

.
i
e
m
fl
z
a
b
z
n
fi

.
L
E
.
:
_
9
n
§
m
r
n
n
€

;
-

c
.

.
k
n

..
.

.
3
3
?

a
}
-

x
(
i
x
-
5
.
.
.
:

(
.
1
?

«
7
.
3
.

“
u
h
.
I
“

~
5
%
.
.
.

.
.
.
s
f
.
.
‘
.
|
h
.
w
b
.
d
a
n
d
»

3
.
s

a
3
5
:
5
,
.
.
.

I
3
5
»
:

1
.

.
.

t
n

a
.

r
.
1
4
1

z

»

.
1
;
-

3
3
.
.
.
I
i

.
.
1
3
.
}
:

3
.
9
0
}
.

..
.

v
(
s

a.
.
fl
y
.
.
5
c

I
}
;

N
u

i
(
O
I
.

m
i
1
»

p
«
f
l
u

d
1

.
fl
fi
m
fl
s
a
h

.
a

£
5
3
4
.
.

.
5

“
fl
a
u
n
t
“
?

3
3

3
w
.
.
.

.
,

m
u
n
?

E
u
w
fi
,

.
I»

MESS

l

2004

sc67qvq7

LIBRARY

Michigan State

University

This is to certify that the

thesis entitled

CHANNEL BALANCING STRATEGIES TO OPTIMIZE

UPLINK UTILIZATION

presented by

ASHOK NALKUND

has been accepted towards fulfillment

of the requirements for the

Master of degree in Computer Science

Science

NIELII; ‘
/ Major Pro? "3 Signature

I3/4103

Date

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN Box to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

FEB 02; 2'01?

6/01 cJCIFlC/DateDuepSS-pts

CHANNEL BALANCING STRATEGIES TO OPTIMIZE UPLINK UTILIZATION

By

Ashok Nalkund

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science and Engineering

2003

ABSTRACT

CHANNEL BALANCING STRATEGIES TO OPTIMIZE UPLINK UTILIZATION

By

Ashok Nalkund

Linux®1 provides a rich set of features for networking including routing, firewalling,

traffic-shaping and support for LAN and WAN interfaces. But the support for bal-

ancing generic outgoing traffic across multiple uplinks is very basic. This support

is limited to balancing routes over the multiple equal cost links. In this thesis, we

study, implement and compare different strategies to distribute outgoing traffic across

multiple links. The strategies presented in this thesis are: per-packet distribution,

per—route distribution, per-session distribution and bandwidth-usage-based distribu-

tion. The networking code in the Linux operating system was modified to implement

these features. Experimental results indicate that per-session and per-packet based

distribution strategies perform better than the other two strategies with respect to

efficient utilization of bandwidth on the multiple links.

lLinux® is a registered trademark of Linus Torvalds

COPYRIGHT

Copyright by ASHOK NALKUND (nalkunda@cse.msu.edu), 2003

DEDICATION

This work is dedicated to my brother, Sriharsha.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my heart-felt thanks to my adviser Prof.

Ni. None of this would have been possible if not for his guidance and help . I would

like to take this Opportunity to thank all the wonderful people who have contributed

in making Linux such a unique operating system. Without the efforts of the open-

source community, Linux might not have been the robust operating system it is. I

would also like to thank my friends and fellow laboratory members. I would like to

particularly mention my friends (in no order) Abhishek Patil, Pradeep Padala, Ravi

Parimi and Smitha Kommareddi. My thanks to the faculty and staff of the Computer

Science department for their support. Last but not the least, I would like to thank

my parents, my brother and my sisters for their support and confidence in me.

Contents

List of Figures

Chapters:

1. Introduction

2. Related Work

Linux Virtual Server Project2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Round-Robin DNS

Policy Based Routing

2.3.1

2.3.2

2.3.3

Source Policy Routing

Routing with multiple uplinks

Load Balancing

EQL Driver: Serial IP Load Balancing

TEQL: “True” (or “trivial”) link equalizer

Linux Ethernet Bonding Driver

Queuing Disciplines For Linux

2.7.1

2.7.2

2.7.3

Classless Queues

Classful Queues

Hierarchical Token Bucket (HTB)

Limitations of Related Work

3. Linux Networking Internals

3.1 Data structures

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

3.1.11

3.1.12

3.1.13

3.1.14

3.1.15

sk-buff

socket

sock

net_device

Qdisc

dst_entry

neighbour

rtable

fib_table

fn_hash

fn_zone

fib_node

fib_info

ooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

vi

Page

viii

23

23

24

24

25

26

3.1.16 fib_result 28

3.1.17 nf.conntrack 28

3.1.18 nf_ct.info 28

3.1.19 ip.conntrack_tuple_hash 28

3.1.20 ip_conntrack 28

3.1.21 ip_conntrack.info 29

3.1.22 ip.conntrack_tuple 29

3.1.23 ip.conntrack_protocol 29

3.2 Packet Reception 30

3.3 Packet Transmission 36

3.4 Packet Forwarding 42

3.5 Netfilter Framework 43

4. Channel Balancing Algorithms 48

4.1 Strategies 48

4.1.1 Route Based Channel Balancing 48

4.1.2 Per-packet Based Channel Balancing 49

4.1.3 Session Based Channel Balancing 50

4.1.4 Bandwidth Usage Based Channel Balancing 51

4.2 Implementation 52

4.2.1 Route Based Channel Balancing 53

4.2.2 Per-packet Based Channel Balancing 54

4.2.3 Session Based Channel Balancing 56

4.2.4 Bandwidth Usage Based Channel Balancing 58

4.2.5 Discussion of the strategies. 61

5. Experimentation Details 62

6. Results 65

7. Conclusions and Future Work 73

Bibliography 75

vii

List of Figures

Figure Page

2.1 Linux Virtual Server 4

2.2 Hierarchy of qdiscs 14

3.1 Neighbor Table Structure 23

3.2 FIB Table concepts 25

3.3 FIB Table Details 26

3.4 Netfilter Hooks 44

4.1 Multiple Routes between hosts 49

4.2. Nexthop Selection Logic in Multipath Route 52

43 Route Based Channel Balancing 53

4.4 Per-Packet Based Channel Balancing 55

4.5 Session Based Channel Balancing 56

4.6 Bandwidth Usage Based Channel Balancing 59

5.1 Testbed Setup 63

6.1 Bandwidth usage for File Size 8KB 66

6.2 Bandwidth usage for File Size 16KB 67

6.3 Bandwidth usage for File Size 64KB 68

6.4 Bandwidth usage for File Size 128KB 68

6.5 Bandwidth usage for File Size 512KB 69

6.6 Bandwidth usage for File Size 1M 69

viii

6.7 Bandwidth usage for File Size 2M 70

6.8 Bandwidth usage for File Size 4M 70

6.9 Bandwidth usage for File Size 8M 71

6.10 Bandwidth usage for File Size 16M 71

6.11 Bandwidth usage for Various (mixed) File Sizes 72

6.12 Transfer Times 72

ix

Chapter 1

Introduction

Internet has revolutionized the way people live, work, entertain and communicate.

A large number of homes have network connectivity these days. Network connectivity

has become cheap and affordable and also critical to the performance of many small

and medium businesses. Having redundant network connections is one way to ensure

increased connectivity and hence increased network reachability. One would like to

use the redundant network connections efficiently under normal circumstances and

only in emergency situations like one of them going down, fall back on the other

connections. In these normal circumstances, efficient balancing of the traffic across

the redundant network connections is important to keep the utilization high and costs

lowl. In this thesis, we study different strategies to balance the outgoing traffic across

multiple network connections.

There are various commercial networking equipment manufacturers who provide

advanced routing features in their equipment. However such equipment are very ex-

pensive for organizations with small budgets. Linux is a free operating system which

provides a rich set of networking features. But the features available for balancing

outgoing traffic are not sufficiently powerful and hence very basic outgoing traffic

balancing can be achieved. There are several projects related to load-balancing im-

1Network connections can be billed differently: bandwidth allocated, bytes transfered, etc

plemented under Linux. But these projects have certain limitations which restrict

their application (see chapter 2).

In this research, we intend to study, implement and test different strategies for

balancing outgoing traffic across multiple network connections. The goal is to effec-

tively utilize the available network connections without too much of a performance

degradation of applications depending on the network.

In chapter 2 we describe some of the related works. In chapter 3 we delve into

the internal details of the networking code in Linux. The design and implementation

of different strategies is discussed in chapter 4. Chapter 5 discusses the experimen-

tation setup, configuration and testing strategies. Results of the experimentation are

discussed in chapter 6. Finally we present the conclusions and some ideas for future

work related to this research in chapter 7.

Chapter 2

Related Work

One often confuses load-balancing of incoming traffic with load-balancing of out—

going traffic. While there are many technologies for implementing incoming load-

balancing, techniques to implement outgoing load-balancing are very few. In this

chapter we describe some of the load-balancing techniques for both incoming as well

outgoing traffic. This will give the reader a better understanding of the differences

between the two scenarios and also an understanding of how it is achieved.

2.1 Linux Virtual Server Project

Quoting the official website of the Linux Virtual Server Project(LVS)[2]:

The Linux Virtual Server is a highly scalable and highly available server

built on a cluster of real servers, with the load balancer running on the

Linux operating system. The architecture of the cluster is transparent to

end users. End users only see a single virtual server.

This is an incoming-load-balancer. As mentioned above, the LVS project provides a

load-balancer which distributes the incoming requests among many internal servers

which are invisible to the end users. Figure 2.11 illustrates a typical Linux Virtual

Server environment. The load-balancer running the LVS accepts incoming requests

1Source: Linux Virtual Server Project. http:/,lwww.linuxvirtualserver.org.

Internet ' *

Load Balancer

Linux Box

Figure 2.1: Linux Virtual Server

and then routes them to the real servers according to different configured schedulers:

round-robin, weighted-round-robin, least connection, weighted-least-connection and

persistent client connection. Load-balancing can be configured for individual proto-

col and port combination. The real servers can be added or removed transparently

making the architecture very scalable. The Linux Virtual Server is implemented in

three ways: NATZ, IP Tunneling and Direct Routing. In NAT, the load-balancer

has a public IP address and the real-servers have private IP addresses. The clients

connect to the load-balancer which then performs DNAT3 on the packets and routes

2Network Address Translation

3Destination Network Address 'IYanslation

them to the internal servers. The disadvantage of this implementation is that every

request and response packet has to be rewritten by the load-balancer which becomes

a bottleneck. With IP tunneling, the load-balancer schedules requests to the different

real servers, and the real servers return replies directly to the clients. This allows the

load-balancer to handle huge amounts of requests, scaling to over 100 real servers.

Due to the very low overhead involved at the load-balancer, IP Tunneling allows a

load-balancer to serve as a very high-performance virtual server. The third technique

is to use Direct Routing. Here also the load-balancer only processes the client-to-

server half of the connection“ and the server responses can follow any network path

to the clients. This method does not have the overhead of tunneling and hence can

scale very well.

2.2 Round-Robin DNS

Round-Robin DNS [12] is another incoming-load-balancing technique used for

balancing the incoming requests among a set of servers. Here a single name is mapped

to different IP addresses in a round-robin fashion, thereby controlling which server a

client connects to. For every client that requests a FQDN5-to-IP mapping, in other

words a DNS lookup, a different server IP address will be chosen from the list in a

round-robin manner. However, one must remember that these mappings are cached

on the client system as well as on the intermediate DNS servers which might have run

the query at the clients’ request. Thus clients which happen to send the queries to

the same intermediate DNS servers will be routed to the same IP address and hence

the load-balancing is not perfect. Also the Time To Live (TTL) for the DNS record

4Often the requests are very short followed by long responses from the server.

5Fully Qualified Domain Name

is difficult to choose in these settings. If a large value is chosen, then the same IP

address will be provided for a longer time which skews the load-balancing towards

this IP address. On the other hand, if the TTL value is small, the load-balancing

will be more efficient but the DNS queries themselves will be a bottleneck. Also

depending on the amount of traffic caused by different clients, the load-balancing will

be different. Thus even with the IP address rotation, the servers might be loaded

differently due to the difference in the clients’ requests. Further, once a server fails,

the client which receives the IP address of the failed server will be unable to connect

to the server even if it tries to reconnect. Only after the TTL expires and the entry

for the dead server is removed from the list of IP address at the DNS server6 will the

client be able to connect to the server.

2.3 Policy Based Routing

Policy Based Routing [4, 3] uses policies or ‘rules’ to make a routing decision

for a packet. This feature is available in Linux by compiling the kernel with the

“IP: advanced router” (CONFIGJPADVANCEDJZOUTER = yes) and “IP: policy

routing” (CONFIGJP_MULTIPLE_TABLES = yes) features. The routing policy

database allows multiple routing tables on a Linux router. The appropriate table is

looked up as specified by the ‘rules’. The iproute27 package is available for manipu-

lating the routing policy database and the routing tables. By default, the kernel has

three tables: local, main and default (table ID 253 denotes the default table). Fol-

lowing is the output produced by running the ‘ip rule’ command on a Linux system:

ip rule

6It might so happen that by the time the TTL expires, other client requests have caused the dead

server’s IP addresses to be the one to be given to the next request.

7ftp://ftp.inr.ac.ru/ip-routing/

0: from all lookup local

32766: from all lockup main

32767: from all lockup 253

#

As shown above, by default all the rules apply to all the packets. We can generate

new rules and override the default routing of packets. Following are the contents of

the three tables on a machine which has two interfaces (ethO is down, ethI is up)8:

ip route show table local

broadcast 67.167.130.128 dev ethl proto kernel \

scope link src 67.167.130.153

broadcast 127.255.255.255 dev lo proto kernel \

scope link src 127.0.0.1

local 67.167.130.153 dev eth1 proto kernel \

scope host src 67.167 130.153

broadcast 67.167.130.255 dev eth1 proto kernel \

scope link src 67.167.130.153

broadcast 127.0.0.0 dev lo proto kernel \

scope link src 127.0.0.1

local 127.0 0.1 dev lo proto kernel \

scope host src 127.0.0.1

local 127.0.0 0/8 dev lo proto kernel \

scope host src 127 0.0.1

#

ip route show table main

8The lines have been broken for readability

67.167 130.128/25 dev eth1 proto kernel \

scope link src 67.167.130.153

127.0 0.0/8 dev lo scope link

default via 67.167.130.129 dev ethl

#

ip route show table 253

#

2.3.1 Source Policy Routing

Source Policy Routing [3] balances the traffic based on the source IP address. We

create new tables and add routes to the tables. Policy rules are created that specify

the table to lookup for particular source IP address.

echo 201 Test >> /etc/iproute2/rt_tab1es

ip rule add from 192.168.1.100 table Test

ip rule

0: from all lookup local

32765: from 192 168.1.100 lookup Test

32766: from all lookup main

32767: from all lookup 253

#

Now we add the appropriate routing entries in the new table:

ip route add default via 192.168.1.1 dev ethO table Test

ip route show table Test

default via 192.168.1 1 dev ethO

#

2.3.2 Routing with multiple uplinks

If multiple uplinks are available, then one would like to make sure that packets

arriving on an interface are answered on the same interface. This can be achieved by

setting up split access [3] on these multiple interfaces. We create routing tables for

each interface and create routes for network and default route in each table. Then we

add rules specifying that packets arriving from any of the connected networks should

be answered on the same interface by causing the corresponding table to be looked

up.

Routing entries for table T1:

ip route add $P1_NET dev $IF1 src $IP1 table T1

ip route add default via $P1 table T1

Routing entries for table T2:

ip route add $P2_NET dev $IF2 src $IP2 table T2

ip route add default via $P2 table T2

Reply on the same interface:

ip route add $P1_NET dev $IF1 src $IP1

Reply on the same interface:

ip route add $P2_NET dev $IF2 src $IP2

Default route:

ip route add default via $P1

2.3.3 Load Balancing

With the above mentioned split access in place, one can setup crude load-balancing

by specifying a multipath route as the default route. With a multipath route, the

kernel will balance the route lookup over all the nexthops specified in the multipath

route in accordance with the weights assigned to each.

ip route add default nexthop via 10.0.1.2 dev ethO weight 1\

nexthop via 192.168 1.2 dev eth1 weight 1

The above multipath route will equalize the routes over ethO and ethl equally.

2.4 EQL Driver: Serial IP Load Balancing

EQL is a device driver available in Linux which provides a software device to

load-balance IP serial links (SLIP or uncompressed PPP) to increase the bandwidth.

This is useful in cases where we have two or more modems and want to increase the

bandwidth by binding the modems together. We compile the kernel with the eql

patch9 and configure an eql interface with an IP address. Then the default route is

set to point to the eql device. The devices are then “enslaved” with the eql-enslave

command. Devices are freed using the eql_emancipate command.

2.5 TEQL: “True” (or “trivia1”) link equalizer

TEQL [3] is a new virtual device available in Linux which equalizes the traffic

going out on the physical slave interfaces. For this virtual device to be used, the slave

devices must be active, i.e be able to raise the busy signal. This device is capable

of equalizing physical interfaces which have varying bandwidths but it is advisable

9ftp: //slaughter.ncm.com/pub/Linux/LOADBALANCING/eql-1.1.tar.gz

10

that the bandwidths should be comparable to avoid reordering problems. To use this

feature, first we insert the sch_teql module which creates a new device teqlN and a

new qdisc (see section 2.7) with the same name. The physical interfaces can now be

enslaved to this device and the desired routing setup.

tc qdisc add dev ethO root tequ

tc qdisc add dev ethl root tequ

ip link set dev tequ up

The slave interfaces are configured as they would normally be and the default route is

set to point to the teql interface. The most restricting requirement in this technique

is that both ends of the links are required to participate for it to work properly. This

is sometimes not possible if the ISP is not very forthcoming with accommodating

customers’ requests.

2.6 Linux Ethernet Bonding Driver

The Ethernet bonding driver provides for bonding Ethernet channels together. Its

called ‘Etherchannel’ by Cisco, ‘Trunking’ by Sun and ‘Bonding’ [5] in Linux. Mul-

tiple Ethernet connections can be ‘bonded’ together to act as a single channel with

increased bandwidth. This requires the other end of the connection also to support

bonding. Although this seems similar to the EQL driver (section 2.4), this driver

manages Ethernet segments while the EQL driver manages serial lines. The kernel

needs to be compiled with the ‘Bonding Driver Support’ (CONFIGBONDING). A

bonding network interface is defined in the system configuration files similar to the

other network interfaces”. The IP information is provided for the bonding interface.

The physical Ethernet devices are not configured with any IP information and are

10For RedHat Linux systems, this can be in /etc/sysconfig/network-scripts/ifcfg-bondO file.

11

made slaves of th bonding device. The MAC address for the bonding interface is cho-

sen from the first enslaved Ethernet interface. The bonding driver can be configured

to take care of failing interfaces by monitoring their MII link status.

2.7 Queuing Disciplines For Linux

Linux provides a very rich set of features for managing bandwidth by means of

queues. With queuing we can control and shape the outgoing traffic from a machine.

There are different queuing disciplines available in Linux. Some of them are classless

which just accept data and only reschedule, delay or drop it. Classful queues allow

different kinds of traffic to be treated differently. The term qdisc is used to refer to

a queuing discipline.

2.7.1 Classless Queues

These queues are used to shape traffic on the entire interface, without any subdi-

visions. All packets are treated the same. Following are some of the classless queues

available on Linux.

pfifo_fast

pfifofast [3] is a queue which performs a ‘First In, First Out’ scheduling of the

arriving packets. There are three bands which are prioritized, band 0 receiving higher

priority than band 1, which receives more priority than band 2. Band 0 contains

packets which have the ‘minimum delay’ TOSll flag set. As long as there are packets

in band 0, band 1 is not processed (similarly for band 1 and band 2). The TOS

value in the packet is used to map the packet to one of the bands. The mapping can

itself be specified with priomap which is set by the kernel.The queue length can be

1 1 Type of Service

12

configured with ifconfig or tc command. This is the default qdisc for any interface.

Adding any other qdisc to the interface causes this qdisc to simply return without

any action.

Token Bucket Filter (TBF)

The TBF [3] qdisc ensures that packets are sent out at some administratively set

rate while allowing for short bursts of traffic which may exceed the set rate. TBF

consists of a buffer (bucket) which is filled with tokens at a specific rate called the

token rate. The token rate is the administratively set rate mentioned above. Each

token dequeues a packet from the data queue and sends it out. If the token rate is

greater than the data rate, tokens simply accumulate up to the bucket size. Excess

tokens are then discarded. If the data rate is greater than the token rate, then

some packets will be dropped until tokens are available. The accumulation of the

tokens when the data rate is smaller than the token rate allows for short bursts of

data exceeding the token rate. The bucket size (burst size), token rate and various

other parameters are configurable. Note that in actual implementation, the token

corresponds to bytes and not to packets. This qdisc is very convenient to slow down

an interface to match the actual available bandwidth as in case of cable modems and

DSL lines.

2.7.2 Classful Queues

In classful queues [3], classes and filters are used to manage the bandwidth. Filters

added to a classful queue look at the packet and decide what to do with the packet

and return this decision to the classful queue. The classful queue then enqueues the

packet in the appropriate class. The filters and classes can be nested to achieve better

control over the traffic as shown in Figure 2.2. The class at the bottom of this nesting

13

1: root qdisc

/l:l child class

child classes

/1\H2\ leaf class

12: qdisc

10:1 10:2 12:1 12:2 leafclass

Figure 2.2: Hierarchy of qdiscs

enqueues the packet to the qdisc it contains. When a packet arrives for transmission,

the root qdisc enqueues it to the appropriate child class by filtering the packet. The

child class can in turn apply filtering to enqueue the packet to one of its child classes.

When a packet needs to be dequeued by the kernel to send to the interface, the root

qdisc gets a dequeue request which is passed on to the child class. The class with

the lowest handle containing a packet returns the packet to the kernel. The handle

for a class is specified when the class or qdisc is added to the interface. Due to this

nesting, the child class cannot dequeue a packet faster than its parent will allow.

Class Based Queuing (CBQ)

CBQ [3] is a very widely used and complicated classful qdisc which also works as

a shaper. However the shaping algorithm used in CBQ is not very precise and hence

causes CBQ to behave unexpectedly in some situations like not achieving the desired

traffic rate. CBQ uses the idle time between requests for packets by the hardware

layer to shape the traffic. Determining the idle time is a very tricky issue due to

various reasons like the driver implementation for the hardware, hardware details

14

(bus speed), etc. Even with these limitations, CBQ works well in many circumstances.

The parameters which configure the shaping include the average packet size, physical

bandwidth, required rate of traffic, etc. The queuing properties of CBQ are configured

by specifying the weight, priority and allocated amount for each inner class. The

priority property makes CBQ a priority queue where packets are dequeued from the

highest priority inner queue before checking lower priority inner queues. The amount

specifies how much data an inner queue can send out when requested.

2.7.3 Hierarchical Token Bucket (HTB)

Hierarchical Token Bucket (HTB) [3] is similar to CBQ but instead of working with

idle time calculations to shape traffic, it works as a classful Token Bucket Filter. HTB

can be used to specify how to divide the available bandwidth for different purposes

and also how to share the bandwidth among them, by lending and borrowing, if

required. This is a scalable queuing discipline unlike CBQ which gets complex even

for a simple setup. If a class requests bandwidth less than the amount assigned, the

remaining bandwidth is distributed to the other classes that request for bandwidth.

Thus excess bandwidth can be lent to other classes. First we add a HTB qdisc as

root qdisc to the interface. Then we add a root class”. This is required because

bandwidth cannot be shared among the root classes. Hence we create this root class

and then make the actual classes children of this root class. Then we add the classes

specifying the bandwidth guaranteed for the class. Further we add filters to classify

the packets into these classes.

12A root class is a class with the root qdisc as its parents

15

2.8 Limitations of Related Work

The projects discussed in this chapter are unsuitable for achieving generic outgoing

traffic balancing. Some of these works are applicable only to incoming traffic, for

example Linux Virtual Server Project and Round-Robin DNS (see sections 2.1 and

2.2 respectively). Others like policy routing (see section 2.3) have restrictions over

what traffic they balance. The rules in policy routing specify what kind of traffic will

be balanced, for example packets with a specific source IP address. To balance the

generic outgoing traffic, enough rules would have to be created to cover all kinds of

packets in the generic traffic. EQL and Ethernet bonding drivers (see sections 2.4 and

2.6 respectively) apply only to specific types of interfaces (IP serial links and Ethernet

interfaces respectively). Further, EQL, TEQL and Ethernet bonding, also require the

cooperation of the ISP providing the connections which may not be possible in some

case. Finally queuing disciplines (section 2.7) can only be used to shape the traffic

which is already queued for an interface. This does not provide for balancing the

traffic across multiple interfaces.

Thus we see that balancing the generic outgoing traffic is very difficult if not

impossible with the available tools.

16

Chapter 3

Linux Networking Internals

The networking code in Linux is one of the most complex and largest piece of code

in the kernel, in fact, the networking code makes up for around 20% of the entire Linux

kernel code. In this chapter we discuss the details of the networking code in the Linux

kernel and trace the path of a packet received, sent out and forwarded by the Linux

kernel.

The Linux kernel supports different network architectures including IPv4 Internet

protocols (PF.INET), IPv6 Internet Protocols (PFJNET6), Appletalk

(PFAPPLETALK), AX.25 (PF_X25), IPX - Novell Protocols (PFJPX), etc. It also

allows for different scheduling algorithms like Packet First-In-First-Out (pfifo), Byte

First-In—First-Out (bfifo), Token Buffer Filter (TBF), Stochastic Fairness Queuing

(SFQ), etc. The networking code in Linux is based upon the Swansea University

Computer Society’s NET3.039 code. The current version of the networking code in

Linux 2.4 kernel is NET4.0. The code has been divided into family of protocols and

further into layers. Each layer has a well-defined interface with the adjacent layers.

To make the code efficient, copying of data is avoided between the layers, instead,

enough space is reserved for every packet for the header/trailer for the different layers.

In this chapter, we concentrate on the IPv4 Internet Protocols family.

17

When an application generates traffic, it sends it to the transport layer (TCP

or UDP) through the socket interface. The transport layer then passes it on to the

network layer (IP). This layer looks at the destination of the packet and decides

whether the destination is the local host or a different host. If the packet is for the

same host, it passes it back to the upper layer for passing it on to the local destination

application. If the packet is for another host, the kernel searches the route cache, and

if required the Forwarding Information Base (FIB), for a route to the destination.

It prepares the packet for transmission to the destination and hands the prepared

packet to the interface to be sent out on the physical medium.

On the other hand, when a packet arrives at an interface and if the hardware

address belongs to the host or is a broadcast, it queues the packet for processing by

the kernel. The IP layer looks at the destination and if the packet is for the host, it

passes it on to the transport layer for further processing. The transport layer then

de-multiplexes and sends the data to the appropriate program. If the packet is for

another host and forwarding is enabled on the host, the routing cache and FIB tables

are consulted to route the packet correctly. If forwarding is disabled, the packet is

dropped.

In Linux, the work to be done when an interrupt is received, is divided into two

parts: top—half and bottom-half. Different tasks in the system have different bottom-

half handlers, like networking bottom-half handler, timer bottom-half handler, SCSI

bottom-half handler etc. In the top-half, only the most essential work, like moving

data from the hardware buffer to kernel buffer, is performed. The top-half sets a flag

to indicate that the kernel needs to complete the work for the interrupt by running the

bottom-half handler. When the kernel scheduler runs, it checks these flags and runs

the corresponding bottom-half handlers. These bottom-half handlers complete the

18

work related to the interrupt. For example, the networking bottom-half handler gets

a packet from the queue, checks for the protocol type and hands it to the protocol-

specific receive function.

In 2.4 versions of the Linux kernel, the bottom-half handler for networking is

implemented as a softirq. Bottom-halfs are very demanding on the system: only one

bottom-half can run on a system irrespective of the number of CPUS the system has.

Softirqs can run on multiple CPUS at the same time and are used for very very high

frequency threaded jobs. The bottom-half handler for networking net-bh() has now

been replaced with the net_rx-action () softirq in the 2.4 versions.

Now that you have a basic understanding of networking in Linux, you may skip

to the next chapter if you do not wish to get entangled in the intricacies of the Linux

networking code. However for those who decide to continue, having the Linux kernel

code handy is strongly advised. This will let you browse the actual code as you read

about various functions and data structures. The source and header filenames in this

document are relative to the kernel source location, usually /usr/src/linux.

The following sections are based on Linux kernel version 2.4.18 which can be

obtained from the Linux Kernel website: http://www.kernel.org. We should note

that in the following discussions, a number of issues like fast-routing, multiprocess

systems, etc are not discussed. The discussion of these issues would complicate the

discussion and the actual control path of the packet would not be clearly understood.

Hence, only the control paths which would be taken in the most general cases are

discussed. We also assume that all the interfaces involved are Ethernet interfaces.

19

3.1 Data structures

At the highest level, BSD sockets are used to represent a network connection.

These structures hide the implementation details of the different protocol families.

INET sockets are specific to IPv4 protocol family. The generic operations on the

BSD sockets invoke functions specific to the protocol family such as the INET socket

Operations. In the following sections we discuss some of the important data structures

in the Linux networking code.

3.1.1 sk_buff

sk_buff1 is one of the most important data structure in the Linux networking code.

It represents a buffer which provides control information and data to be transmitted

or received. It reserves enough storage so that at each layer of the networking stack,

the headers or trailers can be added without any additional overhead. The data

is copied only twice through its entire journey through the networking layers: once

from user-space to the kernel-space and once from the kernel-space to the output

medium. Important members of this data structure include pointers to the head of

the buffer list, next and previous pointers, pointer to the sock (see section 3.1.3)

structure which owns this buffer, net_device (see section 3.1.4) pointer to the device

from which this packet arrived or on which this packet will be sent out, pointers to the

different network layer headers and trailers, checksum, length of the data currently in

the buffer, pointer to the connection tracking structure nf_ct_info (see section 3.1.18)

and control information for the upper layer protocol.

1 include/linux/skbuff.h

20

3.1.2 socket

socket2 represents a BSD socket in the networking code. Some of its members

include the state of the socket, flags, pointer to the inode associated with the socket,

pointer to the file associated with the socket, a pointer to the low-level“ sock associated

with the socket and a pointer to the proto-ops structure which contains function

pointers to handle different operations on the socket. For a TCP socket, it points to

the inet_stream.ops3 which contains functions to handle a TCP socket bind, connect,

listen and other operations. Most often, the sock is an INET socket.

3.1.3 sock

The sock4 structure represents a messed up collection of network layer and bits

of transport layer information for a socket. Some of the most important members

of this structure are pointers to the next and previous sock structures (next, prev),

local and foreign addresses (rcv_saddr, daddr), source and destination port numbers

(sport, dport), address family (family), state of the socket (state), pointer to the

destination cache entry (dst..cache), receive and send/write queues (receive-queue,

write_queue), pointer to a struct proto structure (prot), which has pointers to the

transport layer functions to operate on the socket, transport layer options structure

(tp_pinfo), pointer to the parent BSD socket (socket). The prot points to tcp.prot5

for TCP sockets and udp_port6 for UDP sockets.

2include/linux/net.h

3net/ipv4/af_inet.c

4include/net/sock.h

5net/ipv4/tcp.c

6net/ipv4/udp.c

21

3.1

dill

rI-lzi

Ilt’l

lf’f'

3. 1.4 net_device

net_device7 represents a network device in the Linux networking code. It includes

data related to higher levels of networking as well as basic I/O. The important fields

related to networking include the name of the interface (name), pointer to the next

net-device (next), unique device identifier (ifindex), pointer to functions to get in-

terface statistics (getstatus for wired and get-wireless_stats for wireless interfaces),

interface address (dev_addr), pointers to the queuing disciplines attached to the in-

terface (qdisc), pointers to specific higher level protocols including AppleTalk, IPv4,

IPv6 etc, transmit queue length (tx-queue_len), pointers to functions to perform differ-

ent actions on the interface like start transmit (hardstaermitO), set MAC address

(set.mac_addr()).

3. 1.5 Qdisc

Qdisc8 represents a queuing discipline. It has pointers to the queuing and de-

queuing functions (enqueue, dequeue), pointer to the next Qdisc structure (next),

pointer to a Qdisc_ops structure (Ops), which has pointers to functions for different

operations of specific disciplines, pointer to the interface to which this qdisc is bound

(dev), a statistics structure (struct tc_stats stats)9, which tracks the bytes, packets,

drops and other information of the qdisc. ops points to tbf_qdisc.ops10 for a Token

Bucket Filter (TBF) qdisc and pfifo.qdisc_opsll for a Packet First-In-First-Out qdisc.

7include/linux/netdeviceh

8include/net/pkt_sched.h

9include/net/pkt_sched.h

lonet/sched/sch_tbf.c

1 1 net/sched/sch_fifo.c

22

3.]

3.1.6 dst_entry

This represents a destination cache entry. dst.entry12 contains pointers to input

and output functions and information about a route. Its members include device

pointer (dev), pointer to the neighbor (neighbour), hardware header pointer (hh),

input and output functions (input, output), various other information like flags, last

used time, path MTU, etc. It also holds a pointer to a neigh_ops13 structure (ops)

which contains family, protocol and pointers to functions for rerouting, destroying

the route, etc.

3.1.7 neighbour

Neighbor Table

(struct neigh_table)

Parameters

\ (struct neigh_params)\\\

\.

\ Neighbors

(struct neighbour)

Pneigh

(struct pneigh_entry)

(struct

neigh_table)
a
O.)

I is) 3
G M

Q) v

(struct g

neigh_table) V

Figure 3.1: Neighbor Table Structure

l2include/net/dst.h

13include/net/dst.h

23

This represents information about the neighbour connected to the system one

hop away. Like other objects in the Linux kernel, it has pointers to the next neigh-

bour structure (next). Other information in the structure include pointer to the

neigh_table”, pointer to the device (dev), flags, hardware address (ha), pointer to

the output function (output), pointer to the neigh_opsl‘r’ structure (cps) which has

pointers to the functions for diflerent operations like destroying the neighbour struc-

ture, transmitting a packet from the queue (queue_xmit).

3.1.8 rtable

An entry in the routing table is represented by a rtable16 structure. This contains

a union (u) of destination cache entry (dst) and the next rtable structure (next).

Thus the union allows the same member to be used as a pointer to the next rtable

or as a pointer to the destination cache entry for the route. Other information in

rtable are the flags and type of the route (rt_flags, rt-type), source and destination

addresses (rt_src, rt-dst), interface index (rtjif), gateway address (rt_gateway) and

key for route lookup (key).

3.1.9 fib_table

The use of multiple routing tables in Linux is made possible by the use of

fib.tablel7 structures (see Figures 3.1.918 and 3.1.1019). This structure contains a

table identifier (thd), table manipulation functions like table lookup (thookup),

14include/net/neighbour.h

1 5include/net/neighbour.h

16include/net/route.h

l7include/net/ip_fib.h

1 8 Source: Linux 1P Networking, http://www.cs.unh.edu/cnrg/gherrin

19Source: Linux IP Networking, http://www.cs.unh.edu/cnrg/gherrin

24

Netmask Table

one entry for each

Netrnask Table

one zone for each

Network Information

routing information for

split into specific

network

information

(addresses, TOS

etc)

and protocols

(IP, ATM, etc)

potential netrnask known subnet mask each known network

0000 N Default 0.0.0.0

8000 zone node info

C000 Il
em IE000 (p y)

10.0.0.0

zone / node info

F000 / (F000)

F800

. 17216.0.

(empty) node info

FEOO

zone

/
(FFOO) \

172.2900

FFOO node info

FF80

(empty)

FFFF

Figure 3.2: FIB Table concepts

insertion (thnsert), deletion

(tb_delete) and pointer to the associated FIB hash table (tb.data).

3.1.10 fn_hash

fn_hash20 is the FIB hash table which contains pointers (fn_zones) to the individual

zones representing netmask. The number of zones is 33 which represents one zone per

bit in the mask. The fnJoneJist points to the first non-empty zone in the table. The

20net/ipv4/fib_hash.c

25

Netmask Table

(struct fn_hash)

I

I

[Network Zones Network Information

I (struct fn_zone)

istruct fib_node) (struct fib.info)

fn_zones[O] : fz_next : fn_key fib_protocol

tb__data fn_zones[l] : fz_hash < ' fib_metrics

: fZ-mas" : fib_nh[]
fn_zones[2] ' fn_key

l I

I l fn_key

(struct l l

fb tabl ' . fn k
I _ e) / 1 fz_next / g - ey fib_protocol

I = L fib_metncs

' fZ—haSh \ : fn_key fib_nh[]

I fz_mask !

fn_zones[32] : .

fn_zone_list i E fn_key

Main/Local Tables I I
I I

Figure 3.3: FIB Table Details

zones are organized from most specific (longest prefix) to the most general (shortest

prefix), thus the fn_zone_list points to the most specific zone in the table.

3.1.11 fn_zone

Each fn_zone21 represents routing data for one netmask. Thus for the 32-bit

IPv4 addresses, there are 33 such zones. It contains a pointer to the next non-

empty zone (fzmext), pointer to the fib_node hash table (fz_hash), number of entries

(fz-ent), number of buckets in the hash table (fz_divisor), mask to generate the hash

(fz_hashmask), mask for the zone (fz_mask) and order of the zone which is the index

of the zone in fn_hash.

2’ net/ipv4/fib_hash.c

26

3.1.12 fib_node

fib_node22 denotes information specific to a route. Its fields include pointer to the

next node (fnmext), pointer to fibjnfo structure (fn_info), the search key (fn_key),

TOS (fn-tos), type of route (fn_type), scope of the route (fn_scope) and state

(fn_state). The key, a 32 bit unsigned number, is formed by ANDing the destination

address with the netmask of the zone. Thus it encodes both the destination address

and the mask of the route.

3.1.13 fianfo

fib_info23 contains information that can be shared between many routes. This

includes the route metrics (fianetrics), number of nexthops available for the route

(fibmhs), array of fibmh structures (fibmh), network protocol (fib.protocol), status

information (dead) and pointers to the next and previous fib-info structures (flbmext,

fib_prev).

3.1.14 fib_nh

fib_nh24 represents the nexthop information in a route. It contains a pointer to the

device (nh-dev), flags, scope, weight of the nexthop (nh_weight), outgoing interface

index (nh_oif) and the address of the gateway (nh-gw)

3.1.15 rt_key

rt_key25 contains information which form the key for route lookup. This includes

the source and destination addresses (src, dst), incoming and outgoing interface in-

22net/ipv4/fib_hash.c

23include/net/ip_fib.h

24include/net/ip_fib.h

25include/net/route.h

27

dices (iif, oif), firewall mark if configured (fwmark), TOS (tos) and scope of the route

(scope).

3.1 .16 fib_result

A fib_result26 structure is returned when a route is found in the routing table. This

structure contains the prefix length (prefixlen), the index of the next hop selected

(nh.sel), type and scope of the route (type, scope) and the routing rule (fibJule) if

multiple tables support is configured.

3.1.17 nf_conntrack

nf.conntrack27 represents a general netfilter connection. This is used only for

usage count (use) and deletion through the destroy function pointer. Other specific

connection structures, for example ip_conntrack contain this structure within them.

3.1.18 nf_ct_info

nf_ct_info contains a pointer to a nf_conntrack structure (master).

3.1.19 ip_conntrack_tuple-hash

ip_conntrack_tuple_hash is an entry in the connection hash table. It contains the

ip_conntrack_tuple (tuple) and the pointer to the IP connection (ctrack).

3.1.20 ip-conntrack

ip_conntrack28 represents an IP connection in the connection tracking mechanism.

It contains an nf_conntrack structure (ct_general) for usage count, a couple of

26include/net/ip_fib.h

27include/linux/skbuff.h

28include/linux/skbuff.h

28

ip-conntrack_tuple_hash structures (one each for original and reply direction, tuple-

hash), status to indicate whether we have seen packets in both the directions (status),

pointer to a ip_conntrack.helper if registered. If this connection is expected by another

connection, that connection is stored in a nf.ct_info structure (master). An array of

nf_ct_inf0 structures which indicate the relation of the packet with the connection is

available as infos.

3.1.21 ip_conntrack_info

ip_conntrack_info29 is an enumeration type which indicates the status of the con-

nection. The different values of this type include IP_CTESTABLISHED to indicate

an established connection, IP-CT_NEW to indicate a new connection etc.

3.1.22 ip_conntrack_tuple

ip_conntrack_tuple30 contains the information related to an IP connection. The

fields in this structure hold the destination information (IP address, port for TCP and

UDP, and type and code for ICMP), source information (IP address, port for TCP and

UDP, and type and code for ICMP) and transport layer protocol identifier. The source

related information is manipulable and is encapsulated in an ip_conntrack_manip31

structure.

3.1.23 ip_conntrack_protocol

ip_conntrack.protocol holds information and function pointers for specific proto-

cols. Its fields include the protocol identifier (proto), protocol name (name), function

pointer to convert packet to tuple (pkt_to_tup1e), function pointer to invert the tuple

29include/linux/netfilter_ipv4/ip_conntrack.h

3°include/linux/netfilter_ipv4/ip.conntrack.tuple.h

31include/linux/netfilter_ipv4/ip_conntrack.tuple.h

29

for the packet (invert_tuple), function pointer to handle the packet (packet), function

pointer to create a new connection of this protocol (new), etc. This is represented

by ip.conntrack.protocol_tcp32 for TCP connections, ip.conntrack_protocol_udp33 for

UDP connections and by ip_conntrack_protocol_icmp34 for ICMP connections.

3.2 Packet Reception

The journey of a packet in the kernel begins with the hardware interrupt of the

interface receiving the packet from the physical medium. The interrupt service routine

(ISR) for the interface checks for the length of the queue (ring buffer overflow), any

transmission errors like checksum, frame errors, etc. Then it allocates space (an

sk-buff structure, usually called skb). It checks for the packet’s protocol ID and

whether the packet is a hardware broadcast, multicast or destined for other host”. It

then calls the netif_rx()36. netif_rx() enqueues the passed skb at the end of the receive

queue for the CPU and raises the networking receive softirq (NET.RX-SOFTIRQ)

flag.

The NET_RX_SOFTIRQ is mapped to the net_rx_action()37. When the kernel

finds that the NET_RX_SOFTIRQ has been raised, it calls net_rx-action(). In this

function, packets (skb) are de-queued from the CPU’s receive queue. For every packet

type, i.e. protocol family, that has been registered, the interface registering the

protocol family is checked to match the incoming interface. If the interfaces match or

32net/ipv4/netfilter/ip.conntrack.proto_tcp.c

33net/ipv4/netfilter/ip.conntrack.proto.udp.c

3"net/ipv4/netfllter/ip.conntrack_proto.icmp.c

35When an Ethernet interface is in promiscuous mode, packets destined for other MAC addresses

also will be processed.

“net/core/dev.c

37net/core/dev.c

30

if the protocol applies to all the interfaces, the function (packet_type.func) to handle

packet of the particular protocol family is called. For INET family, this function is

ip_rcv(38. As long as the queue has packets and there is time, packets are de—queued

and processed.

ip_rcv() is the main IP receive function. This function gets a pointer to the IP

header of the packet and performs checks like IP version, checksum, minimum packet

size, etc. If these checks pass, it invokes the NFJP_PRE_ROUTING hook in the

netfilter framework. If the hook returns a success, then ip_rcv.finish(39 is called.

ip.rcv_finish() invokes ip.route.input()4° if the skb->dst, where skb if a sk_buH

structure discussed in 3.1.1, is not already set correctly. The skb->dst will be set

correctly if the source address of the packet is a 100pback interface, otherwise it is not

set If ip_route.input() returns an error, the packet is dropped, i.e the buffer (skb)

is freed and an error code NET_RX_DROP is returned. If ip.route.input() returns

success, the packet is processed further. If the packet contains any IP options, they

are processed. Finally, skb->dst->input() is called to process the packet. In INET

family, this function maps to ipforward()41 for packets destined to other host and to

ipJocaLdeliverO42 for local packets. The journey of the packet along ipforwardO is

described in 3.4.

ip_route.input() is the function where the route lookup starts. First a hash is

generated from the source address, destination address, incoming interface index and

Type of Service (TOS) of the packet. This is used for lookup in the route cache hash

38net/ipv4/ip_output .c

39net/ipv4/ip.input.c

4°net/ipv4/route.c

‘1 net/ipv4/ip.forward.c

4‘"net/ipv4/ip.input.c

31

table. The corresponding bucket in the route cache hash table is traversed searching

for a route that matches the destination address, source address, incoming interface,

outgoing interface index set to 0 and the TOS. If firewall marking is enabled in the

kernel (CONFIGJPROUTEI‘WMARK = yes), then firewall mark is also matched

with the route cache entry. If an entry is found, then the entry is updated with the

last used time, number of times used and a pointer to the entry is made available in

the packet’s dst, which is a dst_entry structure discussed in 3.1.6, and the function

returns. The route cache entry contains dst-entry as its member. This structure, as

discussed in 3.1.6, holds all the information required for the packet to be sent along

the selected route which includes the neighbour information, the device, hardware

header cache, the output function to be used to send the packet along the route, etc.

If a route cache entry is not found, then ip_route_input.mc()43 is invoked if it is a

multicast packet, otherwise ip_route_input_slow()44 is invoked. In this work, we do

not discuss ip_route.input_mc() and only concentrate on ip.route_input_slow().

ip_route_input_slow() constructs a key (rt_key) based on the destination address,

source address, TOS, firewall mark if configured, incoming interface index, route

scope set to RT_SCOPE_UNIVERSE45. If the source address is multicast address

or the source address has a bad address class or the source address is a loopback

address“, then an error is returned which causes the packet to be dropped. Other

checks like source and destination addresses being 0, source address having a zero

network address are also checked and the packet is dropped if any such test succeeds.

43net/ipv4/route.c

4‘fnet/ipv4/route.c

45Route scopes are used to indicate the type of route: site, link, host, universe.

46A packet with a loopback source address will have the skb->dst already set by the output routine

which would have already been checked in ip_rcv_finish () before invoking ip.route.input(). Hence a

packet with loopback source address will never reach this function.

32

If the packet has a valid source and destination address, then the actual route lookup

is performed. If multiple routing tables support (CONFIGJPJVIULTIPLE-TABLES

= no) is not enabled in the kernel, fibJookup(47 is called to lookup the route in the

Forwarding Information Base (FIB) tables. Otherwise, if the multiple routing tables

support is enabled, then the table lookup routine fibJookup(48 is invoked. If the route

lookup results in a local route, then the packet is destined for the local machine. In

this case, a route cache entry is created and its fields including the search key, function

to process the input packet (which is ip_loca1_deliver()), incoming interface index, etc

are set. If it is not a local packet and if IP forwarding is not enabled on the interface,

then the packet is dropped. At this point, if multipath is configured in the kernel and

if there are more than one nexthops available for the route, fibselectmultipatM 49

is called which selects one of the multiple nexthops based on the route configuration.

After further checks like no outgoing interface available or invalid source (should not

be a broadcast or local address), a route cache entry is created and filled in with the

information about the route selected. The input and output functions for the route

cache entry are set to ipforwardO and ip.output(5" respectively. Finally the route

cache entry created above is inserted into the route cache by calling rtjntern_hash ()51.

One should note that only the most important functionalities of ip_route_input_slow()

have been discussed here.

47include/net/ip_fib.h

48net/ipv4/fib.rules.c

49net/ipv4/fib_semantics.c

50net/ipv4/ip.output.c

5 1 net/ipv4/route.c

33

fibJookupO52 calls the table lookup routine, thookupO, on the local-table and

main_table. If they fail an error is returned else success is returned. The structure of

these tables is discussed in 3.1.9.

In fibJookup()53, the table of routing rules is searched to find the correct routing

table to use for lookup. The search is based on the source address, destination address,

TOS, firewall mark and incoming interface index. Once a matching rule is found, the

action specified for the rule specifies whether to proceed with the route lookup or to

return an error. The lookup proceeds if the action is RTN.UNICAST or RTN_NAT.

The matching rule specifies the table to use for the lookup and the thookupO is

invoked on that table. If thookup() returns an error, the error is propagated to the

caller and the packet is finally dropped.

tb-lookup() maps to fn_hash.lookup()54. In this function, the FIB tables are

searched for longest matching route entry. As discussed in 3.1.11, each routing table

has 33 zones (one for each bit in the network mask). The search starts with the

zone pointed to by fn.zone_list which is the first non-empty zone in the table. The

zones are linked together with the most restrictive zone (32 bit netmask) being at the

head and relaxing the restriction with each zone. In each zone, fz_key(55 is called to

generate the search key by ANDing the destination address and the zone netmask.

Then fz_chainO56 is called which invokes fn_hash()57 to generate a hash to quickly

locate the potential fileOde in the hash table of fibmode for the zone, which might

52include/net/ip_fib.h

53net/ipv4/fib.rules.c

54 net/ipv4/fib_hash.c

55net/ipv4/fib_hash.c

56net/ipv4/fib_hash.c

57net/ipv4/fib_hash.c

34

have an entry for the destination. The search key is compared with the fileOde key.

If the search key is less than that of the node key, then the search moves to the next

zone. If the search key is greater than the node key, the search continues with the

next fibmode entry. If there is a perfect match, then we have a route which is the

longest match for the destination. Now, the fib_node entry is checked for its scope

and state. If the node is in a zombie state or if the scope of the fibmode is less than

the sc0pe of the search key, then the search continues with the next fibmode. Else

fib_semantic_match()58 is invoked to setup the fibJesult structure with the results

of the lookup. If fibsemanticmatchO returns success, then the type, scope and

prefixlen of the fibJesult is set to the values in the fib_node.

In fibsemanticmatch 0, one of the parameters passed is the fibjnfo of the fib.node

which was selected during the search earlier. As discussed in 3.1.13, fibjnfo contains

a list of nexthops available for this route. If the multipath routing is not configured in

the kernel (CONFIGJPJIOUTE_MULTIPATH = no), then the number of nexthOps

is at the most 1, which is selected if it is not dead. Otherwise, the first nexthop

which is not dead is selected to be the nexthop for the packet. This is indicated by

setting res->nh_sel = nhsel where res is a fibJesult structure and nhsel and nhsel

are indices into the array of nexthops.

In fibselectJnultipath () which is invoked if multipath is enabled in the kernel and

if the number of nexthops for the selected route is greater than 1, a weighted-round-

robin algorithm is used to select the nexthop for the packet. Each nexthop specified

in the route is given a weight. The algorithm selects the nexthop according to the

weights.

58net/ipv4/fib_semantics.c

35

ipJocaLdeliverO is the function which finally delivers the packet destined for the

local host up to the higher layers. If the packet is fragment, ip.defrag()59 is invoked

which reassembles the packet. Then the NF.IP.LOCAL.IN netfilter hook is invoked

which if successful calls ipJocal.deliver_finish()60.

ipJocal_deliver_finish() gets the higher layer protocol information from the IP

header of the packet. If the protocol is IPPROTOJZAW indicating that the packet

is destined for a raw socket, raw-v4_input(6’ is invoked for further processing. If the

protocol is not IPPROTOJIAW, then corresponding protocol handler is invoked as

ipproto—>handler(). For TCP, this resolves to tcp_v4_rcv()62, for UDP, this resolves

to udp.rcv()63 and for ICMP, it resolves to icmp_rcv()64

3.3 Packet Transmission

A. packet transmission starts with a call to the the sock_write() which first gets

the socket associated the file descriptor being written to and then sets up the message

header and calls socksendmsg065. The socket is discussed in 3.1.2.

socksendmng calls sobk->ops->sendmsg() of the socket which maps to different

functions for different types of sockets. For INET sockets, it maps to inetsendmngG".

59net/ipv4/ip_fragment .c

6Onet/ipv4/ip_input.c

61 net/ipv4/raw.c

62net/ipv4/tcp_ipv4.c

63net/ipv4/udp.c

6“net/ipv4/icmp.c

65net/socket.c

66net/ipv4/af.inet.c

36

inetsendmng first binds an unbound socket and then invokes

sk->prot->sendmsg() where sk is the INET socket associated with the BSD socket.

INET sockets are discussed in 3.1.3.

sk—>prot->sendmsg() maps to tcp_sendmsg()67 for TCP sockets and

udp_sendmsg()68 for UDP sockets. We take up tcpsendmng and trace the packet

as it travels down the network stack.

tcpsendmng first waits for the connection setup to complete. Then it forms

packets from the message. If there is space in the last awaiting packet (content

length < MSSSQ), the data is added to it. Finally tcp_send_skb()70 is invoked.

tcp_send_skb() first enqueues the packet to the TCP write queue which holds the

packets to be transmitted. Then tcp.transmit_skb()71 is invoked to send packets im-

mediately if required, for example for packets which have the FIN bit set. Otherwise,

the function is invoked later by other functions to transmit the packets.

When a packet needs to be transmitted tcp_transmit_skb() is invoked.

tcp-transmit_skb() first builds the TCP header for the packet. Then it invokes tp-

>af_specific->send-check() where tp is a tcp_0pt structure and afspecific is the

pointer to the INET family specific functions. afspecific is set to ipv4_specific72.

send_check() maps to tcp_v4.send_check(73 which computes the checksum if required.

Finally tp—>af_specific->queue_xmit() is invoked which maps to ip-queue_xmit()7".

67net/ipv4/tcp.c

68net/ipv4/udp.c

69Maximum Segment Size

70net/ipv4/tcp_output.c

71 net/ipv4/tcp_output.c

72net/ipv4/tcp_ipv4.c

73net/ipv4/tcp_ipv4.c

7“net/ipv4/ip.output.c

37

In ip-queue_xmit(), route lookup is performed if the packet is not already routed,

by calling ip_route-output()75. If the route lookup fails, the packet is freed and

an error is returned. The transport layer mechanism will take care of the retrans—

mission in this case. If a route is found, then a pointer to the dst structure in

the route is set up in the packet. Now the IP header is built and added to the

packet. The NF_IP.LOCAL-OUT netfilter hook is called which if successful invokes

ip-queue_xmit2(76.

In ip_route-output() a key is formed from the destination address, source address,

outgoing interface index and the TOS. The outgoing interface index is set if the socket

is bound to a particular interface. Then ip_route_output_key()77 is invoked with the

key.

In ip_route_output_key() the route cache hash table is searched for a route. First

a hash is generated from the source address, destination address, outgoing interface

index and TOS of the packet. This is used for lookup in the route cache hash table.

The corresponding bucket in the route cache hash table is traversed looking for a route

that matches the destination address, source address, outgoing interface, incoming

interface index being 0 and type of service flag. If firewall marking is enabled in the

kernel (CONFIGJP_ROUTE_FWMARK = yes), then firewall mark is also matched

with the route cache entry. If an entry is found, then the entry is updated with the

last used time, number of times used and a pointer to the entry is made available in

the struct rtable **rp passed as argument to the function and the function returns.

If a route cache entry is not found, then ip_route_output_slow()78 is invoked.

75include/net/route.h

76net/ipv4/ip.output.c

77net/ipv4/route.c

78net/ipv4/route.c

38

ip_route_output_slow() first checks if the packet has a source address bound to it,

in which case it finds the device having that source address. Else it checks if the

outgoing interface is specified for the packet, in this case, it selects an address bound

to the interface. Then a check is made to see if the packet has a destination address.

If it does not have a destination address, the source and destination addresses are set

to the loopback address and the loopback device is chosen as the device to send out

the packet on. If the previous tests fail, then fibJookupO is invoked to find the route

for the destination. This function has been discussed earlier in 3.2. If fibJookupO

returns an error but the outgoing interface is specified for the packet, the destination

is assumed to be on the link and a link-scope source address is selected. If the

route lookup fails and the outgoing interface is not specified for the packet, then

the destination is unreachable and an error is returned. If the route lookup yields

a local route, then the loopback device is selected for the outgoing interface. Else,

if multipath is configured in the kernel and there are multiple nexthops available

for the route, fibselectmultipatho is called to select a nexthop from the multiple

nexthops available. If multipath is not enabled or if there is only one nexthop available

for the route, the default nexthop is selected. At this point, the outgoing interface

and the nexthop have been selected for the packet. A route cache entry is created

and filled in with the destination address, source address, TOS, outgoing interface

index, etc. The rth->u.dst.output which specifies the function used for outgoing

packets on this route is set to ip-output(). If the route is a local route, then rth-

>u.dst.input, which specifies the function used for incoming packets on this route,

is set to ipJocal-deliver(). ip_0utput() and ipJocal-deliver() have been discussed in

3.2. Multicast packets and multicast routing are handled here which might change

39

the input and output functions setup above. Finally the route cache entry is inserted

into the route cache with a call to rt.intern.hash 0, which has been discussed in 3.2.

In ip-queue_xmit2(), if the packet is larger than the PMTU79 of the route, then

the ipfrag'mentO80 is called. Else, the IP checksum is computed with a call to

ip_send-check(81 and then skb->dst->output(skb) is called which maps to

ip_output().

In ip_output(), ip-do.nat(82 is invoked if NAT is configured in the kernel, else

ip_finish_output()83 is invoked.

ip_finish_output() invokes the NF_IP_POST_ROUTING netfilter hook which if

successful calls ip_finish_output2(84.

In ip_finish_output2(), if a hardware header cache is available for the packet’s

outgoing interface, the hardware header is added to the packet and then hh_output()

function of the hardware header cache is invoked. If no hardware header cache is

available for the packet and if the neighbour data is available for the route, then

the output() of the neighbour data is invoked. If neither is available, the packet is

dropped and an error is returned.

In general, hh_output() function maps to dev_queue_xmit(85. When a neighbour

is deleted, hh_output() maps to neigh_blackhole()86 which just frees the packet buffer

and returns an error.

79Path Maximum Transmission Unit

80net/ipv4/ip_output.c

81 net/ipv4/ip_output.c

82net/ipv4/ip.nat.dumb.c

83net/ipv4/ip.output.c

84 net/ipv4/ip..output.c

85net/core/dev.c

86net/core/dev.c

40

output() of the neighbour maps to different functions depending on the state of the

neighbour. These functions provide address resolution functionality. If the neighbour

is dead, it maps to neigh-blackhole(). If the neighbour is in a good, then it maps to

neigh->ops->connected-output. For Ethernet devices, the connected-output() maps

to neigh_resolve_output(87.

dev_queue_xmit() checks for the device queue and if the device has a queue, en-

queues the packet for transmission by the device. It then runs the qdisc (quSCJ'lIIl ()88)

attached to the device and returns either success or failure depending on whether the

queuing was successful or not. Some types of devices, for example loopback, tunnels

etc, do not have an associated queue. In such cases, the hardstaermitO associated

with the device is invoked. This function maps to the routine which takes care of

the actual transmission of the packet from the interface and hence depends on the

device driver. It is interesting to note that in'the case of a loopback interface, the

hard-start_xmit() invokes the netif_rx() simulating a packet reception by the loopback

interface.

It is in qdisc_run() that the queuing disciplines come into picture. This calls

the qdisc_restart()89 which de—queues a packet from the device’s queue and calls the

hardstaermitO to transmit the de-queued packet. The packet to be de—queued is

decided by the qdisc installed on the interface and any traffic shaping setup on the

interface.

87net/core/neighbour.c

88include/net/pkt_sched .h

89net/sched/sch.generic . c

41

3.4 Packet Forwarding

All packets which are being forwarded by the system follow the path taken by

the incoming packets till they are passed to ipforwardO. This is the point where

the incoming packets destined for the localhost and those being forwarded go their

separate paths.

At this point, the outgoing interface for the packet has been selected. The rout-

ing table entry for the route chosen is available in (struct rtable*)skb->dst and the

corresponding interface is available in rt->u.dst.dev.

In ip.forward(), the packet is checked to make sure it is destined for a host and

not a broadcast or other type of packet which should not be forwarded. The packet is

dropped if it is not destined for a host. The IP Time-To—Live (TTL) is checked and if

it is less than or equal to 1, the packet is dropped and an ICMP time exceeded error

message is sent to the origin of the packet. Other options like strict source routing

(SR), don’t fragment (DF) etc are also checked. Appropriate ICMP error messages

are sent back and the packet is dropped if the packet fails any of the checks.

If network address translation (NAT) is enabled on the outgoing interface,

ip.do_nat()90 is invoked on the packet . If ip_do_nat() returns an error, the packet is

dropped.

Finally the NF_IP_FORWARD netfilter hook is invoked on the packet. On success,

this hook invokes ipforwardjinish(9’ on the packet.

90net/ipv4/ip_nat-dumb.c

9’ net/ipv4/ip_forward .c

42

If there are no IP options, ipforwardfinishO invokes ip_send(92 on the packet.

If there are Options, then ip_forward_options()93 is invoked to process the Options and

then ip_send() is invoked to send Off the packet.

ip_send() calls ip_fragment()94 if the packet is larger than the Path Maximum

Transmission Unit (PMTU) of the outgoing route which in turn fragments the packet

and then calls ip_finish_output(95 else calls ip_finish-output().

ipfinish-output() calls the NF_IP_POST-ROUTING netfilter hook and if the hook

is successful it calls ipfinish_output2(96.

From here, the packet follows the same path as taken by a packet being transmitted

from the system, which has been discussed in 3.3.

3.5 Netfilter Framework

From the Linux netfilter Hacking HOWTOW:

Netfilter is merely a series of hooks in various points in a protocol stack...

The framework provides a number Of hooks which are called at different times

during a packet’s journey through the protocol stack on the system as depicted in

Figure 3.498.

After checking the incoming packets for IP version, checksum, etc, ip_rcv() passes

them through the NF_IP_PRE_ROUTING hook ([1] in Figure 3.4). After success-

92include/net/ip.h

93net/ipv4/ip.options.c

94 net/ipv4/ip.output.c

95net/ipv4/ip_output.c

96net/ipv4/ip_output.c

9“’http: / /netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO.html

98Source: Linux netfilter Hacking HOWTO, http:/ /www.netfilter.org/documentation/HOWTO/

netfilter-hacking-HOWTO-3.html

43

lncomin

g ——_>l1l '_"|ROUTEI ——*[3I——>[4|—>Forwardcd/

Packets Outgoing

Packets

”I
“ [ROUTE]

Local—bound Packets [[5]

Locally—generated Packets

Figure 3.4: Netfilter Hooks

fully passing through the hook, the routing code decides whether the packet is

destined for the local system or it has to be forwarded to another host. If the

packet is for the local system, the NFJP_LOCAL_IN ([2] in the above Figure 3.4)

is invoked from ipJocaLdeliverO. If on the other hand the packet is for a differ-

ent system, ipjorwardO calls the NFJPIORWARD ([3] in Figure 3.4). Packets

which are generated by the local system first pass through NF_IP_LOCAL-OUT ([5]

in Figure 3.4) netfilter hook called from ip_queue_xmit(). Locally generated pack—

ets destined for other system as well as forwarded packets finally pass through the

NF_IP_POST_ROUTING hook ([4] in Figure 3.4).

The hooks can return one of the following results: accept, drop, stolen, queue or

repeat. If accepted, the packet continues its journey through the protocol stack. If

the verdict returned is drop, then the packet is dropped and the traversal is aborted.

Stolen indicates that the hook has taken control over the packet and that the protocol

stack should not continue processing the packet. Queue provides a mechanism to

44

queue the packet for user-level handling Of the packet. Repeat causes the hook tO be

called again on the packet.

Any module can register itself at any of the hooks. During the registration, a

function is specified which will be invoked when the hook is called. This function

will be given a pointer to the packet and should return one Of accept, drop or queue

verdicts. During the registration, the priority of the function for that book is spec-

ified. When the hook is invoked, the registered functions are called in the order Of

their priority. For example, the following modules register their functions with the

NF_IP.LOCAL-OUT (in the order of priority/call): Conntrack, Mangle, NAT (desti-

nation NAT), Filter99. Conntrack module handles the connection tracking mechanism

in Linux while the Filter module is responsible for filtering packets based on differ-

ent criteria like source and destination address, source and destination port number,

ICMP type, etc. The filter module is used to setup rules to configure firewall on the

system.

Now we discuss the connection tracking mechanism in the netfilter framework.

This mechanism is later used in our work to identify the connection to which a packet

might belong.

ip-conntrack_in(“’0 is registered at NF_IP_PRE_ROUTING hook. A packet after

passing the basic IP checks comes here where it is checked if a connection is already

associated with this packet (probably coming on a loopback device), in which case

NF_ACCEPT is returned. If the packet is a fragment, then ip_ct_gather_frags(“’1 is

invoked to gather the fragments. Then the protocol of the transport layer is iden-

tified from the packet. If the packet is an ICMP error message, it is dealt with

99include/linux/netfllter_ipv4.h

100net/ipv4/netfilter/ip_conntrack.core.c

‘01 net/ipv4/netfilter/ip-conntrack.core.c

45

here and NF_ACCEPT is returned. Then resolvemormal_ct(102 is invoked to get

a connection associated with the packet. If resolvemormaLctO fails, NF_ACCEPT

is returned. The proto->packet(), where proto is a ip_conntrack..protocol (discussed

in 3.1.23) structure, is invoked. This function maps to different functions for dif-

ferent protocols, for example, for TCP it maps to tcp_packet()1°3 and for UDP it

maps to udp_packet()1°4. After some more checks, if there is a helper function reg-

istered for the packet’s protocol, it is invoked. Finally, if resolvemormal.ct() had

indicated that the packets have been seen in both the directions for the connection,

the IPS_SEEN.REPLY.BIT105 bit is set in the connection status and the function

returns the result of the call to proto—>packet().

resolve.norma1_ct() first forms the IP connection tracking tuple

(ip_conntrack_tuple as discussed in 3.1.22) for the packet. If the tuple cannot be

formed an error in the form of NULL is returned. Else ip_conntrack_find_get()106 is

invoked to find any existing connection corresponding to the tuple. If a connection is

’07 is called to create a new connectionnot found for the tuple, then init-conntrack(

for the tuple. If there is any problem creating a new connection, then an error

is returned. Once we have a connection corresponding to the tuple (either a new

connection or an existing connection), various checks are performed to set the status

of the connection, for example, is this packet in the original direction or is it a reply

‘02net/ipv4/netfilter/ip.conntrack.core.c

103net/ipv4/netfilter/ip_conntrack.proto.tcp.c

10“net/ipv4/netfilter/ip.conntrack.proto.udp.c

105include/linux/netfilter_ipv4/ip.conntrack.h

’06net/ipv4/netfilter/ip.conntrack.core.c

1°7net/ipv4/netfilter/ip-conntrack.core .c

46

packet, if a reply has been seen then the connection is set to established status, etc.

The function then returns the connection associated with the tuple.

init-conntrack() is the function where a new connection is created for a packet.

The tuple (ip-conntrack-tuple discussed in 3.1.22 is passed to this function which is

used to generate a hash for placing it in the connection hash table. If the number

of connections is more than the maximum number of the connections possible, a

connection is dropped from table randomly or from the chain into which the new

connection will be put into. Next the tuple for the reverse direction of the packet is

generated by calling invert-tuple()1°8. If the inverse tuple generation fails, then an

error is returned without putting the new connection into the connection table. A

new connection is allocated and its members filled in. The tuple and the connection

information is filled in for both the original as well as the reverse direction packets.

The packet’s transport layer protocol’s new() function is invoked to setup information

specific to the protocol in the connection structure. After filling in other members

of the connection like timeout information, the connection’s tuplehash (discussed in

3.1.19) is returned.

As remarked earlier, the above discussion might be overwhelming to some readers.

It is expected to be z.) However, section 4.1 discusses the strategies at a higher level

and should be more easy to follow than the above discussion.

103net/ipv4/netfilter/ip_conntrack.core.c

47

Chapter 4

Channel Balancing Algorithms

In this chapter, we look at the four different strategies to balance the outgoing

traffic on an equal cost multipath route. First we discuss the strategies and then

their implementation details. All the strategies require the kernel to have mulitpath

feature (CONFIGJPROUTE-MULTIPATH = yes) enabled.

4.1 Strategies

For the discussion of the strategies, we assume that some source hosts (srcA, sch,

srcC, etc) have more than one route to some destination hosts (dstl, dst2, dst3, etc)

using multiple interfaces (ethO, eth1, eth2, etc) on the gateway/router. We assume

that these routes have equal metrics, i.e. equal cost. If the cost Of the routes were

unequal, then the best route would be used and the others discardedl. Therefore, for

following discussions, we assume more than one equal cost routes to the destination

hosts (see Figure 4.1).

4.1.1 Route Based Channel Balancing

In this strategy, load balancing is considered when the route for the destination is

looked up. For example, when srcA causes a route lookup on the router/load balancer

for dstl, the first route, via ethO might be used. As long as the route cache entry for

1Some router vendors provide feature to balance traffic across unequal routes also.

48

Intermediate

router

""""""""""""""
.‘all

’ dst1

lntemet

Cloud

I I

[Router/Load router g

E ' balancer

.521 g .: _ ,

dstZ

router

Figure 4.1: Multiple Routes between hosts

dst1 is valid, all data for dst1 will be routed over the same path. When a new route

is looked up, say for dst2, the load balancing algorithm will select the next equal cost

path, via eth1. Now all the data for dst2 will be routed along eth1 as long as its

route cache entry is valid. The multipath route can be configured to have different

weights for the different equal cost routes. For example, the route via ethO might be

given a weight of 2, while the rest are given a weight of 1. This will cause eth0 to be

used twice as many times as the others during the route lookup. Further, if there are

connections to dst1, dst2, dst3 and dst4, the connections to dst1 and dst4 will use

ethO while dst2 and dst3 will use ethl and eth2 respectively.

4.1.2 Per-packet Based Channel Balancing

In this strategy, load balancing is applied for every packet. When a packet needs

to be transmitted or forwarded to a destination for which there are multiple equal

cost routes available, the load balancer will select the appropriate route. For example

49

if we have 3 packets to be forwarded to dst1 and we have 3 equal cost routes to

dst1, then one packet will be sent over each route, thus balancing the traffic. The

balancing is not restricted to a specific destination. If there were 3 packets, one

packet destined for dst1 and two packets destined for dst2, then the first packet will

be sent over first route, second packet over the second route, third packet over the

third route. Thus one packet will be sent over each route. Thus, per-packet based

channel balancing does not consider the destination or the source information when

balancing the traffic. It considers each packet individually and picks a route for it.

This may cause packets belonging to the same connection (say a web upload session)

to be sent out over different routes.

In this strategy also the administrator has the choice to assign different weights

to each participating route and control how much traflic is sent over each route.

4.1.3 Session Based Channel Balancing

We define a session as collection of related packets transferred between two hosts,

the source initiating the connection to the destination. In other words, a TCP con-

nection and a UDP connection are examples of a session. In IPv4 family, the source

and destination IP addresses, the source and destination ports for TCP and UDP or

the type and code for ICMP, define a connection.

In this strategy, the load balancing is done based on sessions. When a session is

initiated (either on the load balancer or on a host which sends data to the load bal-

ancer for forwarding) and comes in for routing, the load balancer selects a route from

the multiple equal cost routes. In the future, all arriving packets which belong to that

session are routed along the same route. When another session comes in for routing,

50

the load balancer selects another route. We use the netfilter2 framework’s connection

tracking mechanism to determine if a packet belongs to an existing connection or is

a new connection.

For example, consider a TCP session initiated from srcA to dst1. The port num-

bers involved are 8011 (source port) and 22 (destination port). The connection can be

specified as <srcA28011, dst1:22>. When this session is initiated, the load balancer

will select a route, say via eth0. All packets which belong to this session will then be

routed along eth0. If another session defined by <schz7291, dst2z80> comes in for

routing, the load balancer will now select another route, say via eth1 and all packets

of this session will then be routed along eth1.

4.1.4 Bandwidth Usage Based Channel Balancing

In this strategy, the current bandwidth usage on the routes is used tO decide the

route for the current packet. The bandwidth usage on each route (interface) is mea-

sured periodically and weight-averaged over a period of time. When a packet comes

in for routing, the route (interface) that has the maximum unused bandwidth avail-

able is used. Similar to the strategy in section 4.1.2, this strategy also considers each

packet individually. This may cause the packets belonging to the same connection

to be routed over different routes which may result in out-of-order delivery at the

destination.

For example, if there are two lOMbps routes to a destination say through eth0

and eth1 and their bandwidth usage is 3Mbps and 4Mbps respectively, then the next

incoming packet will be sent out on eth0 because it has more of unused bandwidth,

7Mbps.

2http://www.netfilter.org/

51

ip_route_input_slow() {

search FIB tables

if(multipath route found) {

/* Now we select one of the multipath

routes according to the strategy being used */

if(session_debug == true) { /* Using session based strategy */

if (connection associated with packet is found) {

if(outgoing interface is set) {

if(fib_select_multipath_previous() == false) {

/* Dead interface ? */

fib_select_multipath_session()

} else {/* New connection */

fib_select_multipath_session()

} else { /* Setup the session */

fib_select_multipath_session()

} else i(bandwidth_debug = true) { /* Using bandwidth based strategy */

fib_select__multipath_bandwidth()

} else {

/* This will be route based or per-packet depending on the */

/* EQUALIZE flag in the multipath route */

fib__select_multipath()

Figure 4.2: Nexthop Selection Logic in Multipath Route

4.2 Implementation

In this section we discuss the implementation details of the different strategies

discussed above. We discuss the changes made to the stock3 Linux kernel, any config-

uration requirements for the kernel build, the method to enable a particular strategy

and some sample commands to illustrate the setup process. Figure 4.2 illustrates the

control flow for selecting the nexthop for various strategies.

3Any default installation of Linux Operating system distributed by vendors.

52

Route found in

route cache?

 ll
Send packet on

the selected route

Packet arrival

for routing

/

Search FIB

tables

Route found in

FIB tables“?

Multipath

Route?

No

Discard

packet /

Select nexthop

(weighted—round

-robin)

ll
Insert route int

 / route cache °/

Figure 4.3: Route Based Channel Balancing

4.2.1 Route Based Channel Balancing

This load balancing technique is available in the stock Linux kernel. Before the

load balancing feature can be used, the administrator needs to configure the multipath

route.

The following command will setup the equal cost multipath with equal weights to

each participating route“:

ip route add 20.0.0.0/24 \

4The command has been split into multiple lines for readability.

53

nexthop via 10 0.1.2 dev ethO weight 1 \

nexthop via 10.0.2.2 dev eth1 weight 1 \

nexthop via 10.0.3.2 dev eth2 weight 1 \

The route lookup starts with call to ip.route.input() which searches the route

cache for a matching route. If it fails, ip.route.input.slow() is invoked to search the

FIB tables for a suitable route. If the result Of the search is a multipath route, then

the fibselectmultipatho is invoked which selects the nexthop based on the weights

assigned to the nexthops. The chosen nexthop is added to the route cache so that

packets destined to the same destination can now be routed along the chosen route

without causing a route lookup.

4.2.2 Per-packet Based Channel Balancing

This strategy is not available in the stock Linux kernel and the nano5 patch

should be applied to the kernel and the kernel rebuilt. When rebuilding the kernel,

the multipath feature (CONFIG_IP_ROUTE..MULTIPATH = yes) should be enabled.

The following command will setup per-packet based load balancing with equal weights

to each participating route (notice the use of the equalize keyword in the command):

ip route add equalize 20.0.0.0/24 \

nexthop via 10.0.1.2 dev ethO weight 1 \

nexthop via 10.0.2.2 dev eth1 weight 1 \

nexthop via 10.0.3.2 dev eth2 weight 1

The nano patch changes the route lookup code. When a packet arrives destined for

a host for which there is no route in the route cache, the FIB tables are searched as in

section 4.2.2. If a multipath route is found, then before adding the route entry into the

5http: //trash.net/ kaber/equalize/equalize_2.4.18.patch

54

Packet arrival

for routing

_No Search FIB

I tables

Route found in

FIB tables?

Route found in

route cache?

Discard

packet

Select nexthop

(weighted—round

-robin)

 Equalize‘ flag

set?

Multipath

Route?

/ Send packet on/ No

the selected route

W

I Insert route into

route cache

End

Figure 4.4: Per-Packet Based Channel Balancing

route cache, it is marked with RTCFEQUALIZE flag. Later when this route cache

entry is selected to route another packet, the route cache entry is deleted and the FIB

tables are searched again. This makes sure that all packets using the multipath route

cause a search of the FIB tables and the packets are distributed over the multiple

nexthOps according to the weights. The route cache lookup routine for forwarded

packets ip_route_input(), ip_route.input.slow() which sets up the route cache entry

for forwarded packets, ip_route_output_slow() which sets up the route cache entry for

55

Route found in

route cache?

Equalize flag

set?

Packet arrival

for routing

I

Yes

No

_1

Search FIB

tables

Send packet on

the selected route

Select

‘ previously

nexthop

session_debug

set?

No

NO

Select nexthop

e1ghted—roun

—rlohin)

 acket belongs

to existing

sessron?

End

/ Insert route into

/ route cache

Figure 4.5: Session Based Channel Balancing

outgoing packets, ip_route_output_key() which searches the route cache for outgoing

packets are modified to implement this strategy.

4.2.3 Session Based Channel Balancing

This implementation requires the application of the nano patch to the stock

Linux kernel.

56

This strategy requires the connection tracking mechanism (CON-

FIGNETFILTER, CONFIGJPJVRCONNTRACK and CONFIGJPNPLFTP) to

be configured in the kernel and not as separate modules.

The ip-conntrack_tuple structure was modified to record the last chosen outgoing

interface for the connection (oif). oif is initialized to -1 in resolvemormal-ct() before

calling init_conntrack() for a new session. When the new connection is created in

init_conntrack(), oif of the reply packet’s tuple is initialized to -1.

A flag, session-debug, is added to the kernel to indicate that session based channel

balancing is configured. This flag can be set by inserting the module session_debug.o

which was written separately.

In ip.route.input.slow(), if the FIB table search for the packet’s destination yields

a multipath route, then we check if session_debug is set. If set, we check if the

packet is associated with a connection. If a connection is found for the packet, we get

the IP connection structure (ip_conntrack) of the packet. We now have information

about the packet’s direction as well as the outgoing interface used by the packet’s

connection. If the outgoing interface is not set (Oif = -1), then this indicates that the

packet is part Of a new connection. Here we call fibselectJnultipathsession ()6. If the

outgoing interface is set indicating that the packet is part Of an existing connection,

we call fibselectJnultipath_previous(). If fibselechultipath_previous() returns an

error due to a dead interface or other reasons, we call

fibselectmultipathsession() similar to a packet belonging to a new connection.

If the packet did not have a connection associated with it, we call

fibselectmultipathsession () to select the nexthop.

fibselectmultipathsession () invokes fibselectmultipathO to select the nexthop ac-

cording to the weights of the nexthops.

6net/ipv4/fib_semantics.c

57

If the session-debug was not set, we call fibselectJnultipathO to select the nex-

thop, similar to section 4.1.2 strategy.

We implement the new function fib_select_multipath.previous7 which

searches the multipath route for the nexthop last used by the connection. It takes the

outgoing interface index of the connection as one of its parameters. If the interface

Of the nexthop last used is still alive, then the nhsel of the route cache entry is set

to indicate the selection of the nexthop and a success is returned. If the nexthop

corresponding to the last used interface is not found or if it is dead, then an error is

returned.

Finally in ip_route_input_slow(), just before inserting the route cache entry into the

route cache, the outgoing interface for the packet’s connection is set to the interface

on which the packet is being sent out.

To use this strategy, the administrator should insert the module session_debugo

to set the session_debug flag and then set up the multipath route:

insmod session_debug.o

ip route add equalize 20.0.0.0/24 \

nexthop via 10.0.1.2 dev ethO weight 1 \

nexthop via 10.0.2.2 dev eth1 weight 1 \

nexthop via 10.0.3 2 dev eth2 weight 1

4.2.4 Bandwidth Usage Based Channel Balancing

To implement this strategy, in addition to the kernel modifications, a kernel mod-

ule was implemented to measure and estimate the current bandwidth usage on all the

7net/ipv4/fibsemanticsc

58

Packet arrival

for routing

 Route found in
_ Search FIB/

route cache? ’0 tables

Yes

 Equalize flag

set?

unused

bandwidth -rlobin)

/ Send packet on// S It th S l m”

the selected route eco nex ope ect nex 0P

/Withmaximump (weighted—mun

/[Insert route into

/ route cache

End

Figure 4.6: Bandwidth Usage Based Channel Balancing

interfaces. This strategy also requires the application of the nano patch to the stock

Linux kernel.

The net-device structure was modified to implement the bandwidth estimator.

A bwusage8 structure (bwusage) was added to net_device. bwusage holds various

statistical information about the interface: its name (name), transmission rate in

bits/sec and packets/sec (tx-bps and tx_pps respectively), average transmission rate

8include/net/bwestimatorh

59

in bits/sec and packets/sec (tx_avbps and tx_avpps respectively), total bytes and

packets sent out (tx-total_bytes and tx_tota1.packets respectively) and bytes and

packets sent out during the last measurement interval9 (tx-bytes and tx.packets re-

spectively).

In ip_route_input_slow(), if the FIB table search for the packet’s destination yields

a multipath route, then we check if bw_debug is set. This flag indicates the selection

Of the bandwidth usage based channel balancing strategy and is set by inserting

bw-debug.o module into the kernel. bw_debug.o is a kernel module written for this

thesis. If set, we call fib_select_multipath_bandwidth()lo to select the nexthop for the

packet. If bw_debug is not set, we call

fibselectmultipathO to select the nexthop, similar to section 4.1.2 strategy.

In fib_select_multipath-bandwidth O, we iterate over all the available nexthops and

identify the one with the maximum unused bandwidth. The bandwidth information

is available from the bwusage structure of the interface associated with the nexthOp.

The nexthop with the maximum unused bandwidth is then selected to send the packet.

nh_sel of the fibJesult is set to indicate the selection.

To use this strategy, the administrator should insert the module bw_debug.o tO

set the bw-debug flag and then set up the multipath route:

insmod bw_debug.o

ip route add equalize 20.0.0.0/24 \

nexthop via 10.0.1.2 dev ethO weight 1 \

nexthop via 10.0.2.2 dev eth1 weight 1 \

nexthop via 10.0.3.2 dev eth2 weight 1

9This is set to 1 sec which can be configured in the bandwidth estimation module.

10net/ipv4/fib_semantics.c

60

4.2.5 Discussion Of the strategies

Each Of the strategies discussed above have certain points of interest. The route

based strategy and session based strategy ensure that the packets of a connection

passing through the route will be routed in-order while the per-packet based and

bandwidth based strategies do not ensure it. The packets of a connection might

be routed over different routes in these strategies. While this might seem to affect

the TCP’s timing mechanism which controls the TCP window size (according to the

Sliding Window Protocol), it should be noted that the IP protocol in itself does not

guarantee any in-order delivery of packets. Thus, even though the packets passing

through the load balancer might be routed in-order in the route based and session

based strategies, there is no guarantee that they will reach the destination host in-

order.

Another issue to note is that except for the route based strategy, all the other

strategies invoke a FIB table search for every packet. This might cause scalability

issues when routing large amounts of data. But experimental results on a LAN show

that these strategies can achieve the same routing rate as the route based strategy

for small sized data transfers. We should note here that this implementation is not

intended for large networks where the traffic is flowing at gigabit-per-second (Gbps)

rates. In such situations, one must consider the affects of the FIB lookups for every

packet in per packet based, session based and bandwidth based strategies.

61

Chapter 5

Experimentation Details

In this chapter we describe the testbed setup, the traffic pattern and type, and

the statistics collected.

The testbed setup is shown in Figure 5.1. As shown in the figure, two servers

(srcA and sch) serve as the source Of data and two hosts (dst1 and dst2) serve

as the sink. These hosts (dst1 and dst2) have been configured with two additional

loopback addresses (10:1 and 10:2)1 each, to which the data is sent. This gives us

4 different destination addresses. The data is sent from srcA and sch to dst1:lol,

dst1:102, dst2:lo1 and dst2:lo2. The default route on srcA and sch is configured via

the channel balancer router (balancer). On balancer, the default route is a multipath

route consisting of routes via the three intermediate routers (testa, testb and testc).

Depending on the channel balancing strategy being tested, we either set or unset the

EQUALIZE flag on the multipath route. On the intermediate routers (testa, testb

and testc), routes are setup to route packets destined for the destination addresses

dst1:loI and dst1:102 via dst1:eth0 of dst1. Similarly, packets destined for dst2:lol

and dst2:loZ are routed on the intermediate routers via dst2:eth0 of dst2. TO be able

to route any acknowledgment packets or other error packets, intermediate routers are

configured to route data destined for srcA and sch over the link connecting them to

1We use the name of the interface configured with an IP address to denote the IP address for

readability purposes.

62

172.20.1.0/24

eth0(2) 4 eth1 .1

......... testa () ..-.L.’9’1('1)

C31 eth0(.1) eth0(.5) if”; lo:2(.1)

srcA ‘ '

. 172.16.1.0/24 dstt

172.170.0/24 172.20.20/24

11.0.0.0/241

eth1(.1)

,7“ 172.162.0124 emf-2)

. " .. eth2(.1) eth0(.2) 172.21.1.0/24

ems j ('25 ethsu) testb 5

Load balancer "JEN-1)

a eth0(.6),i...;l |o:2(.1)

m L 172.16.4.0/24 dst2 }

If: 7 - ' T" gimgAL ,, j

5’08 e’h0('2’ eth0(-2) \- 172.21.20/24

testc

Figure 5.1: Testbed Setup

balancer. Finally, dst1 is configured to send data destined for the source servers via

testa and dst2 is configured to send data destined for the source servers via testb.

This setup enables the routing of data between the source and destination hosts.

We use the Secure Copy program (scp) to transfer the data. The transfer is ini-

tiated from the source servers. Session based strategy requires that the connections

be outgoing on the multipath route. If the connection had been initiated from the

destination hosts, then connection tracking mechanism would remember the incom-

ing interface and mark that as the interface to use for packets going in the reverse

directions. Hence to balance the sessions on the multipath route, we should have

the connection initiated from inside the network and going out on the multipath

63

route. This is achieved by using the scp command on the source servers similar to

the following:

ashoknn-src1:“>scp file1.dat nnashokQashoknn-dstl:data/

The above command will copy the file1.dat from the ashoknn-srcl machine to the

ashoknn-dst1 machine.

Files Of different sizes: 8KB, 16KB, 64KB, 128KB, 512KB, 1MB, 2MB, 4MB,

8MB and 16MB, were transfered. The tests were conducted by sending 20 files each

of the sizes 8KB, 16KB, 64KB, 128KB and 512KB. For each Of sizes 1MB, 2MB,

4MB, 8M and 16MB, 5 files were transfered. Each source would transmit the files of

a given size (say 8KB) to each of the destination hosts (dst1:lol, dst1:lo2, dst2:lol

and dst2:lo2). Thus during the test for 8KB file size, srcA and sch each would send

20 files of 8KB size to dst1:lol, dst1:102, dst2:lo1 and dst2:102 each.

We used iptables rules tO determine how much data was transfered on each inter-

face for each source-destination combination. In addition, for the bandwidth usage

based strategy, a bandwidth usage estimator module was inserted into the kernel

which measured the bandwidth usage on each interface every second and averaged it

over a period of 8 seconds.

64

Chapter 6

Results

Figures 6.1 through 6.11 show the bandw1dth utilization on each interface during

file transfer of different sizes under different strategies.

In route based channel balancing, we observe that two of the routes participating

in the multipath route are used almost equally. However we see an anomaly during

the transfer Of files of 2MB size. This might be due to the timing of the arriving

connections which caused the same route to be taken for more connections.

We Observe that the bandwidth utilization on each interface is approximately

the same when per-packet based channel balancing strategy is used. This verifies

the design Of the strategy. Although we expected performance degradation due to

possible out-of-order delivery of packets at the destination, it is not reflected in the

experimental results. It could be due to the small number of hops involved (3 hOps)

in reaching the destination. If there were more hops, we might have been able to

notice the affects of the out—of-order delivery Of packets.

Session based strategy also shows equal utilization of each route. But this would

be because during each test, the same amount of data was transfered by each con-

nection thus equalizing the bandwidth utilization on the routes. The difference in

the bandwidth utilization of the routes is visible in Figure 6.11 where the connections

transfered different amounts of data. In this case, the timing of the incoming connec-

65

160

5 140

= 120

S
E 7;? 100

3 5- 80

§ v 60

a 40
C

8 20

0 I I .1

Route Per-packet Session Bandwidth

Channel Balancing Strategy
Figure 6.1: Bandwidth usage for File Size 8KB

tions Would also matter in the utilization of the routes. For example, consider three

transfers of 1MB, 1KB and 16KB respectively. Balancing these sessions, lets say that

1MB session is routed over eth1, 1KB session routed over eth2 and 16KB session

routed over eth4. Now if an 8MB session came in, it would be routed over the first

route eth1 thereby raising the bandwidth utilization of eth1 drastically. Therefore,

in this strategy, the bandwidth utilization of each sessmn will have an impact on the

bandwidth utilization of each route.

We notice that in all the transfers with bandwidth based strategy, eth1 is not

utilized. This is because the simulated bandwidth available for eth1 was only leps

whereas the other interfaces were configured to simulate lOMbps. Thus the available

bandwidth on eth1 was lesser than the available bandwidth on the other interfaces.

66

File Size 16KB

250

E 200

E
E A 150

s s
.C

5 1‘, 100

3
1:

5 50
1:0

0 LL“... . . __

Route Per-packet Session Bandwidth

Channel Balancing Strategy

Figure 6.2: Bandwidth usage for File Size 16KB

If the bandwidth of the routes was comparable, then we can expect behavior similar

to the per-packet based channel balancing strategy.

The transfer times involved in these tests (see Figure 6.12) indicate that the

different strategies perform equally well when the size of the files transfered is small

(3 512KB). As the size of the file increases, the per-packet based and session based

strategies show better performance. We should remember that in all the case except in

the mixed file size case, the file size in each connection was same. This would cause

the data transfered by every connection to be the same and hence the bandwidth

utilization of the routes in the session based tests would be approximately the same.

67

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
K
b
p
s
)

800

700

600

500

400

300

200

1 00

File Size 64KB

Route Per—packet Session Bandwidth

Channel Balancing Strategy

Figure 6.3: Bandwidth usage for File Size 64KB

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

File Size 128KB

Route Equalize Session Bandwidth

Channel Balancing Strategy

Figure 6.4: Bandwidth usage for File Size 128KB

68

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
K
b
p
s
)

3500

3000

2500

2000

1500

1000

500

File Size 512KB

21.,

Route Per-packet Session Bandwidth

Channel Balancing Strategy

Figure 6.5: Bandwidth usage for File Size 512KB

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
K
b
p
s
)

File Size 1MB

Route Per-packet Session Bandwidth

Channel Balancing Strategy

Figure 6.6: Bandwidth usage for File Size 1M

69

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
K
b
p
s
)

Route

File Size 2MB

Per-packet

Session Bandwidth

Channel Balancing Strategy

Figure 6.7: Bandwidth usage for File Size 2M

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
K
b
p
s
)

1 0000

8000

6000

4000

2000

File Size 4MB

Route Per-packet

Session Bandwidth

Channel Balancing Strategy

Figure 6.8: Bandwidth usage for File Size 4M

70

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
K
b
p
s
)

File Size 8MB

Route Per-packet Session Bandwidth

Channel Balancing Strategy

Figure 6.9: Bandwidth usage for File Size 8M

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

File Size 16MB

Route Per-packet Session Bandwidth

Channel Balancing Strategy

Figure 6.10: Bandwidth usage for File Size 16M

71

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
K
b
p
s
)

Mixed File Sizes

800

700

600

500

400

300

200

1 00

Route Equalize Session Bandwidth

Channel Balancing Strategy

Figure 6.11: Bandwidth usage for Various (mixed) File Sizes

T
r
a
n
s
f
e
r
T
i
m
e
(
s
e
c
)

Transfer Times

700

600 .

I Per-packet

500 DSession

400 DBandwdth

File Size

Figure 6.12: Transfer Times

72

Chapter 7

Conclusions and Future Work

The experimental results indicate that the per-packet based and session-based

channel balancing perform better than the route—based and bandwidth-based channel

balancing in the experimental setup. Bandwidth based channel balancing strategy

tends to push more data on higher capacity links than try to push data on all the

available links. Balancing traffic based only on the unused bandwidth might cause

data to be pushed on an interface at a rate above the threshold value when the

queuing delays on the interface will decrease the performance. This in itself can be

studied further as another channel balancing strategy where the percentage of the

unused bandwidth is sought to be equalized on the routes.

Due to the topology of the testbed, the effects of out—of-order delivery on the per-

formance of the strategies is not clear in the tests conducted. Experiments simulating

out-of-order delivery of packets can be conducted to study these effects.

Looking at the testbed, we observe the destination hosts were only three hops

away from the source. The effects of varying the number of hops between the source

and destination can also be taken up for future research.

Ideally we would like to see the performance of the different strategies in a real—

world scenario. It is in the real-world scenario (or a well simulated environment)

that the effectiveness of the strategies can be truly evaluated. The variations in the

73

connection times, lengths, data transfered, destination addresses, number of hops,

latency, out-Of-delivery of packets, etc, may cause the strategies to behave in a manner

not brought out by the laboratory experiments. Also, experiments can be conducted

to study the effects of the packet size on the performance Of the strategies.

Other strategies can also be looked into as part of future work. One such strategy

would be to look at the retransmission rates on the routes and pick the one with the

least retransmission rate. History of the past connections can also be used to choose

the route, if connections to a particular destination perform well on one of the routes,

then future connections to that destination should be routed over the same route.

As mentioned above, the bandwidth usage based strategy can be modified to use the

percentage of unused bandwidth as an equalizing measure.

74

Bibliography

[1] Glenn Herrin. Linux IP Networking A Guide to the Implementation and Modifi-

cation of the Linux Protocol Stack http://www.cs.unh.edu/cnrg/gherrin/linux—

net.html, 2000

[2] The Linux Virtual Server Project. http://www.linuxvirtualserver.org

[3] Bert Hubert. Linux Advanced Routing 65 Traffic Control HOWTO.

http://lartc.org/lartc.html, 2002

[4] Alexey Kuznetov. Policy Routing. /usr/src/linux/Documentation/networking/

policy-routingtxt, 1999

[5] Thomas Davis. Linux Ethernet Bonding Driver mint-howto.

/usr/src/linux/Documentation/networking/bonding.txt

[6] Alavoor Vasudevan. The Linux Kernel H0WTO.

http://www.tldp.org/HOWTO/Kernel-HOWTO.html, 2003

[7] Rusty Russell and Harald Welte. Linux netfilter Hacking HOWTO.

http: //www.metfilterorg/documentation/HOWTO/ /netfilter~hacking-

HOWTO.html, 2002

[8] Christoph Simon. Nano-Howto to use more than one Independent Internet con-

nection. http://www.ssi.bg/ ja/nano.txt, 2001

[9] Gianluca Insolvibile. Inside the Linux Packet Filter.

http: //www.1inuxjournal.com/article.php?sid=4852, 2002

[10] Gianluca Insolvibile. Inside the Linux Packet Filter, Part II.

http://www.1inuxjournal.com/article.php?sid=5617, 2002

[11] Wensong Zhang. Linux Virtual Server for Scalable Network Services.

http://www.linuxvirtualserver.org/Ols/lvs.ps.gz, 2000

[12] T. Brisco. RFC 17.94 - DNS Support for Load Balancing.

http://www.faqs.org/rfcs/rfc1794.html, 1995

[13] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers, O’Rielly and

Associates, Inc. 2001

[14] Daniel P. Bovet and Marco Cesati. Understading the Linux Kernel, O’Rielly and

Associates, Inc. 2002

75

 u[[[I[‘[gi[[[[[[g[[3]]

