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Abstract

FINANCIAL CRISES, NONLINEAR DYNAMICS AND

MACROECONOMIC ISSUES IN CURRENCY MARKETS

By

Dooyeon Cho

This dissertation consists of three chapters on international financial crises, nonlinear

dynamics and macroeconomic issues in currency markets. The first chapter examines the

mechanisms behind output drops across a sample of 23 international financial crises. While

three generations of models have studied the causes of financial crises, less is known about the

mechanisms by which crises lead to output drops. One unresolved question is whether the

mechanisms behind output drops are similar across episodes. To address this question, we

apply the Business Cycle Accounting (BCA) methodology by Chari et al. (2007) to a sample

of crises. While the efficiency wedge is invariably the most important one, the relevance

of the labor and investment wedges varies depending on the size of the output drop and

the severity of banking problems–as measured by bank closures, nonperforming loans and

credit flows. Typically, in cases with smaller output drops and milder banking crises, the

labor wedge tends to be more important than the investment wedge. The opposite is true in

cases, such as those in East Asia in 1997/98, with larger output drops and severe banking

problems.

The second chapter explores the interaction between exchange rate volatility and fun-



damentals by examining the role of trade intensity in the reversion of exchange rates to

long-run equilibrium values. While exchange rates remain mostly unpredictable, researchers

have been able to link currency fluctuations to some fundamentals such as interest rates,

Taylor rule fundamentals, and relative PPP. In an effort to add to this literature, in this

paper we present evidence of a link between trade intensity and exchange rate dynamics.

We first establish a negative effect of trade intensity on exchange rate volatility via panel

regressions using distance as an instrument to correct for endogeneity. We also run a nonlin-

ear model of mean reversion to compute half-lives of deviations of bilateral exchange rates

from relative PPP, and find these half-lives to be significantly lower high trade intensity

currency pairs. This finding does not appear to be driven by Central Bank intervention. In

an application, we show that our findings can be used to improve the performance of cur-

rency trading strategies, by allowing the thresholds beyond which a currency is considered

overvalued to depend on trade intensity.

The last chapter provides an extensive analysis for both nonlinear and long memory char-

acteristics as well as mean reverting behavior of real exchange rates. This paper estimates

a fractionally integrated, nonlinear autoregressive ESTAR (FI-NLAR-ESTAR) model for

strongly dependent processes developed by Baillie and Kapetanios (2008). While the linear

fractionally integrated model appears to fail to detect mean reversion in real exchange rates,

the nonlinear long memory model is found to be more supportive of significant empirical

evidence for the presence of slow mean reversion in real exchange rates for all of the curren-

cies considered in this study over the recent float. The results suggest that a model that is

capable of representing both nonlinear and long memory characteristics may help identifying

mean reversion in real exchange rates.
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Chapter 1

Business Cycle Accounting for

International Financial Crises: The

Link Between Banks and the

Investment Wedge

1.1 Introduction

Over the last three decades, international financial crises have struck in countries as diverse

as Argentina, Korea, Turkey and Finland. Typical symptoms of crises have been large real

depreciations, current account reversals (or sudden stops), difficulties in the banking sector

and, in some cases, sovereign default. On the real side of the economy, crises have typically

led to dramatic declines in output and employment. It is precisely because of these severe
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real effects, that international financial crises are a topic of perennial interest for academic

economists and policymakers alike.

Economists have developed an extensive literature examining the causes of crises, as re-

current waves of financial disasters have led to the subsequent development of different gen-

erations of models. Latin American crises in the 1970s and 1980s motivated first generation

models (e.g., Krugman (1979), Flood and Garber (1984)), highlighting the incompatibility

of fixed exchange rates with monetized fiscal deficits. The European ERM crisis of 1992/93

and Mexico’s 1994/95 episode led to second generation theories (e.g., Obstfeld (1994), Cole

and Kehoe (1996), (2000)), emphasizing multiple equilibria and self-fulfilling prophecies.

And after the Asian crisis of 1997/98, third generation models (e.g., Burnside et al. (2001),

Schneider and Tornell (2004)) tended to stress the role of government guarantees and cur-

rency mismatches in private sector balance sheets. However, as Calvo (2000) noted, while

all three generations have provided valuable insights into how and when crises are possible,

they have had less to say about the mechanisms through which crises lead to output drops.

In all three generations, typically, the objective is to determine conditions under which mar-

kets can force governments to abandon currency pegs and/or default, assuming that the

abandonment/default has adverse real effects. This assumption is often made because it is

difficult to generate output drops endogenously. In fact, in many environments, crises may

raise output, as real depreciations improve net exports.

The literature seeking to identify mechanisms by which crises lead to output drops is

relatively more recent and less extensive. Regarding output drops in specific episodes, to

our knowledge, the cases that have been most extensively studied are Mexico in 1994/

95 and Korea in 1997/98. In the context of the “Tequila” crisis, Meza (2008) finds that
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changes in fiscal policy account for about 20 percent of the output drop in Mexico in 1995,

while Kehoe and Ruhl (2009) find that reallocation from nontradable to tradable sectors

explains the evolution of the real exchange rate and trade flows, but not the drop in output

and total factor productivity (TFP). In the case of Korea’s 1997/98 crisis, Benjamin and

Meza (2009) develop a model of sectoral reallocation which takes into account the effect of

high interest rates on firms’ working capital, and show that the model accounts for about

half of the decline in GDP and TFP.

In this paper, instead of studying the role of specific frictions in a given episode, our

approach is to perform an exploratory analysis of output drops throughout a sample of

crises. We employ the Business Cycle Accounting (BCA) methodology developed by Chari,

Kehoe and McGrattan (2007) (CKM henceforth). BCA decomposes output fluctuations into

fluctuations due to changes in an efficiency wedge, which captures changes in TFP, a labor

wedge, which captures labor-market distortions, an investment wedge, capturing investment-

market distortions, and a government consumption wedge, capturing government purchases

plus net exports. After estimating the processes governing all wedges, we use simulations

where some wedges vary and others are held constant to discern which kinds of distortions

play the most important role accounting for observed fluctuations. Thus, BCA provides a

priori guidance for economists seeking to explicitly model frictions. One important question

that this analysis will help us answer is to what extent crises are alike. That is, if a similar

combination of wedges accounts well for the data in all (or most) episodes, it may be possible

to develop one single model of output drops with general applicability. On the other hand, it

could be that different crises, or clusters of crises, are driven by different sets of distortions.

In that case, much like in the aforementioned three generations, it may be preferable to
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develop multiple models, tailored to different varieties of crises.

To construct our sample, we start from the list of episodes compiled by Kaminsky (2006).

After dropping some cases due to data limitations, we are left with the following 23 episodes,

involving 13 countries: Argentina (1981, 1985, 1989, 1994, 2001), Brazil (1987, 1991, 1999),

Chile (1982, 1994), Finland (1991), Indonesia (1997), Israel (1983), Korea (1997), Malaysia

(1997), Mexico (1982, 1994), Philippines (1983, 1997), Sweden (1992), Thailand (1997), and

Turkey (1994, 2000). Note that this sample offers variation along several potentially interest-

ing dimensions. First, the sample includes crises of the 1980s, which are generally explained

by first-generation models, and crises of the 1990s and 2000s, which do not conform to first-

generation crisis models. The sample also offers wide variation along other dimensions, such

as the size of the output drop and speed of recovery, rates of inflation, the geographical

location of the crisis, and the severity of banking crises.

After applying the BCA methodology to all cases and examining the results, some patterns

emerge. Across the sample, the efficiency wedge plays the leading role in accounting for

the drop, often explaining well over half of it. The labor wedge follows, explaining on

average about 20 percent of the drop, and the investment wedge comes third, accounting on

average for circa 14 percent of the drop. Finally, the government consumption wedge plays

a negligible role. In light of previous studies, these average percentages are not surprising.

More novel is our finding that, behind these average percentages, there exist wide variations

between episodes. These variations are fairly systematic along some dimensions. First, the

percentages of the drop explained by the efficiency and investment wedges are positively

correlated with crisis severity (i.e., these wedges explain larger percentages of the drops in

crises with larger drops), whereas the percentage explained by the labor wedge is negatively
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correlated with severity. On the other hand, in the three years after the crisis year—defined

as the year of the biggest output drop—we find that the efficiency wedge contributes most

to recoveries, while the labor wedge, and even more so the investment wedge, are typically

very persistent. That is, on average, the labor wedge contributes to the drop in output in the

crisis year, and barely contributes to growth in the following three years, while the investment

wedge tends to depress output not only in the crisis year, but also in the following three

years. Regarding correlations, the contributions of the efficiency and investment wedges

to the recoveries are markedly positively correlated with the size of the recovery, while

the contribution of the labor wedge to the recovery is essentially uncorrelated with the

size of the recovery. Perhaps the most salient stylized fact that holds in our sample is a

relationship between the investment wedge and several measures of banking crisis severity.

These measures include the fraction of banks closed relative to the total number of banks,

the share of nonperforming loans (NPLs) at the peak of the crisis, and the change in real

bank credit to the private sector. Finally, we also examine other factors, such as inflation,

and the time and geographical location of the crisis. We find that the importance of the

investment wedge, the size of the output drop, and the severity of banking problems appear

to be particularly pronounced in East Asian crisis episodes when compared to Latin and

European crises. To a lesser extent (and due to considerable overlap), the same differences

arise when comparing crises of the 1980s to those after 1990. Finally, we find no relationship

between the relative importance of different wedges and other variables, such as inflation

rates.

As a robustness check, we re-run the BCA analysis in our sample allowing for variable

capital utilization, and find that, relative to the baseline case, the importance of the efficiency
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wedge falls and the importance of the labor and investment wedges increases, although the

efficiency wedge continues to explain the largest fraction of the drops, followed by the labor

and investment wedges. Overall, our results remain qualitatively unaltered. That is, the

correlations with crisis severity remain positive for the efficiency and investment wedges and

negative for the labor wedge, and the contribution of the investment wedge continues to be

correlated with our measures of banking crisis severity.

Regarding previous literature, our finding that the efficiency, labor, and investment wedges,

in this order, play the most important roles explaining output is consistent with the findings

of related studies. In fact, the roles of the efficiency and labor wedges have been highlighted

by CKM, Ahearne et al. (2006), Kersting (2008), Cociuba and Ueberfeldt (2008) and Lama

(2011), for, respectively, the United States, Ireland, the U.K., Canada, and six Latin Amer-

ican countries. On the other hand, our findings point to two arguments against dismissing

the investment wedge as a tertiary, relatively unimportant force. First, the investment wedge

tends to be persistent, in the sense that it typically continues to contribute to output drops

several years after the crisis. Second, the relevance of the investment wedge is greater in more

severe crises and in crises with deep banking problems. These characteristics are typical of

the wave of crises that hit East-Asia in 1997-98. Regarding our findings on the investment

wedge, the study that most relates to ours is Chakraborty (2009)’s BCA analysis of Japan

in the 1990s, which found the efficiency and investment wedges to be most relevant, with the

labor wedge playing a smaller role. Moreover, this study relates the investment wedge to a

well-known feature of Japan’s economy during this period, the lack of lending by so-called

‘zombie banks’.

In sum, our results suggest that researchers interested in modeling output drops in the
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aftermath of crises may be well advised to use different frictions, depending on the severity of

banking sector difficulties. In cases with relatively mild banking crises, frictions that translate

into the productivity and labor wedges are most likely to drive the bulk of the economic

activity. On the other hand, in episodes where banking crises—as measured by the share of

nonperforming loans and the prevalence of bank closures—are more severe, the efficiency and

investment wedges are likely to explain most of the movement in macroeconomic aggregates.

The rest of the paper is organized as follows. In Section 1.2, we introduce the model and

describe the measurement and accounting procedure. In Section 1.3, we describe our data.

In Section 1.4, we present and discuss results. In Section 1.5, we re-run our analysis allowing

for variable capital utilization, and in Section 1.6, we conclude.

1.2 The model and business cycle accounting proce-

dure

1.2.1 The model

Following CKM, here, we sketch the model and accounting procedure. The model is a

standard neoclassical growth model. Every period t, the economy is hit by one of a finite

number of events st. The history of realized events up to period t is denoted by st =

(s0, ..., st) . The initial realization of the event s0 is exogenously given. As of period 0,

πt
(
st
)

denotes the probability of any particular history st. The economy has four stochastic

variables which depend on st: the efficiency wedge At
(
st
)
, which acts like time-varying

productivity; the labor wedge 1−τlt
(
st
)
, which is akin to a time-varying tax on labor income;
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the investment wedge 1/
[
1 + τxt

(
st
)]

, which has the same effect as a time-varying tax on

investment, and the government consumption wedge gt
(
st
)
, which resembles government

expenditure.1

The population Nt is assumed to grow at the constant rate γn . The representative

consumer chooses per capita consumption ct
(
st
)

and per capita labor lt
(
st
)

to maximize

∞∑
t=0

∑
st

βtπt

(
st
)
U
(
ct

(
st
)
, lt

(
st
))

Nt, (1.1)

where β ∈ (0, 1) is a discount factor. Utility maximization is subject to the budget constraint

ct

(
st
)

+
[
1 + τxt

(
st
)] [

(1 + γn) kt+1

(
st
)
− (1− δ) kt

(
st−1

)]
(1.2)

=
[
1− τlt

(
st
)]
wt

(
st
)
lt

(
st
)

+ rt

(
st
)
kt

(
st−1

)
+ Tt

(
st
)
,

where kt
(
st−1

)
,
[
(1 + γn) kt+1

(
st
)
− (1− δ) kt

(
st−1

)]
, and Tt

(
st
)

are, respectively, per

capita capital, per capita investment and per capita lump-sum taxes/transfers. The wage

rate and rental rate on capital are denoted, respectively, by wt
(
st
)

and rt
(
st
)
, and δ is the

rate at which capital depreciates.

Every period t, firms choose per capita capital kt
(
st−1

)
and per capita labor lt

(
st
)

to

maximize profits

At

(
st
)
F
(
kt

(
st−1

)
, (1 + γ)t lt

(
st
))
− rt

(
st
)
kt

(
st−1

)
− wt

(
st
)
lt

(
st
)
, (1.3)

where γ denotes the constant rate of labor-augmenting technical progress.

1 Several modifications of the BCA model, which incorporate additional wedges, have
been developed, often with the objective of tailoring the procedure to developing economies.
Despite the merits of the extensions, we have chosen to stick to the baseline BCA model
because, in our judgment, it remains the most standard and commonly used version. By
employing the well-known original version, we hope that it will be easier to compare our
findings with those of existing and future studies. Moreover, some countries in our sample,
e.g., Finland, are developed countries.
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Equilibrium in the economy is fully described by

ct

(
st
)

+
[
(1 + γn) kt+1

(
st
)
− (1− δ) kt

(
st−1

)]
+ gt

(
st
)

= yt

(
st
)
, (1.4)

yt

(
st
)

= At

(
st
)
F
(
kt

(
st−1

)
, (1 + γ)t lt

(
st
))

, (1.5)

−
Ult
(
st
)

Uct (st)
=
[
1− τlt(st)

]
At

(
st
)

(1 + γ)t Flt, (1.6)

and

Uct

(
st
) [

1 + τxt

(
st
)]

= β
∑
st+1

πt

(
st+1

∣∣∣st)Uct+1

(
st+1

)
(1.7)

×
{
At+1

(
st+1

)
Fkt+1

(
st+1

)
+ (1− δ)

[
1 + τxt+1

(
st+1

)]}
,

where Uct and Ult denote the first derivatives of the utility function with respect to con-

sumption and labor and similarly, Flt and Fkt denote the first derivatives of the production

function with respect to labor and capital. Equation (1.4) is the feasibility constraint of the

economy. Equation (1.5) is the production function. Equation (1.6) states that in equilib-

rium, the marginal rate of substitution between consumption and leisure equals the marginal

product of labor, distorted by τlt(s
t). And finally, equation (1.7) is an intertemporal Euler

equation, distorted by τxt
(
st
)

and τxt+1
(
st+1

)
.

As CKM and Chakraborty (2009) emphasize, the wedges or frictions represent all pos-

sible distortions that can enter the first order conditions. Taxes can be thought of as the

typical wedges. For example, the labor wedge can be any kind of friction that distorts the

relationship between the marginal product of labor and the marginal rate of substitution

between consumption and leisure. These frictions may arise from a variety of sources, such

as taxes, monopoly power by unions or firms, sticky wages or sticky prices. CKM generalize

these results by illustrating the mapping, and showing that explicitly modeled frictions amap
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into wedges in this prototype economy.2 For example, input-financing frictions map into ef-

ficiency wedges, investment-financing frictions into investment wedges, and fluctuations in

net exports in an open economy map into government consumption wedges. Also, sticky

wedges and monetary shocks map into labor wedges.

Consequently, by construction, the model exactly reproduces the data on output, labor,

investment, and consumption when all four wedges are jointly fed into the model.

1.2.2 The business cycle accounting procedure

How to measure the wedges

As in CKM, we assume that the mapping from the event st to all the wedges is one to one and

onto. The accounting procedure is to conduct experiments that isolate the marginal effect

of each wedge as well as the marginal effects of combinations of the wedges on aggregate

variables. For example, in conducting the experiment that isolates the marginal effect of the

investment wedge, we hold all other wedges fixed at some constant levels in all periods.

To implement the accounting procedure, we assume that the production function has the

Cobb-Douglas form

F (k, l) = kαl1−α, (1.8)

where α is the capital share and the utility function is of the form

U (c, l) = log c+ ψ log(1− l), (1.9)

2 CKM demonstrate the mapping from detailed economies with frictions to prototype
economies with wedges. They also deal with the mapping of financial frictions to investment
wedges. They focus on the financial frictions in the Bernanke et al. (1999) model and abstract
from the monetary features of that model (For more details, see pages 828-834 in CKM).
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where ψ denotes the time allocation parameter. We borrow parameter values from the

business cycle literature. Concretely, in Table 1.1, we describe our sources and numerical

values for each country. We then use these values together with the data to derive the steady

state value of the wedges.

To measure the wedges, note that the efficiency wedge At and the labor wedge τlt can

be directly calculated from equations (1.5) and (1.6) without computing the equilibrium

of the model. Also, following CKM, we measure the government wedge gt directly from

the data as the sum of government spending and net exports.3 Measuring the investment

wedge τxt is not as straightforward. Since the Euler equation (1.7) involves expectations

over time, and agents’ optimal decision rules depend on the stochastic process driving the

wedges, measuring this wedge requires that we compute the equilibrium of the model.

To estimate the stochastic process for the state, we follow CKM and specify a VAR(1)

process for the four dimensional state st = (logAt, τlt, τxt, log gt). The process has the form

st+1 = P0 + Pst +Qεt+1, (1.10)

where the shock is independent and identically distributed over time and is distributed

normally with mean zero and covariance matrix V . The estimate of V is positive semi-

definite, because we estimate the lower triangular matrix Q, where V = QQ′. The matrix

Q has no structural interpretation. We use a standard maximum likelihood procedure to

estimate the parameters P0, P and V of the VAR(1) process for the wedges.4 To do so, we

3 Meza (2008) adds net exports to investment rather than government spending since he
analyzes the role of actual fiscal policy.

4 As the yearly-data analysis in CKM, we impose the additional restriction that the
covariance between the shocks to the government consumption wedge and those to all other
wedges is zero. In other words, we assume that the government consumption wedge is
uncorrelated with all other wedges for the structure of the matrix.
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use the log-linear decision rules of the prototype economy along with data on output, labor,

investment, and the sum of government spending and net exports. Specifically, we use the

log-linear method when we derive estimates of the process for the wedges and for computing

equilibria.

We assume that the economy is in the steady state in pre-crisis year t, where the crisis

year t + 1 is defined as the year with the greatest output drop. We solve the model using

log-linearization and the method of undetermined coefficients. The model is expressed in

state-space form as follows

Xt+1 = AXt +Bεt+1 (1.11)

Yt = CXt + wt,

where Xt = [log k̂t, log zt, τlt, τxt, log ĝt, 1]′, zt = At/(1+γ)t, Yt = [log ŷt, log x̂t, log lt, log ĝt]
′,

and wt = Dwt−1 + ηt. The matrix A summarizes coefficients linking Xt to Xt+1, including

the coefficients in matrices P and P0 from the above process and the coefficients linking Xt to

k̂t+1 (found via log-linearization and the method of undetermined coefficients). The matrix

B summarizes variance-covariance parameters, including Q from the VAR(1) process above.

Finally, C summarizes the coefficients linking Xt to Yt (found via log-linearization and the

method of undetermined coefficients), and elements of D are the parameters governing serial

correlation of the measurement error. We assume that E
(
ηtη
′
t

)
= 04x4 and E

(
εtη
′
s

)
= 0 for

all periods t and s.

The log-likelihood function to be maximized is given by

L (Θ) =
T−1∑
t=0

{
log |Ωt|+ trace

(
Ω−1
t utu

′
t

)
− log |∂f (Zt,Θ) /∂Zt|

}
, (1.12)
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where the parameters to be estimated are in vector Θ, ut is the innovation vector, and Ωt

is its covariance. The last term in (1.12) is nonzero if the elements of Y are not the raw

series but depend on the raw series Z plus the parameter vector. Following CKM, for the

results reported, we fix parameters of preferences, production, and growth and estimate the

processes for the wedges. The parameters to be estimated are elements of P0, P and Q.

The log-likelihood function above is obtained using the Kalman filter, which generates one-

period-ahead predictions compared to the actual data. The differences between the actual

data and the predictions generated by the filter enter into the log-likelihood function. Once

we have estimated P0, P and V , we can find the realized values of the wedges. (For more

technical details, see Appendices of Chari et al. (2006).)

Evaluating the contribution of each wedge

Having measured realized values for the four wedges, we now implement the simulations

that allow us to determine the extent to which output fluctuations can be attributed to

each wedge. For each episode, we let t and t+ 1 denote, respectively, the pre-crisis and the

crisis year. To determine the relevance of a given wedge, we simulate the model letting that

wedge vary only up to the pre-crisis year t, and holding that wedge fixed at its pre-crisis

level from time t + 1 onwards, so as to nullify the effect of changes in that specific wedge.5

For instance, to compute the share of the drop due to the efficiency wedge, we conduct a

simulation in which we feed into the model the full series for the labor, investment, and

government consumption wedges, together with a truncated efficiency wedge, which equals

5 Meza (2008) constructs counterfactual wedges that eliminate the effect of changes in
fiscal policy. He solves the fiscal policy model to find the relation between wedges and fiscal
policy variables.
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the realized wedge for years up to the pre-crisis year t but is held constant at its year-t level

from the crisis year t + 1 onwards. Using the same method, we evaluate the importance of

the labor, investment, and government consumption wedges, accordingly.

We feed the truncated wedge along with the other wedges into the model. The greater the

difference between the actual and the predicted output drop, the greater the importance of

the truncated wedge. For brevity, we will not report results with the truncated government

consumption wedge since, in our sample, as well as in previous studies, there is virtually no

difference between the output path in the data and the output path predicted by the model

that ignores changes in this wedge from the crisis year onward.

1.3 Data

To build our sample, we begin with the list of crises compiled by Kaminsky (2006). After

dropping cases due to data limitations, 13 countries and 23 crisis episodes remained in

our sample. The countries, pre-crisis years, and output drops observed in these crises are

displayed in Table 1.2. The crises occurred mostly during the 1980s and 1990s, and some

in the early 2000s, and involved the following countries: Argentina, Brazil, Chile, Finland,

Indonesia, Israel, Korea, Malaysia, Mexico, Philippines, Sweden, Thailand, and Turkey. The

crises were on average quite severe. In fact, the average output drop between the pre-crisis

year t and the crisis year t + 1 is approximately 8 percent. In Table 1.4, we show, along

with the percentage drops in output, the percentage drops in employment and investment,

for each crisis in the sample. The average drop in employment, at 3.2%, is smaller than

the drop in output. Investment, on the other hand, is much more volatile than output, and
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registers an average drop of about 25%.

Most of our data are from the International Financial Statistics (IFS ). The only series

that are not from this source are working age population (i.e., population aged 15-64), total

employment, and hours worked, which are collected from the International Labour Office

(ILO) LABORSTA database. The years for which we have found data are shown in Table

1.3. With the exception of Turkey, for which data start in 1988, for all other countries, the

first year is 1980. The last year differs by country, varying between 2005 and 2007.

The series for per capita output (y), per capita investment (x), per capita labor input (l),

per capita government consumption (g) and per capita consumption (c) are constructed as

follows. Per capita output (y) is the sum of nominal GDP, deflated using the GDP deflator

and dividing by population aged 15-64. In the case of Mexico, we added services from, and

depreciation of, consumer durables to GDP. We were not able to find this information for

other countries. We also omitted sales taxes, since they are small and unavailable for most

countries. The series for per capita investment (x) is given by gross fixed investment (plus

personal consumption expenditures on durables in the case of Mexico), deflated and divided

by population aged 15-64. Using both the law of motion for capital and the perpetual

inventory method, we calculate the series for per capita capital stock (k). To construct the

series for the per capita labor input (l) , we multiply annual hours worked per employed

person by total employment, and divide the result by population aged 15-64. Since the value

obtained is total hours worked per year, we divide it by the number of weeks per year (50)

and the endowment of total hours per week (100). As mentioned earlier, the series for per

capita government consumption (g) is the sum of government spending and net exports of

goods and services, which, again, is deflated and divided by working-age population. By
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equation (1.4), the series for per capita consumption (c) is simply obtained by subtracting

per capita investment (x) and per capita government consumption (g) from per capita output

(y).

Regarding data on banking crises, our sources are the following. Data on percentages

of banks closed and shares of nonperforming loans over total loans come from Laeven and

Valencia (2008) and Reinhart and Rogoff (2009). We gathered data on credit extended

from the World Bank’s series “Domestic Credit Provided by Banking Sector (% of GDP)”.

We multiplied this series by nominal GDP (from IFS ) to obtain nominal domestic credit

provided by the banking sector, and deflated this series using the CPI series (also from IFS )

to finally obtain real domestic credit.

1.4 Results

The output paths and realized values for the efficiency, labor, and investment wedges for all

countries are depicted in Figure 1.1. Already at first glance, it quickly becomes apparent that

there is a much stronger association between output and the efficiency wedge than between

output and the labor or investment wedge. This holds not only in crisis years—most of

which stand out visually due to the large output drops—but typically through the sample

period. In Figure 1.2, we show the paths of output, investment, and labor for all countries.

Every graph shows the data together with the results from three simulations, each including

all wedges except for respectively, the efficiency, labor, and investment wedge. Clearly, some

wedges play a much more important role in some episodes than in others, with the labor

wedge, for example, playing an important role in Argentina in 2001, and the investment
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wedge playing a key role, for example, in Malaysia in 1997.

To quantify the importance of a given wedge for a given episode, our primary measure is the

percentage contribution to the output drop in the crisis year. We compute this percentage by

performing the following calculations, which are similar to the calculations in Meza (2008).

Let yi,t and yi,t+1 denote country i’s real (detrended) per capita output in, respectively, the

pre-crisis year t and the crisis year t+1, and let di,t = (yi,t−yi,t+1)/yi,t be the corresponding

percentage output drop. Next, for each wedge w ∈ {Efficiency, Labor, Investment}, we take

output values from a simulation where we feed into the model realized values of wedges other

than w, and let w vary only up to pre-crisis year t, holding it fixed at its year-t level in later

years. We let ỹi,t+1(w) denote the year-t + 1 (detrended) per-capita output generated by

this simulation, and d̃i,t(w) = (yi,t − ỹi,t+1(w))/yi,t denote the simulated percentage drop.

Finally, we define Φi,t(w), the contribution of wedge w to the output drop in country i

between years t and t+ 1 as

Φi,t(w) =
di,t − d̃i,t(w)

di,t
. (1.13)

To interpret this measure, it is useful to look at Figure 1.3. As we can see in the top

panel, when the efficiency wedge is held constant, output falls by about 7 percentage points,

whereas in the data, it falls by about 12 points. The difference of approximately 5 points,

about 40%, is the amount attributable to the efficiency wedge. Doing this for all wedges

and crises, we obtain the contributions shown in Table 1.5. Not surprisingly, the efficiency

wedge is usually largest, whereas the contributions of the labor and investment wedges vary

widely between episodes. On average, the efficiency wedge accounts for 62.2% of the decline

of output, the labor wedge, 21.7%, and the investment wedge for 14%.6

6 It is worth noting that there is a high correlation (0.58 for labor and 0.47 for investment)
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Three remarks are in order. First, although the average contribution of the investment

wedge—as measured by Φi,t(w)—is lower than that of the labor wedge, we must keep in mind

that this is an unweighted average, which assigns the same weight to each episode regardless

of severity. As we will see shortly, since the importance of the labor and investment wedges is

respectively, negatively and positively correlated with the size of the output drop, a severity-

weighted average would lower the average importance of the labor wedge and raise that of

the investment wedge. Second, there are instances where the contribution of a given wedge

is negative (e.g., the labor wedge in Indonesia in 1997). In these cases, the wedge completely

misses the evolution of output, leading to an expansion instead of a contraction. The third

remark is that, by construction, the sum of the fractions explained by different wedges need

not equal one.

We also examine the effect of the wedges in the post-crisis years t+ 1 to t+ 4. Given that,

over these three years, output recovers in some cases and falls or stagnates in others, we

cannot use an analog version of Φi,t(w) to measure the wedge’s contributions. This would

be problematic given the difficulty in interpreting signs, and the fact that in several cases,

output at t + 1 is very similar to output at t + 4, which would make the denominator close

to zero. In these cases, wedge contributions would be very large numbers, which would skew

averages. To avoid these issues, we define an alternative measure as follows. For country i

and wedge w ∈ { Efficiency, Labor, Investment} the contribution to the recovery is given by

κi,t+1(w) = [ỹi,t+1(w)− yi,t+1]− [ỹi,t+4(w)− yi,t+4]. (1.14)

between the contributions of the labor and investment wedges, given in Table 1.5, and the
drops in labor and ivestment given in Table 1.4. Thus, although the reported measures
of contributions focus on output, the importance of the labor and investment wedges are
informative about the evolution of labor and investment.
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This measure simply captures whether the gap between the predicted and actual outputs

shrinks over the course of the post-crisis years t+1 to t+4. Once more, Figure 1.3 is helpful

to interpret the measure. In the top panel, we can see that the gap between simulated and

actual outputs does not shrink, but instead grows slightly, over the course of the years t+1 to

t+ 4. Hence, the contribution of the efficiency wedge to recovery would be slightly negative.

Calculating κi,t+1(w) in this fashion for all episodes and wedges, we obtain Table 1.6. As we

can see, the efficiency wedge contributes most to recoveries, on average about 3.4 percentage

points, whereas the labor wedge’s average contribution to recoveries is positive, but close to

zero, and the investment wedge’s contribution averages minus 0.4 points.

1.4.1 Wedges and Observables

Our sample includes crisis episodes that are heterogeneous along a number of observable

dimensions, including the severity of the crisis, the degree of problems in the banking sector,

the time and geographical location of the crisis, inflation rates, and so on. This variability

may be useful in order to uncover associations between particular observables and the con-

tributions of the three wedges. In turn, these associations could provide hints as to what

mechanisms or frictions underlie the distortions measured by the wedges.

In this section, we report the most salient associations between the relative contributions of

different wedges and other observable variables. First, we discuss the correlations between the

contributions of wedges and the size of the output drop. Second, we document a correlation

between the importance of the investment wedge and several measures of banking crisis

severity. This association is arguably the most intriguing, since it points to specific frictions
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that may be related to the wedges. Finally, we discuss other correlates, such as rates of

inflation, the geographical location of the crisis, and the time of the crisis.

Size of the Output Drop The association between crisis severity and the contribution

of each wedge is depicted in Figure 1.4. Clearly, there is a positive relationship between the

size of the output drop and the contribution of the efficiency and investment wedges, and a

negative relationship between the output drop and the contribution of the labor wedge. Table

1.7 (a), which shows correlations between output drop and the contribution of each wedge,

conveys the same message. The efficiency and investment wedges play more important roles

in more severe crises, while the relative importance of the labor wedge is negatively correlated

with severity.

A similar picture emerges when we consider the contributions of different wedges to re-

coveries (or stagnations) in post-crisis years. The contributions of the wedges—as defined

by κi,t+1(w)—correlate with the size of the recovery, measured as yi,t+4 − yi,t+1 as follows.

The efficiency and investment wedges display strong positive correlations (0.73 and 0.67,

respectively), while the labor wedge has a small negative correlation coefficient -0.05. That

is, the contributions of the efficiency and investment wedges to the recoveries tend to be

greater for episodes with better post-crisis performance.

Severity of Banking Crises Perhaps the most striking association between our findings

and observables is the existence of a correlation between the percentage contribution of the

investment wedge to output drops and various measures of banking crisis severity. Using

the database compiled by Laeven and Valencia (2008), and supplementing with information
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from Reinhart and Rogoff (2009), we compiled information, for each crisis, on the fraction

of all banks closed, as well as on the fraction of nonperforming loans (NPLs) at the peak of

the crisis. This information, along with some qualitative comments, is summarized in Table

1.8.

To illustrate the relationship between banking and the investment wedge, in Figure 1.5,

we compare Brazil in 1987, a crisis with relatively mild banking problems to Indonesia in

1997, a crisis with more serious banking problems. In the graph, it is clear that the contri-

bution of the investment wedge is greater in the latter. While we deliberately chose these

two crises for illustrative purposes, the message from the comparison holds more generally.

As can be seen in Table 1.7, panel (b), the ratio of banks closed to the total number of banks

correlates positively with investment wedge’s contribution to the output drop. The ratio is

essentially uncorrelated with the contribution of the efficiency wedge, and somewhat nega-

tively correlated with the contribution of the labor wedge. This measure of banking crisis

severity, however, does not adjust for the size of the closed institutions, and may therefore

misrepresent the aggregate significance of the crisis. To address this issue, we also examine

a different measure of severity, the share of nonperforming loans throughout the banking

sector at the peak of the crisis. As displayed in Table 1.7, panel (b), using this measure

yields a similar pattern of correlations. The correlation with the efficiency wedge turns neg-

ative, but remains very small, the correlation with the investment wedge remains positive,

and increases, and the correlation with the labor wedge remains negative.

Finally, we examine the flow of bank credit to the private sector in the crisis year, as well

as in the three following years. While the series from the World Bank (see the Data Section

above) is available as a percentage of GDP, multiplying the series by nominal GDP, and
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deflating using the CPI, we construct a series for the flow of real credit from the banking

system to the private sector. As displayed in Table 1.7, panel (b), the percentage drop in real

credit is positively correlated with the contribution of the investment wedge to the output

drop. The sign is positive, regardless of whether we consider the drop of credit between years

t and t+ 1, t and t+ 2, t and t+ 3, or t and t+ 4.

In sum, a variety of measures consistently point to a relationship, which seems plausible

intuitively, between banking crisis severity and the investment wedge.

Other Correlates: Inflation, Time, Geographical Location We also explored several

additional variables and experimented with various subsampling criteria in search of patterns.

Specifically, we considered inflation, geography, and whether the crisis took place before or

after 1990.

We found no significant correlation between the rate of inflation during the crisis year and

the contributions of different wedges to the output drop. Despite the often-heard argument

that inflation distorts investment decisions by increasing the uncertainty faced by lenders,

we actually find a small negative correlation between the inflation rate and the contribution

of the investment wedge to the output drop. Associations with the contributions of the

efficiency and labor wedges are also very weak.

A much stronger pattern emerges when one examines results depending on the geographical

location of the crisis. In Asian crises (meaning, for our purposes, Korea, Indonesia, Malaysia,

the Philippines, and Thailand), the efficiency wedge accounts for 51.6% of the decline in

output, the labor wedge for 14.5%, and the investment wedge for 39.2%, on average. For the

remaining crises, i.e., in Latin American and European crises (including Turkey as European),
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the efficiency wedge accounts for 66% of the decline of output, the labor wedge for 24.2%, and

the investment wedge, on average, for 6.6%. The importance of the investment wedge is not

only higher on average for Asian countries, but also very strongly correlated with severity.

Table 1.7 (c) displays correlations between the percentage output drop and each wedge’s

contribution for both subsamples. In Asian crises, the contribution of the efficiency and

investment wedges is highly correlated with severity, while the contribution of the labor wedge

correlates negatively with severity. In European and Latin American crises, the contributions

of the efficiency and labor wedges are mildly positively correlated with severity, and the

contribution of the investment wedge is mildly negatively correlated with severity. Although

these findings regarding the geographical location of the crisis are rather pronounced, they

are more difficult to interpret than our findings on banking crisis severity.

Finally, we compared crises of the 1980s to crises of the 1990s and 2000s. Due to our

sample size, however, this exercise overlaps to a substantial degree with breaking up the

sample between Asian and non-Asian crises. Thus, we find a more important role for the

investment wedge in post-1990 crises and a more important role for the labor wedge in the

crises of the 1980s.

1.5 Wedges with alternative specification: Variable

capital utilization

In this section, following CKM, we consider an alternative specification of the technology

allowing for variable instead of fixed capital utilization. This specification of the technology
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is due to Kydland and Prescott (1988) and Hornstein and Prescott (1993). We assume that

the production function is now

y = A (kh)α (nh)1−α , (1.15)

where n is the number of workers employed and h is the length (or hours) of the workweek.

Labor input is given by l = nh.

We assume that the number of workers n is constant and that all the variation in labor is

from the workweek h. Under the assumption of variable capital utilization, the services of

capital kh are proportional to the product of the stock k and the labor input l. So, variations

in the labor input induce variations in the flow of capital services. The capital utilization

rate is proportional to the labor input l, and the efficiency wedge is proportional to y/kα.

This change of specification results in nontrivial changes in measured wedges. The output

paths and realized values for the efficiency, labor, and investment wedges with variable

capital utilization for all countries are depicted in Figure 1.6. Not surprisingly, relative to

the baseline case, the importance of the efficiency wedge falls and the contributions of the

labor and investment wedges increase. Nevertheless, the efficiency wedge continues to explain

the largest fraction of the drops. Moreover, variable capital utilization does not qualitatively

alter our overall findings. In Tables 1.9 and 1.10, we report the contributions to output drops

and recoveries, respectively, while Table 1.11 is an analog of Table 1.7, and thus displays

correlations between wedge contributions and observables. The wedges shown in Table 1.9

correlate with the size of the output drop in the same way as the wedges in Table 1.5, that

is, positively for efficiency and investment, and negatively for labor. Similarly, the messages

from Tables 1.10 and 1.11 coincide with those from Tables 1.6 and 1.7, respectively. In
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particular, in Table 1.11, (panel (b)) the contribution of the investment wedge to the output

drop continues to be correlated with our measures of banking crisis severity.

1.6 Conclusion

Using the ‘Business Cycle Accounting’ methodology developed by Chari, Kehoe and Mc-

Grattan (2007), we study output drops across a sample of 23 international financial crises.

Throughout the sample, the efficiency wedge is consistently the most important wedge in

terms of its ability to explain the output drop, followed by the labor and investment wedges.

We also find that the importance of different wedges varies widely across episodes. The im-

portance of the efficiency and investment wedges correlates positively with severity, as well

as with bank closures. By contrast, the labor wedge is relatively more relevant in less severe

crises, and in crises with milder banking problems. Moreover, the investment wedge tends

to be persistent, in the sense that it tends to cause output to decline for several years after

the crisis.

By uncovering some stylized facts, this study points to some directions for future research.

Our main findings regarding banking crises and the investment wedge suggest a need for crisis

models that explicitly incorporate a banking sector as a crucial intermediary for investment.

Another direction for future research is to investigate whether there are institutional or

other differences (beyond banking crisis severity) that may account for the different results

obtained for Asian versus non-Asian countries. Perhaps some hints may be found in Cargill

and Parker (2002), who argue that, when compared to their Western counterparts, East

Asian financial systems are more heavily intermediated by banks, place more emphasis on
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state-bank-firm relationships, and are extremely reluctant to impose bankruptcy, especially

on large borrowers.

26



Table 1.1. Benchmark Model Parameter Values

Country Parameter Values

Technology Population Discount Dep. Time Capital

progress growth factor rate of allocation share

rate (γz) rate (γn) (β) capital (δ) parameter (ψ) (α)

Argentina 0 0.016 0.920 0.050 2.33 0.400

Brazil 0 0.020 0.900 0.070 3.93 0.400

Chile 0.020 0.015 0.980 0.050 3.36 0.300

Finland 0.024 0 0.980 0.050 2.24 0.350

Indonesia 0.024 0.023 0.960 0.050 2.24 0.350

Israel 0.015 0.025 0.950 0.050 2.24 0.350

Korea 0.053 0.015 0.980 0.047 3.46 0.297

Malaysia 0.034 0.028 0.960 0.050 2.24 0.350

Mexico 0 0.032 0.962 0.050 2.24 0.350

Philippines 0 0.025 0.964 0.050 2.24 0.350

Sweden 0.020 0 0.950 0.050 2.24 0.350

Thailand 0.038 0.021 0.917 0.100 2.24 0.350

Turkey 0.012 0.024 0.900 0.050 2.24 0.350

Note. The benchmark model parameter values have been obtained from the business

cycle literature: Argentina - Kydland and Zarazaga (2002), Brazil - Lama (2011),

Chile - Bergoeing et al. (2002) and Simonovska and Soderling (2008), Korea - Otsu

(2008), and Mexico - Meza (2008). For the remaining 8 countries, parameter values

were obtained by calibration for the corresponding data.
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Table 1.2. Pre-crisis Year and Change (%) in per capita real GDP

Country Pre-crisis Year Change (%) in per capita real GDP

Argentina 1980 -6.84

1984 -6.81

1988 -8.26

1994 -4.07

2001 -13.17

Brazil 1987 -2.37

1991 -2.77

1998 -1.91

Chile 1981 -15.45

1998 -4.08

Finland 1990 -8.98

Indonesia 1997 -19.54

Israel 1983 -1.66

Korea 1997 -11.59

Malaysia 1997 -13.20

Mexico 1981 -4.17

1994 -8.41

Philippines 1983 -8.66

1997 -2.75

Sweden 1991 -3.48

Thailand 1997 -15.08

Turkey 1993 -10.63

2000 -10.73

Average -8.03

Note. A change (%) in per capita real GDP is calculated between the pre-crisis year

and the following year for each episode.
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Table 1.3. Data Availability

Country Period

Argentina 1980 - 2005

Brazil 1980 - 2006

Chile 1980 - 2007

Finland 1980 - 2006

Indonesia 1980 - 2006

Israel 1980 - 2007

Korea 1980 - 2006

Malaysia 1980 - 2006

Mexico 1980 - 2005

Philippines 1980 - 2005

Sweden 1980 - 2007

Thailand 1980 - 2006

Turkey 1988 - 2005

Note. For Turkey, the data set runs from 1988 instead of 1980.
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Table 1.4. Change in Output, Labor, Investment

Change (%)

Country Pre-crisis Year Output Labor Investment

Argentina 1980 -6.84 -2.38 -16.32

1984 -6.81 -0.41 -17.90

1988 -8.26 -0.24 -23.64

1994 -4.07 -5.75 -13.70

2001 -13.17 -7.20 -26.75

Brazil 1987 -2.37 -0.32 -0.28

1991 -2.77 -4.02 -8.21

1998 -1.91 -1.20 -5.65

Chile 1981 -15.45 -12.32 -33.41

1998 -4.08 -3.24 -23.50

Finland 1990 -8.98 -5.81 -22.46

Indonesia 1997 -19.54 -4.27 -57.49

Israel 1983 -1.66 -0.54 -13.51

Korea 1997 -11.59 -8.28 -39.45

Malaysia 1997 -13.20 -3.37 -46.12

Mexico 1981 -4.17 0.62 -19.61

1994 -8.41 -0.04 -18.63

Philippines 1983 -8.66 -2.94 -37.21

1997 -2.75 -6.02 -20.18

Sweden 1991 -3.48 -4.87 -15.44

Thailand 1997 -15.08 -0.50 -48.42

Turkey 1993 -10.63 -0.01 -30.49

2000 -10.73 -0.46 -39.50

Average -8.03 -3.20 -25.12

Note. Output and investment are real values per person aged 15-64.
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Table 1.5. Contributions of wedges to output drops

Contribution (%) of each wedge

Country Pre-crisis Year Efficiency Labor Investment

Argentina 1980 74.93 16.17 5.19

1984 77.34 12.12 11.28

1988 76.03 5.70 16.99

1994 20.98 112.78 -6.12

2001 48.88 58.48 -2.54

Brazil 1987 155.39 43.00 -74.67

1991 40.12 54.99 -7.53

1998 59.06 15.24 7.96

Chile 1981 31.11 56.65 -3.77

1998 51.52 16.75 55.69

Finland 1990 50.27 18.08 15.29

Indonesia 1997 72.36 -15.98 37.88

Israel 1983 84.68 -27.21 77.00

Korea 1997 41.61 22.43 33.46

Malaysia 1997 75.02 -15.26 43.01

Mexico 1981 78.48 -18.21 29.91

1994 64.10 2.82 -34.42

Philippines 1983 74.29 8.92 29.52

1997 -26.33 121.09 15.67

Sweden 1991 11.98 50.98 20.46

Thailand 1997 72.43 -33.93 51.87

Turkey 1993 105.36 -1.66 -7.46

2000 91.02 -5.61 8.31

Average 62.20 21.67 14.04
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Table 1.6. Contributions of wedges during post-crisis years

Contribution (%) of each wedge

Country Pre-crisis Year Efficiency Labor Investment Size of recovery

Argentina 1980 -1.50 -1.75 -0.19 -1.63

1984 1.72 2.23 -0.27 2.72

1988 10.94 4.79 -2.12 9.89

1994 6.82 3.97 0.35 11.82

2001 19.12 -2.74 5.19 21.24

Brazil 1987 -5.16 0.41 0.87 -1.43

1991 5.56 -0.97 0.05 7.51

1998 -3.04 3.81 -0.29 2.30

Chile 1981 -8.70 5.67 -1.69 -6.95

1998 0.19 -0.65 0.81 0.45

Finland 1990 2.99 -2.81 -5.43 -8.49

Indonesia 1997 3.96 -2.51 2.07 -1.75

Israel 1983 8.01 1.59 -2.13 8.52

Korea 1997 -1.85 3.76 0.30 1.61

Malaysia 1997 1.25 0.96 -2.71 -3.11

Mexico 1981 -3.78 2.33 -5.29 -7.31

1994 4.63 -0.29 1.16 7.50

Philippines 1983 -6.26 3.75 -2.89 -6.60

1997 1.33 5.05 -0.66 6.33

Sweden 1991 7.07 -4.49 -1.63 0.70

Thailand 1997 12.08 -9.19 -0.11 -3.92

Turkey 1993 10.60 -4.94 1.15 9.23

2000 11.72 -6.30 3.35 9.14

Average 3.38 0.07 -0.44 2.51

Note. Size of recovery is measured as (yi,t+4−yi,t+1).
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Table 1.7. Correlations

(a) Correlations between output drop (%) and the contribution of the wedge:

Overall

Contribution of the Correlation with the output drop (%)

Efficiency wedge 0.087

Labor wedge -0.338

Investment wedge 0.157

(b) Correlations between contributions of wedges and measures of banking

crisis severity

Correlation with measures of banking crisis severity

Share of Credit drop from t to

Contribution of the bank closed NPLs t+ 1 t+ 2 t+ 3 t+ 4

Efficiency wedge -0.046 0.033

Labor wedge -0.117 -0.190

Investment wedge 0.149 0.198 0.049 0.182 0.266 0.200

(c) Correlations between output drop (%) and the contribution of the wedge:

Asian crises versus European and Latin crises

Correlation with the output drop (%)

Contribution of the Asia Europe and Latin America

Efficiency wedge 0.778 -0.102

Labor wedge -0.864 0.048

Investment wedge 0.794 -0.176

33



34

Table 1.8. Summary of Banking crises

Country Crisis Share of NPLs Banks Brief summary

Year at peak (%) closed (%)

Argentina 1980 9 9.8 The failure of a large private bank (Banco de Intercambio

Regional) led to runs on three other banks. Eventually, more

than 70 institutions - 16% of commercial bank assets and

35% of finance company assets - were liquidated or subjected

to central bank intervention.

1985 30 N/A In early May, the government closed a large bank, leading to

large runs, which led the government to freeze dollar deposits

on May 19.

1989 27 15.8 Nonperforming assets accounted for 27% of aggregate port-

folios and 37% of state banks’ portfolios. Failed banks held

40% of financial system assets.

1995 17 2.4 The Mexican devaluation led to a run on the banks, which

resulted in an 18% decline in deposits between December

and March. 8 banks suspended operations, and 3 banks

collapsed. Through the end of 1997, 63 of 205 banking

institutions were closed or merged.

2001 20.1 0 In March 2001, a bank run started due to a lack of public

confidence in government policy actions. In late November

2001, many banks were on the verge of collapsing, and

partial withdrawal restrictions were imposed (corralito)

and fixed term deposits (CDs) were reprogrammed to stop

to outflows from banks (corralon). In December 2002, the

corralito was lifted. In January 2003, one bank was closed,

3 banks were nationalized, and many others were reduced in

size.
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Table 1.8. Summary of Banking crises (continued)

Country Crisis Share of NPLs Banks Brief summary

Year at peak (%) closed (%)

Brazil 1985 N/A 0 3 large banks (Comind, Maison Nave, and Auxiliar) were

taken over by the government.

1990 16 0 Deposits were converted to bonds. Liquidity assistance to

public financial institutions.

1994-1996 15 N/A In 1994, 17 small banks were liquidated, 3 private banks

were intervened, and 8 state banks were placed under

administration. The Central Bank intervened in or put

under temporary administration 43 financial institutions,

and banking system nonperforming loans reached 15% by

the end of 1997. Private banks returned to profitability in

1998, but public banks did not begin to recover until 1999.

Chile 1980 35.6 13.1 3 banks began to lose deposits; interventions began 2 mon-

th later. Interventions occurred in 4 banks and 4 nonbank fi-

nancial institutions, accounting for 33% of outstanding loans.

In 1983, there were 7 more bank Interventions and one fina-

nciera, accounting for 45% of financial system assets. By the

end of 1983, 19% of loans were nonperforming.

1998 1.44 0 N/A

Finland 1991-1994 13 0 A large bank (Skopbank) collapsed on September 19 and

was intervened. Savings banks were badly affected; The

government took control of 3 banks that together accounted

for 31% of system deposits.

Indonesia 1997-2002 35.5 27.7 Through May 2002, Bank Indonesia closed 70 banks and

nationalized 13 out of 237. Nonperforming loans were 65-
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Table 1.8. Summary of Banking crises (continued)

Country Crisis Share of NPLs Banks Brief summary

Year at peak (%) closed (%)

75% of total loans at the peak of the crisis and fell to about

12% in February 2002.

Israel 1983 N/A 0 Stocks of the 4 largest banks collapsed and were nationaliz-

ed by the state.

Korea 1997 35 37.3 Through May 2002, 5 banks were forced to exit the market

through a “purchase and assumption formula,” 303 financial

institutions (215 of them credit unions) shut down, and 4

banks were nationalized. Banking system nonperforming

loans peaked between 30 and 40% and fell to about 3%

by March 2002.

Malaysia 1997 30 0 The finance company sector was restructured, and the

number of finance institutions was reduced from 39 to 10

through mergers. 2 finance companies were taken over by

the Central Bank, including the largest independent finance

company. 2 banks - accounting for 14% of finance system

assets were deemed insolvent and were to be merged with

other banks. Nonperforming loans peaked between 25 and

35% of banking system assets but fell to 10.8% by March

2002.

Mexico 1981-1982 N/A 0 There was capital flight. The government responded by nati-

onalizing the private banking system.

1994-1997 18.9 0 In 1994, 9 banks were intervened and 11 participated in the

loan/purchase programs of 34 commercial banks. The 9 banks
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Table 1.8. Summary of Banking crises (continued)

Country Crisis Share of NPLs Banks Brief summary

Year at peak (%) closed (%)

accounted for 19% of financial system assets and were deemed

insolvent. 1% of bank assets were owned by foreigners,

and by 1998, 18% of bank assets were held by foreign banks.

Philippines 1981-1987 19 0 The commercial paper market collapsed, triggering bank runs

and the failure of nonbank financial institutions and thrift ba-

nks. There were problems in two public banks accounting for

50% of banking system assets, 6 private banks accounting for

12% of banking system assets, 32 thrifts accounting for 53%

of thrifts banking assets, and 128 rural banks.

1997-1998 20 2.6 1 commercial bank, 7 of 88 thrifts, and 40 of 750 rural banks

were placed under receivership. Banking system nonperform-

ing loans reached 12% by November 1998 and were expected

to reach 20% in 1999.

Sweden 1991-1994 13 0 The Swedish government rescued Nordbanken, the second

largest bank. Nordbanken and Gota bank, with 22% of bank-

ing system assets, were insolvent. Sparbanken Foresta, accou-

nting for 24% of banking system assets, intervened. 5 of the 6

largest banks, accounting for over 70% banking system assets,

experienced difficulties.

Thailand 1996 33 2.4 As of May 2002, the Bank of Thailand shut down 59 of 91

financial companies (13% of financial system assets and 72%

of finance company assets) and 1 of 15 domestic banks, and

nationalized 4 banks. A publicly owned assets management
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Table 1.8. Summary of Banking crises (continued)

Country Crisis Share of NPLs Banks Brief summary

Year at peak (%) closed (%)

company held 29.7% of financial system assets as of March

2002. Nonperforming loans peaked at 33% of total loans and

were reduced to 10.3% of total loans in February 2002.

Turkey 1994 4.1 0 3 banks failed in April.

2000 27.6 15 2 banks closed, 19 banks have been taken over by the Savings

Deposit Insurance Fund.

Sources: Laeven and Valencia (2008) and Reinhart and Rogoff (2009)



Table 1.9. Contributions of wedges to output drops with alternative specification

Contribution (%) of each wedge

Country Pre-crisis Year Efficiency Labor Investment

Argentina 1980 55.90 22.54 3.65

1984 67.74 11.38 16.54

1988 68.75 3.00 23.84

1994 -25.03 153.26 -4.98

2001 30.00 74.94 -2.21

Brazil 1987 148.71 66.37 -124.39

1991 -3.34 88.71 -23.73

1998 38.24 28.21 6.50

Chile 1981 12.58 78.02 -9.33

1998 31.04 29.44 68.42

Finland 1990 29.93 30.51 16.64

Indonesia 1997 59.47 -29.02 76.20

Israel 1983 19.47 117.47 134.49

Korea 1997 23.89 34.16 41.80

Malaysia 1997 64.46 -16.34 57.79

Mexico 1981 69.21 -37.49 179.16

1994 57.13 -1.97 -39.83

Philippines 1983 59.40 10.06 41.37

1997 -90.88 170.99 25.35

Sweden 1991 -29.76 82.86 22.39

Thailand 1997 66.39 -34.98 75.59

Turkey 1993 101.73 -2.06 -8.52

2000 86.64 -6.56 13.24

Average 40.94 37.98 25.65
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Table 1.10. Contributions of wedges during post-crisis years with alternative specification

Contribution (%) of each wedge

Country Pre-crisis Year Efficiency Labor Investment Size of recovery

Argentina 1980 -0.16 -2.02 -1.11 -1.63

1984 1.66 2.81 -0.97 2.72

1988 10.89 5.15 -3.81 9.89

1994 5.59 5.18 -0.15 11.82

2001 18.50 -4.83 6.11 21.24

Brazil 1987 -5.05 0.42 2.02 -1.43

1991 5.53 -1.62 0.82 7.51

1998 -5.94 5.78 -0.66 2.30

Chile 1981 -11.49 8.17 -3.31 -6.95

1998 0.21 -0.82 1.15 0.45

Finland 1990 6.19 -5.22 -6.82 -8.49

Indonesia 1997 3.80 -3.80 4.68 -1.75

Israel 1983 8.43 5.52 -4.54 8.52

Korea 1997 -3.55 5.28 0.04 1.61

Malaysia 1997 1.26 1.15 -3.77 -3.11

Mexico 1981 -3.19 2.85 -16.44 -7.31

1994 2.97 -0.22 1.58 7.50

Philippines 1983 -7.35 5.47 -4.39 -6.60

1997 -1.07 7.64 -1.80 6.33

Sweden 1991 9.29 -7.09 -1.96 0.70

Thailand 1997 14.74 -12.55 2.61 -3.92

Turkey 1993 13.20 -7.66 1.93 9.23

2000 13.18 -8.92 4.72 9.14

Average 3.38 0.03 -1.05 2.51

Note. Size of recovery is measured as (yi,t+4−yi,t+1).
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Table 1.11. Correlations with alternative specification: Variable capital utilization

(a) Correlations between output drop (%) and the contribution of the wedge:

Overall

Contribution of the Correlation with the output drop (%)

Efficiency wedge 0.262

Labor wedge -0.509

Investment wedge 0.084

(b) Correlations between contributions of wedges and measures of banking

crisis severity

Correlation with measures of banking crisis severity

Share of Credit drop from t to

Contribution of the bank closed NPLs t+ 1 t+ 2 t+ 3 t+ 4

Efficiency wedge 0.046 0.113

Labor wedge -0.210 -0.214

Investment wedge 0.076 0.275 0.173 0.298 0.356 0.300

(c) Correlations between output drop (%) and the contribution of the wedge:

Asian crises versus European and Latin crises

Correlation with the output drop (%)

Contribution of the Asia Europe and Latin America

Efficiency wedge 0.793 0.113

Labor wedge -0.880 -0.240

Investment wedge 0.936 -0.190
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Figure 1.1. Output paths and three measured wedges

Argentina Brazil

Chile Finland

Indonesia Israel

Note. All values are normalized to equal 100 in 1980. For Turkey, in 1988. The

solid line denotes the output path. The dashed, circle marker, and dash-dotted

lines denote the measured efficiency, labor, and investment wedges, respectively.
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Figure 1.1. Output paths and three measured wedges (continued)

Korea Malaysia

Mexico Philippines

Sweden Thailand

Turkey
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Figure 1.2. Data and predictions of the models with all wedges but one

Argentina

Note. The top, middle, and bottom panels are output, labor, and investment,

respectively. The solid line denotes the data. The dashed, circle marker, and

dash-dotted lines denote the predictions of the model with no efficiency wedge,

of the model with no labor wedge, and of the model with no investment wedge,

respectively.
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Figure 1.2. Data and predictions of the models with all wedges but one (continued)

Brazil

Chile
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Figure 1.2. Data and predictions of the models with all wedges but one (continued)

Finland

Indonesia
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Figure 1.2. Data and predictions of the models with all wedges but one (continued)

Israel

Korea
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Figure 1.2. Data and predictions of the models with all wedges but one (continued)

Malaysia

Mexico
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Figure 1.2. Data and predictions of the models with all wedges but one (continued)

Philippines

Sweden
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Figure 1.2. Data and predictions of the models with all wedges but one (continued)

Thailand

Turkey
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Figure 1.3. Predicted paths of output using two different models: A case of Korea

(a) Efficiency wedge

(b) Labor wedge

(c) Investment wedge

Note. Time t denotes the pre-crisis year for the Korean crisis episode. The solid

line is the actual output path, and the line with square markers denotes the co-

nstructed output path.
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Figure 1.4. Scatter plots: Association between contribution of wedge and output drop (%)

(a) Efficiency wedge (b) Labor wedge

(c) Investment wedge

Note. The x-axis is the output drop (%), and the y-axis is the contribution

of each wedge (%). The depicted straight line is the OLS regression line.
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Figure 1.5. Predicted paths of output using two different models

(1) Less severe banking crisis: Brazil 1987

(1a) Efficiency wedge (1b) Labor wedge (1c) Investment wedge

(2) More severe banking crisis: Indonesia 1997

(1a) Efficiency wedge (1b) Labor wedge (1c) Investment wedge

Note. Time t denotes the pre-crisis year for each crisis episode. The solid line

is the actual output path, and the line with square markers denotes the const-

ructed output path.
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Figure 1.6. Output paths and three measured wedges using the models with VCU

Argentina Brazil

Chile Finland

Indonesia Israel

Note. As for Figure 1.1.
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Figure 1.6. Output paths and three measured wedges using the models with variable

capital utilization (continued)

Korea Malaysia

Mexico Philippines

Sweden Thailand

Turkey
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Chapter 2

Trade Intensity, Carry Trades and

Exchange Rate Volatility

2.1 Introduction

For international economists, exchange rate determination is both a topic of perennial interest

and a formidable challenge. While some models—e.g., Taylor et al. (2001), Molodtsova and

Papell (2009), Mark (1995), and others—have been shown to outperform the random walk

famously proposed by Meese and Rogoff (1983), the fraction of exchange rate movement

that can be accounted for, let alone predicted, remains very low.1 Moreover, some of the

empirical regularities that have been found are at odds with theory. Most strikingly, a

large literature (e.g., Hansen and Hodrick (1980), Fama (1984), Hodrick (1987, 1989), Froot

and Thaler (1990), Engel (1996), Mark and Wu (1997), among others) has established the

1 In a recent interview with The Region—a magazine published by the Minneapolis Fed—
Kenneth Rogoff summarizes his view on the state of the literature by stating that, when it
comes to understanding exchange rates, “the glass is 95 percent empty”.
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empirical failure of uncovered interest parity (UIP), a building block of many well-known

international finance models (e.g., Dornbusch (1976), Flood and Garber (1984), and many

others). In fact, the carry trade—an investment strategy that exploits the failure of UIP

by borrowing low-interest currencies to invest in high-interest rate currencies—has attracted

growing attention from investors and economists alike (see Brunnermeier et al. (2008), and

Bhansali (2007), among others). Another empirical finding that is at odds with theory is the

profitability of momentum strategies. As documented, for example, by Asness et al. (2009),

trading strategies that exploit the persistence of exchange rate trends are popular among

market participants and are on average profitable. Given that momentum and carry trading

strategies are essentially blind to fundamentals, some authors, notably Brunnermeier et al.

(2008) have remarked that these strategies are likely to give rise to exchange rate bubbles,

temporarily driving exchange rates to unsustainable levels. Fortunately, however, other well-

known models of exchange rate determination fare better than UIP when confronted with

data. In particular, there is ample evidence that relative purchasing power parity (PPP)

does have some traction in the medium/long run. While real exchange rates are notoriously

volatile, they consistently tend to revert back to long-run equilibrium levels. Moreover,

although linear models yield puzzlingly long half-lives of deviations from PPP (see, e.g.,

Rogoff (1996)), estimates from nonlinear models—where the speed at which deviations vanish

is an increasing function of the size of the deviations—are more supportive of relative PPP

(see, e.g., Taylor et al. (2001)). Combining the failure of UIP with the predictive power of

fundamentals, Jordà and Taylor (2009) show that the crash risk, or negative skewness, of

the carry trade can be greatly reduced using fundamentals-augmented carry trade strategies

that take into account not only interest rate differentials, but also measures of fair value
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implied by fundamentals, such as relative PPP.

In this paper, we seek to further examine the mechanism by which exchange rates revert

to PPP by considering the role of trade intensity. The theory behind this link is simply

that PPP is based on the Law of One Price, which in turn hinges on goods arbitrage. As

real exchange rate deviations from PPP widen, the number of tradable goods for which

price differences exceed transaction costs also rises. After the usual J-curve lag, agents

begin to take advantage of these opportunities for goods arbitrage, buying cheap currencies

and selling expensive ones in the process. Our main hypothesis is that this reequilibration

process should be stronger and faster the higher the trade intensity between countries.2 In

other words, our hypothesis is that trade intensity can help us understand and predict the

dynamics of bilateral real exchange rate.

We consider a sample of 91 currency pairs involving 14 countries over the period 1980-2005.

Following Betts and Kehoe (2008), we define trade intensity (maximum) between countries

A and B as the greater of two fractions. The first is the fraction of country A’s exports plus

imports to country B divided by country A’s total exports plus imports. The second is the

fraction of country B’s exports plus imports bound for country A divided by country B’s

total exports plus imports. We also define trade intensity (average), which is the average of

the two aforementioned fractions, as an alternative measure to trade intensity (maximum).

Not surprisingly, trade intensity and exchange rate volatility are negatively correlated in our

2 Although turnover in foreign exchange markets far exceeds the value of world exports
and imports, a commonly held view among foreign exchange practitioners is that goods
trade nevertheless influences exchange rates in a non-negligible way. The reason for this is
that, while day traders account for the bulk of speculative trades, they open and close their
positions very frequently. By contrast, a goods-trade related foreign exchange transaction
opens a position that is, so to speak, never closed. Therefore, export/import driven foreign
exchange transactions typically exert pressure on a currency in a much more consistent
direction than speculative trades.
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sample. This correlation is likely a product of causality in both directions. As mentioned

above, trade intensity may reduce volatility through goods arbitrage, which exerts pressure

to reduce deviations from PPP. In the other direction, there is the argument—often brought

up in defense of fixed exchange rates—that lower exchange rate volatility may increase

trade intensity between countries by reducing uncertainty and hedging costs associated with

trade between the two countries. Since we are primarily interested in the first direction

of causality, we begin the analysis by implementing panel regressions with exchange rate

volatility as a dependent variable and trade intensity as one of our independent variables,

using the distance between two countries as an instrument. This approach is similar to that

of Broda and Romalis (2009). Coefficient estimates from these regressions across various

specifications repeatedly show a negative effect of trade intensity between two countries on

their bilateral real exchange rate. We also find that, consistent with the literature on carry

trades (see, for instance, Bhansali (2007)) exchange rate volatility increases with the absolute

value of interest rate differentials. These results are robust to the use of different measures

of exchange rate volatility and trade intensity, and to considering only major currency pairs,

versus minor/exotic pairs. Finally, the results are qualitatively preserved when we restrict

attention to just the first, or second half, of the 1980-2005 period.

In order to quantify how the size and persistence of deviations from PPP differ between

high and low trade intensity currency pairs, we estimate a nonlinear model of exchange

rate reversion. Specifically, we estimate a Smooth Transition Autoregressive (STAR) model,

which allows the speed at which exchange rates converge to their long-run equilibrium val-

ues to depend on the size of the deviations. This is consistent with Taylor et al. (2001),

who provide evidence of nonlinear mean reversion in a number of major real exchange rates.
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The model thus allows for the possibility that real exchange rates may behave like unit

root processes when close to their long-run equilibrium levels, while becoming increasingly

mean-reverting the further they move away from equilibrium. Nonlinear models help ex-

plain so-called PPP puzzle—see Rogoff (1996)—which is the fact that estimates from linear

models of half-lives of deviations from PPP seem implausibly long. For our comparison, we

restrict attention to 35 highest and 35 lowest currency pairs, as ordered by trade intensity.

We make this choice to ensure that the difference in trade intensities between the two sets of

currency pairs is so large and stable that variations of trade intensity over time are negligible

in comparison to the differences in trade intensities between the two sets of pairs. After esti-

mating the ESTAR models, we investigate the dynamic adjustment in response to the shock

to real exchange rates of the estimated ESTAR model by computing the generalized impulse

response functions (GIs) using the Monte Carlo integration method introduced by Gallant

et al. (1993). We find that, as hypothesized, the estimates of the half-lives of deviations from

PPP for a given currency pair are higher the less intense the trade relationship between two

countries. For currency pairs in the high trade intensity group, the average half-life of devi-

ations from PPP is given by 21.57 months, whereas for low trade intensity pairs, it is 28.34

months. Moreover, this finding is statistically significant. We also verify that our result is

not driven by Central Bank intervention. That is, a possible concern when interpreting our

results is that, if Central Banks exhibit more fear of floating in response to exchange rate

fluctuations against important trading partners, the observed differences in volatility may

primarily be due to official reserve transactions, rather than trade. To address this concern,

we consider various proxies for intervention—specifically the volatility of reserves and inter-

est rates, following Calvo and Reinhart (2002). To judge by these measures, government
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intervention is unlikely to be the cause of the faster convergence of exchange rates in high

trade intensity cases, since the degree of currency intervention is typically lower for currency

pairs in the high trade intensity group.

Our findings on trade intensity and exchange rate dynamics may be used to improve the

performance of trading strategies, such as the carry trade. To illustrate how to apply our

findings, we carry out a simple exercise, similar in spirit to Jordà and Taylor (2009). In our

exercise, we simulate a PPP-augmented carry trade strategy, which gives a buy signal only

if there is a positive interest rate differential and the high interest currency is undervalued

according to relative PPP. The criterion to decide whether a currency is over- or undervalued

according to relative PPP is simply whether the (9 month lagged) real exchange rate is above

or below its historical average by a percentage τ . Our findings resemble those of Jordà

and Taylor (2009), since we find that the PPP-augmented strategy yields a higher Sharpe

ratio and lower negative skew than the naive carry trade strategy, which simply buys high

interest rate currencies regardless of any fundamental valuation measures. Trade intensity

is useful to fine-tune this strategy by letting the threshold τ depend on trade intensity. For

high trade intensity currency pairs, the best performing strategies become active starting

at relatively small deviations from the long run real exchange rate. Specifically, the best

performing strategies have τ equal to 30 or 70 percent, depending on whether the strategy

includes momentum or not. On the other hand, we find that, for low trade intensity currency

pairs, it is best to bet on mean reversion only once the deviations have become quite large.

Specifically, the best performing strategy leans against a deviation from PPP only once this

deviation is τ = 130% or greater (both with and without momentum).

The rest of the paper is organized as follows. In Section 2.2, we describe our data. In
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Section 2.3, we provide preliminary evidence of a linkage between trade intensity and ex-

change rate volatility. In Section 2.4, we introduce the ESTAR model, and describe how to

estimate half-lives of deviations from PPP. In Section 2.5, we present and discuss empirical

results from ESTAR models along with robustness checks conducted for results from panel

regressions. Further, we investigate whether our half-life estimates are mainly driven by

government intervention. In Section 2.6, we define carry trade returns, and the performance

statistics for carry trade strategies is presented. In Section 2.7, we conclude.

2.2 Data

We collect monthly nominal exchange rates vis-à-vis the US Dollar (USD) from January 1980

through December 2008 for the following 13 currencies: Australian Dollar (AUD), Canadian

Dollar (CAD), Danish Krone (DKK), Great Britain Pound (GBP), Japanese Yen (JPY),

Korean Won (KRW), Mexican Peso (MXN), New Zealand Dollar (NZD), Norwegian Krone

(NOK), Singapore Dollar (SGD), Swedish Krona (SEK), Swiss Franc (CHF), and Turkish

Lira (TRY). We also collect monthly interest rates for 14 countries. The consumer price index

(CPI) is used to measure the price level, and then the real exchange rate is constructed using

Equation (2.1). The foreign exchange reserves are also collected to investigate whether half-

life estimates are driven by government intervention, instead of trade. The data are mainly

drawn from the International Financial Statistics (IFS ), and the data for annual exports

used to measure trade intensity are taken from Betts and Kehoe (2008).3 When we conduct

3 The data along with a data appendix for annual exports to measure
trade intensity in this paper are publicly available at Timothy Kehoe’s webpage,
http://www.econ.umn.edu/˜tkehoe/research.html.
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a preliminary analysis, we use the data ending in December 2005 due to data limitation for

trade intensity. There are a number of combinations that can be made from currencies listed

above, which result in 91 currency pairs. In what follows, we consider these 91 currency

pairs, involving 14 countries to analyze a linkage between trade intensity and exchange rate

volatility. When two currencies are paired, they are listed based on the alphabetical order

of the base currency.

2.3 Evidence on the exchange rate volatility - trade

intensity linkage

We study the link between trade intensity and exchange rate volatility. We conjecture that

the more intense the trade relationship between two countries, the less volatile their bilateral

real exchange rate. To investigate the link between them, we first document how to measure

exchange rate volatility, and define trade intensity in the following two subsections.

2.3.1 Measuring exchange rate volatility

The real exchange rate, qt, is defined in logarithmic form as

qt ≡ st − pt + p∗t (2.1)

where st is the logarithm of the nominal exchange rate which is measured as the price of

the domestic currency in terms of the foreign currency, and pt and p∗t denote the logarithm

of the domestic and foreign price levels, respectively. As noted in particular by Taylor et al.

(2001), the real exchange rate may be interpreted as a measure of the deviation from PPP.

63



To measure exchange rate volatility between countries i and j, we calculate the standard

deviation of the monthly logarithm of the bilateral real exchange rates over the one-year

period for each currency pair. To consider a longer term than the one-year window, we

implement panel regressions using different time windows such as the three-year window and

six-year window for robustness checks, and results for different time windows are reported

in Table 2.3 (c). Some other papers use the first-difference of the monthly logarithm of the

bilateral real exchange rates (denoted by ∆qt) as a measure of exchange rate volatility.4 (See,

e.g. Brodsky (1984), Kenen and Rodrik (1986), Frankel and Wei (1993), Dell’Ariccia (1999),

Rose (2000), and Clark et al. (2004)) As noted by Clark et al. (2004), this volatility measure

has the property that it will be equal to zero if the exchange rate follows a constant trend,

which could be expected and therefore would not be a source of uncertainty any more. More

specifically, for monthly real exchange rates between countries i and j, we define exchange

rate volatility as the standard deviation of the bilateral real exchange rate as

V olatilityij =

 1

T − 1

T∑
t=1

(
qij,t − qij

)21
2

(2.2)

where qij,t is the monthly logarithm of the bilateral real exchange rate between countries i

and j, and qij is the mean value of qij,t over time period T .

2.3.2 Trade intensity

We consider trade intensity which is defined as relative importance of the trade relationship

between two countries. Following Betts and Kehoe (2008), we define trade intensity between

4 When we use the first-difference of the monthly logarithm of the real exchange rates as
a measure of exchange rate volatility rather than the level of the monthly logarithm of the
real exchange rates, we obtain similar results with much higher statistical power to reject a
null hypothesis.
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any two countries, X and Y as the greater of two fractions which are given as follows

tradeintmax
X,Y,t = max



 exportX,Y,t+exportY,X,t∑
all

exportX,i,t+
∑
all

exporti,X,t

 ,

 exportX,Y,t+exportY,X,t∑
all

exportY,i,t+
∑
all

exporti,Y,t




(2.3)

where exportX,Y,t is measured as free on board (f.o.b.) merchandise exports from country

X to country Y at year t , measured in year t US dollars. We denote this by tradeintmax
X,Y,t

to distinguish tradeint
avg
X,Y,t which is an alternative measure to (2.3), and is defined as (2.4)

below. In this definition of trade intensity, Betts and Kehoe (2008) implicitly assume that

trade intensity need only be high for one of the two countries in any bilateral trade relation-

ship for the same strong relation between the relative price of goods and the real exchange

rate to be observed. For example, the Chile-US relationship is a high trade intensity rela-

tionship, even though Chile accounts for only 0.4 percent of US trade, because the United

States accounts for 20.5 percent of Chilean trade. In Betts and Kehoe (2008), a bilateral

trade relationship with country X or country Y is defined as “high intensity” if tradeintmax
X,Y

is greater than or equal to 15 percent and “low intensity” otherwise. Chile, for example, has

a high intensity trade relationship with the United States, because trade with the United

States accounts for 20.5 percent of Chile’s total trade over 1980–2005, on average. In this

paper, as a comparison, we define the alternative measure of trade intensity between any

two countries, X and Y as
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tradeint
avg
X,Y,t = avg



 exportX,Y,t+exportY,X,t∑
all

exportX,i,t+
∑
all

exporti,X,t

 ,

 exportX,Y,t+exportY,X,t∑
all

exportY,i,t+
∑
all

exporti,Y,t




(2.4)

This definition uses the average of two fractions in any bilateral trade relationship. If we

apply the definition in (2.4) to the Chile-US example given above, we obtain 10.5 percent

instead of 20.5 percent between Chile and the United States. In what follows, we employ

both measures, the maximum and the average of two aforementioned fractions. Tables 2.1

(a) and (b) illustrate trade intensity matrices based on the average over the entire sample

period, 1980-2005 for both measures, respectively.

We first illustrate Figures 2.1 (a) and (b) showing scatter plots of exchange rate volatility

against trade intensity (maximum) and trade intensity (average), respectively, for 91 cur-

rency pairs involving 14 countries over the period 1980-2005. It can be clearly seen that there

is a negative relationship between exchange rate volatility and trade intensity. As a prelim-

inary analysis, we implement panel regressions with a dependent variable being exchange

rate volatility, and results from panel regressions are reported in Table 2.2. To investigate

nonlinear mean reversion to PPP, we focus on 35 highest and 35 lowest trade intensity cur-

rency pairs based on trade intensity (average).5 Using 70 currency pairs selected by a rank

order of trade intensity (average), we estimate the ESTAR models, and then calculate half-

lives of deviations from PPP by generating generalized impulse response functions (GIs). In

5 When we use trade intensity (maximum) instead of trade intensity (average) in deter-
mining 35 highest and 35 lowest trade intensity currency pairs, there is little difference in
rank orders, and this implies that results do not depend mainly on how we measure trade
intensity.
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the next two sections, we introduce the ESTAR model, and demonstrate how to measure

half-lives of deviations from PPP.

2.4 Econometric Framework

2.4.1 The ESTAR model

In this section, we consider one of the regime-switching models which is known as the smooth

transition autoregressive (STAR) model (Granger and Teräsvirta (1993) and Teräsvirta

(1994)). In this model, adjustment takes place in every period but the speed of adjust-

ment varies with the extent of the deviation from equilibrium. Specifically, we estimate the

Exponential Smooth Transition Autoregressive (ESTAR) model which allows for regime-

switching or state-dependent behavior to study a nonlinear mean reversion of real exchange

rates (Taylor et al. (2001)). The STAR model allows for smooth rather than discrete ad-

justment in explaining nonlinear adjustment. The STAR model for the real exchange rate,

qt defined in (2.1) may be written as

(qt − µ) =

p∑
j=1

θj
(
qt−j − µ

)
+

 p∑
j=1

θ∗j
(
qt−j − µ

)Φ (qt−d − µ; γ, c) + εt (2.5)

where {qt} is a stationary and ergodic process, εt ∼ iid
(
0, σ2

)
, and Φ (·) is the transition

function that determines the degree of mean reversion and itself governed by the parameter

γ, which determines the speed of mean reversion to PPP. The parameter µ is the equilibrium

level of {qt}, and d > 0 is the delay parameter which is an integer.
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The STAR model (2.5) may also be written, reparameterized in a first difference form as

∆qt = α + ρqt−1 +

p−1∑
j=1

βj∆qt−j +

α∗ + ρ∗qt−1 +

p−1∑
j=1

β∗j∆qt−j

Φ (qt−d; γ, c) + εt (2.6)

where ∆qt−j = qt−j − qt−j−1. A transition function suggested by Granger and Teräsvirta

(1993) is the exponential function

Φ (qt−d; γ, c) = 1− exp
[
−γ (qt−d − c)2 /σqt−d

]
with γ > 0 (2.7)

where qt−d is a transition variable, σqt−d is the standard deviation of qt−d, γ is a slope

parameter, and c is a location parameter. The restriction on the parameter (γ > 0) is an

identifying restriction. When the transition function is given by Equation (2.7), Equation

(2.6) is called the exponential STAR (ESTAR) model. The exponential function in Equa-

tion (2.7) is bounded between 0 and 1, and depends on the transition variable qt−d. The

exponential function also has the properties that Φ (qt−d; γ, c)→ 1 both as qt−d → −∞ and

qt−d →∞ whereas Φ (qt−d; γ, c) = 0 for qt−d = c, and is symmetrically inverse-bell shaped

around zero. For either γ → 0 or γ →∞, the exponential function given by Equation (2.7)

approaches a constant which is equal to 0 and 1, respectively. Thus, the model reduces to

a linear model in both cases, and the ESTAR model does not nest a Self-Exciting Thresh-

old Autoregressive (SETAR) model as a special case. The exponent in Equation (2.7) is

normalized by dividing by σqt−d which is the standard deviation of qt−d, and it allows the

parameter γ to be approximately scale-free, and is useful for the initial estimates for the

nonlinear least squares estimation algorithm. The values taken by the transition variable

qt−d and the transition parameter γ together will determine the speed of mean reversion to

PPP. For any given value of qt−d, the transition parameter γ determines the slope of the
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transition function, and thus the speed of transition between two extreme regimes, with low

values of the transition parameter γ implying slower transitions.

In the STAR model given in the first difference form as in Equation (2.6), the pivotal

parameters for the stability of qt are ρ and ρ∗ in the linear and nonlinear parts, respectively.

Taylor et al. (2001) discuss that the influence of transactions costs suggests that the larger

the deviation from PPP, the stronger the tendency to move back to long-run equilibrium.

This implies that in Equation (2.6), while ρ ≥ 0 is admissible, one must have ρ∗ < 0 and

(ρ+ ρ∗) < 0 for qt to be mean reverting. In other words, for small deviations, the real

exchange rate, qt may be characterized by unit root or explosive behavior, but for large

deviations it is mean reverting.

The ESTAR model is reasonable to use for our study since it allows for symmetric and

nonlinear adjustments between two extreme regimes, with the rate of which in turn depends

on the state of specified transition variables. The ESTAR model has been applied to real

(effective) exchange rates with a transition variable being qt−d. (e.g. Michael et al. (1997),

Sarantis (1999), and Taylor et al. (2001)). The ESTAR model has also been applied to various

macroeconomic issues such as debt and inflation. Among others, Sarno (2001) provides

strong empirical evidence of nonlinear mean reversion in the US debt-GDP ratio using the

ESTAR model. Gregoriou and Kontonikas (2009) test nonlinearities in inflation deviations

from the target by estimating the ESTAR model, and find that the model is capable of

capturing the nonlinear behavior of inflation misalignments.

For empirical applications, Granger and Teräsvirta (1993) and Teräsvirta (1994) suggest

choosing the order of the autoregression, p, through inspection of the partial autocorrelation

function (PACF). The PACF is preferred to the use of an information criterion such as
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the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Schwarz

information criterion (SIC) because the information criterion may bias the chosen order of

the autocorrelation toward low values and any remaining correlation may have an influence

on the power of subsequent linearity tests. Therefore, a lag order of p for each currency pair

is selected by the PACF of the real exchange rate, qt. Following van Dijk et al. (2002b),

we set the maximum value of the delay parameter, d equal to 6. We consider the lags of

the real exchange rate as the transition variable, that is, qt−d for d = 1, 2, ..., 6. Then, the

delay parameter d is selected after we compare p-values of the Lagrange Multiplier (LM) test

statistics for linearity applied to the time series for qt. The p-values of the LM tests indicate

that linearity can be rejected at a certain significance level when qt−d (d ∈ {1, 2, ..., 6}) is

used as the transition variable. Based on the p-values for the LM statistics, an appropriate

d is selected as the delay parameter. In Table 2.4, the values selected for the lag order p and

delay parameter d are reported in the second and third rows, respectively. Then, the ESTAR

model of the form (2.6) is estimated by nonlinear least squares (NLS) with the selected lag

order p and delay parameter d which are suggested by the PACF and the linearity tests

results, respectively, for 35 highest and 35 lowest trade intensity currency pairs.

2.4.2 Estimation of half-lives of deviations from PPP

Having estimated the ESTAR model, we consider the nonlinear mean-reverting properties

exhibited by real exchange rates. To be more specific, we investigate the dynamic adjustment

in response to the shock of the estimated ESTAR model by computing generalized impulse

response functions (GIs). The Generalized Impulse Response Function (GI), proposed by
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Koop et al. (1996) is designed to solve the problem of the treatment of the future that is

dealt with by using the expectation operator conditioned only on the history and on the

shock. In other words, the problem of dealing with shocks that occur in intermediate time

periods is solved by averaging them out. Therefore, the response to be constructed is an

average of what might occur given the present and past. The GI generalizes the concept of

impulse response, and is known to be applicable to nonlinear models. The GI for a specific

current shock εt = δ and history ωt−1 is defined as

GIq (h, δ, ωt−1) = E [qt+h | εt = δ, ωt−1]− E [qt+h | ωt−1] (2.8)

for h = 0, 1, 2, .... In Equation (2.8), the expectation of qt+h given that the specific current

shock δ occurs at time t is conditioned only on the history and on this shock. Given the

construction of the GI above, the natural baseline for the impulse response function is then

defined as the expectations of qt+h conditional only on the history of the process ωt−1, and

the current shock is also averaged out.

As pointed out by Koop et al. (1996), the GI is a function of both the shock δ and history

ωt−1, and we may treat them as realizations from the same stochastic process that generates

the realizations of {qt}. Thus, the GI defined above may be considered as the realization of

a random variable defined as

GIq (h, εt,Ωt−1) = E [qt+h | εt,Ωt−1]− E [qt+h | Ωt−1] (2.9)

Equation (2.9) is the difference between two conditional expectations being themselves ran-

dom variables. Thus, GIq (h, εt, ωt−1) represents a realization of this random variable. With

nonlinear models, the shape of the GI is not independent of on the history of the time the

shock occurs, the size of the shock, or the distribution of future exogenous innovations. We
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generate the GIs, both conditional on the history and conditional on the shock using the

Monte Carlo integration method introduced by Gallant et al. (1993).6 More specifically,

we compute history- and shock-specific GIs as defined in (2.8) for all observations in the

estimation sample and value of the initial shock. For the history and the initial shock, we

compute GI∆q (h, δ, ωt−1) for horizons h = 0, 1, 2, ..., 100. The conditional expectations in

Equation (2.8) are estimated as the means over 2000 realizations of ∆qt+h, accomplished by

iterating on the ESTAR model, with and without using the selected initial shock to obtain

∆qt and using randomly sampled residuals of the estimated ESTAR model elsewhere. Im-

pulse responses for the level of the real exchange rate, qt are obtained by accumulating the

impulse responses for the first differences as

GIq (h, δ, ωt−1) =
h∑
i=1

GI∆q (i, δ, ωt−1) (2.10)

The estimated GIs for both high and low trade intensity currency pairs are depicted in

Figures 2.2 (a) and (b), respectively. The initial shock is normalized to 1, and the generated

GIs clearly show the nonlinear adjustment dynamics of real exchange rates to the shock.

The half-lives of real exchange rates to the shock are calculated by measuring the discrete

number of months taken until the shock to the level of the real exchange rate has fallen

below a half. That is, we estimate half-lives considering how much the shock is persistent

until the GI falls below 50 percent.

6 Kiliç (2009b) suggests half-life measures conditional on various regimes to examine
persistence in the PPP relations using nonlinear ESTAR(1) models. He computes regime-
dependent half-lives for the point estimates by standard asymptotic normal methods and
simulations. However, as noted by Baillie and Kapetanios (2010), the usual closed form

solution for half-life, h, given by h =
ln(0.5)
ln(ρ̂)

, where ρ̂ denotes the estimated AR coefficient

of an AR(1) model, is only valid for AR(1) models, and there is no closed form solution for
general AR(p) models.
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2.5 Empirical Results

2.5.1 Preliminary Analysis

Results from instrumental variable (IV) estimation using panel data

We consider how trade intensity between two countries affects exchange rate volatility. Before

analyzing results from instrumental variable (IV) estimation using panel data, we first look

at scatter plots for a quick overview of the data. Figure 2.1 depicts scatter plots for real

exchange rate volatility against trade intensity (maximum) and trade intensity (average),

respectively for 91 currency pairs involving 14 countries over the periods 1980-2005. The

straight line is depicted by the Ordinary Least Squares (OLS) regression. As evidenced by

the OLS estimates reported, which are significant at the 1 percent level for both measures,

a negative relationship between real exchange rate volatility and trade intensity begins to

emerge.

In case there is the issue of endogeneity, the ordinary least squares (OLS) regression

generally produces biased and inconsistent estimates. In order to control for the potential

endogeneity, we use the instrumental variable (IV) estimation approach. Specifically, we

use the distance between two countries as an instrument for trade intensity. The distance

between two countries is exogenous and not determined by exchange rate volatility, but it

is also an appropriate proxy variable for trade intensity. Table 2.2 presents a preliminary

instrumental variable (IV) estimation using panel data for the effects of trade intensity on

real exchange rate volatility. Although preliminary, the negative association between trade

intensity and exchange rate volatility continues to appear. Both measures of trade intensity,
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maximum and average, are negatively related with real exchange rate volatility. Besides this

main finding, we also find that exchange rate volatility increases with the absolute value of

interest rate differentials, which is consistent with the view that carry trades—known for

their negative skewness or crash risk—lead to an increase in volatility of the exchange rates

between investment and funding currencies.

Robustness checks

In Table 2.3, we conduct a number of robustness checks for results from instrumental variable

(IV) estimation using panel data: (a) outliers truncated for the real exchange rate volatility

variable, (b) by subperiods: 1980-1992 and 1993-2005, (c) by Major vs. Minor, or “Exotic”,

currency pairs, and (d) by different time windows: 3 year-window and 6 year-window. First,

in Table 2.3 (a), we truncate outliers of the dependent variable, which is real exchange rate

volatility by excluding all observations that are more than about two standard deviations

from the mean in any period t. This has little impact on the results, suggesting that they

are not primarily driven by outlier observations. Second, we divide the entire sample period

into two subperiods: 1980-1992 (a first half of the entire sample period) and 1993-2005 (a

second half of the entire sample period). This division of the period makes no difference

to the main results, as reported in Table 2.3 (b). Third, we investigate whether our results

are different for Major currency crosses, which add up to 42 out of our total of 91, and

Exotic currency crosses, which include the remaining 49 out of 91.7 This robustness test is

7 The most traded currency pairs in the foreign exchange market are called the Major
currency pairs. They involve the currencies such as Australian Dollar (AUD), Canadian
Dollar (CAD), Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Franc
(CHF), and US Dollar (USD). On the other hand, the Exotic currency pairs are defined as
those pairs that are emerging economies rather than developed countries.
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driven by potential concerns about volatility differences being driven by market liquidity,

which is greater for Major currency pairs. As can be seen from Table 2.3 (c), the results in

both subsamples are almost exactly equal to each other and to the overall results reported

in Table 2.2. Finally, we check to make sure our results are robust to a longer term than

1 year-window which is considered in the base case, 3 year-window and 6 year-window. As

evidenced by Table 2.3 (d), these different time-windows do not at all affect the coefficients

on any of the other variables of interest. Overall, the negative relationship between trade

intensity and exchange rate volatility holds up well across the different robustness tests.

2.5.2 Estimation results from ESTAR models

While the preliminary analyses have the advantage of simplicity, they fail to capture the

nonlinearity of exchange rates. In Table 2.4, we report estimation results from ESTAR

models as given by (2.6). Following Teräsvirta (1994), the ESTAR models are estimated by

nonlinear least squares (NLS), with the starting values obtained from a grid search over γ and

c. The estimations are also implemented with the selected lag order p and delay parameter d

which are suggested by the PACF and the linearity tests results, respectively, for both high

and low trade intensity currency pairs. As explained above, regression results are consistent

with discussion by Taylor et al. (2001) which states that in Equation (2.6), while ρ ≥ 0 is

admissible, meaning that random walk or explosive dynamics are possible when deviations

from PPP are small, one must have ρ∗ < 0 and (ρ+ ρ∗) < 0 for qt to be overall mean

reverting. The theory behind nonlinear mean reversion is related to transactions costs. As

deviations from PPP grow, an increasing number of trade ventures become profitable in
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spite of transaction costs. Trade-driven currency transactions intensify, and exert stronger

pressure steering the exchange rate back to the PPP level.

Details of residual diagnostic tests applied to the model are also reported in the last panel of

Table 2.4. LM test results show that the ESTAR model appears to capture all of the residual

autocorrelation for most currency pairs considered in this paper. The residual standard

deviations, denoted by σ̂ε and the sum of squared residuals (SSR) from the regression are

also reported. The results for the test of no remaining nonlinearity in the residuals suggest

that the model selected is adequate as there is no evidence for remaining nonlinearity in the

residuals. Also, AIC, BIC and the sample size T are reported in the last three rows in Table

2.4.

Having estimated ESTAR models,8 we first generate generalized impulse response functions

(GIs) as described above. Then, using the GIs, we calculate half-lives of deviations from PPP

to investigate the persistence of the shock to real exchange rates. In Table 2.5, the estimated

half-lives for real exchange rates (measured in months) are reported for high and low trade

intensity currency pairs, respectively. Typically, our estimates of the half-lives of deviations

from PPP for a given currency pair are higher the less intense the trade relationship between

two countries. More specifically, the average of half-lives for high trade intensity currency

pairs is greater than that for low trade intensity currency pairs by about 6.8 months, as

can be seen in Table 2.5. The t -statistic for the difference in means test is 2.11, and this

results in a rejection of the null hypothesis of no difference in means.9 Thus, the half-lives

8 The estimated transition functions, plotted against time for high and low trade intensity
currency pairs are available from the authors.

9 Although trade is endogenous to the real exchange rate, the differences in trade intensity
between these two sets of country pairs very large and stable. In spite of dramatic movement
in real exchange rates throughout the sample period, trade intensity for all low-intensity
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of deviations from PPP based on the estimations of the ESTAR models and the generated

GIs suggest that deviations from PPP are corrected faster for country pairs with relatively

more intense trade relationships.

2.5.3 Half-lives and government intervention

We also investigate whether these differences in volatility may be due to Central Bank

intervention in currency markets, or fear of floating, instead of trade. To investigate this, we

construct measures of official intervention using volatility of reserves and interest rates as

proxies for intervention, as in Calvo and Reinhart (2002). We then examine whether there

is an association between the half-lives of deviations from PPP and government intervention

which is measured by two indicators. The bilateral exchange rates are reported with respect

to the US Dollar (USD), and with respect to the Euro (EUR) for the US Dollar (USD).10 We

denote the absolute value of the percent change in the exchange rate and foreign exchange

reserves by ε,∆F/F , respectively. The absolute value of the change in interest rate is given by

∆i (= it − it−1). We denote some critical threshold by xc, and then estimate the probability

that the variable x falls within some prespecified bounds. We set xc at 2.5 percent, as in

Calvo and Reinhart (2002). The probability that the monthly exchange rate change falls

within the 2.5 percent band should be greater for currencies that are more intervened, or

less floating. The opposite should apply to changes in foreign exchange reserves, as the most

common form of intervention is precisely to buy or sell reserves. Similarly, volatile interest

rates are taken as evidence that monetary authorities use interest rate policy as a means

country pairs remain far below any high-intensity pair at all times.
10 The European currency unit (ECU) which was the precursor of the new single European

currency, the Euro (EUR) is used before the introduction of the Euro on January 1, 1999.
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of stabilizing the exchange rate. Thus, the probability that interest rates change by 400

basis points (4 percent) or more on any given month should be greater for more intervened

currencies.

Table 2.6 presents evidence on the frequency distribution of monthly percent changes in

the exchange rate, foreign exchange reserves, and nominal money market interest rates for

different exchange regimes. For example, as can be seen in the second column of Table 2.6,

for the United States, there is about 63.5 percent probability that the monthly USD/EUR

exchange rate change would fall within a 2.5 percent band. For USD/JPY, the probability

is slightly lower at 59.48 percent. To quantify a degree of government intervention, we use

a rank order for reserves and interest rates which is assigned 1 for most floating exchange

regimes, and 14 for least floating exchange regimes. We use an average value of two rank

orders assigned for each country, and when currency pairs are considered, we average the

ranks out.

When we compute intervention rankings for high versus low trade intensity currency pairs,

we obtain an average of 5.66 for high trade intensity currency pairs, and 8.91 for low trade

intensity pairs.11 This suggests that our half-life estimates are not mainly driven by govern-

ment intervention. In other words, Central Bank intervention is unlikely to be the cause of

the faster convergence of exchange rates to their long run levels, since the degree of currency

intervention is typically lower for currency pairs in our high trade intensity group.

11When we use percents instead of rank orders, there is little difference between high and
low trade intensity currency pairs. The use of percents does not change our main results on
government intervention.
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2.6 Application to carry trades

2.6.1 Definition of carry trade returns

Following Brunnermeier et al. (2008), we denote the excess return to a carry trade strategy

of an investment in the target currency financed by borrowing in the funding currency by

ERt+h = (it − i∗t )−∆st+h (2.11)

where the period h is the point where the investor shorts the investment currency, it is the

interest rate at time t for the investment currency, i∗t is the interest rate at time t for the

funding currency, st is the logarithm of the nominal exchange rate which is measured as the

price of the domestic currency in terms of the foreign currency, and the second term on the

left hand side, ∆st+h is a depreciation or an appreciation of the investment currency. Under

the assumption that uncovered interest rate parity (UIP) condition holds, there should be

no excess return to the carry trade strategy on average

Et (ERt+h) = 0 (2.12)

or

Et (∆st+h) = (it − i∗t ) (2.13)

where Et is the conditional expectations operator on a sigma field of all relevant information

up to and including time t.

It implies that the interest rate differential should, on average, be equal to the future

expected exchange rate change. To offset the positive interest rate differential, the nominal

exchange rate at time t+h, st+h should increase so that the investment currency depreciates,
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or equivalently the funding currency appreciates. However, empirically UIP does not hold in

the sense that the investment currency appreciates, or the investment currency depreciates

less than the interest rate differential. In either case, it makes the carry trade strategy

profitable, on average.

2.6.2 Portfolio Analysis

Conditioning carry trade strategies on trade intensity

In recent years, the strategy known as the carry trade has received growing attention, both

from investors and academic researchers. In its simplest, or näıve form, the carry trade

consists of borrowing low interest rate currencies to invest in high interest rate currencies.

This carry trade is called näıve because it is blind to fundamentals other than the interest

rate. It has been well documented that the carry trade is profitable on average, given the

empirical failure of uncovered interest parity (UIP). However, the carry trade has also been

known to be subject to large crash risk, or negative skewness of returns. To mitigate this

risk, some authors have proposed diversification (Burnside et al. (2007)), the use of options

(Burnside et al. (2011)), and conditioning on fundamentals. The latter strategy has been

proposed by Jordà and Taylor (2009), who show that the crash risk of the carry trade can be

substantially reduced by taking macroeconomic fundamentals into account, i.e., by following

a fundamentals-augmented carry trade strategy.

In the spirit of Jordà and Taylor (2009), we examine the usefulness of our findings on

trade intensity for carry trades. For the currencies in our sample over the period, January

1980 - December 2008, we implement a PPP-augmented carry trade strategy as follows. For
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each currency cross, we compare a 15-year moving average of the real exchange rate to the

current real exchange rate, lagged by 9 months.12 The PPP-augmented carry trade strat-

egy purchases currency A against currency B only if the interest rate differential between

currency A and currency B exceeds the difference between a median and minimum of all

the interest rates in our data set (also with currency A’s interest rate being greater than

currency B’s interest rate), and currency A is undervalued vis-à-vis currency B, according

to PPP (with the aforementioned 9 month lag). If one of these two conditions fails, cur-

rency A is not purchased against currency B. We use trade intensity to decide at what point

we consider a currency to be sufficiently over- or undervalued. We take the ratio of the

9-month-lagged real exchange rate to the 15-year moving average of the real exchange rate,

and consider a currency overvalued if this ratio is greater than 1 + τ , where τ ranges from 0

to 2, in increments of 0.1. We also experiment with the inclusion/exclusion of a third con-

dition, momentum, which specifies that currency A is to be purchased only if it appreciated

against currency B in the previous month. Although momentum strategies have little or no

theoretical underpinnings, they are quite popular among traders.

In Table 2.7 (a) and (b), we report performance statistics for carry trade portfolios without

and with a momentum trading strategy, respectively over the entire sample period. In Table

2.7 (a) which has been implemented without a momentum trading strategy, for high trade

intensity currency pairs, the näıve carry trade strategy yields an annualized return of -1.6

percent, with a standard deviation of 0.011, resulting in a Sharpe ratio equal to -0.121,

on a monthly basis. When we implement the PPP-augmented carry trade strategy with a

12 When we use a 10-year moving average of the real exchange rate instead of a 15-year
moving average, the main results do not change substantially.
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threshold τ of 0 percent, the Sharpe ratio increases up to 0.018 with the annualized return

and standard deviation being 0.4 percent and 0.020, respectively. This annualized return

refers only to months in which the strategy is active. For any given currency pair, there

are months in which the PPP-augmented strategy is inactive, because the high-interest rate

currency is not undervalued. A similar improvement is also observed for low trade intensity

currency pairs, as the Sharpe ratio increases from 0.031 for the näıve strategy to 0.061 for

the PPP-augmented strategy. Likewise, in Table 2.7 (b) which has been implemented with

the addition of a momentum requirement, for high trade intensity currency pairs, the näıve

carry trade strategy yields an annualized return of 0.9 percent, with a standard deviation of

0.020, resulting in a Sharpe ratio equal to 0.039, on a monthly basis. When we implement

the PPP-augmented carry trade strategy with a threshold τ of 0 percent, the Sharpe ratio

increases up to 0.055 with the annualized return and standard deviation being 1.9 percent

and 0.029, respectively. A similar improvement is also observed for low trade intensity

currency pairs, as the Sharpe ratio increases from 0.110 for the näıve strategy to 0.141 for

the PPP-augmented strategy. These gains in performance achieved when taking PPP into

account are consistent with Jordà and Taylor (2009).

Trade intensity begins to play a role as we raise the threshold τ . Figure 2.3, panels (a)

and (b), show how Sharpe ratios change as we increase the thresholds without and with

a momentum trading strategy, respectively. When we implement the strategy without a

momentum condition, for both high and low trade intensity currency pairs, the Sharpe ratio

is hump-shaped, peaking when τ equals 0.7 and 1.3, respectively and falling for higher levels

of τ . Similarly, when we implement the strategy with a momentum trading, the Sharpe

ratio peaks when τ equals 0.3 and 1.3, respectively and falling for higher levels of τ . For
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high trade intensity currency pairs, as τ rises above 0.7 or 0.3 for each case, the number of

active months falls drastically, and the standard deviation rises, as the strategies are almost

never active. On the other hand, for low trade intensity currency pairs, deviations from PPP

above 70 or 30 percent are not rare, and Sharpe ratios continue to rise as τ rises above 0.7

or 0.3, and are highest when τ equals 130 percent. Figure 2.4, panels (a) and (b), show the

cumulative performance of fundamentals-augmented carry trade portfolios without and with

a momentum trading strategy, respectively over time, for various thresholds. Each line shows

the evolution of one dollar for a different ‘overvaluation’ threshold over the entire sample

period. As the graphs show, returns accrue in a relatively smooth fashion. Although there

are some periods in which the strategies yield losses, the crashes that are typical of the näıve

carry trade are notoriously absent. That is, as in Jordà and Taylor (2009), the inclusion of

PPP fundamentals is effective in reducing the negative skewness, or ‘Peso problem’ of the

simple carry trade.

Overall, these results suggest that conditioning on trade intensity may be a useful way

to fine-tune fundamentals-augmented carry trade strategies. In particular, for high trade

intensity currency pairs, it is best to set the threshold for over/undervaluation at a lower

level than for low trade intensity pairs. These results fit squarely with our main finding that

deviations from PPP have shorter half-lives for high trade intensity currency pairs.

2.7 Conclusion

In recent years, researchers interested in exchange rate volatility have devoted growing

amounts of attention to trading strategies that are unrelated to fundamentals, such as the
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carry trades and momentum trades. This represents an important addition to the litera-

ture on exchange rates, which previously focused mostly on macroeconomic fundamentals.

The view that emerges from combining old with new insights is that, while fundamentals

drive exchange rates in the long run, short run speculative trading strategies may give rise

to substantial but temporary deviations of exchange rates from their long run fundamental

values.

This paper explores further the interaction between volatility and fundamentals by exam-

ining the role of trade intensity in the reversion of exchange rates to long-run equilibrium

values. Following recent literature on nonlinearity, we estimate an ESTAR model, which

allows the speed at which exchange rates converge to their long-run equilibrium to depend

on the size of these deviations. We find estimates of the half-lives of deviations from PPP to

be higher the less intense the trade relationship between two countries. These results con-

tinue to hold as we perform a series of robustness tests. Moreover, exchange rate volatility

increases with the absolute value of interest rate differentials, which is consistent with the

notion that carry trades tend to increase volatility. We also verify that the faster convergence

to equilibrium values observed for high trade intensity pairs does not appear to be driven by

Central Bank intervention. Finally, we show that taking trade intensity into account may be

useful to fine tune carry trade strategies that are sophisticated in the sense that they take

fundamentals into account, purchasing currencies only if they are undervalued according to

PPP. Specifically, the performance of these strategies improves if the threshold used to define

overvaluation or undervaluation is allowed to depend on trade intensity.

Several avenues for future work are worth pursuing. One is to provide further support for

the findings of this paper by providing more detailed evidence on the exchange rate impact
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of trade-related currency transactions. Another avenue, on the theoretical front, would be to

build a model of exchange rate determination that combines speculative and trade-related

currency transactions.
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Table 2.1. Trade intensity matrices

(a) Trade intensity (maximum) matrix

Aus. Can. Den. G.B. Jap. Kor. Mex. N.Z. Nor. Sin. Swe. Swi. Tur. U.S.

Aus. 0.028 0.011 0.091 0.346 0.077 0.003 0.339 0.004 0.072 0.019 0.022 0.016 0.254

Can. 0.028 0.015 0.051 0.052 0.033 0.020 0.024 0.044 0.012 0.023 0.032 0.025 0.877

Den. 0.011 0.015 0.268 0.084 0.018 0.004 0.005 0.155 0.011 0.232 0.051 0.021 0.140

G.B. 0.091 0.051 0.268 0.113 0.041 0.014 0.107 0.361 0.070 0.257 0.241 0.242 0.401

Jap. 0.346 0.052 0.084 0.113 0.353 0.051 0.214 0.049 0.315 0.067 0.134 0.099 0.560

Kor. 0.077 0.033 0.018 0.041 0.353 0.011 0.039 0.017 0.077 0.016 0.027 0.045 0.421

Mex. 0.003 0.020 0.004 0.014 0.051 0.011 0.008 0.002 0.005 0.008 0.016 0.003 0.889

N.Z. 0.339 0.024 0.005 0.107 0.214 0.039 0.008 0.002 0.037 0.009 0.008 0.003 0.206

Nor. 0.004 0.044 0.155 0.361 0.049 0.017 0.002 0.002 0.010 0.265 0.017 0.014 0.109

Sin. 0.072 0.012 0.011 0.070 0.315 0.077 0.005 0.037 0.010 0.011 0.027 0.015 0.402

Swe. 0.019 0.023 0.232 0.257 0.067 0.016 0.008 0.009 0.265 0.011 0.061 0.045 0.199

Swi. 0.022 0.032 0.051 0.241 0.134 0.027 0.016 0.008 0.017 0.027 0.061 0.099 0.355

Tur. 0.016 0.025 0.021 0.242 0.099 0.045 0.003 0.003 0.014 0.015 0.045 0.099 0.373

U.S 0.254 0.877 0.140 0.401 0.560 0.421 0.889 0.206 0.109 0.402 0.199 0.355 0.373

Note. Trade intensity (maximum) is calculated as an average value over the sample period, 1980-2005, using

Equation (2.3). Betts and Kehoe (2008) use this measure of trade intensity in the paper.
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Table 2.1. Trade intensity matrices (continued)

(b) Trade intensity (average) matrix

Aus. Can. Den. G.B. Jap. Kor. Mex. N.Z. Nor. Sin. Swe. Swi. Tur. U.S.

Aus. 0.017 0.008 0.064 0.209 0.062 0.002 0.214 0.004 0.071 0.017 0.018 0.010 0.138

Can. 0.017 0.008 0.039 0.051 0.022 0.014 0.013 0.025 0.007 0.013 0.018 0.013 0.620

Den. 0.008 0.008 0.160 0.046 0.012 0.002 0.004 0.136 0.008 0.184 0.045 0.015 0.073

G.B. 0.064 0.039 0.160 0.085 0.034 0.012 0.059 0.228 0.050 0.172 0.152 0.131 0.243

Jap. 0.209 0.051 0.046 0.085 0.236 0.034 0.113 0.028 0.191 0.039 0.076 0.051 0.398

Kor. 0.061 0.022 0.012 0.034 0.236 0.010 0.022 0.012 0.064 0.012 0.019 0.025 0.239

Mex. 0.002 0.014 0.002 0.012 0.034 0.010 0.005 0.001 0.004 0.006 0.011 0.002 0.518

N.Z. 0.214 0.013 0.004 0.059 0.113 0.022 0.005 0.001 0.024 0.006 0.006 0.003 0.105

Nor. 0.004 0.025 0.136 0.228 0.028 0.012 0.001 0.001 0.008 0.235 0.017 0.009 0.058

Sin. 0.071 0.007 0.008 0.050 0.191 0.064 0.004 0.024 0.008 0.010 0.021 0.009 0.219

Swe. 0.017 0.013 0.184 0.172 0.039 0.012 0.006 0.006 0.235 0.010 0.054 0.028 0.107

Swi. 0.018 0.018 0.045 0.152 0.076 0.019 0.011 0.006 0.017 0.021 0.054 0.063 0.187

Tur. 0.010 0.013 0.015 0.131 0.051 0.025 0.002 0.003 0.009 0.009 0.028 0.063 0.190

U.S 0.138 0.620 0.073 0.243 0.398 0.239 0.518 0.105 0.058 0.219 0.107 0.187 0.190

Note. Trade intensity (average) is calculated as an average value over the sample period, 1980-2005, using

Equation (2.4). This is an alternative measure to Trade intensity (maximum) in Betts and Kehoe (2008).



Table 2.2. Effects of trade intensity on real exchange rate volatility - IV estimation

[1] [2] [3] [4]

Real exchange rate volatility at time t-1 0.123 0.123

(0.021) (0.021)

Trade intensity (maximum) -0.054 -0.049

(0.007) (0.007)

Trade intensity (average) -0.077 -0.070

(0.010) (0.006)

Interest rate differential in an absolute value 0.033 0.033 0.034 0.033

(0.004) (0.004) (0.005) (0.005)

Intercept 0.045 0.045 0.039 0.039

(0.003) (0.003) (0.003) (0.003)

No. of observations 2366 2366 2275 2275

Note. Results from instrumental variable estimation using panel data with country

fixed effects are reported. The distance between two countries (in logs) is used as an

instrument to estimate the relationship between trade intensity and real exchange

rate volatility. The sample period is from January 1980 to December 2005, and all of

91 currency pairs involving 14 countries are included. The dependent variable is real

exchange rate volatility. Standard errors are reported in parentheses below the corre-

sponding coefficients.
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Table 2.3. Effects of trade intensity on real exchange rate volatility - Robustness checks

(a) By truncating outliers

[1] [2] [3] [4]

Real exchange rate volatility at time t-1 0.140 0.141

(0.022) (0.022)

Trade intensity (maximum) -0.058 -0.052

(0.005) (0.005)

Trade intensity (average) -0.084 -0.075

(0.007) (0.007)

Interest rate differential in an absolute value 0.014 0.014 0.019 0.019

(0.003) (0.003) (0.003) (0.003)

Intercept 0.038 0.039 0.052 0.052

(0.002) (0.002) (0.003) (0.003)

No. of observations 2156 2156 2065 2065

Note. Results from instrumental variable estimation using panel data with country

fixed effects are reported. The distance between two countries (in logs) is used as an

instrument to estimate the relationship between trade intensity and real exchange

rate volatility. The sample period is from January 1980 to December 2005, and all of

91 currency pairs involving 14 countries are included. We truncate outliers of the real

exchange rate volatility variable. The dependent variable is real exchange rate volatil-

ity. Standard errors are reported in parentheses below the corresponding coefficients.
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Table 2.3. Effects of trade intensity on real exchange rate volatility - Robustness checks (continued)

(b) By subperiods

Robustness checks

Subperiod for 1980-1992 Subperiod for 1993-2005

[1] [2] [3] [4] [1] [2] [3] [4]

Real exchange rate volatility at time t-1 0.113 0.114 0.103 0.103

(0.032) (0.032) (0.030) (0.030)

Trade intensity (maximum) -0.062 -0.059 -0.045 -0.038

(0.010) (0.011) (0.009) (0.009)

Trade intensity (average) -0.092 -0.088 -0.063 -0.054

(0.015) (0.017) (0.012) (0.013)

Interest rate differential in an abs. value 0.017 0.016 0.011 0.010 0.044 0.044 0.044 0.043

(0.007) (0.007) (0.008) (0.008) (0.006) (0.006) (0.006) (0.006)

Intercept 0.041 0.042 0.054 0.054 0.037 0.037 0.033 0.033

(0.005) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004)

No. of observations 1183 1183 1092 1092 1183 1183 1092 1092

Note. Results from instrumental variable estimation using panel data with country fixed effects are reported. The

distance between two countries (in logs) is used as an instrument to estimate the relationship between trade inten-

sity and real exchange rate volatility. The sample period is from January 1980 to December 2005, and all of 91 curr-

ency pairs involving 14 countries are included. The entire sample period is divided into two subperiods: 1980-1992

(a first half) and 1993-2005 (a second half). The dependent variable is real exchange rate volatility. Standard errors

are reported in parentheses below the corresponding coefficients.
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Table 2.3. Effects of trade intensity on real exchange rate volatility - Robustness checks (continued)

(c) By Major vs. Exotic currency pairs

Robustness checks

42 Major currency pairs 49 Exotic currency pairs

[1] [2] [3] [4] [1] [2] [3] [4]

Real exchange rate volatility at time t-1 0.120 0.117 0.093 0.093

(0.031) (0.032) (0.029) (0.028)

Trade intensity (maximum) -0.049 -0.043 -0.048 -0.047

(0.006) (0.007) (0.013) (0.013)

Trade intensity (average) -0.068 -0.060 -0.075 -0.073

(0.009) (0.009) (0.020) (0.020)

Interest rate differential in an abs. value 0.190 0.190 0.176 0.175 0.030 0.030 0.032 0.031

(0.022) (0.022) (0.024) (0.024) (0.005) (0.005) (0.005) (0.005)

Intercept 0.046 0.045 0.041 0.040 0.051 0.052 0.065 0.065

(0.003) (0.003) (0.004) (0.004) (0.007) (0.007) (0.009) (0.009)

No. of observations 1092 1092 1050 1050 1274 1274 1225 1225

Note. Results from instrumental variable estimation using panel data with country fixed effects are reported. The

distance between two countries (in logs) is used as an instrument to estimate the relationship between trade inten-

sity and real exchange rate volatility. The sample period is from January 1980 to December 2005, and 91 currency

pairs are divided into 42 Majors and 49 Exotics. The dependent variable is real exchange rate volatility. Standard

errors are reported in parentheses below the corresponding coefficients.
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Table 2.3. Effects of trade intensity on real exchange rate volatility - Robustness checks (continued)

(d) By different time windows

Robustness checks

3-year window 6-year window

[1] [2] [3] [4] [1] [2] [3] [4]

Real exchange rate volatility at time t-1 0.017 0.017 0.072 0.069

(0.039) (0.039) (0.060) (0.060)

Trade intensity (maximum) -0.107 -0.098 -0.098 -0.070

(0.014) (0.016) (0.020) (0.022)

Trade intensity (average) -0.154 -0.141 -0.140 -0.101

(0.021) (0.023) (0.029) (0.032)

Interest rate differential in an abs. value 0.062 0.061 0.073 0.072 0.108 0.106 0.113 0.112

(0.010) (0.010) (0.011) (0.011) (0.017) (0.016) (0.016) (0.016)

Intercept 0.072 0.072 0.076 0.078 0.070 0.071 0.052 0.053

(0.007) (0.007) (0.009) (0.008) (0.009) (0.009) (0.010) (0.010)

No. of observations 819 819 728 728 455 455 364 364

Note. Results from instrumental variable estimation using panel data with country fixed effects are reported. The

distance between two countries (in logs) is used as an instrument to estimate the relationship between trade inten-

sity and real exchange rate volatility. The sample period is from January 1980 to December 2005, and different time

windows are considered to investigate a longer term: 3-year window and 6-year window. The dependent variable is

real exchange rate volatility. Standard errors are reported in parentheses below the corresponding coefficients.



Table 2.4. Estimation results from ESTAR models

(a) 35 highest TI currency pairs

USD/CAD USD/MXN USD/JPY USD/GBP USD/KRW KRW/JPY

p 8 11 2 1 10 4

d 1 3 5 5 2 3

Linear part

ρ 0.002 0.080 0.139 -0.027 0.062 0.096

(0.129) (0.547) (0.132) (0.047) (0.048) (0.086)

β1 0.368 -1.196 -0.222 1.353 0.435

(0.173) (0.674) (0.250) (0.250) (0.203)

β2 0.367 -0.548 -0.094 0.181

(0.186) (0.612) (0.175) (0.186)

β3 -0.132 -0.237 0.488 0.137

(0.096) (0.274) (0.196) (0.155)

β4 0.670 -0.332 -0.510

(0.198) (0.228) (0.205)

β5 0.005 -0.147 0.495

(0.154) (0.185) (0.235)

β6 -0.288 -0.296 -0.577

(0.189) (0.240) (0.246)

β7 0.846 -0.190 0.015

(0.216) (0.293) (0.175)

β8 -0.010 0.201

(0.253) (0.258)

β9 0.447 0.574

(0.247) (0.232)

β10 0.918

(0.069)

Nonlinear part

ρ -0.018 -0.125 -0.166 -0.011 -0.113 -0.131

(0.128) (0.550) (0.132) (0.054) (0.065) (0.089)

β∗1 -0.362 1.201 0.355 -1.830 -0.525

(0.186) (0.671) (0.263) (0.293) (0.254)

β∗2 -0.384 0.554 0.110 -0.139

(0.199) (0.612) (0.206) (0.225)

β∗3 0.133 0.309 -0.591 -0.347

(0.125) (0.288) (0.220) (0.202)

β∗4 -0.708 0.252 0.320

(0.215) (0.256) (0.264)
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

USD/CAD USD/MXN USD/JPY USD/GBP USD/KRW KRW/JPY

β∗5 -0.029 0.180 -0.539

(0.175) (0.189) (0.253)

β∗6 0.242 0.255 0.755

(0.216) (0.250) (0.267)

β∗7 -0.845 0.188 -0.161

(0.243) (0.297) (0.227)

β∗8 0.017 -0.224

(0.257) (0.329)

β∗9 -0.393 -0.484

(0.256) (0.272)

β∗10 -0.845

(0.089)

γ 41.509 500.000 20.795 10.444 8.534 10.753

(1.073) (3.058) (1.379) (1.256) (0.177) (0.634)

c -0.735 -3.075 -5.545 -0.166 -7.449 2.038

(0.002) (0.0001) (0.009) (0.016) (0.005) (0.015)

σ̂ε 0.017 0.045 0.032 0.030 0.022 0.040

LM(4) 1.043 0.852 1.043 2.332 8.674 4.493

(0.385) (0.493) (0.385) (0.056) (0.001) (0.002)

LM(8) 3.424 0.680 0.937 1.665 5.985 2.757

(0.001) (0.709) (0.486) (0.106) (0.001) (0.006)

pRNL 0.632 0.152 0.767 0.183 0.194 0.427

SSR 0.098 0.686 0.358 0.313 0.163 0.546

AIC -8.032 -6.039 -6.813 -6.959 -7.490 -6.367

BIC -7.807 -5.743 -6.723 -6.892 -7.218 -6.232

T 348 348 348 348 348 348

Note. Currency pairs are listed based on trade intensity. Heteroscedasticity-consist-

ent standard errors are reported in parentheses below the corresponding coefficient.

σ̂ε denotes the residual standard deviation. LM(4) and LM(8) denote the F variant

of the LM test of no remaining autocorrelation in the residuals up to and including

lag 4 and lag 8, respectively. The p-values are reported in parentheses below the

corresponding values of the test statistics. pRNL is the p-value for the test of no

remaining nonlinearity in the residuals. SSR is the sum of squared residuals of the

regression from the estimated ESTAR models. AIC and BIC are the Akaike and

Bayesian information criteria, respectively. T refers to the sample size.
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

SEK/NOK GBP/NOK USD/SGD NZD/AUD JPY/AUD SGD/JPY

p 1 12 1 4 12 1

d 2 3 6 6 2 6

Linear part

ρ 0.239 -0.028 0.360 -0.062 -0.042 0.119

(0.141) (0.043) (0.083) (0.093) (0.027) (0.096)

β1 0.052 -0.010 0.211

(0.100) (0.200) (0.091)

β2 0.127 -0.040 -0.055

(0.105) (0.165) (0.078)

β3 -0.057 0.223 0.117

(0.104) (0.187) (0.073)

β4 -0.029 -0.194

(0.080) (0.093)

β5 -0.151 0.226

(0.100) (0.097)

β6 -0.066 -0.128

(0.091) (0.090)

β7 0.025 -0.015

(0.092) (0.076)

β8 0.073 0.022

(0.078) (0.082)

β9 -0.031 -0.050

(0.086) (0.080)

β10 0.072 -0.015

(0.096) (0.081)

β11 0.112 0.206

(0.089) (0.092)

Nonlinear part

ρ -0.267 -0.048 -0.372 -0.057 -0.003 -0.149

(0.141) (0.086) (0.084) (0.111) (0.043) (0.097)

β∗1 -0.275 0.004 -0.194

(0.245) (0.243) (0.236)

β∗2 -0.527 0.182 0.073

(0.257) (0.204) (0.210)
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

SEK/NOK GBP/NOK USD/SGD NZD/AUD JPY/AUD SGD/JPY

β∗3 -0.036 -0.133 0.086

(0.252) (0.214) (0.158)

β∗4 -0.011 0.272

(0.241) (0.200)

β∗5 0.484 -0.654

(0.276) (0.240)

β∗6 0.255 0.283

(0.252) (0.218)

β∗7 0.280 0.002

(0.225) (0.193)

β∗8 -0.085 0.339

(0.194) (0.197)

β∗9 -0.092 0.275

(0.212) (0.212)

β∗10 -0.263 0.025

(0.230) (0.204)

β∗11 -0.018 -0.273

(0.220) (0.239)

γ 50.519 4.166 371.426 6.369 1.195 13.220

(1.302) (0.221) (25.787) (1.046) (0.363) (1.149)

c 0.057 -2.369 -0.898 -1.484 5.102 -4.488

(0.002) (0.021) (0.001) (0.036) (0.116) (0.013)

σ̂ε 0.019 0.023 0.015 0.027 0.045 0.029

LM(4) 0.503 0.322 5.320 2.080 0.345 1.063

(0.733) (0.863) (0.001) (0.083) (0.847) (0.375)

LM(8) 0.657 0.452 2.694 1.110 0.540 1.211

(0.729) (0.889) (0.007) (0.356) (0.826) (0.292)

pRNL 0.701 0.854 0.519 0.771 0.840 0.995

SSR 0.123 0.179 0.079 0.241 0.682 0.281

AIC -7.895 -7.367 -8.337 -7.183 -6.030 -7.068

BIC -7.827 -7.049 -8.270 -7.048 -5.711 -7.000

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

USD/TRY SEK/DKK USD/CHF GBP/SEK GBP/DKK GBP/CHF

p 4 12 12 1 4 1

d 4 1 2 5 6 4

Linear part

ρ 0.208 0.004 0.109 -0.053 0.050 0.162

(0.199) (0.015) (0.088) (0.049) (0.119) (0.246)

β1 0.355 0.001 -0.112 -0.875

(0.296) (0.080) (0.130) (0.301)

β2 -0.095 0.120 0.069 -0.278

(0.274) (0.070) (0.096) (0.250)

β3 -0.069 0.016 -0.141 -0.590

(0.204) (0.111) (0.119) (0.441)

β4 -0.031 -0.043

(0.083) (0.093)

β5 -0.105 0.098

(0.097) (0.099)

β6 -0.050 -0.105

(0.064) (0.097)

β7 0.003 0.196

(0.063) (0.094)

β8 0.090 -0.047

(0.093) (0.099)

β9 0.074 0.051

(0.117) (0.094)

β10 -0.011 0.028

(0.068) (0.083)

β11 -0.005 0.248

(0.079) (0.091)

Nonlinear part

ρ -0.229 -0.282 -0.150 -0.075 -0.068 -0.185

(0.200) (4.097) (0.091) (0.081) (0.120) (0.248)

β∗1 -0.348 5.365 0.299 1.093

(0.324) (77.248) (0.158) (0.307)

β∗2 0.057 -5.339 -0.155 0.310

(0.302) (80.042) (0.143) (0.263)
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

USD/TRY SEK/DKK USD/CHF GBP/SEK GBP/DKK GBP/CHF

β∗3 0.012 2.995 0.336 0.721

(0.212) (43.880) (0.153) (0.446)

β∗4 -3.506 0.031

(48.676) (0.164)

β∗5 3.513 -0.127

(52.839) (0.148)

β∗6 2.994 0.128

(43.558) (0.162)

β∗7 -1.375 -0.174

(20.813) (0.157)

β∗8 -5.227 0.044

(75.456) (0.153)

β∗9 -6.763 0.091

(97.367) (0.151)

β∗10 3.328 -0.138

(48.932) (0.146)

β∗11 -2.714 -0.184

(41.236) (0.145)

γ 39.991 0.135 13.537 3.507 500.000 500.000

(0.939) (0.185) (0.635) (0.438) (4.587) (9.712)

c -1.212 0.104 -0.971 -2.285 -2.414 -0.782

(0.004) (18.662) (0.007) (0.034) (0.0001) (0.0004)

σ̂ε 0.040 0.020 0.032 0.026 0.024 0.028

LM(4) 1.945 8.488 0.892 0.620 2.992 1.725

(0.103) (0.001) (0.469) (0.649) (0.019) (0.144)

LM(8) 1.626 6.634 0.749 0.594 1.787 1.852

(0.117) (0.001) (0.648) (0.783) (0.079) (0.067)

pRNL 0.751 0.874 0.962 0.975 0.401 0.096

SSR 0.558 0.128 0.342 0.224 0.189 0.269

AIC -6.345 -7.704 -6.719 -7.294 -7.430 -7.111

BIC -6.210 -7.385 -6.401 -7.227 -7.295 -7.043

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

USD/AUD NOK/DKK GBP/TRY NZD/JPY USD/SEK USD/NZD

p 1 1 1 1 8 8

d 2 4 2 5 5 5

Linear part

ρ 0.144 0.073 0.856 0.173 -0.033 -0.033

(0.101) (0.041) (0.477) (0.123) (0.028) (0.060)

β1 -0.026 0.047

(0.114) (0.113)

β2 0.010 0.102

(0.082) (0.110)

β3 0.040 0.073

(0.100) (0.104)

β4 0.157 -0.167

(0.112) (0.110)

β5 0.144 -0.181

(0.083) (0.152)

β6 0.045 0.187

(0.076) (0.124)

β7 0.082 0.187

(0.071) (0.111)

Nonlinear part

ρ -0.182 -0.138 -0.901 -0.207 -0.054 -0.058

(0.100) (0.041) (0.477) (0.122) (0.093) (0.077)

β∗1 0.561 0.024

(0.471) (0.168)

β∗2 -0.195 -0.131

(0.187) (0.167)

β∗3 0.329 0.219

(0.280) (0.172)

β∗4 -0.442 0.273

(0.381) (0.156)

β∗5 -0.185 0.396

(0.306) (0.189)

β∗6 -0.332 -0.179

(0.344) (0.177)
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

USD/AUD NOK/DKK GBP/TRY NZD/JPY USD/SEK USD/NZD

β∗7 0.047 -0.077

(0.202) (0.158)

γ 23.338 5.658 500.000 277.480 0.997 4.140

(1.692) (0.730) (5.087) (3.862) (0.823) (0.330)

c -0.624 0.038 -1.089 -6.581 -2.808 0.828

(0.006) (0.016) (0.0003) (0.001) (0.262) (0.026)

σ̂ε 0.032 0.017 0.046 0.040 0.031 0.033

LM(4) 0.998 1.227 2.027 1.329 1.573 0.444

(0.409) (0.299) (0.090) (0.259) (0.181) (0.777)

LM(8) 1.060 1.388 1.345 1.606 1.507 2.214

(0.391) (0.201) (0.220) (0.122) (0.154) (0.026)

pRNL 0.758 0.957 0.638 0.674 0.717 0.815

SSR 0.339 0.098 0.732 0.553 0.319 0.365

AIC -6.880 -8.116 -6.109 -6.388 -6.852 -6.717

BIC -6.812 -8.049 -6.042 -6.321 -6.626 -6.491

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

GBP/JPY CHF/JPY USD/DKK SGD/AUD SGD/KRW GBP/AUD

p 2 1 4 1 10 1

d 3 2 6 2 2 2

Linear part

ρ 0.461 0.335 0.038 0.078 0.029 0.537

(0.155) (0.141) (0.054) (0.075) (0.038) (0.302)

β1 -0.236 -0.212 0.710

(0.363) (0.167) (0.307)

β2 0.214 0.015

(0.184) (0.148)

β3 0.010 -0.130

(0.142) (0.118)

β4 -0.190

(0.111)

β5 0.187

(0.091)

β6 -0.124

(0.117)

β7 0.133

(0.096)

β8 -0.079

(0.110)

β9 0.247

(0.101)

Nonlinear part

ρ -0.489 -0.378 -0.080 -0.171 -0.273 -0.570

(0.155) (0.142) (0.052) (0.068) (0.089) (0.301)

β∗1 0.369 0.385 -1.690

(0.369) (0.181) (0.432)

β∗2 -0.191 0.088

(0.203) (0.324)

β∗3 0.056 0.450

(0.170) (0.181)

β∗4 0.200

(0.171)
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

GBP/JPY CHF/JPY USD/DKK SGD/AUD SGD/KRW GBP/AUD

β∗5 -0.278

(0.172)

β∗6 0.544

(0.138)

β∗7 -0.323

(0.158)

β∗8 0.290

(0.150)

β∗9 -0.490

(0.177)

γ 120.424 62.657 8.003 4.715 2.066 121.028

(3.370) (1.524) (0.795) (1.068) (0.084) (2.097)

c -5.347 -4.265 -2.788 0.473 -6.434 -0.499

(0.001) (0.001) (0.020) (0.032) (0.036) (0.001)

σ̂ε 0.034 0.031 0.031 0.029 0.024 0.036

LM(4) 1.239 1.238 0.869 1.230 8.436 0.594

(0.294) (0.295) (0.483) (0.298) (0.001) (0.667)

LM(8) 0.880 0.951 0.813 0.776 6.443 0.814

(0.534) (0.474) (0.591) (0.625) (0.001) (0.591)

pRNL 0.423 0.574 0.818 0.975 0.375 0.999

SSR 0.397 0.320 0.318 0.295 0.195 0.443

AIC -6.709 -6.936 -6.908 -7.018 -7.314 -6.612

BIC -6.619 -6.869 -6.773 -6.950 -7.042 -6.544

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

TRY/CHF KRW/AUD GBP/NZD USD/NOK CHF/SEK

p 1 10 1 1 1

d 3 2 1 1 4

Linear part

ρ 0.297 0.073 0.133 0.253 0.093

(0.162) (0.105) (0.257) (0.344) (0.051)

β1 0.559

(0.378)

β2 -0.095

(0.120)

β3 -0.169

(0.119)

β4 0.085

(0.135)

β5 -0.161

(0.126)

β6 -0.030

(0.114)

β7 0.010

(0.105)

β8 0.006

(0.105)

β9 0.161

(0.134)

Nonlinear part

ρ -0.328 -0.196 -0.198 -0.285 -0.140

(0.161) (0.121) (0.254) (0.343) (0.051)

β∗1 -0.737

(0.402)

β∗2 0.263

(0.165)

β∗3 0.184

(0.202)

β∗4 -0.254

(0.193)
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Table 2.4. Estimation results from ESTAR models (continued)

(a) 35 highest TI currency pairs

TRY/CHF KRW/AUD GBP/NZD USD/NOK CHF/SEK

β∗5 0.222

(0.156)

β∗6 0.149

(0.161)

β∗7 -0.142

(0.205)

β∗8 -0.015

(0.180)

β∗9 -0.051

(0.184)

γ 58.695 13.780 21.151 33.520 8.679

(2.022) (0.372) (2.140) (1.540) (0.721)

c 0.287 6.776 1.137 -2.730 -1.650

(0.003) (0.005) (0.010) (0.005) (0.011)

σ̂ε 0.048 0.034 0.036 0.030 0.025

LM(4) 1.310 4.248 0.641 1.825 1.422

(0.266) (0.002) (0.634) (0.124) (0.226)

LM(8) 1.349 2.187 0.598 1.393 1.405

(0.218) (0.028) (0.780) (0.198) (0.193)

pRNL 0.412 0.121 0.912 0.629 0.132

SSR 0.793 0.401 0.436 0.308 0.208

AIC -6.028 -6.592 -6.627 -6.974 -7.368

BIC -5.961 -6.320 -6.560 -6.906 -7.300

T 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

CHF/NOK CAD/AUD TRY/DKK MXN/CAD SEK/CAD TRY/CAD

p 12 1 1 11 1 1

d 5 3 4 2 5 4

Linear part

ρ 0.362 0.383 0.517 0.129 -0.031 0.522

(0.850) (0.255) (0.149) (0.912) (0.068) (0.292)

β1 -0.257 -0.390

(0.875) (1.032)

β2 0.153 0.940

(0.925) (0.317)

β3 -0.146 -0.681

(0.820) (0.340)

β4 -0.450 -0.293

(0.806) (0.317)

β5 -1.367 -0.396

(0.406) (0.268)

β6 0.149 0.696

(0.367) (0.312)

β7 0.284 -0.164

(0.457) (0.346)

β8 -0.173 0.389

(0.247) (0.239)

β9 0.392 -0.633

(0.282) (0.346)

β10 -0.585 1.217

(0.401) (0.093)

β11 0.681

(0.207)

Nonlinear part

ρ -0.398 -0.456 -0.553 -0.158 -0.020 -0.542

(0.851) (0.255) (0.150) (0.913) (0.071) (0.292)

β∗1 0.261 0.364

(0.878) (1.034)

β∗2 -0.147 -0.942

(0.859) (0.317)
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

CHF/NOK CAD/AUD TRY/DKK MXN/CAD SEK/CAD TRY/CAD

β∗3 0.160 0.775

(0.795) (0.351)

β∗4 0.449 0.235

(0.812) (0.338)

β∗5 1.301 0.428

(0.409) (0.269)

β∗6 -0.199 -0.731

(0.372) (0.318)

β∗7 -0.283 0.160

(0.468) (0.349)

β∗8 0.145 -0.348

(0.258) (0.243)

β∗9 -0.376 0.700

(0.292) (0.347)

β∗10 0.647 -1.187

(0.400) (0.103)

β∗11 -0.656

(0.219)

γ 500.000 500.000 238.526 500.000 26.375 348.676

(1.462) (3.892) (3.674) (3.204) (2.196) (3.892)

c -1.563 0.237 -1.191 2.203 1.606 0.364

(0.0001) (0.0002) (0.001) (0.0002) (0.008) (0.0004)

σ̂ε 0.020 0.027 0.043 0.046 0.031 0.040

LM(4) 1.280 2.255 3.309 1.182 2.168 2.073

(0.278) (0.063) (0.011) (0.319) (0.072) (0.084)

LM(8) 1.256 1.897 2.575 0.861 2.362 1.549

(0.266) (0.060) (0.010) (0.550) (0.018) (0.140)

pRNL 0.650 0.080 0.654 0.403 0.484 0.836

SSR 0.132 0.248 0.620 0.696 0.336 0.553

AIC -7.674 -7.193 -6.275 -6.024 -6.886 -6.388

BIC -7.355 -7.125 -6.207 -5.729 -6.819 -6.321

T 348 348 348 348 348 348

Note. As for Table 2.4 (a).
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

NZD/CAD SEK/KRW NOK/KRW GBP/MXN KRW/DKK CHF/MXN

p 4 10 10 11 1 11

d 6 2 6 3 2 4

Linear part

ρ 0.012 0.050 0.057 0.045 0.520 0.214

(0.156) (0.152) (0.729) (0.567) (0.292) (1.147)

β1 0.577 -0.422 0.914 -0.618 -0.909

(0.408) (0.230) (0.789) (0.806) (1.165)

β2 -0.048 -0.097 0.209 -0.193 -1.365

(0.203) (0.152) (0.762) (0.566) (1.681)

β3 -0.332 0.264 0.728 1.437 -0.384

(0.370) (0.187) (0.804) (0.456) (1.108)

β4 -0.293 -0.056 0.690 0.354

(0.137) (0.658) (0.361) (0.340)

β5 0.220 -0.550 -0.183 0.874

(0.165) (0.742) (0.240) (0.477)

β6 0.059 -0.640 0.144 0.496

(0.176) (0.316) (0.251) (0.456)

β7 0.129 -0.891 -0.386 -0.642

(0.146) (0.228) (0.427) (0.600)

β8 -0.160 -0.997 0.210 1.193

(0.205) (0.413) (0.378) (1.001)

β9 0.189 0.303 0.154 2.427

(0.136) (0.268) (0.412) (0.630)

β10 1.307 1.752

(0.143) (0.342)

Nonlinear part

ρ -0.034 -0.740 -0.144 -0.091 0.535 -0.264

(0.157) (0.766) (0.732) (0.570) (0.290) (1.152)

β∗1 -0.637 -0.152 -0.981 0.726 0.984

(0.408) (0.153) (0.797) (0.819) (1.157)

β∗2 0.076 0.707 -0.086 0.214 1.392

(0.240) (0.278) (0.775) (0.573) (1.685)

β∗3 0.479 0.311 -0.804 -1.380 0.494

(0.376) (0.197) (0.803) (0.462) (1.118)
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

NZD/CAD SEK/KRW NOK/KRW GBP/MXN KRW/DKK CHF/MXN

β∗4 -0.247 -0.023 -0.697 -0.371

(0.223) (0.659) (0.374) (0.354)

β∗5 0.362 0.633 0.220 -0.828

(0.159) (0.748) (0.244) (0.481)

β∗6 -0.218 0.730 -0.251 -0.523

(0.196) (0.330) (0.258) (0.456)

β∗7 -0.035 0.852 0.394 0.679

(0.212) (0.241) (0.433) (0.605)

β∗8 -0.211 1.010 -0.190 -1.188

(0.188) (0.416) (0.381) (1.004)

β∗9 0.342 -0.111 -0.100 -2.300

(0.224) (0.282) (0.419) (0.632)

β∗10 -0.150 -1.320 -1.733

(0.167) (0.149) (0.341)

γ 165.502 26.083 286.582 56.800 32.866 216.122

(3.233) (0.677) (2.334) (1.139) (0.879) (1.968)

c -1.887 -5.006 -4.757 -2.772 4.768 -1.947

(0.001) (0.002) (0.0002) (0.001) (0.003) (0.001)

σ̂ε 0.032 0.039 0.035 0.052 0.043 0.059

LM(4) 0.857 0.823 3.911 0.881 1.216 0.542

(0.490) (0.511) (0.004) (0.475) (0.304) (0.705)

LM(8) 1.048 1.030 2.634 0.756 0.648 0.491

(0.400) (0.413) (0.008) (0.642) (0.737) (0.863)

pRNL 0.901 0.099 0.295 0.640 0.559 0.729

SSR 0.356 0.506 0.402 0.917 0.642 1.163

AIC -6.794 -6.360 -6.590 -5.749 -6.240 -5.512

BIC -6.659 -6.088 -6.317 -5.454 -6.173 -5.216

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

SEK/SGD MXN/KRW TRY/AUD TRY/NOK TRY/SGD DKK/AUD

p 1 11 6 9 1 10

d 2 3 1 1 1 3

Linear part

ρ 0.062 0.176 0.201 0.189 0.341 0.212

(0.074) (0.435) (0.227) (0.191) (0.277) (0.115)

β1 -0.337 0.663 0.183 -0.440

(0.695) (0.306) (0.116) (0.187)

β2 -0.157 -0.340 0.659 0.076

(0.385) (0.199) (0.269) (0.176)

β3 0.271 0.264 -0.048 0.077

(0.300) (0.258) (0.143) (0.171)

β4 0.588 0.193 -0.003 -0.069

(0.357) (0.225) (0.188) (0.128)

β5 0.480 0.209 -0.304 0.037

(0.401) (0.171) (0.189) (0.179)

β6 0.135 0.067 0.075

(0.437) (0.208) (0.152)

β7 0.010 0.159 0.389

(0.384) (0.204) (0.200)

β8 -0.472 0.026 0.229

(0.742) (0.151) (0.162)

β9 0.269 -0.035

(0.254) (0.163)

β10 2.528

(1.913)

Nonlinear part

ρ -0.118 -0.208 -0.212 -0.202 -0.365 -0.253

(0.067) (0.437) (0.227) (0.194) (0.276) (0.119)

β∗1 0.249 -0.651 -0.121 0.538

(0.699) (0.316) (0.187) (0.204)

β∗2 0.174 0.450 -0.755 -0.228

(0.390) (0.214) (0.277) (0.217)

β∗3 -0.272 -0.327 0.022 -0.005

(0.314) (0.276) (0.193) (0.213)
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

SEK/SGD MXN/KRW TRY/AUD TRY/NOK TRY/SGD DKK/AUD

β∗4 -0.698 -0.360 -0.161 0.053

(0.363) (0.244) (0.221) (0.163)

β∗5 -0.469 -0.390 0.289 -0.132

(0.402) (0.196) (0.201) (0.210)

β∗6 -0.165 -0.039 -0.043

(0.441) (0.219) (0.183)

β∗7 -0.051 -0.122 -0.421

(0.399) (0.226) (0.230)

β∗8 0.493 -0.109 -0.317

(0.749) (0.171) (0.196)

β∗9 -0.214 0.209

(0.254) (0.184)

β∗10 -2.496

(1.909)

γ 15.383 51.056 51.563 53.757 13.029 6.832

(2.314) (0.886) (0.880) (1.664) (0.652) (0.290)

c 1.376 -4.274 0.891 -1.311 -0.024 2.044

(0.015) (0.004) (0.002) (0.002) (0.011) (0.011)

σ̂ε 0.028 0.052 0.043 0.043 0.041 0.035

LM(4) 2.721 1.298 0.998 1.852 2.206 0.877

(0.030) (0.271) (0.409) (0.119) (0.068) (0.478)

LM(8) 2.112 1.053 1.258 1.456 1.382 1.033

(0.034) (0.396) (0.265) (0.173) (0.204) (0.411)

pRNL 0.377 0.795 0.485 0.836 0.584 0.984

SSR 0.271 0.917 0.618 0.621 0.585 0.408

AIC -7.101 -5.749 -6.220 -6.169 -6.334 -6.573

BIC -7.033 -5.454 -6.040 -5.920 -6.266 -6.301

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

SGD/NOK DKK/CAD SGD/DKK SGD/CAD SEK/MXN SEK/NZD

p 1 1 10 1 11 1

d 3 6 3 3 1 4

Linear part

ρ 0.157 0.077 0.010 0.301 0.192 0.054

(0.166) (0.104) (0.159) (0.133) (0.378) (0.223)

β1 -0.459 -0.480

(0.351) (0.365)

β2 0.405 -1.926

(0.344) (0.896)

β3 -0.110 0.284

(0.305) (0.754)

β4 -0.372 0.682

(0.339) (0.547)

β5 0.046 -0.793

(0.328) (0.729)

β6 0.712 0.240

(0.291) (0.458)

β7 0.525 0.459

(0.352) (0.370)

β8 0.037 0.433

(0.264) (0.647)

β9 0.053 -0.524

(0.275) (0.205)

β10 1.113

(0.547)

Nonlinear part

ρ -0.187 -0.104 -0.023 -0.313 -0.215 -0.091

(0.164) (0.101) (0.161) (0.133) (0.377) (0.224)

β∗1 0.499 0.530

(0.357) (0.372)

β∗2 -0.422 1.979

(0.349) (0.898)

β∗3 0.193 -0.187

(0.327) (0.765)
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

SGD/NOK DKK/CAD SGD/DKK SGD/CAD SEK/MXN SEK/NZD

β∗4 0.410 -0.721

(0.360) (0.558)

β∗5 -0.033 0.856

(0.343) (0.730)

β∗6 -0.712 -0.291

(0.302) (0.464)

β∗7 -0.456 -0.420

(0.365) (0.374)

β∗8 -0.0001 -0.460

(0.278) (0.655)

β∗9 0.101 0.682

(0.292) (0.216)

β∗10 -1.032

(0.556)

γ 30.028 13.847 26.892 297.821 45.770 500.000

(1.072) (1.644) (0.642) (3.632) (0.737) (6.104)

c -1.491 1.913 -1.645 0.159 -0.248 3.649

(0.005) (0.020) (0.003) (0.0003) (0.002) (0.0003)

σ̂ε 0.026 0.032 0.026 0.021 0.055 0.036

LM(4) 0.682 1.474 1.333 0.253 2.736 1.347

(0.605) (0.210) (0.258) (0.908) (0.029) (0.252)

LM(8) 0.924 1.370 1.353 0.393 1.439 1.264

(0.497) (0.209) (0.217) (0.924) (0.180) (0.262)

pRNL 0.703 0.803 0.280 0.939 0.165 0.933

SSR 0.239 0.356 0.227 0.151 1.030 0.444

AIC -7.227 -6.829 -7.162 -7.690 -5.633 -6.608

BIC -7.159 -6.761 -6.890 -7.623 -5.338 -6.541

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

CHF/NZD NZD/MXN NZD/DKK SGD/MXN NOK/AUD TRY/NZD

p 1 11 1 11 1 1

d 4 4 3 4 2 1

Linear part

ρ 0.047 0.226 0.749 0.423 0.125 0.071

(0.090) (0.166) (0.283) (0.280) (0.140) (0.172)

β1 -0.184 -0.356

(0.169) (0.251)

β2 -0.258 0.060

(0.197) (0.331)

β3 -0.689 -0.239

(0.413) (0.305)

β4 -0.072 0.555

(0.350) (0.427)

β5 0.797 -0.545

(0.389) (0.424)

β6 -0.292 -0.394

(0.313) (0.698)

β7 0.336 0.530

(0.355) (0.387)

β8 0.102 -0.0002

(0.344) (0.491)

β9 -0.199 -0.224

(0.260) (0.421)

β10 1.186 1.475

(0.270) (0.156)

Nonlinear part

ρ -0.157 -0.266 -0.798 -0.459 -0.241 -0.145

(0.087) (0.166) (0.284) (0.282) (0.134) (0.149)

β∗1 0.228 0.334

(0.184) (0.270)

β∗2 0.245 -0.048

(0.214) (0.333)

β∗3 0.837 0.275

(0.424) (0.309)
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

CHF/NZD NZD/MXN NZD/DKK SGD/MXN NOK/AUD TRY/NZD

β∗4 0.027 -0.629

(0.370) (0.436)

β∗5 -0.806 0.585

(0.391) (0.428)

β∗6 0.308 0.357

(0.320) (0.700)

β∗7 -0.294 -0.551

(0.357) (0.390)

β∗8 -0.047 0.027

(0.345) (0.495)

β∗9 0.238 0.290

(0.262) (0.417)

β∗10 -1.071 -1.437

(0.276) (0.160)

γ 14.142 34.497 500.000 68.666 13.971 10.587

(1.374) (1.386) (3.892) (1.133) (0.686) (3.254)

c 2.029 -4.063 -3.693 -2.082 2.134 2.589

(0.012) (0.006) (0.0002) (0.002) (0.010) (0.031)

σ̂ε 0.038 0.056 0.036 0.046 0.034 0.049

LM(4) 0.707 1.897 0.640 0.831 0.465 2.918

(0.587) (0.111) (0.634) (0.506) (0.761) (0.021)

LM(8) 0.731 1.179 0.831 0.503 0.824 2.664

(0.664) (0.311) (0.576) (0.854) (0.582) (0.008)

pRNL 0.519 0.462 0.970 0.855 0.656 0.439

SSR 0.495 1.037 0.431 0.717 0.406 0.748

AIC -6.501 -5.626 -6.639 -5.995 -6.699 -6.086

BIC -6.433 -5.331 -6.572 -5.699 -6.632 -6.019

T 348 348 348 348 348 348
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

MXN/DKK MXN/AUD TRY/MXN NOK/NZD NOK/MXN

p 11 12 11 1 11

d 6 5 2 3 4

Linear part

ρ 0.365 0.623 0.053 -0.094 0.138

(0.655) (0.698) (0.883) (0.069) (0.366)

β1 -0.279 0.631 -0.236 -0.302

(0.638) (1.086) (0.744) (0.469)

β2 -2.142 -0.567 0.312 -0.327

(0.946) (0.932) (1.003) (0.703)

β3 0.088 -0.989 1.080 -0.155

(0.845) (0.810) (0.458) (0.512)

β4 -1.299 -1.249 0.538 -1.532

(0.683) (1.151) (0.847) (1.175)

β5 0.157 -0.617 -1.656 -0.028

(0.549) (0.490) (0.958) (0.493)

β6 0.226 -1.332 -1.085 -0.032

(0.242) (1.262) (0.801) (0.280)

β7 0.760 -0.636 1.616 0.177

(0.234) (0.453) (0.916) (0.275)

β8 1.027 -0.590 -2.321 0.125

(0.239) (0.287) (1.512) (0.177)

β9 0.033 -0.170 -1.640 -0.016

(0.416) (0.171) (1.281) (0.217)

β10 1.074 1.113 1.608

(0.121) (0.185) (0.660)

β11 0.366

(0.156)

Nonlinear part

ρ -0.403 -0.662 -0.089 -0.026 -0.172

(0.658) (0.699) (0.880) (0.085) (0.368)

β∗1 0.322 -0.635 0.334 0.389

(0.641) (1.092) (0.763) (0.476)

β∗2 2.206 0.567 -0.292 0.366

(0.948) (0.934) (1.007) (0.737)
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Table 2.4. Estimation results from ESTAR models (continued)

(b) 35 lowest TI currency pairs

MXN/DKK MXN/AUD TRY/MXN NOK/NZD NOK/MXN

β∗3 0.018 0.984 -1.030 0.251

(0.848) (0.821) (0.460) (0.523)

β∗4 1.245 1.192 -0.592 1.571

(0.694) (1.176) (0.861) (1.178)

β∗5 -0.112 0.636 1.686 0.067

(0.553) (0.498) (0.958) (0.499)

β∗6 -0.258 1.330 1.088 -0.010

(0.265) (1.271) (0.802) (0.290)

β∗7 -0.756 0.697 -1.564 -0.153

(0.240) (0.466) (0.917) (0.283)

β∗8 -1.031 0.670 2.315 -0.140

(0.242) (0.298) (1.513) (0.185)

β∗9 0.110 0.237 1.671 0.120

(0.422) (0.185) (1.285) (0.231)

β∗10 -1.028 -1.029 -1.524

(0.134) (0.199) (0.660)

β∗11 -0.301

(0.188)

γ 120.667 293.130 52.107 7.836 77.307

(1.149) (1.594) (0.660) (1.384) (0.924)

c 0.442 2.701 -1.617 3.593 -0.597

(0.001) (0.0002) (0.002) (0.020) (0.002)

σ̂ε 0.055 0.052 0.055 0.034 0.060

LM(4) 2.858 1.803 2.403 1.053 0.903

(0.024) (0.128) (0.050) (0.380) (0.463)

LM(8) 1.565 1.225 1.946 0.715 0.646

(0.135) (0.284) (0.053) (0.679) (0.738)

pRNL 0.864 0.807 0.612 0.736 0.667

SSR 1.009 0.907 1.003 0.404 1.208

AIC -5.654 -5.744 -5.659 -6.702 -5.488

BIC -5.358 -5.425 -5.364 -6.635 -5.216

T 348 348 348 348 348
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Table 2.5. Half-life estimates for real exchange rates

High trade intensity currency pairs Low trade intensity currency pairs

Half-life Half-life

USD/CAD 32 CHF/NOK 23

USD/MXN 16 CAD/AUD 11

USD/JPY 31 TRY/DKK 19

USD/GBP 14 MXN/CAD 28

USD/KRW 7 SEK/CAD 21

KRW/JPY 13 TRY/CAD 33

SEK/NOK 36 NZD/CAD 35

GBP/NOK 3 SEK/KRW 12

USD/SGD 56 NOK/KRW 7

NZD/AUD 35 GBP/MXN 17

JPY/AUD 22 KRW/DKK 43

SGD/JPY 25 CHF/MXN 21

USD/TRY 39 SEK/SGD 19

SEK/DKK 8 MXN/KRW 22

USD/CHF 18 TRY/AUD 39

GBP/SEK 12 TRY/NOK 41

GBP/DKK 38 TRY/SGD 32

GBP/CHF 27 DKK/AUD 62

USD/AUD 17 SGD/NOK 28

NOK/DKK 18 DKK/CAD 64

GBP/TRY 17 SGD/DKK 45

NZD/JPY 24 SGD/CAD 53

USD/SEK 18 SEK/MXN 49

USD/NZD 19 SEK/NZD 23

GBP/JPY 31 CHF/NZD 6

CHF/JPY 19 NZD/MXN 24

USD/DKK 26 NZD/DKK 14

SGD/AUD 16 SGD/MXN 26

SGD/KRW 1 NOK/AUD 16

GBP/AUD 21 TRY/NZD 27

TRY/CHF 21 MXN/DKK 24

KRW/AUD 4 MXN/AUD 27

GBP/NZD 12 TRY/MXN 27

USD/NOK 23 NOK/NZD 6

CHF/SEK 36 NOK/MXN 48

Average 21.57 28.34

Note. The half-lives are measured as the discrete number of months taken

until the shock to the level of the real exchange rate has fallen below a half.

117



Table 2.6. Volatility of selected indicators for different exchange regimes

Probability that the monthly change is

Greater than ±4 percent

Within a ±2.5 percent band: (400 basis points):

Country Exchange rate Reserves Nominal interest rate

Australia 68.10 39.37 0.00

Canada 87.36 43.97 1.72

Denmark 62.36 36.63 2.30

Great Britain 65.52 60.63 0.00

Japan 59.48 81.03 0.00

Korea 86.21 49.14 0.57

Mexico 70.40 41.38 14.66

New Zealand 66.38 23.85 2.01

Norway 66.09 38.22 0.29

Singapore 91.38 78.74 0.00

Sweden 61.49 38.79 1.44

Switzerland 54.02 45.40 0.29

Turkey 49.09 30.46 29.89

United States 63.51 68.39 0.29

Note. The frequency distribution of monthly percent changes in the ex-

change rate, foreign exchange reserves, and nominal money market int-

erest rates is reported for different exchange rate regimes. The sample

period is from January 1980 to December 2008.
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Table 2.7. Performance statistics for carry trade portfolios

(a) Without momentum trading

High TI currency pairs Low TI currency pairs

Strategy Return Std. Dev. Sharpe Return Std. Dev. Sharpe

Näıve carry -0.016 0.011 -0.121 0.006 0.016 0.031

PPP - τ = 0 0.004 0.020 0.018 0.015 0.021 0.061

PPP - τ = 0.1 0.019 0.034 0.048 0.011 0.027 0.032

PPP - τ = 0.2 0.043 0.046 0.079 0.035 0.035 0.084

PPP - τ = 0.3 0.047 0.040 0.097 0.053 0.048 0.092

PPP - τ = 0.4 0.059 0.041 0.118 0.067 0.039 0.141

PPP - τ = 0.5 0.054 0.035 0.128 0.062 0.036 0.144

PPP - τ = 0.6 0.039 0.031 0.105 0.072 0.032 0.184

PPP - τ = 0.7 0.060 0.028 0.176 0.074 0.033 0.186

PPP - τ = 0.8 0.038 0.020 0.160 0.067 0.028 0.200

PPP - τ = 0.9 0.021 0.015 0.117 0.052 0.027 0.160

PPP - τ = 1.0 0.014 0.012 0.100 0.053 0.024 0.181

PPP - τ = 1.1 0.009 0.011 0.069 0.057 0.025 0.189

PPP - τ = 1.2 0.006 0.011 0.048 0.060 0.022 0.231

PPP - τ = 1.3 0.006 0.011 0.048 0.062 0.022 0.238

PPP - τ = 1.4 0.004 0.010 0.032 0.058 0.021 0.230

PPP - τ = 1.5 0.005 0.007 0.061 0.052 0.020 0.214

PPP - τ = 1.6 0.005 0.007 0.061 0.054 0.020 0.228

PPP - τ = 1.7 0.005 0.007 0.061 0.052 0.019 0.224

PPP - τ = 1.8 0.005 0.007 0.061 0.041 0.018 0.189

PPP - τ = 1.9 . . . 0.027 0.016 0.140

PPP - τ = 2.0 . . . 0.022 0.016 0.120

Note. We report performance statistics for carry trade portfolios with strategies (15-

year moving average, interest rate differential (greater than (med-min)), and no mo-

mentum trading) over the sample period, January 1980 - December 2008: annualized

return, standard deviation, and Sharpe ratio on a monthly basis. “PPP - τ = 0” means

that we use PPP-augmented carry trade strategy with a threshold of τ = 0 percent.

Monthly returns are given only for months in which strategies are active. For näıve

carry trades, all months are active, for PPP-augmented carry trades, the number of

active months falls as the threshold increases.
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Table 2.7. Performance statistics for carry trade portfolios (continued)

(b) With momentum trading

High TI currency pairs Low TI currency pairs

Strategy Return Std. Dev. Sharpe Return Std. Dev. Sharpe

Näıve carry 0.009 0.020 0.039 0.029 0.022 0.110

PPP - τ = 0 0.019 0.029 0.055 0.053 0.031 0.141

PPP - τ = 0.1 0.039 0.042 0.076 0.076 0.045 0.141

PPP - τ = 0.2 0.086 0.044 0.163 0.076 0.048 0.132

PPP - τ = 0.3 0.082 0.039 0.172 0.073 0.039 0.158

PPP - τ = 0.4 0.045 0.033 0.114 0.077 0.040 0.160

PPP - τ = 0.5 0.048 0.032 0.125 0.069 0.036 0.159

PPP - τ = 0.6 0.034 0.028 0.101 0.059 0.032 0.155

PPP - τ = 0.7 0.040 0.025 0.134 0.069 0.032 0.180

PPP - τ = 0.8 0.025 0.017 0.119 0.056 0.025 0.188

PPP - τ = 0.9 0.012 0.013 0.081 0.042 0.023 0.152

PPP - τ = 1.0 0.006 0.009 0.057 0.048 0.021 0.193

PPP - τ = 1.1 0.001 0.008 0.008 0.052 0.021 0.208

PPP - τ = 1.2 -0.002 0.007 -0.027 0.054 0.020 0.228

PPP - τ = 1.3 -0.002 0.007 -0.027 0.054 0.018 0.243

PPP - τ = 1.4 -0.005 0.006 -0.061 0.050 0.018 0.229

PPP - τ = 1.5 . . . 0.042 0.017 0.204

PPP - τ = 1.6 . . . 0.045 0.017 0.226

PPP - τ = 1.7 . . . 0.042 0.016 0.214

PPP - τ = 1.8 . . . 0.027 0.014 0.162

PPP - τ = 1.9 . . . 0.014 0.011 0.103

PPP - τ = 2.0 . . . 0.010 0.010 0.077

Note. We report performance statistics for carry trade portfolios with strategies (15-

year moving average, interest rate differential (greater than (med-min)), and momen-

tum trading) over the sample period, January 1980 - December 2008: annualized ret-

urn, standard deviation, and Sharpe ratio on a monthly basis. “PPP - τ = 0” means

that we use PPP-augmented carry trade strategy with a threshold of τ = 0 percent.

Monthly returns are given only for months in which strategies are active. For näıve

carry trades, all months are active, for PPP-augmented carry trades, the number of

active months falls as the threshold increases.
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Figure 2.1. Scatter plots

(a) Scatter plot of exchange rate volatility against trade intensity (maximum)

(b) Scatter plot of exchange rate volatility against trade intensity (average)

Note. The x-axis is trade intensity (maximum) and trade intensity (average) for (a)

and (b), respectively. The y-axis is real exchange rate volatility. Scatter plots are for

91 currency pairs involving 14 countries over the period 1980-2005. The straight line

is depicted by running the Ordinary Least Squares (OLS) regression.
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Figure 2.2. Generalized impulse response functions (GIs)

(a) 35 highest TI currency pairs

(i) USD/CAD, (ii) USD/MXN, (iii) USD/JPY

(i) USD/GBP, (ii) USD/KRW, (iii) KRW/JPY

Note. The GIs for the currency pairs in order are plotted with the solid,

dashed, and dotted lines, respectively.
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(a) 35 highest TI currency pairs

(i) SEK/NOK, (ii) GBP/NOK, (iii) USD/SGD

(i) NZD/AUD, (ii) JPY/AUD, (iii) SGD/JPY
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(a) 35 highest TI currency pairs

(i) USD/TRY, (ii) USD/CHF, (iii) SEK/DKK

(i) GBP/SEK, (ii) GBP/DKK, (iii) GBP/CHF
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(a) 35 highest TI currency pairs

(i) USD/AUD, (ii) NOK/DKK, (iii) GBP/TRY

(i) NZD/JPY, (ii) USD/SEK, (iii) USD/NZD
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(a) 35 highest TI currency pairs

(i) GBP/JPY, (ii) CHF/JPY, (iii) USD/DKK

(i) SGD/AUD, (ii) SGD/KRW, (iii) GBP/AUD
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(a) 35 highest TI currency pairs

(i) TRY/CHF, (ii) KRW/AUD, (iii) GBP/NZD

(i) USD/NOK, (ii) CHF/SEK
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(b) 35 lowest TI currency pairs

(i) CHF/NOK, (ii) CAD/AUD, (iii) TRY/DKK

(i) MXN/CAD, (ii) SEK/CAD, (iii) TRY/CAD
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(b) 35 lowest TI currency pairs

(i) NZD/CAD, (ii) SEK/KRW, (iii) NOK/KRW

(i) GBP/MXN, (ii) KRW/DKK, (iii) CHF/MXN

129



Figure 2.2. Generalized impulse response functions (GIs) (continued)

(b) 35 lowest TI currency pairs

(i) SEK/SGD, (ii) MXN/KRW, (iii) TRY/AUD

(i) TRY/NOK, (ii) TRY/SGD, (iii) DKK/AUD
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(b) 35 lowest TI currency pairs

(i) SGD/NOK, (ii) DKK/CAD, (iii) SGD/DKK

(i) SGD/CAD, (ii) SEK/MXN, (iii) SEK/NZD
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(b) 35 lowest TI currency pairs

(i) CHF/NZD, (ii) NZD/MXN, (iii) NZD/DKK

(i) SGD/MXN, (ii) NOK/AUD, (iii) TRY/NZD
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Figure 2.2. Generalized impulse response functions (GIs) (continued)

(b) 35 lowest TI currency pairs

(i) MXN/DKK, (ii) MXN/AUD, (iii) TRY/MXN

(i) NOK/NZD, (ii) NOK/MXN
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Figure 2.3. Sharpe ratios without and with a momentum trading strategy

(a) Sharpe ratios without a momentum trading strategy

(b) Sharpe ratios with a momentum trading strategy

Note. The x-axis refers to a threshold, and the y-axis refers to a Sharpe ratio.

“N” refers to the näıve carry trade strategy. The solid line denotes high trade

intensity pairs, and the dashed line denotes low trade intensity pairs.
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Figure 2.4. Performance of portfolios without and with a momentum trading strategy

(a) Performance of portfolios without a momentum trading strategy: High TI (top)

vs. Low TI (bottom)

Note. The x-axis refers to time, and the y-axis refers to an amount of dollars. The

short-dashed, solid, and circle-marker lines denote the näıve carry trade strategy,

the PPP-augmented carry trade strategy with a threshold of 0 percent, and of 30

percent, respectively. Also, the dash-dotted, dotted, and long-dashed lines denote

the PPP-augmented carry trade strategy with a threshold of 50 percent, of 70 per-

cent, and of 130 percent, respectively.
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Figure 2.4. Performance of portfolios without and with a momentum trading strategy

(continued)

(b) Performance of portfolios with a momentum trading strategy: High TI (top)

vs. Low TI (bottom)

Note. As for Figure 2.4 (a).
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Chapter 3

Nonlinear Long Memory Properties

and Mean Reversion of Real Exchange

Rates in the Post-Bretton Woods Era

3.1 Introduction

While real exchange rates are known to be remarkably volatile, they consistently tend to

revert back to long-run equilibrium levels. Although deviations from Purchasing Power

Parity (PPP) in the short run are broadly observed, researchers believe that some form of

PPP holds at least as a long-run relationship (see, e.g., Rogoff (1996) and Taylor et al.

(2001)). The mean reverting behavior of real exchange rates is well documented in many

previous studies. A considerable amount of literature (see, e.g., Abuaf and Jorion (1990)

[1973-1987], Frankel and Rose (1996a) [1948-1992], Diebold et al. (1991) [1832-1913], Froot

and Rogoff (1995) [1913-1988], Lothian and Taylor (1996) [1791-1990], Papell (1997) [1973-
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1994], Rogoff (1996) [1972-1995], Taylor and Sarno (1998) [1973-1996], and Wu (1996) [1974-

1993], among others. The sample period is also reported in brackets.) has examined whether

real exchange rates exhibit mean reversion, and whether there is evidence of PPP in the

long run under the recent float. The results have generally been mixed with less evidence

of stationarity in the post-Bretton Woods period. Lothian and Taylor (1996) found strong

evidence of significant mean reverting behavior of real exchange rates using the annual data

spanning two centuries. The authors argued that the slow adjustment and the low power of

conventional unit root tests do account for the widespread failure of such tests to reject the

null hypothesis of a unit root in the data for the recent floating rate period alone. Abuaf and

Jorion (1990), Murray and Papell (2005), and Rossi (2005) have used the data for exchange

rates in the post-Bretton Woods Era since 1973. However, Froot and Rogoff (1995), Rogoff

(1996) and many others found that it is notably much harder to detect mean reversion in

real exchange rates during the post-Bretton Woods period. Many other studies including

the aforementioned articles have mainly attempted to explain the puzzling inability to reject

the null hypothesis of nonstationarity using standard unit root tests.

There has also been a large amount of literature to study mean reversion in real exchange

rates by employing nonlinear models. Taylor et al. (2001) estimate a smooth transition

autoregressive (STAR) model, which allows the speed at which exchange rates converge

to their long-run equilibrium values to depend on the size of the deviations, and provide

evidence of nonlinear mean reversion in a number of major real exchange rates. The model

thus allows for the possibility that real exchange rates may behave like unit root processes

when close to their long-run equilibrium levels, while becoming increasingly mean-reverting

the further they move away from equilibrium. Cheung and Lai (2000) examine dollar-based
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real exchange rates using fractional integration analysis which estimates a standard ARFIMA

model, and present evidence of mean reversion for many series. Furthermore, Cheung and

Lai (2001) show that the puzzling behavior of yen-based real exchange rates may stem from

long memory dynamics undermining unit root tests in their ability to identify mean reversion.

Recent evidence reveals that many univariate economic and financial time series possess

both nonlinear and long memory properties. Motivated by this recent evidence, Baillie and

Kapetanios (2008) developed a general nonlinear, smooth transition regime autoregression

which is embedded within a strongly dependent, long memory process. The authors also

found that a fractionally integrated, nonlinear autoregressive ESTAR (FI-NLAR-ESTAR)

model is quite successful in representing the nonlinear structures and strong dependencies

within six monthly forward premia for the periods, December 1978 through December 1998

or January 2002 depending on whether the currency is included in the Eurozone, and the

historical yearly USD/GBP real exchange rate for the periods, 1791 through 1994. In their

paper, it has been shown that the time domain MLE is generally superior to the two step

estimator which is an alternative procedure of first estimating the long memory parameter

by using the Local Whittle estimator to obtain a fractionally integrated filtered series, before

estimating the remaining parameters. Also, van Dijk et al. (2002a) proposed a fractionally

integrated smooth transition autoregressive (FI-STAR) model to jointly capture both long

memory and nonlinear features, and found evidence of both long memory and nonlinear

behavior for three decades of monthly US unemployment. Hence, the article by Baillie and

Kapetanios (2008) aims to jointly model both nonlinearity and long memory for economic

and financial time series which include forward premia, real exchange rates, and many others.

This paper examines nonlinear and long memory properties and mean reverting dynamics
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of real exchange rates. The purpose of this paper is to find evidence which is supportive

of mean reversion in real exchange rates by estimating the FI-NLAR-ESTAR model that is

capable of representing both nonlinear and long memory features for the various economic

and financial time series. It has been found that the FI-NLAR-ESTAR model is quite suc-

cessful in detecting the mean reverting dynamics of real exchange rates. While the nonlinear

long memory model has been found to be more supportive of strong empirical evidence for

the presence of slow mean reversion in real exchange rates, the linear fractionally integrated

model has not for all of the currencies considered in this study over the recent float.

The contribution of this paper to the existing literature is that a model that is capable

of capturing both nonlinear and long memory characteristics may help identifying mean

reversion in real exchange rates. In particular, the fractional integration analysis reveals

that the null hypothesis of the presence of a unit root is rejected at least at the 5 percent

significance level for all of the currencies considered in this study. This implies that a

linear fractionally integrated model such as ARFIMA can be improved by adding nonlinear

properties in terms of its ability to detect mean reversion to the long run equilibrium level

in real exchange rates.

The rest of the paper is organized as follows: Section 3.2 introduces the time series model

representing both nonlinearity and long memory. Section 3.3 presents empirical results from

the estimation of the model. Section 3.4 describes the data, and provides some summary

statistics. Section 3.5 concludes.

140



3.2 The FI -NLAR-ESTAR model

A univariate time series process with fractional integration in its conditional mean is repre-

sented by

(1− L)d yt = ut, t = 1, 2, ..., T (3.1)

where L is the lag operator, d is the long memory parameter and ut is a short memory

I(0) process. The time series yt is said to be a fractionally integrated process of order d, or

I(d) (see Granger and Joyeux (1980), Granger (1980) and Hosking (1981)). Long memory,

fractionally integrated processes are associated with hyperbolically decaying autocorrelations

and impulse response weights. Baillie (1996) provides detailed surveys of these models

and discussions of the applications to economics and finance. The parameter d is possibly

noninteger, and represents the degree of “long memory” behavior or persistence in the series.

For noninteger d, the operator (1− L)d in equation (1) is through the binomial expansion

(1− L)d = 1− dL+
d (d− 1)

2!
L2 − d (d− 1) (d− 2)

3!
L3 + · · · . (3.2)

For d = 1, (1− L)d is the usual first-differencing operator. For −0.5 < d < 0.5, the process

is covariance stationary and invertible. For 0 < d < 0.5, the process possesses long memory,

and its autocorrelations are all positive and decay at a hyperbolic rate. For −0.5 < d < 0,

the sum of absolute values of the processes autocorrelations tends to a constant so that it

has short memory. For 0.5 ≤ d < 1, the process does not have a finite variance, but still

has a cumulative impulse response function with a finite sum, which implies that shocks to

the level of the series are mean reverting. The mean reverting property depends on whether

d < 1. For d = 1, the time series is a unit root process which implies the effect of a shock does

not die out. However, a fractionally integrated process with d < 1 exhibits shock-dissipating
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behavior. If the short memory process ut is represented as an ARMA(p,q ) process, equation

(1) becomes the ARFIMA(p,d,q) model

Φ (L) (1− L)d yt = Θ (L) εt, (3.3)

where Φ (L) = 1 − φ1L − · · · − φpLp, Θ (L) = 1 + θ1L + · · · + θqL
q, and all roots of Φ (L)

and Θ (L) lie outside the unit circle.

A model that is capable of capturing both nonlinear and long memory features is the FI-

NLAR-ESTAR model developed by Baillie and Kapetanios (2008). In the paper, the authors

consider a general nonlinear, smooth transition regime autoregression which is embedded

within a strongly dependent, long memory process. They consider situations where the

short memory process ut is allowed to be a nonlinear process, rather than a pure ARMA

process. To be more specific, by allowing for general nonlinear processes and from equation

(3.1)

ut = F
(
ut−1, · · · , ut−p

)
+ εt, (3.4)

so that the short memory component of the process is a possibly nonlinear autoregression

involving the last p lags of the variable, ut. The strong dependent component is represented

by a fractionally integrated process as in equation (3.1), and the stationary I(0) component

is composed of an autoregression with a linear part of order p and a nonlinear part of order

k where the nonlinearity involves the use of a smooth transition function. The FI (d)-

NLAR(p,k) -ESTAR model is represented as

(1− L)d yt = ut, (3.5)

ut = α (L)ut−1 + β (L)ut−1φ (ut−D) + εt,
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where the polynomials in the lag operator are α (L) = α0 +
∑p−1
i=0 αiL

i, β (L) = β0 +∑k−1
i=0 βiL

i, φ (ut−D) is the smooth transition autoregression function, D is a delay parame-

ter, and εt is a white noise process. The most widely used nonlinear model is the Exponential

Smooth Transition Autoregressive (ESTAR) model introduced by Granger and Teräsvirta

(1993) and Teräsvirta (1994). A transition function suggested by Granger and Teräsvirta

(1993) is the exponential function

φ (ut−D) = 1− exp
(
−γ (ut−D − c)2

)
with γ > 0, (3.6)

where ut−D is a transition variable, γ is a slope parameter, and c is a location parameter.

The restriction on the parameter (γ > 0) is an identifying restriction. Thus, the NLAR(p,k)

-ESTAR part is represented as

ut = α0 + β0

[
1− exp

(
−γ (ut−D − c)2

)]
(3.7)

+

p∑
i=1

αiut−i +
k∑
i=1

βiut−i
[
1− exp

(
−γ (ut−D − c)2

)]
+ εt,

and this is the form of the model that is used for the empirical analysis of real exchange

rates in this study. The estimation of the model is implemented through the use of a time

domain MLE for a stationary, fractionally integrated, nonlinear autoregression with smooth

transition regimes.1 The model can be estimated by approximate MLE in the time domain.

Baillie and Kapetanios (2008) show that an alternative procedure of first estimating the long

memory parameter by using the Local Whittle estimator to obtain a fractionally filtered

series, before estimating the remaining parameters, is generally found to be inferior to the

1Baillie and Kapetanios (2008) show that the use of a time domain MLE for stationary,
fractionally integrated, nonlinear autoregression with smooth transition regimes has desirable

asymptotic properties and possesses T 1/2 consistent parameter estimates with a limiting
Normal distribution.
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full MLE.

Several previous studies including Diebold et al. (1991), Cheung (1993) and Cheung and

Lai (2000, 2001) have considered fractionally integrated, or long memory behavior of real

exchange rates. However, a recent paper by Baillie and Kapetanios (2007) constructs the

application of the tests based on logistic approximations and Artificial Neural Networks

(ANN ), and suggests the widespread presence of both nonlinear and long memory com-

ponents in many economic and financial time series such as the rate of inflation and real

exchange rates. For example, as mentioned earlier, van Dijk et al. (2002a) propose a time

series model to describe long memory and nonlinearity at the same time, and find evidence

of both nonlinear and long memory properties for US unemployment. Hence, Baillie and

Kapetanios (2008) aim to jointly model both nonlinear and long memory characteristics for

strongly dependent processes, and include some applications of the methodology and estima-

tion of a fractionally integrated, nonlinear autoregressive ESTAR model to forward premia

for six different currencies and the yearly USD/GBP real exchange rate. They find that

the estimated FI (d)-NLAR(p,k)-ESTAR models appear to be successful in representing the

nonlinear structures and strong dependencies.

3.3 Data and Summary Statistics

This study uses monthly price levels measured by consumer price indices (CPI), and monthly

spot exchange rates for the Swiss Franc (CHF), Great British Pound (GBP), Japanese Yen

(JPY), Norwegian Krone (NOK) and Swedish Krona (SEK) vis-à-vis the US Dollar. The

data used in this empirical study are collected from the International Financial Statistics
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(IFS ) and spot exchange rates are measured as mid rates at the end of the month, from

January 1970 through October 2010, comprising a total of 490 monthly observations for each

currency.

The real exchange rate, qt, is defined in logarithmic form as

qt ≡ st − pt + p∗t (3.8)

where st is the logarithm of the nominal exchange rate which is measured as the price of

the domestic currency in terms of the foreign currency, and pt and p∗t denote the logarithms

of the domestic and foreign price levels, respectively. If PPP held continuously, qt would

be a constant that reflects differences in units of measurement. As noted in particular

by Taylor et al. (2001), the real exchange rate may be interpreted as a measure of the

deviation from PPP. Since the real exchange rate is the nominal exchange rate which is

adjusted for relative price levels between two countries, variations in the real exchange rate

may represent deviations from PPP. Lothian and Taylor (1996) also noted that failure to

reject the hypothesis of nonstationarity in the real exchange rate has been evidence against

long-run PPP.

Figure 3.1 shows the logarithms of monthly real exchange rates over the periods, January

1970 through October 2010. Most of the sample periods fall into the post-Bretton Woods

floating exchange rate system. In all cases, it is observed that real exchange rates exhibit

large appreciations and depreciations against the US Dollar over the entire sample periods.

Table 1 presents some preliminary summary statistics for the time series data of real exchange

rates. The first two rows show the mean and standard deviation of real exchange rates as

defined in equation (3.8). It is interesting to note that the Swiss Franc (CHF) and Japanese
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Yen (JPY)–two currencies that are most widely used as funding currencies for carry trades–

appear to exhibit higher exchange rate volatility than other three currencies, as indicated

by standard deviations of 0.21 and 0.25, respectively. In Table 3.1, ACF1 through ACF

6 denote autocorrelation functions up to lag 6. It is clearly indicated that real exchange

rates are strongly dependent processes. Many economic and financial time series including

real exchange rates and forward premia are strongly persistent, and display slowly decaying

hyperbolic autocorrelations. The Ljung-Box test statistics for autocorrelations up to 20

lags also reveal that there is significant evidence that there is autocorrelation between the

series for each currency. In Figure 3.2 (a), the first 120 autocorrelations of the logarithms of

real exchange rates are plotted. Also, the autocorrelations of first-differenced real exchange

rates are displayed in Figure 3.2 (b). The autocorrelations of real exchange rates show a

slow decay associated with fractionally integrated processes. The autocorrelations of first-

differenced real exchange rates display some negative values at low lags, which strongly

suggests overdifferencing.

3.4 Empirical Results

The results from estimating FI-NLAR-ESTAR models for different currencies are reported

in Table 3.2. The tests for nonlinearity denoted by TLG (proposed by Teräsvirta et al.

(1993)) and ANN (proposed by Lee et al. (1993)), respectively indicate the necessity of

the nonlinear long memory model. The p-values for these nonlinearity tests are reported

in Table 3.2, and provide significant evidence for nonlinearity. The chosen orders, p and k

of the models that optimized the information criteria are different across the currencies. In
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most cases, the lag orders selected by each information criterion were the same. Otherwise,

following Baillie and Kapetanios (2008), the choice from the Akaike criterion was used. The

most appropriate order of the linear autoregressive part varies between 8 for JPY and SEK,

and 12 for GBP, while the optimum order for the nonlinear autoregressive part is one for all

currencies. The long memory parameter d from MLE is relatively close to the Local Whittle

estimate for most currencies.2 It is in the range between 0.5 and 1 for most currencies which

implies nonstationarity of the process, but nevertheless existence of a cumulative impulse

response function with a finite sum, which implies that shocks to the level of the series are

mean reverting. It is in the range between 0 and 0.5 for GBP and SEK, which implies

covariance stationarity of the process. As noted by Baillie and Kapetanios (2008), two

of the estimated models have the first nonlinear autoregressive coefficient β1 being small

and not significantly different from zero. However, the effect of nonlinearity enters through

the statistically significant constant term β0. Since the estimated long memory parameter

exceeds 0.5 in most cases, the models were also estimated after having first-differenced the

data. It appeared that this did not change the results after having added unity to the

estimate of the long memory parameter. In the last three rows of Table 3.2, the estimation

results from Autoregressive Fractionally Integrated Moving Average (ARFIMA) models are

reported. The long memory parameter, d along with the chosen order, p of the model is

displayed.

Following Cheung and Lai (2000, 2001), the fractional integration analysis is implemented.

The results from ARFIMA models and FI-NLAR-ESTAR models are displayed in Tables 3.3

2 It was not possible to find an appropriate model for the Canadian Dollar (CAD), since
the estimate of γ was very large, and both the Local Whittle and MLE methods were not
able to reject the hypothesis of d = 1.

147



and 3.4, respectively. In each Table, the MLE of the long memory parameter d along with its

corresponding standard error is reported. The t-statistics for each hypothesis testing is also

reported. In Table 3.3, the results from ARFIMA models indicate that the null hypothesis

of d = 0 is rejected in favor of the alternative hypothesis of d > 0 at the 5 percent significance

level for CHF and SEK, and at 1 percent significance level for other currencies. However,

the null hypothesis of d = 1 (a unit root) cannot be rejected in favor of the alternative

hypothesis of d < 1 (mean reversion) at the any significance level for CHF, JPY, and NOK,

while it is rejected at the 10 percent significance level for GBP, and at 1 percent level for

SEK. For the ARFIMA model, these results provide no evidence of mean reversion at all

for three out of five currencies. In Table 3.4, the results from FI-NLAR-ESTAR models

indicate that all the currencies have an integration order of neither zero nor unity. The null

hypothesis of d = 0 is rejected in favor of the alternative hypothesis of d > 0 at the 1 percent

significance level for all the currencies. Furthermore, the null hypothesis of d = 1 (a unit

root) is also rejected in favor of the alternative hypothesis of d < 1 (mean reversion) at the

5 percent significance level only for NOK, and at the 1 percent level for all other currencies.

This finding is consistent with the result in Baillie and Kapetanios (2008). The authors

considered the historical series of the annual USD/GBP real exchange rate for the periods

spanning from 1791 through 1994, and found that the estimated nonlinear and long memory

model provides evidence of slow mean reversion of the historical series. Overall, the results

from FI-NLAR-ESTAR models suggest significant empirical evidence of slow mean reversion

in real exchange rates for all the currencies in this study.

An investigation of the fractional integration analysis for two models clearly reveals the fact

that the model that is capable of capturing both nonlinear and long memory characteristics
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outperforms the linear fractionally integrated model. That is, the FI-NLAR-ESTAR model

works better in terms of its ability to identify mean reversion to the long run equilibrium level

in real exchange rates. The need for the nonlinear model for strongly persistent processes is

apparently indicated by the fractional integration analysis which strongly supports the mean

reverting process of real exchange rates.

3.5 Conclusion

Although deviations from Purchasing Power Parity (PPP) in the short run are broadly ob-

served, researchers believe that some form of PPP holds at least as a long-run relationship.

Several previous studies have examined whether real exchange rates exhibit mean reversion,

and whether there is evidence of PPP in the long run. This paper investigates both nonlinear

and long memory characteristics and mean reverting behavior of real exchange rates. The pa-

per estimates a fractionally integrated, nonlinear autoregressive ESTAR (FI-NLAR-ESTAR)

model for strongly dependent processes developed by Baillie and Kapetanios (2008). It has

been found that the FI-NLAR-ESTAR model is quite successful in identifying the mean

reverting dynamics of real exchange rates. While the nonlinear long memory model has

been found to be more supportive of strong empirical evidence for the presence of slow mean

reversion in real exchange rates, the linear fractionally integrated model has not for all of

the currencies considered in this study over the recent float. Overall, the results suggest that

the model that is capable of representing both nonlinear and long memory characteristics

may help identifying mean reversion in real exchange rates. That is, the FI-NLAR-ESTAR

model works better than the linear fractionally integrated model such as ARFIMA in terms
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of its ability to detect mean reversion to the long run equilibrium level in real exchange rates.

The need for the nonlinear model for strongly persistent processes is apparently indicated by

the fractional integration analysis which is strongly supportive of the mean reverting process

of real exchange rates. In general, this study illustrates that the puzzling behavior of real

exchange rates may be due to both nonlinear and long memory dynamics, which weaken the

ability of standard unit root tests to detect mean reversion to the long run equilibrium level.
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Table 3.1. Summary statistics

Real exchange rate

Currency CHF GBP JPY NOK SEK

Mean 0.3187 -0.4267 4.7431 1.9121 1.8851

Standard dev. 0.2092 0.1484 0.2518 0.1413 0.1873

ACF1 0.9768 0.9757 0.9843 0.9724 0.9853

ACF2 0.9524 0.9474 0.9672 0.9433 0.9688

ACF3 0.9280 0.9182 0.9493 0.9123 0.9521

ACF4 0.9028 0.8889 0.9306 0.8811 0.9338

ACF5 0.8789 0.8591 0.9125 0.8524 0.9143

ACF6 0.8549 0.8291 0.8950 0.8228 0.8944

LB 5733.92 5461.51 6736.65 5292.47 6703.80

T 490 490 490 490 490

Note. Real exchange rates are in logs. ACF1-ACF6 denote auto-

correlation functions up to lag 6. LB denotes the Ljung-Box test

statistic for autocorrelations up to 20 lags. T denotes the sample

size.
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Table 3.2. Estimated FI-NLAR-ESTAR models for monthly real exchange rates

Real exchange rate

Currency CHF GBP JPY NOK SEK

LW 0.9075 0.8757 0.6165 0.6244 0.6592

Nonlinearity tests

TLG 0.002 0.026 0.137 0.000 0.009

ANN 0.001 0.037 0.110 0.000 0.012

Estimation of FI-NLAR-ESTAR model

p 9 12 8 10 8

k 1 1 1 1 1

Linear AR parameters

α0 0.9356 -0.1033 -1.0460 -0.1208 -0.1715

(0.5044) (0.1319) (0.0442) (0.2618) (0.3652)

α1 -0.1081 0.8497 -1.6554 1.4066 0.6528

(0.2741) (0.3548) (0.2921) (0.0578) (0.5183)

α2 0.0823 0.0842 0.1162 -0.2432 0.0605

(0.0572) (0.0552) (0.4743) (0.1600) (0.1194)

α3 0.0867 0.0385 0.0875 -0.1522 0.1011

(0.0566) (0.0552) (0.3395) (0.0940) (0.1166)

α4 -0.0027 0.0388 -0.0444 -0.0208 0.0084

(0.0690) (0.0551) (0.5132) (0.1023) (0.1289)

α5 0.0455 0.0152 0.0116 0.0759 0.0145

(0.0666) (0.0556) (0.1902) (0.0829) (0.1241)

α6 -0.0665 -0.0661 -0.0611 -0.1280 -0.1231

(0.0657) (0.0537) (0.6066) (0.0817) (0.1137)

α7 0.0848 0.0043 0.0413 0.1338 0.0785

(0.0691) (0.0508) (0.4822) (0.0882) (0.1158)

α8 -0.0171 0.0416 0.1279 -0.0936 0.0676

(0.0987) (0.0538) (0.5507) (0.0820) (0.0983)

α9 0.1002 0.0450 0.0774

(0.0594) (0.0556) (0.0923)

α10 -0.0739 -0.0705

(0.0557) (0.0511)

α11 0.1457

(0.0555)

α12 -0.0787

(0.0467)
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Table 3.2. Estimated FI-NLAR-ESTAR models for monthly real exchange rates

(continued)

Real exchange rate

Currency CHF GBP JPY NOK SEK

Nonlinear AR parameters

β0 -1.9401 0.2132 2.0330 0.1577 2.5712

(0.4007) (0.1489) (0.2350) (0.2311) (0.4284)

β1 -0.0105 -0.2141 0.0633 -0.0008 -0.6328

(0.3192) (0.3443) (1.2233) (0.1223) (0.5509)

θ 0.2382 0.3091 1.7287 0.6007 0.0439

(0.1571) (0.9293) (0.0237) (1.2970) (0.0216)

c 1.7175 0.1865 -0.6452 -2.5684 -0.8524

(0.0747) (0.3622) (0.0528) (0.2799) (0.0544)

d 0.6729 0.4182 0.6414 0.5907 0.4635

(0.0763) (0.0207) (0.0244) (0.1860) (0.0361)

LBR 10.56 13.45 6.09 8.76 11.07

Results from ARFIMA models

p 9 9 10 11 8

d 0.9243 0.6485 0.7685 0.9008 0.2952

(0.4141) (0.2550) (0.2770) (0.2450) (0.1618)

Note. LW denotes the Local Whittle estimate. TLG and ANN

denote the tests for nonlinearity developed by Teräsvirta et al.

(1993) and Lee et al. (1993), respectively. LBR denotes the

Ljung-Box statistic for residual autocorrelation.
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Table 3.3. Fractional integration analysis for ARFIMA models

Results from ARFIMA models

Currency d Standard error Testing H0:d = 0 Testing H0:d = 1

against H1:d > 0 against H1:d < 1

CHF 0.9243 0.4141 2.2321∗∗ -0.1828

GBP 0.6485 0.2550 2.5431∗∗∗ -1.3784∗

JPY 0.7685 0.2770 2.7744∗∗∗ -0.8357

NOK 0.9008 0.2450 3.6767∗∗∗ -0.4049

SEK 0.2952 0.1618 1.8245∗∗ -4.3560∗∗∗

Note. d denotes the MLE of the long memory parameter. The t-statistics

for each hypothesis testing are reported. ∗, ∗∗, and ∗∗∗ indicate statistical

significance at the 10, 5, and 1 percent levels, respectively.
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Table 3.4. Fractional integration analysis for FI-NLAR-ESTAR models

Results from FI-NLAR-ESTAR models

Currency d Standard error Testing H0:d = 0 Testing H0:d = 1

against H1:d > 0 against H1:d < 1

CHF 0.6729 0.0763 8.8191∗∗∗ -4.2870∗∗∗

GBP 0.4182 0.0207 20.2029∗∗∗ -28.1063∗∗∗

JPY 0.6414 0.0244 26.2869∗∗∗ -14.6967∗∗∗

NOK 0.5907 0.1860 3.1758∗∗∗ -2.2005∗∗

SEK 0.4635 0.0361 12.8393∗∗∗ -14.8615∗∗∗

Note. As for Table 3.3.
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Figure 3.1. Logarithms of monthly real exchange rates vis-à-vis the US Dollar over time

CHF GBP

JPY NOK

SEK

Note. The sample period is from January 1970 through October 2010.
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Figure 3.2. Autocorrelations

(a) CHF

(b) CHF

Note. (a) Autocorrelations of the logarithms of real exchange rates. The

horizontal axis represents the first 120 lags of the autocorrelations of

monthly real exchange rates. (b) Autocorrelations of differenced real

exchange rates. The horizontal line represents the first 120 lags of the

autocorrelations of the first differences of monthly real exchange rates.

The dashed lines indicate the Bartlett 95 percent confidence intervals.

157



Figure 3.2. Autocorrelations (continued)

(a) GBP

(b) GBP
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Figure 3.2. Autocorrelations (continued)

(a) JPY

(b) JPY
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Figure 3.2. Autocorrelations (continued)

(a) NOK

(b) NOK
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Figure 3.2. Autocorrelations (continued)

(a) SEK

(b) SEK
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van Dijk, D., Teräsvirta, T., and Franses, P. H. (2002b). Smooth transition autoregressive
models - A survey of recent developments. Econometric Reviews, 21:1–47.

Wu, Y. (1996). Are real exchange rates nonstationary? Evidence from a panel-data test.
Journal of Money, Credit and Banking, 28:54–63.

170


