismisses sbpir value shortening involving any of the brighter half of pixels on the

transect. Equation (3.3a) represents the standard form of the slope break approach.

Processed pixels with DN values smaller than the DNS of all of their 8 neighbors (i.e.

local reflectance minima) were automatically assigned a 0 slope break and were excluded

from window development. For all other pixels, the minimum size window was rescaled

to 3 x 3. Window size computations were performed using scripts developed in the C

programming language and optimized for computational efficiency. Empirical variogram
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computation for each of the pixels in a subplot using custom developed scripts, was

found to outperform, in terms of computation efficiency, commercially available software

by a 1:10 margin.

3.4.5. Tree Apex Identification via LMF Imagery Processing

In the standard implementation of LMF, a pixel is characterized as a tree apex if

and only if it carries the maximum reflectance value or DN for the window centered on it

(Franklin et al., 1996; Wulder et al., 2000; Treitz, 2001). This implicitly assumes that the

tree apex is located at the center of the crown and that the rate of reduction in reflectance

or DNs from the tree apex to the crown periphery is isotropic (directionally independent).

Those assumptions may be valid in coniferous Species with conically shaped crowns, but

they are potentially unrealistic for other coniferous and most deciduous Species. Because

the standard LMF approach considers as tree apex a pixel at the center of the window, it

operates only with windows of side length equal to an odd number ofpixels

(henceforward referred to as ‘odd-sized’). They require that the variogram range or slope

break average computed at the previous analysis stage be rounded to the closest odd

number, thereby introducing window sizes smaller or larger than the magnitude of the

local imagery autocorrelation gradient. Preliminary investigations in several subplots

showed large tree omission rates where tree identification was performed using the

standard LMF approach, particularly in the presence of deciduous cover types.

To resolve the limitations mentioned above and to improve tree identification

rates, a new approach is proposed here in which the window corresponding to each

processed pixel ‘votes’ as tree apex the pixel having the highest DN within the window,

regardless of where within the window the ‘voted’ pixel is located. When the appropriate
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window is ‘even-Sized’, it cannot be centered on the processed pixel because it has four

central pixels instead of one. In such circumstances, the processed pixel is assigned to

each of the four central pixels in the even-sized window and the voting process proceeds

as before except that only a quarter vote is cast for each of the four window instances.

Pixels with one half or more votes are labeled tree apex candidates. Candidate pixels are

finally labeled tree apexes if their DN is larger that the DNs of all 8-neighboring pixels.

3.4.6. Computation of Canopy Structure Parameters

Identified tree apexes, variogram ranges, and directional slope breaks associated

with the apexes were used to provide estimates of stem density, mean crown diameter,

and canopy closure under the assumption that there existed a unique, one-to-one

correspondence between identified tree apexes and stems. All estimates ofthe canopy

structure parameter values were computed at the plot level to minimize estimate

dependence on subplot boundary effects. Estimate aggregation at the plot level was

encouraged by the fact that field Observations revealed no apparent differences in forest

canopy structure within the plots.

Stem density estimates were computed as the fraction of the total number of tree

apexes identified (i) via the variogram range method and (ii) via the slope break approach

employed in image LMF image processing within each subplot to the total plot area.

Three mean plot crown diameter estimates were computed. The first estimate was

obtained by (i) initially delineating circular crowns of diameter equal to the variogram

range for each pixel identified as a tree apex via variogram LMF image processing, (ii)

splitting the circular crown overlaps (if any) between adjacent trees, (iii) calculating the

‘diameter’ of the resulting non-overlapping crown shapes, and (iv) finally computing the
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geometric mean of all ‘diameters’ in a plot. The second mean plot crown diameter

estimate was obtained by (i) using pixels identified as tree apexes via slope break LMF

image processing, (ii) delineating the corresponding tree crown using directional slope

break length values sz,-, for each tree apex pixel, (iii) splitting potential crown overlaps,

(iv) calculating the ‘diameter’ of resulting crown shapes, and (v) computing the

geometric mean of all ‘diameters’ in a plot. The third mean plot crown diameter estimate

was computed as the geometric mean of the variogram ranges derived for each subplot

using all subplot pixels and thus it did not involve tree apex identification and crown

delineation efforts. It should be noted that mean crown diameter estimates were in

reference to the crown portion visible from above and not to the true horizontal extent of

a crown. The methodology for computing a ‘diameter’ estimate for a crown shape is

presented in detail in Appendix 1. The use of the geometric mean instead of the

arithmetic mean aimed at reducing the influence of outliers in the distribution of crown

diameter estimates on computed plot mean diameter values.

Canopy closure estimates were obtained by computing the ratio ofthe plot area

occupied by crowns delineated for the derivation of the first two plot mean crown

diameter estimates mentioned above. The portion of tree crowns with identified apexes

outside the plot boundary was also considered in the computation of canopy closure

estimates.

Computed stem density, mean crown diameter, and canopy closure estimates were

compared to those obtained by field measurements. The methodologies for converting

field measurements to canopy structure parameter values are discussed in Appendix 1.

Predicted canopy closure parameter values were regressed against observed parameters
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values. Regression parameter values were examined for statistical significance.

Differences in the slope and mean of linear regression models pertaining to different

methodologies used in canopy structure parameter derivation were also evaluated.

3.4.7. Cover Type Classification of Tree Apexes

In the presence of a pre-defined forest cover type scheme (Aspen, Northern

Hardwoods, Oak, Red Pine Plantations, and Natural Pine), a supervised classification

approach was selected. Among the many available options within the domain of

supervised classification, the maximum likelihood (ML) option was selected because it

would enable an evaluation of the statistical significance of classification results for

signature development alternatives, while facilitating comparison of classification results

obtained using only pixels corresponding to tree apexes and those obtained using all

subplot pixels (Chapter 2).

All pixels identified as tree apexes and having their centers within the subplot

boundary were used for signature development and classification performance evaluation.

Pixel membership to a subplot was determined via spatial overlays of image frames with

vector subplot boundaries in image coordinates. The subplot was selected as the

classification unit. A cross-validation approach (Lachenbruch and Mickey, 1968) was

undertaken for signature development involving two geographic extents: i) site -specific,

and ii) global. A subplot Q2 (belonging to plot Q) in site I for example, was classified via

three sets of spectral signatures developed: 1) using all pixels in the remaining subplots at

site I except those in the related subplots (Q1, Q3, and Q4) and all the subplots in site II,

2) using the pixels in the remaining (unrelated) subplots of site I only, and 3) using all

pixels in site II subplots but no pixels from site I subplots. Subplots in site II were
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classified in a Similar fashion for a total of five classification products. Absent this cross-

validation approach, it would be difficult to ensure that the potentially low spectral

variability within a plot compared to the variability among plots of the same cover type

would not inflate classification accuracy estimates. Subplot classification was applied to

both raw DNS and to a dataset that had been corrected for between-band misregistration

and normalized for BRDF/brightness variability, for a total of 10 classification scenarios.

Classification results were processed with majority filters that assigned a single

class (cover type) to each subplot. Classification accuracy estimates were derived from

confirsion matrices and associated indicators (percent of subplots correctly classified and

kappa coefficients) (Congalton, 1991) computed after the application of the majority

filters. Differences in the classification performance were evaluated using parametric

statistical tests. Details on the tests and the computation of confusion matrices and

accuracy indicators are provided in Appendix 1. The power of each classification result

was evaluated by imposing five different ML probability thresholds (none, 0.1, 0.25,

0.50, 0.75) that pixel class-conditional probabilities had to exceed prior to their allocation

to a class. Pixels with all class conditional probabilities below the imposed threshold

remained unclassified.

3.5. Results

3.5.1. Local Maximum Filtering Methods

For the few (16/142 or 11%) subplots in which first-order DN autocorrelation was

observed, subplot trend surface processing practically eliminated differences in computed

variogram ranges among bands (Appendix 2, Figure B.3). All 16 trend occurrences were

either in aspen or red pine plantation subplots characterized by high (> 80%) canopy
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closure values. For the remaining 126 subplots, the difference of variogram ranges

computed before and after trend surface processing for a given band was always equal to

or less than 1/3rd of a pixel. Between bands, the mean difference of computed variogram

ranges before and after processing was larger (0.39 pixels, standard deviation 0.09), but

no pattern in the distribution of the difference magnitude could be identified.

Variogram ranges and mean, omnidirectional slope break estimates computed for

a large number of subplot transects showed the former to vary substantially less than the

latter (Figure 3.1). For 23 subplots (6 in northern hardwoods, 11 in aspen, and 6 in red

pine plantations), the span of variogram ranges was smaller than 2/3'ds of a pixel. For all

subplots, the mean variogram range of subplot pixels exceeded corresponding mean slope

break lengths. Ofien though, the variogram range for a particular pixel would be shorter

than its slope break equivalent, particularly for pixels positioned at or near the center of

the sunlit portion of a large crown. Conversion of mean slope break and variogram range

estimates computed for subplot pixels into corresponding window Sizes for LMF imagery

processing resulted in similar conversion RMSE estimates (0.102 and 0.113 pixels,

respectively). The fact that variogram range estimates were computed in 1/3”d of a pixel

increments, while mean slope break estimates were unrestrained real numbers appeared

to influence computed window sizes only minimally.

A comparison of variogram ranges computed using the automated method

introduced in this study with variogram ranges determined manually via visual inspection

for more than 50 circular imagery regions with a diameter of 30 pixels randomly

distributed across cover types, canopy closure, and stem density conditions revealed that

the automation process performed very well for most regions yielding an RMSE of 0.062
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pixels. The method’s performance was occasionally suboptimal for circular regions

located within aspen and to a lesser extent red pine plantations and northern hardwood

stands characterized by a smooth canopy surface, very high canopy closure values, and

small variability in crown sizes. In such conditions, the empirical variograms exhibited a

substantial semivariance fluctuation at the sill level potentially allowing for range

overestimation. It should be noted that manual derivation of ranges via visual inspection

of empirical variograms repeated at different times and in random region sequence

produced a range variability twice as large as the one obtained from imagery regions

characterized by rough canopy surfaces.

Local regressions fitted to subplot pixel DNS altered the value of the original DNS

only slightly, generally maintaining the form of the DN profile along the transect (Figure

3.2). In the typical example shown in Figure 3.2, a zero-length directional slope break

would be assigned and no window would be generated for the pixel at transect position

15 (middle of transect) regardless of whether the original or the local-regression-fit DNS

were to be used, given that, in both cases, the preceding and following pixels along the

transect had larger DNS. For a pixel at transect position 23, the directional slope break

sbpi, would be 4 pixels when the heuristic rules described in equations 3.3a to 3.3d were

applied but 5 pixels in their absence. The pixels at transect positions 6 to 8 and 27 to 30

correspond to shadowed canopy openings. As such, szir truncation from 5 pixels to 4

would contribute to a window Size reflecting that better matches the size of the tree

crown at that location. Slope break lengths computed for transects parallel to the solar

plane and extending through canopy openings were sometimes shorter for pixels situated

on sunward crown portions than those for crown portions facing away from the sun. Such
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instances occurred sporadically in northern hardwoods and oak subplots but rarely in the

other cover types.

3.5.2. Stem Density

Strong linear relationships were found between predicted and observed plot stem

densities (Figure 3.3) for both variogram and slope break methods. Slope break-derived

density predictions, denoted as triangles in Figure 3.3, approximated observed densities

(1:1 line) better than variogram-derived predictions (denoted as squares in Figure 3.3).

Densities below approximately 350 stems/ha were generally Slightly overestimated while

those larger were increasingly underestimated. Discrepancies between predicted and

observed stem densities increased at high and low density levels. Linear regression of

predicted on observed stem densities using plots in all cover types (pooled regression)

exhibited very high R2 coefficients (Table 3.1). The pooled regression of Slope break-

derived density had a higher (0.864) and significantly different (at 01:0.01) slope that

(0.741) ofthe pooled regression for variogram-derived density. Regression means were

also significant at (1:001. Both pooled regressions had slopes significantly different than

the slope of the 1:1 at 0:00]. High R2 coefficients (>0.947) were also present when

individual cover types were considered, with the exception of the aspen plot stem

densities computed using variogram ranges (Table 3.1). Regression slopes for individual

cover types were higher for slope break-derived than for variogram-derived densities

except for oak, but slope differences were not significant at Ot=0.05 except for natural

pine plots. Cover type-specific regression means, however, were significant between

methods at Ot=0.05 or Ot=0.01 except for natural pine plots. Regression residual plots did

not suggest the presence of any patterns or heteroskedasticity. Compared to observed
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density, variogram-derived stem density exhibited root mean square errors (RMSE)

approximately two times larger than those of the slope break-derived stem densities

(Table 3.2). When expressed as percent of the cover type mean observed values,

variogram-derived density errors ranged from a minimum of 6.1% for natural pine to a

maximum of 12.5% for aspen; slope break-derived density errors ranged from a

minimum of 3.6% for natural pine to a maximum of 7.4% for red pine plantations.

3.5.3. Tree apexes

Figure 3.4 is a typical example of tree apexes identified in a high density and

crown closure aspen subplot. It is evident from the figure that in this aspen subplot there

were no discrepancies in the position of pixels identified as tree apexes by the two

methods, excluding cases with apex omission or commission errors. Positional

discrepancies of correctly identified apexes were also rare in the remaining cover types.

Where present, they involved two or fewer apexes per subplot and had a magnitude of a

single pixel. For the subplot shown in Figure 3.4, the stem density obtained using field

observations was 549 trees per hectare. Imagery LMF processing using variogram ranges

correctly identified 22 apexes, missed 4, and had 2 false positives (commission errors),

resulting in a predicted stem density of 507 trees per hectare and a prediction error of 8%

(Figure 3.4a). Processing using slope breaks correctly identified 24 apexes, missed 2, and

committed 1, resulting in a predicted stem density of 528 trees per hectare and a

prediction error of4% (Figure 3.4b).

It is evident from an examination of the NIR band image depicted in Figure 3.4

that the image portion with row indices approximately 20 to 40 contains larger tree

crowns and would therefore yield larger variogram ranges than the remaining part of the
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image. Influenced by the adjacent larger crowns, variogram ranges computed for subplot

pixels in rows 15 to 20 would likely overestimate the appropriate window size used in

apex identification, and increase the probability of omission errors for that image portion,

particularly in the presence of high stem density. Because slope break lengths are

calculated using a Spatially limited (local) scope, they are independent of the crown sizes

of trees not in the immediate vicinity of the processed pixels, and would therefore be less

susceptible to apex omission errors. The tree apex at location [23,20], correctly identified

using the slope break method, but missed when using the variogram method,

demonstrates how differences between the two methods to adapt to local reflectance

conditions influences the error rates of stem density predictions.

3.5.4. Canopy Closure

Plots of predicted vs. observed plot canopy closure showed strong linear

relationships, but there was little evidence to support the superiority of either variograms

or slope breaks (Figure 3.5). Variogram-derived canopy closure predictions appeared to

envelope the 1:1 line in Figure 3.5 for the entire range of observed canopy closure values.

Slope break-derived predictions behaved similarly at lower canopy closure conditions but

appeared to slightly underestimate canopy closure at higher values. The pooled regression

of variogram-derived prediction of observed canopy closure values yielded an R2=0.941,

while the pooled regression of slope break-derived canopy closure values produced an

R2=0.930. However, the two pooled regressions had Significantly different slopes at

Ot=0.01. All individual cover type R2 values exceeded 0.800 for both methods

(Table 3.3), but exhibited substantial regression slope variability both across derivation

methods and cover types. Differences in regression slope between methods were
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significant at Ot=0.01 or Ot=0.05 for all cover types except oak. The RMSE of canopy-

closure predictions were comparable for both derivation methods, with the exception of

aspen for which slope break-derived prediction error was less than one third of

variogram-derived prediction error for plot canopy closure (Table 3.4).

3.5.5. Crown Diameter

Plot mean crown diameter predictions derived using variogram ranges were found

to overestimate diameter for smaller crowns and underestimate it for larger ones, while

slope break predictions appeared to be unbiased except perhaps for crowns with mean

diameters exceeding 7m (Figure 3.6). Linear models provided an adequate representation

of the relationship between parameter derivation methods when simultaneously

considering all cover types. Similar observations were made for plot crown diameters

predicted via variogram ranges estimated with subplot scope (alternative variogram

method) rather than the pixel-specific scope, the latter being the standard method used for

predicting plot stem density and canopy closure. The former method overestimated the

size of small crowns and exhibited heteroskedastic behavior with increasing crown size

(Figure 3.7). Pooled regressions of variogram-, alternative variogram-, and slope break-

derived predictions of observed mean crown diameter values had R2 coefficients of

0.942, 0.921, and 0.990, respectively, and significantly different regression slopes at

0t=0.01, except for the slope break — variogram regression pair (Table 3.5). Variability in

cover type-specific regression slopes across crown diameter prediction methods was

significant only for the oak plots. The RMSE ofplot mean crown diameter predictions

were comparable in magnitude for both the variogram and alternative variogram
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parameter value derivation methods, but substantially larger than the prediction errors

computed via the slope break method (Table 3.6).

3.5.6. Crown Delineation

Figure 3.8 portrays the delineation of crowns using either variogram ranges or

directional slope break lengths for an oak subplot. Because variogram ranges and slope

breaks performed identically in tree apex identification for this particular subplot, they

rendered it a good demonstration case of the performance of Slope breaks and variogram

ranges for crown delineation, which in this research is a precursor to predicting canopy

closure and mean crown diameter. Positional discrepancies between identified tree

apexes and observed tree stems are apparent in both methods. The solar azimuth angle at

the time of image acquisition for this oak subplot was 172° (measured from north). The

angular components of the displacement vectors between actual stems and identified

apexes were restricted to the 1350 to 1800 range. As such, it is likely that the pixels

identified as tree apexes actually represent the middle of the sunlit portion of the crowns

rather than the stem location. Such discrepancies occurred at, but were not limited to,

coordinate locations [4, -7], [-6, -2], and [4, 2.5]. Non-confonnal crown morphology,

however, (i) often placed identified tree apexes elsewhere, as is evident in coordinate

locations [-4, l] and [-5.5, 7]; (ii) caused more than one apex to be identified for one

observed stem, as in locations [0, 4] and [2,5]; or (iii) resulted in stem omission, as in

location [8.5, 3]. Positional discrepancies between stern and identified tree apexes were

smaller for coniferous than for deciduous cover types.

Variability in the spatial distribution of crown sizes appeared to influence canopy

closure predictions when crowns were delineated with the variogram range method.
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Larger crown Sizes at the western half of the oak subplot shown in Figure 3.8, resulted in

variogram ranges approximating the diameter Of those crowns well. Crowns delineated

for apexes at locations [-10, 1] and [-8, 7] in Figure 3.8a were in close agreement to

observed crown boundaries. Variogram range-based delineation of smaller crowns

adjacent to larger ones (location [6, -1] and [-2, -8]) caused substantial overestimation of

crown extent for the former. Crown overestimation is represented in purple in Figure

3.8a. Smaller crown sizes east and south of the subplot resulted in variogram ranges

shorter that the crown diameters present in the east half of the subplot, thus causing

substantial crown underestimation, represented in yellow in Figure 3.8a. At the subplot

level, however, crown underestimation for a few trees was nearly compensated by crown

overestimation for others resulting in prediction error of only 2%. Crown delineation via

slope breaks for this oak subplot appeared to be superior to the delineation produced

using variogram ranges in the sense that the absolute crown under- and overestimation

was more confined and showed no patterns in its spatial distribution (Figure 3.8b). Slope

break delineation sometimes tended to overestimate crown extent towards canopy

openings (location [2, -3], [-7, -4], [-10, -3], [-1, 9], etc.), resulting in an overall

prediction error of 4%.

3.5.7. Cover Type Classification of Tree Apexes

Classification results obtained with signatures generated from pixels identified as

tree apexes using variogram ranges, were practically identical to those obtained using

slope breaks. Associated confusion matrices developed for each of the five geographic

extents of signature development were found to have a maximum Of4/136 or 3/72

(pending on Signature geographic extent) of subplots assigned to different cover type
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classes between the two methods. Given these similarities, only slope break-related

results are presented here.

Classification accuracy estimates and kappa coefficients derived from confusion

matrices constructed using original DNS ranged among classification scenarios from

70.3% to 72.2% and 0.628 to 0.652 respectively (Table 3.7a-e). Use ofbrightness-

norrnalized imagery resulted in classification accuracy and kappa coefficient estimates

ranging from 84.4% to 87.5% and 0.804 to 0.844 (Table 3.7f-j). Brightness normalization

improved classification accuracy among classification scenarios by an average of 14.6%

with coefficient of variation 0.060; brightness normalization improved kappa coefficients

by 0.182 (coefficient of variation 0.057). In all classification scenarios, results were

Significant at 01:00] (Table 3.7a-j). Pair-wise comparisons of classification outcomes

based on the computation of standardized differences of respective kappa coefficients

showed no statistical significance at Ot=0.10 among classification scenarios using original

DNS and among classification scenarios operating on brightness normalized imagery. All

pair-wise comparisons involving a classification scenario using original DNS and a

scenario operating on brightness normalized imagery were significant at (1:001 or

=0.05 (Table 3.8).

In classification scenarios based on signature development from and testing on all

subplots using original DNS, about one fourth of the total number of deciduous subplots

(21/80) was assigned to a wrong deciduous class, but within the deciduous cover type

group. About one fifth of the coniferous subplots (12/56) was assigned a wrong

coniferous class but within the coniferous cover type group. Five subplots were assigned

to the wrong cover type group'(Table 3.7a). Brightness normalization reduced the numbe
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of subplots assigned to the wrong class and correct group to 12 for deciduous and 5 for

coniferous classes and eliminated all instances of subplots assigned to the wrong cover

type group (3.71). Classification error rates between cover type classes and cover type

groups are shown in Table 3.9.

Brightness normalization dramatically improved class-conditional kappa

coefficients for all classification scenarios (Table 3.10) and averaged 0.175 for aspen,

0.129 for northern hardwoods, and 0.164 for oak. The improvement was higher and less

variable across scenarios for red pine plantations and natural pine, averaging 0.194 and

0.255 respectively. Class-conditional kappa improvement was practically uniform across

classification scenarios and ranged from 0.175 to 0.196, but it was at least twice as

variable for scenarios involving signature development and testing in the same site than

scenarios involving signature development in one site and testing in the other.

The effect of frame brightness normalization on the structure of classification

signatures can be assessed by examining the percentage Of classified pixels for different

maximum likelihood thresholds (Figure 3.9). For thresholds up to 0.25, there was little

difference in the percentage of classified pixels before and after brightness normalization.

A threshold of 0.50 classified approximately 50% of tree apex pixels in the original DN

imagery and about 20% more for the set normalized for brightness. Even at high

percentages, a substantial percentage (~ 25) of original DN, and approximately half of

brightness-normalized pixels were still classified. Differences in the percent of classified

pixels for different classification scenarios did not exceed 10% even for high maximum

likelihood probability thresholds. It should be noted that the reference to classification

results using DNs in Figure 3.9 implicitly assumed that LMF processing using original
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DNS identified the same pixels as tree apexes as those identified with the normalized

imagery set. Although preliminary investigation had indicated that such an outcome

would have been likely, LMF imagery processing using original DNS was not conducted

for all subplots. The substantial amount ofpixels that remained classified even for high

(0.75) maximum likelihood probability thresholds indicated that constraining signature

development to include only pixels identified as tree apexes results in Signatures far more

compact and, hence, likely more separable that those obtained using all subplot pixels.

Using tree apex pixels instead of all pixels produced statistically significant increases

(Table 3.11) in classification accuracies from approximately 45% to 70% for

classification based on original DNS and from approximately 50% to 85% when

brightness normalization was employed.

3.6. Discussion

Prediction Of canopy structure parameters in this chapter was based on analysis of

crown surface morphology. Identified tree apexes were used as a surrogate for stem

density predictions while canopy closure and mean crown diameter were derived directly

from the imagery. It should not therefore come as a surprise that stem density predictions

yielded larger RMSE than canopy closure and crown diameter predictions (Table 3.2, 3.4,

and 3.6), particularly when employing slope breaks for parameter value estimation,

despite the fact that the latter two were based on the former.

Oak and northern hardwood subplots in this study contained large, mature trees

with crowns of complex morphology and Often two or more reflectance maxima, and

several canopy openings, sometimes of similar size and uniform distribution within the

subplots and sometimes Of variable Size and distribution. Further, stand structure
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complexities were introduced by shorter co-dominant tree apexes positioned at the edge

of larger adjacent crowns with which they formed composite crowns, whose tree-specific

components were sometimes difficult to discern even with field inspection. In the

presence of large-crown trees and uniform crown and canopy opening Size distribution,

the slope break-based and variogram-based methods performed equivalently in stem ..

density prediction. By contrast, the presence of crown size variability or variable-sized

canopy openings resulted in better accuracy for slope-break derived predictions of stem

density, thereby corroborating that slope breaks are capable of adjusting well to local

stand structure conditions. The minimal variability in canopy-opening and crown-size

precluded a reliable assessment of canopy structure conditions on stem density

predictions for the remaining three cover types.

Commission errors due to multiple tree maxima and corresponding tree apexes

identified using variogram ranges in the presence of large northern hardwoods and oak

trees produced mean crown diameter underestimation proportional to crown size, but

appeared to only minimally affect the accuracy of canopy closure predictions. Note that it

requires only 1 out of 10 trees with average crown diameter of 10m to be mistakenly

identified as two separate stems in a subplot for an 8% reduction in subplot mean crown

diameter value to occur. As a result, crown diameter predictions in large tree crown

stands were more susceptible to errors of commission than of omission.

Stem density was underestimated for most ofthe natural pine and all of the red

pine plantation and aspen subplots largely because the presence of small crows increased

omission error rates. Errors of omission would often occur where most of the sun-facing

crown portion of a co-dominant tree was in the shadow cast by adjacent dominant trees
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(resulting in a lower brightness tree apex for that tree). Errors of omission occurred more

frequently where pixels correctly identified as tree apexes were separated by distances

smaller than half the variogram range or the slope break length calculated for those apex

pixels. The second source of tree omission error could be potentially eliminated in such

conditions by removing the LMF processing rule that necessitates all pixels identified as

tree apexes to have DN larger that those of their 8 neighbors. Elimination of this LMF

rule, however, would cause deterioration of stem density predictions obtained in stands of

trees with larger crown sizes. LMF rule implementation conditional upon variogram

range or slope break magnitude should be considered as a stem-density-prediction

alternative worthy of investigation.

Stands exhibiting small crown size and high canopy closure were found to exhibit

low tone or DN variability in digital imagery. Precise range estimation for variograms

computed in those circumstances was challenging, even when performed manually, in

part because of non-monotonic semivariance variability between consecutive lag

distances and in part because semivariance often tended to increase slowly with lag

distance and plateau (reach a Sill) at distances larger than the diameter crowns present.

Because such semivariance behavior persisted even after imagery processing for first-

order autocorrelation removal, it was assumed that in smooth-canopy-surface stands,

individual tree crowns may not necessarily be the main structural canopy element, and

that perhaps parametric quantification ofDN autocorrelation is susceptible to existing

lower fractal dimensions of reflectance. Imagery spatial resolution was sufficiently fine to

eliminate concerns of smooth canopy surface appearance originating from reflectance

aggregation issues. LMF window size overestimation due to imprecise variogram
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computation was considered the primary reason for larger stem density prediction RMSE

than the one obtained with LMF window sizes conditioned upon slope break lengths.

A special case of variogram range-based stem density overestimation could arise

in stands with systematic and anisotropic tree arrangements such as in red pine

plantations where past thinning operations were performed along the rows. In such

plantation stands, if sufficient time (>10 years) had elapsed between the thinning

operation and the imagery acquisition, the trees will utilize the extra growing space and

the variability in canopy reflectance along the rows will be reduced. In such conditions,

the computed variogram range length could exceed the planting space between rows by

50% or more (particularly for rows oriented in the East-West direction) potentially

causing tree omission errors. Such canopy structure conditions would also promote an

overestimation of canopy closure and crown diameter, because the space actually

occupied by the omitted trees would typically be assigned to adjacent trees along the

rows during the crown delineation process, thus inflating crown diameter (i.e. a canopy

opening would rarely be predicted). Systematic tree arrangements can also introduce a

bias in the slope break-enabled crown delineation related to image resolution. This is

especially the case where tree-spacing length is slightly less or more than 0.5 pixels the

nearest pixel length multiple. For example, a 1th (=3.66m) Spacing would likely produce

4-m slope break lengths and cause crown size and canopy closure overestimation. Such

bias is expected to cancel out among trees in natural stands.

The imposition of the heuristic rules on the slope break computations were

undertaken to avoid substantial overestimation of LMF window sizes, and its negative

impact on canopy closure and mean crown diameter predictions. Without the heuristics,
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canopy openings between trees would occur only as sliver polygons between adjoined

crowns or because of crown representation fidelity issues due to the limited number of

directions analyzed around each identified tree apex. The implication of these limitations

on the values of the canopy structure parameters would likely be negligible in high

canopy closure stands, but substantial in the presence of canopy Openings. The critical

issue here is how to identify the appropriate value for the coefficient at the right side

component of equation 3.3c, whose role is to inhibit directional slope break extension

into canopy openings. The value used was the product of experimentation and, as shown

in Figure 3.8b, did a good job in delineating crowns, while observing canopy openings, in

all northern hardwoods, oak, and natural pine stands where openings were present.

Coefficient values would likely need to be modified in the presence of large solar zenith

angles, diffuse illumination, reduced foliage vigor and density, or finer imagery

resolution. Coefficient adjustment for pixel size would be required in response to finer

reflectance sampling, and the resulting finer reflectance value change utilized in equation

3.3c.

Applying the procedures presented in this chapter might not be advisable to derive

stand-structure parameters for stands with medium or low canopy closure or where stand

conditions permit direct illumination of the forest floor or background vegetation. In such

conditions, grass, exposed sandy soil, or Shrubs could easily be misidentified as tree

apexes during LMF processing, and the variogram ranges would mistakenly represent the

mean diameter of the canopy openings rather than the size of crowns. Note that the 60%

minimum canopy closure threshold imposed as a prerequisite for plot installation

precluded any occurrences of sunlit background in the plots. Although openings did exist
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and were sometimes of sizes equivalent to those occupied by the dominant trees, the

height of adjacent trees would place them in shadow. Preliminary imagery processing

using band rationing could potentially reduce the effect of non-vegetated, sunlit stand

backgrounds on the predicted canopy parameter values.

The pooled and individual cover type regression models of predicted vs. observed

canopy structure parameter values for each cover type, presented in Tables 3.1, 3.3, and

3.6, are only intended to provide a preliminary understanding of the relationship between

parameters and cover types. The small number of plots installed in each cover type and

the often compressed range of observed values for the canopy structure parameters within

each cover type suggest that the regression model parameter value might change if a

larger number of plots in varying stand structure conditions were available in each cover

type.

The classification results (Table 3.2, 3.4, and 3.6) indicate that the slope break-

enabled stem density and mean crown diameter predictions are superior, not only to those

obtained using variogram ranges, but also to those obtained during stand data cruising by

experienced foresters in the Midwest region (Roger Meek and Larry Pedersen, MDNR

analysts, personal communication). For canopy closure predictions, both methods exceed

the accuracy typically obtained by stand cruising. Those observations suggest that

automated imagery processing using the techniques of this chapter has a potential to

become the standard approach for acquiring forest stand structure information, at least for

stand conditions that approximate those in the plots used in this study. This potential is

tempered by significant computational costs. Using 2003 vintage equipment, it would

require several hours (~5) for the processing of one hectare of forest land using 0.9m
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imagery. An exception to this is predicting mean crown diameter using the alternate

variogram method, which is at least two orders of magnitude faster than the analytical

variogram and Slope break methods.

The classification results corroborate that brightness variability among imagery

frames increases class covariance values in feature space and thus reduces class

separability. In addition, the smaller variability in kappa coeffrecients or accuracy

estimates obtained for different classification scenarios using tree apex pixels compared

to those obtained using all pixels indicate that the brightest pixels in a crown manifest the

cover type-specific reflectance characteristics better and with greater stability. Brightness

normalization costs are warranted by the significant improvement in overall and class-

specific classification accuracy. The fact that discrepancies in the number ofpixels

identified by each of the LMF processing methods hardly affected classification

outcomes suggests that alternative, and likely computationally less costly, classification

procedures based on bright pixel detection might be capable of delivering comparable

classification products. Tree apex-based classification, however, offers the additional

advantage of allowing for estimation of species composition within cover types. The

presence of species with substantially different reflectance characteristics in the same

cover type, for example white pine/aspen, often present in the Midwest region, could

render the processing of classification results with majority filters inappropriate and

cause a significant reduction in classification accuracy. In such cases, class-assignment

ofplots or forest stands could alternatively be based on heuristic rules. Reflectance

variability only between big tooth and quaking aspen and absent among the species
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present in each of the remaining cover types, at least when only tree apex pixels were

considered, has precluded the development and evaluation Of such alternatives.

3.7. Conclusion

The two methods of quantifying DN autocorrelation that were used in this study,

the parametric variogram analysis and the non-parametricset of simple heuristic rules,

have revealed the promising potential of high-spatial-resolution digital imagery as a

source of reliable forest canopy structure information. The other known investigations

that have attempted stem density predictions, primarily in coniferous forests, found

prediction error rates that have rendered them and the methodologies employed of little

utility for inventory or management purposes. In this study, the field acquisition of a

detailed and positionally precise set of observations on stand structure distributed among

five deciduous and coniferous cover types in northern Michigan, has provided a better

understanding of the relationships between canopy characteristics and the reflectance

regimes embedded in digital imagery. Methods were developed or modified that are

capable ofproducing reliable predictions not only of forest stand density but also of

canopy closure and mean crown diameter.

The methods that were developed support automation and entail parsimonious

parameterization: l) determination of the minimum slope between successive cubic

spline segments fit to empirical variograms to determine the variogram’s range; and 2)

derivation of a coefficient used to hinder directional slope break extensions into canopy

openings. Proper values for each parameter can be identified by visual inspections of

empirical variograms generated over an area of interest and by examining pixel DN

profiles traversing canopy openings. Because only stands with high canopy closure were
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used to refine these methods and evaluate the results, the application of these techniques

to medium or low canopy closure condition should be undertaken with caution.

The brightest crown pixels, identified automatically by the methods presented in

this chapter, appear to be dominated by Spectral information specific to the cover type

they belong. Maximum likelihood classification of cover types based on those pixels is

capable of delivering a high classification accuracy (> 85%) that remarkably improves

(35% in this study) the accuracy obtained by traditional classification approaches that

operate on all pixels in a forested area. Experimentation with scenarios that involved

signature development and classification testing over varying geographic extents revealed

that this classification performance was robust, thereby allowing optimism for regional

applicability. Although computational loads currently restrict operational implementation

of the methods presented, it is expected that continuous improvements in computational

power would ultimately render the approaches investigated here useful for forest

inventory and management purposes.
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Tables

Table 3.1. Parameter values of linear regression models Obtained by fitting plot stem

density values predicted via application of two image LMF processing techniques on

field measurements of stem density.

 

 

 

  

LMF using Variogram LMF using Slope Regr688101?
Ranges Breaks parameter deviates

between techmques

Cover #of .5 E .5 .5

Type plots 0 .2 § 2 in 93. o .93.

R2 3 g 48, 8% R2 3515’ ,3 3:9 Slope Mean

‘9 8 E 8 m 8 m 8

u U u 0

ASP 7 0.744 0.773‘ 59.3 0.935 0.802“ 76.4 0.030 -3414”

NH 7 0.947 0.844“ 63.7‘ 0.994 0.815“ 53.1“ -0029 18.71“

Oak 6 0.994 0.905“ 50.8“ 0.981 0.822“ 57.9‘ -0.083 14.67‘

RPP 7 0.994 0.770” 69.3“ 0.990 0.822“ 65.7‘ 0.052 -2771”

NP 7 0.997 0.826” 71.1“ 0.996 0.906” 34.4‘ 0.091‘ -8.14

All 34 0.986 0.741” 91.8“ 0.996 0.864“ 44.7“ 0.117“ -694‘    
 

 
Significant at or = 0.05

Significant at a = 0.01

Table 3.2. Root Mean Square Errors (RMSE) or discrepancies, between stem density

values predicted via LMF image processing and corresponding field measurements. Stem

density is expressed in trees per hectare. Values in parentheses represent percent absolute

error from observed cover type mean of stem density.

 

 

 

 

L RMSE Values (stems/ha)

over Type # of plots . .

LMF usrng LMF usrng Slope

Variogram Ranges Breaks

ASP 7 71.84 (12.5) 37.39 (6.5)

NH 7 24.00 (8.5) 10.78 (3.8)

Oak 6 26.97 (10.2) 18.45 (7.0)

RPP 7 72.07 (1 1.9) 44.53 (7.4)

NP 7 30.22 (6.1) 17.67 (3.6)

All 34 50.67 (1 1.3) 29.06 (6.5)     
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Table 3.3. Parameter values of linear regression models obtained by fitting plot canopy

closure values predicted via tree apex identification using image LMF processing

techniques and crown delineation algorithms on field measurements ofcanopy closure.

 

 

 

      

. . . Regression parameter
LMF usrng Variogram LMF usrng Slope deviates between

Ranges Breaks .

techniques

Cover #of ... .. .. ...

Type plots 0 .§ §§ o .15 a, 31:2

R2 3‘ g g 5% R2 53% 3.5% Slope Mean

m 8 g 8 V’ 8 m 8
U U U 0

ASP 7 0.896 0 503" 49.8" 0.918 0.951” 4.2 0.448' 3.50”

NH 7 0.802 1.010“ -2.7 0.864 0.527” 40.9“ -0.483‘ -031

Oak 6 0.927 0.734" 17.5 0.981 0.81 1" 17.0‘ 0.077 -522”

RPP 7 0.989 1.161“ -1 1.1 0.969 0.861“ 8.5 -0300" 4.90”

NP 7 0.953 1.098” -6.6 0.951 0.727“ 23.2‘ -0371' -049

All 34 0.941 1.098” -77” 0.930 0.817“ 15.3” -0281“ 0.64

 

Significant at or = 0.05

. Significant at or = 0.01

Table 3.4. Root Mean Square Errors (RMSE) between plot canopy closure predictions

obtained using LMF image processing for tree apex identification and crown delineation

algorithms and corresponding field measurements. Canopy closure is expressed in

percent of plot area. Values in parentheses represent percent absolute error from observed

cover type mean of canopy closure.

 

 

 

 

     

RMSE Values (stems/ha)

Cover Type # of plots , . .

LMF usrng Variogram LMF usrng slope

Ranges breaks

ASP 7 3.51 (3.7) 0.99 (1.1)

NH 7 2.97 (3.3) 2.86 (3.2)

Oak 6 2.72 (3.7) 3.09 (4.2)

RPP 7 3.05 (3.7) 3.70 (4.5)

NP 7 2.62 (2.1) 3.28 (2.6)

All 34 3.00 (3.6) 2.93 (3.5)  
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Table 3.5. Parameter values of linear regression models obtained by fitting mean

crown diameter value estimates obtained via variogram and image morphology analysis

to corresponding diameter estimates derived from field observations. Image crown

delineation was based on LMF processing techniques and associated crown delineation

 

 

 

    
 

 

 

 

 

 

algorithms.

LMF using Variogram LMF using Slope Using mean variogram

Ranges Breaks range of subplots

Cover # of E ’5. E E E- E E

T Its Q)... 0'" 0).... Q... 0.... ..—

YP‘ 1" R2 as as R2 as are R2 as 88
‘0 8 g 8 m 8 m 8 m 8 m 8

L) U U U U 0

ASP 7 0.706 0.952‘ 0.65 0.868 1.213“ -0.87 0.426 0.928 0.73

NH 7 0.870 0.750“ 1.25 0.962 0.843" 0.94 0.653 0.808‘ 1.01

Oak 6 0.913 0.823" 0.75 0.976 0.875” 0.68 0.964 1.272“ -1.59

RPP 7 0.545 0.976‘ 0.40 0.649 0.930‘ 0.31 0.840 1.237" 0.71

NP 7 0.935 0.758" 1.20 0.974 0.974“ 0.21 0.919 0.837“ 0.85

A11 34 0.942 0.700“ 1.58“ 0.990 0.921“ 0.42‘ 0.921 0.847“ 0.91”

Regression Parameter Deviates between

LMF using Variogram LMF usrng Vanog LMF using Slope Breaks andl
. Ranges and the Mean .

Cover Type Ranges and LMF usrng . the Mean Variogram Range
Variogram Range among

Slope Breaks among Subplots
Subplots

Slope Mean Slope Mean Slope Mean

ASP 0.261 0.32” -0023 0.03 0.285 029“

NH 0.092 0.28” 0.057 -0. 13 0.035 015

Oak 0.052 -024‘ 0.449’ -041‘ -0398‘ 0.17

RPP -0.046 0.28“ 0.261 0.03 -0307 0.25“

NP 0.216 0.00 0.079 -001 0.137 0.01

A11 0222” 0.02 0.148“ -009 0.074 0.1 1‘    
 

Significant at a = 0.05

Significant at or = 0.01
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Table 3.6. Root Mean Square Error (RMSE) between plot mean crown diameter

predictions obtained i) via crown delineation based on image LMF processing using

variogram ranges, ii) via crown delineation based on image LMF processing using

directional slope breaks, and iii) as the mean variogram range among subplots, and mean

crown diameter estimates derived from field observations. Values in parentheses

represent percent absolute error from observed cover type mean ofmean crown diameter.

 

 

 

     

RMSE Values (%)

Cover # of _

Type plots [QMF usmg LMF using Slope Mean Variogram

anogram Breaks Range among Subplo
Ranges

ASP 7 0.43 (9.5) 0.33 (7.3) 0.42 (9.2)

NH 7 0.41 (6.4) 0.15 (2.3) 0.41 (6.3)

Oak 6 0.39 (6.3) 0.15 (2.4) 0.25 (4.1)

RPP 7 0.32 (7.7) 0.08 (2.0) 0.28 (6.8)

NP 7 0.18 (3.9) 0.12 (2.6) 0.18 (3.8)

All 34 0.36 (6.9) 0.13 (2.5) 0.32 (6.3)  
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Table 3.7a. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters obtained by using spectral signatures

developed from pixels identified as representing apexes of individual trees (slope break

method) for subplots in sites I and II and original pixel DNs.
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Observed

ASP Oak RPP NP Row Total

Aspen (ASP) l9 3 0 28

3 Northern Hardwoods (NH) 3 0 0 28

'g Oak 17 0 1 23

8 Red Pine Plantation (RPP) 0 22 7 29

Natural Pine (NP) 1 5 20 28

Column Total 28 24 28 28 136

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 67.86 67.86 32.14 32. 14 0.00 100.00

NH 71.43 71.43 28.57 28.57 0.10 97.86

Oak 70.83 73.91 29.17 25.00 0.25 85.93

RPP 78.57 75.86 21.43 25.00 0.50 47.54

NP 71.43 71.43 28.57 28.57 0.75 26.68

Class Conditional Kappa

ASP 0.5952 Overall Accuracy (%) 0.7206

NH 0.6402 Kappa Coefficient 0.6503

Oak 0.6832 s2k 0.0015

RPP 0.6960 zk 16.5563‘

NP 0.6402 . Significant at 01 = 0.01

 

 



Table 3.7b. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters Obtained by using spectral signatures

developed from subplot pixels identified as representing apexes of individual trees (slope

break method) in site I for subplots in site I and original DNS.

 

 

 

 

    
 

 

 

     
 

 

 

   

 

  

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 12 2 1 0 0 15

E Northern Hardwoods (NH) 9 2 0 14

"'3‘ Oak 1 9 0 1 11

8 Red Pine Plantation (RPP) 0 0 12 5 17

Natural Pine (NP) 0 0 4 10 15

Column Total 16 12 12 16 16 72

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 75.00 80.00 25.00 18.75 0.00 100.0

NH 75.00 64.29 25.00 41.67 0.10 97.8

Oak 75.00 81.82 25.00 16.67 0.25 85.9

RPP 75.00 70.59 25.00 31.25 0.50 51.1

NP 62.50 66.67 37.50 31.25 0.75 29.3

Class Conditional Kappa

ASP 0.7429 Overall Accuracy (%) 0.7222

NH 0.5714 Kappa Coefficient 0.6515

Oak 0.7818 82k 0.0029

RPP 0.6218 2., 12.0627‘

NP 0.5714 ’ Significant at a = 0.01
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Table 3.7c. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters obtained by using spectral signatures

developed from subplot pixels identified as representing apexes Of individual trees (slope

break method) in site II for subplots in site I and original DNS.

 

 

 

 

  
 

 

 

 

       
 

 

   

 

 
 

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 11 2 2 0 0 15

3 Northern Hardwoods (NH) 4 8 1 0 0 13

E Oak 0 2 9 l 12

'8 Red Pine Plantation (RPP) 0 0 0 12 4 16

Natural Pine (NP) 1 0 0 4 11 16

Column Total 16 12 12 16 16 72

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 68.75 73.33 31.25 25.00 0.00 100.00

NH 66.67 61.54 33.33 41.67 0.10 97.58

Oak 75.00 75.00 25.00 25.00 0.25 84.75

RPP 75.00 75.00 25.00 25.00 0.50 43.54

NP 68.75 68.75 31.25 31.25 0.75 20.03

Class Conditional Kappa

ASP 0.6571 Overall Accuracy (%) 0.7083

NH 0.5385 Kappa Coefficient 0.6341

Oak 0.7000 s2k 0.0030

RPP 0.6786 2k 1 1.5934‘

NP 0.5982 ‘ Significant at a = 0.01
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Table 3.7d. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters obtained by using spectral signatures

developed from subplot pixels identified as representing apexes of individual trees (slope

break method) in site II for subplots in site II and original DNS.

 

 

 

   
 

 

 

 

       
 

 

 

    

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 9 3 2 0 0 14

E Northern Hardwoods (NH) 0 10 1 0 0 11

'5» Oak 0 9 0 0 12

5 Red Pine Plantation (RPP) 0 0 0 9 3 12

Natural Pine (NP) 3 0 3 9 15

Column Total 12 16 12 12 12 64

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 75.00 64.29 25.00 41.67 0.00 100.00

NH 62.50 90.91 37.50 6.25 0.10 97.75

Oak 75.00 75.00 25.00 25.00 0.25 83.37

RPP 75.00 75.00 25.00 25.00 0.50 49.80

NP 75.00 60.00 25.00 50.00 0.75 24.46

Class Conditional Kappa

ASP 0.5604 Overall Accuracy (%) 0.7188

NH 0.8788 Kappa Coefficient 0.6492

Oak 0.6923 82k 0.0033

RPP 0.6923 2k 1 1.3649‘

NP 0.5077 ’ Significant at a = 0.01 
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Table 3.7c. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters Obtained by using spectral signatures

developed from subplot pixels identified as representing apexes of individual trees (slope

break method) in site I for subplots in site II and original DNs.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 9 4 l 0 0 14

3 Northern Hardwoods (NH) 1 10 3 0 0 14

'3‘ Oak 1 8 0 0 ll

5 Red Pine Plantation (RPP) 0 0 9 3 12

Natural Pine (NP) 1 0 3 9 13

Column Total 12 16 12 12 12 64

Accuracy (%) EITOYS (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 75.00 64.29 25.00 41.67 0.00 100.00

NH 62.50 71.43 37.50 25.00 0.10 97.91

Oak 66.67 72.73 33.33 25.00 0.25 85.02

RPP 75.00 75.00 25.00 25.00 0.50 42.06

NP 75.00 69.23 25.00 33.33 0.75 21.04

Class Conditional Kappa

ASP 0.5604 Overall Accuracy (%) 0.7031

NH 0.6190 Kappa Coefficient 0.6284

Oak 0.6643 0.0034

RPP 0.6923 10.7614‘

NP 0.6213 ‘ Significant at a = 0.01

 

 



Table 3.7f. Cross—validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters Obtained by using spectral signatures

developed from pixels identified as representing apexes of individual trees (slope break

method) for subplots in sites I and II and brightness-normalized pixel DNS.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 23 2 2 0 0 27

E Northern Hardwoods (NH) 4 25 2 0 0 31

'3} Oak 20 0 0 22

'5' Red Pine Plantation (RPP) 0 0 25 2 27

Natural Pine (NP) 0 0 3 26 29

Column Total 28 28 24 28 28 136

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 82.14 85.19 17.86 14.29 0.00 100.00

NH 89.29 80.65 10.71 21.43 0.10 98.27

Oak 83.33 90.91 16.67 8.33 0.25 90.21

RPP 89.29 92.59 10.71 7.14 0.50 68.91

NP 92.86 89.66 7.14 10.71 0.75 53.00

Class Conditional Kappa

ASP 0.8134 Overall Accuracy (%) 0.8750

NH 0.7563 Kappa Coefficient 0.8435

Oak 0.8896 82k 0.0008

RPP 0.9067 zk 29.1529‘

NP 0.8697 . Significant at on = 0.01

 

 

 



Table 3.7g. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters obtained by using spectral signatures developed

from subplot pixels identified as representing apexes of individual trees (slope break

method) in site I for subplots in site I and brightness-normalized pixel DNS.

 

 

 

       
 

 

 

        
 

 

 

   

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) l3 1 1 0 0 15

E Northern Hardwoods (NH) 2 10 l 0 0 13

'c'g’ Oak 1 1 10 0 0 12

5 Red Pine Plantation (RPP) 0 0 O 14 1 15

Natural Pine (NP) 0 0 0 2 15 17

Column Total 16 12 12 16 16 72

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 81.25 86.67 18.75 12.50 0.00 100.00

NH 83.33 76.92 16.67 25.00 0.10 98.28

Oak 83.33 83.33 16.67 16.67 0.25 90.73

RPP 87.50 93.33 12.50 6.25 0.50 68.96

NP 93.75 88.24 6.25 12.50 0.75 50.39

Class Conditional Kappa

ASP 0.8134 Overall Accuracy (%) 0.8611

NH 0.7563 Kappa Coefficient 0.8258

Oak 0.8896 82k 0.0017

RPP 0.9067 2.. 19.9145’

NP 0.8697 ’ Significant at 01 = 0.01   
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Table 3.7h. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters obtained by using spectral signatures developed

from subplot pixels identified as representing apexes of individual trees (slope break

method) in site II for subplots in site I and brightness-normalized pixel DNS.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) l4 1 l 0 0 16

3 Northern Hardwoods (NH) 2 10 1 0 0 13

"'3‘ Oak 0 10 0 1 l

5 Red Pine Plantation (RPP) 0 0 O 13 2 15

Natural Pine (NP) 0 3 14 17

Column Total 16 12 12 16 16 72

Accuracy (%) EITOFS (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 87.50 87.50 12.50 12.50 0.00 100.0

NH 83.33 76.92 16.67 25.00 0.10 98.2

Oak 83.33 90.91 16.67 8.33 0.25 89.0

RPP 81.25 86.67 18.75 12.50 0.50 61.6

NP 87.50 82.35 12.50 18.75 0.75 46.8

Class Conditional Kappa

ASP 0.8393 Overall Accuracy (%) 0.8472

NH 0.7231 Kappa Coefficient 0.8081

Oak 0.8909 8% 0.0019

RPP 0.8286 Zn 18.6765.

NP 0.7731 ‘ Significant at a = 0.01

 

 



Table 3.7i. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters obtained by using spectral signatures

developed from subplot pixels identified as representing apexes of individual trees (slope

break method) in site II for subplots in site II and brightness-normalized pixel DNS.

 

 

 

   
 

 

 

 

      
 

 

 
 

    

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 11 1 1 0 0 13

3;; Northern Hardwoods (NH) 0 14 2 0 0 16

E Oak 0 9 0 0 10

is): Red Pine Plantation (RPP) 0 0 11 l 12

Natural Pine (NP) 1 0 1 11 13

Column Total 12 16 12 12 12 64

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 91.67 84.62 8.33 16.67 0.00 100.00

NH 87.50 87.50 12.50 12.50 0.10 98.44

Oak 75.00 90.00 25.00 8.33 0.25 89.85

RPP 91.67 91.67 8.33 8.33 0.50 66.80

NP 91.67 84.62 8.33 16.67 0.75 54.76

Class Conditional Kappa

ASP 0.8107 Overall Accuracy (%) 0.8750

NH 0.8333 Kappa Coefficient 0.8431

Oak 0.8769 s2. 0.0018

RPP 0.8974 zk 19.9988‘

NP 0.8107 ‘ Significant at ct = 0.01 
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Table 3.7j. Cross-validation-based Maximum Likelihood classification results and

associated accuracy assessment parameters obtained by using Spectral Signatures

developed from subplot pixels identified as representing apexes of individual trees (slope

break method) in site I for subplots in Site II and brightness-normalized pixel DNS.
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Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 10 2 1 0 0 13

E Northern Hardwoods (NH) 1 l3 1 0 15

E Oak 10 0 12

6 Red Pine Plantation (RPP) 11 2 13

Natural Pine (NP) 1 10 ll

Column Total 12 16 12 12 12 64

Accuracy (%) Errors (%) ML Probability Classified

Producer’s Consumer’s Commission Omission Threshold Pixels (%)

ASP 83.33 76.92 16.67 25.00 0.00 100.00

NH 81.25 86.67 18.75 12.50 0.10 98.37

Oak 83.33 83.33 16.67 16.67 0.25 88.25

RPP 91.67 84.62 8.33 16.67 0.50 64.72

NP 83.33 90.91 16.67 8.33 0.75 44.85

Class Conditional Kappa

ASP 0.7160 Overall Accuracy (%) 0.8438

NH 0.8222 Kappa Coefficient 0.8042

Oak 0.7949 s2. 0.0021

RPP 0.8107 zk 17.3489’

NP 0.8881 ‘ Significant at at = 0.01

 

 



153

T
a
b
l
e

3
.
8
.

Z
-
s
c
o
r
e
s
o
f
s
u
b
p
l
o
t
c
l
a
s
s
i
fi
c
a
t
i
o
n
r
e
s
u
l
t
c
o
m
p
a
r
i
s
o
n
f
o
r
c
o
m
b
i
n
a
t
i
o
n
s
o
f
c
r
o
s
s
-
v
a
l
i
d
a
t
i
o
n
-
b
a
s
e
d
c
l
a
s
s
i
fi
c
a
t
i
o
n
s
c
e
n
a
r
i
o
s

c
o
m
p
u
t
e
d
a
s
s
t
a
n
d
a
r
d
i
z
e
d
d
i
f
f
e
r
e
n
c
e
s
o
f
r
e
s
p
e
c
t
i
v
e
k
a
p
p
a
c
o
e
f
fi
c
i
e
n
t
s
.
P
a
r
e
n
t
h
e
s
e
s
d
e
n
o
t
e
p
-
v
a
l
u
e
s
.
S
c
o
r
e
s

i
n
b
o
l
d
a
n
d

i
n
i
t
a
l
i
c
s

i
n
d
i
c
a
t
e
S
i
g
n
i
fi
c
a
n
c
e

a
t
O
t
=
0
.
0
5
.
S
c
o
r
e
s
i
n
b
o
l
d
o
n
l
y
i
n
d
i
c
a
t
e
S
i
g
n
i
fi
c
a
n
c
e

a
t
0
1
=
0
.
0
1
.
C
l
a
s
s
i
fi
c
a
t
i
o
n
s
i
g
n
a
t
u
r
e
s
w
e
r
e
d
e
v
e
l
o
p
e
d
u
s
i
n
g

p
i
x
e
l
s
i
d
e
n
t
i
fi
e
d
a
s
t
r
e
e
a
p
e
x
e
s
v
i
a
S
l
o
p
e
b
r
e
a
k
-
b
a
s
e
d
i
m
a
g
e
r
y
L
M
F

p
r
o
c
e
s
s
i
n
g
.

 

SNQ [eugfipo

‘II 75’ I 91'S

SNO 19013110 ‘1 ans

111013 samieufigs ‘1 9115

SNG 191118110 ‘11 911s

woy salmeu81s ‘1 9113

SNO 19111890 ‘11 ans

wog samnau81s ‘11 ans 

 

 

SNO 18913110 ‘1 ans

(110.1} s91meu81s ‘11 9113

uomzneuuou

ssouiqflpq

I11144 ‘11 78 1911s

uopezueuuou

ssaumfim 1111M 1 9as

11101; sajmeufiys ‘1 9113

uonezueuuou

88919113119 1mm 11 ans

tuog samicu81s ‘1 ans

uopezueuuou

88919113119 111141 11 ans

1.11013 saJmeu81s ‘11 9113

 

91008-2  S
i
t
e

I
,
s
i
g
n
a
t
u
r
e
s
f
r
o
m

S
i
t
e

1
,

o
r
i
g
i
n
a
l
D
N
S

0
.
0
1
8
1

(
0
.
9
8
5
6
)
 

S
i
t
e

I
,
s
i
g
n
a
t
u
r
e
s
f
r
o
m

S
i
t
e

l
l
,

o
r
i
g
i
n
a
l
D
N
S

-
0
.
2
4
1
5

(
0
.
8
0
9
2
)

-
0
.
2
2
6
5

(
0
.
8
2
0
8
)
 

S
i
t
e

I
I
,
s
i
g
n
a
t
u
r
e
s
f
r
o
m

S
i
t
e

l
l
,
o
r
i
g
i
n
a
l
D
N
S

-
0
.
0
1
5
9

(
0
.
9
8
7
3
)

-
0
.
0
2
9
2

(
0
.
9
7
6
7
)

0
.
1
9
0
2

0
.
8
4
9
2
)
 

S
i
t
e

1
1
,
S
i
g
n
a
t
u
r
e
s
f
r
o
m

S
i
t
e

1
,

o
r
i
g
i
n
a
l
D
N
S

-
0
.
2
6
7
6

(
0
.
7
8
9
0
)

-
0
.
2
9
1
0

(
0
.
7
7
1
1
)

-
0
.
0
7
1
3

(
0
.
9
4
3
2
)

-
0
.
2
5
4
1

(
0
.
7
9
9
4
)
 

S
i
t
e

I
&

I
l
,
b
r
i
g
h
t
n
e
s
s

n
o
r
m
a
l
i
z
a
t
i
o
n

4
.
0
2
8
5

(
0
.
0
0
0
1
)

3
.
1
5
6
5

(
0
.
0
0
1
6
)

3
.
3
9
6
9

(
0
.
0
0
0
7
)

3
.
0
3
4
5

(
0
.
0
0
2
4
)

3
.
3
1
9
1

(
0
.
0
0
0
9
)
 

b
r
i
g
h
t
n
e
s
s
n
o
r
m
a
l
i
z
a
t
i
o
n

L
—
_

S
i
t
e

I
,
s
i
g
n
a
t
u
r
e
s
f
r
o
m

S
i
t
e

1
,

3
.
1
0
2
4

(
0
.
0
0
1
9
)

2
.
5
7
0
0

(
0
.
0
1
0
2
)

2
.
7
9
6
2

(
0
.
0
0
5
2
)

2
.
4
9
7
5

(
0
.
0
1
2
5
)

2
.
7
6
4
2

(
0
.
0
0
5
7
)

-
0
.
3
5
4
0

(
0
.
7
2
3
3
)
 

S
i
t
e

I
,
s
i
g
n
a
t
u
r
e
s
f
o
r
m

S
i
t
e

1
1
1

b
r
i
g
h
t
n
e
s
s
n
o
r
m
a
l
i
z
a
t
i
o
n

2
.
7
0
6
2

(
0
.
0
0
6
8
)

2
.
2
6
0
3

(
0
.
0
2
3
8
)

2
.
4
8
5
7

(
0
.
0
1
2
9
)

2
.
2
0
3
5

(
0
.
0
2
7
6
)

2
.
4
6
8
4

(
0
.
0
1
3
6
)

-
0
.
6
8

l
3

(
0
.
4
9
5
7
)

-
0
.
2
9
5
0

(
0
.
7
6
8
0
)
 

S
i
t
e

1
1
,
s
i
g
n
a
t
u
r
e
s
f
r
o
m

S
i
t
e

1
1
,
b
r
i
g
h
t
n
e
s
s
n
o
r
m
a
l
i
z
a
t
i
o
n

3
.
3
5
6
2

(
0
.
0
0
0
8
)

2
.
7
9
4
8

(
0
.
0
0
5
2
)

3
.
0
1
6
7

(
0
.
0
0
2
6
)

2
.
7
1
5
1

(
0
.
0
0
6
6
)

2
.
9
7
7
4

(
0
.
0
0
2
9
)

-
0
.
0
1
4
1

(
0
.
9
8
8
8
)

0
.
2
9
2
4

(
0
.
7
7
0
0
)

0
.
5
7
5
4

(
0
.
5
6
5
0
)
  ES

i
t
e

I
]
,
s
i
g
n
a
t
u
r
e
s
f
o
r
m

S
i
t
e

1
1

b
r
i
g
h
t
n
e
s
s
n
o
r
m
a
l
i
z
a
t
i
o
n

2
.
5
6
5
0

(
0
.
0
1
0
3
)

2
.
1
5
9
5

(
0
.
0
3
0
8
)

2
.
3
8
1
9

(
0
.
0
1
7
2
)

2
.
1
0
9
3

(
0
.
0
3
4
9
)

2
.
3
7
0
5

(
0
.
0
1
7
8
)

-
0
.
7
2
9
8

(
0
.
4
6
5
5
)

-
0
.
3
5
0
4

(
0
.
7
2
6
0
)

-
0
.
0
6
1
7

(
0
.
9
5
0
8
)

-
0
.
6
2
2
9

(
0
.
5
3
3
4
)
 

 
 

 
 

 
 

 
 

  

 



Table 3.9. Classification error rates of subplots conditional upon cover types group

(deciduous or coniferous) produced with maximum-likelihood based cross validation for

all plots in the Study area before and after brightness normalization using subplot pixels

identified as tree crown apexes. Apex identification was performed using slope break-

based imagery LMF processing.

 

 

 

 

 
 

      

As en Northern Oak Red Pine Natural

p Hardwoods Plantation Pine

. . Deciduous 7 (25%) 8 (29%) 6(25%) 1 (4%) 8 (4%)

Onglnal DNS

Coniferous 2 (7%) 0 (0%) l (4%) 5 (18%) 8 (25%)

Brightness Deciduous 5(18%) 3(11%) 4(17%) 0 (0%) 9 (0%)

normalization Coniferous 0 (0%) 0 (0%) 0 (0%) 3 (11%) 7 (7%)
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Table 3.10. Change in class-conditional Kappa coefficients computed before and after

brightness normalization using tree apex signatures.

 

Cover Original Brightness

 

 

 

 

 

 

Type DNS Corrected AKappa

ASP 0.5952 0.8134 0.2182

NH 0.6402 0.7563 0.1 161

All subplots using Signatures from Site I and 11 Oak 0.6832 0.8896 0,2064

RPP 0.6960 0.9067 0.2107

NP 0.6402 0.8697 0.2295

ASP 0.7429 0.8134 0.0705

NH 0.5714 0.7563 0.1849

Site I subplots using Site I signatures Oak 0.7818 03896 01078

RPP 0.6218 0.9067 0.2849

NP 0.5714 0.8697 0.2983

ASP 0.5604 0.8107 0.2503

NH 0.8788 0.8333 -0.0455

Site II subplots using site II signatures Oak 0.6923 0.8769 0.1846

RPP 0.6923 0.8974 0.2051

NP 0.5077 0.8107 0.3030

ASP 0.6571 0.8393 0.1822

NH 0.5385 0.7231 0.1846

Site I subplots using Site II Signatures 03k 07000 03909 0.1909

RPP 0.6786 0.8286 0.1500

NP 0.5982 0.7731 0.1749

ASP 0.5604 0.7160 0.1556

NH 0.6190 0.8222 0.2032

Site 11 subplots using site I Signatures Oak 06643 07949 0.1306

RPP 0.6923 0.8107 0.1184

NP 0.6213 0.8881 0.2668

ASP 0.1754

NH 0.1287

Average across all five classification scenarios Oak 0.1641

RPP 0.1938

NP 0.2545
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Table 3.11. Z-scores of subplot classification result comparison for combinations of

cross-validation-based classification scenarios, computed as standardized differences of

respective kappa coefficients. Associated p-values are in parentheses. Scores in bold

indicate significance at 01:0.01. Classification scenarios entailed signature development

using 1) all pixels in a subplot, and 2) pixels corresponding to subplot tree apexes

identified via slope break-based imagery LMF processing.

 

 

 

 

     

All pixels, All p1xels, Tree alpex

Original DNS Brightness .p1xe 8’
normalization Onginal DNS

All pixels
. ’ 0.7511

Bnghineis (0.4576)
normahzatron

Tree apex pixels, 5.5137 4.7196

Original DNS (0.0000) (0.0000)

Treggpi’t‘nggels’ 9.9054 9.0144 4.0285

g . . (0.0000) (0.0000) (0.0001)
normalrzatron
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Figure 3.1. NIR band variogram ranges and mean slope-break lengths (circles) and

corresponding window sizes (squares) computed along a transect dissecting a northern

hardwoods subplot. Lines serve visualization purposes only.
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Figure 3.2. Original NIR band Digital Numbers (DN), DN-fit via local regression, and

pixel identified as Slope-break-length truncation locations, along a 30-pixel transect in a

Natural Pine subplot.
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Figure 3.3. Observed vs. predicted stem density at the plot level for five forest cover

types. Stem density estimates were Obtained from tree apexes identified on NIR-band

imagery via local maximum filtering (LMF) with window sizes conditioned upon (a)

computed variogram ranges, and (b) mean Slope break estimates. Plot cover types are

color-coded while the LMF techniques employed are symbol-Shape-coded.
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Figure 3.4. NIR band of an aspen subplot and tree apex locations identified by using

local maximum filtering with window sizes conditioned upon (a) computed variogram

ranges, and (b) mean slope break estimates.
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Figure 3.5. Observed vs. predicted canopy closure for plots in five forest cover types.

Canopy closure estimates were obtained from crown delineation based on crown apexes

identified on NIR-band imagery by using local maximum filtering (LMF) with window

sizes conditioned upon (a) computed variogram ranges, and (b) mean slope break

estimates. Cover types are color-coded while employed LMF techniques are symbol-

shape-coded.

161



 

 

   

E

la}

32’ c-
.9

D

E
9

O

C

m

d)

2

'0 m4

:3

8
5 Aspen

Northern Hardwoods

Oak

Red Pine

Natural Pine

v.

I Computed with Variogram Ranges

A Computed with Slope Breaks

- 1:1 Line    

- q

r

4 5 6 7 Observed Mean Crown Diameter (111)

 

Figure 3.6. Observed vs. predicted mean crown diameter for plots situated in five forest

cover types. Mean crown diameter estimates were obtained from crown delineation based

on crown apexes identified on NIR-band imagery by using local maximum filtering

(LMF) with window sizes conditioned upon (a) computed variogram ranges, and (b)

mean slope break estimates. Cover types are color-coded while employed LMF

techniques are symbol-shape-coded.
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Figure 3.7. Observed vs. predicted mean crown diameter for plots situated in five forest

cover types. Mean crown diameter estimates were calculated as the mean range of

variograms computed using the NIR band Digital Numbers for every subplot in a plot.

Cover types are color-coded.
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Figure 3.9. Percentage of classified pixels for various probability thresholds imposed on

cross-validation-based maximum likelihood classification scenarios of cover types prior

to and after imagery brightness normalization. Development of classification signatures

was based on pixels identified as tree crown apexes via Slope break-based imagery LMF

processing. Lines serve visualization purposes only.
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CHAPTER 4

AN INVESTIGATION OF THE UTILITY OF SECOND ORDER TEXTURE FEATURES

FOR FOREST COVER TYPE CLASSIFICATION USING HIGH-SPATIAL-

RESOLUTION AIRBORNE DIGITAL IMAGERY
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Abstract

Image texture seldom has been used inforestry optical remote sensing applications, in

part because ofthe complexity associated with its quantification and in part due to the

absence ofexamples that substantiate its usefulness. In this chapter, a procedure based

on image intensity co-occurrence is presented that provides with a quantitative

evaluation ofsecond order image texturefeatures that carry discriminatorypotentialfor

forest cover type classification purposes. Procedure development and evaluation is based

on two independent data sets andfive commonforest cover types present in the Midwest

region. Analysis results indicate that classification accuracies exceeding 60% can be

achieved by using only image texture information. In its current level ofdevelopment,

procedure applicability may be limited because ofsubstantial computational cost,

absence ofcomputer software that couldfacilitate its automation, and the complexity of

methodologies integral tofeature selection process.

4.1. Introduction

One of the better-known weaknesses of traditional remote sensing image

classifications approaches, including those discussed in Chapters 2 and 3, is their sole

reliance on the spectral response pattern at individual pixel locations (Chen, 1999). Many

other types of information could become available for classification purposes if the

methods for extracting that information from the imagery were not so fragmented and

poorly developed (Franklin et al., 2000). One of the promising alternatives to pixel-based

classification has been to consider classification of image data in a Spatial context

(Khazenie and Crawford, 1990). The latter translates into either using information on the
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Spatial variation of imagery tones independently or incorporating such information into

an existing, spectrally-based classification process. The premise in the second case is that

a pixel’s assignment to a class when viewed in isolation may change when viewed in

some context (Haralick and 100, 1986). Imagery derivatives that contain such contextual

information and describe spatial relationships between image entities are usually known

as textural features. Spectral and textural features are interdependent because, as pointed

out by Haralick et al. (1973), .. texture and tone have an inextricable relationship to one

another . . .”.

An operational definition Of image texture is challenging. It is generally regarded

as a quantification of the spatial variation in image tone values. A more precise definition

is complicated by the perceptual character of texture (Hay et al., 1996). Although

investigations in the field of machine vision have revealed that the use of texture

originates in the powerful, innate ability ofhumans to recognize textural differences, the

complex neural and psychological processes by which this is accomplished have, so far,

evaded detailed scientific explanation (Shapiro and Stockman, 2001).

Tone and texture are always present in an image, although one property can

dominate the other at times, depending on the smoothness or roughness of the objects

present, and on the image resolution relative to the surface roughness of each objects. If

tonal variation inside a limited spatial extent is relative small, spectral information will

dominate. Conversely, if tonal variation is large and presents meaningful structures, then

texture will be dominant (Haralick et al., 1973). In H-resolution imagery (Strahler et al.,

1986) depicting forested landscapes, the presence ofpixels with smaller size than the

image footprint of a single tree crown, together with the complex horizontal and vertical
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structure of stand canopies, usually generate substantial tonal variability. In such cases,

the analysis of texture might be well suited to detecting and quantifying canopy structure

and cover-type variation across the landscape. One activity that routinely utilizes texture

information is the interpretation of aerial photographs, which allows experienced

operators to identify changes in the spatial distribution of forest vegetation (Hay and

Niemann, 1994). With the increased availability of H-resolution digital imagery from

airborne (Anger, 1999) and satellite platforms (Barnsley, 1999), it is expected that digital

texture will become an important information source for many other forestry purposes

(Green, 2000).

Insight into how texture might be analyzed digitally has focused on the Structural

and statistical properties of textures (Haralick, 1986). Those (outlined briefly in the next

section) include first-order imagery statistics (e.g., standard deviation and variance),

second-order statistics, frequency domain Of Fourier power spectrum, Spatial

autocorrelation function (e.g., semivariance), and structural image features. In addition to

their value for classification applications (Lark, 1996; Ryherd and Woodcock, 1997),

structural and statistical texture properties of digital imagery have been used in forestry

as stand-pattem predictors (Coops and Culvenor, 2000), and for the qualitative

assessment of forest stand structure, age, density, and leaf area index (Cohen and Spies,

1992; Wulder et al., 1996, St-Onge and Cavayas, 1997; Franklin et al., 2001). A common

characteristic among the aforementioned texture-based forestry applications is that they

were developed using features defined a-priori. Because (as demonstrated below) most

texture measures include a substantial number of associated features, those best suited for

a particular investigation objective need to be identified using a systematic approach.
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Unless there exists theoretical proof or experimental evidence that a particular feature, or

set of features, is optimal for a particular application, limiting one’s analysis to a

selection of features found to perform well in other applications, or for that matter to

those supported by a particular software package, will only fortuitously augment the

chances for exploiting the full potential texture has to offer for that application (Conners

and Harlow, 1980).

The objective of this chapter is to evaluate the utility of second-order texture

features derived from Spatial co-occurrence matrices for forest cover type classification

of digital, high resolution imagery. More than 20 features were evaluated using

established feature selection strategies. Feature selection and classification accuracy

assessment was based on field observations within five forest cover types common in the

Midwest region.

4.2. Digital imagery texture measures

The main texture recognition measures can be categorized into four groups. The

first approach defines texture features that are derived from the Fourier power spectrum

of the image via frequency domain filtering. Because different textures demonstrate

different frequency patterns, it is reasonable to postulate that texture features are related

to the distribution of spatial frequency components. The second approach is based on

statistics that measure local properties that are thought to be related to texture, such as the

mean or standard deviation ofpixels values within a neighborhood. The third, and by far

the most common, approach used in forest remote sensing applications, is the use of the

joint gray level probability density (Haralick et al., 1973). The final approach is based on

modeling the image using assumptions (e.g. that the image being processed possesses
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fractal properties (Mandelbrot, 1982; Agterberg and Cheng, 1999)) or can be modeled

using multiplicative, autoregressive random fields (Frankot and Chellapa, 1987).

4.2.1. Co-occurrence-based texture measures

The widely used co-occurrence methods attempt to characterize the second-order

properties of an image. Co-occurrence can be regarded as the relative frequency, or joint

probability, Of image properties, occurring under predefined constraints. Pixel intensities,

usually expressed in Digital Numbers (DNS), intensity variance, or intensity gradient are

the image properties commonly used. These can be measured under such constraints as

pixel spacing, both in magnitude and orientation, or other higher-order neighborhood

definitions, for example windowing. Co-occurrence is typically represented in the form

of a matrix. Gray Level Co-occurrence Matrices (GLCM) (Haralick, 1973) represent the

probability of co-occurrence of image pixels intensities i andj, under the spatial

constraint ofd pixels separation between the pixels. Other forms of co-occurrence

measures included the Gray Level Run Length Matrix (Galloway, 1975), the Statistical

Feature Matrix (Wu and Chen, 1992), the Neighboring Gray Level Dependence Matrix

(Sun and Wee, 1983), and the Generalized Co-occurrence Matrix (Davis et al., 1979).

The GLCM of an Ng gray-level (i.e., Single band) image on a domain DCZ2

models the image as a 2D function I : D —> G, where G={1, ..., Ng}. The GLCM element

P(i,/' | d,6) is an estimate of the second-order joint probability density function of gray-

level pairs within the image. Each matrix element is an estimate of the probability that

two image pixels, separated by a displacement vector of magnitude d and orientation

angle 6, have intensities i andj, where i andj e G and
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#{k,leD|I(k)=i, 1(1):]; IIk-lll, 2(k—z)=0}
(4.1)

#{m,n eDl ||m-n ||=d, A(m-n)=l9}

 P(i,j|d,t9)=

where # is read as ‘number of(pixe1s)’, A is read as ‘angle between two pixel centers’,

H M denotes displacement vector magnitude or Euclidean distance between two pixel

centers, and k, I, m, and n are valid image pixel locations. Because of the discrete nature

of digital image intensities, P is, in fact, a discrete density rather than a continuous one.

Therefore, for any given 61 and 6’,

219031) | dfl) =1 (4.2)

I"!

and

Vi,jeG, 0.<.P(i,j|d,6)$1 (4.3)

AS an example, Figure 4.1a Shows a gray-scale (or level) image with a range of

intensities from 1 to 4 and, for Simplicity, the pixel-pair counts (the numerator of

equation (4.1)), rather than probability estimates. The upper left entry in the GLCM

computed for d=1 and 19:00 (Figure 4.1d), has a value of 2, which represents the number

of times a pixel with intensity equal to 1 has an immediate neighbor to the right with

intensity also equal to 1. Note that angular displacements are measured in a Cartesian, not

geographic, coordinate system and that the distance measures are usually expressed in

pixel increments in image row and column indices rather than true geometric quantities.

In the later case and for adjacent pixels with angular displacement of 450 or 135°, d=l is

used although the true distance separating them is actually J2 . This often necessitates

proper scaling Of the true distance between pixels to integer values, particularly when the

length of the displacement vector is determined by spatial investigations (e.g., variogram
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analysis). A comparison of Figures 4.1e and 4.1g shows that different 6 ’s can produce

markedly different GLCMS. Note also that GLCMS can be computed for multiple angles

or ranges of angles (Figure 4.1h, 4.11) and that simultaneous consideration of opposite

angles (6 and 6+7r) does not, in general, produce the same matrix, i.e.

P(i, j | d, 6) at P(j,i | d, 6). In the latter case, isometric matrices (Figure 4.1i) are Often

formed by averaging the matrices calculated for Opposite angles.

In addition to pixel displacement parameters 61 and 6 , co-occurrence texture

analysis procedures require the user to Specify the level of requantization the original

imagery has to undergo (3-bit, 4-bit, other), and, in the presence ofmultispectral imagery,

the band(s) whose texture is to be evaluated. Most contemporary sensors offer 8-bit or

higher radiometric (data) resolution, which is prohibitively fine for GLCM computations.

Indeed, if an original imagery resolution of 8-bit (Ng=28=256) were to be used, the

resulting GLCMS would contain Ng2 (=65,536) elements. A radiometric resolution of 16-

bit would necessitate a matrix with approximately 4.3"‘109 elements. In addition to

considerations related to computation load, such large matrix dimensionalities would

seriously compromise the ability to derive meaningful and class-discriminatory texture

features due to the large number of empty, or zero-value, matrix elements present

(Conners and Harlow, 1980). Image requantization to a lower data resolution, sometimes

known as image (radiometric) compression, can be performed either linearly or by using

histogram equalization (Conners and Harlow, 1978). Other available techniques are less

attractive because they require user intervention.
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4.2.2. Gray Level Co-occurrence Matrix features

Information is extracted from GLCMS via secondary feature functions.

Approximately 20 such features appear in the literature (Table 4.1) (Haralick et al., 1973;

Conners et al., 1984). These can be grouped into four main types: 1) measures of an

image’s statistical properties; 2) measures of an image’s visual characteristics; 3)

measures based on information theory; and 4) measures Of information based on

correlation. Many ofthese secondary features are derived by weighting each of the co-

occurrence matrix element values, and then summing these weighted values to form the

feature value. The weighting applied to each element is based on a feature weighting

function, so by varying this function, different texture information can be extracted from

the matrix. Table 4.1 lists the weighting functions as coefficients ofmatrix element

values P(i,i) in the equations used to compute matrix features. Matrix element weighting

functions fall into two main categories: 1) Weighting based on the element’s value, and

2) weighting based on the spatial position of the element. A graphical representation of

feature-Specific weighting functions is provided in Figure 4.2.

Because matrix features are secondary image derivatives, their interpretation is

occasionally somewhat less than intuitive. The value of feature inertia, often referred to

as contrast, for example, increases with the frequency of adjacent bright and dark pixels

and decreases when image intensity is strongly autocorrelated. Weighting is reversed in

the Inverse Distance Moment feature weighting scheme which produces higher values for

images that contain gradual DN changes. Feature energy, sometimes known as angular

second moment, will be larger 11 non-zero matrix elements are concentrated in one or a

few portions of the GLCM with a relatively large proportion of the total matrix being
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either zero or near zero. The presence ofpatches of uniform intensity in the image would,

therefore, produce larger energy values while images with a ‘salt and pepper’ appearance

yield low energy values. These latter images, however, would be rich in entropy. It

Should be noted that texture feature values are strongly dependent on the relationship

between pixel and Object sizes. An image depicting a corn field just prior to harvesting,

for example, would likely be of high entropy if acquired with 0.3m resolution, but of low

entropy if acquired with 1.0m Spatial resolution.

4.2.3. Image classification using GLCM features

It is evident from the discussion above that imagery classification using co-

occurrence-based approaches tends to generate large amounts of intermediate texture

information products. The analyst can Often be confronted with as many as 50 pixel

displacement vectors (d, 1% used in GLCM construction, 5 or more spectral bands, 6 or

more image band requantization and compression procedures, and more than 20 possible

features extracted from each co-occurrence matrix. Exploring all these analysis choices

would produce more than 10,000 variables, which would, most likely, overwhelm even

the most sophisticated classifier. In addition, such an expansive set of choices would

require a very large and expensive data set for classifier training. The term ‘classifier’

here is used to denote a rule, or set of rules, which assigns (or allocates) each unknown

pixles to one and only one by using information from one or more attributes (features).

Visual analysis of texture displays has been used to understand the way in which

class texture represents differences in the imagery (Franklin and Peddle, 1990) and thus

to reduce the number of processed texture variables. Obviously, this approach is of

limited utility in the presence of a large number of texture displays. The number of
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GLCMS assumed to be capable ofproducing texture features useful for class

discrimination can potentially be reduced via 1) investigations based on information

theory; adoption of multi- rather than single-angular pixel displacement vectors (Sun and

Wee, 1983), or 3) feature selection statistics to identify the optimal texture features for a

particular classification application.

GLCM ranking in terms of information content can be used to select the

displacement vector that has the potential Of maximizing the discriminatory power of the

derived texture features (i.e. texture features with similar values for objects of the same

class membership, but with different values for objects Of alternate classes). In that

regard, each co-occurrence matrix can be treated as a contingency table formulated by

two variables A and B, containing a and b classes respectively. If variables A and B are

interpreted as pixel intensities at either end of the displacement vector (d, 6), and the

classes into which they fall as the N . gray levels, then the correspondence between a

GLCM and a contingency table becomes clear. Texture information conveyed by co-

occurrence matrices, is related to the strength of the statement that can be made about

intensity level i given Observations about intensity levelj (and vice versa). If image

texture is highly structured and the co-occurrence matrix iS capable of capturing that

structure, then Observations i should bias the probability of observing variousj intensity

levels. If, on the other hand, structure is not captured, then Observations about i will not

influence the probabilities Ofj, and i andj Should be considered independent. Hence, the

amount of image structure, or texture, conveyed by a co-occurrence matrix depends on

the choice of i andj, and therefore iS a function of (d, 6).
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A quantitative measure Of this structure can be Obtained by hypothesizing that the

variables i andj in a co-occurrence matrix are independent, and then using a chi-square

goodness-Of-fit test to determine the degree to which this hypothesis can be rejected by

the image pixel intensities. In the presence of texture in an image, the statistic

 

re.
2 N N(xij_1jN)2

Z =:: ’r.c. (4'4)

i j I%

calculated for each GLCM computed from that image would follow a chi-square

distribution with (Np-1)2 degrees of freedom, provided that the sum of matrix element

values N is sufficiently large (Zucker and Terzopoulos, 1980). In equation (4.4), x

represents the pre-normalized (numerator of equation (4.1)) matrix element values and r

and c represent matrix row and column sums, respectively.

In images of forested landscapes, it is possible, although rare, that one or more

gray levels is absent, especially for images with a small number ofpixels, resulting in

matrices with one or more columns and rows composed exclusively of zero-value

elements. For such images, an adjustment of degrees of freedom for the ,1; statistic is

necessary, so that p-values associated with the image intensity independence test

mentioned above can be compared. Details on how such adjustment may be performed

are provided by Zucker and Terzopoulos (1980). More often, different displacement

vectors would result in a varying number of zero-value matrix elements. In the examples

of Figure 4.1d-g, although no zero-valued columns or rows exist, 8 or 9 elements do have

a zero value. In such circumstances, the influence of these elements on the ability to

identify structure via co-occurrence computations can be accounted for by a f-Statistic
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normalization known as Cramer’s V coefficient (Cramer, 1946). An illustration is

provided in Figure 4.3a, which depicts a lOOXIOO, 4-bit image with a regular (geometric)

texture, exhibiting a repeated 10x10 pixel pattern, sometimes known as a ‘texton’. For

this image, 20 GLCMS were computed using incremental pixel displacement distances

and, for simplicity, 00 angular displacement. Cramer’s V coefficients computed for these

20 matrices have an absolute maximum at d = 10 and local maxima at d = {5, 15, 20}

(Figure 4.3b), which indicates that the matrix information content quantified via the

statistic in equation (4.4) is capable of detecting texton Sizes and therefore can be useful

in identifying the proper pixel displacement vector for co-occurrence-based

investigations Of texture.

Even when there is confidence that the proper displacement vector was used in

co-occurrence matrix construction, the large number of features than can be extracted

from the matrix for use in the classification process can compromise the classification

accuracy achieved, were all features to be used by the classifier, unless a very large data

set is available for classifier training (Silverman, 1986). This is known as the Hughes

phenomenon (Hughes, 1968; Shahshahani and Landgrebe, 1994) or sometimes also

referred to as the ‘curse of [feature] dimensionality’ (Bellman, 1961). The Hughes

phenomenon can be Shown by a simple example: Let X denote a two-dimensional,

normally distributed vector and let the two-dimensional measurement vector x, where x =

[x 1, x_2] represent 100 realizations of random variable X. The histogram of the first variate

x1 = [Xu, , xmoof, representing the extraction of one feature, is shown in Figure 4.4a.

Note that the expected frequency for each of the 10 histogram bins is on the average 10

(=100/10), and that the histogram shape is an adequate approximation of the true
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underlying distribution from which the realizations were extracted. The second variate x;

= [Xu, , xz,]00]T, represents the extraction of a second feature. It is now necessary to

estimate the new two-dimensional histogram containing 100 bins, with only the original

number of (now 2-D) data points. The second histogram, shown in Figure 4.4b, contains

many empty bins and all other bins have very low counts. On average, there is only

100/100 = 1 measure per bin. Therefore, the more features extracted, the more inaccurate

the estimate of the underlying multivariate distribution becomes.

For classification purposes, where an unknown texture is to be allocated to one of

several classes, it is important to accurately estimate the underlying class-conditioned

feature distributions. While it would be desirable to extract only a minimal number of

‘useful’ secondary features (i.e. those whose class-conditional distributions exhibit

statistical differences between classes), it is usually not known a priori which features

will be useful. It is common practice to use all of the secondary features and subsequently

reduce the resulting high-dimensional feature space using discriminant analysis and

feature selection techniques. Such practice allows a more accurate estimation of the true

distribution of features for each class based on the limited training data available.

Reducing feature set dimensionality usually involves removing those features that

provide little or no extra information to distinguish between texture classes either because

they are correlated to other features or because their discriminatory power is very low.

However, an increase in the number of features that need to be evaluated as candidates to

participate in a classifier, results in an exponential increase in the number ofpossible

feature combinations to be evaluated in the process. In the presence of 20 features, the

number of possible combinations exceeds 1 million! Even if the Optimal feature subset
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dimensionality for classifier development is known a priori, say 4, there would still be

4,845 [= 20!/((20!-4!)4!] feature combinations to be evaluated.

While the performance of a classifier is best evaluated by computing its

classification error rates (McLahlan, 1976; Habbema and Herrnans, 1977), computational

considerations necessitate alternative strategies. One such alternative is to use class-

separability measures to estimate classification error rates. These measures attempt to

assign a figure-of-merit to a feature, based on how ‘dissimilar’ the class-conditioned

distributions of the feature are. One measure of dissimilarity is the amount of overlap

between the class-conditioned distributions, with less overlap meaning more

dissimilarity. Other measures quantify the separation between the distributions,

normalized by the variance of each distribution. The second category Ofmeasures operate

on the assumption that the greater the distance between class-conditional density

functions, the less is the overlap among the density functions in feature space, and the

smaller the probability Of classification error becomes. Many probabilistic distance

measures have been defined in the literature including the Mahalanobis (1936),

Bhattasharyya (1943), Chemoff (1952), and Matusita (1956). Their use allows searching

for an optimal subset of features from a pool ofpossible candidate features that are

believed to maximize the discriminatory power of the feature set. Various strategies have

been suggested for restricting the search to a smaller number of ‘good’ feature subsets.

The three most popular are ‘forward selection’, ‘backward elimination’, and ‘stepwise

selection’. Details on their structure and implementation can be found in Kittler (1986).

Although these procedures reduce the computation load Significantly and provide viable

feature selection schemes, they may not identify the globally optimum subset that would
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be ‘uncovered’ by an ‘all-subsets’ search. Detection ofthe global optimum subset is

guaranteed, albeit computationally costly to implement, by a procedure known as the

branch-and-bound algorithm (Yu and Yuan, 1993).

The identification of the Optimal feature subset is followed by the development of

the classifier, which is used to assign previously unseen objects or observations to a class

using the selected features. Most classifiers, including the popular linear and quadratic

discriminant functions, are parametric mathematical rules with Bayesian structure. As

such, they assume that the class-conditioned feature data are multi-variate normal.

Quadratic discriminant functions are more sensitive than linear functions to departures

from multi-variate Gaussian distributions in high-dimensional feature Spaces

(Lachenbruch, 1975; Seber, 1984). However, it is known that quadratic discriminant

functions are robust against minor departures from normality (McLachlan, 1992). Also,

because they are capable of exploring inequalities in the class-conditioned covariance

matrices (linear functions assume equal covariance matrices among classes), they can

improve the definition of decision boundaries compared to linear discriminant functions,

thus leading to the possibility of lower classification error. Figure 4.5 presents an

illustration of decision boundaries obtained by linear and quadratic discriminant functions

fit in a two-class data set using two features.

4.3. Methods

4.3.1. Study Site Characteristics and Imagery Description

The study area comprises two Sites, the one in the south-central part of Grand

Traverse County (Site I) and the other in the northern part of Wexford County (Site 11),

Michigan (Figure 2.1). Note that figures in this dissertation Ofi‘en contain color. The sites
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are separated by about 10km in the northwest-southeast direction and extend over 8,805

and 12,626 hectares of land, respectively. More than half (56%) of the study area is

owned and managed by the Michigan Department OfNatural Resource. Most of the study

area consists of forests and wetlands (82%), while agricultural use, mainly row crops,

represents 8%. Other land use classes include orchards (4%) and residential areas (4%).

Residential development is concentrated in the northwestern part of Site I. Geomorphic

features include moraines and outwash. The average Slope, calculated by using the finite

differences algorithm on a 10m, 1:24,000 USGS Digital Elevation Model available for

the area is 3.5% and 2.7% for Sites I and II respectively. Relief is more prominent along

the Manistee River, which crosses Site II from northeast to southwest.

The study area is characterized by pronounced Spatial heterogeneity Of forest

cover types. The majority of the forest cover types extant in the northern Lower

Peninsula Of Michigan are present in the forested part of the study sites. These include: 1.

Aspen, consisting of Big Tooth (Populus grandidentata) and Quaking (Populus

tremuloides) aspen; 2. Northern hardwoods, consisting primarily of Sugar Maple (Acer

saccharum), Red Maple (Acer rubrum), American Beech (Fagus americana), Black

Cherry (Prunus serotina), Basswood (Tilia americana) and White Ash (Fraxinus

americana); 3. Oak, consisting of White (Quercus alba) and Red (Quercus rubra) oak; 4.

Natural Pine, mainly White Pine (Pinus strobus); 5. Pine plantations consisting primarily

of Red Pine (Pinus resinosa); and 6. Cedar swamps dominated by Northern White Cedar

(Thuja occidentalis). The main forest management objectives of the MDNR include

timber production, enhancement of wildlife habitat, recreation, preservation of aspen, and

182



riparian best management practices. Several private land owners offer a network of tracts

used seasonally for horseback riding and snowmobiling.

The imagery data set used in this study was acquired on August 11, 1999, using

the Digital Airborne Imaging System (DAIS [Space Imaging, 1999]). It contains four

bands, three in the visible and one near infrared that were acquired by frame (digital

array) cameras equipped with appropriate band-Specific filters in a 2x2 arrangement.

Appendix 1 contains detailed information on the technical specifications of the system

(Table A. 1), flight line orientation, and the spatial arrangement of frames in each study

Site (Figure A.l).

4.3.2. Field Measurements

Two sets of field measurements were obtained. In the first set a total of 34 plots,

16 in site I and 18 in Site II, were installed in the study area stratified across the major

forest cover types present with the exception of cedar swamps that were excluded due to

accessibility issues. Plots were allocated on level land, within homogeneous stands, and

away from cover type ecotone zones. Stand homogeneity was evaluated with field

inspections. A minimum 60% canopy closure threshold was imposed by the MDNR as a

selection criterion. All plots were situated within the inner quarter area of the associated

image frame, resulting in plot-center view angles less than 10°. Field measurements were

obtained in the summer of 2,000, exactly a year after the acquisition of imagery,

following the PIA/FHM field protocols (Appendix 1, Figure A.2). Subsequent to their

allocation, plot and subplot centers and subplot boundaries were precisely georefenced to

image coordinate systems using field survey techniques. All Spatial data were organized
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as geographic information system (GIS) layers translated into the image coordinate

system. Details on the methodologies employed are available in Chapter 2.

The second set Of field observations was independent of the first and contained

cover type and canopy closure data obtained by visual inspections for a total of 112

point-locations (60 in Site I and 52 in Site II), with no more than one location in a given

forest stand, and no locations in stands with a plot from set one. Twenty two locations

were in Aspen, 26 in Northern Hardwoods, 19 in Oak, 24 in Red Pine Plantations, and 21

in Natural Pine. AS in the first set, all point locations were Situated away from cover type

ecotone zones and in homogeneous stands with canopy closure exceeding 60%.

Locations were georeferenced using differential Global Positioning System technology.

Their geographic coordinates were translated to image coordinates via manual image

frame georeferencing using leaf-on and leaf-Off, 1:12,000 scale Digital Ortho

Quadrangles (DOQS) available for the study area (Michigan Department ofNatural

Resources, 2001) and nearest neighbor pixel interpolation.

4.3.3. Image Pre-processing

Image frame regions composed of pixels whose center was within a subplot’s

boundary were extracted from the frame and compressed to 4-bit data resolution using

equation (4.5),

, DN(x, y) — DNmin

V(x,y), I (x,y) = floor{ DN _ DN —15.999} +1 (4.5)
 

where the coordinate pair (x, y) is a valid image region pixel, I ‘(x, y) is the requantised

(or compressed) value of the DN of the pixel at (x,y), and the function floor() reduces a

real-valued quantity to the largest integer lower than the function’s argument. The
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addition Of 1 results in a requantised intensity range of I ’(x, y) e {1,...,l6 } and allows

intensity level ‘0’ to indicate background pixels not to be processed. Linear

requantisation was also used to compress circular, 30-pixe1—diameter image regions

centered on each ofthe 112 locations mentioned. Note that during image requantisation,

any brightness discrepancies among frames or frame regions known to affect spectrally-

based image analyses (Chapters 2 and 3) are eliminated, provided that any brightness

variability originates from linear changes in sensor sensitivity or gain during image

acquisition. Comparison of requantized imagery region histograms prior to and after

correcting for brightness variations among frames revealed no differences.

A popular alternative to linear quantization, known as histogram equalization, was

not considered here, because it produces a flat histogram. Maintaining histogram shape

(guaranteed when using linear requantization), is important, because it ensures that the

second-order probability statistics that are used subsequently in this study, and which are

constrained by first-order probabilities, are not modified.

4.3.4. Band selection, co-occurrence matrix development, and texture

feature selection

The large number Of possible combinations of pixel displacement vectors than can

be used in the construction of co-occurrence matrices and of the features that can

subsequently be computed from these matrices, increases further in the presence of

multispectal imagery. This necessitates an early evaluation of the potential each of the

three factors (number Of bands, texture features, and displacement vectors) possesses in

supporting cover type classification endeavors. In this research, such an evaluation was

performed using imagery texture information at the l 12 locations with known forest
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cover type. The same information was subsequently used for training a classifier

operating on the derived texture features. The accuracy of the resulting classification

procedure was estimated using information from the 134 subplots installed in the study

area.

Early investigations, including visual and quantitative (Cramer’s V) texture

evaluations, revealed that the Spectral collinearity known to exist among bands in the

visible portion of the spectrum is also evident in the GLCMS computed from them. Paired

T-tests of texture feature values obtained from matrices generated using various

displacement vectors Showed no significant differences among visible bands. Texture

feature value differences between the visible bands and the NIR band were Significant at

Ot=0.05 for approximately 1/3rd of the features tested. On this basis two of the visible

bands (blue and red) were eliminated from further consideration.

Based on findings from experimentation with various Single-direction

displacement vectors, it was decided to proceed with multiple direction vectors of the

form (d, {135+zr, 0, 45, 90}) shown in Figure 4.1h. Although there are obvious

differences in the structure ofGLCMS computed using the same d, but different 6for

small images or frame portions (Figure 4.1), these differences practically disappear in

images depicting forested landscapes containing more than 300-350 pixels and they were

found to persist among different d’s. Matrix information content was evaluated by

computing corresponding Cramer’S V coefficients for all 6 6 [1,10]. Texture feature

evaluation was restricted to matrices that maximized information content.

A series of Hawkins (1981) tests performed using various combinations of texture

features derived from the matrices that exhibited the highest information content showed
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that, in general, the distribution function for each of these combinations could be

considered multivariate normal. AS a result, no feature value transformations towards

normality were attempted. The Optimal feature subset for cover type classification based

on imagery co-occurrence derivatives was identified using the branch-and—bound

algorithm by Yu and Yuan (1993). The algorithm was implemented using the

Bhattacharyya metric to quantify distance between class-conditional densities. This

metric was selected because of its ability to provide robust estimates when the feature

distribution is Gaussian, or near-Gaussian, form. The metric is of non—parametric form

and is computed as (Bhattacharyya, 1943)

 

D8 = -log Ila/Rx la)l )...(p(x lwc )dx (4.6)

where x = [x1, ..., xNU] represents a set OfNU candidate feature vectors, p(x|a)1) is the

class-conditional probability density of x for class at, and c is the number of classes

present. When the class-conditional distributions of the features are known and of

Gaussian form, equation (6) can be expressed for two classes as

1
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where ,u,- and 2,- are the mean vector and covariance matrix of x for class i, and IEI

represents the determinant of 2. In the presence of more than two classes (5 in this

research), the metric value is estimated as the average of all pair-wise combinations.

Following identification of the Optimal feature Space, the classification rule based on a

quadratic discriminant function was developed. The decision boundaries imposed onto

the feature Space generated 5 multidimentional regions. Using the texture feature set
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identified in the previous step, each of the 134 subplots was then assigned to the cover

type class k that maximized the quantity
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and 1 denotes any of the remaining c-l classes. Note that equation (8) assumed that

misclassification cost and prior probabilities were equal among classes. Classification

accuracy estimates were derived from confusion matrices and associated indicators

(percent Of subplots correctly classified and kappa coefficients) (Congalton, 1991). Image

compression, GLCM computations, feature extraction and Optimal subset identification,

and classifier training and testing were all implemented using scripts developed in C

programming language, interfaced with Splus (Mathsofi, 2000) and Matlab (MathWorks,

1999) sofiware in a Unix operating system.

4.4. Results and Discussion

AS demonstrated already in Figure 4.3, co-occurrence matrices are capable of

identifying the size of textons or patterns in digital images characterized by a regular

texton arrangement. Assuming that the crowns of dominant and co-dominant trees in

forested landscapes could be perceived as scene textons, it could be expected that co-

occurrence matrices would capture scene texture characteristics and yield higher

information content estimates when computed for pixel displacement vectors

approximating in magnitude the Size of tree crowns present. Contrary to expectations
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though, analysis results indicated that, in imagery covering forested land, as the

magnitude ofpixel displacement distance increases, the information content of the

resulting GLCMS, as quantified by Cramer’s V statistic, decreases sharply for d > 1

(Figure 4.6), and fluctuates very little thereafter, even in stands where tree arrangement is

regular (e.g. red pine plantations). Matrix elements with higher values were generally

concentrated along the main matrix diagonal for d = 1, but formed a roughly circular

cluster for larger distances. Figure 4.6 Shows that d = 1 produces GLCMS with four times

the information content Of those produced with d > 1.

This somewhat unexpected finding prompted an investigation that involved

construction of artificial surfaces in which either 1) a texton of set Size was repeated

randomly at varying spacing or 2) a texton of variable Size was repeated at a set distance.

Both cases produced GLCMS with information content patterns similar to those in Figure

4.6. As a result, it was concluded that the absence Of strict regularity in tree-crown

arrangement in forest stands causes a reduction in the ability ofGLCMS produced using

d .>_ 2 to capture textural differences pertinent to stand structure conditions and cover type

affiliation. Note that this result should not be perceived as contradicting earlier research

findings (e.g., Franklin et al., 2000) which concluded that quantified imagery reflectance

autocorrelation iS useful in texture-based investigations. Those studies focused on the

mean value and variance of image intensity which are first-order imagery properties

while co-occurrence features explored here are second-order image properties.

The ability of multispectral, Optical imagery to contribute in co-occurrence-based

forest cover type classification endeavors can be seriously affected by the analysts’

choices in the imagery requantisation process. When linear compression is employed
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during imagery pre-processing, the presence of exposed soil in canopy openings or other

spectrally bright targets within the forest stand, and the skewed-to-the-right intensity

histograms they produce for the visible bands, confine vegetation related pixel intensity

values i andj along the upper left 1/16‘h (i,j S 4) of co-occurrence matrices computed for

those stands. Under such circumstances, there is practically no variability in the structure

of the matrices and texture features derived regardless of the cover type. Masking ofnon-

vegetative scene components via Normalized Difference Vegetation Index (NDVI) or

other band ratioing techniques prior to linear compression Should be considered a

necessary step in stands with medium or low canopy closure conditions or where

presence of illuminated non-vegetation objects is suspected. Because the symmetry of

NIR band intensity histogram is affected very little by reflectance regimes in and around

canopy openings, co-occurrence matrices computed for that band are free from

systematic bias in the distribution of intensity values present in them, thus rendering band

pre-processing with NDVI filters redundant.

By observing the typical GLCMS computed for each cover type using pixel

displacement distance d = l and multidirectional angular displacement (Figure 4.7), it

appears that co-occurrence matrices can indeed be useful cover type discriminators, at

least for the five types investigated. Visual matrix structure comparisons indicated that

there might be some confusion between oak and red pine plantations, although the former

exhibited a stronger intensity value concentration along the matrix diagonal. Northern

hardwoods and natural pine stands Showed higher probabilities for certain combinations

of high (>12) intensity values, but for the latter cover type the percentage of darker tones

was higher. This is probably due to the more extensive Shadowing between adjacent
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crowns. Aspen Showed a concentration of matrix element values around mean intensity

levels, characteristic of smooth canopies. However, the assessment of matrix structure

separability among cover types must be substantiated in a quantitative form, such as the

one Offered by matrix-extracted feature values.

The brand-and-bound algorithm identified 4 features (energy, entropy, inertia, and

homogeneity), all pertaining to the NIR band, as comprising the feature subset that

provided the highest discrimination of cover type. When forced to identify only two

features, the algorithm selected energy and inertia. When it was set to identify the three

best features, it selected energy, inertia, and entropy. However, both of those smaller sets

yielded a higher value for the mean Bhattacharyya metric, indicating that they are sub-

optimal to the 4-feature set. Enforced feature set expansion resulted in the selection of

shade and then second diagonal moment, both for the NIR band. It required a feature

dimensionality of 8 for a green band feature to be included (as last) in the set. When NIR

energy, entropy, inertia, and homogeneity were excluded, green energy was included as

the 3rd feature, in a 3-dimensional feature set, behind NIR Shade and NIR second diagonal

moment. It is evident, therefore, that texture features computed using visible band

imagery are inferior, in terms of cover type discriminatory power, compared to features

computed using the NIR band. An important consideration here is that it might be

inappropriate to label the discriminatory power of a feature as higher than that of another

feature Simply because it is present in a 5-feature optimal subset while the other feature is

not. This is especially true when other features generated with the same type of value

weighting mechanism are already included in the optimal subset. This is because co-

occurrence matrix features are not orthogonal, and therefore feature correlation can
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influence the membership of an optimal feature subset. In addition, relative to the number

of features and classes considered, the small sample Size may promote feature selection

instability. The 112 Observations used for feature selection are probably not a large

sample, especially when 5 classes and 42 features (21 each for the NIR and green bands)

participated in processes. However, the selection results obtained using many smaller

feature sets indicated that the algorithm would have identified the same four optimal

features even if a much large number of observations were available.

Two-dimensional representations of feature space depicting texture feature values

and cover type class affiliation for each of the 112 observed locations (Figure 4.8)

Showed good seperability between most of the class pairs, when the appropriate feature

pair combination was selected. The energy-inertia space for example, allowed

discrimination between natural pine and red pine plantations, while the inertia-

homogeneity space separated oak from most other classes. Oak and NH were better

separated in entropy-inertia space, however, and a distinction between coniferous and

deciduous cover types was better achieved using the energy-homogeneity space (Figure

4.8). Although impossible to visualize, class separability can be extended to four

dimensional feature Space. The only cover type that the identified features failed to

discriminate effectively was aspen, which showed substantial and consistent overlap with

all other cover types and particularly with oak in all two—dimensional feature space

combinations. For the entropy-inertia Space, aspen was present in all class regions

identified by the quadratic discriminant function-based classifier (Figure 4.8). This

finding is somewhat surprising considering that visual depictions of aspen co-occurrence

matrices had revealed patterns in intensity arrangement that differed from those observed
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for the other cover types. Apparently, the texture features derived from the matrices were

not very effective in quantifying those differences. A possible explanation is that the

absence of orthogonallity between texture features affects their discriminatory power for

cover types whose GLCM exhibits a concentration of pixel intensity values at or around

their center. This limitation can be potentially overcome by comparing class GLCMS

directly for classification purposes, that is without using the extracted features.

Preliminary investigations in that direction have yielded promising results.

The feature value arrangement shown in Figure 4.8 justified the use of the

quadratic instead Of the linear discriminant function, because it became apparent that

class probability density functions, assumed by the linear function to be equal among

classes, were markedly different. However, the use of the quadratic function sometimes

generated ‘strange-looking’ feature space regions with instances of discontinuity. In the

entropy-inertia Space for example (Figure 4.8), the oak region had two disconnected

components, one centered on coordinate location (inertia, entropy) = [8.5, 2.05] and the

other around [5.0, 2.15]. In the entropy-homogeneity Space, the oak region practically

Split the aspen region. In all two-dimensional feature space combinations (Figure 4.8), the

means of aspen and oak were in close proximity. Aspen exhibited much higher feature

value variability. The oak feature regions were approximately centered on the position

occupied by the means, while the feature regions for aspen were ‘pushed’ away from the

means.

Observations made in regard to class separability using the training data set were

found to hold for classification rule testing using the 132 subplot data. The overall

classification accuracy achieved was 65% with a kappa coefficient of 0.56, significant at
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Ot=0.01(Table 4.2). Only small discrepancies were observed between producer’s and

consumer’s accuracies Obtained for northern hardwoods, red pine plantations, and natural

pine, but they varied substantially for aspen and oak. Only 2 out of 12 subplots were

erroneously assigned to aspen (83% consumer’s accuracy), but 18 aspen subplots were

misclassified to other cover types (36% producer’s accuracy). Consumer’s accuracy was

lowest for oak (50%), with 16 erroneously committed subplots. This classifier behavior

was attributed to the positioning of oak feature values in the center of the four-

dimensional feature space, where the tails of the northern hardwoods, red pine plantation

and natural pine density distribution functions met. Small departures in oak feature values

from the class mean resulted in class members being assigned to those other classes. The

aspen feature Space portion, being ‘pushed’ away from the feature Space center, only

minimally overlapped with the other classes, thus resulting in high consumer’s accuracy.

Substantial confusion rates were also observed between red pine plantations and natural

pine, with 7 subplots of the former misclassified as the latter. It should be noted that these

7 subplots belonged to just 2 plots, a pattern also observed between northern hardwoods

and aspen. Such a concentration of misclassification instances to particular plots

indicated their smaller variability in texture, as opposed to Spectral (Chapter 3),

characteristics within these plots. The overall classification accuracy Obtained via linear

discriminant function-based classification yielded a kappa coefficient equal to 0.49, thus

indicating that the flexibility of quadratic decision boundaries to adapt to class-

conditioned feature densities rendered them superior to their linear counterparts.

A comparison between texture classification results to those obtained using

spectrally-based methods is shown in Table 4.3. Texture-based classification was
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statistically superior at 01:00] to spectral classification methods that used all pixels

(Chapter 2). It was not statistically different at 01:0.10 to Spectral classification that used

only pixels identified as tree apexes on original DN imagery, and it was found to be

inferior at 01:00] to classification methods that used only pixels identified as tree apexes

on imagery corrected for brightness variations. Texture-based classification errors

involving a particular cover type were found to be spatially correlated and often included

all subplots in a plot, while errors of spectral classification were generally spatially

random. It is likely that a hierarchical classification approach Operating on both textural

and spectral data might be capable of substantially increased classification accuracy

compared to either classification method used independently. The ability of co-

occurrence-based texture features to enhance cover type discrimination might be limited

for stands characterized by smooth canopy surface.

Because image texture features operate in a spatial domain, their derivation

necessitates images on which homogeneous textural regions are delineated. Such regions

can Often be Obtained by overlaying imagery with digital versions of existing stand maps.

In practice though, stand boundaries sometimes represent management units rather than

homogeneous stands, or they encompass variable structural and texrural stand attributes,

especially for uneven aged stands, or they are outdated. In the absence of reliable stand

boundary information, texturally homogeneous regions can be identified with visual

imagery inspection. Investigations in the study area revealed that 300-350 contiguous

pixels of approximately 0.9m (.2. 3ft) that were representative Of the textural stand

structure suffice for a robust estimate of the stand texture features. AS always, the analyst

Should exercise caution and avoid regions in which vegetation ecotones are suspected.
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The accuracy of forest cover type classification via co-occurrence analysis of

pixel intensity using imagery from the satellite platforms currently available may fall

short of the accuracy obtained using multispectral airborne imagery, primarily because

satellite platforms offer H-resolution imagery only for panchromatic bands. As indicated

by the findings in this research, GLCMS computed using visible bands vary very little,

thus compromising the ability of co-occurrence analysis to discriminate cover types

effectively. Observations of forested landscapes in northern Michigan using 0.82m

panchromatic IKONOS imagery has, however, demonstrated clearly identifiable texture

differences among cover types, suggesting that alternative texture quantification

techniques may be better suited to cover type classification efforts.

GLCM computations are efficient even for multidirectional pixel displacements.

Currently available computer processors limit the time required to compute the matrix of

a 20-hectare forest stand image with 1m pixels to a few ( < 10) seconds, while texture

feature extraction is practically instantaneous. Texture-feature-based classifier training

and testing is also expeditious. Optimal texture feature set identification, however, is a

computationally intensive process, even for optimized search algorithms. Implementation

of analytical texture-based approaches for forest classification is further complicated by

the absence of software packages supporting the series of steps required by the process.

Under such circumstances, information on features that possess discriminatory power for

texture-based investigations, or at least on an approximate optimal feature space

dimensionality, is important for operational methodology implementation.

Findings of the analysis presented in this chapter can provide a basis for the

initiation of texture-based cover type classification efforts. In the presence of mature,

196



high canopy closure stands, a single pixel displacement vector length and an angular

range of 1800 (half a circle) are likely among the best choices for GLCM construction.

NIR bands available in multispectral imagery should be given priority over visible bands.

Results suggest that the Optimal co-occurrence matrix feature subset would usually

include at least one feature produced with element value weighting and one feature with

positional weighting, and that the energy, entropy, inertia, and homogeneity features are

likely to be optimal subset members.

It is important to remember that the formulation of this analysis strategy was

based on incremental optimization. In that regard, the displacement vector used for

GLCM construction was selected on the basis of matrix information content, and feature

selection was based only on GLCMS that maximized information content and used a

single distance metric among class-conditioned feature densities. Although those

decisions are warranted by the need to reduce analysis extent to manageable levels, it is

possible that the results Obtained only constitute a local maximum in the domain Of

classification accuracy, and that other combinations of intermediate analysis choices

could Offer an improvement. On-going efforts aiming at procedure automation would

allow a more detailed investigation on the ability of image texture to support stand-level

forest cover type and structure classification.

4.5. Conclusion

Investigations on the utility of image texture for forest classification purposes

have been Sporadic and likely not well understood by the forestry community primarily

due to the complexity associated with the quantification of texture. Classification

accuracies obtained in those investigations have generally been tOO low to be useful and
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were found to exhibit Significant variability among geographic regions and stand

structures.

This research explored one dimension of image texture depicting forested

landscapes based on pixel intensity co-occurrence. Instead of relying on a priori selected

sets of texture features derived from co-occurrence matrices, which is the usual practice,

this study investigated all alternatives present in a sequence of steps used to compute

feature values. The results indicated that understanding the influence that intermediate

analysis choices have on the value of computed texture features can yield substantial

improvements in the resulting classification accuracy. In addition, because co—occurrence

texture features are derived using band-Specific information, they are independent of

distortions generated by band registration problems and brightness variability among

frames (defects often present in H-resolution imagery). Potential limitations in using co-

occurrence-based features for image classification occur 1) in the presence of stands with

smooth canopies; 2) from the need for pre-existing, positionally accurate stand

delineations; and 3) from the complexity associated with the procedures used to identify

the optimal co-occurrcnce feature subset.

Outcomes of this research also indicate that texture-based classification is capable

of detecting stand cover type differences missed by spectrally-based classification, given

that the two techniques result is different spatial distributions of misclassifications.

Identifying the causal factors that result in those misclassification differences should

allow composite classification strategies that could substantially improve classification

accuracies achieved by each technique independently.
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To date, texture information in forestry applications of optical remote sensing

applications has been regarded as only complimentary to that Obtained via spectral

analysis. The low appreciation fbr texture-based analyses might be due to the limited

utility that texture-based past studies had revealed for forestry applications using coarse

resolution imagery. Findings in this research indicated that the texture information

content of digital, H-resolution imagery has the potential for Significant contributions in

support of forestry applications.
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Tables

Table 4.1. Commonly-used Gray Level Co-occurrence Matrix features.

 

 

 

Features Equations
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Table 4.2. Forest cover type classification results and associated accuracy assessment

parameters obtained by using a quadratic discriminant function-based classifier operating

on four imagery texture feature (energy, entropy, inertia, and homogeneity) derived from

Gray Level CO-occurrence matrices and trained with independent data (112 observations).

 

 

 

 

     
 

 

 

    
 

 

 

    

Observed

ASP NH Oak RPP NP Row Total

Aspen (ASP) 10 1 1 0 0 12

“.13 Northern Hardwoods (NH) 6 22 3 0 29

E Oak 6 5 16 3 2 34

'8 Red Pine Plantation (RPP) 2 0 1 21 7 31

Natural Pine (NP) 4 0 3 4 19 30

Column Total 28 28 24 28 28 136

Accuracy (%) Errors (%)

Producer’s Consumer’s Commission Omission

ASP 35.71 83.33 64.29 7.14

NH 78.57 70.97 21.43 32.14

Oak 66.67 50.00 33.33 66.67

RPP 75.00 67.74 25.00 35.71

NP 67.86 63.33 32. 14 39.29

Class Conditional Kappa

ASP 0.7901 Overall Accuracy (%) 0.6471

NH 0.6344 Kappa Coefficient 0.5594

Oak 0.3929 52.. 0.0017

RPP 0.5938 2.. 13.6023‘

NP 0.5383 " Significant at ct = 0.01  
Table 4.3. Statistical comparison of texture-based forest cover type classification

accuracy estimates with results obtained by using various spectrally-based, maximum

likelihood classification schemes. Z-statistics correspond to standardized differences of

corresponding kappa coefficient values.

 

 

 

   

Texture Classification

A(k.cx-ksp,c) Z-statistic (p-value)
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Figure 4.1. (a) A hypothetical 2-bit (4 gray levels) 5x5 image with, (b) Corresponding

general (pre-normalized) GLCM form with gray levels 1-4. (c) Between-pixel angles

used in the computation of GLCM, (d)-(i), GLCM structure for distance of 1 pixel and

choices of angular displacements.
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Figure 4.2. Pictorial representation of two classes of GLCM weighting functions:

Weighting dependent on matrix element value (entropy and energy features), and

 

 

  
weighting dependent on an element’s spatial position (remaining features). Darker shades

indicate larger element weighting.
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Figure 4.5. Decision boundaries for a two-class data set produced by a linear (a) and

quadratic (b) discriminant function developed using two object features. Object class is

color-coded.
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Figure 4.7. NIR-band Normalized Gray Level Co-occurrence Matrices produced for

five subplot, each situated in one of the forest cover types present in the study area, using

d=1 and 0= {135+7r, 0, 45, 90}.
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Figure 4.8. Forest cover type classification rules developed via quadratic discriminant

functions for texture feature pairs derived from NIR-band Gray Level Co-occurrence

Matrices calculated using [d = 1, 6 = {135+7r, O, 45, 90}] pixel displacement vectors.
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CHAPTER 5

SUMMARY
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5.1. A Critique of Analysis Methods

It is evident from the presentations in the previous chapters that the analysis of

digital, airborne, high-resolution, imagery is an effort intensive process. This is because

of the small footprint of such imagery, the frequent occurrence of geometric and

radiometric imagery imperfections, and the absence of software packages that provide a

complete suite of analytic capabilities needed. If the still substantial cost associated with

imagery acquisition is also considered, it should not come as a surprise that examples of

forestry applications using this type of remotely sensed data are rare. As shown in this

dissertation, however, digital high-resolution imagery is a technology that can provide

forest canopy attribute information with the accuracy required for forest management

decision-making at the operational level. At the same time, this technology is compatible

with classic uses of imagery in forestry, including cover type classification, and the

potential was demonstrated to extend classification endeavors to the individual tree level.

It could be argued that the band registration problems present in the imagery were

an isolated case originating from an unstable camera mounting and that, as imagery

vendors accumulate experience, such problems will diminish. Unfortunately, this

statement is probably only half-true. Personal communications with digital array camera

manufacturers and users of digital airborne imagery revealed that band registration

problems, although usually less pronounced than those found in the imagery used in this

research, persist even after diligent camera mounting on the body of the aircrafi. This is,

in part, because the array detectors are aligned on a surface that is only approximately

planar and, in part, because the orientation of the focal plane in relation to the body of the

camera differs even among cameras of the same make and sequential serial numbers.
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Precise alignment is possible, albeit very costly, for detector arrays mounted permanently

on the same device, but practically unattainable for digital arrays belonging to individual

cameras, such as those used for acquiring multispectral imagery from airborne platforms.

Therefore, the need for misregistration detection and correction procedures, such as those

developed in this study, would likely become a standard imagery pre-processing step.

Brightness variations among image frames should also be expected in airborne

digital imagery for the foreseeable future. As mentioned in Chapter 1, cameras currently

used for the acquisition of airborne imagery adjust the sensor’s gain factor for each

frame. Researchers investigating the sudden oak death problem in California acquired

imagery using the Advanced Digital Airborne Spectrometer (ADAR) system, which has

technical characteristics virtually identical to those of the DAIS system. They discovered

that the gain factor quantification was accurate, but not precise. By employing targets of

known reflectance in the study area, they found that their brightness-corrected imagery

contained a near-infrared Digital Number (DN) RMSE of 6 for 8-bit NIR imagery. This

corresponds to more than 2% of the theoretical DN range. Assuming that the gain factor

quantification error is comparable between the two systems, the mean brightness

variability among DAIS frames could exceed 1,500 DNs even after an adjustment based

on spectral gain factors. Evidently, frame spectral brightness normalization would still be

required even if the spectral gain factors were to be available. The methodology

presented in Chapter 2 could be used to provide such normalization. It was shown to

reduce the mean, among-frame brightness variability to 0.2% of the theoretical DN range.

The methodology to correct the Bidirectional Reflectance Distribution Function

(BRDF) effect used in this study was developed in accordance with the imagery
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acquisition protocol and the cover type distribution present in the study area. Visual

comparisons of frame brightness prior to and after normalization suggested that the

methodology performed well and quantitative evaluation ofpost-correction brightness

variability along frame paths supported that assessment. It may, however, be difficult to

extend this BRDF correction methodology to other imagery sets featuring a particular

cover type, or cover type group. Fitting of a kemel-based BRDF model to the imagery

data was implemented successfully (given that model coefficient convergence was

achieved) for deciduous forests in the study area. There is no assurance that BRDF model

parameter convergence could be achieved for other cover type groups or where the

number of frames available is relatively small (<20). In addition to a non-linear increase

in computational costs, a large number of frames would help model parameter

convergence, but at the same time would decrease the probability of cover type presence

in all overlapping areas between frames.

Reduction in computational cost and the less strict requirements for large number

of frames and uniform spatial distribution of cover types can be achieved by substituting

the brute-force BRDF effect normalization technique used in this study with techniques

for which parameter estimation is analytical rather exhaustive-search-based. Mikkola and

Pellikka (2002) describe such an analytical technique. The drawbacks of the analytical

approaches are that they still require prior spatially explicit information of cover type

distribution and also a minimum 66% overlap between adjacent frames along and

between flight lines. Such high frame endlap rates are possible in the acquisition of aerial

photographs, but not for digital array scanners. At least currently, the time required for

information transfer from each detector to the on-board information storage system
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precludes such a cycling rate. It was calculated that the maximum endlap rate that the

DAIS camera system could sustain along the flight line 2,000m above ground altitude is

about 40%. Obviously there are no technical restrictions for the amount of sidelap

between flight lines. The 20% frame endlap rate present in the data set did not allow

consideration of alternative BRDF effect normalization approaches.

A comparison of spectral classification accuracy results using all pixels in a stand

or other image region (Chapter 2) to those obtained using only pixels identified as tree

apexes (Chapter 3) leaves little doubt that the cost associated with tree apex identification

is justified. It could be argued that substantial cost savings could be achieved by

substituting pixels identified as tree apexes with those belonging to an upper, say 95“,

spectral brightness percentile, which could be easily identified via spectral histogram

computations. Those alternatives have been examined for several brightness percentiles

and the results showed a reduction in classification accuracy in excess of 7% and

sometimes as much as 15%. Classification accuracy discrepancies between the two

alternatives should be expected to be even larger in mixed stands, and particularly in

stands characterized by spectral brightness variability among dominant species. Using

histogram information to identify tree apexes that are subsequently used for estimating

canopy structure parameters was found to produce very poor results. This was because of

excessive errors of omission due to bright pixel clustering around the apex of a single tree

and the lower crown brightness of co-dominant trees that were partially in shadow.

The feature selection approach presented in Chapter 4 allowed a reduction in

texture feature space dimensionality reduction from 42 to 4. This bypassed the Hughes

phenomenon restrictions, and sustained a texture-based cover type classification accuracy
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of about 65%. Obviously, feature selection can be used to serve objectives other than

categorical classifications. Experimentation with co-occurrence feature subset

optimization in support of stand classification based on canopy closure indicated that the

two-dimensional space defined by the energy and variance features could provide very

accurate canopy closure discrimination (< 10% error) in a 3-class formulation. There

were no natural clusters in the distribution of canopy closure values for the 134 subplots

used in the classification testing process. This indicates that image texture could be a

useful discriminator for the continuous variables associated with canopy structure, at least

for certain parameter value ranges. Hypotheses regarding of the utility of texture features

for cover type discrimination could only be evaluated on a trial basis, given that cover

type is a qualitative variable.

The need for computational efficiency has been mentioned more than once in this

dissertation. Although efforts were made to optimize the scripts, there are still

opportunities for improvement, particularly with the canopy parameter estimation via

slope breaks. Those opportunities reside where C scripts “call” functions of supportive

software packages, which are in turn executed via a software-package-specific language

interpreter. One such example is the local regression fitted on the DNS of transects

analyzed during the computation of window size in support of local maximum filtering.

The magnitude of computational gain possible can be realized by considering that the

processing via slope breaks of a one-hectare stand requires approximately 50,000 calls to

the local regression function. The entire computation overhead cost associated with

function interpretation external to the C scripts can be eliminated by including the

function in the compiled C script. Experimentation with central processing units
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operating at 3.0GHz showed that if all computations were to be performed via a stand-

alone C script and by using the slope breaks approach, derivation ofcanopy attributes for

an entire, average-sized (~1500 Ha) forest compartment could be completed in less than

36 hours.

In all previous chapters and the discussion presented above there is a frequent

allusion to the link between spatially explicit cover type information and image-analysis

information products. Identification of spectrally homogeneous image frame regions,

such as those belonging to the same cover type, is important for the BRDF/brightness

normalization efforts shown in Chapter 2 and they are a prerequisite for texture and

canopy structure parameter estimation using DN autocorrelation presented in Chapters 3

and 4. Identification of such regions, or image segmentation as it is better known

(Edwards, 1995), has been pursued. The current stage of image segmentation

development, along with its implications on classification and canopy parameter

estimation, is outlined below.

5.2. The Role of Image Segmentation

The purpose of image segmentation in forestry remote sensing is to partition

forested land in regions of uniform reflectance patterns thought to correlate with spatial

variables of interest. Image segmentation is usually accomplished via identification of

boundaries or edges obtained using a series of filters or operators. Many of these

operators, including those proposed by Prewitt (1970) and Roberts (1965) and the more

sophisticated Laplacian of Gaussian and Canny operators, were used to segment a few

image frames in the study area. Details on the theoretical foundation of such operators

and how they can be computed are available in Pitas (1993). The results obtained by
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these preliminary investigations were very poor with the number of identified boundaries

rivaling the number of trees present. Apparently, those operators perceive the spatial

variability of tones in high spatial resolution imagery as noise, even when imagery

smoothing is performed prior to applying the operator. Poor segmentation quality results

were also obtained by using the lattice-wobbling algorithm (Fortin and Drapeau, 1995).

It appears that the segmentation of high-spatial resolution imagery of forested

landscapes should be redefined as the quest for imagery regions that are homogeneous in

their tonal heterogeneity rather than comprising uniform tones, which implicitly

introduces the concept of image texture in the image segmentation process. Very often,

the regions on either side of a boundary that is easily identifiable by visual inspection

have practically identical average tonal values over some area element comprising many

pixels, but different arrangement of tones. This condition does not allow the gradient

change seeking operators mention above to detect the boundary. So far, the best (visually

assessed) image segmentation results over the study area have been obtained by

modifying a technique introduced by Pekkarinen and Sarvi (2002), that combines region

growing and tonal gradient seeking algorithms. Its merits include flexibility in band, or

band combination, usage, the ability to restrict the size of delineated regions to be above

a user-specified areal threshold, (i.e. the minimum mapping unit), and computational

efficiency. This technique succeeded in consistently identifying boundaries among

adjacent red pine plantations of different age, or thinning prescriptions and among

adjacent stands characterized by differences in canopy closure and stem densities. It

appeared to perform less than optimally in the presence of wide transition zones

(ecotones) among cover types or canopy structure conditions.
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In the absence of reliable, spatially explicit information delineating forest stands,

image segmentation should be regarded as the first step in imagery analysis of forested

areas. Until the boundary detection fidelity of segmentation methodologies improves

sufficiently to allow automation, the identified forest regions would likely need to be

examined manually and boundaries added where the segmentation process failed.

Following this tessellation of forests into regions, tree apex identification could be

obtained with the techniques of Chapter 3, and used for region assignment to a cover

type, with an ensuing, independent allocation to a cover type using textural information.

It is assumed that field observations or other forms of ancillary information, including

manual forest cover type assessment from the imagery set, would have been used for

prior development of spectral and textural signatures. Canopy structure parameter

values, in addition to serving as an independent information product, could be used to

assist in the development of cover type classification rules. If, for example, canopy

structure analysis of an image region were to yield a mean crown diameter of 7m, while

textural and spectral imagery derivatives suggested an allocation to the aspen cover type,

the crown diameter information could be used to modify the cover type region

assignment to the second texturally and spectrally most probable class (e.g. northern

hardwoods), given that a 7m crown diameter value for aspen would be rather improbable

in the study area. Using a regression tree approach could identify the exact form of such a

hybrid classification rule. Details on the development and the merits of decision-tree-

based classification can be found in Friedl et al. (1999) and Hansen et al. (2000). A

preliminary investigation involving such a regression-tree-based classification rule has

yielded a cover type classification accuracy of approximately 93%.
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5.3. Evaluation of Analysis Results

Analysis findings indicated that extracting the information content of digital

airborne imagery for forestry applications requires analysis methods specifically tuned to

its characteristics. The ability to assign cover type affiliation to individual crowns, and

thus determine species mixture and distribution for individual forest stands, cannot be

paralleled by the coarser resolution imagery typically used today. However, technical

problems associated with digital airborne imagery, including brightness variability among

acquired imagery frames, and the, sometimes substantial, geometric distortions,

potentially limit the opportunities for direct utilization of such technology for

classification purposes. The series of techniques presented in Chapter 2 proved that the

technical imperfections of such imagery could be corrected, in which case combinations

of spectral (Chapter 3) and textural (Chapter 4) signatures could provide classification

accuracies suitable for operational imagery utilization. Unfortunately, those

developments are practically attainable only in the presence of experienced analysts and

at considerable computational costs.

An area in which digital airborne imagery could become ofunprecedented utility

for forest inventory and management purposes is the retrieval of canopy structure

parameters. As shown in Chapter 3, the presence of detailed field information allowed for

a better understanding of the interaction between forest canopies and incident solar

radiation as manifested in digital imagery, and supported the development of techniques

capable of translating such knowledge into quantitative canopy parameter estimates. The

sometimes impressively accurate canopy structure parameter estimation via image

analysis, coupled with its independence from frame brightness and BRDF effects and
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minimal requirements for user input, emphasize the importance of these findings, at least

for high canopy closure stands. Although the computational cost associated with

parameter estimation is currently substantial, continuous improvements in processing

power and script optimization is expected to reduce the cost to manageable levels.

5.4. Evaluation of Field Data Collection Methods

It was mentioned in Chapter 3 that the availability of spatially precise data is an

invaluable resource for methodology refinement that could determine the success or

failure of the investigation. Because, at the same time, a field data collection campaign

that involves survey-grade measurements is a very expensive endeavor, it is important to

assure that the data collected meets the anticipated standards. Some of the lessons learned

are outlined below for the benefit of the reader contemplating similar field data collection

efforts.

Distance measurements obtained by electronic range devices are very reliable

when taken using a line of sight free from any obstructions. However, measurements

acquired under canopy may be prone to systematic biases, especially in the presence of

dense understory vegetation. Up to 5% distance errors could be expected where portions

of tree stems, branches, or leaves are contained in a 0.5m-radius virtual cylinder centered

on the line of sight. Selection of sampling sites, and identification of reference objects

used in plot georeferencing should be scheduled, if possible, after the acquisition of

imagery for four reasons, presented here in decreasing order of importance: 1) On-site

measurement accuracy evaluation is possible. 2) The availability of imagery allows plot

allocation conditional upon frame boundaries. It might be desirable to avoid frame edges

so that, for example, BRDF effects could be minimized. 3) Identification of suitable
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reference objects used for plot referencing in image frame coordinates is much easier on

digital or hard copies of the imagery and allows for an evaluation of contrast between a

candidate reference object and the image background. 4) High-resolution imagery is an

excellent navigation tool.

Dense forest canopies and a paucity of objects that can be used as positional

reference often necessitate lengthy transects with many vertices for plot boundary

determination in image coordinates. Regardless of how careful the instrument operator is,

angular and distance measurement errors are bound to happen and can be corrected

relatively easily when the personnel and equipment are still in the field. Unfortunately, it

requires only one measurement error to convert the plot center from a point to a polygon

of substantial size and thus deprive the analysts from the opportunity to use the plot

information in a spatially explicit manner. The importance of the ability to verify

measurement accuracy in the field is appreciated when expensive plot data becomes

useless because it cannot be placed accurately on the image frame (M. Wulder, personal

communication, 2000).

The use of the Forest Inventory and Analysis (FIA) field data collection protocol

undoubtedly enhances the potential for a wider application of these study findings, but it

also reduced plot allocation flexibility especially where stand homogeneity is a

prerequisite for plot installation and in forests exhibiting intense fragmentation. In

addition, the use of the FIA protocol ofien necessitates installation of a larger number of

transect vertices, particularly in dense stands and inclined terrain.
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5.5. Further Research Opportunities

Slope break computations were implemented using a set of heuristic rules whose

mathematical description was presented in equations 33b-d in Chapter 3. It was stated

that the appropriate value for the coefficient at the right side of equation 3.3c could be

identified by examining the DNS of imagery transects for each ofthe cover types present.

Such a requirement for user input could be relaxed by modifying Equation 3.3c to include

an upper slope break length limit. It was observed that DN reduction along a transect

connecting a pixel identified as a tree apex and a local DN minimum (corresponding to a

canopy opening in shadow) is very often sigmoidal. The pixel along the transect at which

the first decrease in the DN reduction rate occurs could be used to identify the proper

upper slope break length limit aforementioned. Tentative implementation of a modified

heuristic rule revealed that the proposed slope break length limits are cover type specific.

Comparisons between heuristic-rule-estimated slope break lengths and field observations

of crown extents showed that the former are unbiased and of similar variability to the one

obtained by the current version of heuristic rule implementation.

Canopy closure estimates obtained in Chapter 3 treated tree crowns as opaque

objects. Hence, these canopy closure estimates are likely exaggerated in comparison to

the traditional definition of canopy closure (i.e. the percent of the sky sphere that can be

observed from the ground). A link between the two canopy closure definitions can

potentially be obtained by comparing the canopy closure estimates obtained in this study

to canopy closure estimates obtained by digital hemispherical canopy photographs

acquired at 4, equally-spaced points in each of the 134 subplots. Preliminary

investigations have shown that the relationship between opaque and “transparent” canopy
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closure definitions is cover type specific and of moderate strength. Estimate

transformation, however, was found to improve estimate correlation.

It was shown in Chapter 4 that apparent differences in co-occurrence matrix

structure sometimes remained elusive when matrix structure was quantified via

computation of secondary features. Such observations raised skepticism as to whether the

use of secondary features is the most powerful alternative for texture quantification and

lead to the development of a matrix discrimination technique. The latter attempts to

identify those matrix elements that contain maximum discrimination potential. The idea

is particularly attractive given that it does not require feature extraction and thus is not

sensitive to feature dimensionality problems.

5.6. Conclusion

To date, distributed forest attribute information is obtained via either stand

cruising or aerial photo interpretation. Budget constraints, reductions in the number of

experienced photointerpreters available, and the need for digital integration of

information all necessitate solutions that can provide forest attribute information from

digital means. High-resolution, digital, airborne imagery appears to be the most

promising technology capable of delivering forest information products that meet current

needs and expectations. The work compiled in this dissertation asserts the potential of

airborne digital imagery to serve cover type classification purposes and the extraction of

information related to forest canopy structure under high stand density conditions.

Additional investigations would be needed to determine how, and if, the same technology

can be used to deliver the same types of information in different stand density conditions

or in other biotic regions.
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A.1. Crown delineation

Let [V1 V2 Vn]T an n-element vector of distance and azimuth offsets from tree

stems in the subplot coordinate system. Each vector element represents field

measurements of vertices on the crown periphery as the latter is defined when viewed

from above. Hence, the term ‘crown’ in this application corresponds to the projected-to-

the-ground portion of tree foliage that is unobstructed by the foliage of adjacent trees

when viewed from directly above. For simplicity in the example presented here it is

assumed that the stem is dimensionless (a point), it is positioned at the origin of the

coordinate system, and the first vector element belongs on the Y-axis (Figure A.5). Note

that figures in this dissertation, including the Appendices often contain color. The

objective is to link the planar representation of vector elements (points A to D in Figure

A.5), by using a closed convex spline. The spline is assumed to depict the periphery of

the crown. It should pass through all the field-measured points (exact representation) and,

preferably, maintain a derivative everywhere along its length (absence of discontinuities).

The last criterion provides the spline with an aesthetically appealing, smooth form

characteristic of objects in natural settings. The objective is stochastic in nature since

there is an infinite number of splines that meet the convexity, point exactness, and

continuity criteria.

One possible spline realization is produced as a linear combination of circular arcs

and projected arc components. The algorithm that generates the crown realization rotates

each vector element V, until the azimuth of its rotated version coincides with the azimuth

of the next-in-sequence vector element V141. Vi rotation around the origin (tree stem)

draws a circular arc segment, which in the illustrative example of Figure A.5 is
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represented by a dashed line. Generally, sequential vectors have different lengths

(|V,|¢|Vi+1|), so the arc segment produced by rotation ofV, would miss the vertex of Val.

In such cases, the difference |V,|-|V,+1|, measured along VH1, is bridged by shifting the

projection of the arc segment on the X axis proportionally to the (|V,|-|Vi+1|)/|V,| ratio.

Arc shifting along the X-axis ensures that sequential arc segments, represented with solid,

colored lines in Figure A.5, would form a closed convex spline. Because the derivative is

meaningful everywhere on a circle or forms of circle translation, every spline derived

with this algorithm is free of discontinuities.

Spline coordinates for each quadrant can be calculated using the following

 

 

 

formulae:

sy =(i)‘[(Ry(l-+l) my»? —x2 , (A.l)

VX E [in’Rx(i+1) _ in:

(R . —R .)-(R . —R .)
2 x(1+l) x1 y(z+l) yr

5 =(i) (R . —R .) + X’ (A-Z)

x [J y(t+l) y, (Ry(i+l)—Ryi)

where Rx,- and Rm-J. 1) are the vertex coordinates of elements V,- and VH1 on the X-axis, and

Ry,- and Rim-J. 1) are the vertex coordinates of V, and Vm on the Y-axis. Note that the signs

of S, and Sy are quadrant specific, with S,. taking positive values in quadrants 1 and 4 and

negative values in quadrants 2 and 3. S, takes positive values in quadrants l and 2 and

negative values in quadrants 3 and 4.

Crown representation fidelity is a function of crown shape, number of offset

measurements, and the number of spline vertices calculated. Trees in even-aged

coniferous stands have crown projections to the ground that approximate circles. Four to

five offset measurements would, in general, suffice for delineating regularly shaped

crowns. In uneven aged deciduous stands, tree competition for light and nutrients,
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management practices, and disturbances, among other factors, often result in

polymorphic, irregular crowns. In such circumstances, adequate crown delineation may

require more than 15 crown-offset measurements. Spline segment vertices were

calculated for 3cm increments along the X and Y axes.

The spline-based crown delineation approach outlined above, produces small

overlapping regions between adjacent trees. In GIS terminology these small regions are

known as “sliver polygons” and need to be eliminated prior to GIS-based analysis

operations. Maintaining sliver polygons would, for example, result in a positive bias of

average subplot crown diameter estimates. A sliver polygon between two adjacent

touching crowns could be eliminated by merging it with the largest adjacent crown, or

with the crown of the taller tree. Or it could be dissected using a line perpendicular to the

line that joins the stems of the two trees, with each of the two new polygons produced by

the dissection subsequently merged to the corresponding crown. The proper sliver

polygon elimination approach was selected in each case after consulting field notes with

information on the vertical arrangement and the relative crown height between adjacent

trees. Crown polygons were organized as Arclnfo GIS vector layers in subplot coordinate

system.

A.2. Crown centroid calculation

All GIS software packages automatically calculate the area ofpolygons in vector

layers. Centroid calculation is usually offered as an option. However, most packages,

including Arclnfo, calculate a pseudo rather than the true centoid. The pseudo-centroid is

calculated as the center of the bounding rectangle around a polygon. Note that coordinate

system rotation would affect the location of pseudo-centroids. Depending on polygon
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shape, there might be a significant discrepancy between the true and the pseudo centroid.

The area A of a polygon and coordinates (Cx, Cy) of its true centroid can be calculated as:

:%Z[(X1'Y1'+l X1+1Yi)]’
(A3)

C. =67ZI<X +X...><X.-Y- -X.-+1Y.-)1» (4.4)

Cy :61A:Zl[(Yi++Y1+1)(X1'Y1'+l —X1'+1Yi)]’
(A°5)

Compared to crown centroids, tree stems are more frequently located close to the

visible crown periphery, or even outside of it, particularly in uneven aged deciduous

stands (Figure A.3). Although it is theoretically possible for either the true or pseudo

centroids to lay outside the crown, in practice this is very rarely the case, especially for

true centroids, because visible-from-above crown portions tend to have convex

peripheries (Figure A.6). Increasingly irregular crowns exhibit larger discrepancies

between their true and pseudo centroids (Figure A.6). Therefore, true crown centroids are

a reasonable choice when there is a need for point representations of crowns.

A.3. Crown diameter calculation

Crown diameter is perhaps an awkward term because of its implicit reference to a

circular tree crown shape is often unrealistic. However, it is frequently used as input in

green biomass, wood volume, crown closure, and wildlife habitat models. A crown

diameter estimate can be calculated efficiently as the diameter of a circle of the same

area. An alternative estimate can be obtained by measuring the within-crown length of

linear segments that pass through the crown’s centroid. The second approach is
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potentially superior to the first because it accounts for crown shape. Diameter estimate

bias can be introduced when only a small number of linear segments is employed.

Experimentation with many crown shapes and sizes revealed that for regularly shaped,

nearly circular crowns the linear-line-segrnent-derived estimate is equivalent to the

diameter of a circle occupying the same area with the crown, provided that an adequate

number of line segments has been utilized (Figure A.7). For significantly non-circular

crown shapes, the circle-area-based estimates are consistently larger that those calculated

with the line segment approach (Figure A.7).

A.4. Bidirectional Reflectance Distribution Function Model

The linear, kemel-driven, three-parameter model developed by Roujean et al.

(1992) is a semi-empirical approach designed to correct BRDF effects for heterogeneous

surfaces. The model considers the surface reflectance of an object to be the synergistic

effect of two processes: a diffuse reflection component that accounts for the geometrical

structure of opaque reflectors located at the surface of the object and a scattering

contribution from the volume of the object. The model in a generic form can be expressed

as

p = apgeom + (I — a)pvol (A6)

where p is the object’s spectral reflectance, and a is an empirical coefficient that

characterizes the relative weight of the geometric and volume components pgeOm and pm,

respectively. The model can be explicitly written as

plflsflwtp): k0 + k1]; (65,0v,¢)+ 112/2 (65,9v,(0) (A.7)
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where 6, is the solar zenith angle, 6,. is the view zenith angle, and (p is the relative

azimuth angle. k0 is the bi-directional reflectance for 6,: 6,.=O, k, is the weight for the

geometric scattering functionf, and k2 is the weight for volume scattering kernel function

f2. The physical meaning of the angular parameters 6,, 6v, and ¢ is shown in Figure A.4.

Coefficients k0, k,, and k2 are determined empirically. Functionsf, andf2 are defined as

 

 

 

1 . tan6 +tan6 +G

f(6 ,6 ,(p)=—-[(7r—ga)cosgo+srnga]tan6 tan6 — S " (A8)
I s v 27! s v 71'

4 1 7t 1
6,6 , =-—— —- cos +sin —— A.9

f2( 5 V (a) 3n C0895 +cos6v [[2 g] 4‘ 6] 3 ( )

where 5 is derived from

cos; = cos 65 cos 6v + sin 65 sin 6) cosga (A.lO)

and G from

G=\/tan2 6s+tan2 6v-2tan6s tan6vcosrp (A.ll)

Typical BRDF correction implementation entails multiplying pixel values with

the [20(650 ,6)0 ,(00 )/,o(6s ,6v,(a) ratio, also known as the BRDF coefficient, where

p0(6s ,6) ,(p0) is pixel reflectance for standard viewing and illumination geometry and

0 0

p163 ,6v,(a) for actual geometry. Table A.3 shows the geometry parameter values for

standard and actual BRDF corrections used in this study.

The empirical component of the model, is demonstrated by the fact that model

intercept and function weighting coefficients are surface or, for the purposes of this

study, cover type dependent. In practice, their values are determined by using radiometric
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measurements of cover type reflectance either in situ, in lab settings (Loechel et al., 1997,

Deering et al., 1999, Weiss et al., 1999), or alternatively by examining correlations

between DNs and scattering angles of reference sample areas on overlapping images

(Mikkola and Pellikka, 2002). In the absence of known coefficient values appropriate for

the biome present in the study area, coefficient values were determined via the

optimization exercise outlined in Chapter 2. In the interest of limiting the number of

coefficient value combinations needed to be evaluated, a set of values found to perform

well in a warm temperate forest were used for the initiation of the optimization process

(Table A.2). Given that the imagery set was acquired with a nadir looking sensor and a

maximum view angle of 12.360 (Table A.3) over gentle terrain, combinations of k0, k,,

and k; values that yielded correction coefficients outside the 0.7-1.3 range were rejected

as invalid.

A.5. Maximum likelihood classification

Maximum likelihood (ML) is a supervised classification method. The probability

of a pixel belonging to each of a predefined set of classes is calculated, and the pixel is

assigned to the class for which the probability is highest. ML is based on the Bayesian

probability formula:

P(q,r) = 1’(r | q)P(q) = P(q l r)l’(r) (A-12)

where q and r are generally called ‘events’. P(q,r) is the probability of coexistence of

events q and r, P(q) and P(r) are the prior probabilities (of occurrence) of events q and r,

and P(q | r) is the conditional probability of event q given (the presence of) event r.

P(r | q) is defined in the same manner. In remote sensing applications, an event is
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equivalent to a pixel for which a size k vector is defined (k represents the pixel’s spectral

dimension or the number ofbands present). If q,- is the vector of k spectral values (DN,

radiance or reflectance) for the 1”1 pixel and rj is information classj then (A.l2) can be

rewritten as:

P(q, Irj)P(rj)

P(q,)

 P(r, 14,.) = (AM)

It is commonly assumed that P(q) is unifome distributed, and therefore its function in

(A. l 3) is to standardize the fraction on the equation’s right hand side. Hence, (A.13) can

be rewritten as:

Pixel i can thus be allocated to class rthat maximizes P(wkl x,-) in (A.l4). The

classification criterion is then expressed as:

Wk = max[P(qi |rj.)P(rj )] ij (A.lS)

Equation (A. l 5) offers the maximum a posteriori solution, which maximizes the product

of conditional probability and prior probability. In most remote sensing classification

applications, the prior probability P(r) is also set to be uniformly distributed primarily

because often there is no information on class distribution in the area of interest, which

further reduces (A. l 5) to:

P(r, 14,.) cc P(q, Irj) (A.l6)

Allocating pixel i to class rthat maximizes (A. l 6) provides the maximum likelihood

solution.
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Normally, the conditional probability P(q,- | rj) is assumed to follow a Gaussian

distribution. P(q,- | rj) can then be expressed as:

l

P(q.|r.)=

' ’ anIle

ear—$01,. —u,)Tc;‘(q,. 1,.) (417)

where C]- is the covariance matrix of class rj with dimension k, p,- is the mean vector of

class rj, and | - | denotes the determinant.

In practical applications, equation (A. 1 7) can be reduced to the following

expression by taking the natural logarithm:

1 P 1 )—:111(2 >11“ lC 1—11 - )TC"( - ) (A18)Ill (q, rj]—2 n 7T 2 n j zq,‘ ”j j q,‘ ”j '

which is computationally advantageous to (A. 1 7) because it avoids the exponential term.

Because the term kln(2 it) is the same for all classes, it can be regarded as a constant and

be eliminated from equation (A. l 8) without affecting the ranking of

the ln[P(ql. |rj.)] values. Equation (A. l 8) is finally multiplied by —2 to give:

—1n1P(q,. 15.)] =1 C, 1+<q,. —1z,.)TC;‘<q, 41,.) (A.l9)

Obviously, maximizing equation (A. 1 7) is equivalent to minimizing equation

(A. 19). It should be noted that the second term in the right hand side of equation (A.l9) is

the Mahalanobis distance, and therefore the geometrical shape of the cloud ofpoints in k-

dimensional spectral space formed by a set of pixels belonging to a given class can be

described by an ellipsoid. The shape of the ellipsoid depends on the covariance among

the features 111 the spectral space. In the presence of only two bands (two dimensional
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spectral space), the maximum likelihood firnction delineates ellipsoidal, equally-probable

contours, which can be regarded as decision boundaries. A careful examination of

equation (A.l9) reveals that an inadequate number of pixels in a class and/or a large

number of bands involved can produce considerable biases in the computation of the

class statistics, including the mean vector and covariance matrix, which is ultimately

translated into biases in the classification results. Hence, there is a need for an accurate

estimate of class statistics if maximum likelihood classification is to perform in a

satisfactory way (Landgrebe, 1998). Accurate estimates of such statistics, sometimes

known as distribution moments, representative of a class can be computed when pixel

membership in the class spectral signature is adequate.

A.6. Cross-validation and classification accuracy assessment

An important part of every classification is the assessment of its accuracy. The

term ‘accuracy’ denotes the level of agreement between class labels assigned by the

image processing method and class allocations based on ground data. Often, ground data

do not necessarily represent reality, due to observation and recording errors, or because

of the time elapsed between observations and the acquisition of imagery. If a separate set

of ground observations is not available, accuracy can be evaluated relative to the data set

used to train the classifier, but the degree of accuracy will be overstated. In these

circumstances, the use of cross—validations is preferable. In cross validation, ground

observations are subdivided into n subsets of approximately equal size. The majority (n-

l) of these subsets are used for training the classifier. The remaining nth subset is used for

classification error estimation. Each of the n subsets is used in turn for testing, with the
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remaining (n-I) subsets being used for training. Once this cycle of training and testing is

completed, the error estimates are combined (Schaffer, 1993).

The most common measures of classification accuracy assessment in remote

sensing are based on the computation of the confusion or contingency matrix, a v x v

square matrix, where v is the number of classes. The matrix shows the relationship

between the class labels assigned by the classifier and the class labels assigned by ground

observations. The diagonal elements represent correctly classified entries while off-

diagonal elements correspond to classification errors. An index of overall classification

accuracy can be obtained by dividing the sum of the diagonal entries of the confusion

matrix by the total number of samples. Overall accuracy estimates can be misleading,

however, as they do not provide any class-specific accuracy estimate nor do they account

for the relative proportion of samples tested. Accuracy estimates for individual classes

are embedded in the concepts of producer’s accuracy and user’s accuracy. For each

information class i in a confusion matrix, the producer’s accuracy is calculated by

dividing the entry (i,i) by the sum of column I (the total number of class i pixels in the

ground data), while the user’s accuracy is obtained by dividing the entry (i,i) by the sum

of row i (the total number of class i pixels labeled by the classifier). Thus the producer’s

accuracy indicates the proportion of samples in the testing data set that are correctly

recognized by the classifier. The user’s accuracy measures the proportion of samples

identified by the classifier as belonging to class i that agree with the testing data. It is

evident that all these indices utilize only a small portion of the information in the

confusion matrix. A multivariate index, known as the kappa coefficient (Cohen, 1960),

that largely overcomes the limitation of the indices mentioned previously, is favored by
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many analysts. The kappa coefficient quantifies the probability of chance agreement of

class labels assigned by the classifier and those present in the testing data set. It should be

noted that a number of authors (e. g. Foody, 2000) argue that the kappa coefficient

overestimates chance agreement and underestimates accuracy and they suggest

alternative formulations. In any case, the standard kappa coefficient is defined as:

 IE: i=1 ‘=' (A.20)

where If (k-hat) is the estimated kappa coefficient, v is the number of rows and columns

in the matrix, x,-,- is the matrix element at row and column i, + represents row and column

summation over the index, and N is the total number of samples in the testing data set.

An important property of this index is that its ratio to the square root of its

variance follows a Gaussian distribution, provided that the number of samples in the

confusion matrix is sufficiently large. Hence, the ratio li/ (rim can be used for

parametric comparison of kappas obtained by using different classifiers, and variable

testing sample sizes. The large sample variance of kappa (Rosenfield and Fitzpatrick-

Lins, 1986; Hudson and Ramm, 1987) is computed as:

2 2
__1_ 191(1-19')+2(1—a,)(2191192-a,+(1—19I)((94-462
  a . — ~ (A.21)

[k] N (1.192)2 (1-62)3 (1-62)4

where

V x..

91:27:71, (A22)
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V x. x.
6 :2 1+ +1,

(A23)

V x..(x. x .)

193 = Zl—'—Ni2—+—, and (A.24)

j:

V V

gltzzszL—__1(x11'v+:+i)2 (A25)

The test of significance between two independent kappas is formulated as

(Rosenfield and Fitzpatrick-Lins, 1986):

Z = l 2

6 . + 6 .

[[111] [kg]

where Z is the standard normal deviate. A Z score larger than 1.645, 1.960, or 2.576

 

(A.26)

would indicate significant differences between the two kappas at the 90, 95, and 99

percent probability level, respectively.

241



Literature Cited

Cohen, J. 1960. A coefficient of agreement for nominal scales, Educational and

Psychological Measurement, 20:37-46.

Deering, D.W., T.F. Eck, and B. Banerjee. 1999. Characterization of the reflectance

anisotropy ofthree boreal forest canopies in spring-summer. Rem. Sensing Environ.,

67:205-229.

Foody, G.M., 2000. Accuracy of thematic maps derived by remote sensing, In Proc. of

the Accuracy 2000 Conference, G.B.M. Heuvelink, and M.J.P.M. Lemmens [Eds],

Delft University Press, Amsterdam, pp217-224.

Hudson, W.D., and CW. Ram. 1987. Correct formulation of the kappa coefficient of

agreement, Photogramm. Eng. Rem. Sensing, 53:421-422.

Landgrebe, D. 1998. lnforrnation extraction principles and methods of multispectral and

hyperspectral image data. In Information Processingfor Remote Sensing, CH. Chen

[Ed], World Scientific Publishing, River Edge, New Jersey.

Loechel, S.E., C.L. Walthall, E. Brown de Coulston, J. Chen, B.M. Markham, and J.

Miller. 1997. Variability of boreal forest reflectances as measured from a helicopter

platform. J. Geophys. Res., 1022495-503.

Mikkola, J, and P. Pellikka. 2002. Normalization of bi-directional effects in aerial CIR

photographs to improve classification accuracy of boreal and subarctic vegetation for

pollen-landscape calibration. Int. J. Rem. Sensing, 23:4719—4742.

Rosenfield, G.H., and K. Fitzpatrick-Lins. 1986. A coefficient of agreement as a measure

of thematic classification accuracy, Photogramm. Eng. Rem. Sensing, 52:223-227.

Roujean, J.L., M. Leroy, and P.Y. Deschamps. 1992. A bi-directional reflectance model

on earth’s surface for the correction of remote sensing data, J. Geophys. Res., 97:455-

468.

Schaffer, C. 1993. Selecting a classification method by cross validation. Mach. Learning,

13:135-143.

Weiss, M., F. Baret, M. Leroy, A. Bégué, O. Hautecoeur, and R. Santer. 1999.

Hemispherical reflectance and albedo estimate from accumulation of across-track

sun-syncronous data, J. Geophys. Res., 104:122-132.

242



Tables

Table A.1. DAIS technical specifications

 

Camera

Manufacturer/model

Array size

Pixel size

Spectral resolution

DALSA CA-D7-1024T digital frame camera

1024 x 1024 pixels

12 x 12 micrometers (100% fill factor)

16 bits per pixel
 

 

Lenses

Nominal focal length 28mm

Aperture range F2.8 to F16

Angular field of view 24.6 degrees

Interference filters

Filter bandpasses Blue 450-530nm

Green 520-6 lOnm

Red 640-720nm

Near Infrared 770-880nm
 

Camera mount

Model

Roll/Pitch compensation range

Yaw compensation

Degree of stabilization

Zeiss T-AS Gyro Stabilizer

i5 degrees

:t6.5 degrees

1:10 to 1:30
 

Camera control unit

Maximum frame capture rate

Storage capacity

1 frame every 3.5 seconds

Sufficient for 8 hours continuous imaging at

maximum frame capture rate
 

Sensor orientation

Position

Attitude

Post-processed kinematic GPS

0,: 0.3m

0y: 0.3m

oz: 0.3m

Applanix POS/AV 510 post-processed with GPS

0,0”: 20 arcsecs

opimh: 20 arcsecs

oyaw: 60 arcsecs
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Table A.2. Coefficient values used in the Roujean et al. (1992) BRDF model for

deciduous forest and those derived with the brightness normalization process.

 

 

 

Coefficient

Initial Optimized

k0 k, k; k0 k, k;

Blue 0.030 0.000 0.087 0.153 0.1 15 0.036

'2 Green 0.030 0.000 0.087 0.183 0.147 0.052

t3 Red 0.030 0.000 0.087 0.147 0.099 0.058

NIR 0.400 0.040 0.295 0.281 0.058 0.301
 

Table A.3. Standard and actual BRDF viewing and illumination geometry parameter

values used in brightness normalization.

 

 

Standard Actual

Geometry Geometry

Solar zenith angle' a, 35° Site 11: 31.190 — 38.940, Site 1: 28.460 — 29.120 2

Solar azimuth angle' (as 1800 Site 11: 127.090 — 154.580, Site I: 169.120 — 195.480 2

View zenith angle 6v 00 00 — 12.360 3

View azimuth angle (pv NA" 00 — 3600 3

Relative view angle (0’ NA4 00 - 3600 3
 

I Computed using software available at http://www.susdesign.com/sunangle/, maintained by C.

Gronbeck, Sustainable By Design, Seattle, Washington.

2 Overlapping frame region Specific, calculated for the region’s center.

Pixel specific.

4 Nadir looking sensor.

5 ¢= (ps- 10v-
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Figure A.1. Spatial arrangement of DAIS image frames for Sites I and II.
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Figure A.2. Plot design according to the FIA/FHM protocol.
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Figure A.3. Vertical tree crown projection map for a northern hardwood subplot (243).

Crowns correspond to the portion of tree foliage visible from above. Dots represent tree

stems and are of size proportional to stem DBH.
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Sensor

 

 

 
    

95 = solar zenith angle

(1)5 = solar azimuth angle

9v = view zenith angle

(Iv = View azimuth angle

(11 = relative view angle   
Figure A.4. Illustration of target viewing and illumination geometry, and associated

angular parameters used in BRDF models. The figure, drawn in perspective, preserves

angles but not distances.
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Figure A.5. Spline-based tree crown delineation using four, projected-to-the-ground

offsets of crown periphery. Offsets are expressed as vectors V1 to V4. Dashed lines in the

bottom part denote circular arc segments for each of the four quadrants defined by pairs

of clockwise adjacent vectors. Solid line spline segments 86,, 8,) represent the derived

horizontal extent of the crown and are produced by circular are shifting along the X-axis,

proportional to the (R,,-R,,)/Rx ratio. RX 2 NJ and Ry = |Vi+1|.
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. Crown true centroid Mean: . . 0.12m

:1 Tree crowns within the subplot area Standard Devratron: 0-07111

— Subplot perimeter Maximum: 0.28m
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Figure A.6. Vertical tree crown projection map for a northern hardwood subplot (24B).

Crowns correspond to the portion of tree foliage visible from above. Dots represent true

and pseudo crown centroids.
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D = 1.123!!! D = 2.653m

st.dev(D) = 0.313m st.dev(D) = 0.278m

Dc = 1.179m Dc = 2.677111         
Figure A.7. Calculation of crown diameter D as the mean length of lines revolving at 10°

increments around the crown’s centroid. Dc denotes the diameter of a circle occupying

the same area with the crown.
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APPENDIX 2
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B.1. Effects of Brightness/BRDF Normalization on Semivariogram

Range Computation.

Let Z(xiJ) be the digital numbers (DNS) of pixels in the 51 rows by 51 columns

image depicted in Figure B. 1 a and corresponding to a portion of a coniferous forest stand

in the near infrared band, where i andj represent image row and column indices

respectively. An omnidirectional empirical variogram (Figure B.lb) computed for the

image carries a range of approximately 5 distance (pixel width) units. Note that figures in

this dissertation, including the Appendices often contain color. A linear translation

[(Z(x,-J)*l.5)-5000] of the image (Figure B.lc), similar to the one performed during

brightness normalization has no effect on the form of the empirical variogram or its

range, but it does alter the variogram’s sill (Figure B.ld). Such variogram behavior is

expected Since addition or subtraction of a DN amount from all pixels does not affect the

square difference of DNS in pixel pairs separated by distance h (Chapter 3, Equation 3.2).

At the same time multiplication of DNS with a constant is a monotonic operation that

preserves the relative ordering of square difference sums for different lag increments.

When however, the original DNS are processed with a non-monotonic or anisotropic

function, such as the one depicted as a surface in Figure B.lf, the square difference of

DNS for pixel pairs separated by distance h and situated at or close to surface locations

with high autocorrelation gradient will be smaller than the square differences of DNs for

pixel pairs separated by the same distance h, but situated at surface locations

characterized by weaker a anisotropy gradient, thus altering the variogram form and

hence its range and sill. Because H-resolution images of forested landscapes contain

intrinsic autocorrelation gradients, the effects of image DN processing with non-
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monotonic, anisotropic operators on the image variogram would be detectable only when

the autocorrelation gradient introduced by those operators would be weaker than the

intrinsic autocorrelation gradient. Kemel-based BRDF models such as that by Roujean et

al., (1992) involve image processing with functions that exhibit strong autocorrelation

and bi-directional distribution factors (BRFS) usually within the 0.7 to 1.3 range.

Therefore, under most circumstances, BRDF correction operations would only

minimally, if at all, affect computed variogram parameters. In the example of Figure B. 1 ,

the image processing function represented as a surface, is bounded within the range

aforementioned and, as expected, it does not modify the range of the corresponding

variogram although it appears to influence its form, at least for the larger lag distances.

B.2. Trend Surface Analysis

Let Z be a Single band image with Z(s) representing the value (DN, radiance,

reflectance, etc.) of an image pixel at location s with spatial coordinates (81,31), where i

andj represent image row and column indices. Z, as any other image, can be modeled as

a spatially continuous random surface of large-scale variations around a mean value. The

model involves the fitting of polynomial functions of the spatial coordinates S(Si,Sj) of

each pixel, to corresponding image pixel values. The multiple regression model

employed, known as ordinary least squares regression, may be written as

Z(s) = xT(s),8 + e(s) (3.1)

where Z(s) is the image value at location s, xT(s),6 represents the trend or mean value of

the surface at s, and 15(5) is a zero-mean random variable representing fluctuations from

the trend. The (p x 1) vector ofx(s) consists ofp functions of the spatial coordinates (Si,Sj)
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ofpoint s. For a linear trend model x(s) = (1, st, s,-)T, for a quadratic model x(s) = (1, 3;, s,-,

52,-, s2}, sis”) T, and accordingly for higher-order models. ,6 is a (p x 1) vector ofparameters

to be estimated when the model is fitted to the pixel values. Ordinary least squares

estimates ,6 as

19 = (XTX)"I XTZ (B.2)

where Z is the vector of pixel values and X is an (n x ,0) matrix with row vectors xT(s,-j),

i = l, , n, and j = l, , m, with n and m representing the number of image rows and

columns respectively.

In imagery of forested landscapes, xT(s),6 can be thought of as the broad-scale DN

variation due to, for example, topographic effects, vegetation ecotones, etc., and a(s) as

the local DN variation due to the structural characteristics of forest canopy. In variogram

analysis of forest stands depicted in high-spatial-resolution digital imagery and aiming at

identifying the proper window size for subsequent local maximum filter (LMF) imagery

processing (Chapter 3), the presence of a non-zero xT(s)/3 imagery component would

introduce systematic biases in computed variogram ranges (Figure B.2) (Cressie, 1991),

thus necessitating its elimination. The latter could be accomplished by estimating the

value of vector ,6 elements in equation (8.1) so that 8(s) could be isolated from Z(s).

Variogram analysis could then proceed using the 6(8) image component only.

Unfortunately, equation (B.l) assumes that 5(s) is independent among locations

and has constant variance; thus in its equation (8.1) form s(s) cannot be thought of as

representing the structural characteristics of forest canopy. One way to avoid the

implausibility of the assumption in the basic form of the trend surface regression model is
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to relax the assumption of 6(8) independence by the use of the generalized least squares

approach. The model then becomes

Z(s) = xT(s)fl + U(s) (13.3)

where U(s) is again a zero-mean random variable representing fluctuation from the trend

exhibiting a covariance function C(). In this formulation, the previous least squares

estimates for ,6 is replaced by its generalized least squares equivalent

[it = (XTC"X)“ XTC'lZ (34)

where C is an (mm x mam) matrix of covariances between all possible U(Sij) pairs in the

image. Generalized least squares provide a way of including both first- and second-order

variation in the model while assuring that parameter estimates allow for spatial

dependence. The only remaining difficulty is that the covariance matrix C is unknown. In

practice, the model described by equation (B. l) is fit to the pixel values initially using

ordinary least squares regression. Regression residuals are used to estimate a variogram

model )7(), giving rise to an equivalent covariogram model C() . The latter allows the

construction of an estimated covariance matrix C between pixel locations. Subsequently,

the model described by equation (B3) is fit to the pixel values using generalized least

squares with the estimated covariance matrix C. This process adjusts both the model

parameter estimates and the standard errors of the ordinary least squares regression for

second-order autocorrelation. If necessary, the process can be iterative until estimates of

,6 and C() are obtained. The validity of the final model depends upon 1) the choice of an

appropriate form of trend surface, and 2) the choice of an appropriate variogram model.

The decomposition of the image into first- and second-order components in the
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methodology described above is, to some extent, arbitrary. In reality, the two components

are confounded; certain types of second-order variation can lead to trend-like effects

making it impossible to objectively distinguish between the two components. Additional

obstacles for the application of the generalized least squares approach appear when

process automation is contemplated, primarily because appropriate covariogram model

specification necessitates analyst intervention.

In this study, the effect of trend on variogram range was investigated. Variogram

ranges were computed (i) using the original DNS, (ii) after DN processing with ordinary

least squares, and (iii) after DN processing with five-iteration, generalized least squares.

More than two hundred 50-pixel-wide, circular imagery regions with centers within a

subplot, and equally distributed among cover types were analyzed in the process. The

range of empirical variograms was determined automatically as the shorter lag distance

for which the slope of line segments connecting vertices of a spline (Hastie and

Tibshirani, 1990) fitted to the empirical variogram was lower than 5%. The lag increment

was set to one third of a pixel.

Fitting of the spline to the empirical variogram was a step necessary towards

process automation. Attempts to determine the range of empirical variograms as the lag

distance for which the corresponding semivariance estimate declines for the first time

(Franklin et al., 1996) proved inappropriate because they were susceptible to sporadic

semivariance underestimation for short lags. Such a circumstance can be observed at the

post-trend-processed semivariance estimates in Figure B.2 between lag = 2.66 and

lag = 3.00. Using the spline in that case allowed restoring the automatically computed
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range from 3.00 distance units (pixels) to 5.00, which coincides with the range

determined with visual inspection of the variogram.

Analysis revealed that the instances of unbounded variograms calculated using the

original DNS, were eliminated when either ordinary or generalized lease squares trend

removal was used. In 83% of the total number of imagery regions processed, both

regression models produced identical variogram ranges and in 13% the difference of

computed range was 1 lag increment (i.e. 1/3rd of a pixel). For 4% of the regions, the use

of ordinary and generalized least squares regression on region DNS produced variogram

3rds of aranges that differed in magnitude between 2 and 5 lag increments (2/3rds and 5/

pixel respectively). However, no patterns in the spatial distribution ofregions for which

discrepancies in the range ofDN variograms calculated after processing with ordinary

and least squares regression could be established. Thus was decided to use ordinary least

squares regression for the first-order DN autocorrelation removal. Variogram ranges

computed automatically on the trend-processed imagery were used to determine

appropriate window sizes for subsequent LMF imagery processing.
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Figure 13.1. (a,b) Portrayal of original digital numbers Z(XU) for row i and columnj

indices of the NIR band for a coniferous stand and corresponding omnidirectional

empirical variogram.(c, b) Portrayal of digital numbers after image linear translation and

corresponding empirical variogram. (e, f, g). Portrayal of digital numbers. after processing

original imagery with surface D(x,~J) approximating an imaginary anisotropic kernel

similar to those typically embedded within BRDF normalization models, and

corresponding empirical variogram.
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Figure B.2. NIR band image of a Red Pine subplot and empirical variograms computed

by using the DNS of pixels within the subplot prior to and after processing for removal of

first order autocorrelation. Circle in orange superimposed on the image denotes the

subplot boundary. Lines in the variogram plot denote a spline fit on the estimates of

semivariance.
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Figure 8.3. Empirical variograms and fitted splines of post-trend-processed imagery

depicting a Red Pine subplot.
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