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ABSTRACT
ESTIMATING FOREST CANOPY ATTRIBUTES VIA AIRBORNE,
HIGH-RESOLUTION, MULTISPECTRAL IMAGERY
IN MIDWEST FOREST TYPES
By

Demetrios Gatziolis

An investigation of the utility of high spatial resolution (sub-meter), 16-bit,
multispectral, airborne digital imagery for forest land cover mapping in the
heterogeneous and structurally complex forested landscapes of northern Michigan is
presented. Imagery frame registration and georeferencing issues are presented and a
novel approach for bi-directional reflectance distribution function (BRDF) effects
correction and between-frame brightness normalization is introduced. Maximum
likelihood classification of five cover type classes is performed over various geographic
aggregates of 34 plots established in the study area that were designed according to the
Forest Inventory and Analysis protocol. Classification accuracy estimates show that
although band registration and BRDF corrections and brightness normalization provide
an approximately 5% improvement over the raw imagery data, overall classification
accuracy remains relatively low, barely exceeding 50%. Computed kappa coefficients
reveal no statistical differences among classification trials. Classification results appear
to be independent of geographic aggregations of sampling plots.

Estimation of forest stand canopy parameter parameters (stem density, canopy
closure, and mean crown diameter) is based on quantifying the spatial autocorrelation

among pixel digital numbers (DN) using variogram analysis and slope break analysis, an
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alternative non-parametric approach. Parameter estimation and cover type classification
proceed from the identification of tree apexes. Parameter accuracy assessment is
evaluated via value comparison with a spatially precise set of field observations. In
general, slope-break-based parameter estimates are superior to those obtained using
variograms. Estimated root mean square errors at the plot level for the former average
6.5% for stem density, 3.5% for canopy closure and 2.5% for mean crown diameter,
which are less than or equal to error rates obtained via traditional forest stand cruising
by experienced personnel. The employed methodology entails parsimonious
parameterization and is supportive of automation. Overall cover type classification
accuracy increases from approximately 70% when using original imagery DNs to over
85% when band registration problems are corrected and variable brightness regimes
among imagery frames are normalized. Limiting cover type classification to pixels
identified as tree apexes is found to improve traditional classification approaches that
use all pixels by 35%.
Image-texture analysis based on intensity co-occurrence provides a quantitative
evaluation of second order image texture features that carry discriminatory potential for
Jorest cover type classification purposes. Procedure development and evaluation is based
on two independent data sets. Classification accuracies exceeding 60% can potentially be
achieved by using only image texture information. In its current level of development,
procedure applicability may be limited because of substantial computational cost,

absence of computer software for automation, and the complexity of methodologies

integral to the feature selection process.
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1.1. Background

Remote sensing has been synoptically defined as the detection, recognition, or
evaluation of objects by means of distant sensing or recording devices. Formally, the
American Society for Photogrammetry and Remote Sensing defined remote sensing as
“the measurement or acquisition of information of some property of an object or
phenomenon, by a recording device that is not in physical or immediate contact with the
object or phenomenon under study” (Colwell, 1983). In forestry, the information that can
be gleaned from visual interpretation of analog aerial photographs is well-understood,
frequently used, and routinely integrated in forest planning and management. Information
extracted from digital remote sensing data, however, is less commonly used. Many forest
managers maintain that the majority of digital remotely sensed data and the methods of
analysis are too complex to be of adequate utility to them. Furthermore, the effective use
of digital imagery often requires substantial investment in technological infrastructure.

Today, more than ever, forest management challenges are multiscale and
intricately linked to society’s need to measure, preserve, and manage for multiple, often
incompatible, values. Population growth and climate change are likely to catalyze these
ever increasing pressures on forests. The forest ecosystem itself is complex and
multifaceted. Understanding its functional structure requires information at a range of
spatial and temporal scales. Remote sensing information, integrated with other spatial and
non-spatial data sets, could form the information base upon which sound forest
management decisions can be made.

Remotely sensed imagery on its own is probably of little value to forest managers.

It is rather the interpretation of information extracted from those data that is used to
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address management challenges. Converting data to information is not a straightforward
task. It requires an understanding of the laws of physics and principles that govern the
formulation of remote sensing data and expertise in selecting the appropriate data
analysis methodology. It is often assumed that if an element of interest can be “seen” in a
digital remote sensing image, there would shortly be an automated procedure capable of
translating that visual impression into a usable piece of information. Practice has shown
that such optimism if frequently unfounded.

Forestry remote sensing began with manual methods of analysis applied to analog
aerial photographs (Silva, 1978). Relative to information content, analog aerial
photographs are inexpensive and easy to use (Caylor, 2000). Comprehensibility and
economic considerations make airphotos the most common form of remote sensing in
forestry. As new types of imagery and analyses emerge, digital remote sensing will
become increasingly useful for forest managers (Wynne et al., 2000). Clearly, the onus is
on the remote sensing community to provide forest managers with examples of
applications that are cost-effective and easily implemented. These considerations are the
primary motivation for this dissertation. Using remote sensing data carrying some of the
most advanced characteristics currently available, a series of methodologies were
developed or refined that translated these data into information needed in operational
forest management. The chapter begins with an outline of the dissertation’s objectives.
Then forest attributes retrievable by remote sensing are discussed, and characteristics of
imagery acquisition systems are presented. A brief overview of the current and projected

operational remote sensing applications follows. Finally, image processing and analysis
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methods emphasizing the extraction of forest canopy characteristics and inventory

variables are introduced.

1.2. Dissertation Objectives

The goal of this study was to evaluate the utility of airborne, high resolution,
multispectral digital imagery for forest management decision-making in the structurally
complex forested landscapes of the upper Midwest. To ensure that the findings would be
representative, all dominant cover types in the region were included in the investigation.
Development and testing of methodologies was based on detailed and precise field
observations. The potential for automation, where promising, guided the methodology
choices.

The three objectives of this dissertation were:

e Evaluate the influence of airborne image acquisition
characteristics/idiosyncrasies on traditional, spectrally-based forest
classification efforts.

e Assess the ability of image spatial analysis to reveal the horizontal
structure of the forest canopy and to enhance classification accuracies.

e Evaluate the role image texture can have in stand classification.

1.3. Formation and Characteristics of Remote Sensing Data

A basic understanding of the characteristics of remote sensing data is essential
when considering its relevance to providing forest information products. In an ideal
world, a remote sensing image would be formed only from the energy reflected from a

target, and received by a perfect sensor. In practice, image formation is a rather
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complicated process. Gerstl (1990), Richard and Jia (1999), and Jensen (2000) offer a
summary of the principles that govern the interaction of light energy with forests, as
those are manifested in digital imagery. Other sources such as the energy reflected by
objects in the vicinity of the target and the contribution from atmospheric constituents are
exogenous to target radiance. The image formation process is also affected by the spectral
(wavelength-range specific) reflectance characteristics of the target, viewing geometry
(which describes the position of the sensor relative to the target), and illumination
geometry (which for optical remote sensing describes the position of the sun in relation to
the target). To complicate the process further, spectral target reflectance, and viewing and
illumination geometry factors are not independent. Rather, they operate synergistically
and regulate target reflectance in a spatial pattern referred to as the bi-directional
reflectance distribution function (BRDF). Forests in particular, because of their
complicated structure, cause a strongly directional reflectance. Accounting for the effects
of illumination geometry, atmosphere, and BRDF, would help the interpretation of
remote sensing image in forest applications.

Remotely sensed data are typically presented to the user in the form of digital
numbers (DN). Digital numbers are the quantification of energy recorded by the sensor
via an analog-to-digital converter. Because DNs are consistent within the imagery, in the
sense that higher DNs correspond to a higher amount of energy or density of photons
intercepted in unit time, they can be used in image analysis without further processing
(Franklin and Giles, 1995). The assumption made is that analog-to-digital converters
translate photon density to DNs monotonically. A more rigorous assumption is that

photon density and DN are related linearly. The coefficient that describes the
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relationship is commonly known as the gain of the sensor. Knowing the gain coefficient
facilitates imagery comparisons acquired using the same or different sensors at different
times, and the comparison between satellite, airborne and field-based sensor
measurements. Most satellite sensors provide calibration information embedded in the
header of the imagery. Digital airborne imagery acquired by commercial vendors often
completely lacks information on sensor calibration thereby depriving the user of the
opportunity to fully explore the information content of the imagery. The implications
might be more serious for multispectral array scanners, which are in essence a collection
of theoretically identical detectors arranged on a grid. Many array scanners currently in
use, including those employed in the acquisition of the imagery used in this dissertation,
are equipped with a million or more such detectors across the matrix and the assumption
that all of them are operationally identical is undoubtedly improbable. Calibrating
detector is practically infeasible though, and image analysis usually proceeds assuming
that sensitivity and gain differences among detectors are negligible.

Sensor resolution is a compound term comprising spectral, spatial, radiometric,
and temporal dimensions. Spectral resolution denotes the number and width of specific
wavelength intervals, known as bands or channels, of the electromagnetic spectrum to
which the sensor is sensitive. Particular intervals, sometimes as narrow as Snm, are
optimal for uncovering certain biophysical information. Broadband multispectral sensors
are designed to detect radiance across a 50 to 100nm, usually non-overlapping, intervals
in a few different areas of the spectrum. Hyperspectral sensors detect radiance over very

narrow intervals (e.g., 2 to 4 nm wide).
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Spatial resolution is the projection of the detector element through the sensor
optics onto the landscape forming the instantaneous field of view (IFOV). It corresponds
to the smallest separation distance between objects that can be distinguished by the
sensor. The higher the spatial resolution the smaller the objects that can be detected. The
spatial resolution of airborne platforms is dependent on the flight altitude. Irrespective of
altitude, the energy intercepted by a single detector, is represented, after its quantification
to DN, as an image or picture element (pixel).

Frequently, remote sensing data are distinguished in terms of their spatial
dimension as of L(ow)- or H(igh)-resolution (Strahler, 1986). This characterization is in
reference to the size of the object(s) of interest. It is possible the same imagery set to be
L-resolution for one application and H-resolution for another. In forestry remote sensing,
typical satellite data are L-resolution (>20-30m pixels). In this case, the dominant scene
objects (trees) are smaller than the pixel size and the sensor records the composite
radiance emanating from a collection of trees within the pixel area. Airborne data are
usually H-resolution ( <2m pixels), with a single, average-sized tree crown being larger
than the pixel size. Therefore, radiance measured for a given pixel location is likely to be
directly related to the reflectance characteristics of an individual tree crown or portion of
a crown.

Radiometric resolution is related to the sensor’s ability to detect differences in the
signal strength of intercepted energy in specific wavelengths. Greater radiometric
resolution allows smaller differences in reflectance to be discriminated. Sensor

radiometric resolution in expressed in bits (2") where the value of # is usually between 8
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and 16. Thus, a 16-bit sensor is theoretically capable of discriminating 2'® (= 65,536)
radiance increments within its sensitivity range.

With the exception of temporal resolution (the ability to provide repeated
coverage of a particular area), which can be considered as an independent dimension,
there are certain trade-offs among the remaining three imagery resolution dimensions. An
increase in the number of bands or channels is often accompanied by a decrease in spatial
resolution. To acquire more or narrower bands, a sensor must view an area on the ground
for a longer period of time, and therefore, the size of the area viewed increases from a
constant altitude. If the radiometric resolution is increased so that smaller differences in
radiance can be detected, then the spatial resolution, the number of bands, the narrowness
of the bands, or all three, must be reduced. This is because the amount of energy that is
reflected from the area viewed is fixed. If the amount of energy is divided into too many
bands (spectral resolution) using many increments (radiometric resolution) over too small
an area (spatial resolution), then the energy signal becomes unacceptably weak compared
to the always-present system noise. In sensor design, it is the signal-to-noise ratio that

should be maximized, rather than any of the spectral, spatial, or radiometric resolutions.

1.4. Remote Sensing Platforms

Digital remote sensing data of forests can be acquired from field-based, airborne,
and satellite platforms and might comprise a variety of imagery types (Chen et al., 1991)
or non-imaging spectroscopy measurements (Miller et al., 1976). Many types of ground
platforms have been used in remote sensing of forest canopy spectral reflectance
(Blackburn and Milton, 1997). Field spectroscopy can be used in remote sensing in at

\east three ways (Milton et al., 1995): 1) to provide data for developing and testing of
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models of spectral reflectance, 2) to collect calibration information for airborne or
satellite image acquisition (Wulder et al., 1996), and 3) as a remote sensing tool of its
own (Blackburn, 2000).

A variety of free-flying airborne platforms have been used in collecting remote
sensing observations. The ones most commonly used include low- and high-altitude
flying aircrafts and satellites. Sensors on airborne platforms typically offer greatly
enhanced spatial and spectral resolution over their satellite counterparts, coupled with the
ability to more closely control experimental design during image acquisition. For
example, they allow control over flight path azimuth or they can operate under clouds
and at different altitudes from low and slow survey flights (McCreight et al., 1994) and to
high-altitude reconnaissance flights (Moore and Pozlin, 1990). Airborne sensors usually
exceed satellite system capabilities in terms of their combined spatial resolution, spectral
resolution, and signal-to-noise ratio performance (Anger, 1999). As a result, satellite
imagery cannot be expected to replace digital airborne imagery by providing the same
type of forestry information (Roller, 2000). Basically, airborne data are of higher quality.
Airborne sensors allow longer exposure or dwell times, they often offer a customizable
sampling of the electromagnetic spectrum to fit the needs of the user, and their
measurements can be calibrated and atmospherically corrected by simultaneous ground-
based measurements over deployed reflectance targets. Compared to satellite imagery
however, airborne digital imagery has higher acquisition cost per unit area covered,
inferior sensor calibration, smaller area footprint, often ambiguous data documentation,
and only rarely availability of imagery archives at frequencies higher than once in 5-10

years.
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Much of the cost of remote sensing is embedded in the analysis of the imagery to
produce information products. Generally, imagery quality is more important that the
initial acquisition cost, particularly in applications where the final cost of the information
product is critical (Agner, 1999). Often a better quality, and therefore more expensive, set
of images can yield information more economically, simply because it requires less
processing. The challenge is to optimize the choice of an imagery type to meet the needs
of the user (King, 1995). Bergen et al., (2000) presented a list of criteria that can be used
to assess the cost-effectiveness of information using the characteristics of the derived
information and the cost of producing such information. In cases where remotely sensed
information mandatory for the development of management plans can replace what is
typically acquired with field visits, the cost savings can be very significant. Even if
remote sensing information can only partially replace field-collected information, the use

of remote sensing technology could still be economically prudent.

1.5. Imagery Calibration

Remote sensing data contain a series of distortions produced by sensor
imperfections, atmospheric effects, viewing and illumination conditions, and topography.
In general, in digital analysis, failure to normalize these radiometric and geometric
distortions could lead to inaccurate remote sensing output products (Yang and Vidal,
1990), especially in the presence of significant relief (Sandmeier and Itten, 1997).
Radiometric imagery correction can be a multi-stage process in which DNs are in
succession converted to at-sensor radiances, at-sensor reflectances, and finally to target
reflectances using atmosphere and illumination models (Sandmeier and Itten, 1997). All

steps are not always necessary. Often, only internally consistent calibration to at-sensor
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radiances (Wilson et al., 1994; Wolter et al., 1995) is sufficient. In some cases there may
be no need to perform any radiometric correction at all (Cohen et al., 1998). The number
of image radiometric correction stages that should be implemented is a function of the
availability of calibration information, analysis objectives, and the experience of the
analyst.

The complexity of atmospheric and topographic effects increases by the strongly
directional reflectance patterns of forest canopies. Because BRDF effects are target-
specific, information on canopy characteristics is required prior to its correction. At the
same time, extracting canopy information such as cover type requires atmospheric and
BRDF effects to be normalized first, which gives rise to a tautology. To avoid the
tautology, it is common practice to assume that canopies exhibit Lambertian behavior
(Sandmeier and Itten, 1997), which in turn renders topographic and atmospheric
corrections only marginally successful. Geometric distortions are related to sensor and
imaging geometry and topography (Fogel and ’l;inney, 1996). Corrections can applied to
provide locational accuracy (Burkholder, 1999), but they necessitate image resampling
which is known to alter pixel spectral characteristics proportionally to the spatial relation
between the input and output grids.

The forms of imagery distortions mentioned above are usually more pronounced
in imagery acquired by airborne platforms, especially those flying at low altitudes,
because of the large parallax present and the sometimes substantial variation in platform
altitude, velocity, and attitude. Distortion correction requires a substantial effort
investment by experienced analysts, especially for digital airborne imagery acquired

using array scanners. Contrary to satellite imagery, where each image frame typically
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encompasses tens of thousands of hectares, airborne digital imagery frames extend over
an average of only 100 hectares. Hence, airborne imagery covering a watershed or a
National Forest, usually comprises several hundred to thousand frames. Such large
imagery frame sets have coordinate systems of variable orientation, are characterized by
varying target reflectance and brightness regimes. In the forests of the upper Midwest in
particular, which are characterized by intense fragmentation and cover type variability,
and by frequent presence of swamps, wetlands, and lakes, such brightness variability
even between image frames acquired in sequence is prominent. Although in theory
brightness variability could be easily normalized across the entire imagery set by using
the spectral gain factor effective during each image frame acquisition, practical
limitations originating at the sensor’s sensitivity adjustment at the analog system
component (i.e. prior to signal conversion from analog to digital format), typically result
in imagery sets for which the per-frame gain factor remains unknown. To date, there are
no known examples of research investigations that attempted a simultaneous correction
of BRDF effects, geometric distortions, and variable brightness regimes using more than
a handful of array scanner imagery frames. Perhaps the difficulty in correcting those
distortions has discouraged such efforts; or perhaps the preoccupation with the relatively
coarse resolution spatial imagery obtained from satellite platforms has prevented a more
concerted effort in the airborne arena. Those issues are addressed in this dissertation. A
methodology was developed, capable of substantially reducing distortion magnitude and

allowing for significant improvements in the quality of subsequent analysis products.
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1.6. Current and Projected Operational Forestry Remote
Sensing Applications

Remote sensing has the potential of playing a critical role in forest management in
many different settings — operational forest cover mapping, forest structure and change
analysis, and forest inventory assessment. A minimal list of probable, near-future
operational forest remote sensing applications could include (Wynne and Carter, 1997):
a. Forest cover type characterization, b. Determination of forest stand conditions and
forest health, c. Site characterization, and d. Fire monitoring. If emphasis is shifted from
applications to the fundamental concepts of digital remote sensing, additional
applications in forestry could be considered operational (Cohen et al., 1996): e. Mapping
forest cover, f. Measuring and monitoring structure, function, and composition of
vegetation, and g. Detecting change in these conditions over time. An additional set of
applications appears to be on the threshold of operational status: landscape structure
modeling, defoliation monitoring, and biophysical forest inventory. It is expected that by
2008 a complete set of operational remote sensing applications in forestry, will become
increasingly apparent, with major contributions primarily from analysis of high-

resolution imagery (Wynne and Oderwald, 1998).

1.7. Analysis Methods of Remotely Sensed Data in Forestry

Most forestry remote sensing analysis methods are either experimental or
normative. The former operate on the assumption that the control of variables influencing
a phenomenon under investigation is feasible. In forest remote sensing applications the
experimental method is used to improve our understanding of the relationship between a

forest condition of interest and the information available about that condition extracted
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from remote sensing data. In this context, the analysis can be viewed as an experiment
where the remote sensing data are the dependent variables and the forest condition(s) of
interest form the independent variables. If control could be exerted on all the independent
variables, then it could be expected that a strong relationship be identified between the
independent and dependent variables. The identified relationship could then be treated as
a precise and accurate predictive model that, when inverted, could provide reliable
estimates of the forest condition under investigation using only remote sensing data
(Bracher and Murtha, 1994).

Controlling all confounding variables is perhaps feasible in a laboratory setting. In
an actual image acquisition mission over a forested area though, it is impossible to know
all the variables that influenced the remote sensing measurements. These influences
cannot be uniquely determined, but can certainly overwhelm the signal from the
condition of interest. Hence, the actual relationship between a forest condition and
remotely sensed data is typically much less predictable than those obtained by standard
experimental methods (Blackburn, 2000). Because of this limitation, the normative
(Haring, 1992) method is often employed.

Under the normative approach there is typically a lack of control of the
independent variables that influence the image characteristics. This makes the
relationships found subject to caveats and constraints that must be carefully documented
and described. Although the normative approach supports the development of
relationships under less than ideal conditions, it suffers from the lack of generality that
could lead to highly spurious local insights, especially where there is very little

theoretical foundation in support of an identified relationship.
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Both experimental and normative remote sensing analysis methodologies are, in
essence, modeling efforts. A unique characteristic of the remote-sensing-based models is
that, in their inverted mode, all their independent variables are derived from sensor
measurements of energy reflected (or backscattered) from an object or condition. The
models operate under the implicit assumption that object or condition variates cause a
predictable variation on sensor measurements. In digital remote sensing over forested
landscapes this assumption may not necessarily hold. For example, the energy reflected
from a forest stand canopy in a leaf-on condition, is basically unaffected by the stand
stem wood mass. If the objective were to estimate wood biomass using remote sensing, it
would seem more reasonable to use one or more surrogate variables (e.g., crown
diameter, tree height, species association) for which more accurate quantitative estimates
can be derived using remote sensing data and then use these surrogate variables to predict
stand woody biomass. Such considerations have raised concerns that perhaps the
application of remote sensing technology to routine forest management is not feasible, at
least in the short term (Battaglia and Sands, 1998). From a remote sensing analyst’s
perspective, it is frequently the absence of explicit and complete problem definition that
has precluded wide acceptance of remote sensing as a forest management tool (English
and Dale, 1999). Despite reservations by certain forest managers, there appears to be a
general consensus that the synoptic and repetitive biophysical vegetation information
requirements for large geographic areas over long periods of time can only be provided
by remote sensing.

Several studies in the 1980s established that low-resolution satellite data can be

classified for forest cover, stand age, and crown closure (Walsh, 1980; Horler and Ahern,
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1986). In most studies since then, correlations to height, basal area, and biomass were
good to moderate (e.g., Kovats, 1997; Shettigara and Sumerling, 1998); correlations to
density, size diversity, mean diameter, and number of species were moderate (e.g., Roy et
al., 1996; Cohen et al., 2001; Franco-Lopez, 2001); and correlations to understory
measures such as number of seedlings, and understory cover were weak (e.g., Stenback
and Congalton, 1990; Jakubauskas and Price, 1997; Hall et al., 2000). Even the better
correlations though were usually too weak to allow them to be used in forest management
and planning. The main problem is rooted in the fact that the optical sensor only detects
reflectance from the top of the canopy (Holmgren and Thuresson, 1998) effectively
precluding assessment of attributes that are physically demonstrable only beneath the
canopy. In many forests, crown closure will reach a maximum while basal area and
structural complexity will continue to increase, but the optical remotely sensed signal,
particularly from low-resolution imagery, is not significantly affected by these changes
(Franklin, 1986).

High spatial or spectal resolution digital imagery is subject to similar restrictions
in terms of its beneath-canopy, forest-stand structure information content. However, it
offers a much more detailed view of the horizontal structure of the canopy. In particular,
it provides explicit information on the amount and spatial distribution of shadowing in
the stand, which can exert a dominant influence on the stand’s reflectance (St-Onge and
Cavayas, 1995). A pixel in this type of imagery would characterize only a small part of
the tree crown, shadow, or the understory. The spatial detail present in high-resolution
imagery allows individual tree-crown delineation (Gougeon, 1995; Brandtberg, 1997),

and could improve estimates of crown closure, stem density, and species composition by
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exploring image texture (Gerylo et al., 1998). Identification of individual trees has been
successful with images having spatial resolution of 0.6m or smaller, but conceivably will
work well enough with 1m satellite data to justify more extensive use and development
(Wulder, 1999). Most investigations of individual tree identification have been reported
in pure or mixed conifer stands where the conical shape of crowns generates abrupt
distinctions between sunlit and shadowed portions of crowns and facilitates accurate tree
identification. In deciduous stands, tree crowns usually defy formal shape conventions,
have multiple crown maxima and less distinct edges, making tree identification much
more challenging (Warner et al., 1999). Although imagery with 1m or finer spatial
resolution has been available from airborne platforms for decades, and is now becoming
available from satellite platforms, there are very few examples of projects using this type
of imagery for stand structure, species composition, and crown closure mapping.

In this dissertation the normative analysis approach was used. The concemns
aforementioned and related to the ability of optical remotely sensed imagery to provide
accurate and reliable information on forest structure, even in the presence of high
resolution imagery, guided the early stages of dissertation objective formulation. In
response to those concerns, analyses focused on canopy cover type classification and on
quantifying canopy surface attributes including stem density, canopy closure, and crown
size. Were other types of forest structure information to be pursued (e.g., tree height,
composition of understory vegetation, basal area, etc.), non-optical remotely sensed
imagery (microwave, lidar) would have been explored as more promising for delivering
those types of information (Dubayah and Drake, 2000; Fransson et al., 2000). To improve

the chances of regional methodology applicability, analyses techniques were based on
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canopy morphological characteristics extracted from the imagery, rather than, for

example, identified mathematical relationships.

1.8. Image Information Extraction by Spectral Analysis

The extraction of information from remotely sensed data is usually based on
differentiating spectral response patterns in the landscape. The three more common types
of information of interest in forest management applications are: a). Continuous forest
variable estimation, b). Forest classification information, and c). Forest change or
difference information. A plethora of image analysis techniques has been proposed for
deriving such information, and each technique has spawned numerous options, that will
likely continue to evolve. A common characteristic among analysis methods is that they
are oriented towards providing information at the stand level, which should not come as a
surprise given that most methodologies were developed for L-resolution imagery. Using
essentially those same techniques with H-resolution imagery can potentially be
imprudent, given that the information content in H- and L-resolution imagery is
organized at different spatial levels. To confirm the hypothesis that indeed high spatial
resolution imagery is a unique information source for forestry applications that requires
the use of specific analysis methods, this research investigated the second type of forest
applications mentioned above (forest classification) in a dual spatial scope: at the stand-
level and at the individual tree level.

Continuous variable estimation occurs primarily by one of the few common forms
of inversion modeling, including regression analysis, neural networks, reflectan:e
modeling, or radiative transfer modeling. These approaches follow traditional, albeit

sometimes unconventional, statistical probability design where two sets of variables, one

18



derived from the imagery and the second from field observations or ancillary
information, are related. Because however, these methods do not account for the position
of the pixels within the forest stand examined, and offer no theoretical justification for
the form of the models produced, the accuracy of the continuous variables they estimate
is largely dependent on the quality and comprehensiveness of the input training data
(Salvador and Pons, 1998) and tends to drop substantially when used at stand conditions
other than those used to developed the models. To improve the robustness of derived
continuous variable estimates in this research, model formulation was spatially explicit,
in the sense that the spatial relationships among adjacent pixels determined model output.
Positionally explicit information for model development and evaluation, however,
is rather costly, especially at the individual tree level. Very few cases are known (Warner
et al., 1999; Pouliot et al., 2002; Wulder et al., 2002) for which spatially explicit stem
information was used, and all involved a single stand. Tree stem location information
probably suffices for an evaluation of methods aiming at predicting stem density but is
likely inadequate for models developed to estimate canopy structure variables, such as
canopy closure and mean tree diameter. Those concerns led to an ambitious endeavor that
by using survey equipment and methodology mapped precisely the horizontal canopy
structure of plots installed in 34 stands, stratified across major cover types of the Midwest
region. It was assumed that the detailed field observations could lead to interesting
insights related to how canopy structure is manifested in high-resolution imagery and
permit canopy structure model tuning to account for those insights. Whether the expenses

associated with such an endeavor were justified, can be judged by observing associated
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research findings, not only in terms of estimate accuracy obtained but also in regard to
the value and generalized applicability of the methodologies employed.

A major trend in remotely sensed data analysis in forestry has been the emphasis
on automation. However, it is still the case that most techniques, even when supported by
software package routines, require substantial human intervention, judgment, and
guidance in order to operate successfully, prerequisites that defy automation. The
importance of automation is more pronounced in the analysis of high-resolution imagery
in part because of the small footprint and therefore the large number of image frames that
need to be processed. Possibly the only area in forestry remote sensing where automation
and standardization has been achieved is the assessment of classification accuracy in the

form of a contingency table or confusion matrix (Congalton and Green, 1999).

1.9. Beyond Spectral Analysis

Despite numerous achievements associated with information product extraction
from digital imagery in forestry, the accuracy of product attributes are usually inferior to
those achieved by experienced interpreters of analog aerial photographs. This might be,
in part, because digital imagery rarely supports stereoscopic view of the forest but
probably also because attribute value estimation is usually based strictly on the per-pixel
spectral response of the forest. Photointerpreters, on the other hand, in addition to tonal
characteristics, are accustomed to using a variety of textural, pattern, shape, object,
shadow, and topographical evidence. Improvements in the use of these texture/context
descriptors in digital remote sensing analysis may allow canopy structure parameter
estimates obtained from digital imagery to rival the accuracy levels that manual

photointerpretation achieves (Green, 2000). Development of such methodologies is
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emphasized by the need for forest classification and inventory parameter product
integration with other forms of digital information usually provided via Geographic
Information Systems, and the steady decline in the number of experienced
photointerpreters available to perform those tasks.

One of the most promising alternatives to spectrally-based analysis of digital
imagery in forestry is to consider classification in a spatial context. The premise is that a
pixel’s most probable classification, when viewed in isolation, may change when viewed
in some context (Haralick and Joo, 1986). The simplest context classifiers use
neighboring pixels to decide, confirm, or change the classification or labeling of the pixel
at the center of the neighborhood. Attempts to broaden context classifier algorithms have
included incorporating the spatial correlation function between pixels (Khazanie and
Crawford, 1990) and contextual parameters (Chen, 1999). These concepts are closely
related to image texture analysis. Image texture is the quantification of the spatial
variation of image tones, often referred to as gray levels, that defies precise definition
because of its perceptual character (Hay et al., 1996).

Human vision possesses a powerful innate ability to recognize textural
differences, although the complex neural and psychological processes by which this is
accomplished have so far evaded detailed scientific explanation. The interest in
quantifying texture in digital domains has led analysts to focus on the structural and
statistical properties of textures (Haralick, 1986). It is expected that by combining per-
pixel and area-based texture processing, more accurate classifications of remotely sensed
imagery can be generated (Ryherd and Woodcock, 1997). Parallel to the use of texture in

classification, interest has developed in texture itself as a variable in forest applications
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(Coops and Culvenor, 2000). Texture has been shown to be directly related to different
aspects of forest stand structure, including age, density, and leaf area index (Wulder et
al., 1996; St-Onge and Cavayas, 1997).

Image texture, however, is an abstract term. Its quantification has been attempted
in a variety of disciplines including machine vision, pattern recognition, and remote
sensing, resulting in a large number of approaches and an even larger number of texture
metrics. Their value for forestry remote sensing applications is, at large, unknown.
Today, there are few guidelines to help analysts decide which of these approaches and
metrics may be better suited, if suited at all, for a particular forestry application. A
chapter of this dissertation is devoted in providing such guidelines towards forest cover
type classification using a branch of texture quantification methods known as gray level
co-occurrence analysis. Instead of simply relaying analysis results for the metrics used in
the investigation, as is the usual case, the chapter provides a detailed presentation of

methodology options encountered at every step of the multistage procedure employed.

1.10. Dissertation Outline

The current chapter described the motivation behind the dissertation research, the
study objectives, and a brief exposure to the factors that affect remote sensing imagery
formation, calibration, and analysis used in forestry applications. Chapter 2 deals the
detection, quantification, and correction of a series of imagery imperfections that are
customarily encountered in a digital airborne imagery set. It presents a novel approach
that allows for a simultaneous correction of BRDF and variable brightness regimes
among imagery frames and a technique for reducing band registration problems. The

impact of geometric and radiometric imperfections on the accuracy of forest cover type
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classification based on the popular, maximum likelihood method is assessed by
comparing classification results obtained using the original imagery set and one obtained
after correction/ normalization of the imperfections. It is shown that although corrections
do improve classification results, the classification accuracy even for the corrected set
remains too low to be of any utility.

Chapter 3 describes a parametric method known as variogram analysis and the
development of a non-parametric metric, both capable of quantifying pixel brightness
autocorrelation and used for the identification of tree apexes, the number of which is
subsequently converted to an estimate of stand density. Further investigations of canopy
reflectance patterns based on identified tree apexes, yield estimates of canopy closure and
mean crown diameter. Estimate accuracies were found to be comparable, if not superior,
to those obtained with field observations, especially when tree apexes are identified using
the non-parametric approach. The Chapter also describes cover type classification
scenarios involving only pixels identified as tree apexes. It is shown that a remarkable
accuracy improvement of more than 30 percentage points is achieved compared to the
traditional, non-spatially explicit approach used in Chapter 2. Classification accuracies
achieved using the corrected imagery (>85%) are found to approach operational status.

Chapter 4 describes the use of image texture for forest cover type classification
purposes. It introduces a multistage procedure, which shows that the quantitative
evaluation of texture-related cover type discrimination power associated with image
bands, necessary image pre-processing choices, texture measures, and finally texture
features can provide classification accuracies similar to those obtained using spectral

classification of raw (uncorrected) imagery.
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Chapter S provides a critique of analysis methods used in this dissertation and an
evaluation of analysis results. It also describes a framework that can be used to combine
spectral, textural, and canopy structural characteristics for potential improvements in
cover type classification accuracy. Insights regarding field data collection methodologies

and a projection of additional research investigations in the study area are also presented.
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CHAPTER 2

AN EVALUATION OF BAND REGISTRATION, BRIGHTNESS VARIABILITY, AND
BI-DIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION EFFECTS ON
FOREST COVER TYPE CLASSIFICATION USING HIGH SPATIAL RESOLUTION,
MULTISPECTRAL IMAGERY
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Abstract

An investigation of the utility of high spatial resolution (sub-meter), 16-bit, multispectral,
airborne digital imagery for forest land cover mapping in the heterogeneous and
structurally complex forested landscapes of northern Michigan is presented. The Chapter
addresses imagery frame registration and georeferencing issues and introduces a novel
approach for bi-directional reflectance distribution function (BRDF) effects correction
and between-frame brightness normalization. Maximum likelihood classification of five
cover type classes is performed over various geographic aggregates of 34 plots
established in the study area that were designed according to the Forest Inventory and
Analysis protocol. Classification accuracy estimates derived from confusion matrices
show that although band registration and BRDF corrections and brightness
normalization provide an approximately 5% improvement over the raw imagery data,
overall classification accuracy remains relatively low, barely exceeding 50%. Computed
kappa coefficients reveal no statistical differences among classification trials.
Classification results appear to be independent of geographic aggregations of sampling
plots. The low overall classification accuracies are attributed to the cover type-invariant

spectral properties of crown portions in shadows.

2.1. Introduction

The most common use of digital remote sensing data in forestry is for cover type
classification of forested landscapes. Its importance is demonstrated by the fact that there
are forest classification precedents in virtually all the major biomes of the world
(Darvishsefat, 1995; Foody and Hill, 1996; Hansen et at. 2001). The purpose of the

classification effort is often to allow contiguous areas covered with forests to be depicted
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in their natural state, thus making a single classification scheme appropriate for these
areas. Level II classification of Anderson et al. (1976) is an example of a generic scheme
often imposed in such cases. In practice though, rarely would a general purpose
classification serve specialized purposes equally well (Bailey, 1996), resulting in forest
cover type classification challenges in certain areas of the world to be better understood
than in others because of the extensive prior work performed there or the presence of
long-term research initiatives (Shoshany, 2000).

Most remote sensing-based forest cover type classification efforts use L-
resolution multispectral satellite imagery (Strahler et al., 1986), in part because of the
reasonable cost and extensive archives many satellite platforms offer (White et al., 1995,
Archard et al, 2001; Woodcock et al., 2001), and have traditionally been spectrally based.
Pixel values in L-resolution imagery correspond to the composite reflectance of many
objects and therefore mask the spatial arrangement of objects within the pixel and allow
only broader spatial patterns to be identifiable, thereby limiting the utility of spatial and
textural investigations to the stand level or beyond. On the other hand, operational forest
management decisions are almost exclusively based on information extracted from
analog infrared or color infrared aerial photographs (Wynne and Oderwald ,1998). The
use of analog aerial photographs in forest classification, however, is subject to
constraints, including availability of experienced photointerpreters, lack of photographic
enhancement capabilities, and difficulty in photographic reproduction, mosaicing, and
overlay with other forms of spatial data. The increasing popularity of digital airborne
imagery over the last decade can be regarded as an attempt to combine the merits of

satellite L-resolution imagery with the rich information content of large-scale
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photography, and the flexibility of processing options characteristic of digital
information. Recent technological advancements have allowed H-resolution imagery
(Strahler et al., 1986) to be available even from satellite platforms (e.g. IKONOS-Space
Imaging, QuickBird-Eurimage), at least at the panchromatic level, thus allowing growing
optimism that improvements in our ability to extract enhanced information on the types
and attributes of forests from airborne digital data could be directly applicable to future,
economical satellite H-resolution data.

In contrast to the popularity of L-resolution satellite imagery for forest cover type
mapping, there is only a handful of examples that have employed airborne, high-spatial-
resolution, multispectral imagery for that purpose (Coulter et al., 2000; Lefsky et al.,
2001) and none of them in the forests of the Midwest region. The few known examples
typically involve a very limited number of cover type classes, often only one coniferous
and one deciduous class, utilize a single image (frame), and use information derived from
large-scale aerial photography for evaluating classification results (Biging et al., 1995).
Little justification is usually offered, other than perhaps financial constraints, for the
tendency to rely upon assessed information as opposed to direct observations when
evaluating classification accuracy. Such practices are likely to foster propagation of
errors and introduce uncertainty in information treated as *“ground-truth” which is not
accounted for in derived classification products.

Spectral classifications of airborne, high-spatial resolution, multispectral imagery
are subject to the H-resolution challenge (Hay et al., 1996), which implies that as the
spatial resolution of the sensor increases (i.e. the pixel size becomes smaller), so does the

within-class spectral variability of surface features, resulting in a reduction of class
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separability and a consequent reduction in classification accuracy. The latter is often
attributed, in part, to the spectral properties of pixels that represent the shadowed portions
of tree crowns (Woodcock and Strahler, 1987; Marceau et al., 1990). However, a few
studies have argued that although shadows mutually cast between tree crowns reduce the
spectral differences between cover types, shadow pixels maintain adequate information
content that would permit cover type classification with reasonable accuracy levels,
especially for 16-bit imagery (Gwinner and Schaale, 1997).

In forest classifications, the H-resolution challenge is further intensified because
of similarities in the spectral reflectance characteristics among forest cover types relative
to non-forested ones. An additional level of complexity is introduced by the strong,
directionally anisotropic reflectance, known as the bi-directional reflectance distribution
function (BRDF) effect, that forests exhibit due to their complex horizontal and vertical
structure and by topographic effects where present. In contrast, Landsat scene (or frame)
which encompasses millions of hectares, a very large number of digital airborne imagery
frames are required to cover even a relatively small sample area, spanning an extensive
range of solar illumination conditions. In geographic regions characterized by forest
cover type variability, such as those typical in upper Midwest, airborne imagery frames
are subject to considerable variation in scene brightness. H-resolution airborne digital
imagery is often delivered to the analyst with substantial georeferencing errors introduced
by imprecise aircraft internal navigation systems, inadequate camera calibration
information, or with noticeable registration discrepancies between bands, especially when
a multi-camera arrangement is used for imagery acquisition. All of these

factors/characteristics of airborne digital imagery operate synergistically and the extent to
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which they affect forest cover type classification products is unknown, or at least it is
subject to speculation.

The objectives of this study are to 1) develop a procedure for detecting,
quantifying, and correcting the geometric and spectral distortions that are often present in
airborne, digital imagery (multispectal and multiframe, high spatial resolution), and 2)
evaluate the extent to which camera and sensor-related imperfections and idiosyncracies
affect forest cover type classification while considering frame proximity issues, BRDF
effects, and brightness variations among imagery frames. Evaluation is based on spatially
accurate and precise field observations at the individual tree level for five forest cover

types common in the Great Lakes region.

2.2. Methods

2.2.1. Site characteristics

The study area comprises two sites, the one in the south-central part of Grand
Traverse County (Site I) and the other in the northern part of Wexford County (Site II),
Michigan (Figure 2.1). Note that figures in this dissertation often contain color. The sites
are separated by about 10km in the northwest-southeast direction and extend over 8,805
and 12,626 hectares of land, respectively. More than half (56%) of the study area is
owned and managed by the Michigan Department of Natural Resources. Most of the
study area consists of forests and wetlands (82%), while agricultural use, mainly row
crops, represents 8%. Other land use classes include orchards (4%) and residential areas
(4%). Residential development is concentrated in the northwestern part of site I.
Geomorphic features include moraines and outwash plains. The average slope, calculated

by using the finite differences algorithm on a 10m, 1:24,000 USGS Digital Elevation

36



Model available for the area is 3.5% and 2.7% for sites I and II respectively. Relief is
more pronounced along the Manistee River, which crosses site II from northeast to
southwest.

The study area is characterized by pronounced spatial heterogeneity of forest
cover types. For that reason, it was selected in 1999 by the Michigan Department of
Natural Resources (MDNR) as one of the pilot areas used for evaluating the utility of
digital remote sensing data for monitoring and mapping state-owned forest resources. The
associated effort is formally known as the Integrated Forest Mapping and Planning
(IFMAP) project. The majority of the forest cover types extant in the northern Lower
Peninsula of Michigan are present in the forested part of the study sites. The five cover
types used in this study are listed in Table 2.1. The study area also contains cedar swamps
dominated by Northern White Cedar (Thuja occidentalis).

The primary forest management objectives of the MDNR include timber
production, wildlife habitat enhancement, recreation opportunities, and aspen
preservation. Several private land owners offer seasonal horseback riding and

snowmobiling opportunities.

2.2.2. Description of Imagery Set

The imagery data set used in this study was acquired on August 11, 1999, using
the Digital Airborne Imaging System (DAIS [Space Imaging, 1999]), a sensor which
provides imagery in four bands (three visible and one near infrared) via frame (digital
array) cameras equipped with appropriate band-specific filters mounted in a 2x2
arrangement. Appendix 1, Table A.1 contains detailed information on the technical

specifications of the system. The 394- frame imagery set was delivered by the vendor
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georeferenced in TIFF uncompressed format and was accompanied by limited, per-frame
metadata on flight direction, acquisition time, and flight height above the ground. The
latter averaged 2,170m (st.dev = 25m) for site I and 2,195m (st.dev = 7m) for site II.
Average frame endlap was 24.26% (st.dev = 0.74%) along flight lines, sidelap averaged
22.28% (st.dev = 1.41%) between flight lines. Flight line orientation and resulting spatial
arrangement of frames in each of the two study sites are shown in Appendix 1, Figure
A.l. Pixel size ranged from 0.893m to 0.949m (mean = 0.926m, st.dev = 0.018m). 36
frames contained clouds and/or cloud shadows. DAIS automatically adjusts the sensor
sensitivity (sometimes known as sensor “gain”) for each band immediately prior to image
capture in order to prevent saturation or underexposure due to rapid changes in target

reflectance. The system, however, does not record the spectral gain coefficients used for

each frame.

2.2.3. Sampling Scheme

A total of 34 plots, 16 in site I and 18 in site II, were established stratified across
the major forest cover types present in the study area with the exception of cedar swamps
which were excluded due to difficult accessibility. Seven plots were installed in each of
the northern hardwoods, aspen, red pine plantations, and natural pine cover types while 6
plots were located in the oak cover type. Plots were installed on level land, within
homogeneous stands, and away from cover type ecotones. Stand homogeneity was
evaluated by field inspections. A minimum 60% crown closure threshold was imposed by
the MDNR as a selection criterion. Stands in the vicinity of image frame centers were
given sampling priority. All plots were situated within the inner quarter area of the

associated image frame, which resulted in a maximum view angle of 8.65° at plot-center.
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2.24. Field Measurements

Field observations were obtained in a collaborative effort with the MDNR and the
Forest Health Monitoring (FHM) program during the summer of 2000, exactly one year
after image acquisition. Since its initiation in 1990, FHM has collected an expansive set
of forest attributes (USDA FS, 1997) and it is since May 1998 integrated with the Forest
Inventory and Analysis (FIA) program at the plot level. Adoption of the FIA/FHM field
protocols ensured compatibility of data used in this study with a wealth of archived and
soon-to-be-collected FIA data, greatly enhancing the potential for wide application of the
study findings. Each plot in the FIA/FHM protocol consists of four subplots located at the
center and vertices of an equilateral triangle with side length of 62.18m (Appendix 1,
Figure A.2). The base of the triangle is oriented East-West. Although in the standard
design subplots have a radius of 7.32m, recent protocol modifications have allowed for a
large subplot, for example to increase the number of large trees sampled in oldgrowth
stands. For this study, subplot diameters ranged from 10m to 15m but were consistent for
all subplots belonging to any given plot.

Following the installation of a plot center, which coincides with the center of
subplot 1, center points for subplots 2-4 were located using a theodolite and range finder.
The center of subplot 1 served as the origin of a plot-specific coordinate system oriented
to the cardinal directions. Direction was identified using a tripod-mounted survey
compass adjusted for magnetic declination. Transects were subsequently used to link the
subplot centers to the centroids of small reference objects that were clearly identifiable on
the image frames. Thes: reference points, usually small, short shrubs, had a horizontal

footprint smaller that a pixel, contrasted well with surrounding vegetation, and were
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selected so as to avoid confusion among reference and non-reference objects. Reference
points were assigned plot coordinates using Euclidean geometry and distance/direction
measurements (in three dimensions) between transect vertices. Subsequently, the plot
coordinates associated with objects on each plot were translated into image frame
coordinates by using these reference point coordinates. The Root Mean Square Error
(RMSE) of plot-to-image coordinate translations calculated using subplot centers for each
of the 34 plots had a mean of 18.2cm (st.dev = 5.3cm), or about 0.2 pixels. The precision
of the theodolite and range finder measurements were evaluated by establishing, ten (two
per cover type), closed transects of considerable total length (> 1km) with many vertices
(>25) and comparing the positional discrepancy between the first and last vertex, which,
in the absence of any measurement error, should coincide. The RMSE for the 10 trials
was 4.2cm (st.dev = 2.9cm), or 0.045 pixels.

Spatial and attribute data were collected for all trees within each subplot having
diameter at breast height (DBH) of at least S5cm. Spatial data included the azimuth and
distance of the stem center from the subplot center, and the periphery of the visible-from-
above tree crown projected to the ground. Crown portions of trees with stems outside the
subplot were also recorded (Appendix 1, Figure A.3). The horizontal extent of a crown
was projected to the ground using clinometers and measured as distance from the stem
center using a tape. For regularly shaped crowns only four distance measurements along
the cardinal directions were taken. Irregularly shaped crowns necessitated a larger
number of angular and distance measurements. Attribute data included species, DBH,
foliage vigor rating and presence or absence of tree membership in the canopy

dominance/co-dominance class. For two trees in each subplot the total height was
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measured. Spatial measurements were organized as polygon or point layers in a
geographic information system (GIS) using plot coordinates. The methods used to
delineate crowns from point measurements, and subsequently identify crown centroids
and calculate crown diameters are described in Appendix 1. All GIS crown and tree stem
layers, initially represented in plot coordinates were ultimately translated in image

coordinates.

2.2.5. Image preprocessing

Examination of the spectral properties of pixels on line transects chosen randomly
in image frames revealed imperfections in the geometric alignment (registration) of the
bands. Further, overall brightness differences among image frames were very apparent.
Depending on their magnitude, such image deficiencies could seriously degrade the
quality of the subsequent image analysis products. The steps taken to correct band
registration problems and normalize the spectral brightness among image frames are

outlined below.

2.2.5.1. Band Registration

Transparent materials such as atmospheric gases, refract wavelengths of
electromagnetic radiation to different degrees, such that a point source in the image plane
(i.e., the plane of the object) is recorded as multiple or almost-coalesced points in the
focal plane (i.e., the plane at which the digital camera records the image), thereby
producing band misregistrations. Band misregistration may also occur as the result of
physical misalignment of cameras or their optical components at the focal plane. The
traditional approach for correcting band registration problems is to identify areas of

intense spectral gradient (i.e. edges), and attempt to align them (Tian and Huhns, 1986).
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The proper displacement (or registration) vector is identified as the one that maximizes
the correlation coefficient between the two bands processed. However, between-band
correlation is strongly affected by the types of objects depicted in the imagery. It is
indeed possible for two bands to be highly collinear for a given combination of surfaces
and practically unrelated for another. Because the reflectance regimes of most natural
objects and surfaces present in the blue, green, and red bands are highly collinear,
correlation-based investigations are expected to reduce the magnitude of registration
problems. Such optimism though cannot be extended to include the near infrared band,
because the abrupt increase in the reflectance of healthy vegetation in that band is not
accompanied by similar reflectance behavior in other types of surfaces.

Spectral correlation computations were restricted to include only the darkest
pixels per frame band. The appropriate digital number (DN) threshold for classifying a
pixel as ‘dark’ was identified by examining the DN histogram for the NIR band. For
unimodal NIR histograms, the pixels with a DN smaller than the 2™ percentile were
selected. For bimodal histograms, characteristic of frames containing water features, first
the DN corresponding to the trough between histogram modes was identified, and then
the threshold was set to include the 2% of pixels in the frame with DN value larger than
the trough DN (Figure 2.2b). This approach effectively masked all pixels not positioned
in deep shadows or water (Figure 2.2c). Subsequently, with the NIR band kept stationary,
all other bands in a frame were shifted up to 5 pixels, in whole pixel increments, around
the center of an 11x11 window. Shorter (subpixel) intervals could be used for frame
shifting, but subpixel intervals would have necessitated pixel interpolation, which is

known to distort image features and spectral attributes. For each band shift, the
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correlation coefficient with the ‘dark’ pixels in the NIR band was calculated. The optimal
displacement offset, henceforward known as registration vector, was identified as the one
that maximized this correlation. The NIR band was selected to remain stationary because
of its lower sensitivity to atmospheric refraction of light in comparison to the visible
bands. To evaluate the robustness of this registration vector identification method, the
procedure was repeated for 20 frames, this time keeping the red band stationary.

It was discovered that the presence of large clusters of pixels identified as dark,
might affect the ability of band correlation computations to reveal and correct registration
problems. This can be particularly important in cases where the direction of the
misregistration coincides with the main axis of elongated clusters of dark pixels, such as
those occurring along stand edges or streams. Thus, prior to band shifting, dark pixel
clusters containing more than 10 pixels where eliminated (2.2d). Cluster identification
and membership calculations were performed using the connected components algorithm
(Shapiro and Stockman, 2001) with the four-neighbor option. To investigate the potential
presence of variable registration accuracy across a frame, spectral correlations were
computed for every 1/16™ (128 x 128 pixels) of a frame, and, for frames containing a

plot, for a 300 x 300 pixel window centered on each plot center.

2.2.5.2. Normalization of spectral frame brightness

In the absence of 1) the sensor’s spectral gain coefficients per frame and 2) the
spectral reflectance of any targets, between-frame brightness normalization efforts
explored alternative approaches. Preliminary investigations revealed that targets believed
to have invariant reflectance during the course of image acquisition (such as ponds or

unpaved roads on sandy soils), and therefore well suited to the normalization process,
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were either only sporadically available in the study area (ponds) or had significant
spectral variability (unpaved roads). Because of these limitations, normalization efforts
focused on overlapping regions between adjacent frames. It was assumed that the
difference in the mean DN value of pixels positioned in the overlapping region of a pair
of adjacent frames would be representative of the overall spectral brightness difference
between respective frames.

To determine the spatial extent of overlapping regions, adjacent frames needed to
be properly georeferenced. To improve the poor registration accuracy of the imagery
provided by the commercial vendor, often found to exceed 100m, image frames were
georeferenced manually using leaf-on and leaf-off, 1:12,000-scale Digital Ortho
Quadrangles (DOQs) available for the study area (Michigan Department of Natural
Resources, 2001) and nearest neighbor pixel interpolation. Frame georeferencing using
this method produced an RMSE of 1.9m or approximately two pixels.

Image portions close to the edge of frames are acquired with the largest view
angles in an imagery set, and therefore are susceptible to stronger BRDF effects
compared to other frame portions. Differences in DNs due to BRDF effects are likely to
be further accentuated for overlapping frame regions, since in such circumstances the
difference in relative viewing azimuth angles (Figure A.4, Appendix 1) for pixels in these
regions approaches 180°. Failure to mitigate BRDF effects prior to calculating mean DN
values for the overlapping region between frames would make successful brightness
normalization unlikely.

A semi-empirical model applicable to heterogeneous surfaces, developed by

Roujean et al. (1992), was used for BRDF correction of overlapping frame regions. It
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considers the surface spectral reflectance to be the outcome of two main processes: a
diffuse reflection component that accounts for the geometric structure of opaque
reflectors on the surface of objects and scattering from the object’s volume. Both
components are represented in the model via three, surface-type-specific parameters, 4y,
k;, and k;. BRDF correction coefficients are computed as the fraction of surface
reflectance of standard over actual viewing and illumination geometry. Details on model
structure, and an illustration of viewing and illumination geometry are in Appendix 1.
BRDF corrections were computed for the portion of overlapping frame regions occupied
by deciduous forest. It was assumed that the anisotropic reflectance of coniferous forests
due to BRDF effects was similar to that of deciduous forests. The extent of deciduous
forests was determined by spatial overlays of georeferenced image frames with a beta
version of the IFMAP classification maps. Proper model parameter values were identified
by using a simplistic optimization method to be discussed shortly. Other land use / land
cover types available in the study area such as coniferous forest and grassland were not
considered because they were present in fewer than half of the overlapping frame regions.
The optimization method entailed resolving band misregistration (if any) for each
of the overlapping frame regions, correcting BRDF effects for deciduous forests at those
regions, calculating the region’s mean pixel DN values for the deciduous forest portion of
each frame in an adjacent pair, computing the difference of the means for each frame
pair, and finally summing the differences along a closed path that traversed many frames.
The method operated under the assumption that BRDF differences among deciduous
forest cover types were minimal. Since each of the paths originated and terminated at the

same frame, and given that BRDF effects were considered normalized, the sum of mean
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DN differences between adjacent frames along the path should be close to zero. Any
discrepancies could be attributed to an improper combination of BRDF model parameter
values. Ten closed paths were established, 5 per study site, each originating at different
locations within the respective sites and traversing 15 to 20 frames. Established paths
avoided frames with clouds or cloud shadows. Note that deciduous forests, unlike other
forest cover and land use types, were present in each overlapping frame region along
every path. Using published spectral model parameter values for deciduous forests as
seed values (Table A.2, Appendix 1) a large number (> 1,200) of ky, &, and k; value
combinations were tested for each band, each resulting in pixel-specific spectral
correction coefficients to be used for BRDF normalization. BRDF correction coefficients
are defined as the ratio of model predictions for standard over actual illumination and
viewing conditions (Table A.3, Appendix 1). Smaller increments in the values of ky, k,
and k; were examined as the model-parameter combinations being evaluated produced
progressively smaller sums of DN differences along the paths. The combination that
minimized the differences among all established paths while consistently providing
spectral correction coefficients within the 0.7 to 1.3 range was identified as the one that
provided the optimum BRDF correction and was subsequently used for brightness
adjustment (Table A.2, Appendix 1). Spectral correction coefficients outside the 0.7 to
1.3 range were considered improbable. Brightness variation adjustment was also
examined for individual paths. The optimum model coefficient values were used to
determine the spectral brightness difference between a frame and its neighbors based on
the brightness differences detected within the overlapping regions. The effectiveness of

the method in correcting brightness variations among frames was evaluated by comparing
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the DN difference sums along the established paths after the BRDF normalization to the
DN difference sums obtained using the original DN values.

With the relative brightness difference among adjacent frames known, frame DN
values for each band were adjusted relative to those of a frame in the middle of sites I and
II respectively. Adjustments progressed radially away from the site centers.
Subsequently, the mean per-band value for all frame portions occupied by forest was
computed for each site. It was assumed that the ratio of spectral reflectance between
deciduous and coniferous forests was constant. Finally, spectral DNs for the frames at
site I were adjusted a second time so that their mean value over forested landscapes
would match the mean DN value of forested landscapes in site II. All BRDF corrections
and brightness normalization procedures were performed using Arc Macro Language

(AML) scripts in ArcInfo (ESRI, 2001).

2.2.6. Image Classification

As mentioned earlier, all major cover types present in the study area, with the
exception of Cedar swamps, were represented in the field data set. In the presence of a
known forest cover type classification scheme, a supervised classification approach was
selected. The maximum likelihood (ML) option was used primarily because of its
parametric structure. Initial investigations of cover type spectral signatures, both with and
~ without registration correction and BRDF/brightness normalization, showed that non-
parametric classification options (e.g., parallelepiped) would result in significant
signature overlaps and greater classification confusion rates.

Classification was conducted on the subplot level. Subplot pixel membership was

determined via spatial overlays of image frames with vector subplot boundaries in image
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coordinates. Pixels split by a boundary were considered to be subplot members if 50% or
more of their area was within the subplot. In the ML classification process, pixels in each
subplot were assigned to one of the five classes (Aspen, Northern Hardwoods, Oak, Red
Pine Plantations, or Natural Pine). A cross-validation approach (Lachenbruch and
Mickey, 1968) was undertaken for signature development involving two geographic
extents: i) site-specific, and ii) global. A subplot Q2 (belonging to plot Q) in site I for
example, was classified via three sets of spectral signatures developed: 1) using all pixels
in the remaining subplots at site I except those in the related subplots (Q1, Q3, and Q4)
and all the subplots in site 11, 2) using the pixels in the remaining (unrelated) subplots of
site I only, and 3) using all pixels in site II subplots but no pixels from site I subplots.
Subplots in site II were classified in a similar fashion for a total of five classification
products. Absent this cross-validation approach, it would be difficult to ensure that the
potentially low spectral variability within a plot compared to the variability among plots
of the same cover type would not inflate classification accuracy estimates. Subplot
classification was applied to both raw DNs and to a dataset that had been corrected for
between-band misregistration and normalized for BRDF/brightness variability, for a total
of 10 classification trials (scenarios).

Classification outputs were post-processed with subplot-specific pixel majority
filters that assigned a single class (cover type) to each subplot. Classification accuracy
estimates were derived from confusion matrices and associated indicators (percent of
subplots correctly classified and kappa coefficients) (Congalton, 1991) computed after
the application of majority filters. Differences in the classification performance were

evaluated using parametric statistical tests. Details on the tests and the computation of
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confusion matrices and accuracy indicators are provided in Appendix 1. The power of
each classification output was evaluated by imposing several different minimal
probability thresholds (none, 0.1, 0.25, 0.50, 0.75) for class membership. Pixels with all

class conditional probabilities below the imposed threshold remained unclassified.

2.3. Results

2.3.1. Band Registration

Between-band registrations errors (Figure 2.3a) identified by correlation-based
investigations and quantified by using the length of calculated registration vectors
revealed that, in general, the shorter the wavelength of the visible band the larger its
registration discrepancy relative to the near infrared band (Table 2.2). For individual
frames, spectral misregistration was practically random both in magnitude (vector length)
and orientation (vector azimuth) (Figure 2.3b). The absence of any detectable pattern of
misregistration among frames and bands remained even when the frames were arranged
in acquisition time sequence. Spectral registration vectors computed for tiles arranged in
a 4x4, non-overlapping formation within the frame (i.e. each tile covering a unique 1/16"
of the frame), revealed substantial within-frame vector variability and spatially correlated
vector azimuth and length (Figure 2.4). Such variability in spectral registration cannot be
attributed to varying atmospheric optical depth and spectral refraction rates, or to
markedly different spectral reflectances among cover types, especially in the absence of
significant topographic variations. It is, rather, an indication of imperfect alignment of the
focal planes of the cameras used in the acquisition of imagery. The lack of consistent
registration vector attributes (azimuth and length) between corresponding tiles in

sequentially acquired frames could potentially be explained by an unstable mounting of
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the camera set on the aircraft body, which would leave the alignment of the optical axes
and focal planes of the cameras vulnerable to aircraft fuselage vibration and wind
pressure.

Ranking of the band correlation coefficient values computed for different vectors,
either for an entire frame or for a portion of it, revealed that, for many frames, a single
vector would offer a correlation value clearly larger (by as much as 0.10) than any other
vector. For many other frames, there were two vectors offering high correlation values,
while the next best correlation values were substantially smaller than the two higher ones.
In the latter case, vector length and relative azimuth difference was always one length
unit and 45° respectively thus providing a strong indication that registration discrepancy
for the band pair tested for the frame in question was about half a pixel.

Comparisons of registration vectors computed with the NIR band stationary to
those computed by keeping the red band stationary revealed that vector length and
azimuth convergence for the two alternatives was achieved only when the DN band
histogram threshold used to assign a pixel to the ‘dark’ class was appropriately low.
Eliminating large clusters of ‘dark’ pixels allowed vector attribute convergence even
when the DN histogram threshold was set to the 3™ percentile. Maintaining large clusters

had occasionally necessitated setting the DN threshold to the 1* percentile.

2.3.2. Normalization of Frame Brightness

Brightness variations among frames in the original imagery were found to be
significant. The sums of mean brightness differences (expressed in DNs) for overlapping
regions along each the 10 close multi-frame paths established for testing varied between

~6,315 and 4,989 DNs for the NIR band in the original imagery (Table 2.3). When scaled
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to the number of frames present in the path, brightness variations among all established
paths stretched from —421 to 301 DNs for a range of 722 and a mean of 285 DNs for the
NIR band. The mean per frame brightness variation among paths for the blue, green, and
red bands was 238, 319, and 255 DNs, respectively. The latter values could be considered
as systematic errors that would accumulate in the process of adjusting frame spectral
brightness starting from the frame in the center of each site and progressing to the frames
on the periphery. Accordingly, the brightness adjustment for a frame positioned 10
frames from the center of each study site should be expected to sustain an average error
of 2380, 3190, 2550, and 2850 DN for the blue, green, red, and NIR bands. Those values
correspond to approximately 12%, 15%, 13%, and 9% of the effective DN range for
healthy forest vegetation and therefore should be considered substantial. It should be
noted that these values correspond to the average per frame brightness correction error
and errors in individual frame brightness adjustments could be larger.

Compared to the original imagery spectral DNs, post-normalization brightness
variations calculated along the closed multi-frame paths, were on the average two orders
of magnitude smaller (Table 2.3). For the NIR band, the mean per path brightness
variation among the established paths had a range of 250 DN or about 1/45™ of the same
range without normalization. For the blue, green, and red bands, the reduction in along-
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