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ABSTRACT

.A PENALTY-BASED INTERFACE TECHNOLOGY USING

COLLOCATION FOR CONNECTING INDEPENDENTLY

MODELED SUBSTRUCTURES

By

Ramcharan Kumar Dhondi

A computationally efficient and. effective method has been developed to connect

independently modeled substructures whose finite element nodes do not coincide along

the interface. This method exploits the computational ease of the collocation method to

provide an efficient algorithm. The constraint formulation is based on the penalty

parameter method. The meshes on either side can be non-uniform with respect to element

size. The present algorithm can easily be programmed in any commercial finite element

software that allows for user—defined elements. This method has been implemented as a

user element in Abaqus Standard v5.8/6.2/6.3 and numerous simulations have been

performed to establish its effectiveness. The most important consideration for obtaining

good results using the collocation method is the location of collocation points. An effort

was made to provide an easy method for selection of collocation points. After a thorough

search of available literature and performing hand calculations, it was concluded that all

the nodes along the interface should be used as collocation points to obtain a reliably

accurate solution. The elements along the interface are constrained to the interface

element, a cubic spline having equally spaced nodes, which may or may not coincide

with nodes on either side. The results obtained are compared with those obtained without

an interface element and with those using a previously formulated interface element.
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CHAPTER 1 INTRODUCTION

1.1 Preliminary Information

Technology has evolved continuously in every part of the world. Exchange of

technology through information passage has been a primary mode of development in the

field of engineering. Proper usage of this technology with consistency in every respect

has been a difficult task. Methods have been developed over the years to allow effective,

reliable and consistent data exchange. A few methods have been effective in specific

cases and others have demonstrated their robustness in terms of application.

Increasing exchange of information over the intemet in design and analysis of

mechanical systems has lead to innovative technologies in the past decade. Easy

availability of high performance and stable computing syStems has resulted in effective

analysis of large-scale mechanical systems. It has become a common task to perform

analysis of large-scale models of vehicles, spacecraft and other structural assemblies

using available finite element software. But these models are still developed using

substructures, which may be created by different engineers using different software and

in different geographical locations with little or no communication between the teams of

engineers creating the models.

The time required to analyze these systems has reduced drastically but the amount

of time used to set up these models has been still a drawback. To avoid this analyst have

looked for ways to independently model substructures and finally assemble them. This

still involves a lot of tedious and intelligent human work. Usually there are cases where

these models are not compatible at their interface, i.e. the nodes at the interface do not



match. This calls for effective modeling and assembly during analysis. Methods have

been developed over a decade to resolve this issue. A great amount of success has been

achieved but the unending increase in complexities of these structures has prompted for

computationally effective, efficient and robust methods. One such advancement was

development of the hybrid interface technology [1-3].

Incompatible meshes generated by analysts can occur with global/local analysis,

where part of the structure is modeled as the area of primary interest, in which detailed

stress distributions are required, and part of the structure is modeled as the area of

secondary interest. Incompatibility occurs, as the finite element mesh in the primary area

tends to be finer than that in the secondary area. Transitioning sometimes leads to

distorted meshes, which may significantly affect the quality of the results. Interface

elements can be used in such cases to achieve pr0per load transfer across the interface.

Such incompatibility usually occurs in cases of sub assemblies modeled using

automeshers, which are generously used in highly complicated structural assemblies.

Many automeshers generate tetrahedral meshes for solids, and distorted tetrahedra

may be more susceptible to poor results. One more aspect of structural analysis is

optimization and this involves multiple analysis of the same structure using different

meshes. A mesh of different size and shape may be created due to change in shape of the

structure. The change could be only in a specific region without any noticeable change in

the rest of the structure as is the case with many structures. In such cases the structure can

be effectively modeled using subdomains. This warrants for an effective and easy to use

technology to assemble the substructures.



1.2 Literature Review

Analysts and researchers have worked over past decade to develop a reliable,

effective and robust interface technology to solve the problems mentioned above [Sect

1.1]. The new interface technology, presented through this thesis is another such

development, which has been developed using various methods. These methods have

been studied extensively in past. Discussions on developments in each of methods and

the interface technology have been presented below.

1.2.1 Penalty Method

The penalty method for enforcing constraints has been studied extensively in the

field of finite elements and mathematics. Penalty parameters have been used to avoid

Dirichlet boundary conditions and hence modifying the functional to be minimized. The

modified functional now consists of the original functional and a penalty term. When the

modified functional is minimized we see that the boundary condition gets satisfied in a

least squared sense [14]. Babuska was the first to use the penalty-function method in

conjunction with the Finite Element method. He proved the existence and uniqueness of

the finite element solution to the penalty—function formulation of the Dirichlet problem

for the Poisson’s equation [15].

Element formulations based on penalty parameters have been studied. One such

example is the case of shear deformable plate elements. These elements can be

considered as elements derived from classical plate theory by treating the zero transverse

shear strains as constraints. These constraints are formulated using penalty method and

reduced integration is applied, as the penalty terms obtained are shear energy terms. This



has been demonstrated by Reddy [22]. The penalty method has also been applied to

formulation of contact algorithms by many researchers. Belytschko and Neal have

applied penalty method to pinball algorithm for contact [23].

1.2.2 Least Squares Method

The Least Squares method has been applied extensively in engineering fields like

optimization and finite elements. The fundamental advantage of Least Squares method is,

the error (residual in finite element) is squared and thus the functional when minimized

approaches the minimum value from only one side. This is advantageous as both positive

and negative errors are squared and thus an appropriate measure of error is obtained.

The least squares method provides numerous theoretical and computational

advantages in the algorithmic design and implementation of finite element methods that

are not present in standard Galerkin discretizations, when applied to elliptic boundary

value problems in linear elasticity, fluid flows and convection-diffusion. Most notably it

leads to symmetric and positive definite algebraic problems [36]. Cao has applied Least

squares method to interface problems [37].

1.2.3 Collocation Method

The collocation method is well known for its ease of implementation and has been

utilized mainly to gain computational efficiency, although the choice of collocation

points drastically affects the solution of a problem. Ioakimidis and Theocaris [38] showed

that the choice of collocation points such that sum of all additional terms in the numerical

approximation of a singular integral equation vanish, gives faster convergence and a good



solution. Ascher [39] while working on stiff boundary value problems proved that the

best Runge-Kutta schemes known, which are symmetric and algebraically stable are

those equivalent to collocation at Gaussian points. He also showed that collocation at

gaussian points turns out to be more advantageous than any other choices because it is

computationally cheap and has better convergence. In 1982 Redekop [40] introduced

Fundamental Collocation method for solving planar elasto-static problems. Here the

boundary conditions were satisfied using boundary point least squares collocation

technique. De Boor and Swartz have showed that choice of Gaussian points as

collocation points gives better convergence as compared to Runge Kutta method and

same order of accuracy [24].

1.2.4 Interface Element Technology

A lot of work was done to provide a new effective method to resolve the issue of

assembly of incompatible meshes. Work was done by Farhat [45], which involved a

domain decomposition approach for partitioning the spatial domain into a set of

disconnected subdomains, each assigned to an individual processor. Lagrange multipliers

have been introduced to enforce compatibility at the interface. Ransom [13] worked on a

hybrid interface element, which is based on a constraint formulation through Lagrange

multipliers. Pantano [16-17] tried to improve on the computational aspect of the interface

element by using a penalty parameter based constraint formulation along the interface.

The hybrid interface element in comparision to penalty hybrid interface element is more

challenging to implement in a commercial code.



1.2.5 Multipoint Constraint Method

Efforts made initially to resolve the problem of mesh interfacing were mainly

concentrated on moving nodes or writing multi-point constraint (MPC) equations on the

interfaces [4-6]. The biggest restriction of moving nodes is that both sides should have

the same number and type of elements. Therefore this method is not practical for general

application. Different types of elements along an interface can be connected using multi-

point constraint equations. Splines used as multi-point constraint equations handle more

general cases. However, MPC equations by definition provide additional relationships for

the existing degrees of freedom on the interface and in this process the number of

independent degrees of freedom are reduced. If no new degrees of freedom are created

this could result in additional local stiffness or other non-physical effects in the model [4-

6].

1.2.6 Hybrid Interface Method

This element developed at NASA LaRC [1-7] allows connection of independently

modeled substructures with incompatible discretization along the common boundary.

This method has developed into a very effective method as Lagrange multipliers apply

constraints accurately. However this method results in a non-positive definite system of

equations. Although robust solvers exist for solving non-positive definite system of

equations, they typically require row and/or column pivoting which adversely impacts the

solver efficiency. It also has input requirement and implementation issuses, which present

a challenge for commercial codes. Aminpour, Pageau and Shin [12] have presented an

alternate method based on hybrid interface element, which takes care of the



implementation issues. The variational constraint equations obtained are not the most

stable and numerical ill conditioning of the resulting system of equations may not be

avoidable.

1.2.7 Penalty Hybrid Interface Method

The penalty-based interface element developed at Michigan State University by

Pantano [16-17] has some advantages over the lagrange-multiplier based hybrid interface

method. In this case the variational formulation of the interface element enforces

interface constraints via the penalty method. One of the advantages of such a variational

formulation is, that a positive-definite and banded stiffness matrix with reduced DOFs is

obtained. This approach enhances the computational efficiency as state of art sparse

solvers can be used to solve the system of equations. From accuracy point of view the

penalty method enforces the constraints only approximately, depending on the values of

the penalty parameters chosen. This method has been effectively used to solve numerous

problems.

1.3 Objective of Present Study

The present study focuses on the effective use of the collocation method instead

of piecewise integration along the interface for enforcing the constraint between two

incompatible meshes. The constraint is still enforced approximately using the penalty

method as in the penalty hybrid interface element [16-17]. The primary difficulty is to

determine the collocation point locations.



As integration along the interface is avoided by using collocation, we observe that

the amount of computation is reduced considerably, at the same time all the desirable

characteristics of the penalty hybrid interface method are conserved. Maintaining all

those desirable characteristics depends on the choice of collocation point locations.

Collocation method is numerically more efficient, especially in explicit dynamic analysis.

Collocation method is a more general method, which can be applied to finite

element models, as well as non-finite element models (e.g. FEM-FDM). As no

integration is required, the approximation functions are irrelevant to the procedure. Thus

it works well for any order of element. The accuracy and stability of the result depends

on the choice of collocation points. Three different options were investigated. The most

reliable and effective choice is presented in detail with a discussion on why this choice is

reliable and effective.

1.4 Organization of the Thesis

In Chapter 2 early developments in interface element technology are presented

along with a detailed formulation of a collocation-based interface element.

Chapter 3 provides formulation of one-dimensional collocation based interface

element for two-dimensional problems. A discussion on the selection of collocation

stations is presented.

In Chapter 4 a comparison is made between the different collocation schemes and

Pantano’s interface element. A variety of problems have been solved and the results for

specific interesting cases are presented in this chapter to demonstrate the new interface

element.



Chapter 5 discusses conclusions and opportunities for further study and research

in this interface technology and related areas.



CHAPTER 2 FORMULATION OF INTERFACE

ELEMENT

Let us consider two substructures that represent either a 2D or a 3D assembly,

having substructures £21 and (22 as shown in Figures 1(a) and 1(b). At the interface

between the two substructures we employ an interface element, which binds these

substructures like glue at the common interface. The interface element is discretized with

a set of nodes, which do not depend on the number of nodes at the interface in the

subdomains Q] and £22. In the collocation based interface element discussed in this

chapter the coupling terms associated with the interface element are arranged in the form

of a stiffness matrix and then assembled along with the global stiffness matrix.

Q] qs Q;
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Figure 1(a) Example ofa one-dimensional interface element in a two-dimensional

problem.
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Figure 1(b) Example ofa two-dimensional interface element in a three-dimensional

problem.

2.1 Hybrid Interface Method

In the process of development of hybrid interface element Aminpour, Ransom and

McCleary developed two other formulations [7] based on collocation method and discrete

least squares method. Both these methods failed the patch test. The failure of collocation

and discrete least squares formulations stems from the fact that the load transfer

mechanisms of these formulations are not, in general, consistent with the load transfer

mechanism of the finite elements.

The original hybrid interface method [1-9] uses lagrange multipliers to apply the

constraints. The variational formulation transfers the load using the same load transfer

mechanism as the finite elements, used to model the connected subdomains. The

11



constraints are exactly satisfied in this case. The lagrange multiplier DOFs are variables

found by solving the system of equations. The system of equations is obtained from the

first variation of total potential energy (TPE) with respect to all the variables taken one at

a time (DOFs of all the nodes and lagrange multiplier DOFs). As the DOFs include

Lagrange multiplier DOFs the implementation in commercial codes is challenging. The

system of equations is non-positive definite. Thus state of art matrix solvers for positive

definite system of equations cannot be used. Efficient solvers do exist for solving non-

positive definite system of equations, but they typically involve row and/or column

pivoting which adversely impacts the solver efficiency. The variational formulation

involves minimization of the total potential energy (TPE) of the assembly. The form of

TPE is as follows:

”=49, +7502+I41(V-u1)dS+I4Q(V—“2)d5 (1)

5 S

The nodal displacements of the sub-domain Q,- are identified by q? and qj. The

DOFs with o as superscript are not on the interface and ones with idenote DOFs that are

on the interface. The displacements are expressed in terms of unknown nodal

displacements q; as:

uj = qu'j (2)

where N,- can be matrices containing linear lagrange interpolation functions.

The displacement field V of the interface element is approximated on the entire

interface surface in terms of unknown nodal displacements q, as:

V = qu (3)

12



where T is a matrix of cubic spline interpolation functions. The Lagrange multipliers are

assumed to be of the form xi = Ra. The interpolating functions in the matrix R are

constants for linear finite elements and linear functions for quadratic finite elements. As

the Lagrange multipliers also enter the DOFs, the first variation of Iris taken with respect

to all the DOFs including the vectors a1 and a2:

57! . c = O

Iqi’ ,qiasai 45,01,052
(4)

These equations enforce displacement continuity, with 2.,- representing the interface

tractions. The total traction is zero on the interface. The first variation flyields the system

of equations:

"K,“ K,” 0

K1‘” {’0 0

o 0 Kg

0 O Kg"

0 O 0

MT 0 0

_ 0 0 M; 
_ T _ r ._

where M}. ——S[_N1Rjdsj and G}. —S[T Rjdsj. ,j—1,2.

I

O

O

K;

K3”

0

O

O

1

G
O
O
D

0

G,T

GI   

M. 0 - lql" ‘ft‘

0 0 41" f1"

0 M2 q; 2“

0 0 <q§l=<f2°l (5)

GI Gz qs O

0 0 a, O

O 0 _ [ah r0.   

It can be seen that the stiffness matrix obtained is sparse, symmetric, not banded and non-

positive definite. The part of the stiffness matrix associated with the interface element is:

 

' 0 0 0 M1

0 0 o o

0 o 0 G1

M,T o clT 0

_ 0 M] G; 0

l3

0

M2

G2

0

‘l

 01

(If
4‘2

I qs

a1

laz. 

l (6)

 



The implementation and input requirement problems make it challenging to implement it

in commercial codes. Aminpour, Pageau and Shin [12] have formulated and implemented

an alternative method based on hybrid interface method. The alternative method recasts

the interface element constraint equations in the form of multi-point constraints, which

can be used as input to the analysis code allowing the analysis of the assembled structure

as if the independently modeled finite element meshes of substructures, were fully

compatible. The alternative method is robust and applicable to linear and nonlinear static,

thermal, vibration, and buckling analysis of large-scale airframe systems. The alternate

formulation is applicable to both global/local and substructuring analyses. The variational

constraints obtained in alternate method are not the most stable form and produce

numerical ill conditioning of resulting system of equations.

2.2 Penalty Hybrid Interface Method

In this approach the constraint is imposed in a least squares sense through two

penalty parameters )7 and )5. Thus we see that the TPE is of the form:

1 1
n=ml“:92+§y1](V—u,)2ds+—2-y2](v—u2)2ds (7)

S S

The displacement fields are approximated in the same way as in the original

hybrid interface method. The first variation of Iris taken with respect to all the DOFs, but

not the penalty parameters y, and )fi, which are predetermined constants.

67r| (3)
. . =0

qf’ .q{.qs,q‘2’,q'2

The assembled form of the global stiffness matrix takes the form as shown below:

14



      

"Kr: K10" o o o M” 710‘

KP Kf+6f —GP 0 0 d .fl

0 —c,~"' Gfs+G§S 45" 0 <q, I=< 0 I (9)

o 0 -c? K%c§k@ a .6

_ 0 0 0 K3" K§”_ I613. .fz".

This is a symmetric, handed and positive definite (after imposing boundary conditions)

global stiffness matrix. The stiffness matrix and generalized vector of unknown

displacements associated with the interface element can be defined such that:

or -cr 0 q: o
-Gf" G1” +O‘2” —G:5' q; = O (10)

0 was as a o

where the different G matrices can be found to be:

.. _ T

Gil-ngleleds (11)

' TGyuy— jgj(~ T)d (12)

Gj' = [035]] (13)

T

Gj-S =4];[LT T)4 (14)

2.3 Penalty Hybrid Interface Element using Collocation

In this method the constraints are applied using the penalty parameter method but

the constraints are enforced using the collocation method. The form of TPE is as follows:

"12+p(VI-u1|..1)2+rlm‘ziple,,.,.-u1I)2 (15>
1

”=7Z'1+7[2+—2'}’lz1

n: ’71:]

15



where n1, p and m1 are number of collocation stations for each of the interfaces. The

number of nodes on left hand side is n1, that on the right hand side is m1 and p is number

of nodes on the spline. The form V|n denotes that the displacement field is evaluated at

collocation station n. The displacement fields are defined in the same manner as in

Penalty Hybrid Interface Element. The first variation of 7: yields required equations,

which form a positive definite set after applying boundary conditions. Defining coupling

terms as before, we have:

if P T

Gi(I’K)=7j [EN] LNKII +1 (16)

Gi's(”K)=7j(NI|K +TKI1) (17)

3s nl-I-ml T

Gr (”0:71 El TKIITII,+2 (19)

where:

j = 1, 2

N, I is the linear lagrange interpolation function of the 1“ node on the interface of j’h

substructure evaluated at the spline point l.

TKI is the cubic spline interpolation function for the Km node on the interface element
1

evaluated at 1” node on the interface of the j’h substructure.

The stiffness matrices are assembled in the same manner, as done in penalty

hybrid interface element.

16



2.4 Determination of the Penalty Parameters

A method for automatically determining the value of the penalty parameters can

be found in references [16-17], but for the sake of completion it is presented here in

condensed form. The penalty parameters are a set of predetermined constants. The

penalty method imposes constraints in an approximate form, and the accuracy of the

solution is dependent on the value of the penalty parameter. This penalty parameter is

dependent on the material properties and geometry of the model. Further, there is a

relationship between the penalty parameter and the Lagrange multiplier that enforces a

given constraint.

As the lagrange multiplier method imposes the constraint exactly, it defines the

upper limit to the accuracy of the penalty method. The value of penalty parameter in

terms of the material and geometrical properties is found using the correct solution for the

problem. A different penalty parameter should be defined for each of the different

degrees of freedom in case of elements with multiple-degrees of freedom.

The penalty parameter could be found by considering a fairly simple model with

only one kind of loading so that penalty parameters for each of the degrees of freedom

can be obtained one at a time. The formulations and solution are obtained analytically

using both the Lagrange multiplier method and the penalty method. The displacement

solutions for each degree of freedom are compared and the ratio between them is

expressed in the form as shown:

 

la ’run 1:
u A A

penalty

= 1 + g (20)

wheref = f (element geometric properties, material properties, and loads)

Once this expression is identified, the penalty parameter 7 is set equal to:

17



r=flf (2D

Then the ratio between the solutions becomes independent of material and geometrical

properties of the element:

penalty 1

“lagrange = 1+ 5
(22)

Thus we see that the accuracy of solution directly depends on the value assigned

to the parameter ,6. But the accuracy of the solution cannot be indefinitely increased,

since round off error would rise as ,6 is increased. But once a compromise between

constraint representation error and the round off error has been reached a value of ,6 can

be found which is able to produce the same level of accuracy for every combination of

material and geometrical properties.

More complicated cases where the value of ,6 is dependent on more than one DOF

are considered in [16-17]. However it has been found that the value of ,6 in case of

collocation method needs to be 1 order higher than that in case of penalty hybrid element

method [16-17].

2.5 Automatic Round-Off Error Control

In order for the constraints to be properly imposed we need to satisfy certain

inherent properties of the interface element stiffness matrix. One such property is that the

sum of all the terms in a row or column be equal to zero. This condition cannot be usually

achieved because of round-off error, and the resulting inaccuracy grows with value of the

penalty parameter. An important measure thus devised is to look at row imbalances in the
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stiffness matrix. If K. is the diagonal stiffness associated to the n-th nodal DOF, it is

sufficient to consider the ratio:

 
Q. = " (23)

where ER" is the unbalance in the interface element stiffness matrix row related to the

DOF n.

ER" = 2 K", (24)

1'

When the value of Q” exceeds about 1E-7, errors in the solution may become

appreciable. The discussed row imbalance is proportional to the value or the penalty

parameter, ER" cc )6 It is also approximately true that:

ER.°<7°<fl-K.=>Q.°<fl (25)

Thus, an algorithm was developed in [16-17] to control round-off error. Its steps

can be summarized as follows:

0 Stiffness terms are computed in the interface element stiffness matrix.

0 For each row in the stiffness matrix

0 The highest term is selected and stored in a variable X

o The row imbalance of the stiffness matrix is stored in a variable ER

0 Q = £1?- is evaluated

0 The highest Q is found compared to a given constant C. Typically C = 1E-7 is

used.

IIt'W

o If Q > C, the parameter 6 is reduced according to: 6 = 6

m
l
n
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0 The interface stiffness matrix is thus calculated using the 6 = 6"‘W.

Thus we see that this kind of approach reduces the risks of round-off error, which

could affect the solution.
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CHAPTER 3 PENALTY HYBRID INTERFACE

ELEMENT USING COLLOCATION

In this chapter hybrid interface element, penalty hybrid interface element and

penalty hybrid interface element using collocation are compared for one-dimensional

problems. A formulation of two-dimensional problems involving one-dimensional

interface element is presented. Multiple problems using the user element implemented in

Abaqus 5.8/6.2/6.3 are presented to show the reliability of the collocation based interface

technology. In the latter part of the chapter an error analysis is performed on a set of

problems to assess the accuracy of the method in finite element simulations.

The first objective is to obtain a stiffness matrix using the general formulation.

Once the stiffness matrix for the interface element is obtained, it is assembled along with

other element stiffness matrices to form the global stiffness matrix. Then the usual

procedure is followed which involves applying boundary conditions and inverting the

global stiffness matrix to obtain the unknown displacements.

3.1 Axial load — Two bar elements

A very suitable problem to show the differences between the lagrange multiplier

method, penalty method and the collocation based interface element is presented. In this

problem we have axial load applied to a bar, which is modeled as a two-element mesh

with an interface element between these two elements. The problem is depicted in Figure

2.

21
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e c o % :

u1 E, A "2 V "3 E, A “4

Figure 2. Beam under an axial load applied at the tip — Two Element

3.1.1 Lagrange Multiplier Method

The hybrid interface method introduces lagrange multipliers xi, and 112 in the total

potential energy (TPE) of the system to satisfy the displacement continuity condition.

Thus the TPE takes the form as shown:

7r=7r1+zr2 +III°(V-l12)+/IQ -(v—u3)

where 7n, 7r; are, respectively, the TPE of the first and of the second bar.

It: [1(ox-ex)dV+ j —1—(ox-ex)dV-Pu4+/il-(v—u2)+,i/,'(v—u3)

V12 V22

1 2 21 2

-(I)EA(%‘) dx+%- {EA(%) dx—Pu4 +1, -(v—u2)+A/Zo(v-u3)

Displacements are approximated linearly as

Substituting the approximated displacements into TPE gives the following result.
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(26)

(27)

(28)

(29)



”_EA ’- dN dN, _E_A 21- dN de

”-7 (Ilia“‘ dx—I§"17x_]dx+2{(Zu"' dx_I§urd_x_}x_P'u4+ (30)

A-(v—ufl-I-Z/Z-(v—ufl

Setting the first variation with respect to all the DOFs to zero we get:

 

 

 

L dN-

9—” =EA-j[iN—1 Eu, 1 x=0 (31)

all] 0 (ix 1' dx

d_7_r__ L dN2 de

Buzz {,l dx I?” dx ’1‘ ( )

87: L le de

=EA- — - — =0 33

Big ({[de§“} (3%) 12 ( )

L dN-

31:5A.,(__dN2 z“, I —P=0 (34)
8114 0 dx 1' dx

a7£=xll+xilx2==0 (35)

av

87:
5/1—1=v—u2=0 (36)

air
Ezv—u3=0 (37)

After applying the boundary conditions (in: 0) these equations can be written in the same

form as the classical equation involving stiffness, displacement and force.
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95. __EA 0 0 0 0

L L

-55. 5:4. 0 0 0 -1

L L

o 0 E __E_A. o 0

L L

0 -54 12/: 0 0
L L

0 O O O 1

O —1 0 O l O

_ O 0 —1 O l 0

Solving this system of equations we have:

n=—P

xil—P

12-40

u —u -s—52
2 3 EA

2PL

u4——

EA

3.1.2 Penalty Method

    
 

(38)

(39)

(40)

(41)

(42)

(43)

In the penalty method the displacement continuity constraint is imposed through

two penalty parameters y. and y2. Thus the TPE of the system shown is Figure 2 changes

its form.

1 l

7Z'=7'[1+7Z'2 +§yl -(v—u2)2 +EY2'(V"u3)2

where 7n and 7:2 are respectively, the TPE of the first and of the second bar.

(44)

1 l l 1

7t: {—2-(0'x-8x)dV+ I 5(O'x-8x)dV—Pu4+§yl-(v—u2)2+§y2-(v—u3)2 (45)

V1 V2
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2 L

L d 2 12L d 1 1
-[EA(Z:-)dn — [EA(d:]2dx—Pu4+§y, ~(v—u2)2+-2—72-(v-u3)2

0

The displacement is approximated using linear langrange interpolation functions.

2

= Z uJN

i=1 all—sluts)

Substituting the approximation for displacements we have:

ét’I'W—LQ) +—2-rz-<v—u3>

EA L dN EA LLL dN,

--2- ,(s,.1;152-9)+— :12:Tiedx

N .

d J
x—P-u4+

dx ]

 

The first variation of It with respect to all the DOF assumes the following forms:

L

35 EA- {VI—NZ.

8114 0 (ix

872'

 

—=71‘(V—“2)+72°(V—“3)=0
av

Thus the FE model is obtained as:

25

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)



 
  

The solution to this system of equations is as follows:

fi='P

PL

112 - -—

EA

3.1.3 Collocation based Interface Element

 

E -123: 0 0 0
L L (0

__E_[4_ E+y -7 O O

L L l l 112

0 -71 71+72 -72 0 W

A
0 0 -72 _E_A_+,2 -15.. u;;

L L [u4

0 0 0 -54; .55; ‘

L L L -

  

(54)

(55)

(56)

(57)

(58)

(59)

From section 2.3 it is known that in this technique the displacement continuity

constraint is evaluated at each of the nodes along the interface. Thus we see that the total

potential energy for the problem at hand is as follows:

1 l

71:72] +7[2 +371 -(v—u2)2 +—2-}’2 ~(v—u3)2 (60)

It is observed that the TPE for collocation based interface element and penalty

hybrid interface element are same. Thus the formulation of stiffness matrix, which
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follows similar procedures as in penalty based interface element, is the same as in Eq.

(54).

3.1.4 Comparison of the three methods

It is seen that lagrange multiplier method enforces the constraint accurately and thus is 3

upper limit for the latter two methods in terms of accuracy. The convergence for the last

two methods as the penalty parameters are increased is presented.

. . . . 1 L L
Lzmztv= lelt —+— = — (61)

71—>°° 71->°° 7’1 EA EA

L l 1 L

Limit “3 = Limit [—+—+— = (_)P (62)

71.72 ->°° 71,72 ->°° EA 71 72 EA

2L 1 1 2L

Limit “4 = Limit [—+—+— = (—)P (63)

71.72 —><>o r1124... EA 7’1 7’2 EA

3.1.5 Relation between Penalty Parameter and Beam Properties

It is seen that the result from lagrange multiplier method is same as the theoretical

result. Both penalty method and collocation based interface element converge to the

theoretical value based on the penalty parameter value. It is very important as mentioned

in sections 2.5-2.6 that an appropriate method to find the value of penalty parameter be

developed. This value of penalty parameter can be obtained by observing the results

obtained through theoretical calculation and penalty method. A method to obtain this

penalty parameter is presented below [16].
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“exact 2PL = 1 + 2L (64)

EA EA

Thus by substituting

EA

71:72 ='BO(—L—l (65)

for the penalty parameters we obtain

“(penalty 1

= 1 +— (66)
“Exact fl

3.2 Two-Dimensional Formulation

In this section formulation for a one dimensional interface element for two-

dimensional problems is presented with the help of an example. The interface element is

formed using cubic spline interpolation functions as approximation functions for the

displacement field.

3.2.1 Cubic Spline Interpolation Functions

Spline functions are mathematical tools to get a better understanding of available

data by passing a smooth curve through the data points. Splines exist in various orders

but cubic splines are most widely used in engineering practice. It is important to note that

cubic splines do not have the “wiggle” problem associated with higher order interpolating

polynomials.

Cubic spline functions can connect as many data points as possible. A general

form of cubic spline as used in [13,17] is used. In this general form of cubic spline
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interpolation functions the second derivatives at the end points are calculated by

differentiating a cubic function passing through the first or last four points depending on

the end point at which the second derivative is desired. This general form of cubic spline

interpolation function is found to be computationally efficient.

3.2.2 A general form of Cubic Spline

A description of the general form of cubic spline is presented for completion. A

very efficient matrix method is followed which makes it easy to program. Given a series

of points x,- (i=0,l,...,n) which are generally not evenly spaced, and the corresponding

function values f(x,-), the cubic spline function denoted by g(x) may be written as:

 
g(x)

 
: g,xx(xi) (x,-+1-x)3

6 Ax,-

f(x,- )[-(£‘+Xlx:—x)-] + f(xi+1)[(xA—x:’ )]

-Axi(x—xi):|+

. _ .3

_Axi(xi+l -x)]
+ g,xx(x,+1) [0‘

x1)

6 Ax,-

(67)

 

where Ax) = x,- - x,- and g,” denotes double differentiation with respect to x. This equation

provides the interpolating cubics over each interval for i=0,l,.....,n and may be given in

matrix form as:

g = ri‘lgxx + T2f (68)

For each of the k values of x at which the spline function is to be evaluated, x, S x, S x.
1+1 ’

k=1,2,....,p, and p is the number of evaluation points. The T, and T2 matrices can be

written in the form:
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T2:

 

where

 

 

(L1)1,1 (6)1,2

~ _ (502.1 (102.2

[(61 )p,l (fl )p,2

(L2)1,1 (52)1,2

~ (f2)2.1 (’2)2,2

(2),, (mpg

A 7

(L1)1,n+1

(f1)2.n+1 (69)

 (t1)p,n+l_

(12)1,n+1

(f2)2,n+l (70)

 (12)p,n+1_

for xk < x,- 01' xk >xi+1

 

O

.. l (x,-+1—xk)3 ._.

(11);“: = < - —Ax,-(x,-+1—xk) for x, S xk Sxi+1 andJ—1+1 (71)

6 Ax,-

_l_ (xk —x,-)3 —Ax°(x —x-) for x, Sxk Sx,+1 andj=i+2

L 6 Ax, r k 1

and

[3,xx(x0)‘

i8, (x1)

gxx = ”i I (72)

84,0"),

rf(xo)‘

f z, f(:x1) , (73)

If(xn),  

Note that there are, at most, two non-zero coefficients in each row of the T1 and

T2 matrices in equations (69) and (70) respectively. Applying additional smoothness
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conditions (i.e., equating the first and second derivatives of adjacent interpolation cubics

at x,) yields a set of simultaneous equations of the form:

Ax-_
2 i _ i

|: Air—i1]g,xx(xi-l
) + [L2%l]g,

xx(x,) + [l]g.xx(xi+1) =

i=1,2,...,n-1 (74)

  

6 f(xi+1)- f(xi) _ f(xi) " f(xi—l)

(M02 (AxiXAxi—l)

if the x,- are evenly separated with spacing Ax, then the above equation transforms to:

 [llamas—1H I4Is,..<x.>+111g,..(x..s> = élf‘xHWZLOZ“ “xi-1’ (75)
- (Axi)

Now we can write the equations for evenly separated and unevenly separated as:

Ag,xx = Pf (76)

The coefficients of matrices A and P are dependent upon the end conditions.

Whether the equations are of the form of that for evenly spaced data or unevenly spaced

data, there are n-l equations and n+1 unknowns g,xx(xo), g,xx(x1),..., g,x,(x,.). The two

necessary additional equations are obtained by specifying conditions on g,xx(xo) and

g,xx(x,.). In general spline, these second derivatives are calculated by differentiating

(twice) a cubic function, which passes through the first four pseudo-nodes along the

interface path and another cubic function that passes through the last pseudo-nodes along

the interface path. Evaluating this cubic function:

._ 2 3
g(xo) - a0 + alx + azx + a3x (77)

at the first four points gives:
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< g(xr)

g(xz)

 

lg(xo)‘

(8063),

f

II

  p
u
p
—
H
p
. x0

x1

x2

x3

Solving for the coefficients yields a = N'1g or

Iao

<al l:

“2

W.  

"11

"21

"31

"41 —

"12

"22

"32

"42

X3 x3 [00‘

XI: x1: <01 or Na:

x2 x2 02

xs2 x§_la3.

"13 "14‘ l8(xo)‘

"23 "24 <8061)

"33 "34 g(xz)

"43 "44_ I803),

  

 

 

  

8 (78)

(79)

From the cubic functions, g,“ (x) = 2a2 +6a3x , where a; and a3 are determined

from the previous equation. Equation (79) is valid for evenly spaced as well as arbitrarily

spaced points. Similar expressions are obtained for the cubic function passing through the

last four points where the coefficients of the inverted matrix similar to those for the first

four points are denoted as 72,, for k,l=1,...,4. With these end conditions, the matrices A

and P for equally spaced points as:

[1

 

 

.
_
.
.

1
—
«
5
0

m
o
s

m
a
m
a
s

h
I
—
O

 

 

4 1

O 1—(n+l><n+l)

124 I

i

.Ax

L52 173 p4l(n+1xn+1)

(80)

(81)



where Pk (x) = 2n3k +6n4kx0 and I—’k(x) = 2n3k +6n4kxn for k,l=1,...,4. For evenly

spaced points, the tridiagonal A and P matrices may readily be obtained by following a

similar procedure.

It is desirable to have g(x) expressed in terms of fix.) only rather than both f(x,-) and

g,,u(x,-). It can be done by a simple manipulation on an earlier equation:

g,xx = A'lpf (82)

Finally we can obtain an expression for g(x) in terms of only f.

g(x) = TlA'le + Tzf =(T1A'1P + i, )r = Tf (83)

3.2.3 Two-Dimensional Plane Stress problem

A simple plane stress problem with uniform axial loading and different boundary

conditions is solved to demonstrate the formulation, as the symbolic formulation is very

complex for such a demonstration. The problem is reduced to a three-element problem to

ensure clear understanding of two-dimensional, two variable interface element. The mesh

is uniform on either side of the interface element (though not necessary for interface

element to give accurate results), which has evenly spaced four nodes. The mesh and

configuration of the problem are shown in Figure 3. It also shows the nodal forces

assuming that linear plain stress rectangular element is used. All the elements are square

and the bigger element has side 2 units in length. All the meshes are for an object made

of only one material.
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Figure 3 Mesh and configurationfor a two-dimensional plane stress problem

The Collocation scheme used is the most reliable of the schemes investigated. The

scheme involves using N (nodes on the left hand side interface), M (nodes on the right

hand side interface) and NPS (nodes on the interface element) as collocation stations.

Thus the displacement constraint is evaluated at all the nodes viz. N, M and NPS.

The total potential energy of the configuration now comprises of the potential

energy for the mesh on left side (7n), right side (n2) and the interface element (71"). For

simplicity expressions for In and m are not presented and it is assumed that yx=yy=y. The

potential energy term for the interface element can be written as follows:

n'=—§-Ius.I.-v.l.r+g-Iu..I.-v.I.r+§IuI.I.-v.1.)2+-§-Iu..I.-v.1.r+

I 1sl3V-Vslslz+§Iu1sl.s-Vsl.s)2+§Iu2sl5-Vslslz+§(u2s|7-Vs|7)2+

(uI.-v.I.)2+-§-Ius.I.,-V.I.)2+1Ius.I.-v.I.t+1Ius.I.—v.l.sr+

(V2Jr_VI4’_VxI4’l2+§(u1yI2V2HI)2 5(“1yl4- "4+le“(MIVnyIZ+ (84)

(ussl- sl,)2+LIssl. V.slI2+—§—.Iu1sl-Vsl.)2+ —§.—Iu2sl Vy|5i+

(“zyl‘ v.It+ gluzylg‘ vI.+IgIsIVII+:IusI— vsI.I:+

Isl.— v.+.II :IusI—VII

M
N
M
N

N
I
‘
:
M
N
N
R
M
N

2
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The first variation of rr' with respect to nodal displacements is obtained to find

stiffness matrix for the interface element. The matrices, which comprise the interface

element matrix, are as follows:
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(85)

(86)
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2 0 l 0 0

3

0 2 0 l 0

3

055 z 511’: y —00375 0 05375+-:T 0 05375+§

0 —00375 0 05375+§ 0

1

3

_ 0

0 0 0 i

0 0 0

0 —00375 0

05375+§ 0 —00375 (33)

0 2 0

l 0 2
3 _

' 4.00140625 0 —002015625 0 —002015625

0 4.00140625 0 —002015625

—002015625 0 2.28890625 0 028890625

G” = y o — 002015625 0 2.28890625

—0.02015625 0 028890625 0 228890625

0 -0.02015625 0 028890625

0.00140625 0 —002015625 0 —o.02015625

L o 0.00140625 0 -0.02015625

0 000140625 0 ‘

—002015625 0 000140625

0 -—0.02015625 0

0.28890625 0 —002015625 (89)

0 —0.02015625 0

028890625 0 —002015625

0 4.00140625 0

—002015625 0 4.00140625 - 
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where 7:7,, =7!y =2.0e15 (corresponding to 6:165) is the penalty parameter and

G” = G,“ +G§5 . The matrix for interface element is assembled along with the other

element matrices and solved using Matlab and Calfem. Calfem [32] is a Matlab toolbox

for finite elements developed at Lund University, UK. This toolbox makes it easy, to

develop material matrix and finally stiffness matrices, which can be later, assembled to

solve a complete problem. The results for nodal displacements are compared with those

obtained analytically (u1m=1.SOOe-O6, u2mu= -3.000e-O7) and using Abaqus, hybrid

penalty method and collocation method for three different collocation point schemes. The

first collocation point scheme utilizes the interface element nodes (spline points) as

collocation points. This solution is denoted by NPS. The second collocation scheme

utilizes nodes N (2,4) and M (5, 7, 9) in Figure 3. This solution is denoted by NM. The

third collocation scheme utilizes nodes N, M and NPS in Figure 3. This solution is

denoted by NMNPS. The results are as follows:

 

 

   

   
Figure 4a. Horizontal displacement using penalty hybrid interface element
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Figure 4b. Vertical displacement using penalty hybrid interface element

 

U, 01

+1.298a-06
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+0 .0 OOe+00 

 

  

 

Figure 5a. Horizontal displacement using user element uelgluenps_wo.f(NPS being

the collocation points).
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Figure 5b. Vertical displacement using user element uelgluenps_wo.f(NPS being the

collocation points)

 

U. 01

+5.119e-06

 

   

 

 

Figure 6a. Horizontal Displacement using user element uelgluenm_wo.f(N andM

being the collocation points)
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Figure 6b. Vertical displacement using user element uelgluenm_wo.f(N andM being

the collocation points)
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Figure 7a Horizontal displacement using user element uelgluenmnps.f(N, M and

NPS being the collocation points)
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Figure 7b

 

 

Vertical displacement using user element uelgluenmnps.f(N, M and NPS

being the collocation points)
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Figure 8a

 

 

 
Horizontal displacement using Abaqus 6.3



 

 

 

Figure 8a Vertical displacement using Abaqus 6.3

It can be seen that only one of the choices for collocation points gives a good

result, thus the schemes in Figure 5a through 6b are not considered hereafter except in the

later part of this chapter. It was also observed that increasing the value of penalty

parameter to enforce the constraints strictly does not affect the solution, in the two failed

choices. The only choice which works well with all the cases tested is the one in which

all the nodes along the interface are used for evaluation of the constraint.
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CHAPTER 4 RELIABILITY OF THE NEW INTERFACE

TECHNOLOGY

In this chapter multiple problems using different mesh patterns have been solved

to judge the reliability of the new interface technology proposed in Chapter 2. In the first

part of the chapter a few two-dimensional problems have been solved and compared with

penalty based interface technology [16-18] and Abaqus 6.3. In the second part of the

chapter, two of the choices for collocation points have been compared with penalty based

interface technology [16-18] and Abaqus 6.3. The results have been presented as plots,

which show how the element edges on either sides of the interface element deform.

4.1 Two-Dimensional Problems

To prove the reliability of the choice of collocation points suggested in Chapter 2

(p. 15-16), few problems, which involve different kinds of loading (uniform axial load,

tip bending load and displacement boundary conditions) are presented. Uniform axial

loading is considered first.

A schematic diagram of the structure with uniform axial load is given in Figure 9.

Figures 10a through 11b show the results for this problem (Figure 9). The analytical

solution for the absolute maximum displacements in the two directions are, ulabsmax=

6.25e—8 and u2absmax=7.5e-10. The interface is inclined at an angle of 63.43 deg with the

horizontal axis.
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Figure 9. Two-dimensional uniform axial loading problem with an inclined interface

(63.43 deg)
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Figure 10a. Horizontal displacement using user element uelgluenmnps.f
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Figure 10b. Vertical displacement using user element uelgluenmnps.f
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Figure 1 la. Horizontal displacement using penalty hybrid interface element
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Figure 1 lb. Vertical displacement using penalty hybrid interface element

It is observed that the collocation based interface element gives results, which

match the analytical results and those obtained from penalty hybrid interface element.

The value of6=1e6 (equation 22) was used in both the cases.

The same bar is now analyzed by applying a bending load as shown in Figure 12.

The value of penalty parameter (6:1e6) is not changed. One of the ends is clamped to

constrain movement in both directions x and y. The properties of the material, geometry

and interface element parameters are given in Figure 12. This analysis uses CPS4R

(Continuum plane stress 4-noded element with reduced integration) elements.
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Figure 12. Two-dimensional bending problem with an inclined interface (63.43 deg)
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Figure 13a. Horizontal displacement using abaqus 6.3
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Figure 13b. Vertical displacement using abaqus 6.3
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Vertical displacement using user element subroutine uelgluenmnps.f
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Figure 14b.
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Figure 15a. Horizontal Displacement using penalty hybrid interface method

 

   

 

Figure 15b. Vertical displacement using penalty hybrid interface method

The tip displacement for this bending problem obtained using the beam theory is

PL3
3.125E-4 (UZTIP :5). From Figures 13a through 15b it can be observed that the

solution obtained using the collocation based interface element matches that of the
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penalty hybrid interface element. This result also matches the result obtained by using

Abaqus 6.3 on a uniform mesh. The displacement field is observed to be continuous

across the interface. To make sure that there is no discontinuity of displacement at the

interface, the interface area was observed closely.

4.2 Error Analysis

In this section a set of problems have been solved using various methods viz.

penalty hybrid interface method, collocation methods (two of the choices) and using

Abaqus v6.3. For the collocation based interface technology two choices of collocation

points have been used. One of the choices for the points is, the nodes on either sides of

the interface element (N and M) and the other is, the nodes on the interface element and

those on either sides of the interface (N, M and NPS). Both uniform axial load and

bending load have been used for error analysis. The plots below show, how the edges on

either sides of the interface look in case of different analysis schemes. The legends have

been named in a particular fashion to make them more intuitive. The nomenclature used

is as shown in Figure 16.

 

 

/® (uéFlguenmnps)m

Interface side : a - left / \

b - right Value of N. M and NPS respectively.

Default: NPS = 4 if not specified

 

   
 

   

   

  
Analysis Type : uelglue - Penalty hybrid method

uelgluenm - Collocation method with N and M

uelgluenmnps - Collocation method with N. M and NPS

abaqus - Abaqus 6.3 without interface element    
Note: abaqus doesn't have interface side and NM and NPS

Figure 16. Nomenclaturefor legends in thefollowing plots
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Interface plots (NIB, M810. NPSI4)
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Interface plots (N=2, M=7, NPS=4)
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Table 1 and 2 contain a summary of the results presented in Figures 17a through

176. It can be clearly seen from the Figures 17 a through 17e, that the choice of

collocation points suggested in Chapter 2 (p. 15-16, i.e. N, M and NPS as collocation

points) matches the results obtained using penalty hybrid interface element and Abaqus

6.3. Also the other choice where only points on either sides (N and M) of the interface are

used, fails to match the results obtained using penalty hybrid interface and Abaqus 6.3.
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S. No. Mesh Type N-M-NPS Max I U1 _ U, I Tip Deflection

lUmax |

1 3-2-4 0 1

2 4-3-4 0 1

3 8-10-4 0 1

4 8-10-8 0 1

5 2-7-4 0 1

Table 1. Summary of Uniform Axial Loadfor Uelgluenmnps.f

s. No. Mesh Type N-M-NPS Max I U’ _ U' n Tip Deflection
l Umax I

1 3-2-4 0.1191 1.061

2 4-3-4 0.0020 1.001

3 8-10-4 0 1.001

4 8-10-8 0.0001 1.001

5 2-7-4 0.1723 1.213

Table 2. Summary of Uniform Axial loadfor Uelgluenm.f

Figure 18a through 18e contain the error analysis for bending load, which is presented in

very similar format as uniform axial load above. It can be clearly observed from the plots

that the suggested choice of collocation points provides results, in accordance with those

obtained using penalty based interface element and Abaqus 6.3.
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Interface plots (N=3, M=2, NPS=4)
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Interface plots (NIB. III-10, NPs-4)
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Interface plots (N=2, M=7, NPS=4)
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CHAPTER 5 CONCLUSIONS

An effective and reliable method has been developed and implemented in popular

commercial finite element software. This method based on the collocation method

improves the computational efficiency. An effort was made to identify the collocation

points. Starting with an initial guess as nodes on the interface three different choices were

made. The most reliable choice was compared with penalty hybrid interface element,

analytical solution and commercial finite element software. The accuracy of the results

was observed to be the same as the other methods used for comparison. The resulting

interface element can be used for large-scale problems in finite element and non-finite

element problems (e.g FEM-FDM). This method is completely compatible with available

commercial software. It can be used to model composite structures conveniently. It has

all the features of penalty hybrid interface element. When it comes to computational

efficiency the method proves to be much better for explicit analysis and has wide

applications in non-finite element method.

The collocation based interface element has been implemented in Abaqus as a

User Element Subroutine (UEL) for two-dimensional problems. This made the testing of

the collocation based interface element easier.

This method can now be used to perform global/local analysis and optimization

problems where the change occurs only for a small part of the model. The collocation

method for interface technology can be applied to explicit solvers to capture its

computational efficiency.
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