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ABSTRACT

MATHEMATICAL MODELING OF STATIC LONG-TERM STORAGE OF

CORRUGATED BOXES

By

Manoch Srinangyam

The compression strength of a corrugated container is used to indicate the

amount of top load that the corrugated container can withstand. This can be done

by performing the standard test procedure, ASTM D 642. During long-term

storage, the strength of a corrugated box will be substantially reduced over time.

The corrugated container life can be determined by applying empirical strength

retention factors obtained from published data. However, most published data is

from decades ago and is questionable since the board making process and the

content of paper has been changed significantly since then, especially due to the

increased use of recycled paper. The accuracy of strength retention factors from

published data was checked by placing dead loads on top of corrugated boxes.

The time it took for the boxes to collapse was investigated. The results show that

these published strength retention factors greatly overestimate box endurance. A

new method for predicting failure times based on a mathematical model is

presented here. The new test method uses a compression tester to compress a

test box at a constant load level equal to a fraction of the ASTM D 642

compression strength. The deflection due to creep was recorded over a 12-hour



time period, which is a realistic limit for industry practice. A mathematical model

was built based on engineering failure analysis. The results show a marked

improvement in predictability using this method. The results also support the fact

that corrugated boxes collapse during long-term storage when they absorb a

critical amount of energy.
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1. INTRODUCTION

Static long-term storage of corrugated boxes stacked in a warehouse is

very important since the product packed inside the boxes can be damaged either

from the boxes collapsing or from contact between the product packaged inside

the corrugated boxes and the top panel of the boxes due to creep. Contact

between the product and the top panel of the boxes due to creep is quite

dangerous to the product inside, especially compression sensitive products such

as glasses, chinaware, light bulbs, etc. This kind of problem also occurs with

plastic containers and cartons packed inside corrugated boxes.

It would be very useful to the corrugated industry if one could accurately

predict safe storage time of corrugated boxes during stacking in a warehouse.

This knowledge will help packaging engineers to design corrugated boxes for

specific top loads and storage times, protect products from damage and also

reduce waste of corrugated material.

The ability of a corrugated box to withstand load or compression forces on

the top of it while stacking in a warehouse is determined by its compression

strength. The compression strength of a corrugated box can be measured using

a laboratory compression tester. Compression strength can be determined

according to ASTM D 642 (ASTM Committee D10, 2003), Standard Test Method

for Determining Compressive Resistance of Shipping Containers, Components

and Unit Loads. Basically, the compression tester has a top platen moving

downward with a speed of 0.5 inches per minute to compress the test box, which



is placed on a very sturdy table. The relationship between force and deflection is

plotted. The top platen moves downward to compress the box until the box

collapses. The maximum force on the graph is taken to be the box compression

strength, and the corresponding deflection is the failure deflection.

1.1 Industry standard practice and long-term stOrage published data

It is important to note that ASTM D 642, compression strength applies only

to new boxes. In fact, boxes weaken over time in a stack. Long-term storage

reduces box compression strength. The longer the boxes are stacked, the

weaker they are. Time under load has long been known to reduce compression

strength of boxes. A number of long-term stacking tests were performed in the

1960’s and 1970’s (Guins 1981, Maltenfort 1989, Maltenfort 1996) to evaluate

the loss of compression strength over time. Based on these studies, empirical

load versus duration curves were developed for box designers to calculate the

effect of long-term storage on stacking strength (Guins, 1981). Nowadays, it is

an industry standard practice to evaluate the compression strength of boxes

under long-term storage as follows:

1. Perform ASTM D 642 using the compression test machine. Take the

peak force on the graph between force and deflection to be the box compression

strength.

2. Use published data obtained from load versus duration curves

(Maltenfort, 1996) to calculate the storage time at any given top load. Table 1.1

shows representative data. By using Table 1.1, it is important to note that the



warehouse climate conditions and the climate conditions while performing ASTM

D 642 should be the same.

 

 

 

 

 

 

 

Load Time to Fail

(% Compression Strength)

45% 2.7 years

50% 1 year

60% 1 month

70% 2 days

75% 12 hours

100% immediately    
Table 1.1: Time to collapse under constant load

If for example a corrugated box has an ASTM D 642 compression strength of

1,000 lbs, a 600 lb load stacked on the top of the box would represent a 60%

load. According to Table 1.1, if a 600 lb load is loaded onto the top of a box, the

box should collapse in 1 month. Likewise, if a 500 lb load is left on top of the box,

the box should collapse in 1 year. The question is whether the data in Table 1.1

is still applicable since the experiments that produced the data were done long

ago. Since that time, corrugated board has changed significantly in many ways.

Manufacturing methods have also changed, especially with respect to the use of

recycled paper in corrugated board. The use of recycled paper content could

make corrugated board much weaker than in the past.



1.2 Accuracy of published data

In order to evaluate the accuracy of long-term storage using dated

published data, production-run boxes were obtained from commercial box

manufactures. The knocked-down boxes were shipped in protective cartons to

the School of Packaging, Michigan State University. They were regular slotted

containers. The box A had full flaps. The box B was designed to save corrugated

board by shortening both the top and bottom flaps. This box B style results in a

hole in the top and bottom surfaces. Standard conditions of 73°F and 50%

relative humidity were used in this test. ASTM D 4332 (ASTM Committee D-10,

2003), Standard Practice for Conditioning Containers, Packages, or Packaging

Components for Testing, describes the standard preconditioning procedure. The

boxes were erected, taped and preconditioned before the compression tests.

To determine the compression strength of the boxes A and B, the

standard compression test was performed following ASTM D 642.

To evaluate the predictions in Table 1.1, sand bags and lead bricks

weighted to 20, 40, 60 and 80% of the ASTM D 642 compression strength were

placed on top of ‘74" thick plywood platforms and placed on top of individual boxes

following ASTM D 4577 (ASTM Committee D10, 2003), Standard Test Method

for Compression Resistance of a Container Under Constant Load. The test setup

is shown in Figure 1.1. The test boxes were placed on a thick plastic sheet on the

floor of a room held at standard conditions to prevent moisture uptake from the

floor. The boxes were evaluated periodically. The time it took for the individual

boxes to collapse was recorded. The result showed that the published long-term



storage data done many years ago greatly overestimates endurance. Table 1.2

and Table 1.3 show the comparison between the predicted failure times using

published data and the sand bag test results.

 
Figure 1.1: Long-term compression test with dead load



 

% load of the ASTM D 642

compression strength

Actual Time Predicted time

(Published data)

 

 

 

 

 

20% over 6 weeks never

40% 14 days over 2 years

60% 2 days 30 days

80% 0.5 hours 10 hours  
 

Table 1.2: Actual versus predicted times to fail at various top loads

for box A

 

% load of the ASTM D 642

compression strength

Actual Time Predicted Time

(Published data)

 

 

 

 

 

20% over 6 weeks never

40% 8 days over 2 years

60% 3 days 30 days

80% 0.5 hours 10 hours  
 

Table 1.3: Actual versus predicted times to fail at various top loads

for box B

 

 



1.3 More work needed

Based on the inaccuracies of the published long-term storage data, more

study is needed to improve the accuracy of long-term storage predictions.

From the 1950’s through 1970’s, there were a number of studies regarding

the static long-term storage of corrugated boxes. Initially, box researchers were

interested in predicting box compression strength from corrugated board

properties, such as edge crush, flexural and bending stiffness. Later, they were

very interested in predicting static long-term storage of corrugated boxes.

However, no one really discovered what caused failure during stacking under

long-term storage conditions.

In the 1980’s and 1990’s, research tended to relate to static long-term

storage of corrugated boxes microscopically, based on stress and strain analysis,

of box board and panels locally, not the whole box as in the earlier studies. Some

papers were published using finite element analysis techniques to model and

simulate behavior and characteristics of corrugated boxes (Pommier

1991,Rahman 1997, and Beldie2001). However, most researchers stated that

more work needed to be done in this area in order to understand the behavior of

corrugated board and to improve the finite element model, meaning that finite

element analysis might not work well for this type of study. This also might be

because corrugated board basically doesn’t consistently show any obvious

engineering material properties (Guins, 1981).



The following failure theories are commonly used in engineering failure

analysis (Hearn, 1985). This will be discussed in detail in Chapter 5. These

theories are maximum stress, strain and strain energy failure criterion as follows:

1. Maximum Stress Failure Criterion: This theory proposes that the box

fails whenever the load on top of it reaches some critical value. This level would

necessarily be the ASTM D 642 compression strength.

2. Maximum Strain Failure Criterion: This theory proposes that the box

fails whenever its deflection reaches some critical amount. This amount would

necessarily be the ASTM D 642 failure deflection. This deflection corresponds to

the peak force (compression strength).

3. Maximum Strain Energy Failure Criterion: This theory proposes that the

box fails whenever the energy it absorbs reaches some critical amount. This

amount would necessarily be equal to the energy that the box absorbs during

compression testing according to ASTM D 642.

Based of these engineering failure criteria, the hypothesis of this research

is that one of above criteria or their combination causes corrugated box failure

during stacking in static long-term storage.



1.4 Research objectives

The objectives of this study were as follows:

1. To improve the accuracy of published data and the industry standard

practice for predicting static long-term storage of corrugated boxes.

2. To investigate the main criterion that determines corrugated box failure

during stacking in static long-term conditions.

3. To develop a new test method and mathematical model for predicting

storage time of corrugated boxes during stacking in static long-term conditions.



2. LITERATURE REVIEW

2.1 Corrugated Board

Corrugated board first appeared in 1856 in England, when a patent was

granted to Healey and Allen for the first known use of corrugated paper instead

of plain paper as a cushioning or lining for sweatbands of hats. In America,

corrugated board was first used and patented by Albert L. Jones for packing

lamp chimneys, glass bottles and fragile products in 1871 (Fibre Box Association,

1994).

The use of corrugated board has increased dramatically since World War

II. More than 90 percent of all products in the United States are shipped in

corrugated boxes (Miller, 2002). Corrugated fiberboard combines structural and

cushioning characteristics needed for shipping lightweight containers at a low

price. Corrugated packaging accounts for the largest segment of the packaging

industry, with more than 1,600 plants mostly on the West and East coasts

producing corrugated board and containers.

Corrugated board is composed of several layers of paper. The inner layer

is called the corrugated medium. It is packed between two flat outer sheets called

liners. The corrugated medium is connected to the two flat outer liners with glue

as shown in Figure 2.1. This is called single wall corrugated board. Single face

corrugated board can be laminated single wall to make a double wall corrugated

board and so on. All the boxes to be used in this research are made from single

wall corrugated board; it is also the most widely used corrugated board.

10



/— Liner

I -
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Glue Flutes per Length —vl

Figure 2.1: Corrugated board

 

  
Corrugating
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Table 2.1 below shows the dimensional characteristics of commonly used

corrugated board.

 

 

 

 

 

 

 

Board Type Flutes per length Approximate Take up factor

(per ft) Height (in)

A-flute 33:3 0.184 1.54

B-flute 47:3 0.097 1.32

C-flute 39:3 0.142 1.43

E-flute 90:4 0.062 1 .27

F-flute 96:4 0.045 1 .23   
 

Table 2.1: Dimensional characteristics of common corrugated board

There are four main factors that control the structural performance of

corrugated boxes (Guins, 1981).

1. Quality of the paper — characterized by fiber structure as produced by

different pulping processes and also its basis weight.

2. Height of the flute

3. Number of flutes per unit length

4. Integrity of flute connection to the liners. The quality of glue also plays

an important role.

12

 



2.2 Carrier Regulations

Corrugated boxes can be used to ship a product by truck, railroad and air,

or by a combination of these. The carriers want to make sure that the product will

not get damaged during transportation. Proper shipping and handling can be

done by using only corrugated boxes that meet Item 222 and Rule 41 (Fibre Box

Association, 1994). Item 222 and Rule 41 are published and regulated by the

National Motor Freight Traffic Association and the National Railroad Freight

Committee, respectively. A box that follows the rules must have a circular marker

called a box manufacturer’s certificate (BMC) on the bottom flat of the box. The

certified boxes must meet or exceed the minimum bursting test and combined

basis weight, or the minimum edge crush test per the appropriate weight and

dimensions of shipped product listed in Item 222 and Rule 41.

One might question which value is better to specify on a certified box:

burst test or edge crush test. The answer is that it depends on what kind of

environment the package will experience during shipment. If the package is

expected to get a high compressive load on it, then use the edge crush test value

on the box manufacturer’s certificate. On the other hand, if the package is

expected to contact or hit against the side walls of boxes, use the burst test value

on the box manufacturer’s certificate. Basically, packages that are shipped by

small parcel service carriers, for example, United Parcel Service (UPS), Federal

Express (FedEx) and the United State Postal Service (USPS) will encounter

puncture hazard rather than high compressive loads. Simply speaking, the burst

13



test value is more important whenever puncture resistance is more critical than

stacking strength or rough handling during transportation.

It is interesting to note that there is no relationship between the burst test

value and compressive strength value of the corrugated board. For instance, if

cloth is used for the liner of corrugated board instead of paper, the burst test

value would be very high compared to the paper liner but the ability of the

corrugated board to support a load would be negligible.

2.3 Stacking Strength

Stacking strength is the amount of load that a box can support under

actual use conditions. This is different from compression strength, which is the

amount of load obtained from a compression tester under standard conditions

following the ASTM D 642 test method in a laboratory. The stacking strength is

less than the compression strength because the box may experience high

humidity, long-term storage, stacking misalignment, interlocked pattern, pallet

overhang and vibration during transportation (Fibre Box Association, 1994). All of

the above factors can together reduce the ability of a box to withstand load, and

the stacking strength value could be six times lower than the compression

strength value.

14



2.4 Previous Work

Much of the research related to corrugated board has been done by the

Forest Products Laboratory of the United State Department of Agriculture, the

Technical Association of the Pulp and Paper Industry (TAPPI), and by the

Institute of Paper Science and Technology, formerly the Institute of Paper

Chemistry. Carlson of the Forest Products Laboratory in 1939 was the first

investigator to regard corrugated board as an engineering material (Maltenfort

1996). This resulted in study and evaluation of the properties of corrugated board

as an engineering material. This suggests that the strength properties of the

whole board can be correlated with the properties of the liners and corrugating

medium. However, it is still very difficult to apply engineering theory to corrugated

board as with steel or aluminum (Guins, 1981). There are two main reasons.

First, engineers define engineering materials as substanCes having consistent

characteristics over the whole material and their properties do not vary from

batch to batch. Therefore, the concept of engineering design constants, for

example, the modulus of elasticity, could be used for such representative groups

as steel or aluminum as a whole. On the other hand, corrugated board properties

can be different due to variations during production that result in varied

performance of the corrugated board, even if those boxes are produced from the

same batch of materials. The uniformity of the adhesive between corrugating

medium and facing liners is very difficult to control, and this greatly affects the

performance of corrugated board. Because of this fact, common engineering

practices and engineering theory are difficult to apply to corrugated board in

15



process design. Secondly, corrugated board can change dramatically as it

experiences varying environmental conditions of common storage use.

Engineering materials are, however, very stable in terms of their properties and

characteristics at relatively constant conditions.

2.4.1 Previous work related to properties of corrugated board

The need to find corrugated board properties from which box compression

strength could be predicted interested paperboard packaging engineers in the

early 1950’s. The edgewise compression strength of the corrugated board is an

important parameter since it has correlation with box failure in top load

compression. In 1961, RC McKee, J.W. Gander and JR. Wachuta from the

Institute of Paper Chemistry (McKee, Gander, Wachuta, 1961) published a study

describing a suitable combined board column crush test method “ Edgewise

Compression Strength of Corrugated Board”. Presently, the edgewise

compression strength is commonly called the edge crush test (ECT). In addition,

this technique and method was then developed to be ASTM D 2808. In an actual

test 200 lb series, A-flute corrugated board was cut into samples perpendicular to

its flute direction at different heights. All samples were 3 inch long. The samples

were compressed parallel to the flute direction. The graph between compression

strength (lbs/in) and column height were plotted. McKee and his co-workers

found that column strength diminished rapidly with increasing column height.

Samples more than 2 inch high bent before they collapsed. This suggested that a

short column test would be the appropriate test sample for finding edgewise

16



compression strength since short column samples better represented board

structural characteristics.

A second parameter related to box compression strength is the flexural

stiffness of the corrugated board. This property is also needed to develop a box

compression strength estimation formula. Flexural stiffness is the ability to resist

bending. In 1962, McKee, Gander and Wachuta published a study on the flexural

stiffness of corrugated board (McKee, Gander, Wachuta, 1962). A, B and C flute

corrugated board were studied. Corrugated board samples were cut into strips

and tested for flexural stiffness values in both the machine direction and cross

machine direction using both the three-point beam and four-point method

(McKee, Gander, Wachuta, 1962). From this study, they concluded that the

flexural stiffness value of corrugated board depends on the modulus of elasticity

and caliper of the board. Therefore, A, B and C flute corrugated board made from

the same material components and having the same dimensions would be

different in flexural stiffness values. Comparing the three-point beam and four-

point methods, the four-point method was considered to be the proper way to

determine flexural stiffness rather than the three-point beam method because the

four-point method does not involve shear effects. The test results obtained from

the three-point beam method reflect both flexural stiffness and shear rigidity of

the material, meaning that this test method underestimates the real flexural

stiffness value of the corrugated board.
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In 1963, McKee, Gander and Wachuta published a formula to predict

compression strength of corrugated boxes at standard condition (73°F, 50%RH)

(McKee, Gander, Wachuta, 1963). They showed that the compression strength

of single wall corrugated boxes is a function of box perimeter (2 times length + 2

times width), the edge crush test value of the corrugated board (ECT), and the

flexural stiffness in both the machine and cross machine directions of the

corrugated board. They also showed that the flexural stiffness is not an easy

parameter to obtain in a laboratory. Moreover, there were quite a few laboratories

equipped with instruments that could be able to generate flexural stiffness data at

that time. For these reasons, McKee and his co-workers extended their work to

express the relationship between the flexural stiffness value and edge crush test

value and board caliper. Hence, the flexural stiffness in the formula was

substituted with edge crush test and board caliper that reSulted in a simpler

formula which was practical to use because the simplified formula used

parameters that are both easier to obtain in the laboratory and easier to work

with in calculations. The simplified formula, however, is less accurate than the

original formula but the difference in predicted values of both formulas is not

significant. The original equation to predict compression strength of corrugated

boxes was as follows:

 

P = 2.028 x P3746 x \/(Dny )0'254 x 2°492 (21)
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where:

P = Box compression strength (lbs)

Pan = Edge crush test value (ECT, lbs/in)

Dx = Flexural stiffness in machine direction (lb-in)

Dy = Flexural Stiffness in cross machine direction (lb-in)

Z = Box perimeter (2 times length + 2 times width, inches)

It is very important to note that the above equation comes with the condition that

the height of box must be equal to or greater than one seventh of the box

perimeter. As mentioned before, due to complexity of the original equation,

flexural stiffness was replaced with the edge crush test value and board caliper to

make the original equation more practical. Flexural stiffness had a high

correlation to the edge crush test value and square of board caliper. Thus, the

original equation was modified as follows:

P = 5.87 x Pm x h0'50820'492 (2.2)

Since both exponents (0.508 and 0.492) in the above equation were close to 0.5,

another simplification was possible. This resulted in a well-known formula to

predict compression strength of corrugated boxes. It was developed by McKee

and his co-workers and is commonly used in the corrugated industry as follows:

P=5.87me NE (2.3)
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where:

P = Box compression strength (lbs)

Pm = Edge crush test value (ECT, lbs/in)

h = Board caliper (inches)

2 = Box perimeter (2 times length + 2 times width, inches)

After McKee and his co-workers published the formula to predict

compression strength of corrugated boxes, G.G. Maltenfort extended McKee’s

work by employing McKee’s formula with compression strength data obtained

from double wall corrugated boxes (Maltenfort 1963). Maltenfort found that

McKee’s formula could be used not only for compression strength predictions of

single wall corrugated boxes, but also for the prediction of double wall corrugated

boxes as well.

In 1964, J.S.Buchanan, J. Draper and G.W. TeagUe published a paper

related to the box compression strength formula (Buchanan, Draper and Teague

1964). They pointed out that the edge crush test and bending stiffness of

corrugated board were the only crucial values that had a major impact on box

compression strength. These parameters were used to generate the box

compression strength prediction formula as follows:

K = c x E075 x 00-25 (2.4)
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where:

K = Box compression strength per unit of box perimeter

(lbs/in)

C = Constant

E = Edge crush test value (ECT), (lbs/in)

D = Bending stiffness with flute lengthwise (in-lb)

This equation was similar to McKee’s formula. Both equations relate

compression strength to three parameters, edge crush, flexural stiffness in

McKee’s formula compared to bending stiffness in Buchanan’s formula, and box

perimeter in McKee’s formula, comparable to the box compression strength unit

(lbs per box perimeter) of Buchanan’s formula. Second, both formulas had similar

exponent values (0.746 and 0.75) for the edge crush test. Buchanan also found

from his study that bending stiffness of corrugated board is proportional to the

square of board caliper, thus mathematically Buchanan’s formula had the same

relationship (square root of board caliper) as McKee’s formula. However,

Buchanan’s formula is not as widely used as McKee’s formula because more

laboratory work is needed to determine bending stiffness.

Koning investigated the effect of facing liners and corrugating medium to

corrugated box compression strength (Koning, 1978). He determined stress-

strain properties of the facing liners and corrugating medium, and then calculated

the box compression strength using a theoretical model form his previous study

(Koning, 1975). The results showed that the actual and predicted compression

strength values were all within 12% of each other. He varied stress-strain
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properties of facing liners and corrugating medium by varying their basis weight.

He concluded that to improve box compression strength, it might be more

efficient to add fiber to the corrugating medium rather than facing liners.

Kawanishi had predictions of compression strength of corrugated boxes of

various styles including wrap-around boxes and board moisture contents

(Kawanishi, 1989). As mentioned before, McKee’s formula predicts compression

strength of only regular slotted containers at standard conditions (73°F, 50%RH).

By using multivariate analysis, compression strength of corrugated boxes was

derived from their specifications, boxes styles and moisture contents in the

board. The drawback of the equation was that there were many parameters

compared with McKee’s equation. He, however, claimed that his new equation

was consistent with the experimental results.
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2.4.2 Previous work related to properties of corrugated containers

Maltenfort published a study about the correlation of corrugated box

dimensions to their compression strength (Maltenfort 1956). This publication was

prior to McKee publishing his compression strength prediction formula for

corrugated boxes. In this study, Maltenfort measured compression strength of

regular slotted corrugated boxes of various length, width and depth dimensions

at standard conditions. He found that for any given value of the depth dimension,

compression strength of the boxes had a linear relationship with the box

perimeter. This conclusion was in contradiction with McKee’s formula. McKee’s

formula describes the relationship between compression strength and box

perimeter as a parabolic function that is curvilinear, not linear. Maltenfort also

concluded that the depth of box had a small effect on box compression strength.

This statement corresponds well with McKee’s, since he stated as a condition of

use that the height of the box must be equal to or greater than one seventh of the

box perimeter. This means that it does not matter what the height of the box is.

The box compression strength would be slightly different or even the same value

(at the same box perimeter) whenever the height of the box is equal to or greater

than one seventh of the box perimeter.

Kellicutt from the Forest Products Laboratory of the United States

Department of Agriculture, Madison, Wisconsin, studied the effect of contents

and load bearing surface on the compression strength and stacking life of

corrugated containers (Kellicutt 1962). Boxes made from the same material and

perimeter but different depths were used. Compression tests were done on
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sample boxes until they failed. He discovered that for shallow boxes, failure

resulted almost totally by crushing along the top and bottom horizontal score

lines. As the box height increased, failure resulted from crushing along top and

bottom horizontal score lines and buckling of the box panels. Buckling of the box

panels could be both inward and outward. In general, two bow inward and two

outward. For a very tall box, failure comes entirely from buckling of box panels. In

the second part, the same kinds of boxes were perfectly aligned in a stack three

high and compressed using a compression tester. The results showed that

compression strength of the stacked boxes was about 23% less than in individual

box tests. He reasoned that because the top surface of the top box and the

bottom of the bottom box were perfectly parallel, there was smooth contact with

the platens of the compression tester. Conversely, the other top and bottom

surfaces of the boxes in the stack were loaded unevenly On the top and bottom

surfaces of neighboring boxes. He also showed that if the center box in the stack

was intentionally placed 1/2” out of alignment, the compression strength was

decreased to 50% of the individual box test. This reduction occurred because the

box corners were misaligned. Hence, the top corners of the bottom box and the

bottom comers of the top box made contact in some places on the flaps of the

middle box instead of its corner, which is the stiffest part of the box.

Furthermore, Kellicutt showed that an interlocked pattern of corrugated

boxes stacked on a pallet reduced box compression strength to 55%. The third

phase of his work investigated the effects of the contents in the box on box

compression strength. The same boxes were filled three different ways: one was
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filled with shelled corn, one had four pieces of plywood 2” below the top to restrict

all four panels from bowing inward, and one was empty. The results showed that

boxes containing shelled corn and plywood insertion had compression strength

slightly more than empty box, (about 8%). He reasoned that this was because

the shelled corn and the inserted plywood inside the boxes restricted the panels

of the boxes from bowing inward, forcing the box panels to stand upright rather

than bending inward to support the load. Kellicutt also showed that a dead load

with 65% of the compression strength placed on an empty box caused failure in

about 35 days. Boxes containing shelled corn with a dead load of 65% of

compression strength could extend the duration to 43 days.

Kutt and Mithel studied the effects of bearing area and stress distribution

applied on the top box panel (Kutt and Mithel 1969). They found that the

compression strength of corrugated boxes decreased very extensively, when the

bearing area was reduced. Moreover, they also found that the corners could

resist tremendous amounts of load compared with the edges along the perimeter

between the corners. They also claimed that just before the box failed, most of

the load was transferred directly to the box corners. McKee stated that the four

corners took about two thirds of the compression load (McKee, Gander,

Wachuta, 1963).

Maltenfort examined the compression load distribution on corrugated

boxes and the effect of asymmetrical board construction (Maltenfort, 1980). He

found that the four corners of the corrugated box carried about 64 percent (two
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thirds) of compression load; the edges along the perimeter between the corners

carried the remaining 36 percent. This result was consistent with McKee study.

In addition, Maltenfort examined the effect of asymmetrical board construction on

compression strength, in particular, different basis weight of inside and outside

liners using filled boxes. By using filled boxes, the buckling of panels was only

outward. He found that the box with the thicker inside liner had slightly more

compression strength than the box with thinner inside liner. He believed this was

because the inside box panels were in compression, while the outside box

panels were in tension. The thicker the inside box panels, the more compression

they can withstand.

Peterson and Fox provided an explanation for how boxes fail in

compression (Peterson and Fox, 1980). They treated corrugated materials as

engineering structures. Based on the Rayleigh-Ritz approach, a mathematical

model was been constructed. A photoelastic stress technique was also used to

generate stress distribution patterns on the external surface of the box side

panels, which were subjected to loading. The stress on the box panels was then

calculated. They concluded that failure occurred when the stress state at any

point on the box panel surface exceeded the failure criterion.

Moody and Skidmore investigated the creep characteristic of corrugated

boxes when compressed underneath a dead load (Moody and Skidmore, 1966).

They found that while the box was under dead load the relationship between box

deflections and loading time could be divided into three creep regions. The

primary creep region of compression time curve begins with the application of
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load. The graph in this primary region was likely a curve rather than a straight

line. Typically, primary creep happens during the first couple minutes of the

compression. After that, the box deflection gradually increases with constant rate.

This state is called the secondary creep region. This process could take days,

months or years: depending on the amount of the dead load. Lastly, the

deflection increases rapidly and the box fails at this state. This last state is called

tertiary creep region. By making use of the information from either the primary

creep region or the secondary creep region, they tried to predict long-term

storage survival time. However, they were not successful.

Koning Jr. and Stern studied the long-term creep in corrugated fiberboard

containers (Koning Jr. and Stern 1977). Subsequently, they drew a line

illustrating the relationship between secondary creep rate per box depth and box

survival time under dead load. They, therefore, proposed that the relationship

between them is linear, under a log-log scale. The equation of this line is as

follows:

_ 4988

_ 1.038

RKS

T (2.5)

where:

T = Duration of load or survival time (hour)

RKS = Secondary creep rate per box depth (in/in/hr x 106)

It is important to note that Koning Jr. and Stern used secondary creep rate per

box depth instead of actual secondary creep rate. However, the data from the

experiment came from different flute types, adhesives and conditions to either
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73°F, 50%RH or 80°F, 90%RH. Their research could be considered to be the first

attempt to predict long-term storage survival time using short terrn-dead load

tests.

Thielert published his study entitled determination of stacking load-

stacking life relationship of corrugated cardboard containers (Thielert, 1984).

A dead load of 90%, 80% and 60% of box compression strength was set to

individual boxes. Ten replicates were tested at each percent load. The boxes

were periodically investigated. The time it took for the individual boxes to

collapse was measured. Accordingly, he found a linear relationship between the

percent load and the logarithm of the boxes’ median stacking survival time.

Moreover, the distribution of stacking survival time was not normal. The result,

therefore, demonstrated large variations. Consistently, these variations of

experimental result were also reported by the previous stUdies of Moody and

Skidmore (Moody and Skidmore, 1966) and Koning Jr. and Stern (Koning Jr. and

Stern, 1977).

In 1986, Thielert studied the relationship between edgewise compression

strength and long-term storage survival time of corrugated board (Thielert, 1986).

By compressing corrugated boxes at different speeds, he found a straight-line

relationship between compression strength and the logarithm of compression

tester platen speed, which meant that compression strength of the box depended

on the speed of the compressed platen. He tried to relate this linear relationship

with long-term storage time, but the result was considerably different from his

own previous work (Thielert, 1984). He finally concluded from his study that there
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is no simple way to predict long-term storage survival time on the basis of the

relationship between edgewise compression strength and compression speed.

Thorpe and Choi studied strain on panels of corrugated containers while

loading using a technique called linear image strain analysis (LISA), which

basically is a noncontact method for measuring strain fields in paper and

paperboard (Thorpe and Choi 1991, Thorpe and Choi 1992). The LISA technique

could, however, measure only two-dimensional and in-plain strains, while in fact,

the deformation process occurs in three dimensions. They reported that the

vertical panels maintained their integrity at strain value more than those that

caused failure of individual linerboard specimens. The failure was associated

with alternating normal shear strain near the vertical edges of the container.

In addition, the failure occurred not only through degradation of corrugated board

structural, but also by a gradual increase in out-of-plane bowing. This, finally,

leads to collapse of the structure.

Pommier, Poustis, Fourcade and Morlier studied the critical load of a

corrugated cardboard box submitted to vertical compression using finite elements

methods (Pommier, Poustis, Fourcade and Morlier 1991). This could be regarded

as the first published paper that proposed an alternative to predict box

compression strength using finite element methods, rather than McKee’s formula.

To make the model simpler, a flapless corrugated container was modeled instead

of regular slotted containers style. The linear theory was used. Based on linear

theory, it was justified because in the loading process the deflection of

corrugated box panels was substantial. They noted that the model still needed
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verification from experiments and more information from observations on the

inter—plate bond in corrugated board.

Rahman evaluated the buckling performance of corrugated board panels

under compressive loading using finite element analysis (Rahman, 1997). In his

study, the bucking analysis was used to determine the critical buckling stress that

would result in the instability of the corrugated board components. The finite

element model explained the behavior, the mechanism of the failure, and the role

played by liners and corrugating medium in a buckling failure. An analysis of

corrugated board panels representing a range of board stiffness which indicated

that local buckling was dominant in components whose panels ratio

(length/width) was lower than a determined threshold value. As the slenderness

ratio increased, global buckling became more dominant. The buildup of shear

stresses at the joints between liners and corrugated medium contributed to the

local buckling failure.

Beldie, Sandberg and Sandberg studied the mechanical behavior of

corrugated containers subjected to static compression loads using a finite

element method (Beldie, Sandberg and Sandberg, 2001). The study was divided

into three parts, and subsequently the results from experimental and finite

element analysis were compared. First, a sheet of corrugated board was cut and

subjected to compression testing. Secondly, a corrugated container was cut into

segments and each segment was subjected to compression tests to determine

the load contribution of each segment. Thirdly, the whole container was

subjected to compression testing to see the overall performance of the container.
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The result showed that the numerical computation of corrugated board subjected

to compression load exhibited consistency with the test result. The consistency

was, however, less when the height of the corrugated board decreased. They

reasoned that because the local deformation of the edges had a significant

influence on short corrugated board panels. Furthermore, they found that the

middle segment of the container experiences a higher stiffness than that of the

upper and lower container segments and that of the whole container.

Subsequently, their conclusion was that the low initial stiffness of the container

was a consequence of the low stiffness of the upper and lower corners, i.e. of the

horizontal creases. The stiffness of corrugated board was dictated mostly by the

creases. However, they noted that the creases were modeled as hinges in the

finite element model. For these reasons, a more accurate model is called for.

More work needs to be done in order to understand the behavior of the crease,

and to improve the finite element model of a corrugated board container.
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3. MATERIALS AND METHODS

3.1 Materials

Two types of regular slotted containers were used in this research, boxes

A and B. The box A has full flaps. The box B is designed to save some

corrugated board by shortening both the top and bottom flaps. This box B style

results in a hole in the top and bottom surfaces.

The box A was made by a box manufacturer which supplies boxes to a

cereal manufacturer. The box A is shown in Figure 3.1. The box B was made by

a box manufacturer which supplies boxes to a household chemical company.

The box B is shown in Figure 3.2. The knocked-down boxes were shipped to the

test facility at the School of Packaging, Michigan State University in protective

cartons. The boxes were erected, taped and preconditioned before use. The box

manufacturer’s certificates, basis weight of corrugated board and dimensions of

both boxes used in this research are described in Table 3.1.
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Figure 3.1: Top view of box A

 
Figure 3.2: Top view of box B
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Basis Edge Size Gross

Boxes Board Weight Dimensions Crush Limit Wt Lt

(Ib/1000ft2) (W x L x D) Test (in) (lb)

(lb/m

B-Flute

A Single wall 44/28/44 15”x19.5”x12” 44 (45*) 95 95

0.125 “thick

C-Flute

B Single wall 48/30/48 13”x19.5"x10” 44 (51*) 95 95

0.175 “thick      
 

* Actual edge crush test values from laboratory

Table 3.1: Specifications for boxes A and B used in this research

3.2 Equipment

Compression tester model 152-30'ITC made by Lansmont Corporation

(shown in Figure 3.3)

Paper tape

4,000 lbs of 50 lb sand bags

1,000 lbs of 50 lb lead bars

48” x 32” x W plywood, 8 pieces

Plastics bags

Balance

Ruler

Conditioning room
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3.3 Test Conditions

Two storage conditions were used in this study: a temperature of 73°F and

50% relative humidity (standard conditions), and a temperature of 80°F and 80%

relative humidity. All box samples were conditioned for at least 72 hours at these

conditions in accordance with ASTM D 4332 before any tests.

 
Figure 3.3: Lansmont compression tester model 152-30TTC
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3.4 Methods

In this research, the experimental design was divided into 4 parts.

Part 1: Both the boxes A and B were compression tested using ASTM D

642. The compression strengths and peak deflections were recorded for each

box.

Part 2: 12-hour creep tests were done at 20%, 40%, 60% and 80% of the

compression strength obtained from the ASTM D 642 tests. Time versus

deflection of the boxes was recorded for each percent load.

Part 3: Dead load tests using sand bags were done to simulate the actual

storage time of the boxes. In the dead load tests, sand bags were placed on the

boxes at the same percent loads as in the 12-hour creep tests.

Part 4: The data from the 12-hour creep tests were used to construct

mathematical models, and then those models were compared with actual storage

times to validate the model. Each part of the experimental design will be

described in detail in the next section. The experimental design is shown in

Figure 3.4.

It must be pointed out that all sample boxes used in this research were

empty boxes. There was no product inside. These, of course, are ideal conditions

that make it easy to analyze the problem, but would not be expected to occur in

real life. There are many kinds of products that require the box to carry the entire

load, for example, glassware, chinaware, and light bulbs. Therefore, the results

from this research do apply to these situations.
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ASTM D 642 Tests

- Compression strength

- Deflection @ peak

  

  

  

 

12-Hour Creep Tests

@ 20%, 40%, 60% and 80%

of compression strength from

ASTM D 642 Tests   
  

 

Mathematical Models

@ 20%, 40%, 60% and 80%

of compression strength from

ASTM D 642   

 

 

 

Dead Load Tests

@ 20%, 40%, 60%, and 80%

of compression strength from

ASTM D 642 Tests
 

  

 

Actual Storage Time

@ 20%, 40%, 60% and 80%

of compression strength from

ASTM D 642
 

 

 

Validate

Mathematical Models

with Actual Tests

  

Figure 3.4: Experimental design
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3.4.1 ASTM D 642 Tests

ASTM D 642 (ASTM committee D-10, 2003), Standard Test Method for

Determining Compressive Resistance of Shipping Containers, Components, and

Unit Loads, was used in this study to obtain box compression strength and also

box deflection at peak force. All box samples were preconditioned in accordance

with ASTM D 4332 before compression testing. Each test box was placed in a

sealed plastic bag to maintain moisture content of corrugated board. Each test

box in the sealed plastic bag was placed inside the compression tester between

the upper moving platen and the fixed metal table. Fixed platen testing and a 50

lb preload was used for these tests. A 50 lb preload is suggested for single wall

corrugated board in order to make sure that all four corners of the box contact

the platen. Box deflection was measured from this point. The moving platen

moved downward at a constant speed of 0.5 inches per minute. The

compression force increased until it reached its maximum value, which defines

the box compression strength. The box deflection at peak was also recorded. At

this moment, the box collapsed and completely lost its compression strength.

The compression force decreased with increasing box deflection after peak.

Eventually, the compression tester stops when the applied force drops to 75% of

the compression strength value. The relationship between compression force

and box deflection was then graphed. The ASTM D 642 test apparatus is shown

in Figure 3.5.

Five replicates were tested for boxes A and B, and at each test condition.

The compression strength values from the five replicates were then averaged.
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The average compression strength values were used to determine the weight to

apply to the test boxes for the 12-hour creep tests and the dead load tests.

 
Figure 3.5: ASTM D 642 test apparatus
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3.4.2 12-Hour Creep Tests

The 12-hour creep tests were designed to obtain data in order to construct

mathematical models that allowed the 12-hour creep test results to be

extrapolated to failure. There is a reason for these tests. The 12 hours test is a

realistic limit, especially for industry practice.

The compression tester was used to perform these tests. All box samples

were preconditioned in accordance with ASTM D 4332 before doing the 12-hour

creep tests. The test box was also placed in a sealed plastic bag to maintain

moisture content of corrugated board. To perform creep tests, the compression

tester was set to apply a constant load equal to 20%, 40%, 60% and 80% of the

ASTM D 642 compression strength. Each test box was placed inside the

compression tester between an upper moving platen and a fixed metal table at

the base. Fixed platen testing and a 50 lb preload were used for all these tests.

The moving platen moved downward at a constant speed of 0.5 inch per minute,

and then stopped when the compression force reached the desired value. After a

12-hour testing period during which the machine measured deflection over time,

the compression tester stopped automatically, and then the platen moved up to

its original position. The recorded data was printed out and showed the

relationship between box deflection over time. The setup for the 12-hour creep

test is as same as the ASTM D 642 as shown in Figure 3.5. The difference is that

for the 12-hour creep test, when the compression load reaches a present

amount, the compression tester maintains the load level for 12 hours.
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Five replicates were tested for boxes A and B, at each test condition, and

also for each percent load (20%, 40%, 60% and 80%) from ASTM D 642. The

data from the five replicates were then averaged. The averaged data was then

fitted into mathematical models.

3.4.3 Dead Load Tests

To achieve the actual failure times for long-term storage of corrugated

boxes, dead load tests were designed to present real life conditions on a

laboratory scale.

All box samples were preconditioned in accordance with ASTM D 4332

before dead loading; 50 lb sand bags were used as the dead load since it is an

inexpensive material; 50 lb lead bars were also employed as the dead load. The

dead loads were set at 20%, 40%, 60% and 80% of the ASTM D 642 strength.

The test boxes were placed on a thick plastic sheet on the floor of a conditioning

room to prevent moisture uptake from the floor. A piece of plywood 40” x 32” x W

was placed on top of the test boxes. The sand bags and lead bars were carefully

placed and centered on top of the plywood. A 50 lb preload was also applied for

the dead load tests. The sand bags and lead bars were then loaded on top of

plywood until the desired load was achieved.

In practice, the plywood does not move downward evenly, meaning that all

four corners of the test box do not deflect the same distance. The four corners of

the test boxes show different deflections because the center of gravity of the

dead load is never over the center of the test box. The dead load setup is shown
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in Figure 3.6. The off-centered load resulted in the tilting of the four corners. This

causes differences in height of each corner. However, these corner heights were

not significantly different since the sand bags were carefully positioned on the

plywood so that the center of gravity of the sand bags was located precisely over

the center of the test box.

Two replicates were tested for boxes A and B, at each test condition, and

also for each percent load (20%, 40%, 60% and 80%). The test boxes were

checked for failure every half an hour for the first 6 hours and every day

thereafter. The time it took for the individual boxes to collapse was recorded. The

data from the two replicates were then averaged. The averaged data was then

compared with the mathematical models.
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Figure 3.6: Dead load test setup
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4. RESULTS

4.1 ASTM D 642 Tests

The graphs of force and deflection (ASTM D 642) for boxes A and B at

standard conditions and 80°F, 80%RH are shown in Figures 4.1, 4.2, 4.3 and

4.4. These graphs are averages over five replicates. The compression strength

and failure deflection are shown in Tables 4.1 and 4.2.
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Storage Condition Compression Strength Failure Deflection

 

 

 

(lbs) (in)

Standard (73°F, 50%RH) 730 0.28

80°F, 50%RH 595 0.25

   

Table 4.1: Compression strength and failure deflection of box A at

various conditions

 

Storage Condition Compression Strength Failure Deflection

 

 

 

(lbs) (in)

Standard (73°F, 50%RH) 1,240 0.50

80°F, 50%RH 985 0.48

   

Table 4.2: Compression strength and failure deflection of box B at

various conditions
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According to Tables 4.1 and 4.2, the compression strength of boxes A and

B was 730 lbs @ 0.28 inch and 1,240 lbs @ 0.50 inch at standard conditions

respectively.

By applying McKee’s formula as shown in Eq. (2.3), and using the board

information shown in Table 3.1, box compression values were predicted at

standard conditions. The calculated compression strengths are

  

[5.87 x 45 x fl0.125)(69)] = 775 lbs and [5.87 x 51 x ./(0.175)(65)] = 1,010 lbs for

boxes A and B, respectively. The result shows that McKee’s formula can predict

compression strength of box A with only about Egg-gig) x100 = 6% error, but

(1,240 — 1,010)

1240

 x100 = 18% for the box B. It is noted that instead of using edge

crush test values from box manufacturer’s certificates, the actual edge crush test

values from laboratory analysis were used to calculate the compression strength

in McKee’s formula. This is because the edge crush test values from laboratory

testing represent the actual corrugated board properties.
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4.2 12-Hour Creep Tests

The box deflection versus time under load at loads equal to 20%, 40%,

60% and 80% of the ASTM D 642 compression strength of boxes A and B at

standard conditions and 80°F, 50%RH are shown in Tables 4.3, 4.4, 4.5 and 4.6.

These box deflections are averages over five replicates. The tabular results are

graphed as shown in Figures 4.5, 4.6, 4.7 and 4.8.
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Time Deflection Deflection Deflection Deflection

(min) @ 20% CS @ 40% CS @ 60% CS @ 80% CS

(in) (in) (in) (in)

0 0 0 0 0

1 0.110 0.146 0.198 0.228

2 0.114 0.152 0.200 0.240

4 0.114 0.152 0.206 0.248

8 0.116 0.154 0.212 0.258

16 0.116 0.160 0.212 0.262

32 0.116 0.160 0.212 0.278

64 0.118 0.162 0.214 0.280

128 0.120 0.164 0.222 0.280

256 0.126 0.166 0.222 Failed

512 0.126 0.168 0.224 Failed

720 0.126 0.168 0.230 Failed  
 

Table 4.3: Deflection versus time at various constant loads for

box A at standard conditions

 

 

 

 

 
Time under load (min)

I _2 f +20% CS- _

j +40% CS

j 03 fl +60% CS

’ +80% CS

1 0.25

l 2,2 2,
: 5 0.2
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I .9 " '
'. 45 0.15

l (D e e
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I D I

l 0.05
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Figure 4.5: Graph of deflection versus time under load at various

constant loads for box A at standard conditions
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Time Deflection Deflection Deflection Deflection

(min) @ 20% CS @ 40% CS @ 60% CS @ 80% CS

(in) (in) (in) (in)

0 0 0 0 0

1 0.124 0.150 0.190 0.220

2 0.130 0.152 0.196 0.234

4 0.132 0.154 0.200 0.244

8 0.134 0.160 0.204 0.250

16 0.138 0.160 0.206 0.250

32 0.138 0.162 0.208 Failed

64 0.140 0.166 0.208 Failed

128 0.144 0.166 0.210 Failed

256 0.146 0.168 0.216 Failed

512 0.146 0.170 0.220 Failed

720 0.148 0.172 0.224 Failed     
 

Table 4.4: Deflection versus time at various constant loads for

box A at 80°F, 80%RH
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Figure 4.6: Graph of deflection versus time under load at various

constant loads for box A at 80°F, 80%RH
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Time Deflection Deflection Deflection Deflection

(min) @ 20% CS @ 40% CS @ 60% CS @ 80% CS

(in) (in) (in) (in)

0 0 0 0 0

1 0.266 0.338 0.414 0.476

2 0.270 0.346 0.424 0.488

4 0.278 0.348 0.430 0.494

8 0.282 0.356 0.434 0.504

16 0.282 0.360 0.438 0.504

32 0.284 0.362 0.440 Failed

64 0.288 0.368 0.448 Failed

128 0.292 0.370 0.450 Failed

256 0.294 0.376 0.456 Failed

512 0.298 0.378 0.466 Failed

720 0.302 0.384 0.472 Failed  
 

Table 4.5: Deflection versus time at various constant loads for

box B at standard conditions
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Figure 4.7: Graph of deflection versus time under load at various
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constant loads for box B at standard conditions
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Time Deflection Deflection Deflection Deflection

(min) @ 20% CS @ 40% CS @ 60% CS @ 80% CS

(in) in) (in) (in)

0 0 0 0 0

1 0.250 0.300 0.370 0.390

2 0.256 0.310 0.380 0.418

4 0.258 0.316 0.386 0.440

8 0.260 0.320 0.388 0.466

16 0.266 0.324 0.390 0.480

32 0.268 0.328 0.394 Failed

64 0.268 0.328 0.396 Failed

128 0.270 0.330 0.400 Failed

256 0.274 0.334 0.404 Failed

512 0.280 0.338 0.408 Failed

720 0.282 0.340 0.410 Failed     
 

Table 4.6: Deflection versus time at various constant loads for

box B at 80°F, 80%RH
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Figure 4.8: Graph of deflection versus time under load at various

constant loads for box B at 80°F, 80%RH
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4.3 Dead Load Tests (Sand Bag Tests)

The test boxes were checked for failure every half an hour for the first 6

hours, and after 24 hours. These actual times to fail are averages over two

replicates. The times to collapse are shown in Tables 4.7 and 4.8.

 

 

 

 

 

   

Load Actual time Actual Time

(%CS) (Standard Conditions) (80°F,80%RH)

20% over 6 weeks over 6 weeks

40% 14 days 12 days

60% 2 days 2 days

80% 0.5 hours 0.5 hours

 

Table 4.7: Actual times to fall of box A at various constant top loads and

storage conditions

 

 

 

 

 

   

Load Actual time Actual Time

(%CS) (Standard Conditions) (80°F,80%RH)

20% over 6 weeks over 6 weeks

40% 8 days 12 days

60% 3 days 3 days

80% 0.5 hours 0.5 hours

 

Table 4.8: Actual times to fail of box B at various constant top loads and

storage conditions
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The test boxes are shown in Figure 4.9 below. It is noted that the plywood

has tilted to one side, indicating that either the load was not centered over the

box, or the box was weaker on one side, or both.

 
Figure 4.9: Dead load test

57



5. DISCUSSION

5.1 Creep in Corrugated Boxes

Creep is the relationship between the deformation of the material versus

time under load while the material is subjected to prolonged constant loading.

Creep in various materials is different since materials behave differently under

loading. Creep of all materials including corrugated boxes can be divided into

three regions: primary, secondary and tertiary creep (Moody and Skidmore,

1966: Hearn, 1985). Primary and tertiary creep are not really creep because they

happen over very short time periods. In this thesis, primary creep will be called

initial deflection: secondary creep will be called creep and tertiary creep will be

called failure. The general form of deflection versus time under load or creep

curve of corrugated boxes is shown in Figure 5.1. Initial deflection starts at a

rapid rate in the first minute of loading and slows down with time. Creep has a

slowly increasing deflection over time under load. The slope of this segment is

called creep rate. This creep could take days, months or even years, depending

on the amount of dead load on the top of boxes. The final is failure where

deflection is going up again and results in box failure at this transition (Moody

and Skidmore, 1966). Failure will take a couple minutes since the corrugated

boxes have already lost their strength and ability to withstand top load when

changing from the creep to the failure.

58



Deflection (in)

A

Slope = Creep rate \

Initial deflection

/ Failure

l f l

Creep \

Failure point

 

\ Loading

 
 

Time under load (min)

Figure 5.1: Typical creep curve of corrugated boxes under constant load

In the 12-hour creep test, a constant load is set on top of each box using

the compression tester as mentioned in section 3.4.2 in Chapter 3. All tested

boxes used in this research collapsed in less than 12 hours when the load was

equal to 80% of the ASTM D 642 compression strength. If the relationship

between deflection and time under load at a top load equal to 80% is plotted on Y

and X-axis, the plot will show all three segments as in Figure 5.1. On the other

hand, the test results for a top load equal to 20%, 40% and 60%, failure will take

longer than 12 hours. Hence, they do not see all three segments because the

test was designed to stop at 12 hours. Basically, for a top load equal to 20%,

40% and 60%, only the initial deflection and creep occur within the 12-hour

testing period. The data from the 12-hour creep tests (Chapter 4 for boxes A
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and B) used in this research at top load equal to 80% of the ASTM D 642 are

shown in Tables 5.1, 5.2, 5.3 and 5.4. The creep curves for boxes A and B at a

top load equal to 80% are shown in Figures 5.2, 5.3, 5.4 and 5.5.
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Time under load Deflection @ 80% CS

(min) Lin:

0 0.00

1 0.23

2 0.24

4 0.25

8 0.26

16 0.26

32 0.28

64 0.28

128 0.28   
Table 5.1: Deflection versus time under load for box A under constant load equal

to 80% of ASTM D 642 at standard conditions
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Figure 5.2: Creep of box A under constant load equal to 80%

of ASTM D 642 at standard conditions
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Time under load Deflection @ 80% CS

(min) (in)

0 0.00

1 0.22

2 0.23

4 0.24

8 0.25

16 0.25    
 

Table 5.2: Deflection versus time under load for box A under constant load equal

to 80% of ASTM D 642 at 80°F, 80%RH
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Figure 5.3: Creep of box A under constant load equal to 80%

of ASTM D 642 at 80°F, 80%RH
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Time under load Deflection @ 80% CS

(mim (in)

0 0.00

1 0.48

2 0.49

4 0.49

8 0.50

16 0.50    
 

Table 5.3: Deflection versus time under load for box 8 under constant load

equal to 80% of ASTM D 642 at standard conditions

Failure point
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Figure 5.4: Creep of box B under constant load equal to 80%

of ASTM D 642 at standard conditions
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Time under load Deflection @ 80% CS

4min) (in)

0 0.00

1 0.39

2 0.41

4 0.44

8 0.46

16 0.48
 

Table 5.4: Deflection versus time under load for box B under constant load

equal to 80% of ASTM D 642 at 80°F, 80%RH
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Figure 5.5: Creep of box B under constant load equal to 80%

of ASTM D 642 at 80°F, 80%RH
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5.2 Engineering Failure Analysis

Materials are classified as ductile or brittle. Ductile materials can be

subjected to a large strain before they rupture. Conversely, brittle materials

exhibit little or no yielding before they fail. However, some materials still exhibit

both ductile and brittle depending on their structure and the temperature and

humidity during the time of test. For example, steel has ductile behavior when it

contains low carbon content, and it has brittle property when the carbon content

is increased. In general, at low temperature materials tend to be hard and brittle,

whereas when temperature goes up they become softer and more ductile.

Corrugated board is considered as a moderately brittle material since it

has a quite low percent deflection at any testing conditions before failure. For

example, boxes A and B used in this research have 12” and 10” depth,

respectively. According to ASTM D 642, the deflections at peak for boxes A and

B are 0.28” and 0.50” at standard conditions, respectively. Therefore, the percent

deflection at peak for B-flute corrugated board fabricating for box A is (0.28/12)

x100% = 2.33%. Likewise, percent deflection at peak for the C-flute corrugated

board fabricating for box B is (0.50/10) x100% = 5.00%. The 2.33% and 5.00%

elongation is considered as a brittle material.

The theoretical failure criteria commonly used in engineering failure

analysis are based on whether the material is considered ductile or brittle. Brittle

materials usually fail whenever the stress or strain on them reaches a certain

limit, regardless of how much the material is pre-worked or how long it takes to

reach this limit. For ductile materials, this limit can change depending on how the
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material is stressed. All of the common failure theories will be evaluated for their

ability to predict the corrugated containers’ life during static long-term storage.
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5.2.1 Maximum Stress Failure Criterion

This theory assumes that when the maximum stress on the corrugated

container reaches some critical value, failure occurs. This is equivalent to saying

that the container falls whenever the top load on it reaches some critical value.

This value would necessarily be the compression strength from ASTM D 642.

This theory can be shown to apply to brittle materials, but there is

considerable experimental evidence that the theory should not be applied for

ductile materials (Hearn, 1985). This is because ductile materials can withstand

different amounts of stress without failure, depending on how the material is

worked prior to failure. As mentioned earlier, corrugated board are considered as

a brittle material so this theory might have a possibility to predict failure of

corrugated containers.

In this research, the compression strength that causes boxes A and B

failure can be obtained from ASTM D 642. According to Tables 4.1 and 4.2 in

Chapter 4, boxes A and B at standard condition and at 80°F, 80%RH will

collapse whenever they experience force equal to their compression strength

which are 730 lbs, 595 lbs, 1240 lbs and 985 lbs, respectively. In fact, this is

definitely not true.

According to the 12-hour creep tests, if the compression load, which is

less than its maximum value, has been placed on top of the box long enough, the

corrugated container will fail. For example, atop load equal to 80% of the ASTM

D 642 strength can cause corrugated boxes to fail in less than 12 hours. So the

boxes can be made to fail at top load level below its compression strength if the
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top load is left on long enough. This might be because the corrugated containers

tend to creep. This says that maximum stress failure criterion cannot be used for

materials which tend to creep. Therefore, it is impossible to model long-term

storage of corrugated boxes using the maximum stress failure criterion.
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5.2.2 Maximum Strain Failure Criterion

This theory assumes that when the maximum strain on the corrugated

container reaches some critical value, failure occurs. This is equivalent to saying

that the container fails whenever the deflection reaches some critical value. This

value would necessarily be the deflection at failure from ASTM D 642.

According to this criterion, the boxes A and B at standard conditions and

at 80°F, 80%RH should collapse whenever they experience deflections equal to

their ASTM D 642 failure deflections which are about 0.28” for the box A and

about 0.50” for the box B, respectively regardless of the temperature and relative

humidity. According to the 12-hour creep tests, at top loads equal to 80% of their

ASTM D 642 strengths, the boxes did collapse when their deflections reached

their ASTM D 642 failure deflections. This would explain why it is possible to

make the boxes fail at loads less than the ASTM D 642 compression strength:

the boxes creep slower at smaller loads, but eventually reach the same

deflection when they fail.

Consider the ASTM D 642 failure deflection at standard conditions and

80°F, 80%RH of both kinds of boxes, which are 0.28” and 0.25” for the box A,

0.50” and 0.48” for the box B. The failure deflections for each box style are very

close. This implies that the same kind of boxes will collapse at the same failure

deflection, regardless of what condition they are stored.
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According to Appendix A, Viscoelastic models can sometimes be used to

explain creep behavior. The model will produce a relationship between box

deflection and time under load. By setting the box deflection equal to the ASTM

D 642 failure deflection, the failure time can be calculated. The form of empirical

models is predetermined by considering the distribution of experiment data, a

knowledge of mathematics, physics and engineering related to the properties of

the material, and even the experience of the modeler. In order to predict the

failure time of corrugated boxes, all the experiment data from the 12-hour creep

tests is used to construct the model.

Creep rate is needed to calculate time to fall of corrugated boxes.

However, it is impossible to have all the creep data up to the entire time to fail in

order to calculate the creep rate since the creep test was stopped at 12 hours.

Initial deflection takes place very rapidly in the firstminute of loading.

Therefore, all the 12-hour creep data right after the first minute of loading are

considered to be in the creep region. According to the 12-hour creep tests in

Figures 4.5 through 4.8 in Chapter 4, the graphs show the deflection increasing

linearly over time under load. The 12-hour creep data ls therefore considered to

represent the creep data, and they can be used to calculate as a creep rate.
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By placing a dead load on top of the box in the sand bag tests, there are

two stages involved in the compression process. First, during the loading phase,

there would be an initial compression which takes place very quickly. This results

in that the box deflection increases rapidly with increasing dead load. This stage

is over when the dead load is achieved. Basically, this stage is initial deflection.

Therefore, creep takes place after the dead load is achieved. The box will

collapse when its deflection reaches its ASTM D 642 failure deflection.

During initial deflection, as the dead load is being placed on top of box, the

top load versus box deflection follows the ASTM D 642 curve. The box deflection

can be estimated from Figure 5.6. The initial deflection can be expressed as in

Eq. (5.1).
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Figure 5.6: ASTM D 642 curve
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D, = ——xD (5.1)

where:

D = Initial deflection (in)

D = ASTM D 642 failure deflection (in)

CS = ASTM D 642 compression strength (lbs)

P = Load level expressed as a percent of compression strength

During creep, the additional deflection can be calculated as the product of

the creep rate and the time under load (time to fail) as expressed in Eq. (5.2).

The creep rate can be obtained from the computer program written in BASIC

(see Appendix B) by using the 12-hour creep data for the particular box style,

load level and storage conditions. Linear regression was used in the computer

program. The starting data point should correspond to the time that creep begins,

which is about at the first minute.

D = R12 x T (5.2)

where:

DC = Creep deflection (in)

R12 = Creep rate at load level P (in/min)

T = Time to fail (min)
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According to maximum strain failure criterion, the corrugated boxes will fail

when the sum of initial deflection and creep deflection is equal to their ASTM D

642 failure deflection. This can be expressed as in Eq. (5.3) and the time to fail

can be calculated from Eq. (5.4).

 

P

mm + R,,x7 = D (5.3)

T D #10043) (5.4)

R,, 100

where:

T = Time to fail (min)

D = ASTM D 642 failure deflection (in)

R12 = Creep rate at load level P (in/min)

P = Load level expressed as a percent of compression strength

The creep rate from computer program, the predicted time to fail

calculated from Eq. (5.4) and actual time to fall from sand bag tests are shown in

Tables 5.5, 5.6, 5.7 and 5.8.
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Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain)

def., D (in)

20% 0.28 1.92 x 10'5 8.1 days over 6 weeks

40% 0.28 2.23 x 10'5 5.2 days 14 days

60% 0.28 3.35 x 10'5 2.3 days 2 days

80% 0.28 3.28 x 104 2.8 hours 0.5 hours    
 

Table 5.5: Creep rate, predicted and actual times to fail at various

constant loads for box A at standard conditions

 

 

 

 

 

 

Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain)

def., o (in)

20% 0.25 2.34 x 10'5 5.9 days over 6 weeks

40% 0.25 2.33 x 10'5 4.5 days 12 days

60% 0.25 3.51 x 10'5 2 days 2 days

80% 0.25 1.59 x 10'3 0.5 hours 0.5 hours    
 

Table 5.6: Creep rate, predicted and actual times to fail at various

constant loads for box A at 80°F, 80%RH
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Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain)

def., D (in)

20% 0.50 3.71 x 10'5 7.5 days over 6 weeks

40% 0.50 4.77 x 10'5 4.4 days 8 days

60% 0.50 6.25 x 10° 2.2 days 3 days

80% 0.50 1.58 x 10° 1.1 hours 0.5 hours    
 

Table 5.7: Creep rate, predicted and actual times to fail at various

constant loads for box B at standard conditions

 

 

 

 

 

 

Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain)

def, D (in)

20% 0.48 3.44 x 10'5 7.8 days over 6 weeks

40% 0.48 3.66 x 10‘5 5.5 days 12 days

60% 0.48 3.92 x 10° 3.4 days 3 days

80% 0.48 5.32 x 10° 0.3 hours 0.5 hours    
 

Table 5.8: Creep rate, predicted and actual times to fail at various

constant loads for box B at 80°F, 80%RH
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It can be seen that the predicted times to fall for long-term storage of

corrugated boxes based on maximum strain failure criterion, Eq. (5.4), show poor

agreement with the actual time to fail. This might be because the maximum strain

failure criterion is wrong, even though the boxes did fail at their ASTM D 642

failure deflections at 80% load.

It should be noted that the predicted times in Tables 5.5 through 5.8 are

based on the deflection versus time under load obtaining from the 12-hour creep

test. It is assumed that the box deflection in the 12-hour creep tests would be the

same as the deflection in sand bag tests. In reality, it would however be very

difficult to define what the deflection of sand bag is since all the four corners of

the test box would be different due to off center of center of gravity of top load.

The predicted time to fail based on maximum strain failure criterion

calculated from Eq. (5.4) can be compared with survival time calculated from Eq.

(2.5) done by Koning and Stern in 1977 as mentioned in Chapter 2. Eq. (2.5) can

again be rewritten as follows:

4988

1.038

Rxs

sz (5.5)

where:

TKS = Duration of load or survival time (hour)

RKS = Creep rate per box depth (in/in/hr x 106)

KS = Koning and Stern
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Since the power 1.038 in Eq. (5.5) is very close to 1, Eq. (5.5) can be written as:

4988

sz = R (5.6)

KS

 

Assuming that the average creep rate R12 from 12-hour creep tests is the

average creep rate in Koning and Stern’s previous work, the relationship

between RKS and R12 is

18,,S = %2_x 80x106 (5.7)

where:

H = Box depth (in)

The depth of boxes A and B used in this research are 12” and 10”, respectively.

Hence, an average box depth equal to 11” will be used in Eq. (5.7). Substituting

Eq. (5.7) in Eq. (5.6) yields:

TKS = 4988 hours (5.8)

(R1_2..x60x10°)
11

 

OI’

sz = 60x 4988 minutes (5.9)

(512—Xbox106)
11

 

It is noted that the survival time TKS in Eq. (5.9) is minutes, not hours.

Eq. (5.9) can be rewritten as in Eq.(5.10). This is the predicted survival time

obtained from Koning and Stern’s previous work in the form of average creep

rate R12.

 sz = ' (5.10)
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Comparing the predicted time to fall between Eqs. (5.4) and (5.10), it can

be seen that the predicted times to fail obtaining from Eq. (5.4) tend to be longer

than the predicted times to fail obtaining from Eq. (5.10). They agree when the

top load P is about 80% for box A and 90% for box B. The difference might be

because the data from the experiment of Koning and Stern came from different

flute types, adhesives and storage conditions. Besides, the Koning and Stern

predicted time to fail came from drawing a straight line on a log-log scale graph.

Even their correlation coefficient of 0.98 may still contain a large error. Or, it may

be because the maximum strain failure criterion is wrong. The predicted time to

fail based on the maximum strain energy failure criterion will be considered in the

next section.
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5.2.3 Maximum Strain Energy Failure Criterion

This theory assumes that failure occurs when the energy absorbed by the

corrugated container reaches some critical amount. This value would necessarily

be the strain energy that the box absorbs during compression testing according

to ASTM D 642.

When external loads are applied to an object, they will deform the object.

The work that has been done by the external loads will be absorbed by the

container. This can be expressed as

Energy Absorbed = Work Done (5.11)

According to ASTM D 642, the plot of the magnitude of top load F against

the deflection x of the corrugated box can be obtained frOm the compression

tester automatically. It shows a certain load-deformation characteristic of the

corrugated box. The typical plot from ASTM D 642 is shown in Figure 5.7.
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Figure 5.7: Typical graph between force and deflection

obtaining from ASTM D 642

Consider the work dWdone by the force F as the corrugated box deforms

by a small amount dx. This work is equal to the product of the force F and the

small deflection dx. It can be written as:

dW F-dx (5.12)

It should be noted that the expression obtained above is equal to the shadowed

area of width dx located under the graph between force and deflection obtaining

from ASTM D 642. The total work done by the top load as the corrugated box

deforms a peak deflection D is thus:

80



D

w = 1de (5.13)

0

where:

W: Total work done by top load (in.Ib)

F = Top load acting on top of corrugated box (lb)

D = Peak deflection corresponding to ASTM D 642 (in)

dx = Small box deflection (in)

This total work done by the top load is also equal to the area under the curve

between x = 0 and x = D. The total work done by the top load as it is slowly

applied to the corrugated box must result in the increase of some energy

associated with the deformation of the corrugated box,

D

Energy Absorbed = w = [F -dx (5.14)

0

Practically, the energy absorbed can be determined from the area under

the curve using the trapezoid rule (Chapra and Canale 1985), which will provide

adequate approximation of the area under the curve, especially when the number

of trapezoids is large. Theoretically, the more number of trapezoids, the better

the approximation value will be.

If the force versus deflection curve behaves in a linear manner, then the

top load will be directly proportional to the deflection. In this case, the graph will

be a straight line instead of a curve as shown in Figure 5.8.
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Figure 5.8: Graph between force and deflection of linear material

The equation of the straight line can be written as:

(5.15)

where:

k = Constant (lb/in)

By substituting Eq. (5.15) in Eq. (5.14), the Eq. (5.14) can be rewritten as the

following.

Maximum Energy Absorbed _ Ikx-dx = %(kD)(D) (5.16)

0
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or

Maximum Energy Absorbed = W = -:12—(CS)(D) (5.17)

where:

CS = Peak force corresponding to ASTM D 642 (lbs)

D = Peak deflection corresponding to ASTM D 642 (in)

Now consider energy absorbed by corrugated containers during long-term

storage. The corrugated container absorbs energy by the top load moving down.

The corrugated container that is compressed from the top load during sand bag

tests has experienced the same phenomena as the simulation tests from 12-hour

creep test. Failure occurs when the energy absorbed by the corrugated container

during sand bag tests is equal to the energy that the box. absorbs during

compression testing according to ASTM D 642.

By placing dead load on top of box in the sand bag tests, there are two

stages involved in the process, which are initial deflection and creep, as

mentioned earlier in section 5.2.2.

During the initial deflection, when the dead load is placed on top of box,

the top load versus box deflection follows ASTM D 642 curve. The initial

deflection can be estimated from previous Figure 5.6, which is equal to-1%)-x D.

The energy absorbed during the initial deflection, which the corresponding top

load equals to 1,030 x CS, can be expressed as in Eq. (5.18).
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1 P P
E. =——CS—D 5.18

' 2(100>< )(100x ) ( )

where:

E = Energy absorbed during initial deflection (in.Ib)

D = ASTM D 642 failure deflection (in)

CS = ASTM D 642 compression strength (lb)

P = Load level expressed as a percent of compression strength

During creep, the energy absorbed can be calculated from the product of

the top load and the creep deflection as expressed in Eq. (5.19). It is noted that

the creep deflection is the product of the creep rate and the time to fail as

mentioned earlier in Eq. (5.2).

p

Ec _ (fixCSXRmxT) (5.19)

where:

Ec = Energy absorbed during the creep (in.Ib)

R12 = Creep rate at load level P (in/min)

T = Time to fail (min)

According to maximum strain energy failure criterion, the corrugated

boxes will fail when the sum of energy absorbed during initial deflection and

creep is equal to the energy absorbed up to failure in the ASTM D 642 test. This
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can be expressed as in Eq. (5.20) and the time to fail can be calculated from Eq.

(5.21).

P 1

2(fi0x><1I;CS)( x0) + (1—0—0xCS)(R,2xT) = §(CS)(D) (5.20)

T = (3)1?)0— (166” (5.21)

where:

D = ASTM D 642 failure deflection (in)

R12 = Creep rate at load level P (in/min)

P = Load level expressed as a percent of compression strength

T = Time to fail (min)

The creep rates calculated earlier and the predicted times to fail based on

the maximum strain energy failure criterion calculated from Eq. (5.21) are shown

in Tables 5.9, 5.10, 5.11 and 5.12.

85



 

 

 

 

 

 

Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain

def., D (in) energy)

20% 0.28 1.92 x 10° 24.3 days over 6 weeks

40% 0.28 2.23 x 10° 9.2 days 14 days

60% 0.28 3.35 x 10° 3.1 days 2 days

80% 0.28 3.28 x 10° 3.2 hours 0.5 hours    
 

Table 5.9: Creep rate, predicted and actual times to fail at various

constant loads for box A at standard conditions

 

 

 

 

 

 

Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain

def., D (in) energy)

20% 0.25 2.34 x 10° 17.8 days over 6 weeks

40% 0.25 2.33 x 10° 7.8 days 12 days

60% 0.25 3.51 x 10° 2.6 days 2 days

80% 0.25 1.59 x 10° 0.6 hours 0.5 hours    
 

Table 5.10: Creep rate, predicted and actual times to fail at various

constant loads for box A at 80°F, 80%RH
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Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain

def., D (in) energy)

20% 0.50 3.71 x 10'5 22.5 days over 6 weeks

40% 0.50 4.77 x 10° 7.6 days 8 days

60% 0.50 6.25 x 10° 2.9 days 3 days

80% 0.50 1.58 x 10° 1.2 hours 0.5 hours    
 

Table 5.11: Creep rate, predicted and actual times to fail at various

constant loads for box B at standard conditions

 

 

 

 

 

 

Load ASTM D R12 Predicted Actual time to fail

(%CS) 642 (in/min) time to fail (Sand bag tests)

failure (strain

def., D (in) energy)

20% 0.48 3.44 x 10'5 23.2 days over 6 weeks

40% 0.48 3.66 x 10° 9.6 days 12 days

60% 0.48 3.92 x 10° 4.5 days 3 days

80% 0.48 5.32 x 10'3 0.3 hours 0.5 hours    
 

Table 5.12: Creep rate, predicted and actual times to fail at various

constant loads for box B at 80°F, 80%RH
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5.2.4 Strain Energy Criterion - Corrected Creep Rate

The predicted time to fail based on the maximum strain energy failure

criterion shows much better agreement with the actual time to fall from sand bag

tests than the maximum strain failure criterion as shown in Tables 5.9 through

5.12. It can be concluded that the boxes appear to fail when they absorb a critical

amount of energy. Hence, the failure criterion based on maximum strain energy

will be chosen as the best predictor and will be further improved as needed.

The predicted time based on maximum strain energy failure criterion does

not fit very well with the actual times to fall from sand bag tests for small loads.

This might be because the average creep rate R12 is not the appropriate creep

rate. In order to better predict failure times for small loads, R12 in Eq. (5.21) will

be replaced by a corrected creep rate.

According to the hybrid model (see Appendix A), the average creep rate

over the entire time up to failure would be about the same as the creep rate in

the 12-hour creep tests if the percent top load P is very high. This is because the

failure times take about 12 hours at very high percent top load. In contrast, if the

top load P is very low, which makes the time under load very long, the creep rate

would be about (c 016 ) times the creep rate in the 12-hour creep test, where or

1 T 2

 

and c2 represent the dashpot constants associated with loosely bound and tightly

bound pulp respectively (see Appendix A).
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Since all previous calculations used the creep rate from the 12-hour creep

test as the creep rate over the entire time up to failure, the predicted times based

on maximum strain energy failure criterion as shown in Tables 5.9 through 5.12

should be too short for low percent top load P, but the predicted times at high

percent top load are right. This is demonstrated in Tables 5.9 through 5.12.

The creep rates in Tables 5.9 through 5.12 should be lower than R12,

especially at low percent top load. According to the hybrid model, the corrected

failure times for low percent top load P could be up to _C_1_:_C_2 times of the

I

predicted times in Table 5.9 through 5.12 if the creep rates are corrected.

For low percent top load, it makes sense that it wduld be very difficult to

make a long-term prediction accurately by doing a short test for 12 hours. Since

we do not want to have the test longer than 12 hours for practical reasons and

still want to make a prediction accurately, it is necessary that the creep rate from

the 12-hour creep tests be modified.

According to the hybrid model,

For P = 100, R R,, (5.22)

ForP=0, R = —C’——-R (5.23)

<c.+c2) "

where:

R = Creep rate over the failure time or Corrected creep rate (in/min)

R12 = Creep rate from the 12-hour creep test (in/min)

c1 and c2 = Dashpot constants (lb.min/in)
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Assuming that the relationship between the percent top load P and the

corrected creep rate R is linear,

R = a + bP (5.24)

Force-fitting Eq. (5.24) to the condition in Eq. (5.22) and Eq. (5.23) requires that

 

R,, = a+b(100) (5.25)

CI

(C +0 )R,, = a+b(0) (5.26)

1 2

Cl 02 R12
Solving Eqs. (5.25) and (5.26) yields: a =  

R121 =

(01 +02) (01 +cz)100

 

Substituting 6 = ——£‘——R.2. b 02 R” into Eq. (5.24) yields:

 

(c,+cz) = (c,+c2)100

R12 P

= 0 +0 —— 5.27

(c,+cz)x( 1' 2100) ( )

Eq. (5.27) gives the corrected creep rate over the entire time up to failure

at any load level P. Using the corrected creep rate instead of the 12-hour creep

rate should give more accurate failure times.

Replacing the 12-hour creep rate R12 with the corrected creep rate R in

predicted times based on maximum strain energy failure criterion, Eq. (5.21),

 

yields:

D 50 P

T = — — 1— — 2 5.28(R)(P)l (100)] ( )

. . R12 P .

Substltutrng the corrected creep rate R = x (61 + c2 —) rnto Eq.

(01 + 02) 100

(5.28) yields:
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CI2 2 1+... _

D )((100 —P )x 02

R12 2P P+9l100

CZ

 (5.29)

Since the dashpot constants c1 and c; are not known, a suitable 3‘- ratio

C2

can be found by minimizing the sum of squares of errors between the predicted

times from Eq. (5.29) and actual times to fall from the sand bag tests. Since the

predicted times toward low percent top loads are concerned rather than high

percent top loads, only data from top loads equal to 20% and 40% will be used to

minimize the sum of squares of errors. Besides, at 20% top load the actual times

to fail will be assumed to be 42 days as conservative estimation. The computer

program written in BASIC (see Appendix C) gives the least sum of squares of

errors when —:—’— = 0.715. If (if—1 = 0.715, Eq. (5.29) can be written as follows:

2 2

D x (1002 —P2)

r?12 P(P+71.5)
T = 0.857 x  (5.30)

where:

T = Time to fail (min)

D = ASTM D 642 failure deflection (in)

R12 = Creep rate from the 12-hour creep test (in/min)

P = Load level expressed as a percent of compression strength

The corrected creep rates, the predicted times based on Eq. (5.30) and

the actual failure times for the boxes A and B are shown in Tables 5.13, 5.14,

5.15 and 5.16.
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5.3 Errors

A large error from the new method could possibly come from the

uncontrollable location of the center of gravity of the sand bags in the dead load

tests. The center of gravity of the sand bags could be positioned at the

intersection of box diagonals. In practice, there is no way to know where the

center of gravity actually is. If the center of gravity is off positioned, the failure

time will be reduced markedly. This is because the plywood placed on top of the

box will tilt and start to compress one corner more than the others. The box will

therefore collapse sooner. This situation would not happen in the 12-hour creep

tests using a fixed platen.

The effect of the center of gravity of the sand bags being off positioned

during the dead load tests can be simulated by conducting an additional test

using the compression tester with a floating platen. The box B at standard

conditions used in this research was tested following ASTM D 642 using the

floating platen. The test was designed to place the center of the platen along the

box diagonal as shown in Figure 5.9 below. The result showed that the farther

the center of the platen along the diagonal is, the less the box compression

strength is.
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Corrugated box

   

Figure 5.9: Compression strength of box B at different locations along

box diagonal following ASTM D642 using floating platen
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The realistic placement of sand bags on plywood makes the center of

gravity of the sand bags 2 inches off positioned. This will reduce the compression

strength of box of 12532—523075 x 100 = 14%. The box will retain 86% of its 

compression strength. Take 60% compression strength, which is equal to 750 lb

 as a test top load. This means the top load is really 75705 x100 = 70% instead

of 60%.

Another large error could come from the consistency of the corrugated

boxes. Compression strengths are notoriously variable even for identical high

quality production run boxes. This consistency could affect the experimental

result enormously. Take the box A at standard conditions as an example. The

results of ASTM D 642 for all five replicates are shown in Table 5.17 below.

 

 

 

 

 

 

 

 

     

Replicates CS D

(lb) (in)

Sample1 721 0.26

Sample2 777 0.27

Sample3 753 0.29

Sample4 693 0.27

Sample5 710 0.29

Average 730 0.28

Std . Dev 34 0.01

% Std.Dev 5 5
 

Table 5.17: ASTM D 642 of box A at standard conditions
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The predicted failure times based on Eq. (5.30) and the average

compression strength and failure deflection in ASTM D 642 are shown in Table

5.18 below.

 

 

 

 

 

Load Predicted time Actual time to

(%CS) to fail fail

(corrected R) (Sand bag tests)

20% (146 lb) 45.5 days over 6 weeks

40% (292 lb) 14.0 days 14 days

60% (438 lb) 4.0 days 2 days

80% (584 lb) 3.6 hours 0.5 hours    
 

Table 5.18: Actual versus predicted times to fail at various constant top loads of

box A at standard conditions

If one wants to test the sensitivity of the predicted times in Table 5.18 to

variations in CS and D, this can be done by using extreme values for CS and D

from Table 5.17 in Eq. (5.30). Take 60% compression strength, which is equal to

438 lb as a test top load. One never knows what exact compression strength of

the new test box is. According to Table 5.17, the box compression strength can

be as low as 693 lb or as high as 777 lb. This means that the top load used in the

12-hour creep tests could have actually been between 4—32 = 56% and

gig—g = 63% instead of 60%, as was assumed in Eq. (5.30). By interpolating

Table 5.18, the actual time to fail could therefore vary from 1 day to 9 days
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instead of 2 days. Considering that these boxes A used in this research are high

quality production run boxes with only 5% standard deviation, the error from the

actual time to fail could be up to 450%.

If the errors from the off position of center of gravity of sand bags and the

consistency of the corrugated boxes are combined together, the possible

438 1
maximum load could be x _—

693 86%

 = 73%. By interpolating Table 5.18, the

actual time to fail could be 10 hours instead of 2 days.

The dead load tests were performed using floating platen. This is what

corrugated boxes experience in a warehouse. In contrast, the simulation (12-hour

creep tests) was performed using fixed platen. This is because it is repeatable

and controllable process. The error might come from the difference of using

floating and fixed platen.

The test boxes were put in plastics bags during the 12-hour creep test in

order to maintain moisture of corrugated board. The plastics bags might create

restriction or constrain at the contact surfaces of compression tester platen and

top box panel. This did not happen with the contact surfaces of plywood and top

box panel in the dead load test.

The variation of temperature and relative humidity in conditioning room

could be another source of the error.

More error comes from the recorded times to fail from the sand bag tests.

The test boxes were checked for failure every a half an hour for the first 6 hours

and every day thereafter. This will result in the error of time to fail by plus a half

an hour for 80% top load, and by plus a day for 20%, 40% and 60% top loads.
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For example, if a test box with 40% of load on top of it fails at day 14, the box

might actually fail at any time between day 13 and day 14.
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6. CONCLUSIONS

The results of this research have contributed to packaging in the area of

corrugated shipping containers by proposing a new method in order to predict

failure times under constant top load in long—term storage of corrugated boxes.

The published retention strength factors done decades ago are too

general, meaning that they do not mention box style and what kind of corrugated

board the box is made from. Most importantly, they greatly over estimate box

endurance. This could be because of the use of recycled paper these days. This

results in boxes weaker than before, and also the process of making corrugated

boxes has been changed since then.

New strength retention factors can be re-calculated using sand bag tests

but the data will also eventually be useless since it will be used specifically only

with that box style and material used. The obtained data should not be used to

predict failure times of another kind of box style and material used since the

failure time would not be accurate. If the top dead load for example is set on a

corrugated box at very low percent of its ASTM D 642 compression strength, it

could take years to see the box collapsed. The top load equal to 20% of ASTM D

642 is considered a safe load. Even though the results can only be used

specifically for that box style and material used, the technique can be used for

other boxes.

The new method presented here together with the mathematical model

offer an idea that can be used to predict failure time of boxes based on 12-hour
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creep tests instead of published retention factors. This offers space and time

saving. In order to predict the failure time of corrugated boxes, the test would

take only about 12 hours instead of the years it would take to produce new

strength retention data. The predicted times show a marked improvement

compared to the old published data. A drawback of this new method is that it

requires a compression tester. However, the new test method can be performed

without compression tester by using some sand bags for top dead load, a ruler

and a clock instead of using a compression tester. Doing so will not be as

accurate as using a compression tester. Nowadays, compression testers are

more and more commonly used in the corrugated box industry, and a small one

is considered relatively cheap. Therefore, a compression tester is recommended

to do the test.

The new test method can be divided into two parts, testing and working

with the mathematical model. First, a corrugated box is compression tested

following ASTM D 642. The box compression strength and corresponding failure

deflection are recorded. Secondly, a new identical box is compressed at constant

load, which is some chosen percentage of its compression strength obtained

from ASTM D 642 in the first step. This second test is called creep test and

would be performed for 12 hours, which is a realistic limit for industry practice.

Deflection versus time is recorded for this percent top load. The duration of 12

hours for the creep test would be recommended for the boxes used in this

research, and this should be applied for other similar box styles and material

used as well. Finally, the mathematical models based on the maximum strain
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energy failure criterion (Eq. (5.30)) along with the data from the ASTM D 642

tests and 12-creep tests are used to calculate the predicted time to fail.

The analysis shows that the mathematical model based on maximum

strain energy failure criterion shows a better prediction than a mathematical

model based on maximum strain failure criterion. The mathematical model based

on strain energy failure criterion using the corrected creep rate would give the

best prediction. According to predicted times to fall, it can be concluded that

corrugated boxes fail when they absorb a critical amount of energy, which is

equal to the energy absorbed on the ASTM D 642 tests.
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APPENDIX A

VISCOELASTIC MODELS
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In this section, Viscoelastic models will be proposed to explain creep

behavior. The models could be used to calculate failure time. In order to calculate

failure time, box deflection could be set equal to the ASTM D 642 failure

deflection. Then, the time under load in the equation could be solved as the

failure time.

For years, mechanics of deformable materials has been based on Hooke’s

law because it is an important assumption in linear elasticity. The force is

assumed to have a linear relationship with defection. When a force is applied to

the material, the deflection increases, and when the force is removed the

material returns to its original shape. In reality, it has been known that most

materials do not behave this way, especially when creep is involved.

In the case of creep, the theory of viscoelasticity has been introduced and

applied to the problem. The Viscoelastic behavior is a combination of elastic and

viscous characteristics of material. No real material obeys either ideal elastic or

ideal viscous behaviors, but it is likely between those behaviors. The Viscoelastic

equations may be either linear or nonlinear. However, the theory of linear

viscoelasticity is considered to be a reasonable approximation for real materials

like metals at elevated temperature, plastics, concrete, wood, and soil (Flugge,

1967). The linearity still allows the analysis to be less complex with sufficiently

rational predictions.

The behavior of Viscoelastic material under force can be built from elastic

and viscous elements. Springs and dashpots will be used to represent the ideal

elastic and viscous behaviors of Viscoelastic materials, respectively.
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Consider a spring as shown in Figure A1. When a force F is applied, the

length of the spring increases by an amount x, and when the force is removed

the spring returns to its original length. If it is a linear spring, Hooke’s law can be

applied. The relationship between force F and the displacement x can be

expressed as in Eq. (A1).

I

212-:
“1________ F

Figure A1: Spring in tension

F = kx (A1)

where:

k = Constant (spring constant) (lb/in)
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Now consider a dashpot as shown in Figure A2. A dashpot is like a piston

moving in a cylinder with some small holes in the cylinder bottom. Air is moving

in when the piston is pulled out. In contrast, when the piston is pushed in, the air

will be driven back out of the cylinder. To move the piston, a force F is required.

The stronger the force F is, the faster the piston will move. If it is linear, the force

F depends only on the speed of compression, not the amount of compression (as

with the spring). The relationship can be written as in Eq. (A2).

    

    

 

 

A F

T” _-

__it .22

f v 1:

Figure A2: Dashpot in tension

F = C(E) (A2)

where:

c = Constant (dashpot constant) (lb.min/in)

a: = Rate of loading or dashpot compression rate (in/min)
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A Viscoelastic material can be modeled as a combination of a spring

(Hookean solid) and a dashpot (Newtonian fluid) as in Figure A3. Viscoelastic

materials show the influence of the rate of loading. The rate of loading depends

on force. Moreover, the Viscoelastic material can display creep properties, which

is an increasing deformation under sustained load.

F‘T F‘

I

    

Slope = k Slope = c

w s

x 9!

dt

Figure A3: Viscoelastic material modeled by spring (Hookean solid) and

dashpot (Newtonian fluid)

In order to describe the behavior of Viscoelastic materials, several springs

and dashpots can be combined together in a finite network. Theoretically, the

network can contain any number of springs and dashpots, and in any

configuration to represent the Viscoelastic behavior. Practically, it is sometimes

too complicated to analyze the model since the model will be composed of many

differential equations and variables. The two simplest models of linear

Viscoelastic material can be obtained by connecting a spring and a dashpot in

series and in parallel configurations which are called Maxell model and Kelvin

model, respectively.
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Maxwell Model

The first model representing long-term storage of corrugated box is called

Maxwell model. The model is composed of a spring and a dashpot connected

together in series as shown in Figure A4.

fi
—
‘
fl

 

Corrugated Box —

    
/////////////

Figure A4: Maxwell model of corrugated box in long-term storage

Consider the Maxwell model in the case when it responds to a constant

rate of compression v as in ASTM D 642. At a constant rate of compression, the

top load F is not constant, but increases with the deflection x. A balance of forces

yields

110‘ - Y) = F (A3)

fl _ _6 dt .. k(x y) (A4)
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where:

F = Top load (lbs)

x = Box deflection (In)

y = Deflection (in)

t = Time under load (min)

v = Box compression rate (in/min)

91 = Dashpot compression rate (in/min)

k = Spring constant (lb/in)

c = Dashpot constant (lb.min/in)

Substituting x = vt in Eq. (A4) and rearranging yields:

d_y + 5y = 51’.) (A5)

dt 0 c

The general solution y(t) of Eq. (A5) is composed of a complementary

solution yc and particular solution yp. The complementary solution can be solved

from 5% + g y = 0; whereas the particular solution can be calculated from

k k

e ‘1 119°! Echidt. Hence,

_k(

ya = A6 ° (A6)

k k

yp .__ e 6' (ecth—tJdt (A7)

k k

IQ. = 1(016 °' {egtjdt (A8)
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k

Applying integration by parts for flegtjdt yields:

y. = v1t—E) (A9)

Therefore, the general solution y(t) can be written as follows:

y(t) y. + y. (A10)

k

Y(t) = AehC! + VU-E) (A11)

Applying the initial condition y=0 at t=0 gives the 0°"5tant A = ’ng

Substituting A = i—V in Eq. (A11):

k

y(t) = vt+°7v(e’c' —1) (A12)

Substituting t =3 into Eq. (A12):

kX

y(t) = “Pg—(e cv —1) (A13)

Substituting Eq. (A13) into Eq. (A3) and rearranging:

kx

F(x) = ova—sci) (A15)

Consider Eq. (A15) when v is very large as in the ASTM D 642 tests (0.5

in/min) compared to the creep rate in the 12-hour creep tests. By applying a
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kx

Taylor’s series expansion, the term 9 °" can be estimated as 1— 55. Hence, Eq.

cv

(A15) can be rewritten as follows for large compression rates:

F(x) = kx (A16)

Eq. (A16) is actually the force versus deflection prediction in ASTM D 642

of the Maxwell model. The relationship is a straight line as shown in Figure A5.

F
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O <

Slope = k

 ’

Deflection (in)

 

Figure A5: ASTM D 642 of Maxwell model

While the corrugated box is in long-term storage, a different kind of

loading occurs. Instead of a constant rate of compression, a constant top load is

applied and creep occurs. Now consider Maxwell model in response to a

constant weight F. The relationship between deflection due to creep and time

under load is governed by:
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k(x—y) = F (A.17)

09X = F (A.18)

dt

Eq. (A18) can be solved as:

F

y(t) = Et + A (A19)

Applying the initial condition y=0 at t=0 gives the constant A = 0.

Substituting A = 0 in Eq. (A19):

y(t) = —t (A20)

Substituting Eq. (A20) in Eq. (A17) and rewriting:

F 5x(t) = —t + (A21)
C

Eq. (A21) predicts that the deflection starts out at f;— and increases

linearly with slope of S over time under load as shown in Figure A6.
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Figure A6: Graph of deflection versus time under load at constant load

plotted from Maxwell model

The Maxwell model explains failure region of corrugated boxes under

constant load. At time t=0, the deflection, which is equalto i: comes from the

spring. Then, the increasing deflection over time comes from the dashpot with

the rate of 5. Therefore, the failure region occurs due to the effect of the

c

dashpot in the Maxwell model.

The Maxell model is considered as a bad model since it describes only the

failure region of corrugated boxes under constant load. A different model needed

in order to describe all three segments.
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Kelvin Model

The next model, called the Kelvin model, is composed of a spring and a

dashpot connected together in parallel as shown

4
—
1
1

 

Corrugated Box ’—

   
/////////7///

in Figure A7.

1 I x

  
/////////////

Figure A7: Kelvin model of corrugated box in long-term storage

Consider the Kelvin model in the case when it responds to a constant rate

of compression v as in ASTM D 642. In this case, the top load F is not constant,

but it increases over the deflection x. Therefore,

where:

F = Top load (lbs)

x = Box deflection (in)

t = Time under load (min)

v = Box compression rate (in/min)
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k = Spring constant (lb/in)

c = Dashpot constant (lb.min/in)

Substituting v = a: in Eq. (A22) yields:

F(x) = cv + kx (A23)

The force versus deflection graph governed by Eq. (A23) still shows a

straight line like in ASTM D 642 as shown in Figure A8.
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+

Deflection (in)

Figure A8: ASTM D 642 of Kelvin model

While the corrugated box is in long-term storage, creep occurs. Now

consider the Kelvin model is response to a constant weight F. The relationship

between deflection due to creep and time under load is governed by:
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kx + 6‘;— = F (A24)

The general solution x(t) of Eq. (A24) is composed of complementary

solution x0 and particular solution X... The complementary solution can be solved

from —d—X + 5x = 0; whereas the particular solution can be calculated from

(3

J” 81F

6 ° 6° 3 dt. Hence,

XC : Ae C (A25)

-kr 5: F

xp = e c 9° 6 dt (A26)

F

Xp = k (A27)

Therefore, the general solution x(t) can be written as follows:

x(t) = xc +xp (A28)

—kI F

x(t) = A9 ° ‘1"; (A29)

Applying the Initial condition y=0 at t=0 gives the constant A = — 5;.

. . F . ,

Substltutrng A = — k In Eq. (A29).

F —"1
x(t) = —E(1—e ° ) (A30)
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Eq. (A30) predicts that the deflection starts out at zero and increases to ‘2:

exponentially over time as shown in Figure A9.
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Figure A9: Graph of deflection versus time under load at constant load

plotted from Kelvin model

The Kelvin model explains initial deflection and creep of corrugated boxes

under constant load. Initial deflection occurs when the dashpot is working very

actively to resist the rapidly increasing deflection. The box compression rate is

quite large at this stage. The creep starts at the point when the dashpot starts to

quit its duty. The spring starts to carry more load since and dashpot carries less

load. Eventually, the dashpot totally quits its duty and the spring carries the entire

load with the deflection equal to i;
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The Kelvin model is also considered as a bad model since it describes

only initial deflection and creep of corrugated boxes under constant load. It does

not describe failure region. A more sophisticated model is needed. This could be

done by combining the properties of the Maxwell and Kelvin models together. A

hybrid model will be analyzed next.
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Hybrid Model

The hybrid model is composed of a spring connected in series with a

dashpot, and then they connect in parallel with another dashpot as shown in

Figure A10. The dashpot on the left hand side acts like loosely bonded pulp in

the paper that makes up the corrugated board. The spring and dashpot in series

on the right hand side acts like well-bonded pulp inside the paper.
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Figure A10: Hybrid model representing long-term storage of corrugated box

Consider the hybrid model in the case when it responses to constant rate

of compression v as in ASTM D 642. In this case, the top load F is not constant,

but increases with the deflection x. A balance of forces yields:

C1—Z: + k(x—y) = F (A31)

dy

c -— = k — A322 dt (X y) ( )
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where:

 

F = Top load (lbs)

x = Box deflection (in)

y = Deflection (in)

t = Time under load (min)

v = Box compression rate (in/min)

91 = Dashpot compression rate (in/min)

k = Spring constant (lb/in)

c = Dashpot constant (lb.min/in)

Substituting x = vt into Eq. (A32) and rearranging:

91 + iy = k—Vt (A33)

dt 02 02

The general solution y(t) of Eq. (A33) is composed of complementary

solution yc and particular solution yp. The complementary solution can be solved

from d_y + £— = 0; whereas the particular solution can be calculated

dt C2

C2

.81 kt kV

from 6 ct e‘:2 —t dt. Hence,

yc Ae's (A34)

—kf kt

yp = 6 °2 [[862 5\it]dt (A35)

C2
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—ker ski

yo = k—Ve °° ([662 tJdt

C2

.“ 1

Applying integration by parts for [[e‘:2 tjdt yields:

C

Yp = V(t_?2)

Therefore, the general solution y(t) can be written as follows:

y(t) yc + y.

k

- r

y(t) = Ae°2 + y(t—ikl)

Applying the initial condition y=0 at t=0 gives the constant A = 9;—V.

Substituting A = SE: in Eq. (A39):

k

— r

y(t) = vt + Cit—VI“ 1)

Substituting t z? into Eq. (A40):

cv -"

y(t) = x + —I3(—(eC°V—1)

Substituting v = gt: and Eq. (A41) into Eq. (A31) and rearranging:

kx

F(x) 2 c,v + czv(1-—eC°")
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(A36)

(A37)

(A38)

(A39)

(A40)

(A41)

(A42)

 



Consider Eq. (A42) when v is very large as in ASTM D 642. By applying a

I

"l I

I

f.

f

6

N

5.

u

i

i— .

'9:

Taylor’s series expansion, the term 6 ‘2“ can be estimated as 1— g. Hence,

v
2

Eq. (A42) can be rewritten as follows:

F(x) = c,v + kx (A43)

Like the Kelvin model, the ASTM D 642 prediction of the hybrid model

shows a straight line as shown in Figure A11.

F
o
r
c
e

(
l
b
s
)

Slope = k

c,v

 
 

’

Deflection (in)

Figure A11: ASTM D642 of hybrid model

125



While the corrugated box is in long-term storage, creep occurs. Now

consider the hybrid model in response to a constant weight F. The relationship

between deflection due to creep and time under load is governed by:

01% + k(x—y) = F (A44)

dy
C _ = k x— A452 dt ( Y) I I

Define D Is operation -C%.Therefore, £3; = Dx.

Applying the operation D and rearranging Eqs. (A44) and (A45):

6, k F

—D — — = — A46k( +61)x y k ( )

——k—x + (D+—£)y = 0 (A47)
0 c

2 2

Multiply both sides of Eq. (A46) with (D + 5) yields:

2

 

in) + 1)(b + -—k—)x — (D + 11w = 5 (A48)
k 02 c, 02 02

A47 + A48 yields:

5(D+1‘—)(D+i)x — ix = 5— (A49)
k 62 c, 02 02

0(0 +M}, = H: (A50)

C102 C1C2
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The general solution x(t) of Eq. (A50) is composed of complementary

solution xc and particular solution xp. The complementary solution can be solved

 

 

 

2

from d X + ME): = 0;whereas the particular solution can be

dt c,c2 dt

_k(C1+Cz)t 59:92.);

calculated from 1[e “2 [is “2 dt dt. Hence,

6,02

_k(CITC22),(

xc = A + Be ”2 (A51)

x, = F 1dr (A52)
c,+c2

xp = F t (A53)

c,+c2

Therefore, the general solution x(t) can be written as follows:

 

 

 

X“) 2 X6 + x”
(A54)

_I‘iCWQ)
,

F

X“) = A '1' 86 C102
+

t
(A55)

C1 + (:2

dX
k(C + c ) _iicttiiz),

F

_— : — __1__
..2_ Be

C162
+

(A56)

dt
0,02

01 + 02

Substitutin
g Eqs. (A55) and (A56) into Eq. (A44), and rearranging

;

C
_kicfiCzi

t
F

C F

Y“)
= A — ._IBe

C162
+

t _ __2—_
——

(A57)

02
01+ 02 (01+ 02 )k

Applying the initial conditions x=0 and y=0 at t=0 gives

_ c§F _ _ c§F

(0 +6 )2k ’ (6 +0 )2k°
1 2 1 2

Substituting A and B into Eq. (A55) yields:
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2 _kICltczit

F C2 —e ) (A58)x(t) = +——

(C1 + 02) (C1 'I' 62 )k

 

Eq. (A58) can be graphed as shown in Figure A12.

D
e
fl
e
c
t
i
o
n

(
i
n
)

 
Timeiunder load (min)

Figure A12: Graph of deflection versus time under load at constant load

plotted from hybrid model

The hybrid model tends to show initial deflection and creep but not failure

region. The graph shows a long creep region with decreasing creep rate over

loading time. This is an important characteristic for predicting long-term storage

of corrugated containers. How long boxes can stay in the creep is the most

interesting aspect of this research. This is because corrugated containers spend

almost all of their lifetime in the creep. With decreasing creep rate over loading

time in the hybrid model, this should be a valuable piece of information that can

link between short time and long time creep rate.
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The average creep rate R(t) over time under load t as follows:

1 ' dx
R(t) _ EUEWI (A59)

1 r

R(t) = ?x(t)|o] (A60)

R(t) = M (A61)

R(t) = y (A62)

F C2 -kIFijfziy

R(t) = 2 (1—e ) (A63) + ___—___.—

(C1 + C2) (C1 1' C2 I,“

Consider the average creep rate R(t) in the case when time under load is

short as in the 12-hour creep tests. It should note that time under load in the 12-

hour creep tests is negligible compared to the sand bag tests. Therefore,

_klcth2It

2 C102

R12 = ,llmoRu) = F 1+2._°_2_2t"m0(1-e )

_ (01+02) (C1'I’Cz)k _* t

  (A64)

_kICI+CZ)j

Since (lino (1—e C1“? ) = 0 and ,leno t = 0, applying L’Hopital’s rule yields:

F 6

I'm Rt = 1 ——2——

(Lo () (01+02)( +C1

 

) (A65)

(Limo R(t) :
5 (A66)

C1
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Now consider the average creep rate R(t) in the case when time under

load is very long as in the sand bag tests. The time under load would be

considered infinite. Therefore,

_k(ci+c22).t

  

 

 

.Ii_r.n..R(t) = F 1—91—112 “"9 ’ (A67)
(c.+cz) (c.+c.)k °° t

. F

.ILr2n..R(t) = (1+0) (A68)
(01-1-02)

,li_r.nmR(t) = F (A69)
(01+02)

Comparing Eqs. (A66) and (A69), it can be concluded that the average

 
. . c .

creep rate over very long trmes ls ( ‘ trmes the average creep rate over

01 + c2

the 12-hour creep tests. The Maxwell and Kelvin models do not give these

characteristics. The relationship can be written mathematically as follows:

C1

(01 + 02)

 
R IQ12-hour creep tests (A70)very long time

Theoretically, a more complicated network composed of many springs and

dashpots can be built to better represent the relationship between deflection and

time under load of corrugated boxes under constant load. However, it will likely

turn out that the model is too complicated to be practical. The biggest problem

with this step is how the failure time can be calculated if the spring k’s and

dashpot c’s constants are not known and they are not easy to find out.
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Regardless of how complicated the model is however, an equation similar to Eq.

(A70) will result.
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APPENDIX B

CREEP RATE R12
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THE COMPUTER PROGRAM TO CALCULATE

CREEP RATE R12

10 REM: FITS STRAIGHT LINE, Y=M*X+B, TO N (X,Y)'s

20 REM: user makes changes to lines 50 and 60

30 READ N : DIM X(N),Y(N) ’open arrays X and Y for data

40 FOR l=1 TO N : READ X(l),Y(l) : NEXT I 'read N data

50 DATA 11, 1,0.110, 2.0.114, 4,0.114, 8,0.116, 16,0.116, 32,0.116

60 DATA 64,0.118, 128,0.120, 256,0.126, 512,0.126, 720,0.126

70 SX=0 : SY=0 : SXX=0 : SXY=0 : SYY=0 : SSE=0 'initialize sums

80 FOR l=1 TO N 'form sums

90 SX=SX+X(I)/N : SY=SY+Y(l)/N : SXY=SXY+X(I)*Y(l)/N

100 SXX=SXX+X(I)*X(l)/N : SYY=SYY+Y(I)*Y(l)/N

110 NEXT l

120 M=(SXY-SX*SY)/(SXX-SX*SX) : B=SY-M*SX 'slope, y-intercept

130 R=ABS(M)*SQR((SXX-SX*SX)/(SYY-SY*SY)) 'correlation coefficient

140 FOR l=1 TO N : SSE=SSE+(Y(l)-M*X(l)-B)"2 : NEXT I 'sum of squares of

errors

150 PRINT" y=m*x+b fit to";N;"data"

160 PRINT : PRINT " m=";M;” b=";B

170 PRINT : PRINT " x given y predicted y=m*x+b"

180 FOR l=1 TO N : PRINT X(l),Y(l),M*X(I)+B : NEXT l

190 PRINT : PRINT " Creep Rate R12 =";M

200 PRINT " correlation coefficient R=";R
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210 PRINT " sum of squares of errors SSE=";SSE

220 PRINT " rms error = sqr(SSE/N)=";SQR(SSE/N)

230 END
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APPENDIX C

CORRECTED PREDICTED TIMES
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THE COMPUTER PROGRAM TO MINIMIZING DIFFERENCE BETWEEN

PREDICTED TIMES AND ACTUAL TIMES TO FAIL

USING SSE TECHNIQUE

10 REM: Minimizing actual and predicted times using SSE technique

20 REM: user makes changes to lines 50,60,70,80,100 and 190

30 READ N : DIM D(N),R12(N),P(N),TA(N) 'open arrays for N data

40 FOR l=1 TO N : READ D(l),R12(l),P(I),TA(I) : NEXT I 'read N data

50 DATA 8, 0.28,1.92E-5,20,42, 0.28,2.23E-5,40,14

60 DATA 0.25,2.34E-5,20,42, 0.25,2.33E-5,40,12

70 DATA 0.50,3.71E-5,20,42, 0.50,4.77E-5,40,8

80 DATA 0.48,3.44E-5,20,42, 0.48,3.66E-5,40,12

90 PRINT" C1/C2 Ratio SSE": PRINT

100 FOR X: .71 TO .73 STEP .001

110 SSE=0

120 FOR l=1 TO 8

130 TP=D(l)/R12(I)*(100"2-P(l)"2)/(2*P(I))*(1+X)/(P(l)+100*X)/60/24

140 SSE=SSE+(TP-TA(I))"2

150 NEXT l

160 PRINT TAB(3)X, SSE

170 NEXT X

180 PRINT: PRINT”Predicted Times (days)"

190 LET X=.715

200 FOR l=1 TO 8

210 TP=D(I)/R12(I)*(100"2-P(|)"2)/(2*P(I))*(1+X)/(P(I)+100*X)/60/24
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220 PRINT TP

230 NEXT I

240 END
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