
 

 

Designing p-Optimal Item Pools for  
Multidimensional Computerized Adaptive Testing 

 
By 

 
Liyang Mao 

 

 

 

 

 

 

 

A DISSERTATION 
 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

 
Measurement and Quantitative Methods - Doctor Of Philosophy 

 
2014 

 

 

 

 



 

ABSTRACT 

DESIGNING P-OPTIMAL ITEM POOLS FOR  
MULTIDIMENSIONAL COMPUTERIZED ADAPTIVE TESTS 

By 

Liyang Mao 

The interest in multidimensional computerized adaptive testing (MCAT) has grown 

considerably over the last few years.  While a significant amount of research has been conducted 

on item selection and ability estimation methods for MCAT, few studies specifically addressed 

the item pool design for MCAT.  To ensure a proper functioning of MCAT, a well-designed item 

pool is imperative.  A well-designed item pool should consist of a number of well-balanced items 

that achieve appropriate test precision, item usage, as well as lower the cost of item creation.  

One method to develop such an item pool is the p-optimality method, which is proposed by 

Reckase (2003 & 2007) for unidimensional CAT.  This paper aims to develop p-optimal item 

pools for MCAT by extending the Reckase’s method to a multidimensional context.  

The extension includes the generation of a multidimensional optimal item based on the D-

Optimality item selection creation, the definition of the MDIFF-bin to describe multidimensional 

item succinctly for item pool design, and the interpretation for the p-optimal item pool in a 

multidimensional context.  In this paper, a total of 24 p-optimal item pools were designed and 

then developed for different test specification, with different correlation among dimensions, 

based on different bin size, and under the condition with or without item exposure control.  The 

characteristics for the 24 p-optimal item pools are summarized.  A simulation study was 

conducted to evaluate the performance of the p-optimal item pools against baseline pools 

existing in research literature.   



Results show that p-optimal item pools achieve similar levels of measurement accuracy as 

baseline pools, but they consist of fewer items and perform better in terms of item pool usage 

and test security.  The characteristics and the performance of the p-optimal item pools are 

affected by factors such as test specification, correlation among dimensions, bin size, and item 

exposure control.  The results in this study can provide a general guideline for the item pool 

development for MCAT.  More importantly, because the p-optimal item pool is specifically 

tailored to the MCAT programs, the p-optimal item pool design procedure described in this study 

can be adapted to other MCAT programs with different features and purposes.  The end product 

of the p-optimal item pool design can be used as an instructive guide for item creation, item pool 

development, and item pool management.   
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Chapter 1 Introduction 

Over the last few decades, computerized adaptive testing (CAT) has achieved great popularity 

in educational assessments.  Different from a conventional paper-and-pencil test, CAT uses a 

computer to deliver test items that are selected by tailoring each item to the ability level of an 

examinee.  Such delivery of tests has several advantages, such as increasing measurement 

precision, reducing testing time, faster score reporting, and flexible scheduling of examinees 

(Wainer, 2000).  Starting in the 1990s, CAT has been successfully applied to many operational 

testing programs, including the Armed Services Vocational Aptitude Battery (ASVAB), the 

Computerized Adaptive Placement Assessment and Support Services (COMPASS), the Graduate 

Management Admission Test (GMAT), and the National Council Licensure Examination 

(NCLEX).  Furthermore, in the 2014-15 school year, almost half states in the United State will 

replace their current K-12 assessments by the CAT-based assessment system developed by the 

Smarter Balanced Assessment Consortium (SBAC, 2013).   

Most operational adaptive tests have been developed based on a unidimensional item response 

theory (UIRT) model.  Nevertheless, the interest in CAT based on multidimensional item 

response theory (MIRT) models (refer to as multidimensional CAT, MCAT) has grown 

considerably as shown by the increasing number of articles in the literature (e.g., Segall, 2010; 

Seitz & Frey, 2013; Wang & Chang, 2011; Yao, 2013).  One reason that MCAT has become 

very popular is that current educational assessments often cover multiple content standards, so 

that those assessments may not be strictly unidimensional (Reckase, 2009).  In a mathematics 

test for Grade 4, for example, there is a concern about providing an adequate number of algebra, 

geometry, number operation, data analysis, and measurement items to each examinee, because 

these content areas are defined as separate components of mathematics proficiency by the 
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Common Core State Standards (CCSS, 2010).  In this situation, it would be straightforward to 

apply MCAT for assessments with multidimensional features.   

In addition, MCAT would be preferred when diagnostic information (i.e., subscores) is to be 

reported.  In educational assessments, although the total score is useful for some decision making, 

subscores complement the total score by providing information about examinees’ strengths and 

weaknesses on each content area.  Therefore, test users usually ask for subscores for diagnostic 

purposes.  Teachers also prefer subscores because subscores can help them design specific 

instruction for each student.  In MCAT, subscores on all content areas can be estimated 

simultaneously using a MIRT model.  In unidimensional CAT (UCAT), however, the UCAT 

needs to be carried out separately, one content area at a time, to estimate each subscore one by 

one.  Therefore, in subscore estimation, MCAT often yields better measurement efficiency than 

UCAT (Luecht, 1996; Segall, 1996; Wang & Chen, 2004; Yao, 2012; Mao, Luo & Zhou, 2013).  

Like a UCAT program, a MCAT program also consists of several components and procedures.  

It begins with an item pool that contains an adequate number of items calibrated using a MIRT 

model.  Then, the MCAT methods usually follow an iterative process: (1) assign an initial ability 

level to an examinee, (2) select a test item from the item pool using an item selection method, (3) 

administer the selected test item to a examinee and collect the response, and (4) score the 

response and update the ability estimates.  This process continues until a certain stopping 

criterion is met.  Operational implementation of CAT often includes constraints such as content 

balancing and item exposure control to address the validity and security issue.   

While a significant amount of research has been conducted on generalizing the item selection 

and ability estimation methods from UCAT to MCAT (Mulder & van der Linden, 2009; Segal, 

1996; Wang & Chang, 2011; Yao, 2013), few studies can be found that specifically addressed 
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the item pool design issue for MCAT.  In all of the existing studies about MCAT, the 

multidimensional item pools are either built from pure simulation (i.e., van der Linden, 1999) or 

created from operational UCAT programs or paper-and-pencil tests (i.e. Diao, 2009; Song, 2010; 

Yao, 2013).  The quality of these item pools is unknown.  Because a CAT program cannot 

function well without an item pool that contains sufficient number of appropriate items for all the 

examinees, item pool design is critical for MCAT programs.  Therefore, in order to design 

quality item pools for MCAT, current item pool design methods for UCAT need to be 

generalized to MCAT.  

For UCAT programs, there are two methods focusing on item pool design: one is the shadow 

test approach (Veldkamp & van der Linden, 2000); the other one is the p-optimality approach 

(Reckase, 2003 & 2010).  According to Veldkamp and van der Linden (2000), before items are 

selected to administer, a shadow test is first assembled from a large item pool (usually called 

“master pool”) using a linear integer programming model.  Then a test item is selected from the 

shadow test, not directly from the item pool, to administer.  The integer programming model 

guarantees that all constraints (i.e., content balancing and item exposure control) on test 

administration can be met.  However, it is still unclear how to design a master pool and what are 

the desired features of a master pool.  Without a multidimensional master pool, the shadow test 

approach cannot be implemented for MCAT programs.   

Unlike the shadow test approach, the p-optimality approach developed by Reckase (2003 & 

2010) directly addressed the item pool design issue.  The definition of Reckase’s p-optimal item 

pool is an item pool “that always has an item available for selection that p% matches the desired 

characteristics specified by the item selection routine for the CAT” (Reckase, 2007).  To design 

such an item pool, an examinee is first randomly sampled from the target examinee population to 
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take the CAT.  Each administered item is simulated to be optimal for this examinee.  This 

procedure is then repeated for the subsequent examinees.  Because items created for one 

examinee can be used for another, the p-optimal item pool is the union of the item sets that are 

administered to each examinee.  After the simulation procedure is repeated for a large number of 

examinees, the number of item in the item pool will eventually approach an upper bound.  Thus, 

the final product of the simulation is an item pool blueprint that tells the pool size and item 

distribution of the item pool.   This blueprint can be directly used as the target for item creation 

and item pool development.   

Therefore, this study aims to generalize the p-optimality method (Reckase, 2003 & 2007) to a 

multidimensional context.  Although the generalization seems conceptually straightforward - just 

implement the simulation procedure based on a MIRT model, to practically implement this 

procedure, a number of technical challenges need to be solved.  For example, the optimal item is 

unique for each examinee when the unidimensional Rasch model (Lord, 1980) is used.  In the 

multidimensional context, however, the optimal item is not unique, because one optimal item can 

be found on each direction of measurement.  How to select the most appropriate optimal item is 

the first challenge.   

The MCAT in this study is based on the multidimensional Rasch model.  The reason for 

selecting the multidimensional Rasch model is because the idea of p-optimal item pool was first 

proposed based on the unidimensional Rasch model.  It is thus straightforward to choose the 

multidimensional Rasch model when this idea is extended to MCAT for the first time.  In this 

study, a p-optimal item pool will be first generated based on the simplest two-dimensional model 

with simple structure.  Then p-optimal items pools for MCAT with higher dimensions and with 

non-simple structure will be generated next.   
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Specifically, the research questions of this study are:  

1. Can the p-optimality method be generalized to design item pools for MCAT based on 

the test design and the examinee population characteristics? 

2. How does the performance of a MCAT using the p-optimality item pool design 

method compare with the performance using other item pool designs? 

3. How do the characteristics of the p-optimal item pool change with exposure control 

and different test specifications (i.e. the number of dimension, correlation among 

dimensions, simple structure or not)? 

Previous work has suggested that MCATs have great potential, but few studies investigate the 

item pool design for MCATs.  By extending the idea of the p-optimal item pool to a 

multidimensional context, the results from this study could provide a general guideline about the 

desired characteristics of the p-optimal item pool for certain MCATs.  More importantly, 

because the p-optimal item pools are specifically tailored to the MCAT programs, the simulation 

procedures described in this study can be adapted to other MCAT programs with different 

features and different test purposes.  The end product of the p-optimal item pool design tells the 

characteristics of the optimal item pool.  If the operational item pool is developed based on the p-

optimal item pool design, the item pool is expected to ensure the proper functioning of MCATs 

and to produce reliable measurement outcomes.   

 



6 
 

Chapter 2 Unidimensional and Multidimensional CAT 

This chapter first introduces the computerized adaptive testing (CAT) in Section 2.1.  The 

unidimensional IRT model and the unidimensional CAT are briefly discussed in Section 2.2.  

The multidimensional IRT model and the multidimensional CAT are explained in Section 2.3.  

2.1 Computer Adaptive Testing 

CAT is a special form of a computer-delivered test that is adaptive to the examinee's ability 

level.  The “adaptive” means test items are selected on the basis of the examinee's responses to 

the items previously administrated.  One early use of adapting the difficulty of a test to each 

individual examinee is the Binet-Simon (1905) intelligence test.  The items in this test were 

grouped according to mental age, and the selection of items is determined by the examinee’s 

mental age estimate, which is derived from the responses to the items administered earlier.  From 

the 1970s, with the development of item response theory and the breakthrough in modern 

computer technology, the idea of adaptive testing was refined and developed into the current 

CAT procedures.   

For a typical CAT program, the test begins with the first item selected based on an initial 

estimate of an examinee’s ability level.  After each item is administered, a new ability level is 

estimated and the next item with optimal properties at the new estimate is selected to administer.  

This process is repeated until it meets certain stopping rules, such as, the precision of proficiency 

estimate is adequate, or a fixed number of items have been administrated.  Therefore, a basic 

CAT application consists of four major components: an item pool, an item selection procedure, a 

scoring procedure, and a test stopping rule (Reckase, 1989).  In practice, constraints such as 
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content balancing and exposure control are often imposed on the item selection procedure to 

ensure the test validity and test security.   

2. 2 Unidimensional IRT and CAT 

2.2.1 Unidimensional IRT Models 

Item response theory (IRT) is a group of mathematical models that describes the relationship 

between examinee ability and the possibility of answering test items correct.  Unidimensional 

item response theory (UIRT) models assume examinees’ responses to test items depend on one 

single latent trait (Lord, 1980).  The item response function (IRF) for the three-parameter logistic 

(3PL) model (Birnbaum, 1968) is defined by 

P�𝑢𝑢ij = 1�𝜃𝜃𝑗𝑗 , 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)
e𝑎𝑎𝑖𝑖(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

1 + e𝑎𝑎𝑖𝑖(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)
,               (2.1) 

where P�𝑢𝑢ij = 1�𝜃𝜃𝑗𝑗 ,𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖� is the probability of a correct response to item i by person j;  𝑢𝑢ij  is 

the response on item i by person j (1 is correct and 0 is incorrect); 𝜃𝜃𝑗𝑗  is person j’s continuous 

latent ability; 𝑏𝑏𝑖𝑖 , the item difficulty parameter of item i, denotes the inflection point of the IRF; 

𝑎𝑎𝑖𝑖 , the discrimination parameter for item i, is proportional to the slope of the IRF at its inflection 

point; 𝑐𝑐𝑖𝑖 , the lower asymptote of the IRF, is the guessing parameter for item i.   

If the guessing parameter is set to 0 for all the items, the 3PL model becomes a two-parameter 

logistic (2PL) model specified by the following IRF:  

P�𝑢𝑢ij = 1�𝜃𝜃𝑗𝑗 ,𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖� =
e𝑎𝑎𝑖𝑖(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

1 + e𝑎𝑎𝑖𝑖(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)
,               (2.2) 

and if the item discrimination parameter is further restricted to be 1 across all the items, the 2PL 

model results in a Rasch model, which is defined by  

P�𝑢𝑢ij = 1�𝜃𝜃𝑗𝑗 ,𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖� =
e𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖

1 + e𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖
.                (2.3) 
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In IRT, the term “information,” also called Fisher information, plays an important role in 

parameter estimation as it is a statistical indicator of the quality of the estimate of a parameter.  

The formula for item information can be derived in a number of different ways, but the one 

provided by Lord (1980) is the most well known.  Let 𝑃𝑃𝑖𝑖(𝜃𝜃) denote the IRF for item i, and let 

𝑄𝑄𝑖𝑖(𝜃𝜃) = 1 − 𝑃𝑃𝑖𝑖(𝜃𝜃).  Then the Fisher information can be obtained by  

𝐼𝐼𝑖𝑖(𝜃𝜃) = [
∂𝑃𝑃𝑖𝑖(𝜃𝜃)
∂𝜃𝜃

)]2 𝑃𝑃𝑖𝑖(𝜃𝜃)𝑄𝑄𝑖𝑖(𝜃𝜃)� .                (2.4)  

When the 3PL model is used, (2.4) becomes  

𝐼𝐼𝑖𝑖(𝜃𝜃) = 𝑎𝑎𝑖𝑖2
𝑄𝑄𝑖𝑖(𝜃𝜃)
𝑃𝑃𝑖𝑖(𝜃𝜃) [

𝑃𝑃𝑖𝑖(𝜃𝜃) − 𝑐𝑐𝑖𝑖
1 − 𝑐𝑐𝑖𝑖

]2.                (2.5)  

When 𝑐𝑐𝑖𝑖  = 0, the information for the 2PL model is 

𝐼𝐼𝑖𝑖(𝜃𝜃) = 𝑎𝑎𝑖𝑖2𝑃𝑃𝑖𝑖(𝜃𝜃)𝑄𝑄𝑖𝑖(𝜃𝜃),                (2.6) 

and when 𝑐𝑐𝑖𝑖  = 0 and 𝑎𝑎𝑖𝑖  = 1, the information for the Rasch model can be simplified to  

𝐼𝐼𝑖𝑖(𝜃𝜃) = 𝑃𝑃𝑖𝑖(𝜃𝜃)𝑄𝑄𝑖𝑖(𝜃𝜃).                (2.7) 

IRT models and Fisher information play a central role in CAT, from item calibration to item 

selection and ability estimation.  In Section 2.2.2 and 2.2.3, item selection methods and ability 

estimation methods for unidimensional CAT (UCAT) will be briefly introduced.  The practical 

constraints for UCAT will be introduced in Section 2.2.4.   

2.2.2 Item Selection Methods for UCAT 

Items in CAT are selected to be adaptive to the examinee’s ability level estimate.  The most 

widely used item selection procedures for UCAT are the maximum Fisher information method 

(Weiss, 1982), the maximum posterior precision method (Owen，1975), and the maximum 

global information method (Chang & Ying, 1996).   
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The maximum Fisher information method selects the item that provides the maximum amount 

of Fisher information at examinee's current ability estimate, 𝜃𝜃�.  Therefore, the unconstrained 

Fisher information-based item selection methods administers items that maximize (2.4) at 𝜃𝜃 = 𝜃𝜃�.   

The maximum posterior precision method is also known as the Owen’s Bayesian method.  It 

selects the next item maximizes the expected posterior precision of 𝜃𝜃�.  In the early stage of a 

CAT, the Owen’s Bayesian method may select different items from the Fisher information 

method, because of the effect of the prior.  As the test length increases, the effect of the prior 

decreases and the results from the two methods become similar (Chang & Stout, 1993).   

The maximum global information method selects items based on the Kullback-Leibler (KL) 

divergence (Kullback & Leibler, 1951), which is a non-symmetric measure of the difference 

between two probability distributions.  In the early stage of a CAT, when the estimated ability is 

away from the examinee’s true ability, the global information method performs better than the 

Fisher information method with respect to the efficiency and precision of ability estimation 

(Chang & Ying, 1996; Chen, Ankenmann, & Chang, 2000).  After several items are administered 

and the estimated ability become close to the true ability, the KL divergence effectively reduces 

to Fisher information.   

2.2.3 Ability Estimation Methods for UCAT 

In CAT, after each response, the examinee's ability estimate is updated, based on his or her 

responses to all previous items.  The two commonly used estimation procedures are the 

maximum likelihood method and the Bayesian method (Bejar & Weiss, 1979).   

Maximum likelihood estimation (MLE) method is to find an estimate that result in the highest 

likelihood for the observed string of item responses.  The likelihood function is defined as: 



10 
 

𝐿𝐿(𝑢𝑢|𝜃𝜃) = �𝑃𝑃𝑖𝑖(𝜃𝜃),               (2.8)
𝑛𝑛

𝑖𝑖=1

 

where 𝑃𝑃𝑖𝑖(𝜃𝜃) is the IRF for item i.  The highest point on the likelihood function can be located by 

taking the derivative of (2.8).  Iterative numerical methods such as Newton-Raphson method 

(Wainer, 1990) are often used to solve the derivative equation.  MLE ability estimates have 

desirable properties like asymptotical unbiasedness.  However, problems can rise at the early 

stage of CAT, since MLE cannot provide finite estimates for responses to single items or for 

patterns of responses that are all correct or all incorrect.  To solve the problem, we can either 

constrain 𝜃𝜃� to a reasonable range (e.g., -4 to 4) or use alternative estimation methods such as 

Bayesian procedure.   

In Bayesian estimation, by summing the prior distribution, the posterior distribution of θ can 

be specified based on the Bayes’ theorem.  The mean of the posterior distribution (refer to as 

EAP) or the mode of the posterior distribution (refer to as MAP) can be used as the examinee’s 

ability estimate.  EAP is more widely used in UCAT because of its stability (Bock & Mislevy, 

1982).   

2.2.4 Practical Constraints for UCAT 

In practice, item selection depending solely on the item selection methods described above 

might bring concerns about test validity and security.  For instance, if a content area requires 

more instructional time, more items measuring this content area should be administered.  Also, if 

some test items are overexposed and examinees have seen them before taking the test, the 

validity of the test will be affected.  To address these considerations, operational testing 

programs often impose constraints on item selection process.  A brief summary of the content 

balancing constraint and item exposure control constraint is provided below.   
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Content balancing procedures ensure each examinee receives approximately the same 

proportion of items from each content area.  The proportion can be determined based on the test 

specification.  Several approaches have been proposed to ensure content balancing in UCAT, 

such as the weighted deviations model  approach (Swanson & Stocking, 1993), the shadow-test 

approach (van der Linden & Reese, 1998), the modified multinomial model (Chen & 

Ankenmann, 2004), the maximum priority index method (Cheng & Chang, 2009), and so on.  

Several research studies (e.g., Cheng & Chang, 2009, Leung, Chang, and Hau, 2003, and van der 

Linden, 2005) have compared the performance of some of these methods.  Generally speaking, 

the shadow-test approach and the maximum priority index are more flexible in dealing with 

several constraints, and the weighted deviations model is more widely used in operational testing 

programs (Buyske, 2005).  Detailed descriptions of these content balancing methods can be 

found in He (2010) and van der Linden (2010).   

Item exposure control procedures aim to preventing test items from overexposing to 

examinees.  Numerous item exposure control procedures have been proposed in the last few 

decades.  The most commonly used procedure is the Sympson-Hetter (SH) procedure (Hetter & 

Sympson, 1997; Sympson & Hetter, 1985).  This procedure assigns an exposure control 

parameter to each item based on the frequency of item selections during an iterative CAT 

simulation.  During the test operation, if the exposure control parameter is larger than a random 

number, the item is administered; otherwise another item is selected and goes through the SH 

procedure again.  Another well known item exposure control procedure is the a-stratified 

procedure proposed by Chang and Ying (1999).  This procedure mainly addresses the issues of 

overdrawing items with high discrimination from item pools.  The a-stratified procedure first 

partitions the item pool into several levels according to the a-parameter of items.  Items with 
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small a-parameter have high priority in the early stage of the test.  Items with large a-values are 

saved for the later stage in a CAT administration.  The maximum priority index procedure 

(Cheng & Chang, 2009) used for content balancing also can be used for item exposure control.  

This procedure adds a weight to item selection method.  Items with higher exposure rates are 

weighted less.  This weight index ensures no item is exposed more than a predetermined rate.  A 

detailed summary of the item exposure control procedures described above can be found in 

Georgiadou, Triantafillou, and Economides (2007).   

All the item selection methods, ability estimation methods, and operational constraints 

heretofore discussed derived to select the appropriate item to administer and pinpoint an 

examinee's true ability.  They are all directly related to the item pool design as the desired item 

pool should always consist of an appropriate item for every item selection and ability estimation 

process.  In Chapter 3, I will explain how item selection methods, ability estimation methods, 

and operational constraints determine the item pool design.  However, before explaining reasons 

for inefficiencies, I first describe multidimensional IRT models and multidimensional CAT.   

2.3 Multidimensional IRT and CAT 

2.3.1 Multidimensional IRT Models 

Most operational CAT programs use UIRT models.  Nevertheless, the test items in 

educational and psychology assessments usually measure more than one latent trait so that many 

researchers have found that examinees often need to use multiple skills to answer test items 

(Childs & Oppler, 2000; Wu & Adams, 2006; Svetina, 2013).  Similar to UIRT, 

Multidimensional IRT (MIRT) is also a collection of mathematical models that describe the 

interaction between persons and test items.  The difference is that the MIRT models deal with 

situations when more than one ability are required for test performance (Reckase, 2009).  
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There are two major types of MIRT models: compensatory and partially-compensatory.  The 

compensatory model is based on a linear combination of ability dimensions, and a high ability on 

one dimension can compensate for a low ability on another dimension.  Sympson (1978), 

however, argued that the compensatory model is not realistic for certain types of items, because 

not all skills can compensate each other.  Thus he developed a partially-compensatory model to 

address this issue.  Although the partially-compensatory model is more theoretically sound than 

compensatory models, studies have found compensatory models actually fit real test data better 

(Ansliey, 1984; Bolt & Lall, 2003).  In addition, estimation difficulty for the partially-

compensatory model hinders its development and application.  As a result, compensatory models 

are more prevalent in the current literature, and thus will be the only ones focused on in this 

study.  

The compensatory form of the multidimensional three-parameter logistic (M3PL) model is 

given by Reckase (2009), which is  

P�𝑢𝑢ij = 1�𝜽𝜽𝒋𝒋,𝒂𝒂𝒊𝒊,𝑑𝑑𝑖𝑖 , 𝑐𝑐𝑖𝑖� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)
e𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋

′ +𝑑𝑑𝑖𝑖

1 + e𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋
′ +𝑑𝑑𝑖𝑖

,               (2. 9) 

where P�𝑢𝑢ij = 1�𝜽𝜽𝒋𝒋,𝒂𝒂𝒊𝒊,𝑑𝑑𝑖𝑖� is the probability of a correct response to item i by person j;  𝑢𝑢ij  is the 

response on item i by person j (1 is correct and 0 is incorrect); 𝜽𝜽𝒋𝒋 is a row vector of person j’s 

abilities in a m-dimensional space; 𝒂𝒂𝒊𝒊 is a row vector of the discrimination for item i; 𝑑𝑑𝑖𝑖  is a 

scalar that is related to item difficulty; and 𝑐𝑐𝑖𝑖  is the guessing parameter for item i.  From equation 

(2.9), the exponent of e is a linear function of θs plus the intercept term d，𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋′ + 𝑑𝑑𝑖𝑖 .  The 

addition of the θs implies the compensatory nature of the model.  If 𝑐𝑐𝑖𝑖  is assumed to be 0 for all 

the items, the M3PL model becomes the multidimensional two-parameter logistic (M2PL) model, 

which is defined as 
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P�𝑢𝑢ij = 1�𝜽𝜽𝒋𝒋,𝒂𝒂𝒊𝒊,𝑑𝑑𝑖𝑖� =
e𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋

′ +𝑑𝑑𝑖𝑖

1 + e𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋
′ +𝑑𝑑𝑖𝑖

.                (2. 10) 

The multidimensional extension of the Rasch model was not simply the M2PL model with all 

the a-parameter set to 1.0, as the relationship between the Rasch model and the 2PL model for 

the UIRT case.  The consequence of setting all the a-parameter to 1.0 is that the 𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋′ + 𝑑𝑑𝑖𝑖  

becomes  (𝜃𝜃𝑗𝑗1 + 𝜃𝜃𝑗𝑗2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗 ) + 𝑑𝑑𝑖𝑖 .  Therefore, the M2PL model is reduced to a 

unidimensional Rasch model with 𝜃𝜃 = 𝜃𝜃𝑗𝑗1 + 𝜃𝜃𝑗𝑗2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗 .  The multidimensional Rasch 

model in current literature was proposed by Adams et al. (1997).  The model they specified is for 

the general case that includes both dichotomously and polytomously scored test items.  Reckase 

(2009) provide the dichotomous case of Adam’s model, which is 

P�𝑢𝑢ij = 1�𝜽𝜽𝒋𝒋,𝒂𝒂𝒊𝒊,𝑑𝑑𝑖𝑖� =
e𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋

′ +𝑑𝑑𝑖𝑖

1 + e𝒂𝒂𝒊𝒊𝜽𝜽𝒋𝒋
′ +𝑑𝑑𝑖𝑖

.                (2. 11) 

Equation (2.10) and (2.11) appear to be identical.  The only difference between the two is the 

way that the 𝒂𝒂𝒊𝒊 vector is specified.  In (2.10), 𝒂𝒂𝒊𝒊 is a characteristic of item i that is estimated 

from the data.  In (2.11), 𝒂𝒂𝒊𝒊 is a characteristic of item i that is specified by the test developer.  

Adams et al. (1997) specified two variations for the model: between-item and within-item 

dimensionality.  For between-item dimensionality, the 𝒂𝒂𝒊𝒊-vector has elements that are all zeros 

except for one element.  For the two-dimensional case, 𝒂𝒂𝒊𝒊-vector of [1 0] or [0 1] would indicate 

between-item dimensionality.  The vector [1 0] would specify that the item was only affected by 

ability level on dimension 1 and the vector [0 1] specifies that the item is only affected by ability 

level on dimension 2.  For within-item dimensionality, the 𝒂𝒂𝒊𝒊-vector has more than one nonzero 

element. A specification for within-item dimensionality might have a vector such as [1 1] 

indicating that the item is affected equally by both dimensions.  In some literature (Reckase, 
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2009; Segall, 1996; Yao, 2013), the feature of between-item dimensionality is called simple 

structure, and the within-item dimensionality is called non-simple structure.   

In a compensatory MIRT model, in order to make the 𝒂𝒂𝒊𝒊- and 𝑑𝑑𝑖𝑖- parameter more meaningful, 

Reckase (1985) and Reckase and Mckinley (1991) developed two statistics to interpret the 

characteristics of the test items: multidimensional discrimination (MDISC) and multidimensional 

difficulty (MDIFF).  They are defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = �𝒂𝒂𝒊𝒊′𝒂𝒂𝒊𝒊,               (2. 12) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 =
−𝑑𝑑𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
,               (2. 13) 

where parameters are defined as before.  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀i is the slope of the item response surface at the 

steepest point, and indicates the discriminating power of the item.  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀i  is the distance from 

the origin to the point of the steepest slope.  It represents the multidimensional difficulty of the 

item: high values indicate difficult items and low values indicate easy items.  Thus, the MDISC 

and the MDIFF value for a MIRT model are analogous to the item discrimination and the item 

difficulty value for a UIRT model.   

The concept of information that is used in UIRT also can be generalized to the 

multidimensional case.  The definition of information for a MIRT model is the same as the 

definition for a UIRT model, except that information for MIRT is an m*m matrix, denoted by 

𝑰𝑰(𝜽𝜽).  The {r-th, s-th} element of this matrix is denoted by 𝑰𝑰𝒓𝒓𝒓𝒓(𝜽𝜽).  For the M3PL model, the 

diagonal elements of 𝑰𝑰(𝜽𝜽) are (Segall, 1996) 

𝑰𝑰𝒓𝒓𝒓𝒓(𝜽𝜽) = �
𝑎𝑎𝑟𝑟𝑟𝑟2 𝑄𝑄𝒊𝒊(𝜽𝜽)[𝑃𝑃𝒊𝒊(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑐𝑐𝑖𝑖𝑃𝑃𝒊𝒊(𝜽𝜽) − 𝑃𝑃𝒊𝒊𝟐𝟐(𝜽𝜽)]

𝑃𝑃𝒊𝒊𝟐𝟐(𝜽𝜽)(1− 𝑐𝑐𝑖𝑖)𝟐𝟐i∈v
,               (2. 14)  

and the off-diagonal elements are 
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𝑰𝑰𝒓𝒓𝒓𝒓(𝜽𝜽) = �
𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑄𝑄𝑖𝑖(𝜽𝜽)[𝑃𝑃𝒊𝒊(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑐𝑐𝑖𝑖𝑃𝑃𝒊𝒊(𝜽𝜽) − 𝑃𝑃𝒊𝒊𝟐𝟐(𝜽𝜽)]

𝑃𝑃𝒊𝒊𝟐𝟐(𝜽𝜽)(1 − 𝑐𝑐𝑖𝑖)𝟐𝟐i∈v
,               (2. 15)  

where 𝑎𝑎𝑟𝑟𝑟𝑟  is the r-th element of the 𝒂𝒂𝒊𝒊 -vector for item i, 𝑎𝑎𝑠𝑠𝑠𝑠  is the s-th element, and other 

symbols are used as previously defined.  For the M2PL and the multidimensional Rasch model, 

the information matrix for item i can be simplified to   

𝑰𝑰𝒊𝒊(𝜽𝜽) = 𝑃𝑃𝒊𝒊(𝜽𝜽)𝑄𝑄𝒊𝒊(𝜽𝜽) �
𝑎𝑎𝑖𝑖12 ⋯ 𝑎𝑎𝑖𝑖1𝑎𝑎𝑖𝑖𝑖𝑖
⋮ ⋱ ⋮

𝑎𝑎𝑖𝑖1𝑎𝑎𝑖𝑖𝑖𝑖 ⋯ 𝑎𝑎𝑖𝑖𝑖𝑖2
� .                (2. 16) 

For the multidimensional Rasch model, the 𝒂𝒂𝒊𝒊𝒂𝒂𝒊𝒊′  matrix in (2.16) only consists of 0’s and 1’s.   

2.3.2 Generalization of UCAT to MCAT 

The merging of MIRT and CAT has been an intriguing direction to explore.  When 

unidimensional algorithms are generalized to multidimensional, we add a huge amount of 

complexity.  Luecht (1996) pointed out that unlike a unidimensional CAT (UCAT), which is 

merely trying to locate examinees on a latent ability scale, a multidimensional CAT (MCAT) 

must locate examinees on a plane or a hyperplane and administers items that minimize the joint 

estimation errors for those ability estimates.  Although a MCAT is much more complicated than 

an UCAT, researchers (e.g., Segall, 1996; Wang & Chen, 2004; Yao, 2012; Mao, Luo & Zhou, 

2013) have demonstrated that MCAT is worth the added complications, as MCAT often yields 

better measurement efficiency than UCAT.   

Therefore, to generalize UCAT to MCAT, Reckase (2009) suggested four basic components 

to be addressed: (1) item pool development, (2) item selection method implementation, (3) 

examinees’ ability estimation, and (4) stopping rule determination.  In practical, practical 

constraints (i.e., content balancing and item exposure control) are also important components for 

MCAT.  Because the desired features of the item pool are dependent on the other four, the 
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procedures for item selection will be presented first in 2.3.3, followed by the ability estimation 

method in 2.3.4, stopping rules in 2.3.5, and practical constraints in 2.3.6.  The development of 

multidimensional item pool is described in Chapter 3.  

2.3.3 Item Selection Methods for Multidimensional CAT 

Item selection is crucial for UCAT as well as for MCAT.  If the selected items only provide 

littler information for ability estimation, the adaptive test will not function well.  Like the 

unidimensional item selection methods, the multidimensional methods are also based on 

maximizing or minimizing some criterion values at the current ability estimates.  The maximum 

determinant of the Fisher information matrix (D-Optimality) method, Bayesian D-Optimality 

method, and the maximize KL Information method will be introduced in this section.   

The D-Optimality, proposed by Segall (1996) can be considered as the multidimensional 

extension of the maximum Fisher information method for UCAT. Suppose k-1 items have 

already been administered to an examinee and the k-th item is to be determined.  The D-

Optimality method selects the k-th item that maximizes the quantity 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��| ,               (2. 17) 

where 𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� is the summation of information for the previous k-1 items, and 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽�� is the item 

information for the k-th item.  The item information is defined in (2.14 – 2.16).  Note that the || in 

(2.17) means the determinant of a matrix.  The process for selecting the next item is to identify 

the item that has an item information matrix that, when added to the current test information 

matrix, will result in the largest value for the determinant of the sum (Reckase, 2009).   

Yao (2012) pointed out that the D-Optimality method has an undesirable quality.  Towards 

the beginning of the MCAT, the information matrix may not have full rank, resulting in the 
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quantity of (2.17) equals to 0.  However, this issue can be remedied by applying the Bayesian 

version of the D-Optimality to the problem of item selection.   

The Bayesian D-Optimality method (Segall, 1996) takes a prior distribution into account.  It 

selects the k-th item that maximizes 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽�� + 𝚽𝚽−1| ,               (2. 18) 

where 𝚽𝚽−1 is the prior distribution, which is the inverse of 𝚽𝚽, and 𝚽𝚽 is the variance-covariance 

matrix of the examinees’ multidimensional ability.  For the first few items, the Bayesian D-

Optimality method is expected to select different items compared with the D-Optimality method, 

but as the test length increase, the two methods should become similar.   

The maximum KL information method for MCAT was first presented by Veldkamp and van 

der Linden (2002).  This method is an extension of the Chang and Ying (1996) for a UCAT to 

solve the issue of selecting proper items when ability is poorly estimated in the early stage of the 

UCAT.  When only one item is considered, the KL information is given by 

𝐾𝐾𝑖𝑖(𝜽𝜽,𝜽𝜽𝟎𝟎) = 𝑙𝑙𝑙𝑙 �
𝑃𝑃𝒊𝒊(𝜽𝜽𝟎𝟎)
𝑃𝑃𝒊𝒊(𝜽𝜽) � + �1 − 𝑃𝑃𝒊𝒊(𝜽𝜽𝟎𝟎)�𝑙𝑙𝑙𝑙 �

𝑃𝑃𝒊𝒊(𝜽𝜽𝟎𝟎)
𝑃𝑃𝒊𝒊(𝜽𝜽) � .                (2. 19) 

The item selection rule presented by Veldkamp and van der Linden (2002) is to select the item 

that maximizes  

𝐾𝐾𝑖𝑖𝐵𝐵�𝜽𝜽�𝑘𝑘−1� = �𝐾𝐾𝑖𝑖�𝜽𝜽,𝜽𝜽�𝑘𝑘−1� 𝑓𝑓(𝜽𝜽|𝑢𝑢1, … ,𝑢𝑢𝑘𝑘−1)𝜕𝜕𝜽𝜽,               (2. 20) 

where 𝐾𝐾𝑖𝑖𝐵𝐵�𝜽𝜽�𝑘𝑘−1�  is the Bayesian posterior expected information after k-1 items, and 

𝑓𝑓(𝜽𝜽|𝑢𝑢1, … ,𝑢𝑢𝑘𝑘−1) is the posterior density after k-1 items.  The implementation of the maximum 

KL information method requires very long CPU time because of the calculation for two integrals.  

The first integral is the estimation of the 𝑓𝑓(𝜽𝜽|𝑢𝑢1, … ,𝑢𝑢𝑘𝑘−1), and the second one is shown in (2.20).  

For this reason, the item selection based on KL information is not considered in this study.   
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2.3.4 Ability Estimation Methods for Multidimensional CAT 

The ultimate goal for most MCAT is to estimate the multidimensional ability for examinees.  

Assume an item has been selected using one of the item selection methods described in Section 

2.3.3, and an examinee has provided a response for this item.  An ability estimation method is 

then used to update the estimate of the examinee ability.  The two general classes of ability 

estimation methods for MCAT are: maximum likelihood and Bayesian.  These two methods are 

described in this section.   

For the maximum likelihood estimation (MLE) method (Segall, 1996), MIRT ability is 

estimated by finding the mode 𝜽𝜽� that maximize the likelihood function 𝐿𝐿(𝒖𝒖|𝜽𝜽), i.e., 

𝜕𝜕
𝜕𝜕𝜽𝜽

𝑙𝑙𝑙𝑙 𝐿𝐿(𝒖𝒖|𝜽𝜽) = 0.                (2. 21) 

Using Newton-Raphson method, suppose 𝜽𝜽 is the approximation that maximize 𝑙𝑙𝑙𝑙 𝐿𝐿(𝒖𝒖|𝜽𝜽), then 

𝜽𝜽(𝒋𝒋+𝟏𝟏) = 𝜽𝜽(𝒋𝒋) − 𝜹𝜹(𝒋𝒋),               (2. 22) 

where  𝜹𝜹(𝒋𝒋) is the m*1 vector defined as  

𝜹𝜹(𝒋𝒋) = �𝐻𝐻(𝜽𝜽(𝒋𝒋))�
−1
∗
𝜕𝜕
𝜕𝜕𝜽𝜽

𝑙𝑙𝑙𝑙 𝐿𝐿�𝒖𝒖�𝜽𝜽(𝒋𝒋)� .                (2. 23) 

The 𝐻𝐻(𝜽𝜽(𝒋𝒋)) in (2. 23) is a m*m matrix of second derivatives evaluated at 𝜽𝜽(𝒋𝒋).  The diagonal 

elements of 𝐻𝐻(𝜽𝜽) take the form 

𝑯𝑯𝒓𝒓𝒓𝒓(𝜽𝜽) = �
𝑎𝑎𝑟𝑟𝑟𝑟2 𝑄𝑄𝒊𝒊(𝜽𝜽)[𝑃𝑃𝑖𝑖(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑃𝑃𝑖𝑖2(𝜽𝜽)]

𝑃𝑃𝑖𝑖2(𝜽𝜽)(1 − 𝑐𝑐𝑖𝑖)𝟐𝟐i∈v
,               (2. 24)  

and the off-diagonal elements are of the form 

𝑯𝑯𝒓𝒓𝒓𝒓(𝜽𝜽) = �
𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑄𝑄𝑖𝑖(𝜽𝜽)[𝑃𝑃𝑖𝑖(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑃𝑃𝑖𝑖2(𝜽𝜽)]

𝑃𝑃𝑖𝑖2(𝜽𝜽)(1 − 𝑐𝑐𝑖𝑖)𝟐𝟐i∈v
,               (2. 25)  
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The 𝜕𝜕
𝜕𝜕𝜽𝜽
𝑙𝑙𝑙𝑙 𝐿𝐿�𝒖𝒖�𝜽𝜽(𝒋𝒋)� in (2.23) is a m*1 vector of partial derivatives of 𝑙𝑙𝑙𝑙 𝐿𝐿�𝒖𝒖�𝜽𝜽(𝒋𝒋)� with the r-th 

element defined as 

𝜕𝜕
𝜕𝜕𝜃𝜃𝑟𝑟

ln 𝐿𝐿(𝒖𝒖|𝜽𝜽) = �
𝑎𝑎𝑟𝑟𝑟𝑟 [𝑃𝑃𝑖𝑖(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑢𝑢𝑖𝑖 − 𝑃𝑃𝑖𝑖(𝜽𝜽)]

(1 − 𝑐𝑐𝑖𝑖)𝑃𝑃𝒊𝒊(𝜽𝜽)i∈v
,               (2. 26) 

With all the terms in (2.23) defined, the Newton-Raphson method can be used to obtain 𝜽𝜽(𝒋𝒋+𝟏𝟏) 

repeatedly until 𝜹𝜹(𝒋𝒋)  becomes sufficiently small.  Similar to the unidimensional MLE, the 

multidimensional MLE also has the issue of infinite estimates in the early stage of the MCAT 

(Diao, 2009; Reckase, 2009).  Reckase (2009) also pointed out that the minimum number of test 

items needed to get finite estimates for a three dimensional MCAT is three, but the actual 

number in the MCAT can be larger than that.  To overcome this problem, a Bayesian procedure 

can be considered.   

The Bayesian method (Segall, 1996) is similar to the MLE method, except that the likelihood 

function is the product of the likelihood and the prior: 

𝑓𝑓(𝜽𝜽|𝒖𝒖) = 𝐿𝐿(𝒖𝒖|𝜽𝜽)
𝑓𝑓(𝜽𝜽)
𝑓𝑓(𝒖𝒖)

,               (2. 27) 

where the 𝐿𝐿(𝒖𝒖|𝜽𝜽) is the likelihood function, 𝑓𝑓(𝜽𝜽) is the prior distribution of 𝜽𝜽, wand 𝑓𝑓(𝒖𝒖) is the 

marginal probability of  𝒖𝒖.  Segall (1996) defined the 𝑓𝑓(𝜽𝜽) as a multivariate normal distribution 

with mean vector 𝝁𝝁 and variance-covariance matrix 𝚽𝚽.  Because Yao (2012) found that the mode 

of the posterior distribution (known as MAP) yields better precision and requires less 

computation time than does the expectation of the posterior (known as EAP), only the MAP 

procedure is described in this study.  The mode of the posterior distribution can be obtained by 

maximizing the natural logarithm of the posterior distribution, i.e.,  

𝜕𝜕
𝜕𝜕𝜽𝜽

ln𝑓𝑓(𝜽𝜽|𝒖𝒖) = 𝟎𝟎 ,               (2. 28) 
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where the 𝑓𝑓(𝜽𝜽|𝒖𝒖) is defined in (2.27).  Because the (2.28) formula has no explicit solution, an 

iterative numerical procedure such as the Newton-Raphson procedure must be used.  Suppose 𝜽𝜽 

is the approximation that maximizes 𝑙𝑙𝑙𝑙 𝑓𝑓(𝜽𝜽|𝒖𝒖), then 

𝜽𝜽(𝒋𝒋+𝟏𝟏) = 𝜽𝜽(𝒋𝒋) − 𝜹𝜹(𝒋𝒋),               (2. 29) 

where 𝜹𝜹(𝒋𝒋) is the m*1 vector defined as  

𝜹𝜹(𝒋𝒋) = �𝐽𝐽(𝜽𝜽(𝒋𝒋))�
−1
∗
𝜕𝜕
𝜕𝜕𝜽𝜽

𝑙𝑙𝑙𝑙 𝑓𝑓�𝜽𝜽(𝒋𝒋)�𝒖𝒖� .                (2. 30) 

The 𝐽𝐽(𝜽𝜽(𝒋𝒋)) in (2.30) is a m*m matrix of second derivatives evaluated at 𝜽𝜽(𝒋𝒋).  The diagonal 

elements of 𝐽𝐽(𝜽𝜽) take the form 

𝑱𝑱𝒓𝒓𝒓𝒓(𝜽𝜽) = �
𝑎𝑎𝑟𝑟𝑟𝑟2 𝑄𝑄𝒊𝒊(𝜽𝜽)[𝑃𝑃𝑖𝑖(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑃𝑃𝑖𝑖2(𝜽𝜽)]

𝑃𝑃𝑖𝑖2(𝜽𝜽)(1 − 𝑐𝑐𝑖𝑖)𝟐𝟐i∈v
− 𝜙𝜙𝑟𝑟𝑟𝑟 ,               (2. 31)  

where 𝜙𝜙𝑟𝑟𝑟𝑟  is the r-th diagonal element of 𝚽𝚽−𝟏𝟏.  The off-diagonal elements of 𝐽𝐽(𝜽𝜽) are of the 

form 

𝑱𝑱𝒓𝒓𝒓𝒓(𝜽𝜽) = �
𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑄𝑄𝑖𝑖(𝜽𝜽)[𝑃𝑃𝑖𝑖(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑃𝑃𝑖𝑖2(𝜽𝜽)]

𝑃𝑃𝑖𝑖2(𝜽𝜽)(1 − 𝑐𝑐𝑖𝑖)𝟐𝟐
− 𝜙𝜙𝑟𝑟𝑟𝑟

i∈v
,               (2. 32)  

where 𝜙𝜙𝑟𝑟𝑟𝑟  is the {r-th, s-th} element of 𝚽𝚽−𝟏𝟏.  The 𝜕𝜕
𝜕𝜕𝜽𝜽
𝑙𝑙𝑙𝑙 𝑓𝑓�𝜽𝜽(𝒋𝒋)�𝒖𝒖� in (2. 30) is a m*1 vector of 

partial derivatives of 𝑙𝑙𝑙𝑙 𝑓𝑓�𝜽𝜽(𝒋𝒋)�𝒖𝒖� with the r-th element defined as 

𝜕𝜕
𝜕𝜕𝜃𝜃𝑟𝑟

ln𝑓𝑓(𝜽𝜽|𝒖𝒖) = �
𝑎𝑎𝑟𝑟𝑟𝑟 [𝑃𝑃𝑖𝑖(𝜽𝜽) − 𝑐𝑐𝑖𝑖][𝑢𝑢𝑖𝑖 − 𝑃𝑃𝑖𝑖(𝜽𝜽)]

(1 − 𝑐𝑐𝑖𝑖)𝑃𝑃𝒊𝒊(𝜽𝜽) − [
𝜕𝜕
𝜕𝜕𝜃𝜃𝑟𝑟

(𝜽𝜽 − 𝝁𝝁)′]𝚽𝚽−𝟏𝟏(𝜽𝜽 − 𝝁𝝁)
i∈v

.       (2. 33) 

The 𝜕𝜕
𝜕𝜕𝜃𝜃𝑟𝑟

(𝜽𝜽 − 𝝁𝝁)′ in (2. 33) denotes as a 1*m vector with the r-th element equal to 1 and all other 

elements equal to 0.  With all the terms in (2.29) defined, the 𝜽𝜽(𝒋𝒋+𝟏𝟏) can be obtained repeatedly 

until 𝜹𝜹(𝒋𝒋) become sufficiently small.  
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2.3.5 Stopping Rules for MCAT 

The stopping rules for an UCAT fall in to two groups: fixed length and variable length.  The 

fixed length stopping rule is very easy to adapt to a MCAT.  For the fixed length rule, the total 

number of items to be administered to each examinee is pre-determined based on the purposes of 

the test and practical considerations.  When the number of items is reached in the test 

administration, the CAT will stop and the final ability estimate is computed.  Because the fixed 

stopping rule is easy to implement, most MCATs in the research literature use the fixed length to 

as their stopping rules (e.g., Diao, 2009; Segall, 1996; Wang & Chang, 2011; Yao, 2012).   

Variable length CAT controls the test length using a statistical criterion.  For example, in a 

UCAT, if the standard error of measurement for θ estimate is smaller than a critical value, the 

test stops and the final θ estimate is reported.  Therefore, variable length CAT administers 

different number of items to different examinees.  Yao (2013) proposed two stopping rules for 

MCAT, the standard error (SE) and predicted standard error (PSE).  The results showed that the 

PSE yields slightly worse results than the SE, but with fewer items.  The detailed description for 

these two methods can be obtained from Yao’s paper.   

2.3.6 Practical Constraints for MCAT 

Content balancing and item exposure control are as important to MCAT as to UCAT.  Among 

the numerous content balancing methods for UCAT, the shadow test approach is the first one 

that has been successfully implemented in MCAT by Veldkamp and van der Linden (2002).  

Because the shadow test approach requires an existed master pool, it is not applicable in this 

study.  The Maximum Priority Index (MPI) method is another content balancing that has been 

implemented in MCAT by Frey, Cheng, & Seitz, (2011), and also been used in Yao (2012) and 

Yao (2013).   According to Yao (2012), the MPI index for item i is defined by   
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𝑃𝑃𝑃𝑃𝑖𝑖 = �𝑓𝑓𝑖𝑖𝑖𝑖
𝑐𝑐𝑖𝑖𝑖𝑖

𝐷𝐷

𝑙𝑙=1

,               (2. 34) 

where the constraint matrix 𝐶𝐶 = (𝑐𝑐𝑖𝑖𝑖𝑖)𝐽𝐽∗𝐷𝐷 , indicating the loading information for item i on 

dimension l.  If item i loads on dimension l, 𝑐𝑐𝑖𝑖𝑖𝑖 = 1; otherwise 𝑐𝑐𝑖𝑖𝑖𝑖 = 0.  Suppose the percentage 

of items in each content area is fixed.  Then the 𝑓𝑓𝑖𝑖𝑖𝑖  is defined by  

𝑓𝑓𝑖𝑖𝑖𝑖 =
(𝑋𝑋𝑙𝑙 − 𝑥𝑥𝑙𝑙)

𝑋𝑋𝑙𝑙
,               (2. 35) 

where 𝑋𝑋𝑙𝑙  is the number of items that should be administered from dimension l, and so far 𝑥𝑥𝑙𝑙  such 

items have been selected.  At the beginning, 𝑓𝑓𝑖𝑖𝑖𝑖  is 1 when no item has been selected from 

dimension l, and it gets smaller as 𝑥𝑥𝑙𝑙  increases.  When 𝑥𝑥𝑙𝑙 = 𝑋𝑋𝑙𝑙 , 𝑓𝑓𝑖𝑖𝑖𝑖 = 0; no more items will be 

selected from this dimension.  The MPI is implemented by multiplying the 𝑃𝑃𝑃𝑃𝑖𝑖  to the item 

selection criteria.  For example, for the D-Optimality method, item 𝑖𝑖 = 𝑘𝑘  is selected if 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��| ∗ 𝑃𝑃𝑃𝑃𝑘𝑘  has a maximum value among all the items in the item pool.   

The MPI method has also been used for item exposure control in MCAT in Yao (2012 & 

2013).  Suppose the maximum exposure rate of item i is fixed to 𝑅𝑅𝑖𝑖 .  For each selection step, let 

𝑛𝑛𝑖𝑖  be the number of examinees that have already selected item i.  Then the index for the item 

exposure control is defined by  

𝑓𝑓𝑖𝑖𝑖𝑖 =
(𝑅𝑅𝑖𝑖 − 𝑛𝑛𝑖𝑖 𝑁𝑁⁄ )

𝑅𝑅𝑖𝑖
,               (2. 36) 

where N is the total number of examinees, and 𝑛𝑛𝑖𝑖 𝑁𝑁⁄  is the actual exposure rate for item i.  This 

index makes sure that no item is selected with exposure rate larger the predefined rate, 𝑅𝑅𝑖𝑖 .  To 

implement the MPI for item exposure control, Yao (2012 & 2013) multiplied the 𝑓𝑓𝑖𝑖𝑖𝑖  in (2.36) to 

the item selection criterion.  The results shows the MPI can effectively control the item exposure 

rate, and increase the item pool usage to 100% when several item selection methods are used, 
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including the D-Optimality method.  Although the 100% item pool usage is desirable, the 

number is inflated due to the misuse of the MPI.  For a two dimensional CAT, after 20 items has 

been administered, the |𝐼𝐼𝑠𝑠20�𝜽𝜽�� + 𝐼𝐼𝑖𝑖21�𝜽𝜽��| value for all items in the item pool ranges from 3.39 

to 3.82.  If the 𝑓𝑓𝑖𝑖𝑖𝑖  in (2.36) is smaller than 0.88 (𝑓𝑓𝑖𝑖𝑖𝑖 =. 88 implies 𝑛𝑛𝑖𝑖 𝑁𝑁⁄ =. 12𝑅𝑅𝑖𝑖 , which is much 

smaller than 𝑅𝑅𝑖𝑖), the value of the �𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��� ∗ 𝑓𝑓𝑖𝑖𝑖𝑖  for the item associated with the largest 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��| value will be smaller than 3.82.  That is for say, if  𝑓𝑓𝑖𝑖𝑖𝑖  is multiply to the 

selection criterion of the D-Optimality method, the best item available in the pool will not be 

selected, even though its actual exposure rate is much smaller than the maximum rate, 𝑅𝑅𝑖𝑖 .   

The reason why the MPI method functions properly in UCAT but not in MCAT is the 

difference in the item selection criterion. The minimum value of the Fisher information is close 

to 0, but the minimum value of the |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��| is not 0.  This issue can be solved by 

rescaling the item selection criterion, and then multiplying 𝑓𝑓𝑖𝑖𝑖𝑖  to the rescaled criterion, instead to 

the criterion itself.  

In this study, a non-linear method is used to rescale the criterion of the D-Optimality method. 

First, a percentile rank is calculated for all the items available in the item pools, that is 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��|𝑅𝑅𝑅𝑅 = Percentile��𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽���� ,               (2. 37) 

where the |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��|𝑅𝑅𝑅𝑅  denotes the rescaled criterion.  Second, select the item with a 

maximum value of |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜽𝜽�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜽𝜽��|𝑅𝑅𝑅𝑅 ∗ 𝑓𝑓𝑖𝑖𝑖𝑖 . This item exposure control procedure is referred 

to as the “Modified MPI” in this study.  

Yao (2012) also used the Sympson–Hetter (SH) method for item exposure control in a MCAT, 

but she didn’t recommend it as it is very time consuming to create the “exposure-control table”, 

and the computation time increases exponentially with the number of dimensions.   Therefore, 

the SH method is not considered in this study for item exposure control.   
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Chapter 3 p-Optimality Method and the Extension to MCAT 

This chapter first introduces the concept of a p-optimal item pool in Section 3.1.  Section 3.2 

then presents the p-optimality method for describing an item pool and its application to item pool 

design using the unidimensional Rasch Model.  Finally, the extension of the method to the 

MCAT item pool design based on the multidimensional Rasch model is discussed in Section 3.3 

in detail.  

3.1 From Optimal Item Pool to p-Optimal Item Pool  

Before introducing the details about the p-optimal item pool, it is important to define the 

optimal item pool first. Reckase (2010) defined the best possible, or optimal, item pool as that, 

whenever the CAT item selection algorithm is searching for a test item to administer, exactly the 

item that is desired is available in the item pool.  If a desired item is always available for every 

item selection, than the item pool can be considered to be optimal.   

Suppose that a fixed length UCAT is based on the unidimensional Rasch model, and uses 

maximum Fisher information for item selection.  For this type of UCAT, the maximum Fisher 

information method selects items with the difficulty parameter, 𝑏𝑏𝑖𝑖 , exactly equal to the current 

ability estimate 𝜃𝜃�.  This is because the information function for the unidimensional Rasch model, 

which is 𝐼𝐼𝑖𝑖(𝜃𝜃) = 𝑃𝑃𝑖𝑖(𝜃𝜃)𝑄𝑄𝑖𝑖(𝜃𝜃), reaches its maximum value of 0.25 when 𝑏𝑏𝑖𝑖 = 𝜃𝜃𝑗𝑗 .  

An optimal item pool for this CAT procedure is the one that always has an item in the pool 

with b-parameter exactly equal to 𝜃𝜃�  for every item selection process for every examinee.  

Because 𝜃𝜃 is a continuous variable that has infinite number of values on the 𝜃𝜃 scale, if items in 

the item pool exactly match all the 𝜃𝜃�, the item pool has to consist of infinite number of items.   
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To make the concept of the optimal item pool realistic for practical item pool design, a p-

optimal item pool (Reckase, 2010) was introduced to approximate an optimal pool of smaller 

size with little loss of specified characteristics (i.e., item information).  Reckase (2010) referred 

the p-optimal item pool design method as the p-optimality method.  Reckase (2010) also defined 

the p-optimal item pool as an item pool “that always has an item available for selection that p% 

matches the desired characteristics specified by the item selection routine for the CAT.”  The 

implementation of the p-optimality method in UCAT based on the unidimensional Rasch model 

is described below. 

3.2 p-Optimal Item pool Design for UCAT 

For the UCAT described above, a p-optimal item pool will always has an available item that 

can provide at least p% of the maximum Fisher information at the current 𝜃𝜃 estimate.  Figure 3.1 

shows the Fisher information function for a test item based on the unidimensional Rasch model.  

The horizontal scale is 𝜃𝜃 − 𝑏𝑏 so that the results can generalize to all the values of 𝜃𝜃 .  The 

information reaches the maximum value when 𝜃𝜃 − 𝑏𝑏 = 0, that is 𝜃𝜃 = 𝑏𝑏.  Instead of requiring 

items with maximum information always available in the item pool, it might be acceptable to 

relax the criterion to at least 90% maximum information.  That is, instead of needing items with 

𝑏𝑏 = 𝜃𝜃�, an item with b-parameter .65 unit away from 𝜃𝜃� also meets the criterion (see Figure 3.1).   

Therefore, if an item pool meets the criterion of always having an available item with b-

parameter .65-unit away from 𝜃𝜃�, the item pool can be said to be .9-optimal, because the available 

item can provide at least 90% of the maximum possible information for ability estimation.  This 

way of describing the design of an item pool is called p-optimal for proportion of maximum 

optimality (Reckase, 2010).  
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Figure 3.1: Information Function for a Test Item Fit by the Unidimensional Rasch Model 

 

Such a p-optimal pool is designed by the following steps:  

1) Specify the characteristics of a CAT program, such as the IRT model, test length, item 

selection method, ability estimation method, and stopping rule.  In the example here, the 

UCAT is based on the unidimensional Rasch model, selects items using the maximum 

Fisher information method, estimates ability by the MLE, and with test length fixed at 30-

item.  

2) Randomly sample an examinee from the target examinee population and generate the first 

optimal item.  The optimal item is an item with b-parameter equal to the initial value of 𝜃𝜃� 

for this examinee.  

3) Generate a response to this item based on this examinee’s true 𝜃𝜃.  A random number is 

first generated from the Uniform(0,1) distribution. If the random number is greater than 

the probability of this examinee answering this item correct, a correct response is assigned 

to this examinee; otherwise, an incorrect response is assigned.  
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4) Update the 𝜃𝜃� using the MLE method based on the response generated in step 3.  

5) Generate the next optimal item with b-parameter equal to the updated 𝜃𝜃�.  

6) Repeat the process of generating response, ability estimation, and optimal item generation 

until the stopping rule is satisfied.   

7) Classify all the generated optimal items into “item bins”.  Item bins are defined as 

intervals on the b-parameter scale.  For a .9-optimal pool, the criterion is that the b-

parameter is within .65-unit distance away from 𝜃𝜃�.  To meet this criterion, the width of the 

item bin should be set to .65.  In this case, the first item bin is centered on the zero point 

and ranges from -.325 to .325.  The rest of the item bins can be determined by stepping off 

in either direction.    

8) Document the number of items in each item bin for this examinee.  

9) Repeat steps 2 to 8 for another examinee.  The union of the number of items in each bin 

forms the p-optimal pool for these two examinees (see Table 3.1).  Union, instead of 

summation, is considered because the items used for the first examinee can be used for the 

second one.  

10)  Repeat this process for a large number of examinee. The union of items across all the 

examinees is the end product of the p-optimal pool design.  

 

The end product of the p-optimal item pool design is a bin-count table, which tells the number 

of items in each item bin.  This bin-count table can be used as the guidance for item creation.  If 

items can be created to match the bin-count table, the item pool is deemed to be p-optimal.  A 

more detailed description of this method can be found in Reckase (2010).  
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Table 3.1: The p-optimal pool for two examinees 
Item bin -3 -2.4 -1.8 -1.2 -0.6 0 0.6 1.2 1.8 2.4 3 

Examinee 1 0 0 10 13 7 0 0 0 0 0 0 
Examinee 2 0 0 0 9 15 6 0 0 0 0 0 

Union 0 0 10 13 15 6 0 0 0 0 0 
Note:  the values on the first row represent the central point of each item bin;  
           the values on the second and third row represent the number of items in each item bin.  

 

3.3 Extending the p-Optimality Method to MCAT 

As discussed in Chapter 2, the desired features of an item pool depend on the item selection 

method, ability estimation method, stopping rule, as well as constraints such as content balancing 

and item exposure control.  The p-optimality method for item pool design described above also 

depends on the selection of these methods.  Therefore, the first step of extending the p-optimality 

method to MCAT is to determine the characteristics of the MCAT program.  The psychometric 

model, item selection method, ability estimation method, stopping rule, and constraints for the 

MCAT considered in this study are defined below.   

First, the multidimensional Rasch model defined by equation (2.11) is served as the 

psychometric model for the MCAT in this study.  There are two reasons of choosing the 

multidimensional Rasch model.  The first one is because the idea of p-optimal item pool design 

was proposed for a UCAT based on the unidimensional Rasch model.  It is thus straightforward 

to choose the multidimensional Rasch model when this idea is extended to MCAT for the first 

time.  The second reason is that the multidimensional Rasch model is relatively simple compared 

with the M2PL and the M3PL model defined by (2.09) and (2.10), respectively.  Because the a-

parameter is fixed in the multidimensional Rasch model, the determination of the optimal item is 

much easier than the situation of unfixed a-parameter (Gu, 2007).  Given these two reasons, this 
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study only focuses on the p-optimal item pool based on the multidimensional Rasch model.  

Future studies can extend this method to other complex MIRT models.   

Second, the D-optimality method (Segall, 1996) is used to select items in this study.  The D-

optimality can be considered as the multidimensional extension of the maximum Fisher 

information for UCAT; hence, the method of optimal item generation can be extended to the 

multidimensional context in a fairly straightforward fashion.  Therefore, the p-optimal item pool 

design in this study is based on the D-optimality item selection method only.   

Third, the Bayesian MAP (Segall, 1996) is the ability estimation method for the MCAT in 

this study.  The Bayesian MAP is used here because Yao (2013) mentioned, in one of her 

unpublished manuscripts, the Bayesian MAP yields better precision than does the MLE and 

perform similarly or better than the Bayesian EAP.  Also, because the Bayesian MAP solves the 

issues of infinite ability estimates in early MCAT, the Bayesian MAP method is adopted for the 

p-optimal item pool design in this study.   

Fourth, the stopping rule in this study is the fixed length rule.  The variable length stopping 

rule is not considered here for two reasons.  First, Reckase (2010) has demonstrated the p-

optimal item pool design for a fixed length CAT can be easily modified to be used in a variable 

length CAT.  There is no need to describe both of them in this study.  The second reason, again, 

is because the fixed length rule is relatively easy to be built into the p-optimal item pool design 

procedure.   

Fifth, the content balancing constraint is not implemented in this study.  The reason is that the 

D-optimality item selection method can balance the number of items administered from each 

dimension.  In a two dimensional MCAT, for example, if more items are selected from 

Dimension 1, there will be more information on the direction of 𝜃𝜃1 and less information on the 
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direction of 𝜃𝜃2.  Then the D-optimality method will select the next item from Dimension 2 until 

there is more information on the direction of 𝜃𝜃2 .  Therefore, when the test is completed, the 

number of items from each dimension is expected to be very similar, even though no content 

balancing is implemented.  For some operational testing programs, the number of items for each 

content area is set to be different because some content area may require more instructional time.  

In this situation, the content balancing is necessary and can be built into the p-optimal item pool 

design procedure.  This situation, however, is not considered in this study.   

Sixth, the p-optimal item pool design with and without item exposure control is compared in 

this study, to answer the third research question for this study.  The Modified Maximum Priority 

Index described in Chapter 2 is used for item exposure control.   

In the following sections, the p-optimal item pool design for MCAT is first demonstrated on 

the simplest case: a MCAT measuring a two-dimensional ability,(𝜃𝜃1, 𝜃𝜃2), using items fit by the 

two-dimensional Rasch model with simple structure, and without item exposure control.  For this 

specific MCAT, there are only two clusters of items in the item pool.  Items in Cluster 1 only 

measure 𝜃𝜃1 with 𝒂𝒂𝑖𝑖 = (1,0).  Items in Cluster 2 only measure 𝜃𝜃2 with 𝒂𝒂𝑖𝑖 = (0,1).  According to 

equation (2.11), the two-dimensional Rasch model can also be specified as: 

𝑃𝑃(𝜽𝜽) =
e𝑎𝑎1𝑖𝑖𝜃𝜃1𝑗𝑗+𝑎𝑎2𝑖𝑖𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖

1 + e𝑎𝑎1𝑖𝑖𝜃𝜃1𝑗𝑗+𝑎𝑎2𝑖𝑖𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖
.                (3. 1) 

The feature of simple structure can simplify (3.1) into  

𝑃𝑃(𝜽𝜽) =

⎩
⎪
⎨

⎪
⎧𝑃𝑃1(𝜽𝜽) =

e𝜃𝜃1𝑗𝑗+𝑑𝑑𝑖𝑖

1 + e𝜃𝜃1𝑗𝑗+𝑑𝑑𝑖𝑖
, for items from  Cluster 1 

𝑃𝑃2(𝜽𝜽) =
e𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖

1 + e𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖
, for items from  Cluster 2 

� .                (3. 2) 

The method of optimal item generation, the extension of item bins, and the interpretation of p-

optimal item pool for this specific MCAT are demonstrated in Section 3.3.1 to 3.3.3.  An 
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example of the p-optimal item pool design for this MCAT is presented in Section 3.3.4.  The p-

optimal item pool design for MCAT with exposure control is introduced in Section 3.3.5.   

3.3.1 Optimal Item Generation 

For the UCAT, the optimal item is the one that maximizes the information function at the 

current 𝜃𝜃�.  For the MCAT described above, according to equation (2.17), the k-th optimal item is 

the one that maximizes the quantity 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��|.                (3. 3) 

where 𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� is the summation of the information for the k-1 items that has been administered, 

denoted as 

𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� = 𝐼𝐼𝑖𝑖1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖2�𝜃𝜃�� + ⋯+ 𝐼𝐼𝑖𝑖𝑘𝑘−1�𝜃𝜃��;                (3. 4) 

and 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃�� is the information function for k-th item that is going to be administered.  According 

to equation (2.16), 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃�� for the two-dimensional multidimensional Rasch model with simple 

structure can be specified into 

𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃�� = �
𝑃𝑃1𝑄𝑄1 �

1 0
0 0� = �𝑃𝑃1𝑄𝑄1 0

0 0� , for items from  Cluster 1  

𝑃𝑃2𝑄𝑄2 �
0 0
0 1� = �0 0

0 𝑃𝑃2𝑄𝑄2
� , for items from  Cluster 2 

� ,        (3. 5) 

where 𝑃𝑃1 and 𝑃𝑃2 are defined in equation (3.2) and 𝑄𝑄1 = 1 − 𝑃𝑃1,𝑄𝑄2 = 1 − 𝑃𝑃2.   

Suppose among the k-1 administered items, 𝑘𝑘1 of them are from Cluster 1 and 𝑘𝑘2 of them are 

from Cluster 2, where 𝑘𝑘1 + 𝑘𝑘2 = 𝑘𝑘 − 1.  Substituting (3.5) in to (3.4), we obtain 

𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� =

⎣
⎢
⎢
⎡� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
0

0 � 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1 ⎦
⎥
⎥
⎤
.                (3. 6) 

Again, substituting (3.5) and (3.6) into (3.3), we obtain  
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|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��|

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
��

⎣
⎢
⎢
⎡� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
0

0 � 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1 ⎦
⎥
⎥
⎤

+ �𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘 0
0 0

��� , if the kth item is from Cluster 1  

��

⎣
⎢
⎢
⎡� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
0

0 � 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1 ⎦
⎥
⎥
⎤

+ �
0 0
0 𝑃𝑃2𝑖𝑖𝑘𝑘𝑄𝑄2𝑖𝑖𝑘𝑘

��� , if the kth item is from Cluster 2  

� .      (3. 7) 

By solving the determent, (3.7) becomes 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��|

=

⎩
⎪
⎨

⎪
⎧�� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
��� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
� + �� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
�𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘 , if the kth item is from  Cluster 1

�� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
��� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
� + �� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
�𝑃𝑃2𝑖𝑖𝑘𝑘𝑄𝑄2𝑖𝑖𝑘𝑘 , if the kth item from  in Cluster 2

�.  

(3. 8) 

Because �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖
𝑘𝑘1
𝑖𝑖=1 �  and �∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2
𝑖𝑖=1 �  are constant across all the potential k-th item, 

maximizing |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��| in is equivalent to maximizing 𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘  or 𝑃𝑃2𝑖𝑖𝑘𝑘𝑄𝑄2𝑖𝑖𝑘𝑘 .  Based on 

the two-dimensional Rasch model with simple structure defined in equation (3.2), 𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘  will 

be maximized when  𝑃𝑃1𝑖𝑖𝑘𝑘 = 0. 5, or −𝑑𝑑𝑖𝑖 = 𝜃𝜃1𝑗𝑗 .  Similarly, 𝑃𝑃2𝑖𝑖𝑘𝑘𝑄𝑄2𝑖𝑖𝑘𝑘  will be maximized when  

−𝑑𝑑𝑖𝑖 = 𝜃𝜃2𝑗𝑗 .   

Therefore, the optimal item for the k-th item is either the one from Cluster 1 with −𝑑𝑑𝑖𝑖 = 𝜃𝜃1𝑗𝑗  

or the one from Cluster 2 with −𝑑𝑑𝑖𝑖 = 𝜃𝜃2𝑗𝑗 .  To determine which one is the true optimal, it only 

needs to compare �∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖
𝑘𝑘2
𝑖𝑖=1 � with �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1
𝑖𝑖=1 �, because the first term in equation (3.8) is the 

same.  If the following inequality holds 

�� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
� > �� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
� ,              (3. 9) 
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the optimal item is from Cluster 1 with 𝒂𝒂𝑖𝑖 = (1,0) and −𝑑𝑑𝑖𝑖 = 𝜃𝜃1𝑗𝑗 .  If this inequality holds 

�� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
� < �� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
� ,              (3. 10) 

the optimal item is from Cluster 2 with 𝒂𝒂𝑖𝑖 = (0,1) and −𝑑𝑑𝑖𝑖 = 𝜃𝜃2𝑗𝑗 .  If the two terms are the same, 

the optimal item is randomly picked.   

In other words, after k-1 items are administered, if the test information on the direction of 

Dimension 1 is smaller, the k-th optimal item is an item measuring Dimension 1 with −𝑑𝑑𝑖𝑖 = 𝜃𝜃�1.  

If the test information on the direction of Dimension 2 is smaller, the k-th optimal item should 

measure Dimension 2 with −𝑑𝑑𝑖𝑖 = 𝜃𝜃�2 .  The information from previous administered item 

determines which cluster the optimal item is from, and the current θ estimates determines the d-

parameter for the optimal item.   

3.3.2 Interpretation for the “p-Optimal” 

For a unidimensional .9-optimal item pool, items that can provide at least 90% of the 

maximum possible Fisher information are always available for selection.  For the unidimensional 

Rasch model, because Fisher information is P*Q, the “.9-optimal” means the selected item yield 

at least 90% of the maximum possible value of P*Q.  

For the MCAT in this study, the item selection method is the D-optimality.  Suppose the D-

optimality method selects the k-th optimal item from Cluster 1.  This item should have a 

maximum value of |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��| = �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖
𝑘𝑘1
𝑖𝑖=1 ��∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2
𝑖𝑖=1 � + �∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2
𝑖𝑖=1 �𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘 , 

compared with other items.  By bringing the �∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖
𝑘𝑘2
𝑖𝑖=1 �  to the front, |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��| 

becomes  

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��| = �� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
� ��� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
� + 𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘 � .      (3. 11) 
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Here, because the maximum determinant is not simply the P*Q, the 90% of the maximum 

value of 𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘  is no longer equivalent to 90% of the maximum determinant.  Therefore, the 

“.9-optimal” item pool no longer implies items that are at least 90% of the maximum determinant 

of the 𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃�� are always available.   

In fact, the �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖
𝑘𝑘1
𝑖𝑖=1 � in (3.11) is the sum of the information for all the administered items 

from Cluster 1 on the direction of 𝜃𝜃1, and the 𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘  is the information for the k-th item on the 

direction of 𝜃𝜃1 .  The same interpretation can be made for items in Cluster 2.  As mentioned 

above, the D-optimality method selects the item that adds the maximum information on the 

current test information on the direction of minimum information.  If the item pool is .9-optimal, 

the selected item would be the one that adds at least 90% of maximum possible information on 

the current test information on the direction of minimum information.  Therefore, the 

interpretation for the “p-optimal” item pool in MCAT is that items that can add at least p-

proportion of maximum possible information on the current test information on the direction of 

minimum information are always available in the item pool.   

3.3.3 Extending the “bin” concept 

In UCAT, item bins are created by dividing the scale of the b-parameter into several intervals.  

These item bins are referred to as “b-bin,” since they are defined on the b-parameter scale.  As 

mentioned in Chapter 2, the d-parameter in an MIRT model is an intercept term that is related to 

both item difficulty and item discrimination.  The item difficulty in MIRT models is the MDIFF.  

The value of MDIFF has the same interpretation as the b-parameter for UIRT models.  Therefore, 

the “MDIFF-bin”, instead of “d-bin,” is used for the optimal item pool design.   

For the two dimensional Rasch model with simple structure defined in (3.2), the item 

response function (IRF) for items from Cluster 1 is the same as the IRF for the unidimensional 
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Rasch model with 𝜃𝜃 = 𝜃𝜃1.  Similarly, the IRF for items in Cluster 2 is the same as the IRF for 

the unidimensional Rasch model with 𝜃𝜃 = 𝜃𝜃2.  Therefore, Figure 3.1 also can be used here to 

determine the size for the MDIFF-bin.   For .9-optimal item pool, if an item from Cluster 1 is 

selected, the d-parameter of this item should be within .65-unit distance away from the current 

estimate of −𝜃𝜃1.  If an item from Cluster 2 is selected, the d-parameter of this item should be 

within .65-unit distance away from −𝜃𝜃2.  Therefore, the width of the interval on the d-parameter 

scale is .65.  Because MDIFF is equal to −𝑑𝑑𝑖𝑖  for the two dimensional Rasch model with simple 

structure, the size for the MDIFF-bin is also .65.  In the case of .86-optimal, the interval on the d-

parameter scale is 0.8 so that the size for the MDIFF-bin is 0.8.  In the case of .96-optimal, the 

size for the MDIFF-bin is 0.4.  

3.3.4 An example of the p-optimal item pool design for MCAT 

For the MCAT described above, items are fitted by the two-dimensional Rasch model with 

simple structure, and the test length is fixed at 30.  Suppose two examinees have taken this 

MCAT and their true abilities are (0.7, 1.5) and (-1.1, -1.0), respectively.  For each examinee, the 

first item randomly chosen from either Cluster 1 with 𝒂𝒂𝑖𝑖 = (1,0) and −𝑑𝑑𝑖𝑖  exactly equal to the 

starting value of 𝜃𝜃1 , or from Cluster 2 with 𝒂𝒂𝑖𝑖 = (0,1) and −𝑑𝑑𝑖𝑖  exactly equal to the starting 

value of 𝜃𝜃2.  Then a response to this item is generated using the two-dimensional Rasch model 

and the 𝜽𝜽� is updated with the Bayesian MAP method.  The process of selecting the next item is: 

1) Select two items first: one from Cluster 1 with 𝒂𝒂𝑖𝑖 = (1,0) and −𝑑𝑑𝑖𝑖  exactly equal to 𝜃𝜃�1; and 

another from Cluster 2 with 𝒂𝒂𝑖𝑖 = (0,1) and −𝑑𝑑𝑖𝑖  exactly equal to 𝜃𝜃�2.   

2) Compute the value of |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��| for the two items.   

3) The optimal item is the one associated with a larger value of the |𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��|.   
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The simulation continues as the test length reaches 30 items.  The distributions of the MDIFF 

value of the administered items for these two examinees are shown in Figure 3.2 and Figure 3.3, 

respectively.   These distributions used a MDIFF-bin width of 0.6 on the MDIFF scale to tally 

the number of items required in each bin.  For both examinees, 15 items are from Cluster 1 and 

15 from Cluster 2.   

The comparison between the two distributions shows that the items selected for these two 

examinees have some in common.  This means the second examinee can use the items that have 

been administered for the first examinee.  Therefore, rather than needing 30+30 = 60 items, the 

p-optimal item pool for these two examinees requires only 56 items.  This number is the count of 

the items in the union of the two sets.   Figure 3.4 displays the distribution for the 56 items.  

Among the 56 items, half of them are from Cluster 1 and another half are from Cluster2.   

When a third examinee is taking the test, the set of items required for that examinee can be 

determined.  Then, the size and distribution of the p-optimal item pool can be determined by 

taking the union of items for the three examinees.  This process can be continued until the 

number of items no longer increases.   Figure 3.5 illustrates how the required item pool increases 

in size as the number of examinees increases.   For the example given here, the item pool size 

reaches an asymptote at 340 items after 3,000 examinees.  

Similar to the UCAT, the end product of the p-optimal item pool design for MCAT is a bin-

count table, which tells the number of item in each MDIFF-bin for each dimension.  The real p-

optimal item pool used for test operation can be created based on this bin-count table. 

3.3.5 p-Optimal Item Pool Design for MCAT with Exposure Control 

If no item exposure control is implemented, the union of the optimal items for a large number 

of examinees is the blueprint for the operational p-optimal item pool development.  If item  
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Figure 3.2: Item distributions for examinee with true ability (0.7, 1.5) 

 

 
Figure 3.3: Item distributions for examinee with true ability (-1.1, -1.0) 

 

 
exposure control is implemented in the adaptive test, a post-simulation adjustment (Gu, 2007) is 

used after the p-optimal item pool design process to make sure there are sufficient items in each 

bin where items are more often selected.   

This study set a maximum item exposure rate, R, for all the items in the item pool.  The item 

exposure rate is the number of times an item is administered divided by the total number of  
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Figure 3.4:  Item distributions for the two examinees 

 

 
Figure 3.5: Increase in required pool size as number of examinees increases 

 

examinees.  During the p-optimal item pool design process, the actual item exposure rate for 

each item is not available, but the number of items from each MDIFF-bin that are administered 

can be documented.  Suppose N is the total number of examinees used for the p-optimal item 

pool design process, 𝑚𝑚𝑗𝑗  is the number of item in the j-th MDIFF-bin, and 𝑠𝑠𝑗𝑗  is number of times 
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of an item from the j-th MDIFF-bin being administered.  The expected item exposure rate, 𝑟̅𝑟𝑗𝑗 , for 

each item in the j-th MDIFF-bin can be obtained by  

𝑟̅𝑟𝑗𝑗 =
𝑠𝑠𝑗𝑗 𝑚𝑚𝑗𝑗⁄
𝑁𝑁

.                            (3. 12) 

Compare 𝑟̅𝑟𝑗𝑗  with R for j = 1, 2, …, J, where J is the total number of MDIFF-bin’s.  If 𝑟̅𝑟𝑗𝑗  is 

smaller than R, it implies that the number of items the j-th MDIFF-bin is sufficient so that the no 

post-simulation adjustment is not necessary.  If 𝑟̅𝑟𝑗𝑗  is larger than R, the number of items the j-th 

MDIFF-bin is insufficient and the adjustment is needed.   

To ensure 𝑟̅𝑟𝑗𝑗 ≤ 𝑅𝑅, the predicted number of item in the j-th MDIFF-bin, 𝑚𝑚�𝑗𝑗 , can be calculated 

by 

𝑚𝑚�𝑗𝑗 =
𝑠𝑠𝑗𝑗
𝑅𝑅𝑁𝑁′ ,                            (3. 13) 

where 𝑁𝑁′  is the total number of examinees that is going to take the MCAT.  The post-simulation 

adjustment is implemented by replacing 𝑚𝑚𝑗𝑗  with 𝑚𝑚�𝑗𝑗  for all the MDIFF-bin’s with 𝑟̅𝑟𝑗𝑗 > 𝑅𝑅.  In 

other words, the post-simulation adjustment sets the number of items the j-th MDIFF-bin to 𝑀𝑀𝑗𝑗 , 

where 𝑀𝑀𝑗𝑗  is defined by 

𝑀𝑀𝑗𝑗 = max⁡{𝑚𝑚𝑗𝑗 ,𝑚𝑚�𝑗𝑗 }.                            (3. 14) 

If 𝑀𝑀𝑗𝑗  is not an integer, it will be rounded up to the next integer.   

3.3.6 p-Optimal Item Pool Design for MCAT with Non-Simple Structure 

Suppose a third cluster of items that equally measures 𝜃𝜃1  and 𝜃𝜃2  with 𝒂𝒂𝑖𝑖 = (1,1)  is 

considered to the MCAT described above. This MCAT would be with the feature of non-simple 

structure.  The two-dimensional Rasch model in this case can be written as 
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𝑃𝑃(𝜽𝜽) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑃𝑃1(𝜽𝜽) =

e𝜃𝜃1𝑗𝑗+𝑑𝑑𝑖𝑖

1 + e𝜃𝜃1𝑗𝑗+𝑑𝑑𝑖𝑖
, for items from  Cluster 1 

𝑃𝑃2(𝜽𝜽) =
e𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖

1 + e𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖
, for items from  Cluster 2

𝑃𝑃3(𝜽𝜽) =
e𝜃𝜃1𝑗𝑗+𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖

1 + e𝜃𝜃1𝑗𝑗+𝜃𝜃2𝑗𝑗+𝑑𝑑𝑖𝑖
, for items from  Cluster 3

� .               (3.15) 

And the 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃�� can be specified as 

𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃�� =

⎩
⎪
⎨

⎪
⎧ 𝑃𝑃1𝑄𝑄1 �

1 0
0 0� = �𝑃𝑃1𝑄𝑄1 0

0 0� , for items from  Cluster 1  

𝑃𝑃2𝑄𝑄2 �
0 0
0 1� = �0 0

0 𝑃𝑃2𝑄𝑄2
� , for items from  Cluster 2 

𝑃𝑃3𝑄𝑄3 �
1 1
1 1� = �𝑃𝑃3𝑄𝑄3 𝑃𝑃3𝑄𝑄3

𝑃𝑃3𝑄𝑄3 𝑃𝑃3𝑄𝑄3
� , for items from  Cluster 3

� ,        (3.16) 

Suppose among the k-1 administered items, 𝑘𝑘1  of them from Cluster 1, 𝑘𝑘2  of them from 

Cluster 2, and 𝑘𝑘3 of them from Cluster 3, where 𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3 = 𝑘𝑘 − 1. Substituting (3.16) into 

(3.6), we obtain 

𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� =

⎣
⎢
⎢
⎡� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
+ � 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1
� 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1

� 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1
� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
+ � 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1 ⎦
⎥
⎥
⎤
.               (3.17) 

Note the off-diagonal elements of the 𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� are no longer zero because of adding items from 

Cluster 3.  By substituting (3.16) and (3.17) into (3.9), we obtain 

|𝐼𝐼𝑠𝑠𝑘𝑘−1�𝜃𝜃�� + 𝐼𝐼𝑖𝑖𝑘𝑘 �𝜃𝜃��|

=

⎩
⎪⎪
⎨

⎪⎪
⎧�� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
��� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
��� 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1
� + �� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
+ � 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1
�𝑃𝑃1𝑖𝑖𝑘𝑘𝑄𝑄1𝑖𝑖𝑘𝑘

�� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
��� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
��� 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1
� + �� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
+ � 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1
�𝑃𝑃2𝑖𝑖𝑘𝑘𝑄𝑄2𝑖𝑖𝑘𝑘

�� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
��� 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
��� 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3

𝑖𝑖=1
� + �� 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1

𝑖𝑖=1
+ � 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2

𝑖𝑖=1
�𝑃𝑃3𝑖𝑖𝑘𝑘𝑄𝑄3𝑖𝑖𝑘𝑘

�, 

(3.18) 
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To determine the optimal item in this case, the amount of information on three directions 

needs to be compared: 1) ∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖
𝑘𝑘1
𝑖𝑖=1  represents the amount of information on the direction of 𝜃𝜃1, 

2) ∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖
𝑘𝑘2
𝑖𝑖=1  is the amount of information on the direction of 𝜃𝜃2 , and 3) ∑ 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3
𝑖𝑖=1  is the 

amount of information on the direction of 45 degree line (See Figure 3.6).  The Direction 1, 2, 

and 3 shown in Figure 3.6 is the direction best measured by items from Cluster 1, 2, and 3, 

respectively. That is, the direction with the maximum discrimination power.  

If the amount of information on the direction of 𝜃𝜃1  is the smallest (i.e., �∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖
𝑘𝑘2
𝑖𝑖=1 +

∑ 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖
𝑘𝑘3
𝑖𝑖=1 �  is larger than �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1
𝑖𝑖=1 + ∑ 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3
𝑖𝑖=1 � and �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖

𝑘𝑘1
𝑖𝑖=1 + ∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2
𝑖𝑖=1 �), the 

optimal item is from Cluster 1 with 𝒂𝒂𝑖𝑖 = (1,0) and −𝑑𝑑𝑖𝑖 = 𝜃𝜃1𝑗𝑗 .  If the amount of information on 

the direction of 𝜃𝜃2 is the smallest (i.e., �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖
𝑘𝑘1
𝑖𝑖=1 + ∑ 𝑃𝑃3𝑖𝑖𝑄𝑄3𝑖𝑖

𝑘𝑘3
𝑖𝑖=1 � is larger than the other two), 

the optimal item is from Cluster 2 with 𝒂𝒂𝑖𝑖 = (0,1) and −𝑑𝑑𝑖𝑖 = 𝜃𝜃2𝑗𝑗 .  If the amount of information 

on the direction of the 45 degree line is the smallest (i.e., �∑ 𝑃𝑃1𝑖𝑖𝑄𝑄1𝑖𝑖
𝑘𝑘1
𝑖𝑖=1 + ∑ 𝑃𝑃2𝑖𝑖𝑄𝑄2𝑖𝑖

𝑘𝑘2
𝑖𝑖=1 � is the 

largest), the optimal item is from Cluster 3 with 𝒂𝒂𝑖𝑖 = (1,1) and −𝑑𝑑𝑖𝑖 = 𝜃𝜃1𝑗𝑗 + 𝜃𝜃2𝑗𝑗 .  If the three 

terms are the same, the optimal item is randomly picked.  

Because the d-parameter for optimal items from Cluster 3 is equal to −(𝜃𝜃1𝑗𝑗 + 𝜃𝜃2𝑗𝑗 ), the scale 

of the d-parameter for items from Cluster 3 is different from the scale of the d-parameter for 

items from Cluster 1 and 2. That is, two-unit distance on the d-parameter for items from Cluster 

3 is corresponding to one-unit distance on the d-parameter for items from Cluster 1 and 2.  

Therefore, to meet the criterion of the p-optimal item pool, the width of the d-bin for items from 

Cluster 3 should be twice of the width for items from Cluster 1 and 2.  Because this study adopts 

the MDIFF-bin instead of d-bin, and 𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼 = −𝑑𝑑𝑖𝑖/√2 for items from Cluster 3, the width of 

the MDIFF-bin for items from Cluster 3 is √2 times larger than width of the MDIFF-bin for  
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Figure 3.6: The test information on three directions 

 

items from Cluster 1 and 2.  For the .9-optimal item pool, the width of the MDIFF-bin for items 

from Cluster 1 and 2 is 0.65, and for items from Cluster 3 is √2 ∗ 0.65, which is 0.92.  For the 

MCAT with higher order dimension, the width of the MDIFF-bin for items measuring more than 

one dimension can be determined in a similar way. 
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Chapter 4 Study Design and Procedures 

In this chapter, the algorithms for the multidimensional computerized adaptive testing 

(MCAT) are first defined in Section 4.1.  Section 4.2 then describes a simulation study that was 

used to compare the p-optimal item pools with other item pools existed in literature.  The criteria 

for item pool comparison are introduced in Section 4.3.   

4.1 MCAT Algorithms 

The MCAT in this study is based on the multidimensional Rasch model defined by (2.11).  

Three test specifications are considered: 

• Test specification 1: two-dimension simple structure.  In this case, the item pool consists 

of two clusters of items: items from Cluster 1 with 𝒂𝒂𝑖𝑖 = (1,0)  only measure 𝜃𝜃1 and items 

from Cluster 2 with 𝒂𝒂𝑖𝑖 = (0,1) only measure 𝜃𝜃2.   

• Test specification 2: three-dimension simple structure.  In this case, the item pool consists 

of three clusters of items: items from Cluster 1 with 𝒂𝒂𝑖𝑖 = (1,0,0) only measure 𝜃𝜃1, items 

from Cluster 2 with 𝒂𝒂𝑖𝑖 = (0,1,0)  only measure 𝜃𝜃2 , and items from Cluster 3 with 

𝒂𝒂𝑖𝑖 = (0,0,1) only measure 𝜃𝜃3.   

• Test specification 3: three-dimension non-simple structure.  In this case, the item pool 

consists of four clusters of items: items from Cluster 1 with 𝒂𝒂𝑖𝑖 = (1,0,0) only measure 𝜃𝜃1, 

items from Cluster 2 with 𝒂𝒂𝑖𝑖 = (0,1,0) only measure 𝜃𝜃2 , items from in Cluster 3 with  

𝒂𝒂𝑖𝑖 = (0,0,1)  only measure  𝜃𝜃3 , and items from Cluster 4 with  𝒂𝒂𝑖𝑖 = (1,1,1)  equally 

measure 𝜃𝜃1, 𝜃𝜃2 , and 𝜃𝜃3.   

For the MCAT simulation in this study, items are selected by the D-optimality method, θ is 

estimated using the Bayesian MAP method, and test length is fixed at 30 items.  The prior for the 



45 
 

Bayesian MAP is the multivariate normal distribution of the true θ in this study (Segall, 1996).  

The MCAT with and without item exposure control are considered in this study.  For the MCAT 

with exposure control, the maximum item exposure rate is fixed at 0.2, and the Modified MPI 

method is used to make sure the exposure rate for all items in the item pool are less than 0.2.  A 

detailed description of the D-optimality, the Bayesian MAP, and the Modified MPI methods can 

be found in Chapter 2 and 3.  

4.2 Simulation Procedure 

This study is carried out in four major phases.  In the first phase, a p-optimal item pool based 

on each test specification is designed and the bin-count table is created. In the second phase, the 

actual p-optimal item pools are developed based on the bin-count table created from the previous 

phase.  In the third phase, a baseline pool for each test specification is developed for comparison 

purposes.  In the fourth phase, a simulation study is carried out to evaluate the performance of 

the MCAT using a p-optimal item pool against the MCAT using a baseline pool.  

Phase I.  P-optimal Item Pool Design 

Based on the test specifications and adaptive algorithms described in the section 4.1, p-

optimal item pools are designed to guarantee that every item that was requested by the item 

selection rule is available for administration.  As described in Chapter 3, the design for the p-

optimal item pools should also based on characteristics of the target examinee population.  In this 

study, the examinee population for the CAT-ASVAB in Segall (1996) is adopted to design the p-

optimal item pools.  The CAT-ASVAB measures nine content areas, and each content area is 

treated as one dimension.  The correlation among the nine dimensions ranges from 0.2 to 0.9.  

The MCAT in this study only measures a two- or three-dimensional ability; thus, two or three 
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content areas from the CAT-ASVAB are selected to use in this study.   To investigate how the 

correlation among dimensions affects the p-optimal item pool design, both moderately correlated 

content areas and highly correlated content areas are selected.  The low correlation condition is 

not considered in this study as it is rare in educational assessments.   

For the moderate correlation condition, the three content areas are the Arithmetic Reasoning 

(AR), Word Knowledge (WK), and Electronics Information (EI).  For the high correlation 

condition, the three dimensions are the General Science (GS), Word Knowledge (WK), and 

Paragraph Comprehension (PC).  The mean and the variance-covariance matrix for ability that 

requires for these content areas are shown in Table 4.1.   

To design the p-optimal item pool for each condition, 3,000 examinees were randomly 

sampled from the multivariate normal distribution with mean vector and variance-covariance 

matrix described in Table 4.1.  The number of 3,000 is used here because, as shown in Figure 3.5, 

the size of the p-optimal item pool reaches the asymptote after 3,000 examinees.  For each 

examinee, all items administered in each cluster were allocated to the MDIFF-bins.  Two sets of 

bin sizes, .4 and .8, corresponding to a .96- and .86-optimal pool respectively, were considered in 

this study.   

In total, 24 p-optimal item pools (i.e., 3 Test Specifications * 2 correlations * 2 bin sizes * 

with or without exposure control) are designed in this study.  To eliminate potential sampling 

errors, 100 replications were conducted.  The final bin-count table for each p-optimal item pool 

is the average of its 100 replications.  Table 4.2 shows a bin-count table for the .96-optimal item 

pool for the MCAT with test specification of three-dimension non-simple structure, moderate 

correlation among dimensions, and without exposure control.  Table 4.3 is a bin-count table for  

 



47 
 

Table 4.1: Mean and covariance matrix for the two examinee populations 
 Moderate Correlation High Correlation 

 2-dimension 3-dimension 2-dimension 3-dimension 

Dimension AR and WK AR, WK, and EI GS and WK GS, WK, and PC 

Mean Vector [0,0] [0,0,0] [0,0] [0,0,0] 

Variance-Covariance 

Matrix 
� 1 . 61
. 61 1 � �

1 . 61 . 64
. 61 1 . 72
. 64 . 72 1

� � 1 . 91
. 91 1 � �

1 . 91 . 81
. 91 1 . 88
. 81 . 88 1

� 

 

Table 4.2: Bin count for a .96-optimal item pool 
MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 1 3 4 5 6 7 7 7 8 7 7 7 6 5 4 3 1 

a = (0, 1, 0) 1 3 4 5 6 7 7 7 7 7 7 7 6 5 4 3 1 

a = (0, 0, 1) 2 3 4 5 6 7 7 7 8 7 7 7 6 6 5 3 1 

MDIFF -5.6 -4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 0 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 

a = (1, 1, 1) 1 3 5 6 7 7 8 8 8 8 7 7 7 6 5 3 1 

     Note:  the values on the first row represent the central point of each item bin;  
                the values on the second and third row represent the number of items in each item bin.  
 
 

Table 4.3: Bin count for a .86-optimal item pool 
MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 2 5 7 8 8 8 7 5 2 
a = (0, 1, 0) 2 5 7 8 8 8 7 5 2 
a = (0, 0, 1) 2 5 7 8 8 8 7 5 3 

MDIFF -5.6 -4.2 -2.8 -1.4 0 1.4 2.8 4.2 5.6 
a = (1, 1, 1) 2 6 8 9 9 9 8 6 2 

                          Note: this table can be interpreted in the same way as Table 4.2.  
 

 

the .86-optimal item pool for the same MCAT.  There are 17 MDIFF-bins for the .96-optimal 

item pool and 9 MDIFF-bins for the .86-optimal item pool.   

Phase II.  P-Optimal item pool development 

With the bin-count table for the 24 p-optimal item pools, the p-optimal item pool can be 

developed accordingly.  In practice, real items should be created to match the bin-count table.  In 
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this study, items are simulated. Items within each MDIFF-bin are set to be equally distributed.  

For example, if three are 8 items in the central MDIFF-bin for items with 𝒂𝒂𝑖𝑖 = (1,0,0), 8 items 

with MDIFF value equally distributed from -0.2 to 0.2.  The MDIFF value is then converted to d-

parameter according to equation (2.9) and (2.10).  Therefore, 24 p-optimal item pools can be 

developed by simulation based on bin-count tables created in the previous phase.  

Phase III.  Baseline Pool Development 

To evaluate the 24 p-optimal item pools, baseline pools should be created as the bases for 

comparison.  Previous studies (e.g., Gu, 2007; He, 2010; Reckase, 2010) use existing operational 

item pools as the bases.  However, there is no existing operational MCAT program so far and 

herein the operational multidimensional item pool is not available.  Therefore, the item pools 

used for MCAT in research articles are adopted in this study as the baseline pools.  Some of the 

multidimensional item pools in current literature are modified from its correspondent 

unidimensional operational item pool.  For instance, Segall (1996) and Yao (2012, 2013) created 

the multidimensional item pool based on the operational item pool for CAT-ASVAB.  Other 

multidimensional item pools in the literature are created by pure simulation, such as the item 

pool used in van der Linden (1996, 1999).   

In this study, because the target examinee population and content areas are based on the CAT-

ASVAB, it is straightforward to develop the baseline pools based on the CAT-ASVAB as well.  

There are three test specifications for the 24 p-optimal item pools in this study.  Item pools with 

different test specifications cannot be compared.  Therefore, three baseline pools, one for each 

test specification, are created based on the CAT-ASVAB.  Yao (2013) provided a detailed 

description of the multidimensional item pool for the CAT-ASVAB, including the pool size and 
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item distribution.  Based on Yao’s description, the development for three baseline pools is 

described below.   

For Test Specification 1(two-dimensional simple structure), the baseline pool consists of 480 

items with 240 items from each of the two clusters.  In this study, the MCAT based on this test 

specification gives 15 items from each cluster to each examinee.  In the CAT-ASVAB, 15 AR 

items and 15 WK items are administered, and the number of AR or WK item in the item pool is 

around 240.  This is the reason for setting the size of the baseline pool to 2*240 = 480 for Test 

Specification 1.  For Test Specification 2 (three-dimensional simple structure), the baseline pool 

consists of 480 items with 160 items from each of the three clusters.  For Test Specification 3 

(three-dimensional non-simple structure), the baseline pool is consisted of 560 items with 140 

items from each of the four clusters.  Similar reasons are used to determine the pool size for Test 

Specification 2 and 3. The mean and standard deviation (SD) of the MDIFF value for the items 

in the three baseline pools are presented in Table 4.4.   

Phase IV.  Simulation Study Conduct 

A simulation study is conducted to compare the performance of the MCAT using p-optimal 

item pools against MCAT using baseline pools.  The algorithm for the MCAT is described in 

Section 4.1.  Two types of examinee distribution were used for the simulation.   

First, to evaluate the MCAT performance in general, 5,000 examinees are randomly sampled 

from the multivariate normal distribution with mean vector and variance-covariance matrix 

specified in Table 4.1.   

Second, to evaluate the MCAT performance at each θ point, 100 examinees are generated at 

several θ points.  The 29 θ points for the two dimensional case are displayed in Figure 4.1.  No 

point on the upper left and lower right is selected.  This is because, given 𝜃𝜃1 and 𝜃𝜃2 are highly or  



50 
 

Table 4.4: Item Statistics for the Three Baseline pools 

 
2-dimension 

simple structure 
3-dimension 

simple structure 
3-dimension 

non-simple structure 

 
N Mean SD N Mean SD N Mean SD 

Cluster 1 240 -0.76 2.55 160 -0.76 2.55 140 -0.76 2.55 

Cluster 2 240 -0.35 3.07 160 -0.35 3.07 140 -0.35 3.07 

Cluster 3 
   

160 -0.17 2.12 140 -0.17 2.12 

Cluster 4 
      

140 0.10 2.58 

 
 

Table 4.5: The 37 θ Points for the Three Dimensional MCAT 
No.   𝜃𝜃1  𝜃𝜃2  𝜃𝜃3  No.   𝜃𝜃1  𝜃𝜃2  𝜃𝜃3  No.   𝜃𝜃1  𝜃𝜃2  𝜃𝜃3  

1 -3 -3 -3 13 -1 -2 -1 25 1 2 1 
2 -3 -3 -2 14 -1 0 -1 26 1 2 2 
3 -3 -2 -3 15 -1 0 0 27 2 1 1 
4 -3 -2 -2 16 0 -1 -1 28 2 1 2 
5 -2 -3 -3 17 0 -1 0 29 2 2 1 
6 -2 -3 -2 18 0 0 -1 30 2 2 2 
7 -2 -2 -3 19 0 0 0 31 2 2 3 
8 -2 -2 -2 20 0 0 1 32 2 3 2 
9 -2 -2 -1 21 0 1 0 33 2 3 3 

10 -2 -1 -2 22 0 1 1 34 3 2 2 
11 -2 -1 -1 23 1 0 0 35 3 2 3 
12 -1 -2 -2 24 1 0 1 36 3 3 2 
                37 3 3 3 

 

 
Figure 4.1: The 29 θ Points for the Two Dimensional MCAT 
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Figure 4.2: The 37 θ Points for the Three Dimensional MCAT 

 

 

moderately correlated, examinees are very unlikely to have a very high value in 𝜃𝜃1 and very low 

value in 𝜃𝜃2, or vice versa.  The 37 θ points for the three dimensional case are displayed in Table 

4.5 and Figure 4.2.  Again, because 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are correlated, only a limited number of points 

on the three dimensional space are selected.   

4. 3 Evaluation Criteria  

The performance of MCAT is evaluated based on precision of the ability estimation and the 

item pool utilization.  The evaluation criteria for precision of the ability estimation include 

Pearson product-moment correlation between the true θ and estimated θ, bias, and root mean 

squared error (RMSE).  The bias and RMSE are denoted as: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �
𝜽𝜽�𝒊𝒊 − 𝜽𝜽𝒊𝒊
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
,              (4. 1) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��
�𝜽𝜽�𝒊𝒊 − 𝜽𝜽𝒊𝒊�

2

𝑛𝑛

𝑛𝑛

𝑖𝑖=1
,              (4. 2) 

where n is the sample size.   

For item pool utilization, the evaluation criteria are the overall pool usage, the test overlap 

rate, and the percentage of items with varying exposure rate.  As Chang and Ying (1999) 

proposed, the efficiency of overall item pool usage can be measured by the discrepancy between 

the observed and expected item exposure rate.  It follows 𝜒𝜒2 distribution and is denoted as 

𝜒𝜒2 = �
�𝑟𝑟𝑗𝑗 − 𝐿𝐿/𝑁𝑁�

2

𝐿𝐿/𝑁𝑁

𝑁𝑁

𝑗𝑗=1
,              (4. 3) 

where 𝑟𝑟𝑗𝑗  is the observed exposure rate for item j, L is the test length, N is the number of items in 

the item pool.  A low 𝜒𝜒2 value implies that most of the items are fully used.   

Test overlap describes item exposure as well, and it has been used as item pool security index.  

Overlap rate is defined as the average proportion of items that two randomly selected examinees 

have in common (Way, 1998): 

𝑅𝑅 =
𝑇𝑇/𝐶𝐶𝑛𝑛2

∑ 𝐿𝐿𝑖𝑖 𝑛𝑛�𝑛𝑛
𝑖𝑖=1

,              (4. 4) 

where T is the total number of item shared by 𝐶𝐶𝑛𝑛2 pair of n examinees in the test and ∑ 𝐿𝐿𝑖𝑖 𝑛𝑛�𝑛𝑛
𝑖𝑖=1  is 

the total number of the items administered for n examinees.  In practice, the overlap rate less 

than 15% is desired.  

Item exposure rate is the ratio of the number of item administrations to the total number of 

examinees.  In this study, the percentage of items over- and under-exposed for each item pool is 
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also reported.  A rate higher than 0.2 is regarded as overexposed (Segall, Moreno, & Hetter, 

1997), and a rate lower than 0.02 is regarded as underexposed (Gu, 2007).   
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Chapter 5 Simulation Results 

The simulation results are summarized in two parts.  The first part presents the general 

characteristics of the 24 p-optimal item pools, and how the characteristics are affected by test 

specification, exposure control, correlation among dimensions, and bin size.  The second part 

describes the performance of the MCAT using each p-optimal item pool, and how their 

performance compared with the MCAT using baseline pools.  

5.1 Item Pool Characteristics 

Because the primary purpose of this study is to design and develop p-optimal item pools for 

MCAT, the results of the item pool develop are presented first in this chapter.  The general 

characteristics for the p-optimal item pools and the baseline pools are summarized and compared 

in Section 5.1.1.  The item distribution for the 24 p-optimal item pools is then described in 5.1.2.  

5.1.1 Summary for Item Pool Characteristics 

The summary characteristics, including pool size and the mean and standard deviation (SD) of 

the item difficulty, for the .96-optimal item pools and .86-optimal item pools are presented in 

Table 5.1 and 5.2, respectively.  The twelve .96-optimal item pools are based on the bin-size of 

0.4, and the twelve.86-optimal item pools are based on the bin-size of 0.8.  The characteristics 

for the three baseline pools are also presented in the two tables.  

All the .96-optimal item pools, as shown in Table 5.1, have smaller pool sizes than the 

baseline pools.  For the 2-dimension simple structure and 3-dimension simple structure cases, the 

pool size for the .96-optimal item pools is about 110 to 150 items less than the baseline pools. 

For the 3-dimension non-simple structure case, the pool size for the .96-optimal item pools is 

about 150 to 190 items less than the baseline pools.  The average difficulty level (i.e., the mean  
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Table 5.1: Summary for the .96-optimal item pools and baseline pools 

Test 

specification 
Statistics 

High Correlation Moderate Correlation 
Baseline 

pool No Exposure 
Control 

Exposure 
Control 

No Exposure 
Control 

Exposure 
Control 

2-dimension 
Simple 

Structure 

Pool size 369 371 328 333 480 

Mean of Difficulty 0.01 -0.01 0.02 -0.01 -0.52 

SD of Difficulty 1.65 1.63 1.57 1.55 2.75 

3-dimension 
Simple 

Structure 

Pool size 366 370 322 330 480 

Mean of Difficulty 0.02 0.00 0.00 0.01 -0.32 

SD of Difficulty 1.61 1.58 1.51 1.48 2.72 

3-dimension 
Non-simple 

Structure 

Pool size 407 407 363 369 560 

Mean of Difficulty -0.01 -0.01 -0.01 0.00 -0.32 

SD of Difficulty 2.09 2.09 1.95 1.94 2.68 

 

Table 5.2: Summary for the .86-optimal item pools and baseline pools 

Test 

specification 
Statistics 

High Correlation Moderate Correlation 
Baseline 

pool No Exposure 
Control 

Exposure 
Control 

No Exposure 
Control 

Exposure 
Control 

2-dimension 
Simple 

Structure 

Pool size 206 252 192 246 480 

Mean of Difficulty 0.00 0.00 0.00 0.00 -0.52 

SD of Difficulty 1.82 1.66 1.70 1.55 2.75 

3-dimension 
Simple 

Structure 

Pool size 207 251 190 236 480 

Mean of Difficulty -0.02 0.00 -0.03 0.00 -0.32 

SD of Difficulty 1.76 1.60 1.63 1.47 2.72 

3-dimension 
Non-simple 

Structure 

Pool size 233 272 216 253 560 

Mean of Difficulty 0.00 0.01 0.01 0.00 -0.32 

SD of Difficulty 2.28 2.14 2.11 1.95 2.68 

 

of MDIFF) for all the .96-optimal item pools is around zero.  This is as expected because the 

mean ability of the target examinee population is zero and the p-optimal item pools are 

developed based on this examinee population.  The mean difficulty level for all the baseline 

pools is slightly below zero, suggesting the items in the baseline pools are easier than the items 
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in the p-optimal item pools on average.  The comparison between the SD’s for the .96-optimal 

item pools and the baseline pools suggests that items in baseline pools are more widely 

distributed.  

All the .86-optimal item pools, as shown in Table 5.2, also have smaller pool sizes than the 

baseline pools.  The pool size for the .86-optimal item pools is about half or less than half of the 

baseline pools. The mean difficulty level for all the .86-optimal item pools is around zero.  The 

SD of item difficulty for the .86-optimal item pools is also smaller than the baseline pools.  

The comparison between the .96- and the .86-optimal item pools tells the effect of bin size on 

the p-optimal item pools design.  First, the pool size of the .96-optimal item pools is much larger 

than the .86-optimal item pools.  For conditions without item exposure control, the pool size of 

the .96-optimal item pools is about twice as much as the .86-optimal item pools.  Therefore, a 

larger bin size results in a larger item pool.  Similar results can be found for the UCAT in 

Reckase (2003).  Second, the SD of item difficulty for the .96-optimal item pools is slightly 

smaller than the .86-optimal item pools.  Although the range of the item difficulty for both 

the .96- and .86-optimal item pools is similar, the proportion of the difficult or easy items is 

slightly higher for the .86-optimal item pools, and thus the SD value is larger.  For example, 

there are 6% items with MDIFF larger than 2.8 in the .86-optimal item pool for condition of 2-

dimension simple structure, high correlation, and no exposure control; while there are only 4% 

for the .96-optimal item pool for the same MCAT.  

In addition to the bin size, test specifications also affect the p-optimal item pools design.  The 

pool size for the all the p-optimal item pools based on 2- and 3-dimension simple structure is 

very similar, except there is a 5-item difference between the two .96-optimal item pools with 

moderate correlation and no exposure control.  The p-optimal item pools with test specification 
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of 3-dimension non-simple structure consist of about 10-12% more items than the rest of the two 

test specifications.  Therefore, if the test length is the same, adding one more clusters of items 

that measure a different content area does not require a larger item pool (e.g., from 2-dimension 

simple structure to 3-dimension simple structure); however, if the added items measure more 

than one content area (e.g., from 3-dimension simple structure to 3-dimension non-simple 

structure), the pool size needs to be increased.  In addition to the pool size, the SD of item 

difficulty is also affected by test specifications.  The SD in the 2-dimension simple structure 

condition is slightly larger than the SD in the 3-dimension simple structure condition.  The items 

in the p-optimal item pools based on both types of test specification have the same difficulty 

range, but the proportion of difficult item and easy item is slightly larger for the 2-dimension 

simple structure condition. The SD for the 3-dimension non-simple structure is much larger 

compared with the SD for the other two test specifications.  This is because the item difficulty 

for items measuring all the three content areas (with 𝒂𝒂𝑖𝑖 = (1,1,1)) is more spread.  

This study also examines how the correlation among dimensions affects the design for the p-

optimal item pool.  Table 5.1 and 5.2 show that if dimensions are highly correlated, the pool size 

and the SD of item difficulty will be larger than the condition that dimensions are moderately 

correlated.  This is because, when dimensions are highly correlated, a slightly larger number of 

examinees will have very high ability in all dimensions, and thus more difficult items are needed 

in the item pool.  For the similar reason, more easy items are also need in the item pool when 

dimensions are highly correlated.  

If item exposure control is implemented in the MCAT, a larger item pool is necessary.  

Similar results can be found in Gu (2007), He (2012), and Zhou (2013) for UCAT.  For the .96-

optimal item pools, given the pool size is already over 350 items, adding item exposure control 
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only increases the pool size by less than 10 items.  For the .86-optimal item pools, about 40-50 

more items are added to the item pool in order to minimize item exposure rate and meanwhile to 

provide precise ability estimation.  Because items with difficulty level around zero have a higher 

possibility to be selected (as more examinees are located in the middle), those additional items 

are all added to the MDIFF-bins in the middle, and therefore, the SD values for the p-optimal 

item pools with item exposure control decrease.  

In summary, the characteristics of the p-optimal item pools change with different bin sizes, 

test specification, correlation among dimensions, as well as whether item exposure control is 

implemented.  A larger item pool is necessary if the bin size decreases, the test becomes non-

simple structure, dimensions are highly correlated, or item exposure control is considered.  

5.1.2 Item distribution for p-optimal item pools 

Each of the p-optimal item pool consists of items from more than one cluster.  The number of 

items in each cluster for the .96- and .86-optimal item pools is presented Table 5.3 and 5.4, 

respectively.  For the 2-dimension simple structure case, half items are from Cluster 1, and the 

other half are from Cluster 2.  For the 3-dimension simple structure case, one third of items are 

from each cluster.  For the 3-dimension non-simple structure case, there is same number of items 

from Cluster 1 – 3, and slightly more items from Cluster 4.  

For the 2- and 3-dimension simple structure cases, the reason of items equally distributed 

between each cluster with simple structure is because the D-Optimality method selects the same 

number of items from each cluster.  Based on equation (3.8), when an item from Cluster 1 is 

administered, the test information on the direction of dimension 1 will be slightly larger than that 

of dimension 2, and the next item from Cluster 2 will be selected next.  After this item is 

administered and the ability estimate is updated, the test information on the direction of  
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Table 5.3: Item distribution for the .96-optimal item pools 

Test 

Specification 
Number of Items 

High Correlation Moderate Correlation 

No Exposure 

Control 

Exposure 

Control 

No Exposure 

Control 

Exposure 

Control 

2-dimension 

Simple 

Structure 

Item with a = (1,0) 184 185 164 167 
Item with a = (0,1) 185 186 164 166 

Total 369 371 328 333 

3-dimension 

Simple 

Structure 

Item with a = (1,0,0) 122 124 106 105 
Item with a = (0,1,0) 123 124 111 107 
Item with a = (0,0,1) 121 122 113 110 

Total 366 370 330 322 

3-dimension 

Non-simple 

Structure 

Item with a = (1,0,0) 100 100 88 89 
Item with a = (0,1,0) 102 101 87 89 
Item with a = (0,0,1) 100 100 91 92 
Item with a = (1,1,1) 105 106 97 99 

Total 407 407 363 369 
 

Table 5.4: Item distribution for the .86-optimal item pools 

Test 

Specification 
Number of Items 

High Correlation Moderate Correlation 

No Exposure 

Control 

Exposure 

Control 

No Exposure 

Control 

Exposure 

Control 

2-dimension 

Simple 

Structure 

Item with a = (1,0) 103 126 96 123 
Item with a = (0,1) 103 126 96 123 

Total 206 252 192 246 

3-dimension 

Simple 

Structure 

Item with a = (1,0,0) 68 83 60 76 
Item with a = (0,1,0) 71 85 64 80 
Item with a = (0,0,1) 68 83 66 80 

Total 207 251 190 236 

3-dimension 

Non-simple 

Structure 

Item with a = (1,0,0) 56 66 52 61 
Item with a = (0,1,0) 56 66 52 61 
Item with a = (0,0,1) 56 65 53 61 
Item with a = (1,1,1) 65 75 59 70 

Total 233 272 216 253 
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Figure 5.1: The direction of the information for items with a = (1,1,1) 

 

dimension 2 will be larger than that of dimension 1, and an item from Cluster 1 will be selected. 

Therefore, items from each cluster take turns to be selected next.  Occasionally, two items from 

the same clusters are administered successively.  If this happen, two items from another cluster 

will be selected to balance test information between the two directions.  

For the 3-dimension non-simple structure case, items measuring all the three dimensions are 

included in the item pool as the 4th cluster.  Items from Cluster 4 provide 1 unit of information on 

the direction of the 𝜃𝜃1, 𝜃𝜃2,and 𝜃𝜃3 composite (see Figure 5.1), and also √3
3

  unit of information on 

the direction of 𝜃𝜃1, 𝜃𝜃2,and 𝜃𝜃3.  Items from Cluster 1 – 3 provide 1 unit of information on the 

direction of 𝜃𝜃1 ,  𝜃𝜃2 ,or 𝜃𝜃3 , and also a small amount of information on the direction of the 

composite.  Suppose three items, one from Cluster 1, one from Cluster 2, and one from Cluster 3, 

has been administered.  At this point, the information on the direction of the diagonal is the 

smallest; thus, the fourth item is chosen from Cluster 4.  Then, items from Cluster 1 – 3 are 

selected next.  Most of the time, items from the four cluster take turns being selected. Because 

the amount of information that items from Cluster 4 provide on the direction of 𝜃𝜃1, 𝜃𝜃2,or 𝜃𝜃3 is 
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more than the amount of information that items from Cluster 1 – 3 provide on the direction of the 

composite, Cluster 1 – 3 may be skipped sometimes in each rotation.  Therefore, in this study, 

about 8 to 9 items from Cluster 4, and about 7 to 8 items from each of the Cluster 1, 2, and 3,  are 

given to each examinee.  Because more items from Cluster 4 are administered, more items 

should be available in the item pool.  

The distribution for the .96- and .86-optimal item pool without exposure control (two-

dimension simple structure, high correlation) is presented in Figure 5.2 and 5.3, respectively. 

Each bar in the figure represents the number of item in each MDIFF-bin. For both item pool, the 

distribution for item difficulty is flatter than a normal distribution.  Half of the items are from 

Cluster 1 and the other half are from Cluster 2. Figure 5.4 and 5.5 present the distribution for 

the.96- and .86-optimal item pool with exposure control (two-dimension simple structure, high 

correlation), respectively.  For both item pools, items are distributed from -3.2 to 3.2, with many 

more items located in the middle bins. Figure 5.2 and 5.4 is only different in the central MDIFF-

bin: 15 items in 5.2 and 17 in 5.4. They look different because the scale of y-axis is different.  

For the .86-optimal item pool, the difference between Figure 5.3 and 5.5 is in the three bins in 

the middle.  Because of the item exposure control, the number of item in the central MDIFF-bin 

is double in Figure 5.5.  The distribution for p-optimal item pools in other condition is in a 

similar shape, and therefore they are not represented here.  The number of items in each item 

MDIFF-bin for all the 24 p-optimal item pool can be found in the Appendix.  
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Figure 5.2: Item distribution for the .96-optimal item pool without exposure control 

(Two-dimension simple structure, high correlation) 
 

 
Figure 5.3: Item distribution for the .86-optimal item pool without exposure control 

(Two-dimension simple structure, high correlation) 
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Figure 5.4: Item distribution for the .96-optimal item pool with exposure control 

(Two-dimension simple structure, high correlation) 
 

 

 
Figure 5.5: Item distribution for the .86-optimal item pool with exposure control 

(Two-dimension simple structure, high correlation) 
 

5.2 Performance of the p-Optimal Item Pools 

The previous section described the characteristics of the p-optimal item pools and how the 

characteristics change with the MCAT design (including bin size, test specification, correlation, 

and exposure control).  In this section, the performance of the MCAT using the p-optimal item 

pools is evaluated based on the simulation results.  Two questions are addressed: (1) how does 

the performance of the MCAT using p-optimal item pools compared with the MCAT using 
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baseline pools? and (2) how does the MCAT designs influence the performance of MCAT using 

the p-optimal item pools?  The simulation results for Test Specification 1 (two-dimension simple 

structure) are first presented in 5.2.1 (for high correlation condition) and 5.2.2 (for moderate 

correlation condition), followed by Test Specification 2 (three-dimension simple structure) in 

5.2.3 (for high correlation condition) and 5.2.4 (for moderate correlation condition), and Test 

Specification 3 (three-dimension non-simple structure) in 5.2.5 (for high correlation condition) 

and 5.2.6 (for moderate correlation condition).  

5.2.1 Performance for item pools based on Test Specification 1 (high correlation) 

Table 5.5 and 5.6 presents the results of the ability estimation and item pool utilization for 

the .96-optimal item pool, the .86-optimal item pool, and the baseline pool based on the 

condition of two-dimension simple structure test specification with 𝜃𝜃1  and 𝜃𝜃2  are highly 

correlated.  The results in Table 5.5 are under the condition without item exposure control; and 

Table 5.6 is with item exposure control.  In both tables, there are two values for bias, RMSE and 

correlation, representing the results for (𝜃𝜃1, 𝜃𝜃2).  

Under the condition without item exposure control (see Table 5.5), the two p-optimal item 

pools and the baseline pool show no bias on the 𝜽𝜽 estimates.  Also, the RMSE are all at 0.40, and 

the correlations between estimated 𝜽𝜽 and true 𝜽𝜽 are around 0.91.  The average test information is 

also very similar among the three item pools.  The amount of information on the direction of 𝜃𝜃1 

and 𝜃𝜃2 is around 3.59.  This value is very high for the MCAT in this study, because 15 items 

from each cluster are administered and the maximum amount of information an item can provide 

is 0.25. Because of the feature of simple structure, the off-diagonal values of the information 

matrix are zero. In general, the results suggest that the .96- and .86-optimal item pool can 

provide accurate estimation for 𝜽𝜽, and the level of accuracy is the same as the baseline pool.  
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Table 5.5: The performance of the .96- and .86-optimal pool and the baseline pool without 
exposure control  

(2-dimension simple structure, high correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) 

RMSE (0.40, 0.40) (0.40, 0.40) (0.40, 0.40) 

Correlation (0.91, 0.91) (0.91, 0.91) (0.92, 0.91) 

Average test information �3.59 0
0 3.60� �3.58 0

0 3.59� �3.59 0
0 3.60� 

Overall Pool Usage 29.03 32.31 60.92 

Overlap rate 0.16 0.30 0.19 

% of overexposed item (r  > 0.2) 11% 34% 9% 

% of underexposed item (r  < 0.02) 35% 33% 54% 

 
 

Table 5.6: The performance of the .96- and .86-optimal pool and the baseline pool with exposure 
control  

(2-dimension simple structure, high correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) 

RMSE (0.41, 0.41) (0.41, 0.41) (0.41, 0.42) 

Correlation (0.91, 0.91) (0.91, 0.91) (0.91, 0.91) 

Average test information �3.34 0
0 3.35� �3.28 0

0 3.28� �3.30 0
0 3.10� 

Overall Pool Usage 5.02 2.19 13.38 

Overlap rate 0.09 0.13 0.09 

% of overexposed item (r  > 0.2) 0% 0% 0% 

% of underexposed item (r  < 0.02) 6% 0% 26% 

 
 

Table 5.5 also presents the results about item pool usage.  The overall pool usage index for 

the .96-optimal item pool is slightly smaller than that of the .86-optimal item pool, and the index 

for the baseline pool is about twice as much as the .96- and .86-optimal item pool.  Because a 

small overall pool usage index implies more items in the item pool are fully used, the results 
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suggest that the .96-optimal item pool has slightly better usage than the .86-optimal item pool, 

and the two p-optimal item pools have much better usage than the baseline pool.  More 

specifically, for the .96-optimal item pool, the overlap rate is 0.16, indicating that two randomly 

selected examinees will receive about 16% of items in common; and the percentage of 

overexposed and underexposed item are 11% and 35%, respectively.  For the .86-optimal item 

pool, the results are: 30% of items overlap, 34% overexposed, and 33 % under exposed.  Because 

more items from the .86-optimal item pool are overlapped and overexposed, the .86-optimal item 

pool is less secure than the .96-optimal item pool.  This finding is reasonable because the size of 

the .86-optimal item pool is only 206 items, but the .96-optimal item pool has 369 items.  The 

overlap rate for the baseline pool is 0.19, which is slightly higher than the .96-optimal item pool 

and lower than the .86-optimal item pool.  Although a smaller number of items (9%) from the 

baseline pool are overexposed, more than half of the items (54%) are rarely used.  It implies 

many items in the baseline pool are wasted.  In brief, based on these pool usage results, the item 

pool usage for the .96- and .86-optimal item pool is much better than the baseline pool.  

When item exposure control is implemented (see Table 5.6), similar results can be observed: 

the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and 

yield better item pool usage than the baseline pool.  Compared with the condition without item 

exposure control, item exposure control only results in a 0.01 to 0.02 increase for the RMSE, and 

about 0.3 decrease for the average test information.  The reason why item exposure control rarely 

affects the ability estimation is because the p-optimal item pool design takes the item exposure 

rate into account and makes sure there is adequate number of items for selection.  For the item 

pool usage, when the item exposure control is implemented, no item is overexposed, and the 

percentage of underexposed and overlapped items is also decreased.  The .86-optimal item pool 
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has been fully used with no item underexposed in this condition.  The overall pool usage index 

for the .96- and .86-optimal item pool and the baseline pool are 5.02, 2.19, and 13.38, 

respectively.  The value is much smaller than the condition without item exposure control. Thus, 

item exposure control can effectively increase the item pool usage and reduce the item exposure 

rate without obvious loss on the accuracy of ability estimation.  

In addition to the overall performance, the conditional bias and RMSE at the 29 (𝜃𝜃1 , 𝜃𝜃2) 

points are also calculated in this study to evaluate the ability estimation at each 𝜽𝜽 point.  The 

results are presented by the contour plots.  Each contour curve in the plot connects points with 

the same bias or RMSE value.  The conditional bias for each 𝜽𝜽 point is plotted in Figure 5.6 and 

5.7, for the MCAT without and with item exposure control, respectively.  In each Figure, the two 

plots (subplot a and b) at the top present the conditional bias for 𝜃𝜃1and 𝜃𝜃2 for the .96-optimal 

item pool; the two plots (subplot c and d) in the middle present the conditional bias for the .86-

optimal item pool; and the subplot e and f at the bottom present the conditional bias for the 

baseline pool. The conditional RMSE is plotted in Figure 5.8 and 5.9 in the same manner.  The 

red points in the contour plot represent the 29 (𝜃𝜃1, 𝜃𝜃2) points.  

Under the condition without item exposure control (see Figure 5.6 for bias and 5.8 for RMSE), 

it is obvious that the plot for the .96-, .86-optimal item pool, and the baseline pool are very 

similar.  This finding supports the results of the overall bias and RMSE, and also suggests the p-

optimal item pools can provide as accurate ability estimation as the baseline pool at each 𝜽𝜽 point.  

In general, larger bias and RMSE occurs when  𝜃𝜃1 and 𝜃𝜃2 are very large or very small, which is 

the upper right corner and lower left corner in the contour plot.  In addition to the value of the 𝜽𝜽, 

the difference between  𝜃𝜃1 and 𝜃𝜃2 also affects the estimation accuracy.  More specifically, when 

𝜃𝜃1 is within (-1, 1) and 𝜃𝜃2 is near 𝜃𝜃1, the bias for 𝜃𝜃1 is close to 0 and the  
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(a) Bias for 𝜃𝜃1 for the .96- optimal item pool          (b) Bias for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) Bias for 𝜃𝜃1 for the .86- optimal item pool          (d) Bias for 𝜃𝜃2 for the .86- optimal item pool 

 
(e) Bias for 𝜃𝜃1 for the comparison pool                          (f) Bias for 𝜃𝜃2 for the comparison pool 

Figure 5.6: Conditional bias for the 𝜽𝜽 estimates without exposure control 
(2-dimension simple structure, high correlation) 
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(a) Bias for 𝜃𝜃1 for the .96- optimal item pool          (b) Bias for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) Bias for 𝜃𝜃1 for the .86- optimal item pool          (d) Bias for 𝜃𝜃2 for the .86- optimal item pool 

 
 

(e) Bias for 𝜃𝜃1 for the comparison pool                          (f) Bias for 𝜃𝜃2 for the comparison pool 

Figure 5.7: Conditional bias for the 𝜽𝜽 estimates with exposure control 
(2-dimension simple structure, high correlation) 
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(a) RMSE for 𝜃𝜃1 for the .96- optimal item pool          (b) RMSE for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) RMSE for 𝜃𝜃1 for the .86- optimal item pool          (d) RMSE for 𝜃𝜃2 for the .86- optimal item pool 

 
(e) RMSE for 𝜃𝜃1 for the comparison pool                          (f) RMSE for 𝜃𝜃2 for the comparison pool 

Figure 5.8: Conditional RMSE for the 𝜽𝜽 estimates without exposure control 
(2-dimension simple structure, high correlation) 



71 
 

 
(a) RMSE for 𝜃𝜃1 for the .96- optimal item pool          (b) RMSE for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) RMSE for 𝜃𝜃1 for the .86- optimal item pool          (d) RMSE for 𝜃𝜃2 for the .86- optimal item pool 

 
(e) RMSE for 𝜃𝜃1 for the comparison pool                          (f) RMSE for 𝜃𝜃2 for the comparison pool 

Figure 5.9: Conditional RMSE for the 𝜽𝜽 estimates with exposure control 
(2-dimension simple structure, high correlation) 
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RMSE is less than 0.4.  Negative bias and large RMSE appear when the value of 𝜃𝜃1 increases 

and the difference between 𝜃𝜃1 and 𝜃𝜃2 increases.  For example, at point (3, 1) and (3, 2) in the plot, 

the bias for 𝜃𝜃1is about -1.0 and RMSE for 𝜃𝜃1is about 1.0.  Meanwhile, positive bias and large 

RMSE appear when the value of 𝜃𝜃1 decreases and the difference between 𝜃𝜃1 and 𝜃𝜃2 increases.  

At point (-3, -1) and (-3, -2), the bias for 𝜃𝜃1is about 1.0 and RMSE for 𝜃𝜃1is about 1.0.  Similar 

results for 𝜃𝜃2 can be observed from the right panel of Figure 5.6 and 5.8.  When 𝜃𝜃2 is within   (-1, 

1) and 𝜃𝜃1 is near 𝜃𝜃2, the bias and RMSE for 𝜃𝜃2 is very small.  When the value of  𝜃𝜃2 becomes 

more extreme and 𝜃𝜃1  is away from 𝜃𝜃2 , large bias and RMSE values appear.  This finding is 

probably due to the Bayesian MAP estimation method. As described in Chapter 2, the Bayesian 

method set the distribution of the true 𝜽𝜽 as the prior.  In this condition, the true 𝜽𝜽 has a mean 

vector of (0, 0) and a high correlation between 𝜃𝜃1  and 𝜃𝜃2 .  The prior will shrink the ability 

estimation into the middle and reduce the difference between  𝜃𝜃1  and 𝜃𝜃2 .  In this study, the 

overall test length is 30 so that about 15 items are selected from each cluster.  The effect of the 

likelihood function is probably not strong enough to overcome the effect of the prior.  If the test 

length further increases, the effect of the likelihood function will dominate the effect of the prior 

eventually, and therefore reduce the bias and RMSE in those extreme cases.  

When item exposure control is implemented, similar findings can be observed from Figure 5.7 

and 5.9.  Again, there is nearly no difference between the two p-optimal item pools, and between 

the p-optimal item pools and the baseline pool.  The results support the finding based on the 

overall bias and RMSE, and further suggest the MCAT using the three item pools perform 

similarly in terms of the ability estimation on the 29 𝜽𝜽 points.  In addition, larger bias and RMSE 

also occurs when  𝜃𝜃1  and 𝜃𝜃2  are very large or very small, and when 𝜃𝜃1  and 𝜃𝜃2  are away from 

each other.  A comparison between the condition with and without item exposure control shows, 
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when item exposure control is built in, the magnitude of the bias and RMSE at some extreme 

points becomes larger.  The increase of estimation error is due to the item exposure control. 

Because the item exposure control prevents the most informative item from being frequently 

selected, the information available for ability estimation reduces slightly.  When information 

reduces, the prior plays a more important role in the ability estimation.  Thus, the measurement 

error at extreme 𝜽𝜽  points becomes larger if item exposure control is added into the item selection 

process.  

In summary, this section presents the results for the MCAT with the test specification of two-

dimension simple structure and with high correlation between  𝜃𝜃1  and 𝜃𝜃2 .  In general, the p-

optimal item pools perform similar as the baseline pool in terms of both overall and conditional 

accuracy of ability estimation, but the p-optimal item pools can save over 100 items and have a 

better item pool usage.  When item exposure control is implemented, the item exposure rate and 

item overlap rate can be controlled very well.  The p-optimal item pools still can provide reliable 

ability estimation with a relatively small pool size.   

5.2.2 Performance for item pools based on Test Specification 1 (moderate correlation) 

The results for the MCAT with the same test specification, but with 𝜃𝜃1 and 𝜃𝜃2 are moderately 

correlated, are presented in Table 5.7 and 5.8.  The results in Table 5.7 are under the condition 

without item exposure control; and Table 5.8 is with item exposure control.  In both tables, there 

are two values for bias, RMSE and correlation, representing the results for (𝜃𝜃1, 𝜃𝜃2).  

Under the condition without item exposure control (see Table 5.7), the p-optimal item pools 

and the baseline pool show nearly no bias on the 𝜽𝜽 estimation.  Also, the RMSE are all at 0.46, 

and correlations between estimated 𝜽𝜽 and true 𝜽𝜽 are around 0.88.  The average test information 

is also very similar among the three item pools.  The amount of information on the direction of  
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Table 5.7: The performance of the .96- and .86-optimal pool and the baseline pool without 
exposure control  

(2-dimension simple structure, moderate correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (-0.01, 0.00) (-0.01, 0.00) (-0.01, 0.01) 

RMSE (0.45, 0.46) (0.45, 0.46) (0.45, 0.46) 

Correlation (0.89, 0.89) (0.89, 0.89) (0.89, 0.89) 

Average test information �3.58 0
0 3.58� �3.57 0

0 3.58� �3.58 0
0 3.58� 

Overall Pool Usage 28.47 31.69 66.65 

Overlap rate 0.18 0.32 0.20 

% of overexposed item (r  > 0.2) 16% 34% 10% 

% of underexposed item (r  < 0.02) 32% 29% 55% 

 
 

Table 5.8: The performance of the .96- and .86-optimal pool and the baseline pool with exposure 
control  

(2-dimension simple structure, moderate correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (-0.01, 0.00) (-0.01, 0.00) (-0.01, 0.00) 

RMSE (0.46, 0.47) (0.47, 0.47) (0.47, 0.48) 

Correlation (0.88, 0.88) (0.88, 0.88) (0.88, 0.87) 

Average test information �3.31 0
0 3.31� �3.27 0

0 3.29� �3.29 0
0 3.02� 

Overall Pool Usage 3.55 1.59 13.48 

Overlap rate 0.10 0.13 0.09 

% of overexposed item (r  > 0.2) 0% 0% 0% 

% of underexposed item (r  < 0.02) 0% 0% 26% 

 

𝜃𝜃1 and 𝜃𝜃2is around 3.58.  In general, the results suggest that the .96- and .86-optimal item pool 

can provide accurate estimation for 𝜽𝜽, and the level of accuracy is the same as the baseline pool.  

Table 5.7 also presents the results about item pool usage.  The overall pool usage index for 

the .96-optimal item pool is slightly smaller than that of the .86-optimal item pool, and the index 
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for the baseline pool is more than twice as much as the .96- and .86-optimal item pool.  The 

results suggest that the .96-optimal item pool has slightly better usage than the .86-optimal item 

pool, and the two optimal item pools have much better usage than the baseline pool.  More 

specifically, for the .96-optimal item pool, the overlap rate is 0.18, and the percentage of 

overexposed and underexposed item are 16% and 32%, respectively.  For the .86-optimal item 

pool, the results are: 32% of items overlap, 34% overexposed, and 29 % under exposed.  Because 

more items from the .86-optimal item pool are overlapped and overexposed, the .86-optimal item 

pool is less secure than the .96-optimal item pool.  The overlap rate for the baseline pool is 0.20, 

which is slightly higher than the .96-optimal item pool and lower than the .86-optimal item pool.  

Although a smaller number of items (10%) from the baseline pool are overexposed, more than 

half of the items (55%) are rarely used.  It implies many items in the baseline pool are wasted.  In 

brief, based on these pool usage results, the item pool usage for the .96- and .86-optimal item 

pool is much better than the baseline pool.  

When item exposure control is implemented (see Table 5.8), similar results can be observed: 

the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and 

yield better item pool usage than the baseline pool.  Compared with the condition without item 

exposure control, item exposure control only results in a 0.01 to 0.02 increase for the RMSE, and 

about 0.3 decrease for the average test information.  For the item pool usage, when the item 

exposure control is implemented, no item is overexposed, and the percentage of underexposed 

item and overlapped item are also decreased.  The .96- and the .86-optimal item pool has been 

fully used with no item underexposed.  The overall pool usage index for the .96-, .86-optimal 

item pool and the baseline pool are 3.55, 1.59, and 13.48, respectively.  The value is much 

smaller than the condition without item exposure control. Thus, the results suggest the item 
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exposure control can effectively increase the item pool usage and reduce the item exposure rate 

without obvious loss on the accuracy of ability estimation.  

In addition to the overall performance, the conditional bias and RMSE at the 29 (𝜃𝜃1 , 𝜃𝜃2) 

points are also calculated in this study to evaluate the ability estimation at each 𝜽𝜽 point.  The 

conditional bias for each 𝜽𝜽 point is plotted in Figure 5.10 and 5.11, for the MCAT without and 

with item exposure control, respectively.  The conditional RMSE is plotted in Figure 5.12 and 

5.13.  

Under the condition without item exposure control (see Figure 5.10 for bias and 5.12 for 

RMSE), it is obvious that the plot for the .96-, .86-optimal item pool, and the baseline pool are 

very similar.  This finding supports the results for the overall bias and RMSE, and also suggests 

the p-optimal item pools can provide as accurate ability estimation as the baseline pool at each 𝜽𝜽 

point.  Similar to the results in Section 5.1.1, larger bias and RMSE occurs when  𝜃𝜃1 and 𝜃𝜃2 are 

very large or very small, which is the upper right corner and lower left corner in the contour plot.  

In addition to the value of 𝜽𝜽, the difference between  𝜃𝜃1 and 𝜃𝜃2 also affects the estimation 

accuracy.  More specifically, when 𝜃𝜃1 is within (-1, 1) and 𝜃𝜃2 is near 𝜃𝜃1, the bias for 𝜃𝜃1 is close 

to 0 and the RMSE is less than 0.4.  Negative bias and large RMSE appear when the value of 𝜃𝜃1 

increases and the difference between 𝜃𝜃1 and 𝜃𝜃2 increases.  For example, at point (3, 1) and (3, 2) 

in the plot, the bias for 𝜃𝜃1is about -0.7 and RMSE for 𝜃𝜃1is about 0.8.  Meanwhile, positive bias 

and large RMSE appear when the value of 𝜃𝜃1 decreases and the difference between 𝜃𝜃1 and 𝜃𝜃2 

increases.  At point (-3, -1) and (-3, -2), the bias for 𝜃𝜃1is about 0.7 and RMSE for 𝜃𝜃1is about 0.8.  

Similar results for 𝜃𝜃2 can be observed from the right panel of Figure 5.10 and 5.12.  When 𝜃𝜃2 is 

within (-1, 1) and 𝜃𝜃1 is near 𝜃𝜃2, the bias and RMSE for 𝜃𝜃2 is very small.  When the value of  𝜃𝜃2 

becomes more extreme and 𝜃𝜃1 is away from 𝜃𝜃2, large bias and RMSE values appear.  
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(a) Bias for 𝜃𝜃1 for the .96- optimal item pool          (b) Bias for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) Bias for 𝜃𝜃1 for the .86- optimal item pool          (d) Bias for 𝜃𝜃2 for the .86- optimal item pool 

 
(e) Bias for 𝜃𝜃1 for the comparison pool                          (f) Bias for 𝜃𝜃2 for the comparison pool 

Figure 5.10: Conditional bias for the 𝜽𝜽 estimates without exposure control 
(2-dimension simple structure, moderate correlation) 
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(a) Bias for 𝜃𝜃1 for the .96- optimal item pool          (b) Bias for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) Bias for 𝜃𝜃1 for the .86- optimal item pool          (d) Bias for 𝜃𝜃2 for the .86- optimal item pool 

 
(e) Bias for 𝜃𝜃1 for the comparison pool                          (f) Bias for 𝜃𝜃2 for the comparison pool 

Figure 5.11: Conditional bias for the 𝜽𝜽 estimates with exposure control 
(2-dimension simple structure, moderate correlation) 
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(a) RMSE for 𝜃𝜃1 for the .96- optimal item pool          (b) RMSE for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) RMSE for 𝜃𝜃1 for the .86- optimal item pool          (d) RMSE for 𝜃𝜃2 for the .86- optimal item pool 

 
(e) RMSE for 𝜃𝜃1 for the comparison pool                          (f) RMSE for 𝜃𝜃2 for the comparison pool 

Figure 5.12: Conditional RMSE for the 𝜽𝜽 estimates without exposure control 
(2-dimension simple structure, moderate correlation) 
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(a) RMSE for 𝜃𝜃1 for the .96- optimal item pool          (b) RMSE for 𝜃𝜃2 for the .96- optimal item pool 

 
(c) RMSE for 𝜃𝜃1 for the .86- optimal item pool          (d) RMSE for 𝜃𝜃2 for the .86- optimal item pool 

 
(e) RMSE for 𝜃𝜃1 for the comparison pool                          (f) RMSE for 𝜃𝜃2 for the comparison pool 

Figure 5.13: Conditional RMSE for the 𝜽𝜽 estimates with exposure control 
(2-dimension simple structure, moderate correlation) 
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By comparing the contour plots in this section with the plots in Section 5.2.1 (when  𝜃𝜃1 and 𝜃𝜃2 

are highly correlated), it is easy to see that the pattern of the contour plot is the same, but the 

magnitude of the bias and RMSE is smaller.  When the correlation between  𝜃𝜃1 and 𝜃𝜃2 decreases, 

the prior weakly reduces the difference between 𝜃𝜃1  and  𝜃𝜃2 . Therefore, when 𝜃𝜃1  and  𝜃𝜃2  are 

moderately correlated, the bias the RMSE values are slightly smaller at those points where 𝜃𝜃1 

and  𝜃𝜃2  are away from each other, compared with the condition when 𝜃𝜃1  and  𝜃𝜃2  are highly 

correlated.  

When item exposure control is implemented, similar findings can be observed from Figure 

5.11 and 5.13.  Again, there is nearly no difference between the two p-optimal item pools, and 

between the p-optimal item pools and the baseline pool.  The results support the finding based on 

the overall bias and RMSE, and further suggest the three item pool performs similarly in terms of 

the ability estimation on the 29 𝜽𝜽 points.  In addition, larger bias and RMSE also occurs when  

𝜃𝜃1 and 𝜃𝜃2 are very large or very small, and when 𝜃𝜃1 and 𝜃𝜃2 are away from each other.  Similar to 

results under the high correlation condition in Section 5.2.1, when item exposure control is built 

in, the magnitude of the bias and RMSE at some extreme points becomes larger.  

In summary, this section present the results for the MCAT with the test specification of two-

dimension simple structure and with moderate correlation between  𝜃𝜃1 and 𝜃𝜃2.  The p-optimal 

item pools perform similar as the baseline pool in terms of the accuracy of ability estimation, but 

the p-optimal item pools can save over 140 items and have a better item pool usage.  When item 

exposure control is implemented, the p-optimal item pools still can provide accurate ability 

estimation and meanwhile the item exposure rate and item overlap rate can be well controlled.  

In general, the findings from this section are similar to the finding in previous section. A close 

comparison between these two sections reveals that the measurement error in this section is 
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slightly larger.  This result is due to the magnitude of the correlation between 𝜃𝜃1 and 𝜃𝜃2.  Unlike 

the UIRT model estimating 𝜃𝜃1  and  𝜃𝜃2  one at a time, the MIRT model estimates 𝜃𝜃1  and  𝜃𝜃2 

simultaneously, by borrowing information from one to another.  When 𝜃𝜃1  and  𝜃𝜃2  are highly 

correlated, more variance in 𝜃𝜃1  can be explained by 𝜃𝜃2 , so that more information can be 

borrowed for ability estimation.  When the correlation between 𝜃𝜃1 and 𝜃𝜃2 decreases, the amount 

of information that can be borrowed reduces accordingly, and therefore the RMSE for 𝜽𝜽 

estimates increase.  In addition to the accuracy of ability estimation, the pool usage for the two p-

optimal item pool in this section is also slightly better.  This is probably because of the pool size. 

When the correlation between 𝜃𝜃1 and 𝜃𝜃2 decreases, the pool size decreases as well.  A smaller 

item pool is more likely to be fully used.  

5.2.3 Performance for item pools based on Test Specification 2 (high correlation) 

The results for the MCAT based on the three-dimension simple structure, and with 𝜃𝜃1 and 𝜃𝜃2 

are highly correlated, are presented in Table 5.9 and 5.10. The results in Table 5.9 are under the 

condition without item exposure control; and Table 5.10 is with item exposure control.  In both 

tables, there are three values for bias, RMSE and correlation, representing the results for (𝜃𝜃1, 𝜃𝜃2, 

𝜃𝜃3).  

Under the condition without item exposure control (see Table 5.9), the p-optimal item pools 

and the baseline pool show nearly no bias on average.  Also, the RMSE ranges from 0.41 to 0.46, 

and the correlations between the estimated 𝜽𝜽 and the true 𝜽𝜽 are around 0.90.  The average test 

information is also very similar among the three item pools.  The amount of information on the 

direction of 𝜃𝜃1 , 𝜃𝜃2 , and 𝜃𝜃3  is around 2.39.  This value is very high for the three dimensional 

MCAT in this study, because only 10 items from each cluster are administered and the maximum 

amount of information an item can provide is 0.25.  In general, the results suggest that the .96-  
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Table 5.9: The performance of the .96- and .86-optimal pool and the baseline pool without 
exposure control  

(3-dimension simple structure, high correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (-0.01, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 

RMSE (0.44, 0.42, 0.45) (0.44, 0.41, 0.45) (0.44, 0.41, 0.46) 

Correlation (0.90, 0.91, 0.89) (0.90, 0.91, 0.89) (0.90, 0.91, 0.89) 

Average test information �
2.39 0 0

0 2.40 0
0 0 2.40

� �
2.38 0 0

0 2.39 0
0 0 2.39

� �
2.39 0 0

0 2.40 0
0 0 2.40

� 

Overall Pool Usage 28.47 31.69 66.65 

Overlap rate 0.18 0.32 0.20 

% of overexposed item (r > 0.2) 16% 34% 10% 

% of underexposed item (r<0.02) 32% 29% 55% 

 
 

Table 5.10: The performance of the .96- and .86-optimal pool and the baseline pool with 
exposure control  

(3-dimension simple structure, high correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (-0.01, 0.00, 0.01) (0.00, 0.00, 0.01) (0.00, 0.00, 0.01) 

RMSE (0.45, 0.43, 0.47) (0.46, 0.44, 0.47) (0.46, 0.43, 0.47) 

Correlation (0.89, 0.90, 0.89) (0.89, 0.90, 0.88) (0.89, 0.90, 0.89) 

Average test information �
2.17 0 0

0 2.18 0
0 0 2.17

� �
2.13 0 0

0 2.15 0
0 0 2.13

� �
2.08 0 0

0 2.03 0
0 0 2.15

� 

Overall Pool Usage 3.55 1.59 13.48 

Overlap rate 0.10 0.13 0.09 

% of overexposed item (r > 0.2) 0% 0% 0% 

% of underexposed item (r<0.02) 0% 0% 26% 

 

and .86-optimal item pool provide accurate estimation for 𝜽𝜽, and the level of accuracy is the 

same as baseline pool.  

Table 5.9 also presents the results about item pool usage.  Compared with the MCAT based 

on the Test Specification 1 in 5.2.1 and 5.2.2, similar results can be drawn from Table 5.9.  The 
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item pool usage for the .96-optimal item pool is slightly better than the 86-optimal item pool.  

And the two p-optimal item pools are much better used than the baseline pool.  

When item exposure control is implemented (see Table 5.10), similar results can be observed: 

the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and 

yield better item pool usage than the baseline pool.  Compared with the condition without item 

exposure control, item exposure control only results in a 0.01 to 0.03 increase for the RMSE, and 

about 0.3 decrease for the average test information.  For the item pool usage, when the item 

exposure control is implemented, no item is overexposed, and the percentage of underexposed 

item and overlapped item are also decreased.  The two p-optimal item pools have been fully used 

with no item underexposed.  The comparison between the condition with and without item 

exposure control suggests the item exposure control can effectively increase the item pool usage 

and reduce the item exposure rate without obvious loss on the accuracy of ability estimation.  

In additional to the overall performance, the conditional bias and RMSE at 37 (𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3) 

points are also calculated in this study to evaluate the ability estimation at each 𝜽𝜽 point.  The 3-

dimensional bias and RMSE cannot be plotted in a contour plot.  The conditional bias for each 𝜽𝜽 

point is presented in Table 5.11 and 5.12, for the MCAT without and with item exposure control, 

respectively.  In each table, the conditional bias is color coded based on the value.  Negative bias 

is colored in blue and positive bias is in red.  Deeper color represents larger bias.  The 

conditional RMSE is presented in Table 5.13 and 5.14 in the same manner.  Small RMSE is 

colored in green and large RMSE is colored in red.  

Under the condition without item exposure control (see Table 5.11 for bias and 5.13 for 

RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool 

are quite similar.  This finding supports the results for the overall bias and RMSE, and also  
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Table 5.11: Conditional Bias for the 𝜽𝜽 estimates without exposure control 
(3-dimension simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.48 0.52 0.56 0.41 0.44 0.50 0.53 0.51 0.56 
-3 -3 -2 0.65 0.60 0.69 0.66 0.61 0.68 -0.06 -0.07 -0.05 
-3 -2 -3 0.82 0.80 0.76 -0.13 -0.13 -0.19 0.81 0.79 0.74 
-3 -2 -2 0.94 0.91 0.93 0.06 0.03 0.08 0.20 0.16 0.21 
-2 -3 -3 -0.07 -0.02 -0.11 0.72 0.77 0.72 0.72 0.72 0.72 
-2 -3 -2 0.14 0.02 0.05 0.96 0.86 0.89 0.12 0.08 0.10 
-2 -2 -3 0.16 0.15 0.10 0.07 0.05 0.01 0.93 0.90 0.89 
-2 -2 -2 0.29 0.30 0.28 0.23 0.27 0.26 0.26 0.33 0.27 
-2 -2 -1 0.45 0.46 0.46 0.48 0.52 0.49 -0.23 -0.18 -0.24 
-2 -1 -2 0.56 0.54 0.62 -0.36 -0.39 -0.27 0.52 0.54 0.60 
-2 -1 -1 0.72 0.76 0.72 -0.12 -0.07 -0.12 -0.01 0.07 -0.01 
-1 -2 -2 -0.19 -0.23 -0.24 0.58 0.56 0.49 0.50 0.49 0.45 
-1 -2 -1 -0.09 -0.05 -0.09 0.73 0.79 0.75 -0.12 -0.03 -0.06 
-1 0 -1 0.32 0.42 0.38 -0.58 -0.47 -0.51 0.29 0.36 0.31 
-1 0 0 0.58 0.60 0.57 -0.25 -0.21 -0.25 -0.16 -0.12 -0.14 
0 -1 -1 -0.38 -0.41 -0.40 0.42 0.37 0.42 0.32 0.30 0.32 
0 -1 0 -0.25 -0.27 -0.33 0.61 0.62 0.55 -0.27 -0.20 -0.26 
0 0 -1 -0.18 -0.16 -0.15 -0.26 -0.22 -0.22 0.52 0.55 0.50 
0 0 0 0.07 0.01 -0.03 0.05 0.02 -0.03 0.03 0.03 -0.02 
0 0 1 0.12 0.20 0.15 0.16 0.29 0.22 -0.58 -0.49 -0.52 
0 1 0 0.24 0.27 0.26 -0.61 -0.59 -0.62 0.24 0.25 0.19 
0 1 1 0.47 0.48 0.39 -0.32 -0.33 -0.38 -0.28 -0.29 -0.26 
1 0 0 -0.56 -0.58 -0.51 0.26 0.26 0.30 0.16 0.16 0.17 
1 0 1 -0.42 -0.38 -0.41 0.48 0.53 0.48 -0.35 -0.32 -0.35 
1 2 1 0.09 0.08 0.10 -0.77 -0.75 -0.76 0.06 0.05 0.03 
1 2 2 0.29 0.27 0.25 -0.52 -0.50 -0.54 -0.46 -0.47 -0.45 
2 1 1 -0.73 -0.67 -0.73 0.08 0.14 0.11 -0.06 0.00 0.01 
2 1 2 -0.54 -0.54 -0.56 0.34 0.30 0.33 -0.56 -0.62 -0.58 
2 2 1 -0.46 -0.50 -0.46 -0.48 -0.51 -0.52 0.25 0.20 0.19 
2 2 2 -0.32 -0.30 -0.30 -0.28 -0.27 -0.27 -0.32 -0.33 -0.33 
2 2 3 -0.15 -0.13 -0.15 -0.05 -0.04 -0.07 -0.91 -0.87 -0.92 
2 3 2 -0.11 -0.09 -0.07 -0.96 -0.92 -0.91 -0.17 -0.10 -0.08 
2 3 3 0.04 0.05 0.11 -0.72 -0.72 -0.68 -0.69 -0.66 -0.67 
3 2 2 -0.95 -0.91 -1.00 -0.08 -0.03 -0.11 -0.25 -0.20 -0.21 
3 2 3 -0.72 -0.74 -0.75 0.25 0.18 0.20 -0.66 -0.72 -0.76 
3 3 2 -0.64 -0.61 -0.68 -0.65 -0.62 -0.68 0.08 0.10 -0.03 
3 3 3 -0.49 -0.57 -0.48 -0.40 -0.50 -0.43 -0.48 -0.57 -0.47 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.12: Conditional Bias for the 𝜽𝜽 estimates with exposure control 
(3-dimension simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.65 0.79 0.71 0.61 0.72 0.64 0.69 0.80 0.69 
-3 -3 -2 0.78 0.94 0.82 0.78 0.94 0.81 0.04 0.14 0.05 
-3 -2 -3 0.84 1.03 0.82 -0.12 0.07 -0.12 0.86 1.02 0.87 
-3 -2 -2 1.02 1.11 0.93 0.12 0.19 0.04 0.22 0.31 0.20 
-2 -3 -3 -0.04 0.02 0.07 0.79 0.86 0.89 0.80 0.89 0.88 
-2 -3 -2 0.13 0.24 0.16 1.00 1.14 1.03 0.14 0.28 0.19 
-2 -2 -3 0.19 0.24 0.32 0.11 0.16 0.21 1.01 1.09 1.10 
-2 -2 -2 0.35 0.45 0.35 0.32 0.40 0.33 0.36 0.45 0.38 
-2 -2 -1 0.54 0.60 0.52 0.57 0.61 0.51 -0.21 -0.14 -0.24 
-2 -1 -2 0.65 0.60 0.63 -0.29 -0.34 -0.28 0.60 0.59 0.64 
-2 -1 -1 0.79 0.84 0.79 -0.10 -0.02 -0.06 -0.04 0.05 0.06 
-1 -2 -2 -0.23 -0.21 -0.21 0.56 0.63 0.59 0.53 0.56 0.56 
-1 -2 -1 -0.05 -0.12 -0.02 0.80 0.80 0.85 -0.05 -0.02 0.03 
-1 0 -1 0.47 0.34 0.44 -0.42 -0.54 -0.48 0.43 0.38 0.39 
-1 0 0 0.64 0.64 0.65 -0.21 -0.18 -0.22 -0.15 -0.09 -0.14 
0 -1 -1 -0.34 -0.46 -0.36 0.47 0.38 0.45 0.40 0.33 0.39 
0 -1 0 -0.21 -0.22 -0.25 0.64 0.66 0.66 -0.21 -0.19 -0.18 
0 0 -1 -0.09 -0.15 -0.20 -0.16 -0.21 -0.26 0.65 0.59 0.54 
0 0 0 -0.07 -0.06 -0.08 -0.04 -0.06 -0.10 -0.02 -0.05 -0.08 
0 0 1 0.17 0.12 0.24 0.22 0.16 0.32 -0.58 -0.60 -0.46 
0 1 0 0.26 0.23 0.27 -0.62 -0.66 -0.61 0.21 0.21 0.23 
0 1 1 0.46 0.47 0.37 -0.35 -0.36 -0.44 -0.31 -0.31 -0.36 
1 0 0 -0.56 -0.64 -0.61 0.27 0.23 0.24 0.21 0.14 0.16 
1 0 1 -0.45 -0.48 -0.42 0.44 0.43 0.48 -0.41 -0.45 -0.38 
1 2 1 0.00 0.06 0.04 -0.85 -0.81 -0.84 0.00 0.04 0.01 
1 2 2 0.24 0.26 0.20 -0.58 -0.57 -0.60 -0.58 -0.56 -0.55 
2 1 1 -0.73 -0.86 -0.82 0.14 0.04 0.06 0.02 -0.01 -0.03 
2 1 2 -0.68 -0.70 -0.67 0.26 0.25 0.25 -0.61 -0.68 -0.66 
2 2 1 -0.54 -0.63 -0.54 -0.57 -0.67 -0.55 0.16 0.07 0.23 
2 2 2 -0.35 -0.47 -0.35 -0.32 -0.44 -0.30 -0.38 -0.50 -0.36 
2 2 3 -0.21 -0.32 -0.25 -0.13 -0.24 -0.17 -1.03 -1.13 -1.09 
2 3 2 -0.18 -0.24 -0.16 -1.04 -1.11 -1.05 -0.19 -0.27 -0.15 
2 3 3 0.01 -0.11 -0.04 -0.80 -0.92 -0.88 -0.82 -0.93 -0.90 
3 2 2 -1.02 -1.12 -1.06 -0.10 -0.20 -0.15 -0.21 -0.31 -0.27 
3 2 3 -0.91 -1.05 -0.92 0.06 -0.07 0.06 -0.90 -1.04 -0.92 
3 3 2 -0.76 -0.94 -0.84 -0.74 -0.94 -0.82 0.05 -0.14 -0.05 
3 3 3 -0.65 -0.84 -0.66 -0.60 -0.77 -0.62 -0.71 -0.84 -0.71 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.13: Conditional RMSE for the 𝜽𝜽 estimates without exposure control 
(3-dimension simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.58 0.63 0.68 0.52 0.57 0.62 0.63 0.63 0.66 
-3 -3 -2 0.72 0.71 0.77 0.74 0.70 0.77 0.36 0.34 0.41 
-3 -2 -3 0.89 0.91 0.83 0.39 0.43 0.37 0.89 0.89 0.80 
-3 -2 -2 1.02 0.98 1.00 0.38 0.35 0.35 0.44 0.38 0.41 
-2 -3 -3 0.42 0.37 0.38 0.82 0.85 0.79 0.79 0.81 0.79 
-2 -3 -2 0.38 0.39 0.35 1.01 0.95 0.94 0.36 0.45 0.34 
-2 -2 -3 0.39 0.40 0.38 0.33 0.33 0.35 0.99 0.96 0.96 
-2 -2 -2 0.47 0.44 0.45 0.42 0.42 0.41 0.47 0.50 0.43 
-2 -2 -1 0.56 0.58 0.55 0.57 0.63 0.57 0.40 0.40 0.41 
-2 -1 -2 0.66 0.65 0.71 0.51 0.55 0.46 0.62 0.67 0.72 
-2 -1 -1 0.80 0.81 0.82 0.39 0.31 0.41 0.38 0.33 0.41 
-1 -2 -2 0.43 0.38 0.44 0.68 0.63 0.59 0.62 0.59 0.57 
-1 -2 -1 0.38 0.37 0.35 0.81 0.87 0.82 0.40 0.32 0.37 
-1 0 -1 0.46 0.56 0.51 0.67 0.59 0.63 0.47 0.52 0.48 
-1 0 0 0.67 0.69 0.67 0.41 0.41 0.45 0.37 0.38 0.39 
0 -1 -1 0.50 0.56 0.53 0.53 0.50 0.54 0.49 0.48 0.48 
0 -1 0 0.42 0.43 0.48 0.69 0.72 0.64 0.44 0.42 0.44 
0 0 -1 0.38 0.39 0.42 0.40 0.39 0.43 0.59 0.65 0.62 
0 0 0 0.37 0.37 0.36 0.37 0.35 0.32 0.40 0.37 0.33 
0 0 1 0.40 0.45 0.40 0.37 0.51 0.42 0.67 0.64 0.62 
0 1 0 0.43 0.44 0.43 0.71 0.68 0.71 0.46 0.43 0.41 
0 1 1 0.59 0.61 0.52 0.46 0.49 0.51 0.45 0.48 0.47 
1 0 0 0.68 0.66 0.59 0.47 0.40 0.42 0.43 0.36 0.38 
1 0 1 0.53 0.53 0.56 0.58 0.64 0.60 0.51 0.47 0.50 
1 2 1 0.35 0.34 0.37 0.84 0.81 0.83 0.34 0.31 0.38 
1 2 2 0.47 0.46 0.41 0.62 0.62 0.63 0.59 0.59 0.56 
2 1 1 0.82 0.75 0.81 0.38 0.38 0.36 0.38 0.39 0.37 
2 1 2 0.64 0.66 0.66 0.47 0.48 0.47 0.63 0.72 0.68 
2 2 1 0.58 0.61 0.58 0.58 0.63 0.61 0.42 0.43 0.40 
2 2 2 0.48 0.45 0.49 0.44 0.44 0.47 0.46 0.48 0.52 
2 2 3 0.40 0.38 0.36 0.37 0.34 0.34 0.97 0.93 0.98 
2 3 2 0.40 0.41 0.34 1.03 0.99 0.97 0.42 0.40 0.36 
2 3 3 0.36 0.40 0.37 0.81 0.81 0.77 0.78 0.76 0.75 
3 2 2 1.02 0.99 1.06 0.35 0.38 0.38 0.43 0.44 0.42 
3 2 3 0.81 0.82 0.84 0.45 0.40 0.44 0.75 0.80 0.83 
3 3 2 0.75 0.70 0.76 0.74 0.70 0.76 0.36 0.37 0.41 
3 3 3 0.61 0.72 0.60 0.55 0.64 0.54 0.63 0.68 0.58 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.14: Conditional RMSE for the 𝜽𝜽 estimates with exposure control 
(3-dimension simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.74 0.90 0.84 0.71 0.84 0.79 0.79 0.91 0.82 
-3 -3 -2 0.88 1.03 0.92 0.88 1.02 0.92 0.42 0.43 0.45 
-3 -2 -3 0.91 1.11 0.93 0.37 0.39 0.46 0.93 1.10 0.98 
-3 -2 -2 1.10 1.18 1.01 0.45 0.44 0.40 0.46 0.51 0.44 
-2 -3 -3 0.39 0.43 0.45 0.87 0.97 1.00 0.88 0.99 0.99 
-2 -3 -2 0.41 0.47 0.43 1.07 1.20 1.09 0.40 0.47 0.42 
-2 -2 -3 0.42 0.45 0.50 0.40 0.42 0.43 1.08 1.15 1.15 
-2 -2 -2 0.51 0.57 0.55 0.49 0.55 0.53 0.52 0.58 0.55 
-2 -2 -1 0.65 0.72 0.64 0.68 0.74 0.62 0.44 0.44 0.41 
-2 -1 -2 0.76 0.73 0.76 0.49 0.55 0.50 0.72 0.74 0.75 
-2 -1 -1 0.87 0.94 0.89 0.36 0.41 0.41 0.40 0.39 0.42 
-1 -2 -2 0.44 0.43 0.41 0.69 0.73 0.68 0.67 0.68 0.64 
-1 -2 -1 0.35 0.40 0.36 0.87 0.89 0.92 0.34 0.37 0.38 
-1 0 -1 0.59 0.51 0.62 0.56 0.67 0.65 0.59 0.53 0.58 
-1 0 0 0.72 0.72 0.76 0.39 0.37 0.44 0.36 0.35 0.43 
0 -1 -1 0.49 0.58 0.51 0.57 0.52 0.58 0.53 0.48 0.54 
0 -1 0 0.45 0.45 0.46 0.75 0.76 0.76 0.41 0.40 0.40 
0 0 -1 0.37 0.42 0.40 0.37 0.43 0.42 0.76 0.73 0.66 
0 0 0 0.35 0.37 0.44 0.34 0.36 0.43 0.36 0.37 0.42 
0 0 1 0.42 0.37 0.49 0.41 0.39 0.51 0.70 0.68 0.61 
0 1 0 0.44 0.48 0.51 0.71 0.77 0.75 0.44 0.46 0.47 
0 1 1 0.60 0.58 0.52 0.53 0.49 0.57 0.48 0.47 0.52 
1 0 0 0.67 0.73 0.71 0.45 0.43 0.42 0.45 0.41 0.40 
1 0 1 0.56 0.61 0.60 0.54 0.57 0.64 0.52 0.57 0.56 
1 2 1 0.35 0.44 0.38 0.92 0.91 0.93 0.36 0.39 0.38 
1 2 2 0.42 0.51 0.44 0.68 0.70 0.71 0.69 0.69 0.68 
2 1 1 0.81 0.94 0.90 0.39 0.37 0.36 0.35 0.34 0.37 
2 1 2 0.81 0.83 0.77 0.49 0.49 0.46 0.74 0.80 0.75 
2 2 1 0.66 0.73 0.69 0.68 0.76 0.71 0.40 0.36 0.49 
2 2 2 0.52 0.65 0.51 0.50 0.63 0.46 0.54 0.67 0.52 
2 2 3 0.41 0.48 0.43 0.39 0.43 0.40 1.10 1.20 1.16 
2 3 2 0.42 0.46 0.42 1.10 1.18 1.11 0.42 0.48 0.41 
2 3 3 0.39 0.47 0.36 0.89 1.04 0.95 0.91 1.05 0.97 
3 2 2 1.08 1.20 1.14 0.37 0.46 0.44 0.42 0.54 0.50 
3 2 3 1.00 1.18 0.99 0.38 0.53 0.39 0.96 1.17 1.00 
3 3 2 0.88 1.04 0.96 0.85 1.05 0.96 0.42 0.48 0.48 
3 3 3 0.73 0.94 0.81 0.67 0.87 0.77 0.76 0.94 0.84 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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suggests the p-optimal item pools can provide as accurate ability estimation as the baseline pool 

at each 𝜽𝜽 point.  In general, larger bias and RMSE occurs when  𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are very large or 

very small, which is the top and the bottom of each table.  In addition to the value of 𝜽𝜽, the 

difference between two 𝜃𝜃′𝑠𝑠 also affects the estimation accuracy.  More specifically, when 𝜃𝜃1 is 

around 0, and 𝜃𝜃2 and 𝜃𝜃3 are near 𝜃𝜃1, the bias for 𝜃𝜃1 is close to 0 and the RMSE is less than 0.4.  

Negative bias and large RMSE appear when the value of 𝜃𝜃1 increases and the difference between  

𝜃𝜃1 and 𝜃𝜃2, and between 𝜃𝜃1 and 𝜃𝜃3, increases.  For example, at point (3, 2, 2) in the table, the bias 

for 𝜃𝜃1is almost -1.0 and RMSE for 𝜃𝜃1is around 1.0.  Meanwhile, positive bias and large RMSE 

appear when the value of 𝜃𝜃1 decreases and the difference between  𝜃𝜃1 and 𝜃𝜃2, and between 𝜃𝜃1 

and 𝜃𝜃3, increases.  At point (-3, -2, -2), the bias for 𝜃𝜃1is about 0.93 and RMSE for 𝜃𝜃1is around 

1.0.  Similar results for 𝜃𝜃2 can be observed from the three columns in the middle of Table 5.11 

and 5.13.  When 𝜃𝜃2 is around 0, and 𝜃𝜃1 and 𝜃𝜃3 is near 𝜃𝜃2, the bias and RMSE for 𝜃𝜃2 is very small.  

When the value of  𝜃𝜃2  becomes more extreme and 𝜃𝜃1  and 𝜃𝜃3 is away from 𝜃𝜃2 , large bias and 

RMSE values appear.  Again, similar results can be found for 𝜃𝜃3 from the three columns on the 

right side of Table 5.11 and 5.13.  As described in Section 5.2.1, this finding is probably due to 

the Bayesian MAP estimation method. The prior for 𝜽𝜽  estimation is a multivariate normal 

distribution with a mean vector of (0, 0) and a high correlation among 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3.  The prior 

will shrink the ability estimation into the middle and reduce the difference among each 𝜃𝜃.  Under 

this condition, the overall test length is 30 so that about 10 items are selected from each cluster.  

The effect of the likelihood function is relatively weak comparing to the effect of the prior.  If 

the test length further increases, the effect of the likelihood function will dominate the effect of 

the prior eventually, and therefore reduce the bias and RMSE in those extreme cases.  
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When item exposure control is implemented, similar findings can be observed from Table 

5.12 and 5.14.  Again, there is nearly no difference between the two p-optimal item pools, and 

between the p-optimal item pools and the baseline pool.  The results support the finding based on 

the overall bias and RMSE, and further suggest the three item pools perform similarly in terms of 

the ability estimation on the 37 𝜽𝜽 points.  In addition, larger bias and RMSE also occurs when  

𝜃𝜃1 , 𝜃𝜃2 , and 𝜃𝜃3  are very large or very small, and when  𝜃𝜃 ’s are away from each other.  A 

comparison between the condition with and without item exposure control shows, when item 

exposure control is built in, the magnitude of the bias and RMSE at some extreme points 

becomes larger.  The increase of estimation error is due to the item exposure control.  As 

explained in Section 5.2.1, because the item exposure control prevents the most informative item 

from being frequently selected, the information available for ability estimation reduces slightly.  

Thus, the measurement error at extreme 𝜽𝜽 points becomes larger if item exposure control is built 

into the item selection process.  

In summary, this section present the results for the MCAT with the test specification of three-

dimension simple structure and with high correlation among 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3.  In general, the p-

optimal item pools perform similarly as the baseline pool in terms of both overall and conditional 

accuracy of ability estimation, but the p-optimal item pools can save about 100 items and have a 

better item pool usage.  When item exposure control is implemented, the item exposure rate and 

item overlap rate can be controlled very well.  The p-optimal item pools still can provide reliable 

ability estimation with a relatively small pool size.   

5.2.4 Performance for item pools based on Test Specification 2 (moderate correlation) 

The results for the MCAT with the same test specification, but with 𝜃𝜃1 , 𝜃𝜃2 , and 𝜃𝜃3  are 

moderately correlated, are presented in Table 5.15 and 5.15.  The results in Table 5.15 are under  
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Table 5.15: The performance of the .96- and .86-optimal pool and the baseline pool without 
exposure control  

(3-dimension simple structure, moderate correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.01, 0.00, 0.00) (0.01, 0.01, 0.00) (0.00, 0.00, 0.00) 

RMSE (0.52, 0.49, 0.49) (0.51, 0.49, 0.49) (0.52, 0.49, 0.49) 

Correlation (0.86, 0.87, 0.87) (0.86, 0.87, 0.87) (0.86, 0.87, 0.87) 

Average test information �
2.38 0 0

0 2.39 0
0 0 2.39

� �
2.38 0 0

0 2.38 0
0 0 2.38

� �
2.38 0 0

0 2.38 0
0 0 2.39

� 

Overall Pool Usage 29.38 31.95 67.46 

Overlap rate 0.18 0.33 0.20 

% of overexposed item (r  > 0.2) 15% 35% 8% 

% of underexposed item (r<0.02) 31% 29% 53% 

 
 

Table 5.16: The performance of the .96- and .86-optimal pool and the baseline pool with 
exposure control  

(3-dimension simple structure, moderate correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.01, -0.01, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 

RMSE (0.54, 0.51, 0.50) (0.54, 0.51, 0.50) (0.55, 0.52, 0.50) 

Correlation (0.85, 0.86, 0.86) (0.84, 0.86, 0.86) (0.84, 0.85, 0.86) 

Average test information �
2.14 0 0

0 2.16 0
0 0 2.17

� �
2.12 0 0

0 2.15 0
0 0 2.15

� �
2.07 0 0

0 2.00 0
0 0 2.15

� 

Overall Pool Usage 1.50 0.47 9.82 

Overlap rate 0.10 13% 0.08 

% of overexposed item (r  > 0.2) 0% 0% 0% 

% of underexposed item (r<0.02) 0% 0% 21% 

 

the condition without item exposure control; and Table 5.16 is with item exposure control. In 

both tables, there are three values for bias, RMSE and correlation, representing the results for 

(𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3).  
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Under the condition without item exposure control (see Table 5.15), the p-optimal item pools 

and the baseline pool show nearly no bias on the 𝜽𝜽 estimates.  Also, the RMSE are all at 0.50, 

and correlations between estimated 𝜽𝜽 and true 𝜽𝜽 are around 0.87. The average test information is 

also very similar among the three item pools.  The amount of information on the direction of 

each 𝜃𝜃 is around 2.38.  In general, the results suggest that the .96- and .86-optimal item pool can 

provide accurate estimation for 𝜽𝜽, and the level of accuracy is the same as baseline pool.  

Table 5.15 also presents the results about item pool usage.  The overall pool usage index for 

the .96-optimal item pool is slightly smaller than that of the .86-optimal item pool, and the index 

for the baseline pool is more than twice as much as the .96- and .86-optimal item pool.  The 

results suggest that the .96-optimal item pool has been slightly better used than the .86-optimal 

item pool, and the two optimal item pools have been much better used than the baseline pool.  

More specifically, for the .96-optimal item pool, the overlap rate is 0.18, and the percentage of 

overexposed and underexposed item are 15% and 31%, respectively.  For the .86-optimal item 

pool, the results are: 33% of items overlap, 35% overexposed, and 29 % under exposed.  Because 

more items from the .86-optimal item pool are overlapped and overexposed, the .86-optimal item 

pool is less secure than the .96-optimal item pool.  The overlap rate for the baseline pool is 0.20, 

which is slightly higher than the .96-optimal item pool and lower than the .86-optimal item pool.  

Although a smaller number of items (8%) from the baseline pool are overexposed, more than 

half of the items (53%) are rarely used.  It implies many items in the baseline pool are wasted.  In 

brief, based on these pool usage results, the item pool usage for the .96- and .86-optimal item 

pool is much better than the baseline pool.  

When item exposure control is implemented (see Table 5.16), similar results can be observed: 

the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and 
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yield better item pool usage than the baseline pool.  Compared with the condition without item 

exposure control, item exposure control only results in a 0.01 to 0.03 increase for the RMSE, 

about 0.01 to 0.02 decrease in correlation, and about 0.3 decrease on the average test information.  

For the item pool usage, when the item exposure control is implemented, no item is overexposed, 

and the percentage of underexposed item and overlapped item are also decreased.  The .96- and 

the .86-optimal item pool has been fully used with no item underexposed.  The overall pool 

usage index for the .96-, .86-optimal item pool and the baseline pool are 1.50, 0.47, and 9.82, 

respectively.  The value is much smaller than the condition without item exposure control. Thus, 

the item exposure control can effectively increase the item pool usage and reduce the item 

exposure rate without obvious loss on the accuracy of ability estimation.  

In addition to the overall pool performance, the conditional bias and RMSE at 37 (𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3) 

points are also reported.  The conditional bias for each 𝜽𝜽 point is presented in Table 5.17 and 

5.18, for the MCAT without and with exposure control, respectively.  Negative bias is colored in 

blue and positive bias is in red.  Deeper color represents larger bias.  The conditional RMSE is 

presented in Table 5.19 and 5.20 in the same manner.  Small RMSE is colored in green and large 

RMSE is colored in red.  

Under the condition without item exposure control (see Table 5.17 for bias and 5.19 for 

RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool 

are quite similar.  This finding supports the results for the overall bias and RMSE, and also 

suggests the p-optimal item pools can provide as accurate ability estimation as the baseline pool 

at each 𝜽𝜽 point.  Similar to the condition that dimensions are highly correlated, larger bias and 

RMSE occurs when  𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are very large or very small.  The difference between two 𝜃𝜃′𝑠𝑠 

also affects the estimation accuracy. More specifically, when 𝜃𝜃1 is around 0, and 𝜃𝜃2 and 𝜃𝜃3 are  
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Table 5.17: Conditional Bias for the 𝜽𝜽 estimates without exposure control 
(3-dimension simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.61 0.60 0.68 0.48 0.59 0.67 0.48 0.55 0.57 
-3 -3 -2 0.70 0.78 0.74 0.70 0.75 0.74 0.01 0.03 0.05 
-3 -2 -3 0.78 0.71 0.70 0.11 0.10 0.09 0.77 0.70 0.73 
-3 -2 -2 0.89 0.83 0.84 0.29 0.22 0.26 0.20 0.17 0.20 
-2 -3 -3 0.15 0.13 0.15 0.65 0.66 0.69 0.64 0.70 0.69 
-2 -3 -2 0.33 0.26 0.28 0.86 0.80 0.84 0.20 0.19 0.18 
-2 -2 -3 0.20 0.23 0.18 0.18 0.28 0.11 0.83 0.83 0.77 
-2 -2 -2 0.42 0.32 0.33 0.42 0.30 0.29 0.40 0.29 0.27 
-2 -2 -1 0.48 0.54 0.44 0.44 0.56 0.50 -0.16 -0.13 -0.16 
-2 -1 -2 0.48 0.50 0.49 -0.19 -0.10 -0.14 0.45 0.46 0.52 
-2 -1 -1 0.60 0.60 0.70 -0.04 0.08 0.09 -0.02 0.00 0.03 
-1 -2 -2 -0.06 -0.06 0.03 0.41 0.37 0.51 0.44 0.35 0.52 
-1 -2 -1 0.03 0.09 0.00 0.57 0.62 0.54 -0.02 -0.04 -0.10 
-1 0 -1 0.31 0.27 0.26 -0.27 -0.24 -0.39 0.36 0.30 0.31 
-1 0 0 0.44 0.39 0.45 -0.09 -0.14 -0.08 -0.06 -0.11 -0.03 
0 -1 -1 -0.22 -0.28 -0.24 0.31 0.24 0.21 0.33 0.23 0.24 
0 -1 0 -0.06 -0.04 -0.09 0.45 0.49 0.45 -0.24 -0.13 -0.13 
0 0 -1 -0.16 -0.08 -0.14 -0.19 -0.14 -0.11 0.46 0.48 0.47 
0 0 0 0.06 -0.06 0.01 0.09 -0.04 -0.04 0.09 -0.02 -0.01 
0 0 1 0.15 0.10 0.09 0.18 0.15 0.16 -0.47 -0.48 -0.45 
0 1 0 0.10 0.12 0.16 -0.46 -0.43 -0.37 0.14 0.13 0.18 
0 1 1 0.13 0.25 0.21 -0.29 -0.29 -0.28 -0.36 -0.29 -0.27 
1 0 0 -0.39 -0.40 -0.40 0.09 0.09 0.10 0.09 0.07 0.15 
1 0 1 -0.27 -0.22 -0.32 0.25 0.29 0.26 -0.38 -0.28 -0.37 
1 2 1 -0.11 -0.04 -0.04 -0.68 -0.61 -0.68 -0.08 -0.01 -0.03 
1 2 2 0.04 0.00 0.06 -0.47 -0.45 -0.47 -0.48 -0.47 -0.49 
2 1 1 -0.62 -0.67 -0.60 -0.06 -0.04 -0.05 -0.01 -0.07 -0.01 
2 1 2 -0.45 -0.44 -0.41 0.11 0.09 0.13 -0.45 -0.49 -0.49 
2 2 1 -0.47 -0.52 -0.54 -0.48 -0.52 -0.49 0.17 0.10 0.16 
2 2 2 -0.30 -0.31 -0.38 -0.38 -0.35 -0.38 -0.32 -0.35 -0.31 
2 2 3 -0.21 -0.30 -0.32 -0.13 -0.24 -0.20 -0.80 -0.86 -0.83 
2 3 2 -0.33 -0.30 -0.27 -0.86 -0.81 -0.87 -0.20 -0.16 -0.16 
2 3 3 -0.11 -0.14 -0.17 -0.62 -0.63 -0.62 -0.64 -0.71 -0.61 
3 2 2 -0.91 -0.87 -0.91 -0.24 -0.28 -0.22 -0.22 -0.24 -0.23 
3 2 3 -0.76 -0.68 -0.75 -0.16 -0.05 -0.11 -0.77 -0.72 -0.74 
3 3 2 -0.76 -0.73 -0.71 -0.75 -0.69 -0.76 -0.02 -0.03 -0.11 
3 3 3 -0.65 -0.57 -0.56 -0.56 -0.53 -0.61 -0.56 -0.52 -0.56 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.18: Conditional Bias for the 𝜽𝜽 estimates with exposure control 
(3-dimension simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.81 0.90 0.73 0.69 0.82 0.69 0.69 0.84 0.66 
-3 -3 -2 0.98 1.05 0.97 0.94 1.02 0.94 0.17 0.17 0.20 
-3 -2 -3 0.92 0.99 0.89 0.22 0.20 0.17 0.94 0.99 0.81 
-3 -2 -2 1.06 1.19 1.00 0.36 0.44 0.30 0.29 0.39 0.24 
-2 -3 -3 0.28 0.24 0.18 0.88 0.95 0.86 0.86 0.90 0.82 
-2 -3 -2 0.35 0.40 0.37 1.01 1.09 1.02 0.22 0.33 0.21 
-2 -2 -3 0.43 0.38 0.31 0.32 0.30 0.32 1.04 1.09 0.93 
-2 -2 -2 0.43 0.48 0.44 0.37 0.43 0.45 0.35 0.43 0.39 
-2 -2 -1 0.58 0.54 0.58 0.57 0.56 0.55 -0.10 -0.19 -0.14 
-2 -1 -2 0.61 0.54 0.57 -0.05 -0.15 -0.13 0.55 0.53 0.51 
-2 -1 -1 0.69 0.78 0.67 0.05 0.17 0.09 0.08 0.11 0.09 
-1 -2 -2 -0.08 0.00 -0.02 0.51 0.57 0.51 0.53 0.60 0.52 
-1 -2 -1 0.14 0.15 0.11 0.74 0.79 0.75 0.05 0.08 0.01 
-1 0 -1 0.41 0.32 0.38 -0.20 -0.30 -0.33 0.40 0.36 0.34 
-1 0 0 0.42 0.45 0.40 -0.12 -0.13 -0.16 -0.11 -0.12 -0.15 
0 -1 -1 -0.25 -0.27 -0.20 0.29 0.29 0.35 0.31 0.30 0.34 
0 -1 0 -0.10 -0.15 -0.02 0.50 0.49 0.55 -0.14 -0.18 -0.13 
0 0 -1 -0.17 -0.10 -0.16 -0.15 -0.13 -0.22 0.49 0.51 0.49 
0 0 0 -0.02 -0.07 0.05 0.07 0.00 0.05 0.00 0.02 0.08 
0 0 1 0.22 0.14 0.15 0.29 0.16 0.22 -0.44 -0.47 -0.42 
0 1 0 0.13 0.21 0.10 -0.46 -0.47 -0.51 0.22 0.16 0.15 
0 1 1 0.28 0.25 0.21 -0.31 -0.29 -0.36 -0.34 -0.30 -0.34 
1 0 0 -0.40 -0.43 -0.49 0.14 0.16 0.13 0.17 0.18 0.11 
1 0 1 -0.28 -0.37 -0.32 0.34 0.25 0.28 -0.33 -0.40 -0.39 
1 2 1 -0.09 -0.17 -0.10 -0.78 -0.75 -0.74 -0.03 -0.06 -0.09 
1 2 2 -0.03 0.00 0.03 -0.58 -0.60 -0.55 -0.54 -0.62 -0.54 
2 1 1 -0.65 -0.73 -0.72 -0.07 -0.13 -0.08 -0.03 -0.10 -0.03 
2 1 2 -0.60 -0.64 -0.57 0.06 0.07 0.05 -0.63 -0.66 -0.64 
2 2 1 -0.63 -0.56 -0.65 -0.67 -0.58 -0.60 0.10 0.14 0.07 
2 2 2 -0.53 -0.51 -0.44 -0.39 -0.45 -0.46 -0.38 -0.48 -0.47 
2 2 3 -0.32 -0.40 -0.40 -0.28 -0.37 -0.31 -1.04 -1.11 -1.07 
2 3 2 -0.32 -0.43 -0.35 -1.01 -1.14 -1.06 -0.26 -0.39 -0.31 
2 3 3 -0.19 -0.32 -0.34 -0.84 -1.04 -0.89 -0.84 -1.00 -0.89 
3 2 2 -1.05 -1.18 -1.07 -0.34 -0.40 -0.32 -0.28 -0.34 -0.33 
3 2 3 -0.91 -0.99 -0.92 -0.13 -0.24 -0.18 -0.88 -1.00 -0.92 
3 3 2 -0.92 -1.05 -0.98 -0.95 -1.04 -0.95 -0.19 -0.25 -0.17 
3 3 3 -0.79 -0.99 -0.74 -0.69 -0.90 -0.70 -0.71 -0.87 -0.68 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.19: Conditional RMSE for the 𝜽𝜽 estimates without exposure control 
(3-dimension simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.74 0.74 0.78 0.62 0.73 0.77 0.60 0.70 0.72 
-3 -3 -2 0.81 0.87 0.85 0.80 0.86 0.84 0.45 0.39 0.41 
-3 -2 -3 0.88 0.80 0.82 0.45 0.41 0.39 0.85 0.79 0.82 
-3 -2 -2 0.97 0.91 0.93 0.47 0.49 0.46 0.44 0.44 0.44 
-2 -3 -3 0.41 0.41 0.43 0.77 0.76 0.80 0.74 0.79 0.82 
-2 -3 -2 0.53 0.49 0.50 0.96 0.88 0.91 0.43 0.45 0.45 
-2 -2 -3 0.44 0.43 0.43 0.50 0.49 0.41 0.93 0.91 0.85 
-2 -2 -2 0.63 0.51 0.51 0.58 0.49 0.47 0.55 0.51 0.49 
-2 -2 -1 0.63 0.66 0.60 0.57 0.66 0.63 0.43 0.41 0.41 
-2 -1 -2 0.62 0.62 0.61 0.46 0.40 0.41 0.61 0.59 0.68 
-2 -1 -1 0.72 0.72 0.81 0.40 0.38 0.38 0.41 0.41 0.40 
-1 -2 -2 0.42 0.41 0.37 0.55 0.53 0.65 0.58 0.48 0.65 
-1 -2 -1 0.44 0.40 0.42 0.67 0.72 0.69 0.40 0.38 0.40 
-1 0 -1 0.48 0.44 0.47 0.47 0.45 0.57 0.52 0.49 0.51 
-1 0 0 0.61 0.54 0.65 0.40 0.46 0.41 0.35 0.40 0.40 
0 -1 -1 0.44 0.48 0.49 0.45 0.43 0.41 0.50 0.42 0.45 
0 -1 0 0.44 0.36 0.43 0.60 0.61 0.59 0.50 0.36 0.35 
0 0 -1 0.43 0.40 0.42 0.47 0.36 0.43 0.59 0.65 0.61 
0 0 0 0.41 0.41 0.42 0.37 0.37 0.39 0.41 0.36 0.41 
0 0 1 0.45 0.39 0.44 0.43 0.38 0.43 0.63 0.60 0.60 
0 1 0 0.36 0.38 0.40 0.62 0.59 0.51 0.37 0.46 0.41 
0 1 1 0.41 0.47 0.45 0.50 0.51 0.45 0.52 0.49 0.46 
1 0 0 0.57 0.55 0.57 0.46 0.36 0.43 0.43 0.38 0.48 
1 0 1 0.48 0.46 0.47 0.48 0.45 0.49 0.58 0.47 0.56 
1 2 1 0.39 0.41 0.41 0.79 0.72 0.77 0.39 0.41 0.41 
1 2 2 0.37 0.46 0.42 0.60 0.59 0.61 0.60 0.61 0.63 
2 1 1 0.73 0.79 0.71 0.39 0.41 0.40 0.38 0.41 0.35 
2 1 2 0.58 0.64 0.60 0.44 0.42 0.42 0.58 0.66 0.63 
2 2 1 0.63 0.68 0.63 0.62 0.63 0.63 0.48 0.37 0.37 
2 2 2 0.52 0.49 0.53 0.55 0.50 0.55 0.48 0.54 0.50 
2 2 3 0.39 0.50 0.50 0.37 0.45 0.42 0.88 0.93 0.91 
2 3 2 0.47 0.49 0.50 0.92 0.87 0.95 0.47 0.39 0.46 
2 3 3 0.47 0.38 0.46 0.73 0.76 0.76 0.74 0.81 0.74 
3 2 2 1.02 0.96 1.00 0.47 0.49 0.48 0.47 0.47 0.49 
3 2 3 0.87 0.79 0.85 0.42 0.38 0.42 0.89 0.82 0.82 
3 3 2 0.84 0.82 0.81 0.84 0.78 0.84 0.38 0.40 0.43 
3 3 3 0.78 0.68 0.71 0.66 0.63 0.70 0.69 0.63 0.66 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.20: Conditional RMSE for the 𝜽𝜽 estimates with exposure control 
(3-dimension simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.90 0.97 0.84 0.80 0.92 0.80 0.78 0.92 0.77 
-3 -3 -2 1.07 1.11 1.07 1.02 1.11 1.02 0.47 0.47 0.44 
-3 -2 -3 1.01 1.06 0.99 0.51 0.42 0.40 1.05 1.05 0.90 
-3 -2 -2 1.14 1.26 1.09 0.51 0.58 0.49 0.50 0.54 0.45 
-2 -3 -3 0.50 0.49 0.54 0.96 1.03 1.00 0.95 0.98 0.95 
-2 -3 -2 0.55 0.60 0.56 1.09 1.17 1.12 0.43 0.55 0.48 
-2 -2 -3 0.61 0.57 0.49 0.54 0.48 0.52 1.11 1.16 1.01 
-2 -2 -2 0.58 0.63 0.61 0.53 0.60 0.64 0.52 0.59 0.57 
-2 -2 -1 0.71 0.67 0.72 0.73 0.69 0.68 0.45 0.48 0.39 
-2 -1 -2 0.76 0.67 0.71 0.43 0.46 0.41 0.71 0.68 0.64 
-2 -1 -1 0.82 0.86 0.81 0.40 0.45 0.43 0.44 0.41 0.45 
-1 -2 -2 0.46 0.42 0.44 0.64 0.69 0.66 0.70 0.74 0.66 
-1 -2 -1 0.41 0.45 0.41 0.86 0.89 0.85 0.42 0.38 0.39 
-1 0 -1 0.57 0.53 0.56 0.48 0.54 0.54 0.58 0.55 0.56 
-1 0 0 0.58 0.61 0.55 0.43 0.43 0.43 0.43 0.39 0.39 
0 -1 -1 0.49 0.46 0.46 0.48 0.49 0.57 0.52 0.48 0.57 
0 -1 0 0.40 0.46 0.43 0.65 0.63 0.69 0.44 0.45 0.44 
0 0 -1 0.42 0.42 0.46 0.46 0.45 0.45 0.67 0.68 0.65 
0 0 0 0.41 0.42 0.44 0.44 0.37 0.38 0.44 0.40 0.39 
0 0 1 0.45 0.44 0.45 0.52 0.42 0.52 0.61 0.65 0.60 
0 1 0 0.45 0.47 0.43 0.62 0.62 0.66 0.47 0.42 0.43 
0 1 1 0.49 0.46 0.48 0.49 0.47 0.56 0.52 0.46 0.55 
1 0 0 0.64 0.60 0.70 0.44 0.44 0.45 0.45 0.50 0.45 
1 0 1 0.52 0.55 0.54 0.52 0.48 0.53 0.53 0.56 0.61 
1 2 1 0.44 0.46 0.43 0.89 0.88 0.87 0.40 0.40 0.44 
1 2 2 0.47 0.47 0.43 0.73 0.75 0.68 0.69 0.74 0.69 
2 1 1 0.76 0.88 0.84 0.39 0.47 0.42 0.38 0.49 0.36 
2 1 2 0.73 0.82 0.71 0.40 0.47 0.42 0.75 0.80 0.75 
2 2 1 0.76 0.72 0.76 0.77 0.73 0.71 0.40 0.43 0.45 
2 2 2 0.64 0.66 0.66 0.56 0.65 0.64 0.52 0.62 0.63 
2 2 3 0.55 0.64 0.58 0.50 0.62 0.50 1.12 1.19 1.14 
2 3 2 0.53 0.64 0.54 1.09 1.23 1.16 0.50 0.58 0.56 
2 3 3 0.48 0.60 0.54 0.93 1.17 0.98 0.93 1.14 0.99 
3 2 2 1.13 1.27 1.15 0.52 0.58 0.56 0.45 0.56 0.56 
3 2 3 1.00 1.10 1.03 0.42 0.52 0.44 0.96 1.09 1.00 
3 3 2 1.01 1.16 1.08 1.04 1.14 1.07 0.47 0.55 0.47 
3 3 3 0.89 1.11 0.88 0.79 1.04 0.80 0.84 1.01 0.82 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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near 𝜃𝜃1, the bias for 𝜃𝜃1 is close to 0 and the RMSE is around 0.4.  Negative bias and large RMSE 

appear when the value of 𝜃𝜃1 increases and the difference between  𝜃𝜃1 and 𝜃𝜃2, and between 𝜃𝜃1 and 

𝜃𝜃3, increases.  For example, at point (3, 2, 2) in the table, the bias for 𝜃𝜃1is around -0.74 and 

RMSE for 𝜃𝜃1is around 0.79.  Meanwhile, positive bias and large RMSE appear when the value 

of 𝜃𝜃1  decreases and the difference between  𝜃𝜃1  and 𝜃𝜃2 , and between 𝜃𝜃1  and 𝜃𝜃3 , increases.  At 

point (-3, -2, -2), the bias for 𝜃𝜃1is about 0.74 and RMSE for 𝜃𝜃1is around 0.79.  Similar results for 

𝜃𝜃2 can be observed from the three columns in the middle of Table 5.17 and 5.19.  When 𝜃𝜃2 is 

around 0, and 𝜃𝜃1 and 𝜃𝜃3 is near 𝜃𝜃2, the bias and RMSE for 𝜃𝜃2 is very small.  When the value of  

𝜃𝜃2 becomes more extreme and 𝜃𝜃1 and 𝜃𝜃3is away from 𝜃𝜃2, large bias and RMSE values appear.  

Again, similar results can be found for 𝜃𝜃3 from the three columns on the right side of Table 5.17 

and 5.19.  As described in Section 5.2.1, this finding is probably due to the Bayesian MAP 

estimation method.  By comparing the conditional Bias and RMSE in this section with the results 

in Section 5.2.3, when 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are highly correlated, it is easy to observe that the pattern 

of these tables are the same, but the magnitude of the bias and RMSE in this section is smaller.  

When the correlation among 𝜃𝜃1 , 𝜃𝜃2 , and 𝜃𝜃3  decrease, the prior will only weakly reduce the 

difference among 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3.  Therefore, the bias the RMSE values are slightly smaller at 

those points where 𝜃𝜃1 and 𝜃𝜃2 are away from each other, compared with the condition when 𝜃𝜃1, 

𝜃𝜃2, and 𝜃𝜃3 are highly correlated.  

When item exposure control is implemented, similar findings can be observed from Table 

5.18 and 5.20.  Again, there is nearly no difference between the two p-optimal item pools, and 

between the p-optimal item pools and the baseline pool.  The results suggest the three item pools 

perform similarly in terms of the ability estimation on the 37 𝜽𝜽 points.  In addition, larger bias 

and RMSE also occurs when  𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are very large or very small, and when 𝜃𝜃′𝑠𝑠 are away 
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from each other.  Similar to results under the high correlation condition in Section 5.2.3, when 

item exposure control is built in, the magnitude of the bias and RMSE at some extreme points 

becomes larger.  

In summary, this section present the results for the MCAT with the test specification of three-

dimension simple structure and with moderate correlation among 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3.  The p-optimal 

item pools perform similarly as the baseline pool in terms of the accuracy of ability estimation, 

but the p-optimal item pools can save over 140 items and have a better item pool usage.  When 

item exposure control is implemented, the p-optimal item pools still can provide accurate ability 

estimation and meanwhile the item exposure rate and item overlap rate can be well controlled.   

In general, the findings from this section are similar to the previous, when 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are 

highly correlated.  A closely comparison between these two sections reveal that the measurement 

error in this section is slightly larger.  This result is due to the correlation among 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3.  

As explained in Section 5.2.2, the MIRT model estimates all the 𝜃𝜃 ’s simultaneously by 

borrowing information from one to another.  When 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are highly correlated, more 

information can be borrowed for ability estimation.  When the correlation decreases, the amount 

of information that can be borrowed can be reduced, and therefore the RMSE increase.  In 

addition to the accuracy of ability estimation, the pool usage for the two p-optimal item pool in 

this section is also slightly better.  This is probably because of the pool size.  When the 

correlation decreases, the pool size decreases as well. A smaller item pool is more likely to be 

fully used.  

5.2.5 Performance for item pools based on Test Specification 3 (high correlation) 

The results of the ability estimates and item pool utilization for the .96-optimal item pool, 

the .86-optimal item pool, and the baseline pool based on the three-dimension non-simple 
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structure test specification with 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are highly correlated are presented in Table 5.21 

and 5.22. The results in Table 5.21 is under the condition that no item exposure control is 

implemented; and Table 5.22 is when item exposure control is implemented.  In both tables, 

there are three values for bias, RMSE and correlation, representing the results for (𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3).  

Under the condition without item exposure control (see Table 5.21), the p-optimal item pools 

and the baseline pool show no bias on the 𝜽𝜽 estimates.  Also, the RMSE are between 0.31 and 

0.37, and correlations between estimated 𝜽𝜽  and true 𝜽𝜽  are around 0.94.  The average test 

information between the .96-optimal item pool and the baseline pool is very similar, but the 

information for the .86-optimal item pool is slightly smaller.  The amount of information on the 

direction of 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 (i.e., the value on the diagonal) is about 3.50 for the .96-optimal item 

pool and the baseline pool, and about 3.39 for the .86-optimal item pool.  These values are over 

one unit higher than the values under the three-dimensional non-simple structure case.  The 

additional information comes from items in Cluster 4 with 𝒂𝒂 = (1, 1, 1).  Because these items 

measure all the 𝜃𝜃’s, they provide information on the direction of 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3, as well as on the 

direction of the diagonal in the three dimensional space (see Figure 5.1).  For this reason, the off-

diagonal values in the information matrix are no longer zero.  The values on the off-diagonal 

represent the amount of information on the direction of the 𝜃𝜃1- 𝜃𝜃2 composite, 𝜃𝜃1- 𝜃𝜃3 composite, 

and 𝜃𝜃2- 𝜃𝜃3 composite.  In general, the results suggest that the .96- and .86-optimal item pool can 

provide accurate estimation for 𝜽𝜽, and the level of accuracy is the same as baseline pool, but the 

average test information for the .86-optimal item pool is slightly small than the other two.  

Table 5.21 also presents the results about item pool usage.  Compared with the MCAT based 

on Test Specification 1 and 2 in Section 5.2.1 to 5.2.4, similar results can be drawn from Table 

5.21. The item pool usage for the .96-optimal item pool is slightly better than the 86-optimal  
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Table 5.21: The performance of the .96- and .86-optimal pool and the baseline pool  
without exposure control  

(3-dimension non-simple structure, high correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.00, 0.00, 0.00) (0.00, 0.00, -0.01) (-0.01, 0.00, 0.00) 

RMSE (0.35, 0.31, 0.37) (0.35, 0.31, 0.37) (0.35, 0.31, 0.37) 

Correlation (0.94, 0.95, 0.93) (0.94, 0.95, 0.93) (0.94, 0.95, 0.93) 

Average test information �
3.50 1.75 1.75
1.75 3.48 1.75
1.75 1.75 3.50

� �
3.40 1.61 1.61
1.61 3.37 1.61
1.61 1.61 3.39

� �
3.52 1.77 1.77
1.77 3.49 1.77
1.77 1.77 3.52

� 

Overall Pool Usage 28.06 28.69 35.26 

Overlap rate 0.14 0.25 0.12 

% of overexposed item (r  > 0.2) 3% 30% 1% 

% of underexposed item (r<0.02) 33% 31% 43% 

 
 

Table 5.22: The performance of the .96- and .86-optimal pool and the baseline pool  
with exposure control  

(3-dimension non-simple structure, high correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 

RMSE (0.37, 0.33, 0.39) (0.37, 0.33, 0.39) (0.36, 0.32, 0.38) 

Correlation (0.93, 0.94, 0.92) (0.93, 0.94, 0.92) (0.93, 0.95, 0.93) 

Average test information �
2.94 1.30 1.30
1.30 2.94 1.30
1.30 1.30 2.94

� �
2.89 1.30 1.30
1.30 2.89 1.30
1.30 1.30 2.89

� �
3.18 1.61 1.61
1.61 3.13 1.61
1.61 1.61 3.24

� 

Overall Pool Usage 3.64 1.65 8.26 

Overlap rate 0.08 0.12 0.07 

% of overexposed item (r  > 0.2) 0% 0% 0% 

% of underexposed item (r<0.02) 1% 0% 17% 

 

item pool. And the two p-optimal item pools are much better used than the baseline pool.  

When item exposure control is implemented (see Table 5.22), similar results can be observed: 

the two p-optimal item pools provide as accurate ability estimates as the baseline pool, and yield 

better item pool usage than the baseline pool.  Compared with the condition without item 
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exposure control, item exposure control only results in 0.01 to 0.02 increase for the RMSE, 0.01 

decrease in correlation, and about 0.5 decrease for the average test information.  For the item 

pool usage, when the item exposure control is implemented, no item is overexposed, and the 

percentage of underexposed items and overlapped items are also decreased.  The two p-optimal 

item pools have been fully used.  No item from the .86-optimal item pool is underexposed, and 

only 1% of items from 96-optimal item pool are underexposed.  The comparison between the 

condition with and without item exposure control suggests the item exposure control can 

effectively increase the item pool usage and reduce the item exposure rate without obvious loss 

on the accuracy of ability estimation.  

In addition to the overall pool performance, the conditional bias and RMSE at the 37 (𝜃𝜃1, 𝜃𝜃2, 

𝜃𝜃3) points are also calculated.  The conditional bias for each 𝜽𝜽 point is presented in Table 5.23 

and 5.24, for the MCAT without and with item exposure control, respectively.  Negative bias is 

colored in blue and positive bias is in red.  Deeper color represents larger bias.  The conditional 

RMSE is presented in Table 5.25 and 5.26 in the same manner. Small RMSE is colored in green 

and large RMSE is colored in red.  

Under the condition without item exposure control (see Table 5.23 for bias and 5.25 for 

RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool 

are quite similar.  This finding supports the results of the overall bias and RMSE, and suggests 

the p-optimal item pools can provide as accurate ability estimation as the baseline pool at each 𝜽𝜽 

point.  Similar to the results from the Test Specification 2 (three-dimension simple structure), 

larger bias and RMSE occurs when  𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are very large or very small, which is the top 

and the bottom of each table.  The difference between  𝜃𝜃1 and 𝜃𝜃2, and between 𝜃𝜃1 and 𝜃𝜃3, also 

affects the estimation accuracy.  
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Table 5.23: Conditional Bias for the 𝜽𝜽 estimates without exposure control 
(3-dimension non-simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.40 0.41 0.24 0.33 0.33 0.19 0.42 0.43 0.28 
-3 -3 -2 0.59 0.52 0.44 0.59 0.53 0.44 -0.15 -0.21 -0.30 
-3 -2 -3 0.55 0.60 0.50 -0.36 -0.35 -0.46 0.61 0.61 0.50 
-3 -2 -2 0.73 0.75 0.74 -0.19 -0.15 -0.18 -0.02 0.00 -0.05 
-2 -3 -3 -0.29 -0.27 -0.38 0.51 0.51 0.42 0.49 0.53 0.44 
-2 -3 -2 -0.13 -0.13 -0.14 0.71 0.73 0.70 -0.11 -0.13 -0.13 
-2 -2 -3 -0.02 -0.02 -0.10 -0.14 -0.12 -0.19 0.73 0.75 0.72 
-2 -2 -2 0.08 0.13 0.11 0.05 0.10 0.07 0.11 0.19 0.14 
-2 -2 -1 0.30 0.37 0.33 0.31 0.36 0.35 -0.46 -0.44 -0.39 
-2 -1 -2 0.39 0.38 0.43 -0.54 -0.55 -0.51 0.40 0.37 0.41 
-2 -1 -1 0.62 0.62 0.64 -0.23 -0.27 -0.25 -0.11 -0.18 -0.18 
-1 -2 -2 -0.47 -0.43 -0.42 0.36 0.40 0.41 0.29 0.38 0.38 
-1 -2 -1 -0.22 -0.22 -0.18 0.64 0.64 0.68 -0.22 -0.18 -0.19 
-1 0 -1 0.38 0.31 0.36 -0.54 -0.61 -0.55 0.32 0.29 0.39 
-1 0 0 0.57 0.56 0.57 -0.26 -0.29 -0.29 -0.16 -0.18 -0.20 
0 -1 -1 -0.48 -0.55 -0.49 0.36 0.29 0.33 0.26 0.24 0.25 
0 -1 0 -0.32 -0.27 -0.30 0.58 0.62 0.59 -0.26 -0.26 -0.29 
0 0 -1 -0.22 -0.23 -0.21 -0.29 -0.29 -0.28 0.50 0.51 0.52 
0 0 0 0.02 -0.01 0.04 0.04 -0.02 0.00 0.05 -0.03 0.00 
0 0 1 0.19 0.21 0.24 0.26 0.27 0.29 -0.53 -0.54 -0.52 
0 1 0 0.26 0.26 0.31 -0.63 -0.61 -0.59 0.23 0.25 0.25 
0 1 1 0.46 0.52 0.45 -0.34 -0.33 -0.36 -0.27 -0.29 -0.29 
1 0 0 -0.50 -0.52 -0.54 0.35 0.32 0.30 0.25 0.22 0.18 
1 0 1 -0.32 -0.33 -0.37 0.59 0.55 0.55 -0.30 -0.36 -0.29 
1 2 1 0.22 0.19 0.22 -0.65 -0.68 -0.64 0.19 0.17 0.20 
1 2 2 0.41 0.42 0.42 -0.41 -0.41 -0.38 -0.36 -0.39 -0.32 
2 1 1 -0.63 -0.64 -0.66 0.23 0.25 0.22 0.11 0.15 0.12 
2 1 2 -0.42 -0.42 -0.43 0.52 0.50 0.51 -0.42 -0.44 -0.42 
2 2 1 -0.33 -0.33 -0.32 -0.35 -0.36 -0.34 0.41 0.42 0.44 
2 2 2 -0.12 -0.11 -0.14 -0.06 -0.08 -0.09 -0.12 -0.14 -0.17 
2 2 3 0.02 0.09 0.08 0.13 0.16 0.19 -0.77 -0.72 -0.71 
2 3 2 0.17 0.13 0.10 -0.68 -0.74 -0.75 0.15 0.04 0.05 
2 3 3 0.19 0.27 0.35 -0.60 -0.49 -0.47 -0.57 -0.48 -0.48 
3 2 2 -0.70 -0.74 -0.75 0.21 0.14 0.18 0.07 0.01 0.03 
3 2 3 -0.63 -0.56 -0.51 0.35 0.37 0.46 -0.59 -0.60 -0.51 
3 3 2 -0.56 -0.50 -0.41 -0.57 -0.49 -0.42 0.18 0.21 0.34 
3 3 3 -0.42 -0.32 -0.20 -0.34 -0.26 -0.14 -0.44 -0.37 -0.22 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.24: Conditional Bias for the 𝜽𝜽 estimates with exposure control 
(3-dimension non-simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.44 0.65 0.50 0.38 0.61 0.45 0.45 0.72 0.53 
-3 -3 -2 0.67 0.81 0.65 0.66 0.80 0.66 -0.12 -0.01 -0.13 
-3 -2 -3 0.75 0.88 0.71 -0.23 -0.12 -0.26 0.77 0.86 0.74 
-3 -2 -2 0.90 0.96 0.82 -0.03 0.01 -0.10 0.07 0.13 0.05 
-2 -3 -3 -0.20 -0.09 -0.20 0.65 0.78 0.64 0.70 0.79 0.64 
-2 -3 -2 0.02 -0.01 -0.05 0.89 0.91 0.84 0.03 0.03 0.00 
-2 -2 -3 0.09 0.14 0.08 -0.01 0.06 -0.03 0.88 1.01 0.90 
-2 -2 -2 0.22 0.32 0.23 0.18 0.26 0.19 0.25 0.30 0.23 
-2 -2 -1 0.46 0.51 0.39 0.47 0.52 0.42 -0.31 -0.30 -0.34 
-2 -1 -2 0.52 0.53 0.46 -0.43 -0.43 -0.50 0.52 0.54 0.47 
-2 -1 -1 0.72 0.71 0.74 -0.17 -0.23 -0.17 -0.06 -0.14 -0.08 
-1 -2 -2 -0.37 -0.33 -0.42 0.47 0.53 0.41 0.44 0.53 0.39 
-1 -2 -1 -0.20 -0.18 -0.11 0.69 0.72 0.76 -0.20 -0.14 -0.14 
-1 0 -1 0.38 0.41 0.39 -0.56 -0.54 -0.56 0.38 0.36 0.33 
-1 0 0 0.61 0.57 0.54 -0.27 -0.30 -0.34 -0.23 -0.22 -0.24 
0 -1 -1 -0.50 -0.48 -0.49 0.35 0.38 0.35 0.29 0.31 0.27 
0 -1 0 -0.32 -0.24 -0.29 0.61 0.64 0.61 -0.25 -0.28 -0.31 
0 0 -1 -0.21 -0.22 -0.28 -0.26 -0.29 -0.30 0.57 0.54 0.57 
0 0 0 -0.03 0.00 -0.01 -0.02 0.00 -0.01 -0.01 0.01 0.00 
0 0 1 0.19 0.18 0.20 0.27 0.21 0.25 -0.53 -0.62 -0.61 
0 1 0 0.24 0.31 0.30 -0.64 -0.59 -0.59 0.26 0.30 0.30 
0 1 1 0.51 0.47 0.51 -0.34 -0.39 -0.34 -0.28 -0.33 -0.29 
1 0 0 -0.60 -0.63 -0.57 0.28 0.26 0.30 0.19 0.18 0.20 
1 0 1 -0.40 -0.39 -0.31 0.51 0.55 0.60 -0.39 -0.38 -0.32 
1 2 1 0.11 0.14 0.16 -0.77 -0.75 -0.75 0.08 0.10 0.10 
1 2 2 0.38 0.33 0.37 -0.47 -0.52 -0.48 -0.46 -0.50 -0.46 
2 1 1 -0.75 -0.78 -0.75 0.17 0.12 0.17 0.10 0.03 0.12 
2 1 2 -0.49 -0.54 -0.46 0.46 0.42 0.48 -0.49 -0.55 -0.44 
2 2 1 -0.43 -0.51 -0.46 -0.46 -0.52 -0.48 0.35 0.29 0.32 
2 2 2 -0.25 -0.32 -0.23 -0.20 -0.30 -0.18 -0.29 -0.35 -0.22 
2 2 3 -0.05 -0.16 -0.11 0.04 -0.10 0.01 -0.86 -1.04 -0.92 
2 3 2 0.01 -0.11 -0.03 -0.88 -1.00 -0.91 -0.03 -0.12 -0.05 
2 3 3 0.14 0.11 0.11 -0.67 -0.77 -0.75 -0.67 -0.81 -0.76 
3 2 2 -0.86 -0.99 -0.88 0.07 -0.03 0.07 -0.07 -0.17 -0.06 
3 2 3 -0.70 -0.91 -0.77 0.29 0.09 0.23 -0.71 -0.91 -0.78 
3 3 2 -0.66 -0.77 -0.69 -0.66 -0.75 -0.66 0.11 0.04 0.16 
3 3 3 -0.59 -0.59 -0.57 -0.53 -0.55 -0.51 -0.62 -0.63 -0.61 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.25: Conditional RMSE for the 𝜽𝜽 estimates without exposure control 
(3-dimension non-simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.48 0.50 0.37 0.42 0.42 0.32 0.51 0.50 0.39 
-3 -3 -2 0.63 0.59 0.51 0.64 0.59 0.51 0.31 0.34 0.42 
-3 -2 -3 0.60 0.67 0.56 0.43 0.44 0.51 0.66 0.67 0.56 
-3 -2 -2 0.78 0.80 0.79 0.31 0.31 0.31 0.24 0.29 0.28 
-2 -3 -3 0.41 0.39 0.47 0.59 0.57 0.50 0.56 0.61 0.54 
-2 -3 -2 0.29 0.29 0.28 0.75 0.77 0.74 0.29 0.31 0.28 
-2 -2 -3 0.25 0.22 0.29 0.28 0.24 0.33 0.77 0.79 0.78 
-2 -2 -2 0.29 0.30 0.29 0.29 0.26 0.24 0.30 0.32 0.31 
-2 -2 -1 0.38 0.43 0.42 0.37 0.42 0.42 0.53 0.50 0.46 
-2 -1 -2 0.47 0.46 0.49 0.59 0.61 0.55 0.48 0.47 0.50 
-2 -1 -1 0.68 0.66 0.68 0.33 0.35 0.35 0.27 0.30 0.34 
-1 -2 -2 0.52 0.50 0.50 0.43 0.47 0.47 0.40 0.47 0.45 
-1 -2 -1 0.32 0.32 0.31 0.68 0.67 0.73 0.33 0.31 0.34 
-1 0 -1 0.47 0.39 0.44 0.59 0.65 0.59 0.41 0.39 0.46 
-1 0 0 0.62 0.62 0.63 0.36 0.37 0.38 0.31 0.32 0.33 
0 -1 -1 0.54 0.61 0.55 0.42 0.35 0.41 0.35 0.34 0.37 
0 -1 0 0.41 0.38 0.38 0.63 0.66 0.62 0.37 0.35 0.38 
0 0 -1 0.32 0.34 0.32 0.36 0.37 0.36 0.56 0.56 0.58 
0 0 0 0.23 0.23 0.26 0.22 0.23 0.24 0.24 0.25 0.24 
0 0 1 0.29 0.32 0.35 0.35 0.36 0.38 0.60 0.60 0.58 
0 1 0 0.36 0.35 0.42 0.67 0.65 0.64 0.36 0.37 0.36 
0 1 1 0.54 0.57 0.50 0.43 0.39 0.41 0.40 0.38 0.38 
1 0 0 0.55 0.58 0.58 0.42 0.39 0.35 0.35 0.34 0.29 
1 0 1 0.40 0.40 0.45 0.62 0.59 0.59 0.39 0.44 0.38 
1 2 1 0.33 0.29 0.32 0.68 0.72 0.68 0.32 0.30 0.32 
1 2 2 0.51 0.49 0.49 0.52 0.47 0.44 0.47 0.47 0.41 
2 1 1 0.68 0.69 0.70 0.33 0.34 0.32 0.27 0.32 0.28 
2 1 2 0.50 0.51 0.48 0.57 0.56 0.56 0.49 0.55 0.51 
2 2 1 0.43 0.40 0.41 0.42 0.42 0.41 0.48 0.49 0.50 
2 2 2 0.25 0.28 0.25 0.24 0.23 0.26 0.31 0.27 0.29 
2 2 3 0.24 0.25 0.29 0.27 0.27 0.34 0.82 0.76 0.77 
2 3 2 0.29 0.33 0.30 0.72 0.79 0.79 0.31 0.29 0.28 
2 3 3 0.34 0.36 0.45 0.65 0.54 0.54 0.63 0.56 0.56 
3 2 2 0.74 0.79 0.79 0.31 0.30 0.29 0.27 0.29 0.28 
3 2 3 0.67 0.61 0.57 0.41 0.45 0.52 0.64 0.66 0.58 
3 3 2 0.62 0.57 0.50 0.61 0.55 0.50 0.31 0.35 0.45 
3 3 3 0.51 0.46 0.37 0.44 0.41 0.31 0.53 0.50 0.36 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.26: Conditional RMSE for the 𝜽𝜽 estimates with exposure control 
(3-dimension non-simple structure, high correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.59 0.80 0.59 0.54 0.76 0.56 0.59 0.84 0.63 
-3 -3 -2 0.75 0.91 0.74 0.74 0.90 0.75 0.38 0.38 0.38 
-3 -2 -3 0.82 0.99 0.78 0.41 0.48 0.42 0.84 0.98 0.82 
-3 -2 -2 0.96 1.02 0.89 0.35 0.37 0.37 0.35 0.43 0.34 
-2 -3 -3 0.42 0.38 0.41 0.74 0.85 0.73 0.78 0.86 0.73 
-2 -3 -2 0.36 0.39 0.36 0.97 0.98 0.90 0.41 0.39 0.30 
-2 -2 -3 0.36 0.40 0.38 0.32 0.38 0.35 0.94 1.08 0.96 
-2 -2 -2 0.36 0.48 0.37 0.35 0.42 0.33 0.42 0.45 0.36 
-2 -2 -1 0.55 0.62 0.50 0.56 0.62 0.52 0.45 0.49 0.46 
-2 -1 -2 0.61 0.61 0.55 0.53 0.53 0.58 0.60 0.64 0.54 
-2 -1 -1 0.78 0.78 0.79 0.35 0.41 0.31 0.35 0.34 0.28 
-1 -2 -2 0.50 0.47 0.53 0.57 0.63 0.50 0.55 0.61 0.49 
-1 -2 -1 0.34 0.40 0.27 0.75 0.80 0.80 0.35 0.39 0.32 
-1 0 -1 0.49 0.52 0.46 0.64 0.62 0.60 0.49 0.48 0.43 
-1 0 0 0.68 0.66 0.60 0.38 0.44 0.42 0.38 0.40 0.35 
0 -1 -1 0.58 0.59 0.55 0.46 0.51 0.43 0.42 0.45 0.39 
0 -1 0 0.46 0.38 0.39 0.69 0.71 0.66 0.40 0.40 0.40 
0 0 -1 0.37 0.39 0.38 0.39 0.43 0.40 0.63 0.63 0.63 
0 0 0 0.30 0.32 0.23 0.30 0.31 0.23 0.32 0.33 0.26 
0 0 1 0.39 0.34 0.36 0.41 0.34 0.38 0.60 0.68 0.66 
0 1 0 0.40 0.44 0.39 0.71 0.66 0.65 0.41 0.44 0.40 
0 1 1 0.59 0.57 0.59 0.44 0.48 0.45 0.41 0.43 0.42 
1 0 0 0.66 0.70 0.63 0.40 0.39 0.41 0.35 0.34 0.33 
1 0 1 0.52 0.49 0.41 0.59 0.62 0.66 0.51 0.48 0.44 
1 2 1 0.30 0.38 0.29 0.82 0.83 0.79 0.31 0.36 0.27 
1 2 2 0.54 0.46 0.49 0.60 0.60 0.56 0.58 0.59 0.55 
2 1 1 0.81 0.84 0.80 0.35 0.34 0.32 0.35 0.35 0.29 
2 1 2 0.58 0.62 0.54 0.55 0.53 0.56 0.58 0.63 0.54 
2 2 1 0.53 0.59 0.56 0.56 0.59 0.58 0.48 0.44 0.48 
2 2 2 0.39 0.44 0.38 0.37 0.43 0.34 0.45 0.48 0.39 
2 2 3 0.37 0.37 0.36 0.35 0.37 0.32 0.92 1.10 0.96 
2 3 2 0.40 0.43 0.32 0.95 1.09 0.97 0.37 0.41 0.36 
2 3 3 0.41 0.43 0.32 0.77 0.87 0.80 0.77 0.91 0.82 
3 2 2 0.92 1.06 0.94 0.37 0.36 0.32 0.38 0.39 0.34 
3 2 3 0.79 0.99 0.82 0.47 0.41 0.38 0.80 0.99 0.84 
3 3 2 0.78 0.88 0.77 0.78 0.87 0.74 0.43 0.42 0.35 
3 3 3 0.69 0.76 0.66 0.64 0.73 0.60 0.73 0.79 0.69 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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When item exposure control is implemented, similar findings can be observed from Table 

5.24 and 5.26.  The results suggest the three item pools perform similarly in terms of the ability 

estimation on the 37 𝜽𝜽 points.  In addition, larger bias and RMSE also occurs when  𝜃𝜃1, 𝜃𝜃2, and 

𝜃𝜃3 are very large or very small, and when 𝜃𝜃’s are away from each other.  A comparison between 

the condition with and without item exposure control shows, when item exposure control is built 

in, the magnitude of the bias and RMSE at some extreme points becomes larger.  The reason 

why the item exposure control increases the estimation error is explained in previous sections.   

In summary, this section present the results for the MCAT with the test specification of three-

dimension non-simple structure and with high correlation among 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3.  In general, the 

p-optimal item pools perform similarly as the baseline pool in terms of both overall and 

conditional accuracy of ability estimation, but the p-optimal item pools can save over 100 items 

and have a better item pool usage.  When item exposure control is implemented, the item 

exposure rate and item overlap rate can be controlled very well.  The p-optimal item pools still 

can provide reliable ability estimation with a relatively small pool size.   

A comparison for the results between Test Specification 2 and 3 suggests 𝜽𝜽 can be more 

accurately estimated under the condition of three-dimension non-simple structure.  Under the 

condition of simple structure, the RMSE value is from 0.42 to 0.47 for  𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3, and the 

correlation is about 0.90; under the condition of non-simple structure, the RMSE is less than 0.4 

and the correlation is about 0.94.  The increase in the estimation accuracy is primary due to the 

items with 𝒂𝒂 = (1, 1, 1).  Because those items provide more information than the items that only 

measure one 𝜃𝜃, there is more information available for the ability estimation.  An increase in 

information will result in a decrease on the measurement error.  Another possible explanation for 

the estimation accuracy is the pool size.  The item pools with non-simple structure have about 



108 
 

40-item more than the item pools with simple structure.  A larger item pool is expected to yield 

more accurate ability estimation, because there are more items available for selection.  

5.2.6 Performance for item pools based on Test Specification 3 (moderate correlation) 

The results for the MCAT based on the test specification of three-dimension non-simple 

structure, and with 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 moderately correlated, are presented in Table 5.27 and 5.28.  

The results in Table 5.27 are under the condition without item exposure control; and Table 5.22 

is when item exposure control is implemented.  In both tables, there are three values for bias, 

RMSE and correlation, representing the results for (𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3).  

Under the condition without item exposure control (see Table 5.27), the p-optimal item pools 

and the baseline pool show no bias on the 𝜽𝜽 estimates.  Also, the RMSE are between 0.42 and 

0.46, and correlations between estimated 𝜽𝜽  and true 𝜽𝜽  are around 0.89.  The average test 

information between the .96-optimal item pool and the baseline pool is very similar, but the 

information for the .86-optimal item pool is slightly smaller.  The amount of information on the 

direction of 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 (i.e., the value on the diagonal) is about 3.49 for the .96-optimal item 

pool and the baseline pool, and about 3.38 for the .86-optimal item pool.  In general, the results 

suggest that the .96- and .86-optimal item pool can provide accurate estimation for 𝜽𝜽, and the 

level of accuracy is the same as baseline pool, but the average test information for the .86-

optimal item pool is slightly small than the other two.  Table 5.27 also presents the results about 

item pool usage.  Compared with the MCAT based on Test Specification 3 with high correlation,  

similar results can be drawn from Table 5.27.  The item pool usage for the .96-optimal item pool 

is slightly better than the .86-optimal item pool.  And the two p-optimal item pools are much 

better used than the baseline pool.  
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Table 5.27: The performance of the .96- and .86-optimal pool and the baseline pool  
without exposure control  

(3-dimension non-simple structure, moderate correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.01, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 

RMSE (0.46, 0.43, 0.42) (0.46, 0.43, 0.42) (0.46, 0.43, 0.42) 

Correlation (0.89, 0.90, 0.90) (0.89, 0.90, 0.90) (0.89, 0.90, 0.91) 

Average test information �
3.49 1.74 1.74
1.74 3.48 1.74
1.74 1.74 3.48

� �
3.39 1.60 1.60
1.60 3.38 1.60
1.60 1.60 3.38

� �
3.51 1.76 1.76
1.76 3.49 1.76
1.76 1.76 3.50

� 

Overall Pool Usage 28.82 28.14 40.25 

Overlap rate 0.16 0.27 0.13 

% of overexposed item (r  > 0.2) 12% 32% 2% 

% of underexposed item (r<0.02) 33% 29% 45% 

 
 

Table 5.28: The performance of the .96- and .86-optimal pool and the baseline pool  
with exposure control  

(3-dimension non-simple structure, moderate correlation) 
Statistics .96-optimal pool .86-optimal pool Baseline pool 

Bias (0.00, -0.01, 0.00) (0.00, 0.00, 0.00) (-0.01, 0.00, 0.00) 

RMSE (0.48, 0.44, 0.44) (0.48, 0.45, 0.43) (0.47, 0.44, 0.43) 

Correlation (0.88, 0.89, 0.90) (0.88, 0.89, 0.90) (0.88, 0.89, 0.90) 

Average test information �
2.96 1.33 1.33
1.33 2.96 1.33
1.33 1.33 2.97

� �
2.92 1.33 1.33
1.33 2.93 1.33
1.33 1.33 2.94

� �
3.15 1.60 1.60
1.60 3.09 1.60
1.60 1.60 3.23

� 

Overall Pool Usage 3.09 1.12 9.02 

Overlap rate 0.09 12% 0.07 

% of overexposed item (r  > 0.2) 0% 0% 0% 

% of underexposed item (r<0.02) 0% 0% 21% 

 

When item exposure control is implemented (see Table 5.28), similar results can be observed: 

the two p-optimal item pools provide as accurate ability estimates as the baseline pool, and yield 

better item pool usage than the baseline pool. Compared with the condition without item 

exposure control, item exposure control only results in 0.01 to 0.02 increase in the RMSE, 0.01 
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decrease in correlation, and about 0.5 decrease in the average test information.  For the item pool 

usage, when the item exposure control is implemented, no item is overexposed, and the 

percentage of underexposed item and overlapped item are also decreased. The two p-optimal 

item pools have been fully used, and no item from the two p-optimal item pools is underexposed.  

The comparison between the condition with and without item exposure control suggests the item 

exposure control can effectively increase the item pool usage and reduce the item exposure rate 

without obvious loss on the accuracy of ability estimation.  

In addition to the overall pool performance, the conditional bias and RMSE at 37 (𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3) 

points are also calculated.  The conditional bias for each 𝜽𝜽 point is presented in Table 5.29 and 

5.30, for the MCAT without and with exposure control, respectively.  In each table, the 

conditional bias is color coded based on the value.  Negative bias is colored in blue and positive 

bias is in red.  Deeper color represents larger bias.  The conditional RMSE is presented in Figure 

5.31 and 5.32 in the same manner.  Small RMSE is colored in green and large RMSE is colored 

in red.  

Under the condition without item exposure control (see Table 5.29 for bias and 5.31 for 

RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool 

are quite similar.  This finding supports the results for the overall bias and RMSE, and also 

suggests the p-optimal item pools can provide as accurate ability estimation as the baseline pool 

at each 𝜽𝜽 point.  Similar to the results in previous sections, larger bias and RMSE occurs when  

𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are very large or very small, which is the top and the bottom of each table.  The 

difference between  𝜃𝜃1 and 𝜃𝜃2, and between 𝜃𝜃1 and 𝜃𝜃3, also affects the estimation accuracy.  

When item exposure control is implemented, similar findings can be observed from Table 

5.30 and 5.32. The results suggest the three item pools perform similarly in terms of the ability  
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Table 5.29: Conditional Bias for the 𝜽𝜽 estimates without exposure control 
(3-dimension non-simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.58 0.54 0.36 0.48 0.45 0.31 0.51 0.43 0.31 
-3 -3 -2 0.65 0.61 0.54 0.66 0.61 0.47 -0.03 -0.13 -0.25 
-3 -2 -3 0.65 0.54 0.49 -0.10 -0.10 -0.27 0.59 0.55 0.43 
-3 -2 -2 0.75 0.72 0.66 0.01 0.03 0.04 0.03 -0.01 -0.05 
-2 -3 -3 0.03 0.00 -0.18 0.50 0.56 0.38 0.56 0.50 0.41 
-2 -3 -2 0.08 0.01 0.03 0.66 0.65 0.63 0.00 -0.01 -0.09 
-2 -2 -3 0.12 0.10 -0.03 -0.01 0.00 -0.06 0.70 0.71 0.64 
-2 -2 -2 0.16 0.13 0.16 0.16 0.17 0.11 0.20 0.08 0.13 
-2 -2 -1 0.29 0.33 0.30 0.33 0.30 0.32 -0.39 -0.37 -0.39 
-2 -1 -2 0.39 0.35 0.31 -0.31 -0.36 -0.33 0.38 0.38 0.31 
-2 -1 -1 0.50 0.53 0.50 -0.16 -0.07 -0.06 -0.14 -0.14 -0.12 
-1 -2 -2 -0.22 -0.28 -0.30 0.30 0.37 0.27 0.28 0.34 0.28 
-1 -2 -1 -0.12 -0.08 -0.08 0.54 0.50 0.50 -0.19 -0.19 -0.13 
-1 0 -1 0.20 0.18 0.24 -0.40 -0.43 -0.39 0.24 0.23 0.24 
-1 0 0 0.44 0.37 0.42 -0.15 -0.15 -0.19 -0.22 -0.17 -0.15 
0 -1 -1 -0.37 -0.34 -0.34 0.23 0.24 0.20 0.22 0.26 0.23 
0 -1 0 -0.13 -0.14 -0.14 0.46 0.46 0.45 -0.21 -0.27 -0.28 
0 0 -1 -0.12 -0.25 -0.17 -0.22 -0.23 -0.24 0.44 0.48 0.45 
0 0 0 0.00 0.02 -0.01 0.01 0.00 -0.03 0.03 -0.02 -0.02 
0 0 1 0.17 0.19 0.21 0.21 0.23 0.17 -0.51 -0.46 -0.44 
0 1 0 0.19 0.12 0.11 -0.44 -0.48 -0.46 0.25 0.19 0.22 
0 1 1 0.27 0.33 0.30 -0.19 -0.24 -0.20 -0.23 -0.21 -0.26 
1 0 0 -0.40 -0.42 -0.46 0.19 0.15 0.11 0.15 0.16 0.18 
1 0 1 -0.25 -0.25 -0.21 0.40 0.40 0.44 -0.34 -0.29 -0.27 
1 2 1 0.11 0.14 0.08 -0.52 -0.49 -0.51 0.20 0.17 0.20 
1 2 2 0.26 0.26 0.28 -0.29 -0.37 -0.29 -0.23 -0.37 -0.29 
2 1 1 -0.55 -0.50 -0.56 0.09 0.07 0.07 0.08 0.12 0.12 
2 1 2 -0.42 -0.32 -0.31 0.35 0.34 0.34 -0.36 -0.33 -0.34 
2 2 1 -0.34 -0.38 -0.38 -0.40 -0.34 -0.41 0.37 0.35 0.35 
2 2 2 -0.12 -0.15 -0.16 -0.14 -0.15 -0.11 -0.06 -0.16 -0.10 
2 2 3 -0.01 -0.08 0.03 0.03 0.03 0.10 -0.65 -0.64 -0.61 
2 3 2 -0.01 -0.08 -0.01 -0.63 -0.66 -0.62 0.09 0.03 0.13 
2 3 3 0.05 0.02 0.15 -0.56 -0.54 -0.37 -0.55 -0.50 -0.37 
3 2 2 -0.61 -0.75 -0.64 -0.03 -0.04 0.04 0.01 0.00 0.07 
3 2 3 -0.53 -0.67 -0.50 0.11 0.05 0.22 -0.53 -0.63 -0.45 
3 3 2 -0.61 -0.62 -0.51 -0.59 -0.62 -0.46 0.13 0.12 0.23 
3 3 3 -0.51 -0.53 -0.38 -0.47 -0.48 -0.22 -0.43 -0.43 -0.20 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.30: Conditional Bias for the 𝜽𝜽 estimates with exposure control 
(3-dimension non-simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.57 0.77 0.64 0.54 0.69 0.52 0.53 0.70 0.51 
-3 -3 -2 0.80 0.88 0.72 0.77 0.83 0.73 -0.12 -0.03 -0.15 
-3 -2 -3 0.74 0.82 0.73 -0.07 -0.04 -0.07 0.68 0.81 0.67 
-3 -2 -2 0.87 0.97 0.84 0.08 0.13 0.17 0.05 0.15 0.09 
-2 -3 -3 0.04 0.08 0.05 0.70 0.79 0.70 0.66 0.77 0.66 
-2 -3 -2 0.16 0.24 0.19 0.87 0.96 0.85 0.11 0.16 0.04 
-2 -2 -3 0.25 0.24 0.15 0.12 0.21 0.06 0.92 1.01 0.76 
-2 -2 -2 0.31 0.35 0.25 0.25 0.37 0.25 0.21 0.31 0.23 
-2 -2 -1 0.44 0.51 0.42 0.49 0.53 0.46 -0.25 -0.26 -0.28 
-2 -1 -2 0.50 0.49 0.47 -0.29 -0.22 -0.29 0.46 0.46 0.44 
-2 -1 -1 0.59 0.66 0.59 -0.08 -0.08 -0.06 -0.09 -0.07 -0.09 
-1 -2 -2 -0.23 -0.22 -0.15 0.43 0.44 0.43 0.47 0.43 0.39 
-1 -2 -1 -0.01 0.00 -0.06 0.62 0.67 0.58 -0.12 -0.03 -0.09 
-1 0 -1 0.29 0.29 0.25 -0.41 -0.41 -0.42 0.34 0.32 0.26 
-1 0 0 0.42 0.49 0.49 -0.17 -0.13 -0.16 -0.19 -0.13 -0.18 
0 -1 -1 -0.32 -0.31 -0.27 0.31 0.27 0.28 0.31 0.30 0.25 
0 -1 0 -0.20 -0.10 -0.18 0.47 0.47 0.53 -0.21 -0.24 -0.17 
0 0 -1 -0.22 -0.26 -0.15 -0.22 -0.29 -0.24 0.49 0.53 0.49 
0 0 0 -0.02 0.03 0.01 0.00 0.01 0.01 -0.04 0.00 0.03 
0 0 1 0.27 0.22 0.14 0.24 0.25 0.30 -0.49 -0.42 -0.45 
0 1 0 0.17 0.19 0.21 -0.47 -0.47 -0.53 0.22 0.21 0.25 
0 1 1 0.33 0.41 0.30 -0.32 -0.29 -0.29 -0.36 -0.21 -0.31 
1 0 0 -0.44 -0.44 -0.46 0.22 0.17 0.23 0.22 0.22 0.22 
1 0 1 -0.32 -0.29 -0.34 0.33 0.41 0.39 -0.36 -0.30 -0.33 
1 2 1 0.05 0.03 0.06 -0.56 -0.69 -0.61 0.19 0.07 0.13 
1 2 2 0.22 0.12 0.21 -0.43 -0.47 -0.44 -0.40 -0.50 -0.42 
2 1 1 -0.64 -0.63 -0.60 0.02 0.08 0.08 0.07 0.04 0.10 
2 1 2 -0.47 -0.54 -0.45 0.22 0.20 0.25 -0.46 -0.59 -0.43 
2 2 1 -0.51 -0.48 -0.46 -0.45 -0.56 -0.47 0.24 0.26 0.29 
2 2 2 -0.32 -0.43 -0.33 -0.28 -0.28 -0.22 -0.23 -0.35 -0.27 
2 2 3 -0.18 -0.26 -0.14 -0.11 -0.22 -0.07 -0.87 -0.98 -0.91 
2 3 2 -0.15 -0.27 -0.11 -0.86 -1.03 -0.86 -0.11 -0.19 -0.05 
2 3 3 -0.02 -0.05 -0.06 -0.69 -0.80 -0.78 -0.71 -0.80 -0.77 
3 2 2 -0.81 -1.01 -0.89 -0.03 -0.26 -0.16 -0.04 -0.19 -0.13 
3 2 3 -0.78 -0.89 -0.81 0.02 -0.11 -0.03 -0.73 -0.85 -0.79 
3 3 2 -0.72 -0.93 -0.76 -0.70 -0.88 -0.81 0.12 -0.03 -0.05 
3 3 3 -0.61 -0.77 -0.70 -0.56 -0.71 -0.66 -0.56 -0.68 -0.66 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 



113 
 

Table 5.31: Conditional RMSE for the 𝜽𝜽 estimates without exposure control 
(3-dimension non-simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.68 0.64 0.50 0.60 0.58 0.46 0.63 0.54 0.45 
-3 -3 -2 0.74 0.68 0.64 0.72 0.68 0.57 0.32 0.31 0.40 
-3 -2 -3 0.74 0.63 0.60 0.31 0.35 0.44 0.67 0.63 0.56 
-3 -2 -2 0.83 0.79 0.75 0.28 0.32 0.29 0.27 0.31 0.29 
-2 -3 -3 0.34 0.30 0.41 0.62 0.66 0.50 0.66 0.59 0.52 
-2 -3 -2 0.37 0.33 0.33 0.73 0.74 0.72 0.32 0.35 0.34 
-2 -2 -3 0.31 0.35 0.35 0.30 0.29 0.30 0.78 0.78 0.71 
-2 -2 -2 0.41 0.35 0.34 0.37 0.36 0.34 0.36 0.36 0.34 
-2 -2 -1 0.45 0.47 0.45 0.41 0.42 0.44 0.49 0.45 0.48 
-2 -1 -2 0.52 0.48 0.45 0.40 0.49 0.44 0.48 0.49 0.43 
-2 -1 -1 0.61 0.63 0.59 0.31 0.34 0.29 0.33 0.35 0.34 
-1 -2 -2 0.42 0.41 0.45 0.41 0.50 0.41 0.40 0.49 0.43 
-1 -2 -1 0.33 0.34 0.30 0.62 0.59 0.58 0.37 0.34 0.32 
-1 0 -1 0.38 0.39 0.36 0.50 0.53 0.47 0.39 0.38 0.38 
-1 0 0 0.53 0.48 0.53 0.33 0.32 0.36 0.36 0.30 0.34 
0 -1 -1 0.50 0.46 0.44 0.38 0.42 0.40 0.39 0.38 0.38 
0 -1 0 0.35 0.35 0.34 0.55 0.55 0.55 0.36 0.40 0.41 
0 0 -1 0.38 0.39 0.36 0.36 0.38 0.40 0.53 0.57 0.54 
0 0 0 0.28 0.32 0.32 0.30 0.29 0.31 0.27 0.30 0.31 
0 0 1 0.34 0.38 0.35 0.35 0.37 0.35 0.59 0.54 0.53 
0 1 0 0.34 0.34 0.37 0.54 0.56 0.55 0.39 0.36 0.37 
0 1 1 0.44 0.44 0.44 0.38 0.38 0.37 0.36 0.35 0.38 
1 0 0 0.51 0.54 0.55 0.37 0.34 0.28 0.34 0.35 0.33 
1 0 1 0.39 0.40 0.37 0.48 0.48 0.56 0.47 0.42 0.38 
1 2 1 0.35 0.35 0.35 0.61 0.59 0.61 0.35 0.37 0.36 
1 2 2 0.42 0.41 0.44 0.42 0.49 0.40 0.38 0.49 0.43 
2 1 1 0.62 0.58 0.66 0.32 0.35 0.31 0.30 0.32 0.34 
2 1 2 0.51 0.48 0.48 0.48 0.46 0.48 0.47 0.48 0.45 
2 2 1 0.48 0.50 0.50 0.53 0.48 0.53 0.49 0.48 0.45 
2 2 2 0.37 0.41 0.39 0.33 0.39 0.33 0.34 0.35 0.33 
2 2 3 0.33 0.32 0.38 0.36 0.37 0.32 0.71 0.69 0.68 
2 3 2 0.36 0.35 0.34 0.70 0.74 0.68 0.30 0.31 0.34 
2 3 3 0.36 0.34 0.37 0.63 0.61 0.48 0.64 0.58 0.50 
3 2 2 0.67 0.81 0.70 0.33 0.32 0.33 0.33 0.36 0.34 
3 2 3 0.63 0.74 0.61 0.31 0.33 0.41 0.64 0.70 0.53 
3 3 2 0.71 0.70 0.60 0.65 0.70 0.57 0.36 0.34 0.40 
3 3 3 0.65 0.65 0.52 0.61 0.60 0.37 0.57 0.55 0.37 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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Table 5.32: Conditional RMSE for the 𝜽𝜽 estimates with exposure control 
(3-dimension non-simple structure, moderate correlation) 

37 Points 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 
𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 .96 .86 C .96 .86 C .96 .86 C 
-3 -3 -3 0.69 0.88 0.73 0.65 0.82 0.65 0.64 0.82 0.63 
-3 -3 -2 0.92 0.96 0.85 0.88 0.95 0.82 0.48 0.41 0.43 
-3 -2 -3 0.83 0.91 0.82 0.43 0.40 0.40 0.79 0.91 0.76 
-3 -2 -2 0.95 1.06 0.93 0.35 0.40 0.38 0.40 0.43 0.36 
-2 -3 -3 0.35 0.44 0.33 0.81 0.90 0.78 0.77 0.89 0.73 
-2 -3 -2 0.45 0.45 0.40 0.95 1.06 0.93 0.41 0.48 0.36 
-2 -2 -3 0.49 0.48 0.37 0.41 0.41 0.33 0.99 1.08 0.84 
-2 -2 -2 0.51 0.54 0.47 0.47 0.54 0.43 0.44 0.51 0.43 
-2 -2 -1 0.58 0.62 0.56 0.59 0.63 0.57 0.44 0.43 0.42 
-2 -1 -2 0.61 0.62 0.59 0.47 0.44 0.47 0.60 0.58 0.52 
-2 -1 -1 0.69 0.75 0.68 0.36 0.38 0.33 0.32 0.38 0.32 
-1 -2 -2 0.44 0.43 0.42 0.58 0.55 0.53 0.59 0.56 0.51 
-1 -2 -1 0.36 0.34 0.35 0.69 0.75 0.66 0.36 0.38 0.33 
-1 0 -1 0.48 0.42 0.42 0.54 0.52 0.51 0.49 0.48 0.40 
-1 0 0 0.54 0.61 0.56 0.39 0.37 0.35 0.38 0.35 0.35 
0 -1 -1 0.49 0.49 0.45 0.43 0.44 0.41 0.45 0.46 0.41 
0 -1 0 0.40 0.38 0.38 0.60 0.59 0.63 0.39 0.41 0.36 
0 0 -1 0.41 0.42 0.36 0.39 0.45 0.43 0.57 0.62 0.60 
0 0 0 0.39 0.35 0.38 0.33 0.30 0.29 0.32 0.31 0.33 
0 0 1 0.41 0.41 0.38 0.40 0.44 0.43 0.57 0.52 0.54 
0 1 0 0.37 0.39 0.38 0.59 0.58 0.62 0.36 0.39 0.39 
0 1 1 0.47 0.52 0.43 0.45 0.44 0.40 0.49 0.42 0.43 
1 0 0 0.54 0.55 0.56 0.40 0.34 0.38 0.39 0.40 0.37 
1 0 1 0.48 0.46 0.47 0.47 0.53 0.54 0.50 0.46 0.42 
1 2 1 0.38 0.35 0.30 0.67 0.78 0.71 0.43 0.36 0.36 
1 2 2 0.46 0.41 0.38 0.55 0.60 0.55 0.53 0.61 0.53 
2 1 1 0.74 0.73 0.69 0.35 0.39 0.36 0.34 0.34 0.34 
2 1 2 0.59 0.66 0.58 0.41 0.42 0.44 0.58 0.71 0.56 
2 2 1 0.61 0.63 0.58 0.54 0.67 0.59 0.42 0.46 0.46 
2 2 2 0.47 0.58 0.48 0.46 0.48 0.40 0.43 0.51 0.44 
2 2 3 0.46 0.50 0.36 0.41 0.49 0.34 0.96 1.06 0.97 
2 3 2 0.48 0.49 0.37 0.94 1.11 0.93 0.44 0.39 0.35 
2 3 3 0.40 0.43 0.36 0.79 0.89 0.87 0.81 0.90 0.86 
3 2 2 0.90 1.09 0.97 0.40 0.48 0.41 0.40 0.46 0.39 
3 2 3 0.91 1.00 0.87 0.44 0.43 0.33 0.86 0.96 0.87 
3 3 2 0.83 1.05 0.85 0.80 0.97 0.88 0.43 0.45 0.40 
3 3 3 0.71 0.89 0.80 0.66 0.80 0.76 0.67 0.79 0.75 

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool 
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estimation on the 37 𝜽𝜽 points. In addition, larger bias and RMSE also occurs when  𝜃𝜃1, 𝜃𝜃2, and 

𝜃𝜃3 are very large or very small, and when 𝜃𝜃’s are away from each other.  A comparison between 

the condition with and without item exposure control shows, when item exposure control is built 

in, the magnitude of the bias and RMSE at some extreme points becomes larger.  The reason 

why the item exposure control increases the estimation error is explained in the previous sections.   

In summary, this section presents the results for the MCAT with the test specification of 

three-dimension non-simple structure and with moderate correlation between 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3.  In 

general, the p-optimal item pools perform similarly as the baseline pool in terms of both overall 

and conditional accuracy of ability estimation, but the p-optimal item pools can save over 100 

items and have a better item pool usage.  When item exposure control is implemented, the item 

exposure rate and item overlap rate can be controlled very well.  The p-optimal item pools still 

can provide reliable ability estimation with a relatively small pool size.   

A comparison between the high correlation condition and moderate correlation for Test 

Specification 3 suggests that, the measurement error significantly increases as the correlation 

among dimensions decreases.  The RMSE increases about one unit, and the correlation decreases 

about 0.5.  One possible explanation is that, when the correlation decreases, the amount of 

information that can be borrowed among each 𝜃𝜃  reduces, and thus the estimation accuracy 

decreases.  Although the measurement error for the Test Specification 3 with moderate 

correlation is large, it is still smaller than the error for the Test Specification 2 with moderate 

correlation.  When 𝜃𝜃1 , 𝜃𝜃2 , and 𝜃𝜃3  are moderately correlated, adding the cluster of items with 

𝒂𝒂 = (1, 1, 1)  decreases the RMSE by 0.5 and increase the correlation by 0.3 on average.  

Therefore, item pools with non-simples structure characteristic yield more accurate ability 

estimation than the item pools with simple structure.   
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Chapter 6 Discussion and Conclusion 

In this chapter, the simulation results and their implications are discussed.  Section 6.1 first 

summarizes the findings from the simulation study and addresses the research questions.  Section 

6.2 presents the discussion of results.  The implications for item pool development and 

management are then described in Section 6.3.  Finally, the limitations and suggestions for the 

future research are discussed in Section 6.4 

6.1 Summary of Results 

This study aimed to generalize the p-optimal item pool design method (Reckase, 2003 & 2007) 

to multidimensional CAT (MCAT).  The reason why the p-optimal item pool is “p-optimal” is 

because the item pool design is specifically tailored to the adaptive test.  And because of this, no 

single p-optimal item pool is universally p-optimal.  The characteristics of the p-optimal item 

pool are determined by a number of factors such as the examinee population and the algorithms 

for the adaptive test.  Therefore, this study not only designs p-optimal item pools for MCAT, but 

also examines how the p-optimal item pool is affected by the test specifications, item exposure 

control, correlation among dimensions, and bin sizes.  The results based on a simulation study 

are summarized below.   

A total of 24 p-optimal item pools were designed and then developed in this study.  Generally 

speaking, the item difficulty (i.e., the MDIFF value) was symmetrically distributed with more 

items located on the middle of the MDIFF scale, and fewer items located on each side.  The 

standard deviation of the MDIFF value was 1.5 to 2.3 times larger than the standard deviation of 

the target examinee population and the distribution of the MDIFF value was flatter than a 

standard normal distribution.   
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The performance of the MCAT using the 24 p-optimal item pools was evaluated by 

comparison with the MCAT using baseline pools through a simulation study.  The results 

showed the MCAT using the p-optimal item pools and the MCAT using the baseline pools 

performed very similarly in terms of the ability estimation accuracy, but the pool size for the p-

optimal item pools was more than 100-item smaller than the baseline pools.  In addition, the item 

pool usage for all the p-optimal item pools was better than the baseline pools.   

Specifically, when bin size increased from 0.4 to 0.8, item pool size decreased by 40% on 

average.  Bin size also determined the how much information the best available item in the item 

pool could provide for ability estimation.  A bin size of 0.4 implies the best available item can 

provide at least 96% of the maximum possible information, and therefore the item pool is called 

the .96-optimal item pool.  Similarly, a bin size of 0.8 implies a .86-optimal item pool.  This is 

the reason why the average test information yielded for the .86-optimal item pools was smaller 

than the .96-optimal item pools in the simulation study.  Even though the pool size and the 

average test information for the .86-optimal item pools were smaller, the MCAT using the two 

types of item pools performed very similar in terms of the accuracy in ability estimation.  Similar 

findings were observed for a unidimensional CAT in Reckase (2010).  Because of the small pool 

size, the item overexposure rate and the item overlap rage for the .86-optimal item pools was 

larger than the .96-optimal item pools.   

The 24 p-optimal item pools were designed based on three test specifications.  The pool size 

for the two-dimension simple structure condition and three-dimension simple structure condition 

are very similar.  For the two-dimensional case, half of the items in the item pool measured 𝜃𝜃1 

and another half measured 𝜃𝜃2; For the three-dimensional case, one third of items in the item pool 

measured each of the three 𝜃𝜃’s.  Therefore, when the test length was the same, the pool size for 
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the p-optimal item pools did change if a cluster of items measuring a different ability was added 

to the current test.  However, when test specification changed from simple structure to non-

simple structure, the pool size for the p-optimal item pools increased by about 9%.  For the three-

dimension non-simple structure case, the proportion of items measuring three ability was slightly 

larger than items measuring only one ability.  The measurement error for ability estimation 

yielded from the p-optimal item pools were all within the acceptable range for these three test 

specifications.  The error in the two-dimension simple structure condition was slightly smaller 

than the three-dimension simple structure condition.  This was due to one more θ is estimated in 

the three dimensional test, but overall test length was the same for the two tests.  The error in the 

three-dimension non-simple structure condition was also smaller than simple structure condition, 

because the items measuring three ability provided more information for θ estimation.   

A unique factor that influenced the functioning of the MCAT is the correlation among 𝜃𝜃’s.  If 

ability were highly correlated, the size of the p-optimal item pool is about 10% larger than the 

condition when ability were moderately correlated.  Those 10% of items were mainly located on 

each side of the MDIFF scale, with relatively high or low item difficulty.  That is to say, for a 

MCAT measuring highly correlated ability, a larger number of difficult items and easy items 

should be created for the p-optimal item pool.  The ability estimation accuracy in the high 

correlation condition was better than the moderate correlation condition.  Similar results can be 

found for multidimensional linear test and MCAT in Liu (2007), Segall (2005), Yao (2010), and 

Yao and Boughton (2007).  

When item exposure control was built into the item selection process, the most informative 

items will not be too frequently selected.  In this situation, to ensure the ability estimation 

accuracy for the adaptive test, another equally informative item should be available in the item 
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pool.  If item exposure control is necessary for a MCAT, the p-optimal item pool design can take 

the item exposure rate into account and adjust the number of item within each MDIFF-bin.  The 

goal is to make sure the there is sufficient number of item in the p-optimal item pool to ensure 

both ability estimation accuracy and test security.  Based on the simulation results, when the bin 

size was 0.4, item exposure control had nearly no influence on the pool size.  When the bin size 

was 0.8, about 20% more items were needed if item exposure control was implemented.  These 

20% of items were all located on the middle of the MDIFF scale with item difficulty close to 0.  

If item exposure control was implemented, the measurement error yielded from all p-optimal 

item pools only slightly decreased.  This finding suggests the p-optimal item pool design is able 

to balance the ability estimation accuracy and the test security.   

6.2 Discussion of Results 

The p-optimal item pools produced in this study was a union of items that meet all the 

predetermined psychometrical specifications, and that target to a predetermined examinee 

population.  van der Linen (1999) provided three criteria for an optimal item pool: 1) an optimal 

item pool should be sufficiently large to allow several thousand overlapping subtests to be drawn 

from its items; 2) an optimal item pool should consist of items spanning the entire range of item 

difficulty relative to the population of interest; and 3) an optimal item pool should consist of an 

appropriate mix of high and low discriminating items to lower the item creation cost while 

meeting the needs of the ability estimation accuracy.  

The first criterion addresses the issues of the item pool size.  The findings from the simulation 

study suggest that the size of the p-optimal item pools was affected by a number of factors.  For 

different MCAT programs, the lower limit of optimal item pool size is different.  For example, 

Stocking (1994) recommended the item pool size for a high-stakes CAT should be 
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approximately 12 times the test length.  A longer CAT requires a larger item pool.  Also, for 

high-stakes CAT, item exposure rate is an important issue for test validity and security.  When 

item exposure control is implemented, the item pool should consist of a larger number of items 

in order to prevent items from being overexposed to examinees.  Because a larger item pool 

tends to solve all these issues, many adaptive testing programs usually develop a very large item 

pool for operational use.  However, a larger item pool does not necessarily increase the ability 

estimation accuracy.  Instead, the pool usage for very large item pool might be undesirable.  In 

this study, for example, the three baseline pools consisted of more than 100 items than the 

corresponding p-optimal item pools.  According to the simulation results, baseline pools yielded 

similar level of measurement accuracy as the p-optimal item pools.  When item exposure control 

is not implemented, about half of the items in the baseline pools had exposure rate less than 2%; 

when item exposure control is implemented, still 20% of items were underexposed.  Those 

underexposed items were wasted because they were very unlikely to be selected.  Therefore, item 

pool design should seek a balance between the demands for a larger item pool, and the potential 

risk of items being wasted in a larger item pool.  The results in this study suggest the design for 

p-optimal item pools can achieve such a balance when item exposure control is considered.  The 

p-optimal item pools ensure the ability estimation accuracy and let all the items in the item pool 

to be fully used.   

The second criterion is about the range of item difficulty.  As stated in the criterion, the range 

of item difficulty of a optimal item pool is determined by the examinee population.  The standard 

deviation of the p-optimal item pools in this study was 1.5 to 2.3 times larger than the standard 

deviation of examinees’ ability.  The range of the item difficulty is from -4.0 to 4.0.  Similar 

results were found by Gu (2009), Reckase (2010) and Zhou (2012) for unidimensional p-optimal 



121 
 

item pools.  For the baseline pools in this study, the standard deviation of item difficulty was 

more than 2.5 times larger than that of the ability distribution.  Baseline pools consisted of a 

number of items with extremely high or extremely low item difficulty.  These items are useful 

for examinees with very high or very low ability.  However, since those examinees are rare in the 

population, most of those extreme items are underexposed.  Therefore, although the optimal item 

pool should span the entire range of item difficulty, only a couple of very difficult or very easy 

items are sufficient.   

In addition to the examinee population, the range of item difficulty also depends on the 

purpose of the test.  For licensure exams, the purpose of the test is to classify examinees into two 

or more categories.  If the cut score is in the middle of the θ scale, a large number of items with 

middle item difficulty should be included in the item pool to ensure the measurement error at the 

cut score is sufficiently low.  In this situation, it is acceptable to drop items with very high or 

very low item difficulty from the item pool, because they don’t contribute much to the 

measurement accuracy at the cut score.  However, if the purpose of the test is to selected gifted 

student, or to indentify low achieving students, a large number of difficult items or easy items 

should be added into the item pool, respectively.   

The third criterion addresses the issue of item discrimination.  Because the MCAT in this 

study is based on the multidimensional Rasch model, the magnitude of the item discrimination is 

fixed, but the direction of the item discrimination is not fixed and it can affect the test precision 

and item creation cost.  If an item only loads on one dimension, for instance 𝜃𝜃1, the direction that 

is best measured by this item is along 𝜃𝜃1 .  In other words, this item can only discriminate 

examines with variations on 𝜃𝜃1.  If an item loads on more than one dimension such as an item 

from Cluster 4 with 𝒂𝒂 = (1,1,1) , the direction that is best measured by this item is along 
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direction of the 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 composite.  This item can most effectively discriminate examinees 

located on different points along the 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3composite line, and can moderate effectively 

discriminate examinees with variations on 𝜃𝜃1 , 𝜃𝜃2 , or 𝜃𝜃3 .  The simulation results in this study 

suggested that, for a test with simple structure to meet the ability estimation accuracy for all the 

𝜃𝜃’s, the p-optimal item pool should consist of the same proportion of items measuring each 𝜃𝜃.  

Compared with tests with simple structure, consisting of items with 𝒂𝒂 = (1,1,1) in the item pool 

yielded better ability estimation accuracy but increased the pool size at the same time.  A larger 

item pool would cost more to create.  Moreover, compared with items measuring only one ability, 

items with 𝒂𝒂 = (1,1,1) are relatively more difficult to write and cost more to create.  Although 

these items are desirable in psychometrical perspective, they might not be the best choice in 

practice considering the cost of item creation.   

Overall, the p-optimal item pools developed in this study met these three criteria, because the 

item pool design process considered the features of the examinee population, ability estimation 

accuracy, item pool usage, and the purposes for the test.  The size of the p-optimal item pools 

was sufficient for a large number of examinee.  Items in the p-optimal item pools spanned the 

entire range of item difficulty.  Also, the p-optimal item pools yielded acceptable ability 

estimation accuracy and fairly good item pool usage.  Even though the item creation cost is not 

directly addressed in the item pool design process, it can be controlled by adding a content 

balancing constrain.  For example, if there is an upper limit for the proportion of the expensive 

items in the item pool, content balancing algorithms are able to control the number of expensive 

items from being frequently selected, and therefore control the proportion of the expensive items 

in the item pool.   



123 
 

6.3 Implications 

The end product of the p-optimal item pool design for MCAT is a bin-count table, which tells 

the proportion of item from each cluster and the minimum number of items in each item bin.  

The bin-count table serves as an instructive guide for item creation, item pool development, and 

item pool management.   

Similar to the function of a test blueprint for a linear paper-and-pencil test, the bin-count table 

is also a target for item creation.  Item writers should create items that meet the requirements of 

the bin-count table.  For items measuring only one ability, they can be treated as unidimensional 

items, so that item writers can create them in the same way they create unidimensional items.  

Items measuring more than one ability, however, can be difficult to write.  When creating items 

measure more than one ability, the first thing to consider is the direction that is best measured by 

this item.  Items with  𝒂𝒂 = (1,1,1) should measure the three abilities with the same level of 

discrimination power.  In practical, this is very hard to control because more than one strategy 

may be used to solve an item, and different strategy may require different combinations of these 

three abilities.  Therefore, in this situation, it might be helpful to provide some examples to item 

writers and give them instructions on how to write items measuring multidimensional abilities.  

Even though we assume a set of items with 𝒂𝒂 = (1,1,1) is successfully created, these items still 

cannot be guaranteed to function the same for different groups of examinees.  As emphasized in 

Reckase (2009), “dimensionality is a property of the data matrix, not the test.” Although these 

items are sensitive to differences along the three dimensions, the response data matrix may not 

be three-dimensional unless there is adequate amount of variation in the examinee sample along 

each dimension.  Because dimensionality is sample-specific, the quality of the examinee sample 
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for field test is very important.  If the sample is not representative, the characteristics of 

multidimensional items may be greatly affected.   

Because items measuring more than one dimension are expensive to create and may be 

unstable in practice, a p-optimal item pool with simple structure might be easier to develop in 

practice.  For an item pool only consisting of items measuring only one ability, some may argue 

for fitting this item pool with a unidimensional IRT model and treating each cluster of items as 

one content area.  It is feasible to do so, but the advantages of using a multidimensional IRT 

model are apparent.  First, if a unidimensional IRT model is fitted to this item pool, the 

assumption of unidimensionality might be violated as items are measuring different content areas.  

Second, if subscores are reported to examinees, MCAT will yield more accurate subscores than 

UCAT.  Third, MCAT can estimate all the θ’s simultaneously, but UCAT needs to estimate each 

θ separately and one at a time.  Therefore, MCAT is more efficient in terms of subscore 

reporting than UCAT.  Because of these advantages for MCAT, multidimensional p-optimal item 

pools are more desirable than unidimensional item pools.   

In practice, operational item pools are always being renewed.  Obsolete items are removed 

from time to time and new items are filled in accordingly.  van der Linden and Veldkamp (2000) 

summarized that monitoring item usage and replenishing new items are two important tasks for 

item pool management.  The p-optimal item pool design presented in this study can be adapted 

for use in item pool management.  If an item located in bin X is retired, a new item should be 

added to bin X.  Because items within each bin are considered to be equivalent in terms of the 

amount of information they provide for ability estimation, the new item does not need to be 

identical to the old item; rather, any item that fits into bin X can be used to replace the old item.  

In this situation, the concept of item bin can reduce the cost for item replenishing.  In addition, 
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when there is a need to create a master pool which supplies several operational item pools, the p-

optimal item pool design can be used to design the master pool as well.  If the master pool needs 

to supply N operational item pools, the size of the master pool would be at least N times the p-

optimal item pool.   

6.4 Limitation and Future Studies 

The results of this study demonstrated the advantages of using the p-optimal item pool design 

to develop item pools for several MCATs with different features.  The results indicate the p-

optimal item pools can ensure ability estimation accuracy as well as a good item pool usage.  

This conclusion, however, is restricted by the fact that items are fit by the multidimensional 

Rasch model.  The item discrimination parameter for the multidimensional Rasch model is fixed 

by test developers, instead of estimated from the data matrix.  If inaccurate item discrimination 

parameters are assigned to some items in the item pool, the extent the ability estimation accuracy 

would be affected is unknown.  Future study can examine the consequences of item 

discrimination being inaccurately identified.  In addition, compared with the multidimensional 

Rasch model, the multidimensional 2PL or 3PL model tends to fit the data better in practice.  Gu 

(2007) has generalized the p-optimal item pool design method to unidimensional 3PL model.  It 

is also worthwhile to generalize Gu’s methodology to multidimensional 2PL or 3PL model.   

This study is based on the assumption that examinees are multivariate normally distributed.  

However, in reality, the distribution of examinees is not always normal, and the expected 

distribution may not always match the reality.  The question raised is how robust the p-optimal 

item pool design is to the violation to the shape of the examinee distribution.  That is, if a p-

optimal item pool is developed based on a multivariate normal distribution, but the actual 
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examinee is not normally distributed, how the performance of the MCAT using this p-optimal 

item pool will be affected.  Future study can investigate this issue by a simulation study.  

Two bin sizes were considered in this study for the p-optimal item pool design. An increase in 

the bin size will results in a smaller p-optimal item pool.  The .86-optimal item pool in this study 

yielded similar level of ability estimation accuracy as the .96-optimal item pool, if item exposure 

control was not implemented.  If item exposure rate is not an important issue, a smaller item pool 

is desirable because a smaller item pool will cost less to create.  Therefore, it might be interesting 

to investigate how large the bin size can get before the MCAT does not function well.  The 

results could be useful to determine the bin size in the future.  

The item type is this study is purely dichotomous.  As the educational measurement area is 

changing towards to the next generation of assessments, new types of items have emerged and 

brought significant challenges for test developers.  For example, new types of items have been 

created for the Smarter Balanced tests and will be used operationally.  Performance task 

questions, for example, are one type of new item.  A performance task usually requires students 

to follow several steps to accomplish it.  Each step can be treated as one item and the entire task 

is considered to be a testlet.  At this point, it is still unknown how to develop a p-optimal item 

pool for adaptive test consisting of this item type.  Since a number of states will soon adopt the 

Smarter Balanced assessments to replace their current K-12 large-scale standardized assessments, 

the quality of the item pool is an important issue from both psychometric and policy perspectives.  

Therefore, the p-optimal item pool design for new types of items is definitely a promising 

direction for future research as well.   
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Table A.1: Bin count table for the .96-optimal item pool (Test Specification 1, high correlation, 
without item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0) 3 7 9 11 13 13 14 15 15 14 14 13 12 11 9 7 4 

a = (0, 1) 3 7 9 11 13 13 14 15 15 15 14 13 12 11 9 7 4 

 

 
Table A.2: Bin count table for the .86-optimal item pool (Test Specification 1, high correlation, 

without item exposure control) 
MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0) 6 11 13 14 15 14 13 11 6 

a = (0, 1) 6 11 13 14 15 14 13 11 6 

 

 
Table A.3: Bin count table for the .96-optimal item pool (Test Specification 1, moderate 

correlation, without item exposure control) 
MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0) 2 5 8 9 11 12 13 14 14 14 14 12 11 10 8 5 2 

a = (0, 1) 2 5 8 9 11 12 13 14 14 14 14 12 11 10 8 5 2 

 

 
Table A.4: Bin count table for the .86-optimal item pool (Test Specification 1, moderate 

correlation, without item exposure control) 
MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0) 3 10 13 14 15 14 13 10 4 

a = (0, 1) 4 10 13 14 15 14 13 10 3 
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Table A.5: Bin count table for the .96-optimal item pool (Test Specification 2, high correlation, 

without item exposure control) 
MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 2 4 6 7 8 9 10 10 10 10 10 9 8 7 6 4 2 

a = (0, 1, 0) 2 4 6 7 8 9 10 10 10 10 10 9 8 7 6 4 3 

a = (0, 0, 1) 1 4 6 7 8 9 10 10 10 10 10 9 8 7 6 4 2 

 

 
Table A.6: Bin count table for the .86-optimal item pool (Test Specification 2, high correlation, 

without item exposure control) 
MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 3 7 9 10 10 10 9 7 3 

a = (0, 1, 0) 4 8 9 10 10 10 9 8 3 

a = (0, 0, 1) 3 7 9 10 10 10 9 7 3 

 
 

Table A.7: Bin count table for the .96-optimal item pool (Test Specification 2, moderate 
correlation, without item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 0 3 5 6 7 8 9 10 10 9 9 8 7 6 5 2 1 

a = (0, 1, 0) 1 3 5 6 7 8 9 10 10 10 9 8 7 6 5 3 1 

a = (0, 0, 1) 1 3 5 6 7 8 9 10 10 10 9 9 7 6 5 3 1 

 
 
 

Table A.8: Bin count table for the .86-optimal item pool (Test Specification 2, moderate 
correlation, without item exposure control) 

MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 1 6 8 10 10 10 8 6 1 

a = (0, 1, 0) 2 7 9 10 10 10 9 6 1 

a = (0, 0, 1) 2 7 9 10 10 10 9 7 2 
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Table A.9: Bin count table for the .96-optimal item pool (Test Specification 3, high correlation, 
without item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 2 4 5 6 7 7 7 8 8 8 7 7 7 6 5 4 2 

a = (0, 1, 0) 3 4 5 6 7 7 7 8 8 8 7 7 7 6 5 4 3 

a = (0, 0, 1) 2 4 5 6 7 7 7 8 8 8 7 7 7 6 5 4 2 

MDIFF -5.6 -4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 0 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 

a = (1, 1, 1) 3 4 6 6 7 7 8 8 8 8 8 7 7 6 5 4 3 

 

Table A.10: Bin count table for the .86-optimal item pool (Test Specification 3, high correlation, 
without item exposure control) 

MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 3 6 7 8 8 8 7 6 3 

a = (0, 1, 0) 3 6 7 8 8 8 7 6 3 

a = (0, 0, 1) 3 6 7 8 8 8 7 6 3 

MDIFF -5.6 -4.2 -2.8 -1.4 0 1.4 2.8 4.2 5.6 

a = (1, 1, 1) 4 7 8 9 9 9 8 7 4 

 

Table A.11: Bin count table for the .96-optimal item pool (Test Specification 3, moderate 
correlation, without item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 1 3 4 5 6 7 7 7 8 7 7 7 6 5 4 3 1 

a = (0, 1, 0) 1 3 4 5 6 7 7 7 7 7 7 7 6 5 4 3 1 

a = (0, 0, 1) 2 3 4 5 6 7 7 7 8 7 7 7 6 6 5 3 1 

MDIFF -5.6 -4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 0 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 

a = (1, 1, 1) 1 3 5 6 7 7 8 8 8 8 7 7 7 6 5 3 1 

 

Table A.12: Bin count table for the .86-optimal item pool (Test Specification 3, moderate 
correlation, without item exposure control) 

MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 2 5 7 8 8 8 7 5 2 

a = (0, 1, 0) 2 5 7 8 8 8 7 5 2 

a = (0, 0, 1) 2 5 7 8 8 8 7 5 3 

MDIFF -5.6 -4.2 -2.8 -1.4 0 1.4 2.8 4.2 5.6 

a = (1, 1, 1) 2 6 8 9 9 9 8 6 2 
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Table A.13: Bin count table for the .96-optimal item pool (Test Specification 1, high correlation, 
with item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0) 4 6 9 11 12 13 14 15 17 15 14 13 12 11 9 7 3 

a = (0, 1) 4 7 9 11 12 13 14 15 17 15 14 13 12 11 9 7 3 

 

 
Table A.14: Bin count table for the .86-optimal item pool (Test Specification 1, high correlation, 

with item exposure control) 
MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0) 6 11 13 17 32 17 13 11 6 

a = (0, 1) 6 11 13 17 32 17 13 11 6 

 

 
Table A.15: Bin count table for the .96-optimal item pool (Test Specification 1, moderate 

correlation, with item exposure control) 
MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0) 2 5 8 10 11 12 13 14 18 14 13 12 11 9 8 5 2 

a = (0, 1) 2 5 8 9 11 12 13 14 18 14 13 12 11 10 7 5 2 

 

 
Table A.16: Bin count table for the .86-optimal item pool (Test Specification 1, moderate 

correlation, with item exposure control) 
MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0) 4 10 13 18 33 18 13 10 4 

a = (0, 1) 4 10 13 18 33 18 13 10 4 
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Table A.17: Bin count table for the .96-optimal item pool (Test Specification 2, high correlation, 
with item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 2 4 6 7 8 9 10 10 12 10 10 9 8 7 6 4 2 

a = (0, 1, 0) 2 4 6 7 8 9 10 10 12 10 10 9 8 7 6 4 2 

a = (0, 0, 1) 1 4 6 7 8 9 10 10 12 10 10 9 8 7 6 4 1 

 

 
Table A.18: Bin count table for the .86-optimal item pool (Test Specification 2, high correlation, 

with item exposure control) 
MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 3 7 9 12 21 12 9 7 3 

a = (0, 1, 0) 3 8 9 12 21 12 9 8 3 

a = (0, 0, 1) 3 7 9 12 21 12 9 7 3 

 
 

Table A.19: Bin count table for the .96-optimal item pool (Test Specification 2, moderate 
correlation, with item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 0 2 4 6 7 8 9 10 12 10 9 8 7 6 5 2 1 

a = (0, 1, 0) 1 3 5 6 7 9 9 10 12 10 9 8 7 6 5 3 1 

a = (0, 0, 1) 1 3 5 6 8 9 9 10 12 10 9 9 7 6 5 3 1 

 
 
 

Table A.20: Bin count table for the .86-optimal item pool (Test Specification 2, moderate 
correlation, with item exposure control) 

MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 1 6 8 12 22 12 8 6 1 

a = (0, 1, 0) 2 6 9 12 22 12 9 6 2 

a = (0, 0, 1) 2 6 9 12 22 12 9 6 2 
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Table A.21: Bin count table for the .96-optimal item pool (Test Specification 3, high correlation, 
with item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 2 4 5 6 7 7 7 8 8 8 7 7 7 6 5 4 2 

a = (0, 1, 0) 3 4 5 6 7 7 7 8 8 7 7 7 7 6 5 4 3 

a = (0, 0, 1) 2 4 5 6 7 7 7 8 8 8 7 7 7 6 5 4 2 

MDIFF -5.6 -4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 0 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 

a = (1, 1, 1) 3 4 6 6 7 7 8 8 9 8 8 7 7 6 5 4 3 

 

Table A.22: Bin count table for the .86-optimal item pool (Test Specification 3, high correlation, 
with item exposure control) 

MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 3 6 7 9 15 9 7 6 4 

a = (0, 1, 0) 4 6 7 9 14 9 7 6 4 

a = (0, 0, 1) 3 6 7 9 15 9 7 6 3 

MDIFF -5.6 -4.2 -2.8 -1.4 0 1.4 2.8 4.2 5.6 

a = (1, 1, 1) 4 7 8 10 17 10 8 7 4 

 

Table A.23: Bin count table for the .96-optimal item pool (Test Specification 3, moderate 
correlation, with item exposure control) 

MDIFF -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

a = (1, 0, 0) 1 3 4 5 6 7 7 7 9 7 7 7 6 5 4 3 1 

a = (0, 1, 0) 1 3 4 5 6 7 7 7 8 7 7 7 6 6 4 3 1 

a = (0, 0, 1) 1 3 5 6 6 7 7 7 8 7 7 7 6 6 5 3 1 

MDIFF -5.6 -4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 0 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 

a = (1, 1, 1) 1 3 5 6 7 7 8 8 10 8 7 7 7 6 5 3 1 

 

Table A.24: Bin count table for the .86-optimal item pool (Test Specification 3, moderate 
correlation, with item exposure control) 

MDIFF -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 

a = (1, 0, 0) 2 5 7 9 15 9 7 5 2 

a = (0, 1, 0) 2 5 7 9 15 9 7 5 2 

a = (0, 0, 1) 2 5 7 9 15 9 7 5 2 

MDIFF -5.6 -4.2 -2.8 -1.4 0 1.4 2.8 4.2 5.6 

a = (1, 1, 1) 2 6 8 10 18 10 8 6 2 
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