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ABSTRACT

DESIGNING P-OPTIMAL ITEM POOLS FOR
MULTIDIMENSIONAL COMPUTERIZED ADAPTIVE TESTS

By
Liyang Mao

The interest in multidimensional computerized adaptive testing (MCAT) has grown
considerably over the last few years. While a significant amount of research has been conducted
on item selection and ability estimation methods for MCAT, few studies specifically addressed
the item pool design for MCAT. To ensure a proper functioning of MCAT, a well-designed item
pool is imperative. A well-designed item pool should consist of a number of well-balanced items
that achieve appropriate test precision, item usage, as well as lower the cost of item creation.
One method to develop such an item pool is the p-optimality method, which is proposed by
Reckase (2003 & 2007) for unidimensional CAT. This paper aims to develop p-optimal item
pools for MCAT by extending the Reckase’s method to a multidimensional context.

The extension includes the generation of a multidimensional optimal item based on the D-
Optimality item selection creation, the definition of the MDIFF-bin to describe multidimensional
item succinctly for item pool design, and the interpretation for the p-optimal item pool in a
multidimensional context. In this paper, a total of 24 p-optimal item pools were designed and
then developed for different test specification, with different correlation among dimensions,
based on different bin size, and under the condition with or without item exposure control. The
characteristics for the 24 p-optimal item pools are summarized. A simulation study was
conducted to evaluate the performance of the p-optimal item pools against baseline pools

existing in research literature.



Results show that p-optimal item pools achieve similar levels of measurement accuracy as
baseline pools, but they consist of fewer items and perform better in terms of item pool usage
and test security. The characteristics and the performance of the p-optimal item pools are
affected by factors such as test specification, correlation among dimensions, bin size, and item
exposure control. The results in this study can provide a general guideline for the item pool
development for MCAT. More importantly, because the p-optimal item pool is specifically
tailored to the MCAT programs, the p-optimal item pool design procedure described in this study
can be adapted to other MCAT programs with different features and purposes. The end product
of the p-optimal item pool design can be used as an instructive guide for item creation, item pool

development, and item pool management.
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Chapter 1 Introduction

Over the last few decades, computerized adaptive testing (CAT) has achieved great popularity
in educational assessments. Different from a conventional paper-and-pencil test, CAT uses a
computer to deliver test items that are selected by tailoring each item to the ability level of an
examinee. Such delivery of tests has several advantages, such as increasing measurement
precision, reducing testing time, faster score reporting, and flexible scheduling of examinees
(Wainer, 2000). Starting in the 1990s, CAT has been successfully applied to many operational
testing programs, including the Armed Services Vocational Aptitude Battery (ASVAB), the
Computerized Adaptive Placement Assessment and Support Services (COMPASS), the Graduate
Management Admission Test (GMAT), and the National Council Licensure Examination
(NCLEX). Furthermore, in the 2014-15 school year, almost half states in the United State will
replace their current K-12 assessments by the CAT-based assessment system developed by the
Smarter Balanced Assessment Consortium (SBAC, 2013).

Most operational adaptive tests have been developed based on a unidimensional item response
theory (UIRT) model. Nevertheless, the interest in CAT based on multidimensional item
response theory (MIRT) models (refer to as multidimensional CAT, MCAT) has grown
considerably as shown by the increasing number of articles in the literature (e.g., Segall, 2010;
Seitz & Frey, 2013; Wang & Chang, 2011; Yao, 2013). One reason that MCAT has become
very popular is that current educational assessments often cover multiple content standards, so
that those assessments may not be strictly unidimensional (Reckase, 2009). In a mathematics
test for Grade 4, for example, there is a concern about providing an adequate number of algebra,
geometry, number operation, data analysis, and measurement items to each examinee, because

these content areas are defined as separate components of mathematics proficiency by the



Common Core State Standards (CCSS, 2010). In this situation, it would be straightforward to
apply MCAT for assessments with multidimensional features.

In addition, MCAT would be preferred when diagnostic information (i.e., subscores) is to be
reported. In educational assessments, although the total score is useful for some decision making,
subscores complement the total score by providing information about examinees’ strengths and
weaknesses on each content area. Therefore, test users usually ask for subscores for diagnostic
purposes. Teachers also prefer subscores because subscores can help them design specific
instruction for each student. In MCAT, subscores on all content areas can be estimated
simultaneously using a MIRT model. In unidimensional CAT (UCAT), however, the UCAT
needs to be carried out separately, one content area at a time, to estimate each subscore one by
one. Therefore, in subscore estimation, MCAT often yields better measurement efficiency than
UCAT (Luecht, 1996; Segall, 1996; Wang & Chen, 2004; Yao, 2012; Mao, Luo & Zhou, 2013).

Like a UCAT program, a MCAT program also consists of several components and procedures.
It begins with an item pool that contains an adequate number of items calibrated using a MIRT
model. Then, the MCAT methods usually follow an iterative process: (1) assign an initial ability
level to an examinee, (2) select a test item from the item pool using an item selection method, (3)
administer the selected test item to a examinee and collect the response, and (4) score the
response and update the ability estimates. This process continues until a certain stopping
criterion is met. Operational implementation of CAT often includes constraints such as content
balancing and item exposure control to address the validity and security issue.

While a significant amount of research has been conducted on generalizing the item selection
and ability estimation methods from UCAT to MCAT (Mulder & van der Linden, 2009; Segal,

1996; Wang & Chang, 2011; Yao, 2013), few studies can be found that specifically addressed



the item pool design issue for MCAT. In all of the existing studies about MCAT, the
multidimensional item pools are either built from pure simulation (i.e., van der Linden, 1999) or
created from operational UCAT programs or paper-and-pencil tests (i.e. Diao, 2009; Song, 2010;
Yao, 2013). The quality of these item pools is unknown. Because a CAT program cannot
function well without an item pool that contains sufficient number of appropriate items for all the
examinees, item pool design is critical for MCAT programs. Therefore, in order to design
quality item pools for MCAT, current item pool design methods for UCAT need to be
generalized to MCAT.

For UCAT programs, there are two methods focusing on item pool design: one is the shadow
test approach (Veldkamp & van der Linden, 2000); the other one is the p-optimality approach
(Reckase, 2003 & 2010). According to Veldkamp and van der Linden (2000), before items are
selected to administer, a shadow test is first assembled from a large item pool (usually called
“master pool”) using a linear integer programming model. Then a test item is selected from the
shadow test, not directly from the item pool, to administer. The integer programming model
guarantees that all constraints (i.e., content balancing and item exposure control) on test
administration can be met. However, it is still unclear how to design a master pool and what are
the desired features of a master pool. Without a multidimensional master pool, the shadow test
approach cannot be implemented for MCAT programs.

Unlike the shadow test approach, the p-optimality approach developed by Reckase (2003 &
2010) directly addressed the item pool design issue. The definition of Reckase’s p-optimal item
pool is an item pool “that always has an item available for selection that p% matches the desired
characteristics specified by the item selection routine for the CAT” (Reckase, 2007). To design

such an item pool, an examinee is first randomly sampled from the target examinee population to



take the CAT. Each administered item is simulated to be optimal for this examinee. This
procedure is then repeated for the subsequent examinees. Because items created for one
examinee can be used for another, the p-optimal item pool is the union of the item sets that are
administered to each examinee. After the simulation procedure is repeated for a large number of
examinees, the number of item in the item pool will eventually approach an upper bound. Thus,
the final product of the simulation is an item pool blueprint that tells the pool size and item
distribution of the item pool. This blueprint can be directly used as the target for item creation
and item pool development.

Therefore, this study aims to generalize the p-optimality method (Reckase, 2003 & 2007) to a
multidimensional context. Although the generalization seems conceptually straightforward - just
implement the simulation procedure based on a MIRT model, to practically implement this
procedure, a number of technical challenges need to be solved. For example, the optimal item is
unique for each examinee when the unidimensional Rasch model (Lord, 1980) is used. In the
multidimensional context, however, the optimal item is not unique, because one optimal item can
be found on each direction of measurement. How to select the most appropriate optimal item is
the first challenge.

The MCAT in this study is based on the multidimensional Rasch model. The reason for
selecting the multidimensional Rasch model is because the idea of p-optimal item pool was first
proposed based on the unidimensional Rasch model. It is thus straightforward to choose the
multidimensional Rasch model when this idea is extended to MCAT for the first time. In this
study, a p-optimal item pool will be first generated based on the simplest two-dimensional model
with simple structure. Then p-optimal items pools for MCAT with higher dimensions and with

non-simple structure will be generated next.



Specifically, the research questions of this study are:

1. Can the p-optimality method be generalized to design item pools for MCAT based on
the test design and the examinee population characteristics?

2. How does the performance of a MCAT using the p-optimality item pool design
method compare with the performance using other item pool designs?

3. How do the characteristics of the p-optimal item pool change with exposure control
and different test specifications (i.e. the number of dimension, correlation among
dimensions, simple structure or not)?

Previous work has suggested that MCATS have great potential, but few studies investigate the
item pool design for MCATs. By extending the idea of the p-optimal item pool to a
multidimensional context, the results from this study could provide a general guideline about the
desired characteristics of the p-optimal item pool for certain MCATs. More importantly,
because the p-optimal item pools are specifically tailored to the MCAT programs, the simulation
procedures described in this study can be adapted to other MCAT programs with different
features and different test purposes. The end product of the p-optimal item pool design tells the
characteristics of the optimal item pool. If the operational item pool is developed based on the p-
optimal item pool design, the item pool is expected to ensure the proper functioning of MCATSs

and to produce reliable measurement outcomes.



Chapter 2 Unidimensional and Multidimensional CAT

This chapter first introduces the computerized adaptive testing (CAT) in Section 2.1. The
unidimensional IRT model and the unidimensional CAT are briefly discussed in Section 2.2.

The multidimensional IRT model and the multidimensional CAT are explained in Section 2.3.
2.1 Computer Adaptive Testing

CAT is a special form of a computer-delivered test that is adaptive to the examinee's ability
level. The “adaptive” means test items are selected on the basis of the examinee's responses to
the items previously administrated. One early use of adapting the difficulty of a test to each
individual examinee is the Binet-Simon (1905) intelligence test. The items in this test were
grouped according to mental age, and the selection of items is determined by the examinee’s
mental age estimate, which is derived from the responses to the items administered earlier. From
the 1970s, with the development of item response theory and the breakthrough in modern
computer technology, the idea of adaptive testing was refined and developed into the current
CAT procedures.

For a typical CAT program, the test begins with the first item selected based on an initial
estimate of an examinee’s ability level. After each item is administered, a new ability level is
estimated and the next item with optimal properties at the new estimate is selected to administer.
This process is repeated until it meets certain stopping rules, such as, the precision of proficiency
estimate is adequate, or a fixed number of items have been administrated. Therefore, a basic
CAT application consists of four major components: an item pool, an item selection procedure, a

scoring procedure, and a test stopping rule (Reckase, 1989). In practice, constraints such as



content balancing and exposure control are often imposed on the item selection procedure to

ensure the test validity and test security.

2. 2 Unidimensional IRT and CAT
2.2.1 Unidimensional IRT Models

Item response theory (IRT) is a group of mathematical models that describes the relationship
between examinee ability and the possibility of answering test items correct. Unidimensional
item response theory (UIRT) models assume examinees’ responses to test items depend on one
single latent trait (Lord, 1980). The item response function (IRF) for the three-parameter logistic

(3PL) model (Birnbaum, 1968) is defined by

e®i(0j=b)

P(ui]- = 1|9j,ai,bi,ci) = (; + (1 - CJW, (21)

where P(ui]- = 1|9]-, a;, b;, cl-) is the probability of a correct response to item i by person j; w;; is
the response on item i by person j (1 is correct and O is incorrect); 8; is person j’s continuous
latent ability; b;, the item difficulty parameter of item i, denotes the inflection point of the IRF;
a;, the discrimination parameter for item i, is proportional to the slope of the IRF at its inflection
point; c;, the lower asymptote of the IRF, is the guessing parameter for item i.

If the guessing parameter is set to O for all the items, the 3PL model becomes a two-parameter

logistic (2PL) model specified by the following IRF:

ei(@j—b)

P(ull = 1|0j,ai,bi) = (22)

1 4 e (80’
and if the item discrimination parameter is further restricted to be 1 across all the items, the 2PL

model results in a Rasch model, which is defined by

0j—b;
P(ui]- = 1|9j,ai,bi) = m (23)
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In IRT, the term “information,” also called Fisher information, plays an important role in
parameter estimation as it is a statistical indicator of the quality of the estimate of a parameter.
The formula for item information can be derived in a number of different ways, but the one
provided by Lord (1980) is the most well known. Let P;(0) denote the IRF for item i, and let
Q;(0) =1 — P;(0). Then the Fisher information can be obtained by

9P:(6)

COP/POGE). 24

L(8) =
When the 3PL model is used, (2.4) becomes

2 Q:(6) P(6) — ¢

1(0) = af ooy 1" (2.5)
When ¢; = 0, the information for the 2PL model is
1,(6) = a}P,(6)Q:(6), (2.6)

and when ¢; = 0 and a; = 1, the information for the Rasch model can be simplified to
I;(8) = P:(6)Q;(6). (2.7)
IRT models and Fisher information play a central role in CAT, from item calibration to item
selection and ability estimation. In Section 2.2.2 and 2.2.3, item selection methods and ability
estimation methods for unidimensional CAT (UCAT) will be briefly introduced. The practical

constraints for UCAT will be introduced in Section 2.2.4.
2.2.2 Item Selection Methods for UCAT

Items in CAT are selected to be adaptive to the examinee’s ability level estimate. The most
widely used item selection procedures for UCAT are the maximum Fisher information method

(Weiss, 1982), the maximum posterior precision method (Owen, 1975), and the maximum

global information method (Chang & Ying, 1996).



The maximum Fisher information method selects the item that provides the maximum amount
of Fisher information at examinee's current ability estimate, 8. Therefore, the unconstrained
Fisher information-based item selection methods administers items that maximize (2.4) at 6 = 6.

The maximum posterior precision method is also known as the Owen’s Bayesian method. It
selects the next item maximizes the expected posterior precision of 8. In the early stage of a
CAT, the Owen’s Bayesian method may select different items from the Fisher information
method, because of the effect of the prior. As the test length increases, the effect of the prior
decreases and the results from the two methods become similar (Chang & Stout, 1993).

The maximum global information method selects items based on the Kullback-Leibler (KL)
divergence (Kullback & Leibler, 1951), which is a non-symmetric measure of the difference
between two probability distributions. In the early stage of a CAT, when the estimated ability is
away from the examinee’s true ability, the global information method performs better than the
Fisher information method with respect to the efficiency and precision of ability estimation
(Chang & Ying, 1996; Chen, Ankenmann, & Chang, 2000). After several items are administered
and the estimated ability become close to the true ability, the KL divergence effectively reduces

to Fisher information.
2.2.3 Ability Estimation Methods for UCAT

In CAT, after each response, the examinee's ability estimate is updated, based on his or her
responses to all previous items. The two commonly used estimation procedures are the
maximum likelihood method and the Bayesian method (Bejar & Weiss, 1979).

Maximum likelihood estimation (MLE) method is to find an estimate that result in the highest

likelihood for the observed string of item responses. The likelihood function is defined as:



wwo =] [n@. @8
i=1

where P;(0) is the IRF for item i. The highest point on the likelihood function can be located by
taking the derivative of (2.8). Iterative numerical methods such as Newton-Raphson method
(Wainer, 1990) are often used to solve the derivative equation. MLE ability estimates have
desirable properties like asymptotical unbiasedness. However, problems can rise at the early
stage of CAT, since MLE cannot provide finite estimates for responses to single items or for
patterns of responses that are all correct or all incorrect. To solve the problem, we can either
constrain @ to a reasonable range (e.g., -4 to 4) or use alternative estimation methods such as
Bayesian procedure.

In Bayesian estimation, by summing the prior distribution, the posterior distribution of & can
be specified based on the Bayes’ theorem. The mean of the posterior distribution (refer to as
EAP) or the mode of the posterior distribution (refer to as MAP) can be used as the examinee’s
ability estimate. EAP is more widely used in UCAT because of its stability (Bock & Mislevy,

1982).
2.2.4 Practical Constraints for UCAT

In practice, item selection depending solely on the item selection methods described above
might bring concerns about test validity and security. For instance, if a content area requires
more instructional time, more items measuring this content area should be administered. Also, if
some test items are overexposed and examinees have seen them before taking the test, the
validity of the test will be affected. To address these considerations, operational testing
programs often impose constraints on item selection process. A brief summary of the content

balancing constraint and item exposure control constraint is provided below.

10



Content balancing procedures ensure each examinee receives approximately the same
proportion of items from each content area. The proportion can be determined based on the test
specification. Several approaches have been proposed to ensure content balancing in UCAT,
such as the weighted deviations model approach (Swanson & Stocking, 1993), the shadow-test
approach (van der Linden & Reese, 1998), the modified multinomial model (Chen &
Ankenmann, 2004), the maximum priority index method (Cheng & Chang, 2009), and so on.
Several research studies (e.g., Cheng & Chang, 2009, Leung, Chang, and Hau, 2003, and van der
Linden, 2005) have compared the performance of some of these methods. Generally speaking,
the shadow-test approach and the maximum priority index are more flexible in dealing with
several constraints, and the weighted deviations model is more widely used in operational testing
programs (Buyske, 2005). Detailed descriptions of these content balancing methods can be
found in He (2010) and van der Linden (2010).

Item exposure control procedures aim to preventing test items from overexposing to
examinees. Numerous item exposure control procedures have been proposed in the last few
decades. The most commonly used procedure is the Sympson-Hetter (SH) procedure (Hetter &
Sympson, 1997; Sympson & Hetter, 1985). This procedure assigns an exposure control
parameter to each item based on the frequency of item selections during an iterative CAT
simulation. During the test operation, if the exposure control parameter is larger than a random
number, the item is administered; otherwise another item is selected and goes through the SH
procedure again. Another well known item exposure control procedure is the a-stratified
procedure proposed by Chang and Ying (1999). This procedure mainly addresses the issues of
overdrawing items with high discrimination from item pools. The a-stratified procedure first

partitions the item pool into several levels according to the a-parameter of items. Items with
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small a-parameter have high priority in the early stage of the test. Items with large a-values are
saved for the later stage in a CAT administration. The maximum priority index procedure
(Cheng & Chang, 2009) used for content balancing also can be used for item exposure control.
This procedure adds a weight to item selection method. Items with higher exposure rates are
weighted less. This weight index ensures no item is exposed more than a predetermined rate. A
detailed summary of the item exposure control procedures described above can be found in
Georgiadou, Triantafillou, and Economides (2007).

All the item selection methods, ability estimation methods, and operational constraints
heretofore discussed derived to select the appropriate item to administer and pinpoint an
examinee's true ability. They are all directly related to the item pool design as the desired item
pool should always consist of an appropriate item for every item selection and ability estimation
process. In Chapter 3, I will explain how item selection methods, ability estimation methods,
and operational constraints determine the item pool design. However, before explaining reasons

for inefficiencies, | first describe multidimensional IRT models and multidimensional CAT.

2.3 Multidimensional IRT and CAT
2.3.1 Multidimensional IRT Models

Most operational CAT programs use UIRT models. Nevertheless, the test items in
educational and psychology assessments usually measure more than one latent trait so that many
researchers have found that examinees often need to use multiple skills to answer test items
(Childs & Oppler, 2000; Wu & Adams, 2006; Svetina, 2013). Similar to UIRT,
Multidimensional IRT (MIRT) is also a collection of mathematical models that describe the
interaction between persons and test items. The difference is that the MIRT models deal with
situations when more than one ability are required for test performance (Reckase, 2009).
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There are two major types of MIRT models: compensatory and partially-compensatory. The
compensatory model is based on a linear combination of ability dimensions, and a high ability on
one dimension can compensate for a low ability on another dimension. Sympson (1978),
however, argued that the compensatory model is not realistic for certain types of items, because
not all skills can compensate each other. Thus he developed a partially-compensatory model to
address this issue. Although the partially-compensatory model is more theoretically sound than
compensatory models, studies have found compensatory models actually fit real test data better
(Ansliey, 1984; Bolt & Lall, 2003). In addition, estimation difficulty for the partially-
compensatory model hinders its development and application. As a result, compensatory models
are more prevalent in the current literature, and thus will be the only ones focused on in this
study.

The compensatory form of the multidimensional three-parameter logistic (M3PL) model is
given by Reckase (2009), which is

eaiej' +d;

P(ull = 1|0], ai, diici) = Ci + (1 - Ci) (29)

where P(uil- = 1|0]-, a;, di) is the probability of a correct response to item i by person j; w;; is the
response on item i by person j (1 is correct and 0 is incorrect); 8; is a row vector of person j’s
abilities in a m-dimensional space; a; is a row vector of the discrimination for item i; d; is a
scalar that is related to item difficulty; and c; is the guessing parameter for item i. From equation
(2.9), the exponent of e is a linear function of 6s plus the intercept term d, a,-e,-' +d;. The
addition of the #s implies the compensatory nature of the model. If ¢; is assumed to be O for all

the items, the M3PL model becomes the multidimensional two-parameter logistic (M2PL) model,

which is defined as
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eaiej’ +d;

P(u; = 1]6;,a;, d;) = (2.10)

The multidimensional extension of the Rasch model was not simply the M2PL model with all
the a-parameter set to 1.0, as the relationship between the Rasch model and the 2PL model for
the UIRT case. The consequence of setting all the a-parameter to 1.0 is that the a,-ej' +d;
becomes (81 + 6, + -+ 6,,)+d; . Therefore, the M2PL model is reduced to a
unidimensional Rasch model with 6 = 6,1 + 6, + -+ 6;,, . The multidimensional Rasch
model in current literature was proposed by Adams et al. (1997). The model they specified is for
the general case that includes both dichotomously and polytomously scored test items. Reckase

(2009) provide the dichotomous case of Adam’s model, which is

eaiej’ +d;

P(u; = 1]6;,a;, d;) = (2.11)

Equation (2.10) and (2.11) appear to be identical. The only difference between the two is the
way that the a; vector is specified. In (2.10), a; is a characteristic of item i that is estimated
from the data. In (2.11), a; is a characteristic of item i that is specified by the test developer.
Adams et al. (1997) specified two variations for the model: between-item and within-item
dimensionality. For between-item dimensionality, the a;-vector has elements that are all zeros
except for one element. For the two-dimensional case, a;-vector of [1 0] or [0 1] would indicate
between-item dimensionality. The vector [1 0] would specify that the item was only affected by
ability level on dimension 1 and the vector [0 1] specifies that the item is only affected by ability
level on dimension 2. For within-item dimensionality, the a;-vector has more than one nonzero
element. A specification for within-item dimensionality might have a vector such as [1 1]

indicating that the item is affected equally by both dimensions. In some literature (Reckase,
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2009; Segall, 1996; Yao, 2013), the feature of between-item dimensionality is called simple
structure, and the within-item dimensionality is called non-simple structure.

In a compensatory MIRT model, in order to make the a;- and d;- parameter more meaningful,
Reckase (1985) and Reckase and Mckinley (1991) developed two statistics to interpret the
characteristics of the test items: multidimensional discrimination (MDISC) and multidimensional

difficulty (MDIFF). They are defined as:

MDISCL =.4a;aq (2 12)

i
MIDSC;’ (2.13)

MDIFF; =
where parameters are defined as before. MDISC, is the slope of the item response surface at the
steepest point, and indicates the discriminating power of the item. MDIFF; is the distance from
the origin to the point of the steepest slope. It represents the multidimensional difficulty of the
item: high values indicate difficult items and low values indicate easy items. Thus, the MDISC
and the MDIFF value for a MIRT model are analogous to the item discrimination and the item
difficulty value for a UIRT model.

The concept of information that is used in UIRT also can be generalized to the
multidimensional case. The definition of information for a MIRT model is the same as the
definition for a UIRT model, except that information for MIRT is an m*m matrix, denoted by

1(6). The {r-th, s-th} element of this matrix is denoted by I,,(8). For the M3PL model, the

diagonal elements of I(0) are (Segall, 1996)

2 —c:1lc:P; — p?
Irr(e) — Z-E ari Ql(e) [Pl(e) Cl][clpl(e) Pl (0)], (2 14)

Piz(e)(l —¢;)?

and the off-diagonal elements are
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—c1lc: P — p?
Irs(e) — Z-E Ay asiQi (0) [Pl(e) Cl][clpl(e) Pl (0)], (2 15)

Piz(e)(l —¢;)?
where a,; is the r-th element of the a;-vector for item i, a,; is the s-th element, and other
symbols are used as previously defined. For the M2PL and the multidimensional Rasch model,

the information matrix for item i can be simplified to

2
aip o Ai10Qim

1;(6) = Pi(0)Q:(0) [ : S (2.16)
Ai1Qim 0 A
For the multidimensional Rasch model, the a;a; matrix in (2.16) only consists of 0’s and 1’s.

2.3.2 Generalization of UCAT to MCAT

The merging of MIRT and CAT has been an intriguing direction to explore. When
unidimensional algorithms are generalized to multidimensional, we add a huge amount of
complexity. Luecht (1996) pointed out that unlike a unidimensional CAT (UCAT), which is
merely trying to locate examinees on a latent ability scale, a multidimensional CAT (MCAT)
must locate examinees on a plane or a hyperplane and administers items that minimize the joint
estimation errors for those ability estimates. Although a MCAT is much more complicated than
an UCAT, researchers (e.g., Segall, 1996; Wang & Chen, 2004; Yao, 2012; Mao, Luo & Zhou,
2013) have demonstrated that MCAT is worth the added complications, as MCAT often yields
better measurement efficiency than UCAT.

Therefore, to generalize UCAT to MCAT, Reckase (2009) suggested four basic components
to be addressed: (1) item pool development, (2) item selection method implementation, (3)
examinees’ ability estimation, and (4) stopping rule determination. In practical, practical
constraints (i.e., content balancing and item exposure control) are also important components for

MCAT. Because the desired features of the item pool are dependent on the other four, the
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procedures for item selection will be presented first in 2.3.3, followed by the ability estimation
method in 2.3.4, stopping rules in 2.3.5, and practical constraints in 2.3.6. The development of

multidimensional item pool is described in Chapter 3.
2.3.3 Item Selection Methods for Multidimensional CAT

Item selection is crucial for UCAT as well as for MCAT. If the selected items only provide
littler information for ability estimation, the adaptive test will not function well. Like the
unidimensional item selection methods, the multidimensional methods are also based on
maximizing or minimizing some criterion values at the current ability estimates. The maximum
determinant of the Fisher information matrix (D-Optimality) method, Bayesian D-Optimality
method, and the maximize KL Information method will be introduced in this section.

The D-Optimality, proposed by Segall (1996) can be considered as the multidimensional
extension of the maximum Fisher information method for UCAT. Suppose k-1 items have
already been administered to an examinee and the k-th item is to be determined. The D-

Optimality method selects the k-th item that maximizes the quantity
|15k—1 (a) + Iik (a)l ’ (2 17)

where [

s, (0) is the summation of information for the previous k-1 items, and I;, () is the item

information for the k-th item. The item information is defined in (2.14 — 2.16). Note that the || in
(2.17) means the determinant of a matrix. The process for selecting the next item is to identify
the item that has an item information matrix that, when added to the current test information
matrix, will result in the largest value for the determinant of the sum (Reckase, 2009).

Yao (2012) pointed out that the D-Optimality method has an undesirable quality. Towards

the beginning of the MCAT, the information matrix may not have full rank, resulting in the
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quantity of (2.17) equals to 0. However, this issue can be remedied by applying the Bayesian
version of the D-Optimality to the problem of item selection.

The Bayesian D-Optimality method (Segall, 1996) takes a prior distribution into account. It
selects the k-th item that maximizes

I, (0) +1,,(0) + 271, (2.18)

where @1 is the prior distribution, which is the inverse of ®, and @ is the variance-covariance
matrix of the examinees’ multidimensional ability. For the first few items, the Bayesian D-
Optimality method is expected to select different items compared with the D-Optimality method,
but as the test length increase, the two methods should become similar.

The maximum KL information method for MCAT was first presented by Veldkamp and van
der Linden (2002). This method is an extension of the Chang and Ying (1996) for a UCAT to
solve the issue of selecting proper items when ability is poorly estimated in the early stage of the

UCAT. When only one item is considered, the KL information is given by

P;(8y)
P;(0)

P;(8y)
Pi(0) |

K;(0,0y) = In [ + (1 - Py(8y))In [ (2.19)

The item selection rule presented by Veldkamp and van der Linden (2002) is to select the item

that maximizes
K2 (8% 1) = fKi(B, 0" 1) f(Oluy, ..., u;_1)00, (2.20)

where K7 (@*71') is the Bayesian posterior expected information after k-1 items, and
f(Oluy, ..., u,_1) is the posterior density after k-1 items. The implementation of the maximum
KL information method requires very long CPU time because of the calculation for two integrals.
The first integral is the estimation of the f(0|u;, ..., u;_1), and the second one is shown in (2.20).

For this reason, the item selection based on KL information is not considered in this study.
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2.3.4 Ability Estimation Methods for Multidimensional CAT

The ultimate goal for most MCAT is to estimate the multidimensional ability for examinees.
Assume an item has been selected using one of the item selection methods described in Section
2.3.3, and an examinee has provided a response for this item. An ability estimation method is
then used to update the estimate of the examinee ability. The two general classes of ability
estimation methods for MCAT are: maximum likelihood and Bayesian. These two methods are
described in this section.

For the maximum likelihood estimation (MLE) method (Segall, 1996), MIRT ability is

estimated by finding the mode 8 that maximize the likelihood function L(u|8), i.e.,

)
55 nL(ul6) =0. (2.21)

Using Newton-Raphson method, suppose 8 is the approximation that maximize in L(u|8), then
U+ = g0 — 50, (2.22)
where 89 is the m*1 vector defined as
8D = [H(OM)]™ *%lnL(uw(")). (2.23)

The H(09) in (2. 23) is a m*m matrix of second derivatives evaluated at 8%’. The diagonal

elements of H (@) take the form

%Q:(0)[P,(6) — c;][ciu; — P (O
H,.(0) =zi€va”Q( ) P.z((;)(lc_][;; ( )], (2.24)
and the off-diagonal elements are of the form
_ a,:05;Q; (0)[P:(8) — c;1[c;u; — P(0)]
H, (0) = Ziev PZ(0)(1 = c,)? ) (2.25)
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The ;—e InL(u|69) in (2.23) is a m*1 vector of partial derivatives of In L(u|0%) with the r-th

element defined as

0 _ a;[P;(8) — ¢;][u; — P,(8)]
20, InL(ul6) = Ziev (1 —c)Pi(6) ' (2.26)

With all the terms in (2.23) defined, the Newton-Raphson method can be used to obtain 0+1

repeatedly until 807 becomes sufficiently small. Similar to the unidimensional MLE, the
multidimensional MLE also has the issue of infinite estimates in the early stage of the MCAT
(Diao, 2009; Reckase, 2009). Reckase (2009) also pointed out that the minimum number of test
items needed to get finite estimates for a three dimensional MCAT s three, but the actual
number in the MCAT can be larger than that. To overcome this problem, a Bayesian procedure
can be considered.

The Bayesian method (Segall, 1996) is similar to the MLE method, except that the likelihood

function is the product of the likelihood and the prior:

_ f(6)
f(@lu) = L(u|0) Fa (2.27)

where the L(u|0) is the likelihood function, f(8) is the prior distribution of 8, wand f (u) is the
marginal probability of u. Segall (1996) defined the f(0) as a multivariate normal distribution
with mean vector u and variance-covariance matrix ®. Because Yao (2012) found that the mode
of the posterior distribution (known as MAP) vyields better precision and requires less
computation time than does the expectation of the posterior (known as EAP), only the MAP
procedure is described in this study. The mode of the posterior distribution can be obtained by

maximizing the natural logarithm of the posterior distribution, i.e.,

]
Sgnfem =o, (2.28)
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where the f(@|u) is defined in (2.27). Because the (2.28) formula has no explicit solution, an
iterative numerical procedure such as the Newton-Raphson procedure must be used. Suppose 6
is the approximation that maximizes I(n f(8|u), then

U+D = i) — 50, (2.29)

where 69 is the m*1 vector defined as
, N -1 O .
8V =[16M)] " x> inf(6P[u). (2.30)

The J(8%9) in (2.30) is a m*m matrix of second derivatives evaluated at 8%). The diagonal

elements of /(0) take the form

2 —c¢1lciu; — P?
]rr(e) — Z.E ari Ql(e)[Pl(e) Cl][clul Pl (0)] _ ¢rr, (2 31)

P2(0)(1 - c))?
where ¢™" is the r-th diagonal element of ®~1. The off-diagonal elements of /(@) are of the

form

—c1lcu, — P2
]rs(e) — Z'e ariasiQi(e) [Pi(e) CL][Ctut Pz (0)] _ ¢rs, (232)

Piz @)1 —¢)?
where ¢™ is the {r-th, s-th} element of ®~*. The ;—elnf(e(")|u) in (2. 30) is a m*1 vector of

partial derivatives of In £ (6%|u) with the r-th element defined as

d _ a,;[P;(8) — c;][u; — P;(0)] 0 o —
GaInfBl) = ) S [ (0 - w107 (0~ ). (2.33)

The % (@ — ) in (2. 33) denotes as a 1*m vector with the r-th element equal to 1 and all other

elements equal to 0. With all the terms in (2.29) defined, the 8Y+D can be obtained repeatedly

until 897 become sufficiently small.
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2.3.5 Stopping Rules for MCAT

The stopping rules for an UCAT fall in to two groups: fixed length and variable length. The
fixed length stopping rule is very easy to adapt to a MCAT. For the fixed length rule, the total
number of items to be administered to each examinee is pre-determined based on the purposes of
the test and practical considerations. When the number of items is reached in the test
administration, the CAT will stop and the final ability estimate is computed. Because the fixed
stopping rule is easy to implement, most MCATSs in the research literature use the fixed length to
as their stopping rules (e.g., Diao, 2009; Segall, 1996; Wang & Chang, 2011; Yao, 2012).

Variable length CAT controls the test length using a statistical criterion. For example, in a
UCAT, if the standard error of measurement for & estimate is smaller than a critical value, the
test stops and the final & estimate is reported. Therefore, variable length CAT administers
different number of items to different examinees. Yao (2013) proposed two stopping rules for
MCAT, the standard error (SE) and predicted standard error (PSE). The results showed that the
PSE yields slightly worse results than the SE, but with fewer items. The detailed description for

these two methods can be obtained from Yao’s paper.

2.3.6 Practical Constraints for MCAT

Content balancing and item exposure control are as important to MCAT as to UCAT. Among
the numerous content balancing methods for UCAT, the shadow test approach is the first one
that has been successfully implemented in MCAT by Veldkamp and van der Linden (2002).
Because the shadow test approach requires an existed master pool, it is not applicable in this
study. The Maximum Priority Index (MPI) method is another content balancing that has been
implemented in MCAT by Frey, Cheng, & Seitz, (2011), and also been used in Yao (2012) and

Yao (2013). According to Yao (2012), the MPI index for item i is defined by
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D
P, = 1_[ o, (2.34)
=1

where the constraint matrix C = (¢;);.p, indicating the loading information for item i on
dimension I. If item i loads on dimension |, ¢;; = 1; otherwise c;; = 0. Suppose the percentage
of items in each content area is fixed. Then the f;; is defined by

X —xp)

=S50 @3

where X; is the number of items that should be administered from dimension |, and so far x; such
items have been selected. At the beginning, f;; is 1 when no item has been selected from
dimension |, and it gets smaller as x; increases. When x; = X;, f;; = 0; no more items will be
selected from this dimension. The MPI is implemented by multiplying the PI; to the item
selection criteria. For example, for the D-Optimality method, item i =k is selected if
|I;,_, (8) + 1, (8)] * PI; has a maximum value among all the items in the item pool.

The MPI method has also been used for item exposure control in MCAT in Yao (2012 &
2013). Suppose the maximum exposure rate of item i is fixed to R;. For each selection step, let
n; be the number of examinees that have already selected item i. Then the index for the item
exposure control is defined by

(R; —n;/N)

fu="——¢ (2.36)

where N is the total number of examinees, and n; /N is the actual exposure rate for item i. This
index makes sure that no item is selected with exposure rate larger the predefined rate, R;. To
implement the MPI for item exposure control, Yao (2012 & 2013) multiplied the f;; in (2.36) to
the item selection criterion. The results shows the MPI can effectively control the item exposure

rate, and increase the item pool usage to 100% when several item selection methods are used,
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including the D-Optimality method. Although the 100% item pool usage is desirable, the
number is inflated due to the misuse of the MPI. For a two dimensional CAT, after 20 items has
been administered, the |I,,(8) + I;,, (8)] value for all items in the item pool ranges from 3.39
to 3.82. If the f;; in (2.36) is smaller than 0.88 (f;; =.88 implies n;/N =.12R;, which is much
smaller than R;), the value of the |, (8) + I;, (8)] * fi; for the item associated with the largest
|I5,_, (8) + 1;,(8)] value will be smaller than 3.82. That is for say, if f; is multiply to the
selection criterion of the D-Optimality method, the best item available in the pool will not be
selected, even though its actual exposure rate is much smaller than the maximum rate, R;.

The reason why the MPI method functions properly in UCAT but not in MCAT is the
difference in the item selection criterion. The minimum value of the Fisher information is close
to 0, but the minimum value of the |I;,_ (@) + I, (8)| is not 0. This issue can be solved by
rescaling the item selection criterion, and then multiplying f;; to the rescaled criterion, instead to
the criterion itself.

In this study, a non-linear method is used to rescale the criterion of the D-Optimality method.
First, a percentile rank is calculated for all the items available in the item pools, that is

I, (0) + 1, (8)|R¢ = Percentile(|L;, _,(8) +1,,(8)]), (2.37)
where the |I;,_ (8) + I;, (8)|R¢ denotes the rescaled criterion. Second, select the item with a
maximum value of |I;,_ (8) + I, (8)|%¢ = f;;. This item exposure control procedure is referred
to as the “Modified MPI” in this study.

Yao (2012) also used the Sympson—Hetter (SH) method for item exposure control in a MCAT,
but she didn’t recommend it as it is very time consuming to create the “exposure-control table”,
and the computation time increases exponentially with the number of dimensions. Therefore,

the SH method is not considered in this study for item exposure control.
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Chapter 3  p-Optimality Method and the Extension to MCAT

This chapter first introduces the concept of a p-optimal item pool in Section 3.1. Section 3.2
then presents the p-optimality method for describing an item pool and its application to item pool
design using the unidimensional Rasch Model. Finally, the extension of the method to the
MCAT item pool design based on the multidimensional Rasch model is discussed in Section 3.3

in detail.

3.1 From Optimal Item Pool to p-Optimal Item Pool

Before introducing the details about the p-optimal item pool, it is important to define the
optimal item pool first. Reckase (2010) defined the best possible, or optimal, item pool as that,
whenever the CAT item selection algorithm is searching for a test item to administer, exactly the
item that is desired is available in the item pool. If a desired item is always available for every
item selection, than the item pool can be considered to be optimal.

Suppose that a fixed length UCAT is based on the unidimensional Rasch model, and uses
maximum Fisher information for item selection. For this type of UCAT, the maximum Fisher
information method selects items with the difficulty parameter, b;, exactly equal to the current
ability estimate 8. This is because the information function for the unidimensional Rasch model,
which is [;(8) = P;(8)Q;(8), reaches its maximum value of 0.25 when b; = 6.

An optimal item pool for this CAT procedure is the one that always has an item in the pool
with b-parameter exactly equal to @ for every item selection process for every examinee.
Because 6 is a continuous variable that has infinite number of values on the 6 scale, if items in

the item pool exactly match all the 8, the item pool has to consist of infinite number of items.
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To make the concept of the optimal item pool realistic for practical item pool design, a p-
optimal item pool (Reckase, 2010) was introduced to approximate an optimal pool of smaller
size with little loss of specified characteristics (i.e., item information). Reckase (2010) referred
the p-optimal item pool design method as the p-optimality method. Reckase (2010) also defined
the p-optimal item pool as an item pool “that always has an item available for selection that p%
matches the desired characteristics specified by the item selection routine for the CAT.” The
implementation of the p-optimality method in UCAT based on the unidimensional Rasch model

is described below.

3.2 p-Optimal Item pool Design for UCAT

For the UCAT described above, a p-optimal item pool will always has an available item that
can provide at least p% of the maximum Fisher information at the current 6 estimate. Figure 3.1
shows the Fisher information function for a test item based on the unidimensional Rasch model.
The horizontal scale is & — b so that the results can generalize to all the values of 8. The
information reaches the maximum value when & — b = 0, that is@ = b. Instead of requiring
items with maximum information always available in the item pool, it might be acceptable to
relax the criterion to at least 90% maximum information. That is, instead of needing items with
b = 0, an item with b-parameter .65 unit away from 8 also meets the criterion (see Figure 3.1).

Therefore, if an item pool meets the criterion of always having an available item with b-
parameter .65-unit away from @, the item pool can be said to be .9-optimal, because the available
item can provide at least 90% of the maximum possible information for ability estimation. This
way of describing the design of an item pool is called p-optimal for proportion of maximum

optimality (Reckase, 2010).
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Figure 3.1: Information Function for a Test Item Fit by the Unidimensional Rasch Model

Such a p-optimal pool is designed by the following steps:

1)

2)

3)

Specify the characteristics of a CAT program, such as the IRT model, test length, item
selection method, ability estimation method, and stopping rule. In the example here, the
UCAT is based on the unidimensional Rasch model, selects items using the maximum
Fisher information method, estimates ability by the MLE, and with test length fixed at 30-
item.

Randomly sample an examinee from the target examinee population and generate the first
optimal item. The optimal item is an item with b-parameter equal to the initial value of &
for this examinee.

Generate a response to this item based on this examinee’s true 6. A random number is
first generated from the Uniform(0,1) distribution. If the random number is greater than
the probability of this examinee answering this item correct, a correct response is assigned

to this examinee; otherwise, an incorrect response is assigned.
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4) Update the 8 using the MLE method based on the response generated in step 3.

5) Generate the next optimal item with b-parameter equal to the updated 8.

6) Repeat the process of generating response, ability estimation, and optimal item generation
until the stopping rule is satisfied.

7) Classify all the generated optimal items into “item bins”. Item bins are defined as
intervals on the b-parameter scale. For a .9-optimal pool, the criterion is that the b-
parameter is within .65-unit distance away from 8. To meet this criterion, the width of the
item bin should be set to .65. In this case, the first item bin is centered on the zero point
and ranges from -.325 to .325. The rest of the item bins can be determined by stepping off
in either direction.

8) Document the number of items in each item bin for this examinee.

9) Repeat steps 2 to 8 for another examinee. The union of the number of items in each bin
forms the p-optimal pool for these two examinees (see Table 3.1). Union, instead of
summation, is considered because the items used for the first examinee can be used for the
second one.

10) Repeat this process for a large number of examinee. The union of items across all the

examinees is the end product of the p-optimal pool design.

The end product of the p-optimal item pool design is a bin-count table, which tells the number
of items in each item bin. This bin-count table can be used as the guidance for item creation. If
items can be created to match the bin-count table, the item pool is deemed to be p-optimal. A

more detailed description of this method can be found in Reckase (2010).
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Table 3.1: The p-optimal pool for two examinees

Item bin -3 24 -18  -1.2 -0.6 0 0.6 1.2 1.8 2.4 3
Examinee 1 0 0 10 13 7 0 0 0 0 0 0
Examinee 2 0 0 0 9 15 6 0 0 0 0 0

Union 0 0 10 13 15 6 0 0 0 0 0

Note: the values on the first row represent the central point of each item bin;
the values on the second and third row represent the number of items in each item bin.

3.3 Extending the p-Optimality Method to MCAT

As discussed in Chapter 2, the desired features of an item pool depend on the item selection
method, ability estimation method, stopping rule, as well as constraints such as content balancing
and item exposure control. The p-optimality method for item pool design described above also
depends on the selection of these methods. Therefore, the first step of extending the p-optimality
method to MCAT is to determine the characteristics of the MCAT program. The psychometric
model, item selection method, ability estimation method, stopping rule, and constraints for the
MCAT considered in this study are defined below.

First, the multidimensional Rasch model defined by equation (2.11) is served as the
psychometric model for the MCAT in this study. There are two reasons of choosing the
multidimensional Rasch model. The first one is because the idea of p-optimal item pool design
was proposed for a UCAT based on the unidimensional Rasch model. It is thus straightforward
to choose the multidimensional Rasch model when this idea is extended to MCAT for the first
time. The second reason is that the multidimensional Rasch model is relatively simple compared
with the M2PL and the M3PL model defined by (2.09) and (2.10), respectively. Because the a-
parameter is fixed in the multidimensional Rasch model, the determination of the optimal item is

much easier than the situation of unfixed a-parameter (Gu, 2007). Given these two reasons, this
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study only focuses on the p-optimal item pool based on the multidimensional Rasch model.
Future studies can extend this method to other complex MIRT models.

Second, the D-optimality method (Segall, 1996) is used to select items in this study. The D-
optimality can be considered as the multidimensional extension of the maximum Fisher
information for UCAT; hence, the method of optimal item generation can be extended to the
multidimensional context in a fairly straightforward fashion. Therefore, the p-optimal item pool
design in this study is based on the D-optimality item selection method only.

Third, the Bayesian MAP (Segall, 1996) is the ability estimation method for the MCAT in
this study. The Bayesian MAP is used here because Yao (2013) mentioned, in one of her
unpublished manuscripts, the Bayesian MAP vyields better precision than does the MLE and
perform similarly or better than the Bayesian EAP. Also, because the Bayesian MAP solves the
issues of infinite ability estimates in early MCAT, the Bayesian MAP method is adopted for the
p-optimal item pool design in this study.

Fourth, the stopping rule in this study is the fixed length rule. The variable length stopping
rule is not considered here for two reasons. First, Reckase (2010) has demonstrated the p-
optimal item pool design for a fixed length CAT can be easily modified to be used in a variable
length CAT. There is no need to describe both of them in this study. The second reason, again,
IS because the fixed length rule is relatively easy to be built into the p-optimal item pool design
procedure.

Fifth, the content balancing constraint is not implemented in this study. The reason is that the
D-optimality item selection method can balance the number of items administered from each
dimension. In a two dimensional MCAT, for example, if more items are selected from

Dimension 1, there will be more information on the direction of 8; and less information on the
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direction of 8,. Then the D-optimality method will select the next item from Dimension 2 until
there is more information on the direction of 8,. Therefore, when the test is completed, the
number of items from each dimension is expected to be very similar, even though no content
balancing is implemented. For some operational testing programs, the number of items for each
content area is set to be different because some content area may require more instructional time.
In this situation, the content balancing is necessary and can be built into the p-optimal item pool
design procedure. This situation, however, is not considered in this study.

Sixth, the p-optimal item pool design with and without item exposure control is compared in
this study, to answer the third research question for this study. The Modified Maximum Priority
Index described in Chapter 2 is used for item exposure control.

In the following sections, the p-optimal item pool design for MCAT is first demonstrated on
the simplest case: a MCAT measuring a two-dimensional ability,(6, 8,), using items fit by the
two-dimensional Rasch model with simple structure, and without item exposure control. For this
specific MCAT, there are only two clusters of items in the item pool. Items in Cluster 1 only
measure 6; with a; = (1,0). Items in Cluster 2 only measure 6, with a; = (0,1). According to
equation (2.11), the two-dimensional Rasch model can also be specified as:

ealielj +a2i62]- +di

P(0) = 1 4 e%1if1j+az0z;+d;’ G.D
The feature of simple structure can simplify (3.1) into
P (6) = T3 P for items from Cluster 1
P(0) = 6 +d; (3.2)

sz o) = 1o oo for items from Cluster 2

The method of optimal item generation, the extension of item bins, and the interpretation of p-

optimal item pool for this specific MCAT are demonstrated in Section 3.3.1 to 3.3.3. An
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example of the p-optimal item pool design for this MCAT is presented in Section 3.3.4. The p-

optimal item pool design for MCAT with exposure control is introduced in Section 3.3.5.
3.3.1 Optimal Item Generation

For the UCAT, the optimal item is the one that maximizes the information function at the
current 8. For the MCAT described above, according to equation (2.17), the k-th optimal item is

the one that maximizes the quantity
I, (0) +1,.(8)]. (3.3)

where [

si_, (@) is the summation of the information for the k-1 items that has been administered,

denoted as

I, (0)=1,0)+1,(0)++1,_(0); (3.4)
and Iik(é) is the information function for k-th item that is going to be administered. According
to equation (2.16), I;, () for the two-dimensional multidimensional Rasch model with simple

structure can be specified into

P,0Q, [(1) 8] = [P10Q1 8],f0r items from Cluster 1

0 (ﬂ:[o 0

Iik (é) =
P02, 0 P,

,  (3.5)
] ,for items from Cluster 2

where P; and P, are defined in equation (3.2)and Q; =1 —P;,Q, =1 — P;.
Suppose among the k-1 administered items, k; of them are from Cluster 1 and k, of them are

from Cluster 2, where ki + k, = k — 1. Substituting (3.5) in to (3.4), we obtain
k1
R '_1P1iQ1i 0
L, (0)={—" ‘0 : (3.6)
0 _1P2iQZi

i

Again, substituting (3.5) and (3.6) into (3.3), we obtain
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( k1 0 0 :
Py;Qy;
=1 . + [Pl”‘ Qu, O] ,if the kth item is from Cluster 1
2 0 0
0 . 1P2iQ21
j— = B
=1 k1 - . (3.7
i=1P1iQ1i 0 0 0 . . .
K + [0 P O, ] ,if the kth item is from Cluster 2
2 Zlk QZlk
L 0 - PQy
- i=1

By solving the determent, (3.7) becomes

|15k—1 (é) + Iik (é)l

( k1 k2 k2
| ( P1ini> ( Pzsz) + ( P2iQ2i> Py, Qq;,,if the kth item is from Cluster 1
4 i=1 i=1 i=1

k1 ko k1 .
l( _1P1ini> ( _1P2inl-> + ( 1P1iQ1i> Py;, Q2 if the kth item from in Cluster 2

i= i i=

(3.8)

Because (X, P;Q1;) and (12, P»;Q4;) are constant across all the potential k-th item,

maximizing |15, _,(8) + I,,(9)] in is equivalent to maximizing Py;, Qy;, Or Py;, Q;,. Based on

the two-dimensional Rasch model with simple structure defined in equation (3.2), Py;, Qq;, Will

be maximized when Py;, = 0.5, or —d; = 6,;. Similarly, P,; Q,;, will be maximized when
—d; = 0,;.

Therefore, the optimal item for the k-th item is either the one from Cluster 1 with —d; = 6y;

or the one from Cluster 2 with —d; = 6,;. To determine which one is the true optimal, it only

needs to compare (X2, P,;Q,;) with (X1, Py;Qy;), because the first term in equation (3.8) is the

same. If the following inequality holds

k> kq
( .:1P2iQ2i>>< ,:1P1i01i>; (3.9)
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the optimal item is from Cluster 1 with @; = (1,0) and —d; = 6y;. If this inequality holds

k> kq
( ._1P2iQ2i><< ,:1P1iQ1z>; (3.10)

the optimal item is from Cluster 2 with a; = (0,1) and —d; = 6,;. If the two terms are the same,

T
the optimal item is randomly picked.

In other words, after k-1 items are administered, if the test information on the direction of
Dimension 1 is smaller, the k-th optimal item is an item measuring Dimension 1 with —d; = 8.
If the test information on the direction of Dimension 2 is smaller, the k-th optimal item should
measure Dimension 2 with —d; = 8,. The information from previous administered item

determines which cluster the optimal item is from, and the current @ estimates determines the d-

parameter for the optimal item.
3.3.2 Interpretation for the “p-Optimal”

For a unidimensional .9-optimal item pool, items that can provide at least 90% of the
maximum possible Fisher information are always available for selection. For the unidimensional
Rasch model, because Fisher information is P*Q, the “.9-optimal” means the selected item yield
at least 90% of the maximum possible value of P*Q.

For the MCAT in this study, the item selection method is the D-optimality. Suppose the D-

optimality method selects the k-th optimal item from Cluster 1. This item should have a
maximum value of |Isk_1(9) + I, 9) = (Zf:ll P1iQ1i)(Z§21 PiQy) + (Zfil PZiQZi)Plileik!
compared with other items. By bringing the (X2, P,;Q;;) to the front, I, (0) + 1, (6)]

becomes

1=

R R ko ks
I, _,(6) +1,,(0)] = (Zi::lPZiQZi) I( , 1P1iQ1i> + Pquukl- (3.11)
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Here, because the maximum determinant is not simply the P*Q, the 90% of the maximum
value of Py; Qq;, is no longer equivalent to 90% of the maximum determinant. Therefore, the
“.9-optimal” item pool no longer implies items that are at least 90% of the maximum determinant

of the [

s, (9) + 1, (8) are always available.
In fact, the (Zf;l Pqu,-) in (3.11) is the sum of the information for all the administered items
from Cluster 1 on the direction of 6;, and the Py;, Qq;, is the information for the k-th item on the

direction of ;. The same interpretation can be made for items in Cluster 2. As mentioned
above, the D-optimality method selects the item that adds the maximum information on the
current test information on the direction of minimum information. If the item pool is .9-optimal,
the selected item would be the one that adds at least 90% of maximum possible information on
the current test information on the direction of minimum information. Therefore, the
interpretation for the “p-optimal” item pool in MCAT is that items that can add at least p-
proportion of maximum possible information on the current test information on the direction of

minimum information are always available in the item pool.
3.3.3 Extending the “bin” concept

In UCAT, item bins are created by dividing the scale of the b-parameter into several intervals.
These item bins are referred to as “b-bin,” since they are defined on the b-parameter scale. As
mentioned in Chapter 2, the d-parameter in an MIRT model is an intercept term that is related to
both item difficulty and item discrimination. The item difficulty in MIRT models is the MDIFF.
The value of MDIFF has the same interpretation as the b-parameter for UIRT models. Therefore,
the “MDIFF-bin”, instead of “d-bin,” is used for the optimal item pool design.

For the two dimensional Rasch model with simple structure defined in (3.2), the item

response function (IRF) for items from Cluster 1 is the same as the IRF for the unidimensional

35



Rasch model with 8 = 6;. Similarly, the IRF for items in Cluster 2 is the same as the IRF for
the unidimensional Rasch model with & = 8,. Therefore, Figure 3.1 also can be used here to
determine the size for the MDIFF-bin. For .9-optimal item pool, if an item from Cluster 1 is
selected, the d-parameter of this item should be within .65-unit distance away from the current
estimate of —6@;. If an item from Cluster 2 is selected, the d-parameter of this item should be
within .65-unit distance away from —68,. Therefore, the width of the interval on the d-parameter
scale is .65. Because MDIFF is equal to —d; for the two dimensional Rasch model with simple
structure, the size for the MDIFF-bin is also .65. In the case of .86-optimal, the interval on the d-
parameter scale is 0.8 so that the size for the MDIFF-bin is 0.8. In the case of .96-optimal, the

size for the MDIFF-bin is 0.4.
3.3.4 An example of the p-optimal item pool design for MCAT

For the MCAT described above, items are fitted by the two-dimensional Rasch model with
simple structure, and the test length is fixed at 30. Suppose two examinees have taken this
MCAT and their true abilities are (0.7, 1.5) and (-1.1, -1.0), respectively. For each examinee, the
first item randomly chosen from either Cluster 1 with a; = (1,0) and —d; exactly equal to the
starting value of 6;, or from Cluster 2 with a; = (0,1) and —d; exactly equal to the starting
value of 8,. Then a response to this item is generated using the two-dimensional Rasch model
and the @ is updated with the Bayesian MAP method. The process of selecting the next item is:

1) Select two items first: one from Cluster 1 with @; = (1,0) and —d; exactly equal to 8,; and
another from Cluster 2 with a; = (0,1) and —d; exactly equal to 8.

2) Compute the value of |I;,_ (8) + I, ()] for the two items.

3) The optimal item is the one associated with a larger value of the |I;, _ (8) + I, (9)I.
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The simulation continues as the test length reaches 30 items. The distributions of the MDIFF
value of the administered items for these two examinees are shown in Figure 3.2 and Figure 3.3,
respectively. These distributions used a MDIFF-bin width of 0.6 on the MDIFF scale to tally
the number of items required in each bin. For both examinees, 15 items are from Cluster 1 and
15 from Cluster 2.

The comparison between the two distributions shows that the items selected for these two
examinees have some in common. This means the second examinee can use the items that have
been administered for the first examinee. Therefore, rather than needing 30+30 = 60 items, the
p-optimal item pool for these two examinees requires only 56 items. This number is the count of
the items in the union of the two sets. Figure 3.4 displays the distribution for the 56 items.
Among the 56 items, half of them are from Cluster 1 and another half are from Cluster2.

When a third examinee is taking the test, the set of items required for that examinee can be
determined. Then, the size and distribution of the p-optimal item pool can be determined by
taking the union of items for the three examinees. This process can be continued until the
number of items no longer increases. Figure 3.5 illustrates how the required item pool increases
in size as the number of examinees increases. For the example given here, the item pool size
reaches an asymptote at 340 items after 3,000 examinees.

Similar to the UCAT, the end product of the p-optimal item pool design for MCAT is a bin-
count table, which tells the number of item in each MDIFF-bin for each dimension. The real p-

optimal item pool used for test operation can be created based on this bin-count table.

3.3.5 p-Optimal Item Pool Design for MCAT with Exposure Control

If no item exposure control is implemented, the union of the optimal items for a large number

of examinees is the blueprint for the operational p-optimal item pool development. If item

37



Items for Examinee with true ability (0.7, 1.5)

12
10
c s
g
g " ma=(1,0)
g 4 a
2 ma=(0,1)
0

-3 -24-18-1.2-06 0 061218 24 3
MDIFF value

Figure 3.2: Item distributions for examinee with true ability (0.7, 1.5)
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Figure 3.3: Item distributions for examinee with true ability (-1.1, -1.0)

exposure control is implemented in the adaptive test, a post-simulation adjustment (Gu, 2007) is
used after the p-optimal item pool design process to make sure there are sufficient items in each
bin where items are more often selected.

This study set a maximum item exposure rate, R, for all the items in the item pool. The item

exposure rate is the number of times an item is administered divided by the total number of
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Figure 3.4: Item distributions for the two examinees
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Figure 3.5: Increase in required pool size as number of examinees increases

examinees. During the p-optimal item pool design process, the actual item exposure rate for
each item is not available, but the number of items from each MDIFF-bin that are administered
can be documented. Suppose N is the total number of examinees used for the p-optimal item
pool design process, m; is the number of item in the j-th MDIFF-bin, and s; is number of times
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of an item from the j-th MDIFF-bin being administered. The expected item exposure rate, 7;,

for
each item in the j-th MDIFF-bin can be obtained by

__5/m

=25 (3.12)

Compare 7 with R for j = 1, 2, ..., J, where J is the total number of MDIFF-bin’s. If 7; is
smaller than R, it implies that the number of items the j-th MDIFF-bin is sufficient so that the no
post-simulation adjustment is not necessary. If 7; is larger than R, the number of items the j-th

MDIFF-bin is insufficient and the adjustment is needed.

To ensure 7; < R, the predicted number of item in the j-th MDIFF-bin, 773, can be calculated

by
S.
iy = W, (3.13)

where N’ is the total number of examinees that is going to take the MCAT. The post-simulation
adjustment is implemented by replacing m; with 7; for all the MDIFF-bin’s with7 > R. In
other words, the post-simulation adjustment sets the number of items the j-th MDIFF-bin to M;,
where M; is defined by

M

[, = maxifim;, 7, }. (3.14)

If M; is not an integer, it will be rounded up to the next integer.

3.3.6 p-Optimal Item Pool Design for MCAT with Non-Simple Structure

Suppose a third cluster of items that equally measures 6; and 6, with a; = (1,1) is
considered to the MCAT described above. This MCAT would be with the feature of non-simple

structure. The two-dimensional Rasch model in this case can be written as
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( 61j+di
P, (0) = 1o P for items from Cluster 1
62j+di
P(0) =< e — i . 3.15
(6) P,(0) T ,for items from Cluster 2 (3.15)
\P3 (8) = for items from Cluster 3

1 + e61]+921+dl ’

And the I;, () can be specified as

P10y [(1) 0] = [PlQl 0] for items from Cluster 1
N 0 0
Iik(e) =< PQ; [0 ] [0 PzQz] for items from Cluster 2 | (3.16)

P3Q; E 1] = [113382 P;gi],for items from Cluster 3

Suppose among the k-1 administered items, k; of them from Cluster 1, k, of them from
Cluster 2, and k3 of them from Cluster 3, where k; + k, + k3 = k — 1. Substituting (3.16) into

(3.6), we obtain

k3 k3
R [Z PiQu+ ) P3Q3; - P303 ]l
L, (0) = |7 e St N EET)
l - P30Q3 - PyQyit+ ) P3iQ3iJ
i=1 i=1 i=1

Note the off-diagonal elements of the I;, (&) are no longer zero because of adding items from

Cluster 3. By substituting (3.16) and (3.17) into (3.9), we obtain

|ISk—1 (é) + Iik (é)l

( kq k> k3 ka k3
Py;Q4; Py;Qy; P3;Q3; | + PyiQy + P3;Q3; | Py, Qi
i=1 i=1 i=1 i=1 i=1
kq ko k3 k1 k3
=3 ( P1iQ1i>< P2iQ2i>( P3iQ3i>+( Py;Qq; +Z P3iQ3i>P2ikQ2ik:
i=1 i=1 i=1 i=1 i=1

k1 ko k3 feq ks
( P1iQ1i>< P2iQ2i>< P3iQ3i> +( P;Qu + P2iQ2i>P3ikQSik
\ i=1 i=1 i=1 i=1 i=1

(3.18)
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To determine the optimal item in this case, the amount of information on three directions
needs to be compared: 1) Zf;l P;;Q4; represents the amount of information on the direction of 6,
2) Zi.‘jl P,;Q,; is the amount of information on the direction of 8,, and 3) Zfﬁl P;;Q5; is the
amount of information on the direction of 45 degree line (See Figure 3.6). The Direction 1, 2,

and 3 shown in Figure 3.6 is the direction best measured by items from Cluster 1, 2, and 3,

respectively. That is, the direction with the maximum discrimination power.
If the amount of information on the direction of 8, is the smallest (i.e., (Zfﬁlel-Qzl- +
k : k k k k
Yy P3;Qs;) is larger than (X2, PriQy; + X2, P3;Q3;) and (X2, P1iQui + X2, PyiQy;)), the
optimal item is from Cluster 1 with a; = (1,0) and —d; = 6;;. If the amount of information on

the direction of 6, is the smallest (i.e., (Zf;l P1;Qq; + Zfﬁl P3iQ3i) is larger than the other two),

the optimal item is from Cluster 2 with a; = (0,1) and —d; = 8,;. If the amount of information

on the direction of the 45 degree line is the smallest (i.e., (Zf;lPlini +Zfﬁ1P2iQ2i) is the
largest), the optimal item is from Cluster 3 with a; = (1,1) and —d; = 6;; + 6,;. If the three
terms are the same, the optimal item is randomly picked.

Because the d-parameter for optimal items from Cluster 3 is equal to —(6;; + 8;;), the scale
of the d-parameter for items from Cluster 3 is different from the scale of the d-parameter for
items from Cluster 1 and 2. That is, two-unit distance on the d-parameter for items from Cluster
3 is corresponding to one-unit distance on the d-parameter for items from Cluster 1 and 2.
Therefore, to meet the criterion of the p-optimal item pool, the width of the d-bin for items from
Cluster 3 should be twice of the width for items from Cluster 1 and 2. Because this study adopts

the MDIFF-bin instead of d-bin, and MDIFF = —d; /v/2 for items from Cluster 3, the width of

the MDIFF-bin for items from Cluster 3 is /2 times larger than width of the MDIFF-bin for
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Figure 3.6: The test information on three directions
items from Cluster 1 and 2. For the .9-optimal item pool, the width of the MDIFF-bin for items

from Cluster 1 and 2 is 0.65, and for items from Cluster 3 is v/2 * 0.65, which is 0.92. For the
MCAT with higher order dimension, the width of the MDIFF-bin for items measuring more than

one dimension can be determined in a similar way.
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Chapter 4  Study Design and Procedures

In this chapter, the algorithms for the multidimensional computerized adaptive testing

(MCAT) are first defined in Section 4.1. Section 4.2 then describes a simulation study that was

used to compare the p-optimal item pools with other item pools existed in literature. The criteria

for item pool comparison are introduced in Section 4.3.

4.1 MCAT Algorithms

The MCAT in this study is based on the multidimensional Rasch model defined by (2.11).

Three test specifications are considered:

Test specification 1: two-dimension simple structure. In this case, the item pool consists
of two clusters of items: items from Cluster 1 with a; = (1,0) only measure 6; and items
from Cluster 2 with a; = (0,1) only measure 6,.

Test specification 2: three-dimension simple structure. In this case, the item pool consists
of three clusters of items: items from Cluster 1 with a; = (1,0,0) only measure 6,, items
from Cluster 2 with a; = (0,1,0) only measure 6,, and items from Cluster 3 with
a; = (0,0,1) only measure 65.

Test specification 3: three-dimension non-simple structure. In this case, the item pool
consists of four clusters of items: items from Cluster 1 with a; = (1,0,0) only measure 6;,
items from Cluster 2 with a; = (0,1,0) only measure 6,, items from in Cluster 3 with
a; = (0,0,1) only measure 65, and items from Cluster 4 with a; = (1,1,1) equally

measure 6, 8, , and 6.

For the MCAT simulation in this study, items are selected by the D-optimality method, @ is

estimated using the Bayesian MAP method, and test length is fixed at 30 items. The prior for the
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Bayesian MAP is the multivariate normal distribution of the true @ in this study (Segall, 1996).
The MCAT with and without item exposure control are considered in this study. For the MCAT
with exposure control, the maximum item exposure rate is fixed at 0.2, and the Modified MPI
method is used to make sure the exposure rate for all items in the item pool are less than 0.2. A
detailed description of the D-optimality, the Bayesian MAP, and the Modified MPI methods can

be found in Chapter 2 and 3.

4.2 Simulation Procedure

This study is carried out in four major phases. In the first phase, a p-optimal item pool based
on each test specification is designed and the bin-count table is created. In the second phase, the
actual p-optimal item pools are developed based on the bin-count table created from the previous
phase. In the third phase, a baseline pool for each test specification is developed for comparison
purposes. In the fourth phase, a simulation study is carried out to evaluate the performance of

the MCAT using a p-optimal item pool against the MCAT using a baseline pool.
Phase 1. P-optimal Item Pool Design

Based on the test specifications and adaptive algorithms described in the section 4.1, p-
optimal item pools are designed to guarantee that every item that was requested by the item
selection rule is available for administration. As described in Chapter 3, the design for the p-
optimal item pools should also based on characteristics of the target examinee population. In this
study, the examinee population for the CAT-ASVAB in Segall (1996) is adopted to design the p-
optimal item pools. The CAT-ASVAB measures nine content areas, and each content area is
treated as one dimension. The correlation among the nine dimensions ranges from 0.2 to 0.9.

The MCAT in this study only measures a two- or three-dimensional ability; thus, two or three
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content areas from the CAT-ASVAB are selected to use in this study. To investigate how the
correlation among dimensions affects the p-optimal item pool design, both moderately correlated
content areas and highly correlated content areas are selected. The low correlation condition is
not considered in this study as it is rare in educational assessments.

For the moderate correlation condition, the three content areas are the Arithmetic Reasoning
(AR), Word Knowledge (WK), and Electronics Information (EI). For the high correlation
condition, the three dimensions are the General Science (GS), Word Knowledge (WK), and
Paragraph Comprehension (PC). The mean and the variance-covariance matrix for ability that
requires for these content areas are shown in Table 4.1.

To design the p-optimal item pool for each condition, 3,000 examinees were randomly
sampled from the multivariate normal distribution with mean vector and variance-covariance
matrix described in Table 4.1. The number of 3,000 is used here because, as shown in Figure 3.5,
the size of the p-optimal item pool reaches the asymptote after 3,000 examinees. For each
examinee, all items administered in each cluster were allocated to the MDIFF-bins. Two sets of
bin sizes, .4 and .8, corresponding to a .96- and .86-optimal pool respectively, were considered in
this study.

In total, 24 p-optimal item pools (i.e., 3 Test Specifications * 2 correlations * 2 bin sizes *
with or without exposure control) are designed in this study. To eliminate potential sampling
errors, 100 replications were conducted. The final bin-count table for each p-optimal item pool
is the average of its 100 replications. Table 4.2 shows a bin-count table for the .96-optimal item
pool for the MCAT with test specification of three-dimension non-simple structure, moderate

correlation among dimensions, and without exposure control. Table 4.3 is a bin-count table for
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Table 4.1: Mean and covariance matrix for the two examinee populations
Moderate Correlation High Correlation

2-dimension 3-dimension 2-dimension 3-dimension

Dimension ARand WK AR, WK,andElI GSand WK GS, WK, and PC
Mean Vector [0,0] [0,0,0] [0,0] [0,0,0]
Variance-Covariance 1 17 |1 01 -64] -, o 1 .91 .81
_ ler 1 et 1 72| [5, 7] |91 1 .8
Matrix ' 64 .72 11 .81 .88 1
Table 4.2: Bin count for a .96-optimal item pool

MDIFF 32 -28 -24 -2 -16 -12 -08 -04 0 04 08 12 16 2 24 28 32
a=(L,0,) 1 3 4 5 6 7 7 71 8 6 5 1
a=(0,,00 1 3 4 5 6 7 7 7 7 7 7 71 6 5 3 1
a=(0,0,1) 2 3 4 5 6 7 7 7 8 7 7 7 6 6 1
MDIFF 56 -49 -42 -35 -28 -21 -14 -07 0 07 14 21 28 35 42 49 56

a=(1,11 1 3 5 6 7 7 8 8 8 8 7 7 7 6 5 3 1

Note: the values on the first row represent the central point of each item bin;
the values on the second and third row represent the number of items in each item bin.

Table 4.3: Bin count for a .86-optimal item pool
MDIFF -32 -24 -16 -08 O 08 16 24 32
a=(,00 2 5 7 8 8
a=(0,1,0 2 5 7 8 8 8 7 5 2
8
0

a=(0,0,1) 2 5 7 8
MDIFF  -56 -42 -28 -14 : . .
a=(1,11 2 6 8 9 9 9 8 6 2
Note: this table can be interpreted in the same way as Table 4.2.

the .86-optimal item pool for the same MCAT. There are 17 MDIFF-bins for the .96-optimal

item pool and 9 MDIFF-bins for the .86-optimal item pool.
Phase Il. P-Optimal item pool development

With the bin-count table for the 24 p-optimal item pools, the p-optimal item pool can be

developed accordingly. In practice, real items should be created to match the bin-count table. In
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this study, items are simulated. Items within each MDIFF-bin are set to be equally distributed.
For example, if three are 8 items in the central MDIFF-bin for items with a; = (1,0,0), 8 items
with MDIFF value equally distributed from -0.2 to 0.2. The MDIFF value is then converted to d-
parameter according to equation (2.9) and (2.10). Therefore, 24 p-optimal item pools can be

developed by simulation based on bin-count tables created in the previous phase.
Phase I11. Baseline Pool Development

To evaluate the 24 p-optimal item pools, baseline pools should be created as the bases for
comparison. Previous studies (e.g., Gu, 2007; He, 2010; Reckase, 2010) use existing operational
item pools as the bases. However, there is no existing operational MCAT program so far and
herein the operational multidimensional item pool is not available. Therefore, the item pools
used for MCAT in research articles are adopted in this study as the baseline pools. Some of the
multidimensional item pools in current literature are modified from its correspondent
unidimensional operational item pool. For instance, Segall (1996) and Yao (2012, 2013) created
the multidimensional item pool based on the operational item pool for CAT-ASVAB. Other
multidimensional item pools in the literature are created by pure simulation, such as the item
pool used in van der Linden (1996, 1999).

In this study, because the target examinee population and content areas are based on the CAT-
ASVARB, it is straightforward to develop the baseline pools based on the CAT-ASVAB as well.
There are three test specifications for the 24 p-optimal item pools in this study. Item pools with
different test specifications cannot be compared. Therefore, three baseline pools, one for each
test specification, are created based on the CAT-ASVAB. Yao (2013) provided a detailed

description of the multidimensional item pool for the CAT-ASVAB, including the pool size and
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item distribution. Based on Yao’s description, the development for three baseline pools is
described below.

For Test Specification 1(two-dimensional simple structure), the baseline pool consists of 480
items with 240 items from each of the two clusters. In this study, the MCAT based on this test
specification gives 15 items from each cluster to each examinee. In the CAT-ASVAB, 15 AR
items and 15 WK items are administered, and the number of AR or WK item in the item pool is
around 240. This is the reason for setting the size of the baseline pool to 2*240 = 480 for Test
Specification 1. For Test Specification 2 (three-dimensional simple structure), the baseline pool
consists of 480 items with 160 items from each of the three clusters. For Test Specification 3
(three-dimensional non-simple structure), the baseline pool is consisted of 560 items with 140
items from each of the four clusters. Similar reasons are used to determine the pool size for Test
Specification 2 and 3. The mean and standard deviation (SD) of the MDIFF value for the items

in the three baseline pools are presented in Table 4.4.
Phase IV. Simulation Study Conduct

A simulation study is conducted to compare the performance of the MCAT using p-optimal
item pools against MCAT using baseline pools. The algorithm for the MCAT is described in
Section 4.1. Two types of examinee distribution were used for the simulation.

First, to evaluate the MCAT performance in general, 5,000 examinees are randomly sampled
from the multivariate normal distribution with mean vector and variance-covariance matrix
specified in Table 4.1.

Second, to evaluate the MCAT performance at each @ point, 100 examinees are generated at
several @ points. The 29 @ points for the two dimensional case are displayed in Figure 4.1. No

point on the upper left and lower right is selected. This is because, given 6; and 8, are highly or
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Table 4.4: Item Statistics for the Three Baseline pools

2-dimension 3-dimension 3-dimension
simple structure simple structure non-simple structure
N Mean SD N Mean SD N Mean SD
Cluster 1 240 -0.76 2.55 160 -0.76 2.55 140 -0.76 2.55
Cluster 2 240 -0.35 3.07 160 -0.35 3.07 140 -0.35 3.07
Cluster 3 160 -0.17 2.12 140 -0.17 2.12
Cluster 4 140 0.10 2.58
Table 4.5: The 37 @ Points for the Three Dimensional MCAT

No. 01 02 03 No. 01 02 93 No. 01 92 03
1 -3 -3 -3 13 -1 -2 -1 25 1 2 1
2 -3 -3 -2 14 -1 0 -1 26 1 2 2
3 -3 -2 -3 15 -1 0 0 27 2 1 1
4 -3 -2 -2 16 0 -1 -1 28 2 1 2
5 -2 -3 -3 17 0 -1 0 29 2 2 1
6 -2 -3 -2 18 0 0 -1 30 2 2 2
7 -2 -2 -3 19 0 0 0 31 2 2 3
8 -2 -2 -2 20 0 0 1 32 2 3 2
9 -2 -2 -1 21 0 1 0 33 2 3 3
10 -2 -1 -2 22 0 1 1 34 3 2 2
11 -2 -1 -1 23 1 0 0 35 3 2 3
12 -1 -2 -2 24 1 0 1 36 3 3 2
37 3 3 3

3r * *

2r * * *

ir * * * *

% 0 * * * *
1% * * *
2% * * *
33 3 3 0 2 3

Figure 4.1: The 29 @ Points for the Two Dimensional MCAT

Theta 1

50



Theta 3

Theta 2

Theta 1
Figure 4.2: The 37 @ Points for the Three Dimensional MCAT

moderately correlated, examinees are very unlikely to have a very high value in 8; and very low
value in 6,, or vice versa. The 37 @ points for the three dimensional case are displayed in Table
4.5 and Figure 4.2. Again, because 61, 8,, and 085 are correlated, only a limited number of points

on the three dimensional space are selected.

4. 3 Evaluation Criteria

The performance of MCAT is evaluated based on precision of the ability estimation and the
item pool utilization. The evaluation criteria for precision of the ability estimation include
Pearson product-moment correlation between the true @ and estimated @, bias, and root mean

squared error (RMSE). The bias and RMSE are denoted as:

—~

. " 6;—9;
Bias = Z , (4.1
i=1 N
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RMSEz\/Z (6. -6 _0) (4.2)

where n is the sample size.

For item pool utilization, the evaluation criteria are the overall pool usage, the test overlap
rate, and the percentage of items with varying exposure rate. As Chang and Ying (1999)
proposed, the efficiency of overall item pool usage can be measured by the discrepancy between

the observed and expected item exposure rate. It follows y? distribution and is denoted as

N =Ly
C) T @Y

where 7; is the observed exposure rate for item j, L is the test length, N is the number of items in
the item pool. A low x? value implies that most of the items are fully used.

Test overlap describes item exposure as well, and it has been used as item pool security index.
Overlap rate is defined as the average proportion of items that two randomly selected examinees
have in common (Way, 1998):

2
R =G (4.4)

nL/n

where T is the total number of item shared by C? pair of n examinees in the test and Y. , L"/n is

the total number of the items administered for n examinees. In practice, the overlap rate less
than 15% is desired.
Item exposure rate is the ratio of the number of item administrations to the total number of

examinees. In this study, the percentage of items over- and under-exposed for each item pool is
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also reported. A rate higher than 0.2 is regarded as overexposed (Segall, Moreno, & Hetter,

1997), and a rate lower than 0.02 is regarded as underexposed (Gu, 2007).
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Chapter5  Simulation Results

The simulation results are summarized in two parts. The first part presents the general
characteristics of the 24 p-optimal item pools, and how the characteristics are affected by test
specification, exposure control, correlation among dimensions, and bin size. The second part
describes the performance of the MCAT using each p-optimal item pool, and how their

performance compared with the MCAT using baseline pools.

5.1 Item Pool Characteristics

Because the primary purpose of this study is to design and develop p-optimal item pools for
MCAT, the results of the item pool develop are presented first in this chapter. The general
characteristics for the p-optimal item pools and the baseline pools are summarized and compared

in Section 5.1.1. The item distribution for the 24 p-optimal item pools is then described in 5.1.2.
5.1.1 Summary for Item Pool Characteristics

The summary characteristics, including pool size and the mean and standard deviation (SD) of
the item difficulty, for the .96-optimal item pools and .86-optimal item pools are presented in
Table 5.1 and 5.2, respectively. The twelve .96-optimal item pools are based on the bin-size of
0.4, and the twelve.86-optimal item pools are based on the bin-size of 0.8. The characteristics
for the three baseline pools are also presented in the two tables.

All the .96-optimal item pools, as shown in Table 5.1, have smaller pool sizes than the
baseline pools. For the 2-dimension simple structure and 3-dimension simple structure cases, the
pool size for the .96-optimal item pools is about 110 to 150 items less than the baseline pools.
For the 3-dimension non-simple structure case, the pool size for the .96-optimal item pools is

about 150 to 190 items less than the baseline pools. The average difficulty level (i.e., the mean
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Table 5.1: Summary for the .96-optimal item pools and baseline pools

Test High Correlation Moderate Correlation )
Statistics Baseline
specification No Exposure Exposure No Exposure Exposure pool
Control Control Control Control
] ) Pool size 369 371 328 333 480
2-dimension o
Simple Mean of Difficulty 0.01 -0.01 0.02 -0.01 -0.52
Structure SD of Difficulty 1.65 1.63 1.57 1.55 2.75
Pool size 366 370 322 330 480
3-dimension o
Simple Mean of Difficulty 0.02 0.00 0.00 0.01 -0.32
Structure SD of Difficulty 1.61 1.58 151 1.48 2.72
) ) Pool size 407 407 363 369 560
3-dimension o
Non-simple ~ Mean of Difficulty -0.01 -0.01 -0.01 0.00 -0.32
Structure SD of Difficulty 2.09 2.09 1.95 1.94 2.68
Table 5.2: Summary for the .86-optimal item pools and baseline pools
High Correlation Moderate Correlation
Test Statistics Baseline
specification No Exposure Exposure No Exposure Exposure pool
Control Control Control Control
] ) Pool size 206 252 192 246 480
2-dimension o
Simple Mean of Difficulty 0.00 0.00 0.00 0.00 -0.52
Structure SD of Difficulty 1.82 1.66 1.70 1.55 2.75
) ) Pool size 207 251 190 236 480
3-dimension o
Simple Mean of Difficulty -0.02 0.00 -0.03 0.00 -0.32
Structure SD of Difficulty 1.76 1.60 1.63 1.47 2.72
Pool size 233 272 216 253 560
3-dimension o
Non-simple ~ Mean of Difficulty 0.00 0.01 0.01 0.00 -0.32
Structure SD of Difficulty 2.28 2.14 2.11 1.95 2.68

of MDIFF) for all the .96-optimal item pools is around zero. This is as expected because the
mean ability of the target examinee population is zero and the p-optimal item pools are
developed based on this examinee population. The mean difficulty level for all the baseline

pools is slightly below zero, suggesting the items in the baseline pools are easier than the items
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in the p-optimal item pools on average. The comparison between the SD’s for the .96-optimal
item pools and the baseline pools suggests that items in baseline pools are more widely
distributed.

All the .86-optimal item pools, as shown in Table 5.2, also have smaller pool sizes than the
baseline pools. The pool size for the .86-optimal item pools is about half or less than half of the
baseline pools. The mean difficulty level for all the .86-optimal item pools is around zero. The
SD of item difficulty for the .86-optimal item pools is also smaller than the baseline pools.

The comparison between the .96- and the .86-optimal item pools tells the effect of bin size on
the p-optimal item pools design. First, the pool size of the .96-optimal item pools is much larger
than the .86-optimal item pools. For conditions without item exposure control, the pool size of
the .96-optimal item pools is about twice as much as the .86-optimal item pools. Therefore, a
larger bin size results in a larger item pool. Similar results can be found for the UCAT in
Reckase (2003). Second, the SD of item difficulty for the .96-optimal item pools is slightly
smaller than the .86-optimal item pools. Although the range of the item difficulty for both
the .96- and .86-optimal item pools is similar, the proportion of the difficult or easy items is
slightly higher for the .86-optimal item pools, and thus the SD value is larger. For example,
there are 6% items with MDIFF larger than 2.8 in the .86-optimal item pool for condition of 2-
dimension simple structure, high correlation, and no exposure control; while there are only 4%
for the .96-optimal item pool for the same MCAT.

In addition to the bin size, test specifications also affect the p-optimal item pools design. The
pool size for the all the p-optimal item pools based on 2- and 3-dimension simple structure is
very similar, except there is a 5-item difference between the two .96-optimal item pools with

moderate correlation and no exposure control. The p-optimal item pools with test specification
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of 3-dimension non-simple structure consist of about 10-12% more items than the rest of the two
test specifications. Therefore, if the test length is the same, adding one more clusters of items
that measure a different content area does not require a larger item pool (e.g., from 2-dimension
simple structure to 3-dimension simple structure); however, if the added items measure more
than one content area (e.g., from 3-dimension simple structure to 3-dimension non-simple
structure), the pool size needs to be increased. In addition to the pool size, the SD of item
difficulty is also affected by test specifications. The SD in the 2-dimension simple structure
condition is slightly larger than the SD in the 3-dimension simple structure condition. The items
in the p-optimal item pools based on both types of test specification have the same difficulty
range, but the proportion of difficult item and easy item is slightly larger for the 2-dimension
simple structure condition. The SD for the 3-dimension non-simple structure is much larger
compared with the SD for the other two test specifications. This is because the item difficulty
for items measuring all the three content areas (with a; = (1,1,1)) is more spread.

This study also examines how the correlation among dimensions affects the design for the p-
optimal item pool. Table 5.1 and 5.2 show that if dimensions are highly correlated, the pool size
and the SD of item difficulty will be larger than the condition that dimensions are moderately
correlated. This is because, when dimensions are highly correlated, a slightly larger number of
examinees will have very high ability in all dimensions, and thus more difficult items are needed
in the item pool. For the similar reason, more easy items are also need in the item pool when
dimensions are highly correlated.

If item exposure control is implemented in the MCAT, a larger item pool is necessary.
Similar results can be found in Gu (2007), He (2012), and Zhou (2013) for UCAT. For the .96-

optimal item pools, given the pool size is already over 350 items, adding item exposure control
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only increases the pool size by less than 10 items. For the .86-optimal item pools, about 40-50
more items are added to the item pool in order to minimize item exposure rate and meanwhile to
provide precise ability estimation. Because items with difficulty level around zero have a higher
possibility to be selected (as more examinees are located in the middle), those additional items
are all added to the MDIFF-bins in the middle, and therefore, the SD values for the p-optimal
item pools with item exposure control decrease.

In summary, the characteristics of the p-optimal item pools change with different bin sizes,
test specification, correlation among dimensions, as well as whether item exposure control is
implemented. A larger item pool is necessary if the bin size decreases, the test becomes non-

simple structure, dimensions are highly correlated, or item exposure control is considered.

5.1.2 Item distribution for p-optimal item pools

Each of the p-optimal item pool consists of items from more than one cluster. The number of
items in each cluster for the .96- and .86-optimal item pools is presented Table 5.3 and 5.4,
respectively. For the 2-dimension simple structure case, half items are from Cluster 1, and the
other half are from Cluster 2. For the 3-dimension simple structure case, one third of items are
from each cluster. For the 3-dimension non-simple structure case, there is same number of items
from Cluster 1 — 3, and slightly more items from Cluster 4.

For the 2- and 3-dimension simple structure cases, the reason of items equally distributed
between each cluster with simple structure is because the D-Optimality method selects the same
number of items from each cluster. Based on equation (3.8), when an item from Cluster 1 is
administered, the test information on the direction of dimension 1 will be slightly larger than that
of dimension 2, and the next item from Cluster 2 will be selected next. After this item is

administered and the ability estimate is updated, the test information on the direction of
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Table 5.3: Item distribution for the .96-optimal item pools

High Correlation Moderate Correlation

Test
o Number of Items No Exposure Exposure No Exposure Exposure
Specification
Control Control Control Control
2-dimension Item with a = (1,0) 184 185 164 167
Simple Item with a = (0,1) 185 186 164 166
Structure Total 369 371 328 333
o Item with a = (1,0,0) 122 124 106 105
3-dimension ]
_ Item with a = (0,1,0) 123 124 111 107
Simple | itk 0.0.1)
tem with a = (0,0,
Structure 121 122 113 110
Total 366 370 330 322
Item with a = (1,0,0) 100 100 88 89
3-dimension  Item with a = (0,1,0) 102 101 87 89
Non-simple  Item with a = (0,0,1) 100 100 91 92
Structure Item with a=(1,1,1) 105 106 97 99
Total 407 407 363 369
Table 5.4: Item distribution for the .86-optimal item pools
T High Correlation Moderate Correlation
est
o Number of Items No Exposure Exposure No Exposure Exposure
Specification
Control Control Control Control
2-dimension  Item with a = (1,0) 103 126 96 123
Simple Item with a = (0,1) 103 126 96 123
Structure Total 206 252 192 246
_ ) Item with a = (1,0,0) 68 83 60 76
3-dimension ]
] Item with a = (0,1,0) 71 85 64 20
Simple | itk 0.0.1)
tem with a = (0,0,
Structure 68 8 66 80
Total 207 251 190 236
Item with a = (1,0,0) 56 66 52 61
3-dimension  Item with a = (0,1,0) 56 66 52 61
Non-simple  Item with a = (0,0,1) 56 65 53 61
Structure Item with a=(1,1,1) 65 75 59 70
Total 233 272 216 253
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Figure 5.1: The direction of the information for items with a = (1,1,1)

dimension 2 will be larger than that of dimension 1, and an item from Cluster 1 will be selected.
Therefore, items from each cluster take turns to be selected next. Occasionally, two items from
the same clusters are administered successively. If this happen, two items from another cluster
will be selected to balance test information between the two directions.

For the 3-dimension non-simple structure case, items measuring all the three dimensions are
included in the item pool as the 4™ cluster. Items from Cluster 4 provide 1 unit of information on

V3

the direction of the 6,, 6,,and 85 composite (see Figure 5.1), and also 5 unit of information on

the direction of 8;, 8,,and 65. Items from Cluster 1 — 3 provide 1 unit of information on the
direction of 6, 8,,0r 65, and also a small amount of information on the direction of the
composite. Suppose three items, one from Cluster 1, one from Cluster 2, and one from Cluster 3,
has been administered. At this point, the information on the direction of the diagonal is the
smallest; thus, the fourth item is chosen from Cluster 4. Then, items from Cluster 1 — 3 are
selected next. Most of the time, items from the four cluster take turns being selected. Because

the amount of information that items from Cluster 4 provide on the direction of 64, 8,,0r 65 is

60



more than the amount of information that items from Cluster 1 — 3 provide on the direction of the
composite, Cluster 1 — 3 may be skipped sometimes in each rotation. Therefore, in this study,
about 8 to 9 items from Cluster 4, and about 7 to 8 items from each of the Cluster 1, 2, and 3, are
given to each examinee. Because more items from Cluster 4 are administered, more items
should be available in the item pool.

The distribution for the .96- and .86-optimal item pool without exposure control (two-
dimension simple structure, high correlation) is presented in Figure 5.2 and 5.3, respectively.
Each bar in the figure represents the number of item in each MDIFF-bin. For both item pool, the
distribution for item difficulty is flatter than a normal distribution. Half of the items are from
Cluster 1 and the other half are from Cluster 2. Figure 5.4 and 5.5 present the distribution for
the.96- and .86-optimal item pool with exposure control (two-dimension simple structure, high
correlation), respectively. For both item pools, items are distributed from -3.2 to 3.2, with many
more items located in the middle bins. Figure 5.2 and 5.4 is only different in the central MDIFF-
bin: 15 items in 5.2 and 17 in 5.4. They look different because the scale of y-axis is different.
For the .86-optimal item pool, the difference between Figure 5.3 and 5.5 is in the three bins in
the middle. Because of the item exposure control, the number of item in the central MDIFF-bin
is double in Figure 5.5. The distribution for p-optimal item pools in other condition is in a
similar shape, and therefore they are not represented here. The number of items in each item

MDIFF-bin for all the 24 p-optimal item pool can be found in the Appendix.
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Figure 5.5: Item distribution for the .86-optimal item pool with exposure control
(Two-dimension simple structure, high correlation)

5.2 Performance of the p-Optimal Item Pools

The previous section described the characteristics of the p-optimal item pools and how the
characteristics change with the MCAT design (including bin size, test specification, correlation,
and exposure control). In this section, the performance of the MCAT using the p-optimal item
pools is evaluated based on the simulation results. Two questions are addressed: (1) how does

the performance of the MCAT using p-optimal item pools compared with the MCAT using
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baseline pools? and (2) how does the MCAT designs influence the performance of MCAT using
the p-optimal item pools? The simulation results for Test Specification 1 (two-dimension simple
structure) are first presented in 5.2.1 (for high correlation condition) and 5.2.2 (for moderate
correlation condition), followed by Test Specification 2 (three-dimension simple structure) in
5.2.3 (for high correlation condition) and 5.2.4 (for moderate correlation condition), and Test
Specification 3 (three-dimension non-simple structure) in 5.2.5 (for high correlation condition)

and 5.2.6 (for moderate correlation condition).
5.2.1 Performance for item pools based on Test Specification 1 (high correlation)

Table 5.5 and 5.6 presents the results of the ability estimation and item pool utilization for
the .96-optimal item pool, the .86-optimal item pool, and the baseline pool based on the
condition of two-dimension simple structure test specification with 8; and 6, are highly
correlated. The results in Table 5.5 are under the condition without item exposure control; and
Table 5.6 is with item exposure control. In both tables, there are two values for bias, RMSE and
correlation, representing the results for (8, 6,).

Under the condition without item exposure control (see Table 5.5), the two p-optimal item
pools and the baseline pool show no bias on the 8 estimates. Also, the RMSE are all at 0.40, and
the correlations between estimated @ and true @ are around 0.91. The average test information is
also very similar among the three item pools. The amount of information on the direction of 6,
and 6, is around 3.59. This value is very high for the MCAT in this study, because 15 items
from each cluster are administered and the maximum amount of information an item can provide
is 0.25. Because of the feature of simple structure, the off-diagonal values of the information
matrix are zero. In general, the results suggest that the .96- and .86-optimal item pool can

provide accurate estimation for @, and the level of accuracy is the same as the baseline pool.

64



Table 5.5: The performance of the .96- and .86-optimal pool and the baseline pool without

exposure control

(2-dimension simple structure, high correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
RMSE (0.40, 0.40) (0.40, 0.40) (0.40, 0.40)
Correlation (0.91, 0.91) (0.91, 0.91) (0.92,0.91)
Average test information [3'39 320] [3'058 3-(;9 3'059 320]
Overall Pool Usage 29.03 32.31 60.92
Overlap rate 0.16 0.30 0.19
% of overexposed item (r >0.2) 11% 34% 9%
% of underexposed item (r < 0.02) 35% 33% 54%

Table 5.6: The performance of the .96- and .86-optimal pool and the baseline pool with exposure

control
(2-dimension simple structure, high correlation)
Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
RMSE (0.41,0.41) (0.41, 0.41) (0.41,0.42)
Correlation (0.91, 0.91) (0.91, 0.91) (0.91, 0.91)
Average test information [3'034 3.035] [3'38 328 [3'5’0 320]
Overall Pool Usage 5.02 2.19 13.38
Overlap rate 0.09 0.13 0.09
% of overexposed item (r >0.2) 0% 0% 0%
% of underexposed item (r < 0.02) 6% 0% 26%

Table 5.5 also presents the results about item pool usage. The overall pool usage index for

the .96-optimal item pool is slightly smaller than that of the .86-optimal item pool, and the index

for the baseline pool is about twice as much as the .96- and .86-optimal item pool. Because a

small overall pool usage index implies more items in the item pool are fully used, the results
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suggest that the .96-optimal item pool has slightly better usage than the .86-optimal item pool,
and the two p-optimal item pools have much better usage than the baseline pool. More
specifically, for the .96-optimal item pool, the overlap rate is 0.16, indicating that two randomly
selected examinees will receive about 16% of items in common; and the percentage of
overexposed and underexposed item are 11% and 35%, respectively. For the .86-optimal item
pool, the results are: 30% of items overlap, 34% overexposed, and 33 % under exposed. Because
more items from the .86-optimal item pool are overlapped and overexposed, the .86-optimal item
pool is less secure than the .96-optimal item pool. This finding is reasonable because the size of
the .86-optimal item pool is only 206 items, but the .96-optimal item pool has 369 items. The
overlap rate for the baseline pool is 0.19, which is slightly higher than the .96-optimal item pool
and lower than the .86-optimal item pool. Although a smaller number of items (9%) from the
baseline pool are overexposed, more than half of the items (54%) are rarely used. It implies
many items in the baseline pool are wasted. In brief, based on these pool usage results, the item
pool usage for the .96- and .86-optimal item pool is much better than the baseline pool.

When item exposure control is implemented (see Table 5.6), similar results can be observed:
the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and
yield better item pool usage than the baseline pool. Compared with the condition without item
exposure control, item exposure control only results in a 0.01 to 0.02 increase for the RMSE, and
about 0.3 decrease for the average test information. The reason why item exposure control rarely
affects the ability estimation is because the p-optimal item pool design takes the item exposure
rate into account and makes sure there is adequate number of items for selection. For the item
pool usage, when the item exposure control is implemented, no item is overexposed, and the

percentage of underexposed and overlapped items is also decreased. The .86-optimal item pool
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has been fully used with no item underexposed in this condition. The overall pool usage index
for the .96- and .86-optimal item pool and the baseline pool are 5.02, 2.19, and 13.38,
respectively. The value is much smaller than the condition without item exposure control. Thus,
item exposure control can effectively increase the item pool usage and reduce the item exposure
rate without obvious loss on the accuracy of ability estimation.

In addition to the overall performance, the conditional bias and RMSE at the 29 (64, 6,)
points are also calculated in this study to evaluate the ability estimation at each 8 point. The
results are presented by the contour plots. Each contour curve in the plot connects points with
the same bias or RMSE value. The conditional bias for each @ point is plotted in Figure 5.6 and
5.7, for the MCAT without and with item exposure control, respectively. In each Figure, the two
plots (subplot a and b) at the top present the conditional bias for 8;and 6, for the .96-optimal
item pool; the two plots (subplot ¢ and d) in the middle present the conditional bias for the .86-
optimal item pool; and the subplot e and f at the bottom present the conditional bias for the
baseline pool. The conditional RMSE is plotted in Figure 5.8 and 5.9 in the same manner. The
red points in the contour plot represent the 29 (6, 6,) points.

Under the condition without item exposure control (see Figure 5.6 for bias and 5.8 for RMSE),
it is obvious that the plot for the .96-, .86-optimal item pool, and the baseline pool are very
similar. This finding supports the results of the overall bias and RMSE, and also suggests the p-
optimal item pools can provide as accurate ability estimation as the baseline pool at each @ point.
In general, larger bias and RMSE occurs when 6, and 6, are very large or very small, which is
the upper right corner and lower left corner in the contour plot. In addition to the value of the 0,
the difference between 6; and 6, also affects the estimation accuracy. More specifically, when

6, is within (-1, 1) and 6, is near 6, the bias for 8, is close to 0 and the
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Figure 5.6: Conditional bias for the 8 estimates without exposure control
(2-dimension simple structure, high correlation)
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Figure 5.8: Conditional RMSE for the 8 estimates without exposure control
(2-dimension simple structure, high correlation)
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Figure 5.9: Conditional RMSE for the 8 estimates with exposure control
(2-dimension simple structure, high correlation)
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RMSE is less than 0.4. Negative bias and large RMSE appear when the value of 8; increases
and the difference between 68, and 6, increases. For example, at point (3, 1) and (3, 2) in the plot,
the bias for 6;is about -1.0 and RMSE for 6;is about 1.0. Meanwhile, positive bias and large
RMSE appear when the value of 8, decreases and the difference between 8, and 6, increases.
At point (-3, -1) and (-3, -2), the bias for 8,is about 1.0 and RMSE for 6;is about 1.0. Similar
results for 8, can be observed from the right panel of Figure 5.6 and 5.8. When 8, is within (-1,
1) and 6, is near 6,, the bias and RMSE for 6, is very small. When the value of 8, becomes
more extreme and 6, is away from 6,, large bias and RMSE values appear. This finding is
probably due to the Bayesian MAP estimation method. As described in Chapter 2, the Bayesian
method set the distribution of the true @ as the prior. In this condition, the true @ has a mean
vector of (0, 0) and a high correlation between 8, and 6,. The prior will shrink the ability
estimation into the middle and reduce the difference between 6; and 6,. In this study, the
overall test length is 30 so that about 15 items are selected from each cluster. The effect of the
likelihood function is probably not strong enough to overcome the effect of the prior. If the test
length further increases, the effect of the likelihood function will dominate the effect of the prior
eventually, and therefore reduce the bias and RMSE in those extreme cases.

When item exposure control is implemented, similar findings can be observed from Figure 5.7
and 5.9. Again, there is nearly no difference between the two p-optimal item pools, and between
the p-optimal item pools and the baseline pool. The results support the finding based on the
overall bias and RMSE, and further suggest the MCAT using the three item pools perform
similarly in terms of the ability estimation on the 29 @ points. In addition, larger bias and RMSE
also occurs when 6; and 6, are very large or very small, and when 6; and 6, are away from

each other. A comparison between the condition with and without item exposure control shows,
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when item exposure control is built in, the magnitude of the bias and RMSE at some extreme
points becomes larger. The increase of estimation error is due to the item exposure control.
Because the item exposure control prevents the most informative item from being frequently
selected, the information available for ability estimation reduces slightly. When information
reduces, the prior plays a more important role in the ability estimation. Thus, the measurement
error at extreme @ points becomes larger if item exposure control is added into the item selection
process.

In summary, this section presents the results for the MCAT with the test specification of two-
dimension simple structure and with high correlation between 6; and 8,. In general, the p-
optimal item pools perform similar as the baseline pool in terms of both overall and conditional
accuracy of ability estimation, but the p-optimal item pools can save over 100 items and have a
better item pool usage. When item exposure control is implemented, the item exposure rate and
item overlap rate can be controlled very well. The p-optimal item pools still can provide reliable

ability estimation with a relatively small pool size.
5.2.2 Performance for item pools based on Test Specification 1 (moderate correlation)

The results for the MCAT with the same test specification, but with 8; and 6, are moderately
correlated, are presented in Table 5.7 and 5.8. The results in Table 5.7 are under the condition
without item exposure control; and Table 5.8 is with item exposure control. In both tables, there
are two values for bias, RMSE and correlation, representing the results for (61, 6,).

Under the condition without item exposure control (see Table 5.7), the p-optimal item pools
and the baseline pool show nearly no bias on the 8 estimation. Also, the RMSE are all at 0.46,
and correlations between estimated @ and true @ are around 0.88. The average test information

is also very similar among the three item pools. The amount of information on the direction of
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Table 5.7: The performance of the .96- and .86-optimal pool and the baseline pool without
exposure control
(2-dimension simple structure, moderate correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool

Bias (-0.01, 0.00) (-0.01, 0.00) (-0.01, 0.01)

RMSE (0.45, 0.46) (0.45, 0.46) (0.45, 0.46)

Correlation (0.89, 0.89) (0.89, 0.89) (0.89, 0.89)

Average test information [3'38 3.%8] [3'37 3.058] [3'(‘;38 3.058]
Overall Pool Usage 28.47 31.69 66.65
Overlap rate 0.18 0.32 0.20
% of overexposed item (r >0.2) 16% 34% 10%
% of underexposed item (r < 0.02) 32% 29% 55%

Table 5.8: The performance of the .96- and .86-optimal pool and the baseline pool with exposure

control
(2-dimension simple structure, moderate correlation)
Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (-0.01, 0.00) (-0.01, 0.00) (-0.01, 0.00)
RMSE (0.46, 0.47) (0.47,0.47) (0.47,0.48)
Correlation (0.88,0.88) (0.88,0.88) (0.88,0.87)
Average test information [3'031 3.03 1] [3'57 329] [3'59 3.%2]
Overall Pool Usage 3.55 1.59 13.48
Overlap rate 0.10 0.13 0.09
% of overexposed item (r >0.2) 0% 0% 0%
% of underexposed item (r < 0.02) 0% 0% 26%

6, and 6,is around 3.58. In general, the results suggest that the .96- and .86-optimal item pool
can provide accurate estimation for 8, and the level of accuracy is the same as the baseline pool.
Table 5.7 also presents the results about item pool usage. The overall pool usage index for

the .96-optimal item pool is slightly smaller than that of the .86-optimal item pool, and the index
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for the baseline pool is more than twice as much as the .96- and .86-optimal item pool. The
results suggest that the .96-optimal item pool has slightly better usage than the .86-optimal item
pool, and the two optimal item pools have much better usage than the baseline pool. More
specifically, for the .96-optimal item pool, the overlap rate is 0.18, and the percentage of
overexposed and underexposed item are 16% and 32%, respectively. For the .86-optimal item
pool, the results are: 32% of items overlap, 34% overexposed, and 29 % under exposed. Because
more items from the .86-optimal item pool are overlapped and overexposed, the .86-optimal item
pool is less secure than the .96-optimal item pool. The overlap rate for the baseline pool is 0.20,
which is slightly higher than the .96-optimal item pool and lower than the .86-optimal item pool.
Although a smaller number of items (10%) from the baseline pool are overexposed, more than
half of the items (55%) are rarely used. It implies many items in the baseline pool are wasted. In
brief, based on these pool usage results, the item pool usage for the .96- and .86-optimal item
pool is much better than the baseline pool.

When item exposure control is implemented (see Table 5.8), similar results can be observed:
the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and
yield better item pool usage than the baseline pool. Compared with the condition without item
exposure control, item exposure control only results in a 0.01 to 0.02 increase for the RMSE, and
about 0.3 decrease for the average test information. For the item pool usage, when the item
exposure control is implemented, no item is overexposed, and the percentage of underexposed
item and overlapped item are also decreased. The .96- and the .86-optimal item pool has been
fully used with no item underexposed. The overall pool usage index for the .96-, .86-optimal
item pool and the baseline pool are 3.55, 1.59, and 13.48, respectively. The value is much

smaller than the condition without item exposure control. Thus, the results suggest the item
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exposure control can effectively increase the item pool usage and reduce the item exposure rate
without obvious loss on the accuracy of ability estimation.

In addition to the overall performance, the conditional bias and RMSE at the 29 (64, 6,)
points are also calculated in this study to evaluate the ability estimation at each 8 point. The
conditional bias for each @ point is plotted in Figure 5.10 and 5.11, for the MCAT without and
with item exposure control, respectively. The conditional RMSE is plotted in Figure 5.12 and
5.13.

Under the condition without item exposure control (see Figure 5.10 for bias and 5.12 for
RMSE), it is obvious that the plot for the .96-, .86-optimal item pool, and the baseline pool are
very similar. This finding supports the results for the overall bias and RMSE, and also suggests
the p-optimal item pools can provide as accurate ability estimation as the baseline pool at each 6
point. Similar to the results in Section 5.1.1, larger bias and RMSE occurs when 6, and 8, are
very large or very small, which is the upper right corner and lower left corner in the contour plot.
In addition to the value of 8, the difference between 6; and 8, also affects the estimation
accuracy. More specifically, when 6, is within (-1, 1) and 8, is near 6, the bias for 6; is close
to 0 and the RMSE is less than 0.4. Negative bias and large RMSE appear when the value of 6,
increases and the difference between 6, and 6, increases. For example, at point (3, 1) and (3, 2)
in the plot, the bias for 6 is about -0.7 and RMSE for 6, is about 0.8. Meanwhile, positive bias
and large RMSE appear when the value of 8; decreases and the difference between 6; and 6,
increases. At point (-3, -1) and (-3, -2), the bias for 8, is about 0.7 and RMSE for 6, is about 0.8.
Similar results for 8, can be observed from the right panel of Figure 5.10 and 5.12. When 6, is
within (-1, 1) and 6, is near 6,, the bias and RMSE for 6, is very small. When the value of 6,

becomes more extreme and 6 is away from 6,, large bias and RMSE values appear.
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Figure 5.10: Conditional bias for the @ estimates without exposure control
(2-dimension simple structure, moderate correlation)
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Figure 5.11: Conditional bias for the @ estimates with exposure control
(2-dimension simple structure, moderate correlation)
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Figure 5.12: Conditional RMSE for the @ estimates without exposure control
(2-dimension simple structure, moderate correlation)
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Figure 5.13: Conditional RMSE for the @ estimates with exposure control
(2-dimension simple structure, moderate correlation)
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By comparing the contour plots in this section with the plots in Section 5.2.1 (when 6; and 6,
are highly correlated), it is easy to see that the pattern of the contour plot is the same, but the
magnitude of the bias and RMSE is smaller. When the correlation between 6; and 6, decreases,
the prior weakly reduces the difference between 6, and 8,. Therefore, when 8; and 6, are
moderately correlated, the bias the RMSE values are slightly smaller at those points where 6;
and 6, are away from each other, compared with the condition when 68, and 6, are highly
correlated.

When item exposure control is implemented, similar findings can be observed from Figure
5.11 and 5.13. Again, there is nearly no difference between the two p-optimal item pools, and
between the p-optimal item pools and the baseline pool. The results support the finding based on
the overall bias and RMSE, and further suggest the three item pool performs similarly in terms of
the ability estimation on the 29 @ points. In addition, larger bias and RMSE also occurs when
6, and 8, are very large or very small, and when 8; and 8, are away from each other. Similar to
results under the high correlation condition in Section 5.2.1, when item exposure control is built
in, the magnitude of the bias and RMSE at some extreme points becomes larger.

In summary, this section present the results for the MCAT with the test specification of two-
dimension simple structure and with moderate correlation between 6; and 6,. The p-optimal
item pools perform similar as the baseline pool in terms of the accuracy of ability estimation, but
the p-optimal item pools can save over 140 items and have a better item pool usage. When item
exposure control is implemented, the p-optimal item pools still can provide accurate ability
estimation and meanwhile the item exposure rate and item overlap rate can be well controlled.

In general, the findings from this section are similar to the finding in previous section. A close

comparison between these two sections reveals that the measurement error in this section is
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slightly larger. This result is due to the magnitude of the correlation between 6; and 6,. Unlike
the UIRT model estimating 6; and 8, one at a time, the MIRT model estimates 8; and 6,
simultaneously, by borrowing information from one to another. When 6, and 6, are highly
correlated, more variance in 6; can be explained by 6,, so that more information can be
borrowed for ability estimation. When the correlation between 6; and 8, decreases, the amount
of information that can be borrowed reduces accordingly, and therefore the RMSE for 6
estimates increase. In addition to the accuracy of ability estimation, the pool usage for the two p-
optimal item pool in this section is also slightly better. This is probably because of the pool size.
When the correlation between 6; and 6, decreases, the pool size decreases as well. A smaller

item pool is more likely to be fully used.
5.2.3 Performance for item pools based on Test Specification 2 (high correlation)

The results for the MCAT based on the three-dimension simple structure, and with 6, and 6,
are highly correlated, are presented in Table 5.9 and 5.10. The results in Table 5.9 are under the
condition without item exposure control; and Table 5.10 is with item exposure control. In both
tables, there are three values for bias, RMSE and correlation, representing the results for (6, 65,
05).

Under the condition without item exposure control (see Table 5.9), the p-optimal item pools
and the baseline pool show nearly no bias on average. Also, the RMSE ranges from 0.41 to 0.46,
and the correlations between the estimated @ and the true 8 are around 0.90. The average test
information is also very similar among the three item pools. The amount of information on the
direction of 6,4, 6,, and 65 is around 2.39. This value is very high for the three dimensional
MCAT in this study, because only 10 items from each cluster are administered and the maximum

amount of information an item can provide is 0.25. In general, the results suggest that the .96-
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Table 5.9: The performance of the .96- and .86-optimal pool and the baseline pool without
exposure control
(3-dimension simple structure, high correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (-0.01, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
RMSE (0.44,0.42, 0.45) (0.44, 0.41, 0.45) (0.44, 0.41, 0.46)
Correlation (0.90, 0.91, 0.89) (0.90, 0.91, 0.89) (0.90, 0.91, 0.89)
239 0 0 238 0 0 239 0 0
Average test information [ 0 240 O ] [ 0 239 0 ] [ 0 240 O ]
0 0 2.40 0 0 2.39 0 0 2.40
Overall Pool Usage 28.47 31.69 66.65
Overlap rate 0.18 0.32 0.20
% of overexposed item (r > 0.2) 16% 34% 10%
% of underexposed item (r<0.02) 32% 29% 55%

Table 5.10: The performance of the .96- and .86-optimal pool and the baseline pool with
exposure control
(3-dimension simple structure, high correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (-0.01, 0.00, 0.01) (0.00, 0.00, 0.01) (0.00, 0.00, 0.01)
RMSE (0.45, 0.43, 0.47) (0.46, 0.44, 0.47) (0.46, 0.43, 0.47)
Correlation (0.89, 0.90, 0.89) (0.89, 0.90, 0.88) (0.89, 0.90, 0.89)
217 0 0 213 0 0 208 0 0
Average test information [ 0 218 0 ] [ 0 215 0 ] [ 0 203 O ]
0 0 2.17 0 0 2.13 0 0 2.15
Overall Pool Usage 3.55 1.59 13.48
Overlap rate 0.10 0.13 0.09
% of overexposed item (r > 0.2) 0% 0% 0%
% of underexposed item (r<0.02) 0% 0% 26%

and .86-optimal item pool provide accurate estimation for 8, and the level of accuracy is the

same as baseline pool.

Table 5.9 also presents the results about item pool usage. Compared with the MCAT based

on the Test Specification 1 in 5.2.1 and 5.2.2, similar results can be drawn from Table 5.9. The

83



item pool usage for the .96-optimal item pool is slightly better than the 86-optimal item pool.
And the two p-optimal item pools are much better used than the baseline pool.

When item exposure control is implemented (see Table 5.10), similar results can be observed:
the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and
yield better item pool usage than the baseline pool. Compared with the condition without item
exposure control, item exposure control only results in a 0.01 to 0.03 increase for the RMSE, and
about 0.3 decrease for the average test information. For the item pool usage, when the item
exposure control is implemented, no item is overexposed, and the percentage of underexposed
item and overlapped item are also decreased. The two p-optimal item pools have been fully used
with no item underexposed. The comparison between the condition with and without item
exposure control suggests the item exposure control can effectively increase the item pool usage
and reduce the item exposure rate without obvious loss on the accuracy of ability estimation.

In additional to the overall performance, the conditional bias and RMSE at 37 (6,4, 65, 653)
points are also calculated in this study to evaluate the ability estimation at each @ point. The 3-
dimensional bias and RMSE cannot be plotted in a contour plot. The conditional bias for each @
point is presented in Table 5.11 and 5.12, for the MCAT without and with item exposure control,
respectively. In each table, the conditional bias is color coded based on the value. Negative bias
is colored in blue and positive bias is in red. Deeper color represents larger bias. The
conditional RMSE is presented in Table 5.13 and 5.14 in the same manner. Small RMSE is
colored in green and large RMSE is colored in red.

Under the condition without item exposure control (see Table 5.11 for bias and 5.13 for
RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool

are quite similar. This finding supports the results for the overall bias and RMSE, and also
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Table 5.11: Conditional Bias for the @ estimates without exposure control
(3-dimension simple structure, high correlation)

37 Points 61 6, 63

6, 6, 6 9% 8 C 9% B8 C 9 .86 C
-3 -3 -3 048 052 056 041 044 050 053 051 0.56
-3 3 -2 065 060 069 066 061 068 -0.06 -0.07 -0.05
-3 -2 3,082 08 07 -013 -0.13 -0.19 0.81 0.79 0.74
-3 -2 -2 09 091 093 006 003 008 020 0.16 0.21
-2 -3 -3 -007 -002 -011 0.72 0.77 0.72 0.72 072 0.72
-2 -3 -2 014 002 005 09 086 089 6 012 0.08 0.10
-2 -2 -3 016 015 0210 007 005 0.01 093 090 0.89
-2 -2 -2 029 030 028 023 027 026 026 033 0.27
-2 -2 -1 045 046 046 048 052 049 -023 -0.18 -0.24
-2 -1 -2 05 054 062 -036 -039 -027 052 054 0.60
-2 -1 -1,0v72 076 072 -012 -0.07 -0.12 -0.01 0.07 -0.01
-1 -2 -2 -019 -023 -024 058 056 049 050 049 045
-1 -2 -1 -009 -005 -0.09 073 079 0.75 -0.12 -0.03 -0.06
-1 0 -1 032 042 038 -058 -047 -051 029 036 031
-1 0 0 058 060 057 -025 -021 -0.25 -0.16 -0.12 -0.14
-1 -1 -038 -041 -040 042 037 042 032 030 0.32
-1 0 -025 -027 -033 061 062 055 -0.27 -0.20 -0.26
-1 -0.18 -0.16 -0.15 -0.26 -0.22 -0.22 052 055 0.50
0.07 001 -0.03 0.05 0.02 -0.03 0.03 0.03 -0.02
0.12 020 0.15 0.16 029 0.22 -058 -049 -0.52
024 027 026 -0.61 -059 -062 024 025 0.19
047 048 039 -032 -0.33 -0.38 -0.28 -0.29 -0.26
-056 -058 -051 026 026 030 016 016 0.17
-042 -0.38 -041 048 053 048 -035 -0.32 -0.35
0.09 008 0.10 -0.77 -0.75 -0.7/6 0.06 0.05 0.03
029 027 025 -052 -050 -054 -0.46 -047 -0.45
-0./73 -0.67¢ -0./3 008 014 0.11 -006 0.00 0.01
-054 -054 -056 034 030 033 -056 -0.62 -0.58
-0.46 -050 -046 -048 -051 -052 025 020 0.19
-0.32 -0.30 -0.30 -0.28 -0.27 -0.27 -0.32 -0.33 -0.33
-0.15 -0.13 -0.15 -0.05 -0.04 -0.07 /-0.91 -0.87 -0.92
-0.11 -0.09 -0.07 ' -0.96 -0.92 -0.91 -0.17 -0.10 -0.08
0.04 005 0.11 -0.72 -0.72 -0.68 -0.69 -0.66 -0.67
-0.95 -0.91 -1.00 -0.08 -0.03 -0.11 -0.25 -0.20 -0.21
-0.72 -0.74 -0./5 025 0.18 0.20 -0.66 -0.72 -0.76
-0.64 -0.61 -0.68 -0.65 -0.62 -0.68 0.08 0.10 -0.03

3 3 3 -049 -057 -048 -040 -050 -0.43 -0.48 -0.57 -0.47
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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NN WONDNWNDNWLWNEFENPFPFDNPFP PO OPRPO
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Table 5.12: Conditional Bias for the 8 estimates with exposure control
(3-dimension simple structure, high correlation)

37 Points 61 6, 63

6, 6, 6 9% 8 C 9% 8 C 9 .86 C
-3 3 -3 065 079 071 061 072 064 069 080 0.69
-3 -3 -2 078 094 082 078 094 081 004 014 0.05
-3 2 -3/ 084 103 082 -012 007 -0.12 0.86 102 0.87
-3 -2 -2 102 111 093 0.12 019 004 022 031 0.20
-2 -3 -3 -004 002 007 079 08 089 0.80 089 0.88
-2 -3 -2 013 024 016 100 114 103 014 0.28 0.19
2 -2 -3 019 024 032 011 016 021 1.01 109 110
-2 -2 -2 03 045 035 032 040 033 036 045 0.38
-2 -2 -1 054 060 052 057 061 051 -021 -0.14 -0.24
-2 -1 -2 065 060 063 -029 -034 -028 0.60 059 0.64
-2 -1 -17079 08 079 -010 -0.02 -0.06 -0.04 0.05 0.06
-1 -2 -2 -023 -021 021 056 063 059 053 056 0.56
-1 -2 -1 -005 -0.12 -0.02 080 080 0.85 -0.05 -0.02 0.03
-1 0 -1 047 034 044 -042 -054 -0.48 043 0.38 0.39
-1 0 0 064 064 065 -021 -0.18 -0.22 -0.15 -0.09 -0.14
-1 -1 -034 -046 -036 047 038 045 040 0.33 0.39
-1 0 -021 -022 -025 064 066 066 -0.21 -0.19 -0.18
-1 -009 -015 -0.20 -0.16 -0.21 -0.26 0.65 0.59 0.54
-0.07 -0.06 -0.08 -0.04 -0.06 -0.10 -0.02 -0.05 -0.08
0.17 012 024 022 016 0.32 -058 -0.60 -0.46
026 023 027 -062 -066 -061 021 021 0.23
046 047 037 035 -036 -044 -0.31 -031 -0.36
-056 -0.64 -061 027 023 024 021 014 0.16
-045 -048 -042 044 043 048 -041 -045 -0.38
0.00 006 0.04 -0.85 -081 -084 0.00 0.04 0.01
0.24 026 020 -0.58 -0.57 -0.60 -0.58 -0.56 -0.55
-0./73 -0.86 -082 014 004 0.06 0.02 -0.01 -0.03
-0.68 -0.70 -0.67 026 025 025 -0.61 -0.68 -0.66
-0.54 -0.63 -0.54 -057 -0.67 -055 0.16 007 0.23
-0.35 -047 -035 -032 -044 -0.30 -0.38 -0.50 -0.36
-0.21 -0.32 -0.25 -0.13 -0.24 -0.17 [ -1.03 -1.13 -1.09
-0.18 -0.24 -0.16 | -1.04 -1.11 -1.05 -0.19 -0.27 -0.15
0.01 -0.11 -0.04 -0.80 -0.92 -0.88 -0.82 -0.93 -0.90
-1.02 -112 -106 -0.10 -0.20 -0.15 -0.21 -0.31 -0.27
-0.91 -1.05 -092 006 -0.07 0.06 -0.90 -1.04 -0.92
-0.76 -0.94 -084 -0.74 -094 -082 0.05 -0.14 -0.05

3 3 3 -065 -084 -066 -0.60 -0.77 -0.62 -0.71 -0.84 -0.71
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.13: Conditional RMSE for the @ estimates without exposure control
(3-dimension simple structure, high correlation)
37 Points 6, 6, 63
6, 6, 6 96 86 C 9% 86 C .96 .86 C
-3 -3 -3 058 063 068 052 057 0.62 0.63 0.63 0.66
-3 -3 -2 072 071 0.77 074 0.70 0.77 0.36 0.34 041
-3 -2 -3 089 091 083 039 043 0.37 089 0.89 0.80
-3 -2 -2 102 098 1.00 0.38 035 0.35 044 0.38 041
-2 -3 -3 042 037 038 082 085 0.79 0.79 0.81 0.79
-2 -3 -2 038 039 035 1.01 095 094 036 045 0.34
-2 -2 -3 039 040 038 0.33 033 035 099 0.96 0.96
-2 -2 -2 047 044 045 042 042 041 047 050 043
-2 -2 -1 056 058 055 057 063 057 040 040 041
-2 -1 -2 066 065 0.71 051 055 046 0.62 0.67 0.72
-2 -1 -1 080 081 082 039 031 041 038 0.33 041
-1 -2 -2 043 038 044 068 0.63 059 0.62 059 0.57
-1 -2 -1 038 037 035 081 087 0.82 040 0.32 0.37
-1 0 -1 046 056 051 0.67 059 0.63 047 052 048
-1 0 0 067 069 067 041 041 045 037 0.38 0.39
-1 -1 050 056 053 053 050 054 049 048 048
-1 0 042 043 048 0.69 0.72 064 0.44 042 0.44
-1 /038 039 042 040 0.39 043 059 0.65 0.62
0.37 037 036 037 035 032 040 0.37 0.33
040 045 040 0.37 051 042 0.67 0.64 0.62
043 044 043 071 0.68 0.71 046 043 041
059 0.61 052 046 049 051 045 048 047
0.68 0.66 059 047 040 042 043 0.36 0.38
0.53 053 056 058 0.64 0.60 051 0.47 0.50
035 034 037 084 081 0.83 034 031 0.38
047 046 041 062 0.62 0.63 059 0.59 0.56
0.82 0.75 0.81 0.38 0.38 0.36 0.38 0.39 0.37
0.64 066 0.66 047 048 047 0.63 0.72 0.68
0.58 0.61 058 058 063 0.61 042 043 0.40
048 045 049 044 044 047 046 0.48 0.52
040 038 0.36 0.37 034 0.34 097 0.93 0.98
040 041 0.34 1.03 099 097 042 040 0.36
0.36 040 0.37 081 081 0.77 0.78 0.76 0.75
1.02 099 106 0.35 0.38 0.38 0.43 044 042
0.81 082 0.84 045 040 044 0.75 0.80 0.83
0.75 0.70 0.76 0.74 0.70 0.76 0.36 0.37 041

3 3 3 061 072 0.60 055 0.64 054 0.63 0.68 0.58
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.14: Conditional RMSE for the @ estimates with exposure control
(3-dimension simple structure, high correlation)
37 Points 6, 6, 63
6, 6, 6 96 86 C 9% 86 C .96 .86 C
-3 -3 -3 074 090 084 0.71 084 0.79 0.79 091 0.82
-3 -3 -2 088 1.03 092 0.88 1.02 092 042 043 045
-3 -2 -3 091 111 093 0.37 039 046 093 1.10 0.98
-3 -2 -2 110 118 1.01 045 044 040 046 051 044
-2 -3 -3 039 043 045 0.87 097 1.00 0.88 0.99 0.99
-2 -3 -2 041 047 043 1.07 120 1.09 0.40 047 042
-2 -2 -3 042 045 050 040 042 043 108 115 1.15
-2 -2 -2 051 057 055 049 055 053 052 0.58 0.55
-2 -2 -1 065 072 064 068 0.74 0.62 044 044 041
-2 -1 -2 076 073 0.76 0.49 055 050 0.72 0.74 0.75
-2 -1 -1 087 094 089 036 041 041 040 0.39 042
-1 -2 -2 044 043 041 0.69 0.73 0.68 0.67 0.68 0.64
-1 -2 -1/035 040 036 0.87 089 0.92 034 0.37 0.38
-1 0 -1 059 051 062 056 0.67 0.65 0.59 0.53 0.58
-1 0 0 072 072 076 039 037 044 036 0.35 0.43
-1 -1 049 058 051 057 052 058 053 048 0.54
-1 0 045 045 046 0.75 0.76 0.76 0.41 0.40 0.40
-1 1037 042 040 0.37 043 042 0.76 0.73 0.66
035 037 044 034 036 043 036 0.37 042
042 037 049 041 039 051 0.70 0.68 0.61
0.44 048 051 071 0.77 0.75 044 046 047
0.60 058 052 053 049 057 048 047 0.52
0.67 0.73 0.71 045 043 042 045 041 0.40
056 0.61 0.60 054 057 0.64 052 0.57 0.56
035 044 038 092 091 093 036 0.39 0.38
042 051 044 068 0.70 0.71 0.69 0.69 0.68
0.81 094 090 0.39 037 036 035 0.34 0.37
0.81 0.83 0.77 049 049 046 0.74 0.80 0.75
0.66 0.73 069 0.68 0.76 0.71 040 0.36 0.49
052 0.65 051 050 0.63 046 054 0.67 0.52
041 048 043 039 043 040 110 1.20 1.16
042 046 042 110 1.18 1.11 042 048 041
039 047 036 089 1.04 095 091 1.05 0.97
1.08 120 114 037 046 044 042 054 050
1.00 1.18 099 0.38 053 039 096 1.17 1.00
0.88 1.04 096 0.85 1.05 096 042 048 0.48

3 3 3 073 094 081 0.67 087 0.77 0.76 094 0.84
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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suggests the p-optimal item pools can provide as accurate ability estimation as the baseline pool
at each @ point. In general, larger bias and RMSE occurs when 6, 6,, and 65 are very large or
very small, which is the top and the bottom of each table. In addition to the value of @, the
difference between two 6’s also affects the estimation accuracy. More specifically, when 6, is
around 0, and 6, and 65 are near 6, the bias for 6 is close to 0 and the RMSE is less than 0.4.
Negative bias and large RMSE appear when the value of 6; increases and the difference between
6, and 6,, and between 6; and 65, increases. For example, at point (3, 2, 2) in the table, the bias
for 6,is almost -1.0 and RMSE for 6,is around 1.0. Meanwhile, positive bias and large RMSE
appear when the value of 6, decreases and the difference between 6; and 6,, and between 6
and 65, increases. At point (-3, -2, -2), the bias for 8;is about 0.93 and RMSE for 6,is around
1.0. Similar results for 6, can be observed from the three columns in the middle of Table 5.11
and 5.13. When 6, is around 0, and 8, and 63 is near 6,, the bias and RMSE for 6, is very small.
When the value of 6, becomes more extreme and 8, and 65is away from 6,, large bias and
RMSE values appear. Again, similar results can be found for 65 from the three columns on the
right side of Table 5.11 and 5.13. As described in Section 5.2.1, this finding is probably due to
the Bayesian MAP estimation method. The prior for @ estimation is a multivariate normal
distribution with a mean vector of (0, 0) and a high correlation among 6,, 8,, and 85. The prior
will shrink the ability estimation into the middle and reduce the difference among each 8. Under
this condition, the overall test length is 30 so that about 10 items are selected from each cluster.
The effect of the likelihood function is relatively weak comparing to the effect of the prior. If
the test length further increases, the effect of the likelihood function will dominate the effect of

the prior eventually, and therefore reduce the bias and RMSE in those extreme cases.
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When item exposure control is implemented, similar findings can be observed from Table
5.12 and 5.14. Again, there is nearly no difference between the two p-optimal item pools, and
between the p-optimal item pools and the baseline pool. The results support the finding based on
the overall bias and RMSE, and further suggest the three item pools perform similarly in terms of
the ability estimation on the 37 @ points. In addition, larger bias and RMSE also occurs when
0, 8,, and 65 are very large or very small, and when 8’s are away from each other. A
comparison between the condition with and without item exposure control shows, when item
exposure control is built in, the magnitude of the bias and RMSE at some extreme points
becomes larger. The increase of estimation error is due to the item exposure control. As
explained in Section 5.2.1, because the item exposure control prevents the most informative item
from being frequently selected, the information available for ability estimation reduces slightly.
Thus, the measurement error at extreme @ points becomes larger if item exposure control is built
into the item selection process.

In summary, this section present the results for the MCAT with the test specification of three-
dimension simple structure and with high correlation among 6, 6,, and 85. In general, the p-
optimal item pools perform similarly as the baseline pool in terms of both overall and conditional
accuracy of ability estimation, but the p-optimal item pools can save about 100 items and have a
better item pool usage. When item exposure control is implemented, the item exposure rate and
item overlap rate can be controlled very well. The p-optimal item pools still can provide reliable

ability estimation with a relatively small pool size.
5.2.4 Performance for item pools based on Test Specification 2 (moderate correlation)

The results for the MCAT with the same test specification, but with 6;, 8,, and 65 are

moderately correlated, are presented in Table 5.15 and 5.15. The results in Table 5.15 are under
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Table 5.15: The performance of the .96- and .86-optimal pool and the baseline pool without
exposure control
(3-dimension simple structure, moderate correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.01, 0.00, 0.00) (0.01, 0.01, 0.00) (0.00, 0.00, 0.00)
RMSE (0.52, 0.49, 0.49) (0.51, 0.49, 0.49) (0.52, 0.49, 0.49)
Correlation (0.86, 0.87, 0.87) (0.86, 0.87, 0.87) (0.86, 0.87, 0.87)
238 0 0 238 0 0 238 0 0
Average test information [ 0 239 0 ] [ 0 238 0 ] [ 0 238 0 ]
0 0 2.39 0 0 2.38 0 0 2.39
Overall Pool Usage 29.38 31.95 67.46
Overlap rate 0.18 0.33 0.20
% of overexposed item (r >0.2) 15% 35% 8%
% of underexposed item (r<0.02) 31% 29% 53%

Table 5.16: The performance of the .96- and .86-optimal pool and the baseline pool with
exposure control
(3-dimension simple structure, moderate correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.01, -0.01, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
RMSE (0.54, 0.51, 0.50) (0.54, 0.51, 0.50) (0.55, 0.52, 0.50)
Correlation (0.85, 0.86, 0.86) (0.84, 0.86, 0.86) (0.84, 0.85, 0.86)
214 0 0 212 0 0 207 0 0
Average test information [ 0 216 0 ] [ 0 215 0 ] [ 0 200 O ]
0 0 2.17 0 0 2.15 0 0 2.15
Overall Pool Usage 1.50 0.47 9.82
Overlap rate 0.10 13% 0.08
% of overexposed item (r >0.2) 0% 0% 0%
% of underexposed item (r<0.02) 0% 0% 21%

the condition without item exposure control; and Table 5.16 is with item exposure control. In
both tables, there are three values for bias, RMSE and correlation, representing the results for

(01! 92! 93)
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Under the condition without item exposure control (see Table 5.15), the p-optimal item pools
and the baseline pool show nearly no bias on the @ estimates. Also, the RMSE are all at 0.50,
and correlations between estimated @ and true @ are around 0.87. The average test information is
also very similar among the three item pools. The amount of information on the direction of
each @ is around 2.38. In general, the results suggest that the .96- and .86-optimal item pool can
provide accurate estimation for 8, and the level of accuracy is the same as baseline pool.

Table 5.15 also presents the results about item pool usage. The overall pool usage index for
the .96-optimal item pool is slightly smaller than that of the .86-optimal item pool, and the index
for the baseline pool is more than twice as much as the .96- and .86-optimal item pool. The
results suggest that the .96-optimal item pool has been slightly better used than the .86-optimal
item pool, and the two optimal item pools have been much better used than the baseline pool.
More specifically, for the .96-optimal item pool, the overlap rate is 0.18, and the percentage of
overexposed and underexposed item are 15% and 31%, respectively. For the .86-optimal item
pool, the results are: 33% of items overlap, 35% overexposed, and 29 % under exposed. Because
more items from the .86-optimal item pool are overlapped and overexposed, the .86-optimal item
pool is less secure than the .96-optimal item pool. The overlap rate for the baseline pool is 0.20,
which is slightly higher than the .96-optimal item pool and lower than the .86-optimal item pool.
Although a smaller number of items (8%) from the baseline pool are overexposed, more than
half of the items (53%) are rarely used. It implies many items in the baseline pool are wasted. In
brief, based on these pool usage results, the item pool usage for the .96- and .86-optimal item
pool is much better than the baseline pool.

When item exposure control is implemented (see Table 5.16), similar results can be observed:

the two p-optimal item pools provide as accurate ability estimation as the baseline pool, and
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yield better item pool usage than the baseline pool. Compared with the condition without item
exposure control, item exposure control only results in a 0.01 to 0.03 increase for the RMSE,
about 0.01 to 0.02 decrease in correlation, and about 0.3 decrease on the average test information.
For the item pool usage, when the item exposure control is implemented, no item is overexposed,
and the percentage of underexposed item and overlapped item are also decreased. The .96- and
the .86-optimal item pool has been fully used with no item underexposed. The overall pool
usage index for the .96-, .86-optimal item pool and the baseline pool are 1.50, 0.47, and 9.82,
respectively. The value is much smaller than the condition without item exposure control. Thus,
the item exposure control can effectively increase the item pool usage and reduce the item
exposure rate without obvious loss on the accuracy of ability estimation.

In addition to the overall pool performance, the conditional bias and RMSE at 37 (6, 65, 853)
points are also reported. The conditional bias for each @ point is presented in Table 5.17 and
5.18, for the MCAT without and with exposure control, respectively. Negative bias is colored in
blue and positive bias is in red. Deeper color represents larger bias. The conditional RMSE is
presented in Table 5.19 and 5.20 in the same manner. Small RMSE is colored in green and large
RMSE is colored in red.

Under the condition without item exposure control (see Table 5.17 for bias and 5.19 for
RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool
are quite similar. This finding supports the results for the overall bias and RMSE, and also
suggests the p-optimal item pools can provide as accurate ability estimation as the baseline pool
at each @ point. Similar to the condition that dimensions are highly correlated, larger bias and
RMSE occurs when 6, 8, and 05 are very large or very small. The difference between two 6's

also affects the estimation accuracy. More specifically, when 6, is around 0, and 8, and 65 are
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Table 5.17: Conditional Bias for the @ estimates without exposure control
(3-dimension simple structure, moderate correlation)

37 Points 6, 6, 63

6, 6, 6 96 8 C 9% 8 C 9 8 C
-3 -3 -3 061 060 068 048 059 067 048 055 0.57
-3 3 2070 078 074 070 075 074 001 0.03 0.05
-3 2 -3/0v/8 071 070 011 010 0.09 0.7¢ 070 0.73
-3 -2 -2108 08 08 029 022 026 020 017 0.20
-2 -3 -3 015 013 0415 065 066 069 064 070 0.69
-2 -3 -2 033 026 028, 08 080 084 020 019 0.18
-2 -2 -3 020 023 018 018 028 0.11 0.83 083 0.77
-2 -2 -2 042 032 033 042 030 029 040 029 0.27
-2 -2 -1 048 054 044 044 056 050 -0.16 -0.13 -0.16
-2 -1 -2 048 050 049 -019 -0.10 -0.14 045 046 0.52
-2 -1 -1, 060 060 0.70 -0.04 008 0.09 -002 000 0.03
-1 -2 -2 -006 -006 003 041 037 051 044 035 0.52
-1 -2 -1 003 009 0.00 057 062 054 -0.02 -0.04 -0.10
-1 0 -1 031 027 026 -027 -024 -039 036 030 0.31
-1 0 0 044 039 045 -009 -0.14 -0.08 -0.06 -0.11 -0.03
-1 -1 022 -028 -024 031 024 021 033 023 0.24
-1 0 -0.06 -0.04 -009 045 049 045 -024 -0.13 -0.13
-1 -016 -0.08 -0.14 -0.19 -0.14 -0.11 046 048 047
0.06 -0.06 0.01 0.09 -004 -004 0.09 -0.02 -0.01
0.15 010 0.09 018 015 0.16 -0.47 -048 -0.45
0.10 012 0.16 -046 -043 -037 0.14 0.13 0.18
013 025 021 -029 -029 -0.28 -0.36 -0.29 -0.27
-0.39 -040 -040 009 009 0.10 0.09 0.07 0.15
-0.27 -022 -032 025 029 026 -038 -0.28 -0.37
-0.11 -0.04 -0.04 -0.68 -0.61 -0.68 -0.08 -0.01 -0.03
0.04 000 0.06 -047 -045 -047 -0.48 -047 -0.49
-0.62 -0.67 -0.60 -0.06 -0.04 -0.05 -0.01 -0.07 -0.01
-0.45 -044 -041 011 0.09 0.13 -045 -0.49 -0.49
-0.47 -052 -054 -048 -052 -0.49 0.17 0.10 0.16
-0.30 -0.31 -0.38 -0.38 -0.35 -0.38 -0.32 -0.35 -0.31
-0.21 -0.30 -0.32 -0.13 -0.24 -0.20 -0.80 -0.86 -0.83
-0.33 -0.30 -0.27 [ -0.86 -0.81 -0.87 -0.20 -0.16 -0.16
-0.11 -0.14 -0.17 -0.62 -0.63 -0.62 -0.64 -0.71 -0.61
1091 -0.87 091 -0.24 -028 -0.22 022 -024 -0.23
-0.7/6 -0.68 -0.7/5 -0.16 -0.05 -0.11 ' -0.77 -0.72 -0.74
-0.7/6 -0.73 -0.71 -0.75 -0.69 -0.76 -0.02 -0.03 -0.11

3 3 3 -065 -057 -056 -056 -053 -0.61 -0.56 -0.52 -0.56
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.18: Conditional Bias for the 8 estimates with exposure control
(3-dimension simple structure, moderate correlation)

37 Points 61 6, 65

6, 6, 6 9% 8 C 9% B8 C 9 .8 C
-3 -3 -3 081 09 073 069 082 069 069 084 0.66
-3 -3 -2 098 105 097 094 102 094 017 0.17 0.20
-3 -2 31092 099 089 022 020 017 094 099 0.81
-3 -2 -2 106 119 100 036 044 030 029 039 024
-2 -3 -3 028 024 018 088 09 086 0.86 090 0.82
-2 -3 -2 03 040 037 101 109 102 022 033 0.21
-2 -2 -3 043 038 031 032 030 032 1.04 109 0.93
-2 -2 -2 043 048 044 037 043 045 035 043 0.39
-2 -2 -1 058 054 058 057 056 055 -010 -0.19 -0.14
-2 -1 -2 061 054 057 -005 -015 -0.13 055 053 0.51
-2 -1 -1,069 078 067 005 017 0.09 0.08 0.11 0.09
-1 -2 -2 -008 000 -002 051 057 051 053 0.60 0.52
-1 -2 -1 014 015 0411 074 079 075 0.05 008 0.01
-1 0 -1 041 032 038 -020 -0.30 -0.33 040 036 0.34
-1 0 0 042 045 040 -012 -0.13 -0.16 -0.11 -0.12 -0.15
-1 -1 025 -027 -020 029 029 035 031 030 0.34
-1 0 -010 -0.15 -0.02 050 049 055 -0.14 -0.18 -0.13
-1 -0.17 -0.10 -0.16 -0.15 -0.13 -0.22 049 051 049
-0.02 -0.07r 0.05 007 000 0.05 0.00 002 0.08
022 014 015 029 016 0.22 -044 -047 -0.42
0.13 021 0.10 -046 -047 -051 0.22 0.16 0.15
028 025 021 031 -029 -036 -0.34 -0.30 -0.34
-0.40 -043 -049 014 016 0.13 0.a7 018 0.11
-0.28 -0.37 -032 034 025 0.28 -033 -040 -0.39
-0.09 -0.17 -0.10 -0.78 -0.75 -0.74 -0.03 -0.06 -0.09
-0.03 0.00 0.03 -0.58 -0.60 -0.55 -0.54 -0.62 -0.54
-0.65 -0./3 -0.72 -0.07 -0.13 -0.08 -0.03 -0.10 -0.03
-0.60 -0.64 -057 0.06 0.07 0.05 -0.63 -0.66 -0.64
-0.63 -056 -0.65 -0.67 -058 -0.60 0.10 0.14 0.07
-0.53 -051 -044 -039 -045 -0.46 -0.38 -0.48 -0.47
-0.32 -040 -040 -0.28 -0.37 -0.31 -1.04 -1.11 -1.07
-0.32 -043 -0.35 -1.01 -1.14 -1.06 -0.26 -0.39 -0.31
-0.19 -0.32 -0.34 -0.84 -1.04 -0.89 -0.84 -1.00 -0.89
-1.05 -1.18 -1.07 -0.34 -040 -0.32 -0.28 -0.34 -0.33
-091 -0.99 -092 -0.13 -0.24 -0.18 -0.88 -1.00 -0.92
-092 -105 -098 -095 -104 -095 -0.19 -0.25 -0.17

3 3 3 079 -099 -074 -069 -0.90 -0.70 -0.71 -0.87 -0.68
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.19: Conditional RMSE for the @ estimates without exposure control
(3-dimension simple structure, moderate correlation)
37 Points 61 6, 63

6, 6, 6 9% 8 C 9% 8 C 96 86 C

-3 -3 -3 0.74 074 078 062 0.73 077 0.60 0.70 0.72
-3 -3 -2 081 087 085 080 086 084 045 039 041
-3 -2 -3 088 080 082 045 041 039 085 0.79 0.82
-3 -2 -2 0.97 091 093 047 049 046 044 044 0.44
-2 -3 -3 041 041 043 077 076 080 0.74 0.79 0.82
-2 -3 -2 053 049 050096 0.88 091 043 045 045
-2 -2 -3 044 043 043 050 049 041 093 091 0.85
-2 -2 -2 063 051 051 058 049 047 055 051 049
-2 -2 -1 0.63 066 060 057 066 063 043 041 041
-2 -1 -2 062 062 061 046 040 041 0.61 059 0.68
-2 -1 -1 072 072 081 040 038 038 041 041 040
-1 -2 -2 042 041 037 055 053 0.65 058 0.48 0.65
-1 -2 -1 044 040 042 0.67 072 069 040 0.38 0.40
-1 0 -1 048 044 047 047 045 057 052 049 051
-1 0 0 0.61 054 065 040 046 041 035 040 0.40
-1 -1 044 048 049 045 043 041 050 042 045
-1 0 044 036 043 060 061 059 050/ 036 0.35
-1 043 040 042 047 036 043 059 0.65 0.61
041 041 042 037 037 039 041 036 041
045 039 044 043 038 043 0.63 0.60 0.60
036 038 040 0.62 059 051 037 046 041
041 047 045 050 051 045 052 049 0.46
0.57 055 057 046 036 043 043 038 048
048 046 047 048 045 049 058 0.47 0.56
039 041 041 0.79 072 0.77 039 041 041
037 046 042 060 059 0.61 0.60 0.61 0.63
073 079 071 039 041 040 0.38 041 0.35
058 0.64 060 044 042 042 058 0.66 0.63
0.63 068 063 0.62 063 063 048 037 0.37
052 049 053 055 050 055 048 054 0.50
039 050 050 037 045 042 0.88 093 0.91
047 049 050 092 0.87 0.95 047 039 0.46
047 038 046 0.73 076 0.76 0.74 081 0.74
102 09 100 047 049 048 047 047 049
087 079 08 042 038 042 0.89 082 0.82
084 082 081 084 0.78 0.84 0.38 040 043

3 3 3 0.78 068 071 066 0.63 0.70 0.69 0.63 0.66
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.20: Conditional RMSE for the @ estimates with exposure control
(3-dimension simple structure, moderate correlation)
37 Points 61 6, 63

6, 6, 6 9% 8 C 9% 8 C 9 8 C

-3 -3 -3 090 097 084 080 092 080 0.78 092 0.77
-3 -3 -2 107 111 107 102 111 102 047 047 044
-3 -2 -3 101 1.06 099 051 042 040 105 1.05 0.90
-3 -2 -2 114 126 109 051 058 049 050 054 0.45
-2 -3 -3 050 049 054 09 1.03 100 0.95 0.98 0.95
-2 -3 -2 055 0.60 056 1.09 117 112 043 055 048
-2 -2 -3 0.61 057 049 054 048 052 111 116 101
-2 -2 -2 058 0.63 0.61 053 0.60 0.64 052 059 0.57
-2 -2 -1 0.71 067 072 073 069 068 045 048 0.39
-2 -1 -2 0.76 0.67 0.71 043 046 041 0.71 0.68 0.64
-2 -1 -1 082 086 081 040 045 043 044 041 045
-1 -2 -2 046 042 044 064 0.69 0.66 0.70 0.74 0.66
-1 -2 -1 041 045 041 086 0.89 08 042 038 0.39
-1 0 -1 057 053 056 048 054 054 058 055 0.56
-1 0 0 058 061 055 043 043 043 043 039 0.39
-1 -1 049 046 046 048 049 057 052 048 0.57
-1 0 040 046 043 065 063 069 044 045 044
-1 042 042 046 046 045 045 0.67 0.68 0.65
041 042 044 044 037 038 044 040 0.39
045 044 045 052 042 052 061 0.65 0.60
045 047 043 062 062 066 047 042 043
049 046 048 049 047 056 052 046 0.55
0.64 060 070 044 044 045 045 050 045
052 055 054 052 048 053 053 056 0.61
044 046 043 089 0.88 087 040 040 044
047 047 043 0.73 075 0.68 0.69 0.74 0.69
0.76 088 084 039 047 042 0.38 049 0.36
0.73 082 0.71 040 047 042 0.75 0.80 0.75
0.76 0.72 076 0.77 073 0.71 040 043 045
0.64 066 0.66 056 0.65 0.64 052 0.62 0.63
055 064 058 050 0.62 050 112 119 114
053 064 054 109 123 116 050 0.58 0.56
048 060 054 093 117 098 0.93 114 0.99
113 127 115 052 058 056 045 056 0.56
100 110 103 042 052 044 09 1.09 1.00
101 116 108 104 114 1.07 047 055 047

3 3 3 089 111 088 079 104 080 0.84 101 0.82
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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near 64, the bias for 6; is close to 0 and the RMSE is around 0.4. Negative bias and large RMSE
appear when the value of 6, increases and the difference between 6, and 6,, and between 6, and
03, increases. For example, at point (3, 2, 2) in the table, the bias for 6;is around -0.74 and
RMSE for 6;is around 0.79. Meanwhile, positive bias and large RMSE appear when the value
of 6, decreases and the difference between 6, and 6,, and between 6; and 65, increases. At
point (-3, -2, -2), the bias for 6, is about 0.74 and RMSE for 6,is around 0.79. Similar results for
6, can be observed from the three columns in the middle of Table 5.17 and 5.19. When 8, is
around 0, and 6, and 65 is near 8,, the bias and RMSE for 6, is very small. When the value of
6, becomes more extreme and 6; and 65is away from 6,, large bias and RMSE values appear.
Again, similar results can be found for 6; from the three columns on the right side of Table 5.17
and 5.19. As described in Section 5.2.1, this finding is probably due to the Bayesian MAP
estimation method. By comparing the conditional Bias and RMSE in this section with the results
in Section 5.2.3, when 6,, 6,, and 85 are highly correlated, it is easy to observe that the pattern
of these tables are the same, but the magnitude of the bias and RMSE in this section is smaller.
When the correlation among 6;, 8,, and 85 decrease, the prior will only weakly reduce the
difference among 6, 8,, and 85. Therefore, the bias the RMSE values are slightly smaller at
those points where 6; and 6, are away from each other, compared with the condition when 6,
6,, and 65 are highly correlated.

When item exposure control is implemented, similar findings can be observed from Table
5.18 and 5.20. Again, there is nearly no difference between the two p-optimal item pools, and
between the p-optimal item pools and the baseline pool. The results suggest the three item pools
perform similarly in terms of the ability estimation on the 37 @ points. In addition, larger bias

and RMSE also occurs when 6, 6,, and 65 are very large or very small, and when 0’s are away
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from each other. Similar to results under the high correlation condition in Section 5.2.3, when
item exposure control is built in, the magnitude of the bias and RMSE at some extreme points
becomes larger.

In summary, this section present the results for the MCAT with the test specification of three-
dimension simple structure and with moderate correlation among 6, 8,, and 85. The p-optimal
item pools perform similarly as the baseline pool in terms of the accuracy of ability estimation,
but the p-optimal item pools can save over 140 items and have a better item pool usage. When
item exposure control is implemented, the p-optimal item pools still can provide accurate ability
estimation and meanwhile the item exposure rate and item overlap rate can be well controlled.

In general, the findings from this section are similar to the previous, when 6, 8,, and 65 are
highly correlated. A closely comparison between these two sections reveal that the measurement
error in this section is slightly larger. This result is due to the correlation among 64, 6,, and 63.
As explained in Section 5.2.2, the MIRT model estimates all the 6°’s simultaneously by
borrowing information from one to another. When 6, 8,, and 65 are highly correlated, more
information can be borrowed for ability estimation. When the correlation decreases, the amount
of information that can be borrowed can be reduced, and therefore the RMSE increase. In
addition to the accuracy of ability estimation, the pool usage for the two p-optimal item pool in
this section is also slightly better. This is probably because of the pool size. When the
correlation decreases, the pool size decreases as well. A smaller item pool is more likely to be

fully used.
5.2.5 Performance for item pools based on Test Specification 3 (high correlation)

The results of the ability estimates and item pool utilization for the .96-optimal item pool,

the .86-optimal item pool, and the baseline pool based on the three-dimension non-simple
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structure test specification with 8, 8,, and 65 are highly correlated are presented in Table 5.21
and 5.22. The results in Table 5.21 is under the condition that no item exposure control is
implemented; and Table 5.22 is when item exposure control is implemented. In both tables,
there are three values for bias, RMSE and correlation, representing the results for (64, 8,, 63).

Under the condition without item exposure control (see Table 5.21), the p-optimal item pools
and the baseline pool show no bias on the @ estimates. Also, the RMSE are between 0.31 and
0.37, and correlations between estimated 6 and true @ are around 0.94. The average test
information between the .96-optimal item pool and the baseline pool is very similar, but the
information for the .86-optimal item pool is slightly smaller. The amount of information on the
direction of 84, 8,, and 65 (i.e., the value on the diagonal) is about 3.50 for the .96-optimal item
pool and the baseline pool, and about 3.39 for the .86-optimal item pool. These values are over
one unit higher than the values under the three-dimensional non-simple structure case. The
additional information comes from items in Cluster 4 with a = (1,1,1). Because these items
measure all the 8’s, they provide information on the direction of 6;, 6,, and 63, as well as on the
direction of the diagonal in the three dimensional space (see Figure 5.1). For this reason, the off-
diagonal values in the information matrix are no longer zero. The values on the off-diagonal
represent the amount of information on the direction of the 6;- 6, composite, ;- 65 composite,
and 6,- 85 composite. In general, the results suggest that the .96- and .86-optimal item pool can
provide accurate estimation for @, and the level of accuracy is the same as baseline pool, but the
average test information for the .86-optimal item pool is slightly small than the other two.

Table 5.21 also presents the results about item pool usage. Compared with the MCAT based
on Test Specification 1 and 2 in Section 5.2.1 to 5.2.4, similar results can be drawn from Table

5.21. The item pool usage for the .96-optimal item pool is slightly better than the 86-optimal
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Table 5.21: The performance of the .96- and .86-optimal pool and the baseline pool

without exposure control
(3-dimension non-simple structure, high correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.00, 0.00, 0.00) (0.00, 0.00, -0.01) (-0.01, 0.00, 0.00)
RMSE (0.35,0.31, 0.37) (0.35,0.31, 0.37) (0.35,0.31, 0.37)
Correlation (0.94,0.95, 0.93) (0.94,0.95, 0.93) (0.94,0.95, 0.93)
350 1.75 1.75 340 161 1.61 3,52 177 1.77
Average test information [1.75 3.48 1.75] [1.61 3.37 1.61] [1.77 3.49 1.77]
1.75 175 3.501 1161 1.61 3.391 11.77 177 3.52
Overall Pool Usage 28.06 28.69 35.26
Overlap rate 0.14 0.25 0.12
% of overexposed item (r >0.2) 3% 30% 1%
% of underexposed item (r<0.02) 33% 31% 43%

Table 5.22: The performance of the .96- and .86-optimal pool and the baseline pool

with exposure control
(3-dimension non-simple structure, high correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
RMSE (0.37,0.33,0.39) (0.37,0.33,0.39) (0.36,0.32,0.38)
Correlation (0.93,0.94, 0.92) (0.93,0.94, 0.92) (0.93,0.95, 0.93)

294 1.30 1.301 [2.89 130 1.30 3.18 1.61 1.61
Average test information [1.30 2.94 1.30] [1.30 2.89 1.30] [1.61 3.13 1.61]
1.30 130 2.94 1.30 1.30 2.89 1.61 1.61 3.24

Overall Pool Usage 3.64 1.65 8.26
Overlap rate 0.08 0.12 0.07

% of overexposed item (r >0.2) 0% 0% 0%
% of underexposed item (r<0.02) 1% 0% 17%

item pool. And the two p-optimal item pools are much better used than the baseline pool.
When item exposure control is implemented (see Table 5.22), similar results can be observed:
the two p-optimal item pools provide as accurate ability estimates as the baseline pool, and yield

better item pool usage than the baseline pool. Compared with the condition without item
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exposure control, item exposure control only results in 0.01 to 0.02 increase for the RMSE, 0.01
decrease in correlation, and about 0.5 decrease for the average test information. For the item
pool usage, when the item exposure control is implemented, no item is overexposed, and the
percentage of underexposed items and overlapped items are also decreased. The two p-optimal
item pools have been fully used. No item from the .86-optimal item pool is underexposed, and
only 1% of items from 96-optimal item pool are underexposed. The comparison between the
condition with and without item exposure control suggests the item exposure control can
effectively increase the item pool usage and reduce the item exposure rate without obvious loss
on the accuracy of ability estimation.

In addition to the overall pool performance, the conditional bias and RMSE at the 37 (6, 6,
63) points are also calculated. The conditional bias for each @ point is presented in Table 5.23
and 5.24, for the MCAT without and with item exposure control, respectively. Negative bias is
colored in blue and positive bias is in red. Deeper color represents larger bias. The conditional
RMSE is presented in Table 5.25 and 5.26 in the same manner. Small RMSE is colored in green
and large RMSE is colored in red.

Under the condition without item exposure control (see Table 5.23 for bias and 5.25 for
RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool
are quite similar. This finding supports the results of the overall bias and RMSE, and suggests
the p-optimal item pools can provide as accurate ability estimation as the baseline pool at each @
point. Similar to the results from the Test Specification 2 (three-dimension simple structure),
larger bias and RMSE occurs when 64, 8,, and 85 are very large or very small, which is the top
and the bottom of each table. The difference between 6; and 6,, and between 6; and 6, also

affects the estimation accuracy.
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Table 5.23: Conditional Bias for the @ estimates without exposure control
(3-dimension non-simple structure, high correlation)

37 Points 61 6, 63

C .96 .86

-0.15 -0.21

-0.02

C

-0.19 -0.15 -0.05

0.00

-0.14
-2 -2 -3 -002 -002 -010 -0.14 -0.12 -0.19
-2 -2 -2 008 013 011 0.05 010 007 011 0.19 0.14

-0.11

-0.13 -0.13

2 -2 -1
2 -1 -2
2 -1 -1 -0.11 -0.18 -0.18

1 2 -2 0.29

1 2 -1 022 -018 -0.19
1 0 -1 029 039
1 0 0 -0.16 -0.18 -0.20

0o -1 -1 0.24 0.25
0 -1 O

0 0 -1

0 0 O 0.02 -0.01 0.04 0.04 -002 0.00 0.05 -0.03 0.00
0 0 1

0 1 O

0 1 1

1 0 O

1 0 1

1 2 1

1 2 2

2 1 1

2 1 2

2 2 1

2 2 2 -012 -011 -0.14 -0.06 -0.08 -0.09 -0.12 -0.14 -0.17
2 2 3

2 3 2

2 3 3

3 2 2

3 2 3

3 3 2

3 3 3

Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.24: Conditional Bias for the 8 estimates with exposure control
(3-dimension non-simple structure, high correlation)

37 Points 61 6, 63

6, 6, 6 9% 8 C 9% B8 C 9 .8 C
-3 3 -3 044 065 050 038 061 045 045 0.72 0.53
-3 -3 -2 067 081 065 066 080 066 -012 -0.01 -0.13
-3 -2 -3 075 088 071 -023 -012 -026 0.7¢r 086 0.74
-3 -2 -2 09 09 082 -003 001 -010 007 0.13 0.05
-2 -3 -3 -020 -0.09 -020 0.65 0./78 064 0.70 0.79 0.64
-2 -3 -2 002 -001 -005 089 091 084 003 0.03 0.00
-2 -2 -3 009 014 0.08 -001 006 -0.03 0.88 1.01 0.90
2 -2 -2 022 032 023 018 026 019 025 030 0.23
-2 -2 -1 046 051 039 047 052 042 -031 -030 -0.34
-2 -1 -2 052 053 046 -043 -043 -050 052 054 047
-2 -1 -1,0v2 071 074 -017 -023 -0.17 -0.06 -0.14 -0.08
-1 -2 -2 -037 -033 -042 047 053 041 044 053 0.39
-1 -2 -1 -020 -0.18 -0.11 0.69 0.72 0.76 -0.20 -0.14 -0.14
-1 0 -1 038 041 039 -056 -054 -056 038 036 0.33
-1 0 0 061 057 054 -027 -030 -0.34 -023 -0.22 -0.24
-1 -1 -050 -048 -049 035 038 035 029 031 0.27
-1 0 -032 -024 -029 061 064 061 -025 -0.28 -0.31
-1 -021 -0.22 -028 -0.26 -0.29 -0.30 057 054 0.57
-0.03 0.00 -0.01 -0.02 0.00 -0.01 -0.01 0.01 0.00
0.19 018 020 0.27 021 0.25 -053 -0.62 -0.61
024 031 030 -0.64 -059 -059 026 030 0.30
051 047 051 -034 -039 -034 -0.28 -0.33 -0.29
-0.60 -0.63 -057 028 026 030 0.19 018 0.20
-0.40 -0.39 -031 051 055 060 -039 -0.38 -0.32
0.11 014 0.6  -0.77 -0.75 -0.7/5 0.08 0.10 0.10
0.38 033 037 -047 -052 -048 -0.46 -0.50 -0.46
-0./5 -0./8 -0./5 017 0.12 0.17 0.10 0.03 0.12
-049 -054 -046 046 042 048 -049 -055 -0.44
-0.43 -051 -046 -046 -052 -048 035 029 0.32
-0.25 -0.32 -0.23 -0.20 -0.30 -0.18 -0.29 -0.35 -0.22
-0.05 -0.16 -0.11 0.04 -0.10 0.01 -0.86 -1.04 -0.92
0.01 -0.11 -0.03 | -0.88 -1.00 -0.91 -0.03 -0.12 -0.05
0.14 0.11 0.11 -0.67 -0.77 -0.75 -0.67 -0.81 -0.76
-0.86 -0.99 -0.88 0.07 -0.03 0.07 -0.07 -0.17 -0.06
-0.7/0 091 -0./7 029 0.09 0.23 -0.71 -091 -0.78
-0.66 -0.77 -069 -0.66 -0.75 -0.66 0.11 0.04 0.16

3 3 3 059 -059 -057 -053 -055 -051 -0.62 -0.63 -0.61
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.25: Conditional RMSE for the @ estimates without exposure control
(3-dimension non-simple structure, high correlation)
37 Points 61 6, 63

6, 6, 6 9% 8 C 9% 8 C 9 8 C

-3 -3 -3 048 050 037 042 042 032 051 050 0.39
-3 -3 -2 063 059 051 064 059 051 031 034 042
-3 -2 -3 0.60 0.67 056 043 044 051 0.66 0.67 0.56
-3 -2 -2 0.78 080 0.79 031 031 031 024 029 0.28
-2 -3 -3 041 039 047 059 057 050 056 061 0.54
-2 -3 -2 029 029 028 075 077 0.74 029 031 0.28
-2 -2 -3 025 022 029 028 024 033 0.77 079 0.78
-2 -2 -2 029 030 029 029 026 024 030 032 031
-2 -2 -1 038 043 042 037 042 042 053 050 0.46
-2 -1 -2 047 046 049 059 0.61 055 048 047 0.50
-2 -1 -1 0.68 066 068 033 035 035 027 030 0.34
-1 -2 -2 052 050 050 043 047 047 040 047 045
-1 -2 -1 032 032 031 068 067 073 033 031 0.34
-1 0 -1 047 039 044 059 065 059 041 0.39 0.46
-1 0 0 0.62 062 063 036 037 038 031 032 0.33
-1 -1 054 061 055 042 035 041 035 0.34 0.37
-1 0 041 038 038 063 066 062 0.37 035 0.38
-1 032 034 032 036 037 036 056 056 0.58
023 023 026 022 023 024 024 025 0.24
029 032 035 035 036 0.38 0.60 0.60 0.58
036 035 042 0.67 065 064 0.36 037 0.36
054 057 050 043 039 041 040 0.38 0.38
055 058 058 042 039 035 035 034 0.29
040 040 045 062 059 059 039 044 0.38
033 029 032 068 0.72 068 0.32 030 0.32
051 049 049 052 047 044 047 047 041
0.68 069 070 033 034 032 027 032 028
050 051 048 057 056 056 049 055 051
043 040 041 042 042 041 048 049 050
025 028 025 024 023 026 031 0.27 0.29
024 025 029 027 027 034 082 0.76 0.77
029 033 030 072 079 0.79 031 0.29 0.28
034 036 045 0.65 054 054 0.63 0.56 0.56
0.74 079 0.79 031 030 0.29 0.27 029 0.28
0.67 061 057 041 045 052 0.64 0.66 0.58
0.62 057 050 061 055 050 031 035 045

3 3 3 051 046 037 044 041 031 053 050 0.36
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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Table 5.26: Conditional RMSE for the @ estimates with exposure control
(3-dimension non-simple structure, high correlation)
37 Points 61 6, 63

6, 6, 6 9% 8 C 9% 8 C 9 86 C

-3 -3 -3 059 080 059 054 0.76 056 059 0.84 0.63
-3 -3 -2 075 091 0.74 0.74 090 0.75 0.38 0.38 0.38
-3 -2 -3 082 099 078 041 048 042 0.84 098 0.82
-3 -2 -2 096 1.02 0.89 035 037 037 035 043 0.34
-2 -3 -3 042 038 041 0.74 085 073 0.78 086 0.73
-2 -3 -2 036 039 036 097 098 090 041 0.39 0.30
-2 -2 -3 036 040 038 032 038 035 094 1.08 0.96
-2 -2 -2 036 048 037 035 042 033 042 045 0.36
-2 -2 -1 055 062 050 056 062 052 045 049 0.46
-2 -1 -2 061 061 055 053 053 058 0.60 0.64 0.54
-2 -1 -1 0.78 078 079 035 041 031 035 034 0.28
-1 -2 -2 050 047 053 057 0.63 050 055 0.61 0.49
-1 -2 -1 034 040 027 075 080 080 0.35 039 0.32
-1 0 -1 049 052 046 064 062 0.60 049 048 043
-1 0 0 0.68 066 060 038 044 042 0.38 040 0.35
-1 -1 058 059 055 046 051 043 042 045 0.39
-1 0 046 038 039 069 071 066 040 040 0.40
-1 037 039 038 039 043 040 0.63 0.63 0.63
030 032 023 030 031 023 032 033 0.26
039 034 036 041 034 0.38 0.60 0.68 0.66
040 044 039 0.71 066 065 041 044 040
059 057 059 044 048 045 041 043 042
0.66 070 063 040 039 041 035 034 0.33
052 049 041 059 062 0.66 051 048 0.44
030 038 029 082 083 079 031 036 0.27
054 046 049 060 0.60 056 058 059 0.55
081 084 080 035 034 032 035 035 0.29
058 0.62 054 055 053 056 058 0.63 0.54
053 059 056 056 059 058 048 044 048
039 044 038 037 043 034 045 048 0.39
037 037 036 035 037 032 092 110 0.96
040 043 032 095 1.09 0.97 037 041 0.36
041 043 032 0.77/7 087 080 0.77 091 0.82
092 106 094 037 036 032 038 039 0.34
079 099 082 047 041 038 0.80 099 0.84
0.78 0.88 0.77 0.78 0.87 0.74 043 042 0.35

3 3 3 069 076 066 064 073 0.60 0.73 0.79 0.69
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool
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When item exposure control is implemented, similar findings can be observed from Table
5.24 and 5.26. The results suggest the three item pools perform similarly in terms of the ability
estimation on the 37 @ points. In addition, larger bias and RMSE also occurs when 6, 6,, and
05 are very large or very small, and when 8’s are away from each other. A comparison between
the condition with and without item exposure control shows, when item exposure control is built
in, the magnitude of the bias and RMSE at some extreme points becomes larger. The reason
why the item exposure control increases the estimation error is explained in previous sections.

In summary, this section present the results for the MCAT with the test specification of three-
dimension non-simple structure and with high correlation among 6,, 6, and 85. In general, the
p-optimal item pools perform similarly as the baseline pool in terms of both overall and
conditional accuracy of ability estimation, but the p-optimal item pools can save over 100 items
and have a better item pool usage. When item exposure control is implemented, the item
exposure rate and item overlap rate can be controlled very well. The p-optimal item pools still
can provide reliable ability estimation with a relatively small pool size.

A comparison for the results between Test Specification 2 and 3 suggests @ can be more
accurately estimated under the condition of three-dimension non-simple structure. Under the
condition of simple structure, the RMSE value is from 0.42 to 0.47 for 6,, 6,, and 65, and the
correlation is about 0.90; under the condition of non-simple structure, the RMSE is less than 0.4
and the correlation is about 0.94. The increase in the estimation accuracy is primary due to the
items with @ = (1,1,1). Because those items provide more information than the items that only
measure one @, there is more information available for the ability estimation. An increase in
information will result in a decrease on the measurement error. Another possible explanation for

the estimation accuracy is the pool size. The item pools with non-simple structure have about
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40-item more than the item pools with simple structure. A larger item pool is expected to yield

more accurate ability estimation, because there are more items available for selection.
5.2.6 Performance for item pools based on Test Specification 3 (moderate correlation)

The results for the MCAT based on the test specification of three-dimension non-simple
structure, and with 6;, 6,, and 6; moderately correlated, are presented in Table 5.27 and 5.28.
The results in Table 5.27 are under the condition without item exposure control; and Table 5.22
is when item exposure control is implemented. In both tables, there are three values for bias,
RMSE and correlation, representing the results for (64, 8,, 63).

Under the condition without item exposure control (see Table 5.27), the p-optimal item pools
and the baseline pool show no bias on the @ estimates. Also, the RMSE are between 0.42 and
0.46, and correlations between estimated @ and true @ are around 0.89. The average test
information between the .96-optimal item pool and the baseline pool is very similar, but the
information for the .86-optimal item pool is slightly smaller. The amount of information on the
direction of 8, 8,, and 65 (i.e., the value on the diagonal) is about 3.49 for the .96-optimal item
pool and the baseline pool, and about 3.38 for the .86-optimal item pool. In general, the results
suggest that the .96- and .86-optimal item pool can provide accurate estimation for 8, and the
level of accuracy is the same as baseline pool, but the average test information for the .86-
optimal item pool is slightly small than the other two. Table 5.27 also presents the results about
item pool usage. Compared with the MCAT based on Test Specification 3 with high correlation,
similar results can be drawn from Table 5.27. The item pool usage for the .96-optimal item pool
is slightly better than the .86-optimal item pool. And the two p-optimal item pools are much

better used than the baseline pool.
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Table 5.27: The performance of the .96- and .86-optimal pool and the baseline pool

without exposure control
(3-dimension non-simple structure, moderate correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.01, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
RMSE (0.46, 0.43, 0.42) (0.46, 0.43, 0.42) (0.46, 0.43, 0.42)
Correlation (0.89, 0.90, 0.90) (0.89, 0.90, 0.90) (0.89, 0.90, 0.91)
349 174 1.74 3.39 1.60 1.60 351 176 1.76
Average test information [1.74 3.48 1.74] [1.60 3.38 1.60] [1.76 3.49 1.76]
1.74 1.74 348 1.60 1.60 3.38 1.76 1.76 3.50
Overall Pool Usage 28.82 28.14 40.25
Overlap rate 0.16 0.27 0.13
% of overexposed item (r >0.2) 12% 32% 2%
% of underexposed item (r<0.02) 33% 29% 45%

Table 5.28: The performance of the .96- and .86-optimal pool and the baseline pool
with exposure control
(3-dimension non-simple structure, moderate correlation)

Statistics .96-optimal pool .86-optimal pool Baseline pool
Bias (0.00, -0.01, 0.00) (0.00, 0.00, 0.00) (-0.01, 0.00, 0.00)
RMSE (0.48,0.44, 0.44) (0.48, 0.45, 0.43) (0.47,0.44,0.43)
Correlation (0.88, 0.89, 0.90) (0.88, 0.89, 0.90) (0.88, 0.89, 0.90)

296 1.33 1.33 292 1.33 1.33 3.15 1.60 1.60
Average test information [1.33 2.96 1.33] [1.33 2.93 1.33] [1.60 3.09 1.60]
133 133 2097 133 133 294 1.60 1.60 3.23

Overall Pool Usage 3.09 1.12 9.02
Overlap rate 0.09 12% 0.07

% of overexposed item (r >0.2) 0% 0% 0%
% of underexposed item (r<0.02) 0% 0% 21%

When item exposure control is implemented (see Table 5.28), similar results can be observed:
the two p-optimal item pools provide as accurate ability estimates as the baseline pool, and yield
better item pool usage than the baseline pool. Compared with the condition without item

exposure control, item exposure control only results in 0.01 to 0.02 increase in the RMSE, 0.01
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decrease in correlation, and about 0.5 decrease in the average test information. For the item pool
usage, when the item exposure control is implemented, no item is overexposed, and the
percentage of underexposed item and overlapped item are also decreased. The two p-optimal
item pools have been fully used, and no item from the two p-optimal item pools is underexposed.
The comparison between the condition with and without item exposure control suggests the item
exposure control can effectively increase the item pool usage and reduce the item exposure rate
without obvious loss on the accuracy of ability estimation.

In addition to the overall pool performance, the conditional bias and RMSE at 37 (6, 65, 853)
points are also calculated. The conditional bias for each 6 point is presented in Table 5.29 and
5.30, for the MCAT without and with exposure control, respectively. In each table, the
conditional bias is color coded based on the value. Negative bias is colored in blue and positive
bias is in red. Deeper color represents larger bias. The conditional RMSE is presented in Figure
5.31 and 5.32 in the same manner. Small RMSE is colored in green and large RMSE is colored
in red.

Under the condition without item exposure control (see Table 5.29 for bias and 5.31 for
RMSE), the conditional bias and RMSE for the .96-, .86-optimal item pool, and the baseline pool
are quite similar. This finding supports the results for the overall bias and RMSE, and also
suggests the p-optimal item pools can provide as accurate ability estimation as the baseline pool
at each @ point. Similar to the results in previous sections, larger bias and RMSE occurs when
0., 6,, and 65 are very large or very small, which is the top and the bottom of each table. The
difference between 6, and 6,, and between 6, and 65, also affects the estimation accuracy.

When item exposure control is implemented, similar findings can be observed from Table

5.30 and 5.32. The results suggest the three item pools perform similarly in terms of the ability
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Table 5.29: Conditional Bias for the 8 estimates without exposure control
(3-dimension non-simple structure, moderate correlation)

37 Points 61 ) 65

6, 6, 6 9 8 C 9% B8 C 9 8 C
-3 -3 -3 058 054 036 048 045 031 051 043 031
-3 3 -2 065 061 054 066 061 047 -0.03 -0.13 -0.25
-3 -2 -3 065 054 049 -010 -0.10 -0.27 059 055 043
-3 -2 -2 0/ 072 066 001 003 004 0.03 -001 -0.05
-2 -3 -3 003 000 -018 050 056 038 056 050 041
-2 -3 -2 008 001 003, 066 065 063 0.00 -0.01 -0.09
-2 -2 -3 012 010 -0.03 -0.01 0.00 -0.06 @ 070 0.72 0.64
-2 -2 -2 016 013 016 016 017 0.11 0.20 0.08 0.13
-2 -2 -1 029 033 030 033 030 032 -039 -037 -0.39
-2 -1 -2 039 03 031 -031 -036 -0.33 0.38 038 0.31
-2 -1 -1]05 053 050 -016 -0.07 -0.06 -0.14 -0.14 -0.12
-1 -2 -2 -022 -028 -030 030 037 027 028 034 0.28
-1 -2 -1 -012 -0.08 -0.08 054 050 050 -019 -0.19 -0.13
-1 0 -1 020 0.18 024 -040 -043 -0.39 024 023 024
-1 0 0 044 037 042 -015 -015 -0.19 -0.22 -0.17 -0.15
-1 -1 037 -034 -034 023 024 020 022 026 0.23
-1 0 -013 -0.14 -0.14 046 046 045 -021 -0.27 -0.28
-1 -012 -025 -0.17 -0.22 -0.23 -0.24 044 048 045
0.00 0.02 -001 0.01 0.00 -0.03 0.03 -0.02 -0.02
0.17 019 021 021 023 0.17 [-051 -046 -0.44
0.19 012 0.11 -044 -048 -046 025 0.19 0.22
0.27 033 030 -019 -0.24 -0.20 -0.23 -0.21 -0.26
-0.40 -042 -046 019 015 0.11 0.15 0.16 0.18
-0.25 -025 -021 040 040 044 -034 -029 -0.27
0.11 0.14 0.08 052 -049 -051 020 0.17 0.20
026 026 028 -029 -037 -029 -0.23 -0.37 -0.29
-0.55 -050 -056 0.09 007 0.07 0.08 012 0.12
-042 -032 -031 035 034 034 -036 -033 -0.34
-0.34 -0.38 -0.38 -040 -0.34 -041 0.37 035 0.35
-0.12 -0.15 -0.16 -0.14 -0.15 -0.11 -0.06 -0.16 -0.10
-0.01 -0.08 0.03 0.03 0.03 0.10 -0.65 -0.64 -0.61
-0.01 -0.08 -0.01 ' -0.63 -0.66 -0.62 0.09 0.03 0.13
0.05 0.02 0.15 -056 -0.54 -0.37 -0.55 -0.50 -0.37
-0.61 -0./5 -0.64 -0.03 -0.04 0.04 0.01 0.00 o0.07
-0.53 -0.67 -050 0.11 0.05 0.22 -0.53 -0.63 -0.45
-0.61 -0.62 -051 -0.59 -0.62 -0.46 0.13 0.12 0.23

3 3 3 -051 -053 -0.38 -047 -048 -0.22 -0.43 -0.43 -0.20
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool

W W WMNDNMMNMNDMNMNDMNMNNMNMNRPEPRPRPPRPPEPOOOOOODO
W NN WWMNMNDMNMNDMNRPEFPEFEPNNMNOOPRL,PELPOODO
NN WONDNWNDNWLWNEFENPFPFDNPFP PO OPRPO
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Table 5.30: Conditional Bias for the 8 estimates with exposure control
(3-dimension non-simple structure, moderate correlation)

37 Points 61 ) 65

6, 6, 6 9% 8 C 9% 8 C 9 .86 C
-3 -3 -3 057 077 064 054 069 052 053 070 051
-3 3 -2 080 08 072 077 083 073 -012 -0.03 -0.15
-3 -2 31074 08 0.73 -007 -004 -007 068 081 0.67
-3 -2 -2 087 097 084 008 013 0.17 0.05 0.15 0.09
-2 -3 -3 004 008 005 0/0 079 070 066 0.7/ 0.66
-2 -3 -2 016 024 019 087 09 085 011 0.16 0.04
-2 -2 -3 025 024 015 012 021 006 092 101 0.76
-2 -2 -2 031 03 025 025 037 025 021 031 0.23
-2 -2 -1 044 051 042 049 053 046 -025 -0.26 -0.28
-2 -1 -2 050 049 047 -029 -022 -029 046 046 044
-2 -1 -1]05 066 059 -008 -0.08 -0.06 -0.09 -0.07 -0.09
-1 -2 -2 -023 -022 -015 043 044 043 047 043 0.39
-1 -2 -1 -001 0.00 -0.06 062 067 058 -012 -0.03 -0.09
-1 0 -1 029 029 025 -041 -041 -042 034 032 0.26
-1 0 0 042 049 049 -017 -0.13 -0.16 -0.19 -0.13 -0.18
-1 -1 -032 -031 -027 031 027 028 031 030 0.25
-1 0 -020 -0.10 -0.18 047 047 053 -021 -0.24 -0.17
-1 -022 026 -015 -0.22 -029 -024 049 053 049
-0.02 003 001 000 001 0.01 -004 0.00 0.03
027 022 014 024 025 030 -049 -042 -045
0.17 019 0.21 -047 -047 -053 022 021 0.25
033 041 030 -032 -029 -029 -0.36 -0.21 -0.31
-0.44 -044 -046 022 017 023 022 022 0.22
-0.32 -029 -034 033 041 039 -036 -0.30 -0.33
0.05 0.03 0.06 -056 -0.69 -0.61 0.19 0.07 0.13
022 012 021 -043 -047 -044 -040 -050 -0.42
-0.64 -063 -060 0.02 008 0.08 0.07 0.04 0.10
-0.47 -054 -045 022 020 025 -046 -059 -0.43
-051 -048 -046 -045 -056 -047 024 0.26 0.29
-0.32 -043 -033 -0.28 -0.28 -0.22 -0.23 -0.35 -0.27
-0.18 -0.26 -0.14 -0.11 -0.22 -0.07 | -0.87 -0.98 -0.91
-0.15 -0.27 -0.11 ' -0.86 -1.03 -0.86 -0.11 -0.19 -0.05
-0.02 -0.05 -0.06 -0.69 -0.80 -0.78 -0.71 -0.80 -0.77
-0.81 -1.01 -0.89 -0.03 -0.26 -0.16 -0.04 -0.19 -0.13
-0./8 -0.89 -081 0.02 -0.11 -0.03 -0.73 -0.85 -0.79
-0.72 -093 -0.76 -0.70 -0.88 -0.81 0.12 -0.03 -0.05

3 3 3 -061 -077 -070 -056 -0.71 -0.66 -0.56 -0.68 -0.66
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool

W W WMNDNMMNMNDMNMNDMNMNNMNMNRPEPRPRPPRPPEPOOOOOODO
W NN WWMNMNDMNMNDMNRPEFPEFEPNNMNOOPRL,PELPOODO
NN WONDNWNDNWLWNEFENPFPFDNPFP PO OPRPO
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Table 5.31: Conditional RMSE for the @ estimates without exposure control
(3-dimension non-simple structure, moderate correlation)
37 Points 61 6, 63

6, 6, 6 9% 8 C 9% 8 C 9 8 C

-3 -3 -3 0.68 064 050 0.60 058 046 0.63 054 045
-3 -3 -2 0.74 0.68 0.64 0.72 0.68 057 032 031 040
-3 -2 -3 0.74 063 060 031 035 044 0.67 0.63 0.56
-3 -2 -2 083 079 075 028 032 029 0.27 031 0.29
-2 -3 -3 034 030 041 0.62 066 050 0.66 059 0.52
-2 -3 -2 037 033 033 073 074 0.72 032 035 0.34
-2 -2 -3 031 035 035 030 029 030 0.78 0.78 0.71
-2 -2 -2 041 035 034 037 036 034 036 036 0.34
-2 -2 -1 045 047 045 041 042 044 049 045 048
-2 -1 -2 052 048 045 040 049 044 048 049 043
-2 -1 -1 0.61 063 059 031 034 029 033 035 0.34
-1 -2 -2 042 041 045 041 050 041 040 049 043
-1 -2 -1 033 034 030 0.62 059 058 037 034 0.32
-1 0 -1 038 039 036 050 053 047 039 0.38 0.38
-1 0 0 053 048 053 033 032 036 0.36 030 0.34
-1 -1 050 046 044 038 042 040 0.39 0.38 0.38
-1 0 035 035 034 055 055 055 0.36 040 041
-1 038 039 036 036 038 040 053 057 054
028 032 032 030 029 031 027 030 031
034 038 035 035 037 035 059 054 053
034 034 037 054 056 055 039 036 0.37
044 044 044 038 038 0.37 036 035 0.38
051 054 055 037 034 028 034 035 0.33
039 040 037 048 048 056 047 042 0.38
035 035 035 061 059 061 035 037 0.36
042 041 044 042 049 040 0.38 049 043
0.62 058 066 032 035 031 030 032 0.34
051 048 048 048 046 048 047 048 045
048 050 050 053 048 053 049 048 045
037 041 039 033 039 033 034 035 0.33
033 032 038 036 037 032 071 0.69 0.68
036 035 034 070 074 0.68 0.30 031 0.34
036 034 037 063 061 048 0.64 0.58 0.50
0.67 081 0.70 0.33 032 0.33 0.33 036 0.34
063 074 061 031 033 041 0.64 0.70 0.53
0.71 0.70 0.60 0.65 0.70 057 0.36 0.34 0.40

3 3 3 065 065 052 061 0.60 037 057 055 0.37
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool

W W WMNDMNMDMNMNDNMNMNDNMNMNNMNMNRPEPFRPRPPRPPEPOOOOOODO
W NN WWPNMNDNDNPEFPEPNMNNMNOOPRPPEPOODO
N WONWNWNEFEFNEFEFNPFPPOPREPROPRLO
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Table 5.32: Conditional RMSE for the @ estimates with exposure control
(3-dimension non-simple structure, moderate correlation)
37 Points 61 6, 63

6, 6, 6 9% 8 C 9% 8 C 9 8 C

-3 -3 -3 069 088 073 065 082 065 0.64 0.82 0.63
-3 -3 -2 092 09 085 0.88 095 0.82 048 041 043
-3 -2 -3 083 091 082 043 040 040 0.79 091 0.76
-3 -2 -2 095 106 093 035 040 0.38 040 043 0.36
-2 -3 -3 035 044 033 081 090 0.78 0.77 0.89 0.73
-2 -3 -2 045 045 040 095 106 0.93 041 0.48  0.36
-2 -2 -3 049 048 037 041 041 033 099 108 0.84
-2 -2 -2 051 054 047 047 054 043 044 051 043
-2 -2 -1 058 062 056 059 063 057 044 043 042
-2 -1 -2 0.61 062 059 047 044 047 0.60 0.58 0.52
-2 -1 -1 069 075 068 036 038 033 032 038 0.32
-1 -2 -2 044 043 042 058 055 053 059 056 051
-1 -2 -1 036 034 035 069 075 066 0.36 038 0.33
-1 0 -1 048 042 042 054 052 051 049 048 0.40
-1 0 0 054 061 056 039 037 035 038 035 0.35
-1 -1 049 049 045 043 044 041 045 046 041
-1 0 040 038 038 060 059 063 039 041 0.36
-1 041 042 036 039 045 043 057 0.62 0.60
039 035 038 033 030 029 032 031 0.33
041 041 038 040 044 043 057 052 054
037 039 038 059 058 062 036 039 0.39
047 052 043 045 044 040 049 042 043
054 055 056 040 034 038 0.39 040 0.37
048 046 047 047 053 054 050 046 042
038 035 030 0.67 078 071 043 036 0.36
046 041 038 055 0.60 055 053 0.61 0.53
0.74 073 069 035 039 036 034 034 0.34
059 066 058 041 042 044 058 0.71 0.56
0.61 063 058 054 067 059 042 046 0.46
047 058 048 046 048 040 043 051 0.44
046 050 036 041 049 034 096 1.06 0.97
048 049 037 094 111 093 044 0.39 0.35
040 043 036 0.79 089 087 0.81 090 0.86
090 1.09 097 040 048 041 040 046 0.39
091 100 087 044 043 033 0.86 096 0.87
0.83 1.05 0.85 0.80 0.97 0.88 043 045 0.40

3 3 3 071 089 080 066 080 0.76 0.67 0.79 0.75
Note: .96 represents .96-optimal pool; .86 represents .86-optimal pool; C represents baseline pool

W W WMNDMNMDMNMNDNMNMNDNMNMNNMNMNRPEPFRPRPPRPPEPOOOOOODO
W NN WWPNMNDNDNPEFPEPNMNNMNOOPRPPEPOODO
N WONWNWNEFEFNEFEFNPFPPOPREPROPRLO

114



estimation on the 37 @ points. In addition, larger bias and RMSE also occurs when 64, 6,, and
05 are very large or very small, and when 8’s are away from each other. A comparison between
the condition with and without item exposure control shows, when item exposure control is built
in, the magnitude of the bias and RMSE at some extreme points becomes larger. The reason
why the item exposure control increases the estimation error is explained in the previous sections.

In summary, this section presents the results for the MCAT with the test specification of
three-dimension non-simple structure and with moderate correlation between 6, 6,, and 3. In
general, the p-optimal item pools perform similarly as the baseline pool in terms of both overall
and conditional accuracy of ability estimation, but the p-optimal item pools can save over 100
items and have a better item pool usage. When item exposure control is implemented, the item
exposure rate and item overlap rate can be controlled very well. The p-optimal item pools still
can provide reliable ability estimation with a relatively small pool size.

A comparison between the high correlation condition and moderate correlation for Test
Specification 3 suggests that, the measurement error significantly increases as the correlation
among dimensions decreases. The RMSE increases about one unit, and the correlation decreases
about 0.5. One possible explanation is that, when the correlation decreases, the amount of
information that can be borrowed among each 8 reduces, and thus the estimation accuracy
decreases. Although the measurement error for the Test Specification 3 with moderate
correlation is large, it is still smaller than the error for the Test Specification 2 with moderate
correlation. When 64, 8,, and 65 are moderately correlated, adding the cluster of items with
a = (1,1,1) decreases the RMSE by 0.5 and increase the correlation by 0.3 on average.
Therefore, item pools with non-simples structure characteristic yield more accurate ability

estimation than the item pools with simple structure.

115



Chapter 6  Discussion and Conclusion

In this chapter, the simulation results and their implications are discussed. Section 6.1 first
summarizes the findings from the simulation study and addresses the research questions. Section
6.2 presents the discussion of results. The implications for item pool development and
management are then described in Section 6.3. Finally, the limitations and suggestions for the

future research are discussed in Section 6.4

6.1 Summary of Results

This study aimed to generalize the p-optimal item pool design method (Reckase, 2003 & 2007)
to multidimensional CAT (MCAT). The reason why the p-optimal item pool is “p-optimal” is
because the item pool design is specifically tailored to the adaptive test. And because of this, no
single p-optimal item pool is universally p-optimal. The characteristics of the p-optimal item
pool are determined by a number of factors such as the examinee population and the algorithms
for the adaptive test. Therefore, this study not only designs p-optimal item pools for MCAT, but
also examines how the p-optimal item pool is affected by the test specifications, item exposure
control, correlation among dimensions, and bin sizes. The results based on a simulation study
are summarized below.

A total of 24 p-optimal item pools were designed and then developed in this study. Generally
speaking, the item difficulty (i.e., the MDIFF value) was symmetrically distributed with more
items located on the middle of the MDIFF scale, and fewer items located on each side. The
standard deviation of the MDIFF value was 1.5 to 2.3 times larger than the standard deviation of
the target examinee population and the distribution of the MDIFF value was flatter than a

standard normal distribution.
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The performance of the MCAT using the 24 p-optimal item pools was evaluated by
comparison with the MCAT using baseline pools through a simulation study. The results
showed the MCAT using the p-optimal item pools and the MCAT using the baseline pools
performed very similarly in terms of the ability estimation accuracy, but the pool size for the p-
optimal item pools was more than 100-item smaller than the baseline pools. In addition, the item
pool usage for all the p-optimal item pools was better than the baseline pools.

Specifically, when bin size increased from 0.4 to 0.8, item pool size decreased by 40% on
average. Bin size also determined the how much information the best available item in the item
pool could provide for ability estimation. A bin size of 0.4 implies the best available item can
provide at least 96% of the maximum possible information, and therefore the item pool is called
the .96-optimal item pool. Similarly, a bin size of 0.8 implies a .86-optimal item pool. This is
the reason why the average test information yielded for the .86-optimal item pools was smaller
than the .96-optimal item pools in the simulation study. Even though the pool size and the
average test information for the .86-optimal item pools were smaller, the MCAT using the two
types of item pools performed very similar in terms of the accuracy in ability estimation. Similar
findings were observed for a unidimensional CAT in Reckase (2010). Because of the small pool
size, the item overexposure rate and the item overlap rage for the .86-optimal item pools was
larger than the .96-optimal item pools.

The 24 p-optimal item pools were designed based on three test specifications. The pool size
for the two-dimension simple structure condition and three-dimension simple structure condition
are very similar. For the two-dimensional case, half of the items in the item pool measured 6,
and another half measured 6,; For the three-dimensional case, one third of items in the item pool

measured each of the three 8°s. Therefore, when the test length was the same, the pool size for
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the p-optimal item pools did change if a cluster of items measuring a different ability was added
to the current test. However, when test specification changed from simple structure to non-
simple structure, the pool size for the p-optimal item pools increased by about 9%. For the three-
dimension non-simple structure case, the proportion of items measuring three ability was slightly
larger than items measuring only one ability. The measurement error for ability estimation
yielded from the p-optimal item pools were all within the acceptable range for these three test
specifications. The error in the two-dimension simple structure condition was slightly smaller
than the three-dimension simple structure condition. This was due to one more @ is estimated in
the three dimensional test, but overall test length was the same for the two tests. The error in the
three-dimension non-simple structure condition was also smaller than simple structure condition,
because the items measuring three ability provided more information for @ estimation.

A unique factor that influenced the functioning of the MCAT is the correlation among 8’s. If
ability were highly correlated, the size of the p-optimal item pool is about 10% larger than the
condition when ability were moderately correlated. Those 10% of items were mainly located on
each side of the MDIFF scale, with relatively high or low item difficulty. That is to say, for a
MCAT measuring highly correlated ability, a larger number of difficult items and easy items
should be created for the p-optimal item pool. The ability estimation accuracy in the high
correlation condition was better than the moderate correlation condition. Similar results can be
found for multidimensional linear test and MCAT in Liu (2007), Segall (2005), Yao (2010), and
Yao and Boughton (2007).

When item exposure control was built into the item selection process, the most informative
items will not be too frequently selected. In this situation, to ensure the ability estimation

accuracy for the adaptive test, another equally informative item should be available in the item
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pool. If item exposure control is necessary for a MCAT, the p-optimal item pool design can take
the item exposure rate into account and adjust the number of item within each MDIFF-bin. The
goal is to make sure the there is sufficient number of item in the p-optimal item pool to ensure
both ability estimation accuracy and test security. Based on the simulation results, when the bin
size was 0.4, item exposure control had nearly no influence on the pool size. When the bin size
was 0.8, about 20% more items were needed if item exposure control was implemented. These
20% of items were all located on the middle of the MDIFF scale with item difficulty close to 0.
If item exposure control was implemented, the measurement error yielded from all p-optimal
item pools only slightly decreased. This finding suggests the p-optimal item pool design is able

to balance the ability estimation accuracy and the test security.

6.2 Discussion of Results

The p-optimal item pools produced in this study was a union of items that meet all the
predetermined psychometrical specifications, and that target to a predetermined examinee
population. van der Linen (1999) provided three criteria for an optimal item pool: 1) an optimal
item pool should be sufficiently large to allow several thousand overlapping subtests to be drawn
from its items; 2) an optimal item pool should consist of items spanning the entire range of item
difficulty relative to the population of interest; and 3) an optimal item pool should consist of an
appropriate mix of high and low discriminating items to lower the item creation cost while
meeting the needs of the ability estimation accuracy.

The first criterion addresses the issues of the item pool size. The findings from the simulation
study suggest that the size of the p-optimal item pools was affected by a number of factors. For
different MCAT programs, the lower limit of optimal item pool size is different. For example,

Stocking (1994) recommended the item pool size for a high-stakes CAT should be
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approximately 12 times the test length. A longer CAT requires a larger item pool. Also, for
high-stakes CAT, item exposure rate is an important issue for test validity and security. When
item exposure control is implemented, the item pool should consist of a larger number of items
in order to prevent items from being overexposed to examinees. Because a larger item pool
tends to solve all these issues, many adaptive testing programs usually develop a very large item
pool for operational use. However, a larger item pool does not necessarily increase the ability
estimation accuracy. Instead, the pool usage for very large item pool might be undesirable. In
this study, for example, the three baseline pools consisted of more than 100 items than the
corresponding p-optimal item pools. According to the simulation results, baseline pools yielded
similar level of measurement accuracy as the p-optimal item pools. When item exposure control
is not implemented, about half of the items in the baseline pools had exposure rate less than 2%;
when item exposure control is implemented, still 20% of items were underexposed. Those
underexposed items were wasted because they were very unlikely to be selected. Therefore, item
pool design should seek a balance between the demands for a larger item pool, and the potential
risk of items being wasted in a larger item pool. The results in this study suggest the design for
p-optimal item pools can achieve such a balance when item exposure control is considered. The
p-optimal item pools ensure the ability estimation accuracy and let all the items in the item pool
to be fully used.

The second criterion is about the range of item difficulty. As stated in the criterion, the range
of item difficulty of a optimal item pool is determined by the examinee population. The standard
deviation of the p-optimal item pools in this study was 1.5 to 2.3 times larger than the standard
deviation of examinees’ ability. The range of the item difficulty is from -4.0 to 4.0. Similar

results were found by Gu (2009), Reckase (2010) and Zhou (2012) for unidimensional p-optimal
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item pools. For the baseline pools in this study, the standard deviation of item difficulty was
more than 2.5 times larger than that of the ability distribution. Baseline pools consisted of a
number of items with extremely high or extremely low item difficulty. These items are useful
for examinees with very high or very low ability. However, since those examinees are rare in the
population, most of those extreme items are underexposed. Therefore, although the optimal item
pool should span the entire range of item difficulty, only a couple of very difficult or very easy
items are sufficient.

In addition to the examinee population, the range of item difficulty also depends on the
purpose of the test. For licensure exams, the purpose of the test is to classify examinees into two
or more categories. If the cut score is in the middle of the & scale, a large number of items with
middle item difficulty should be included in the item pool to ensure the measurement error at the
cut score is sufficiently low. In this situation, it is acceptable to drop items with very high or
very low item difficulty from the item pool, because they don’t contribute much to the
measurement accuracy at the cut score. However, if the purpose of the test is to selected gifted
student, or to indentify low achieving students, a large number of difficult items or easy items
should be added into the item pool, respectively.

The third criterion addresses the issue of item discrimination. Because the MCAT in this
study is based on the multidimensional Rasch model, the magnitude of the item discrimination is
fixed, but the direction of the item discrimination is not fixed and it can affect the test precision
and item creation cost. If an item only loads on one dimension, for instance 6;, the direction that
is best measured by this item is along ;. In other words, this item can only discriminate
examines with variations on ;. If an item loads on more than one dimension such as an item

from Cluster 4 with a = (1,1,1), the direction that is best measured by this item is along
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direction of the 6, 8,, and 6; composite. This item can most effectively discriminate examinees
located on different points along the 8, 8,, and 68;composite line, and can moderate effectively
discriminate examinees with variations on 6, 8,, or 8;3. The simulation results in this study
suggested that, for a test with simple structure to meet the ability estimation accuracy for all the
0’s, the p-optimal item pool should consist of the same proportion of items measuring each 6.
Compared with tests with simple structure, consisting of items with a = (1,1,1) in the item pool
yielded better ability estimation accuracy but increased the pool size at the same time. A larger
item pool would cost more to create. Moreover, compared with items measuring only one ability,
items with a = (1,1,1) are relatively more difficult to write and cost more to create. Although
these items are desirable in psychometrical perspective, they might not be the best choice in
practice considering the cost of item creation.

Overall, the p-optimal item pools developed in this study met these three criteria, because the
item pool design process considered the features of the examinee population, ability estimation
accuracy, item pool usage, and the purposes for the test. The size of the p-optimal item pools
was sufficient for a large number of examinee. Items in the p-optimal item pools spanned the
entire range of item difficulty. Also, the p-optimal item pools yielded acceptable ability
estimation accuracy and fairly good item pool usage. Even though the item creation cost is not
directly addressed in the item pool design process, it can be controlled by adding a content
balancing constrain. For example, if there is an upper limit for the proportion of the expensive
items in the item pool, content balancing algorithms are able to control the number of expensive
items from being frequently selected, and therefore control the proportion of the expensive items

in the item pool.
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6.3 Implications

The end product of the p-optimal item pool design for MCAT is a bin-count table, which tells
the proportion of item from each cluster and the minimum number of items in each item bin.
The bin-count table serves as an instructive guide for item creation, item pool development, and
item pool management.

Similar to the function of a test blueprint for a linear paper-and-pencil test, the bin-count table
is also a target for item creation. Item writers should create items that meet the requirements of
the bin-count table. For items measuring only one ability, they can be treated as unidimensional
items, so that item writers can create them in the same way they create unidimensional items.
Items measuring more than one ability, however, can be difficult to write. When creating items
measure more than one ability, the first thing to consider is the direction that is best measured by
this item. Items with a = (1,1,1) should measure the three abilities with the same level of
discrimination power. In practical, this is very hard to control because more than one strategy
may be used to solve an item, and different strategy may require different combinations of these
three abilities. Therefore, in this situation, it might be helpful to provide some examples to item
writers and give them instructions on how to write items measuring multidimensional abilities.
Even though we assume a set of items with a = (1,1,1) is successfully created, these items still
cannot be guaranteed to function the same for different groups of examinees. As emphasized in
Reckase (2009), “dimensionality is a property of the data matrix, not the test.” Although these
items are sensitive to differences along the three dimensions, the response data matrix may not
be three-dimensional unless there is adequate amount of variation in the examinee sample along

each dimension. Because dimensionality is sample-specific, the quality of the examinee sample
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for field test is very important. If the sample is not representative, the characteristics of
multidimensional items may be greatly affected.

Because items measuring more than one dimension are expensive to create and may be
unstable in practice, a p-optimal item pool with simple structure might be easier to develop in
practice. For an item pool only consisting of items measuring only one ability, some may argue
for fitting this item pool with a unidimensional IRT model and treating each cluster of items as
one content area. It is feasible to do so, but the advantages of using a multidimensional IRT
model are apparent. First, if a unidimensional IRT model is fitted to this item pool, the
assumption of unidimensionality might be violated as items are measuring different content areas.
Second, if subscores are reported to examinees, MCAT will yield more accurate subscores than
UCAT. Third, MCAT can estimate all the #’s simultaneously, but UCAT needs to estimate each
0 separately and one at a time. Therefore, MCAT is more efficient in terms of subscore
reporting than UCAT. Because of these advantages for MCAT, multidimensional p-optimal item
pools are more desirable than unidimensional item pools.

In practice, operational item pools are always being renewed. Obsolete items are removed
from time to time and new items are filled in accordingly. van der Linden and Veldkamp (2000)
summarized that monitoring item usage and replenishing new items are two important tasks for
item pool management. The p-optimal item pool design presented in this study can be adapted
for use in item pool management. If an item located in bin X is retired, a new item should be
added to bin X. Because items within each bin are considered to be equivalent in terms of the
amount of information they provide for ability estimation, the new item does not need to be
identical to the old item; rather, any item that fits into bin X can be used to replace the old item.

In this situation, the concept of item bin can reduce the cost for item replenishing. In addition,
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when there is a need to create a master pool which supplies several operational item pools, the p-
optimal item pool design can be used to design the master pool as well. If the master pool needs
to supply N operational item pools, the size of the master pool would be at least N times the p-

optimal item pool.

6.4 Limitation and Future Studies

The results of this study demonstrated the advantages of using the p-optimal item pool design
to develop item pools for several MCATSs with different features. The results indicate the p-
optimal item pools can ensure ability estimation accuracy as well as a good item pool usage.
This conclusion, however, is restricted by the fact that items are fit by the multidimensional
Rasch model. The item discrimination parameter for the multidimensional Rasch model is fixed
by test developers, instead of estimated from the data matrix. If inaccurate item discrimination
parameters are assigned to some items in the item pool, the extent the ability estimation accuracy
would be affected is unknown. Future study can examine the consequences of item
discrimination being inaccurately identified. In addition, compared with the multidimensional
Rasch model, the multidimensional 2PL or 3PL model tends to fit the data better in practice. Gu
(2007) has generalized the p-optimal item pool design method to unidimensional 3PL model. It
is also worthwhile to generalize Gu’s methodology to multidimensional 2PL or 3PL model.

This study is based on the assumption that examinees are multivariate normally distributed.
However, in reality, the distribution of examinees is not always normal, and the expected
distribution may not always match the reality. The question raised is how robust the p-optimal
item pool design is to the violation to the shape of the examinee distribution. That is, if a p-

optimal item pool is developed based on a multivariate normal distribution, but the actual
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examinee is not normally distributed, how the performance of the MCAT using this p-optimal
item pool will be affected. Future study can investigate this issue by a simulation study.

Two bin sizes were considered in this study for the p-optimal item pool design. An increase in
the bin size will results in a smaller p-optimal item pool. The .86-optimal item pool in this study
yielded similar level of ability estimation accuracy as the .96-optimal item pool, if item exposure
control was not implemented. If item exposure rate is not an important issue, a smaller item pool
is desirable because a smaller item pool will cost less to create. Therefore, it might be interesting
to investigate how large the bin size can get before the MCAT does not function well. The
results could be useful to determine the bin size in the future.

The item type is this study is purely dichotomous. As the educational measurement area is
changing towards to the next generation of assessments, new types of items have emerged and
brought significant challenges for test developers. For example, new types of items have been
created for the Smarter Balanced tests and will be used operationally. Performance task
questions, for example, are one type of new item. A performance task usually requires students
to follow several steps to accomplish it. Each step can be treated as one item and the entire task
IS considered to be a testlet. At this point, it is still unknown how to develop a p-optimal item
pool for adaptive test consisting of this item type. Since a number of states will soon adopt the
Smarter Balanced assessments to replace their current K-12 large-scale standardized assessments,
the quality of the item pool is an important issue from both psychometric and policy perspectives.
Therefore, the p-optimal item pool design for new types of items is definitely a promising

direction for future research as well.
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Table A.1: Bin count table for the .96-optimal item pool (Test Specification 1, high correlation,
without item exposure control)
MDIFF 32 -28 -24 -2 -16 -12 -08 04 0 04 08 12 16 2 24 28 32
a=(1,00)0 3 7 9 11 13 13 14 15 15 14 14 13 12 11 9 7
a=(0,1) 3 7 9 11 13 13 14 15 15 15 14 13 12 11 9 7

Table A.2: Bin count table for the .86-optimal item pool (Test Specification 1, high correlation,
without item exposure control)

MDIFF -32 -24 -16 -08 O 08 16 24 32
a=(1,0) 6 11 13 14 15 14 13 11
a=(0,1) 6 11 13 14 15 14 13 11 6

Table A.3: Bin count table for the .96-optimal item pool (Test Specification 1, moderate
correlation, without item exposure control)

MDIFF -32 -28 -24 -2 -16 -1.2 -08 -04 0 04 08 12 16 2 24 28 32

a=(1,00 2 5 8 9 11 12 13 14 14 14 14 12 11 10 8 5 2

a=(0,1) 2 5 8 9 11 12 13 14 14 14 14 12 11 10

Table A.4: Bin count table for the .86-optimal item pool (Test Specification 1, moderate
correlation, without item exposure control)

MDIFF 32 -24 -16 -08 0 08 16 24 32
a=(1,0) 3 10 13 14 15 14 13 10 4
a=(0,1) 4 10 13 14 15 14 13 10
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Table A.5: Bin count table for the .96-optimal item pool (Test Specification 2, high correlation,
without item exposure control)
MDIFF  -32 -28 -24 -2 -16 -12 -08 -04 0 04 08 12 16 2 24 28 32
a=(1,0,00 2 4 6 7 8 9 10 10 10 10 10 9 8 7 6 4 2
a=(0,1,00 2 4 6 7 8 9 10 10 10 10 10 9 8 7 6 4 3
a=(001) 1 4 6 7 8 9 10 10 10 10 10 9 8 7 6 4 2

Table A.6: Bin count table for the .86-optimal item pool (Test Specification 2, high correlation,
without item exposure control)

MDIFF 32 24 -16 08 0 08 16 24 32
a=(1,0,0) 3 7 9 10 10 10
a=(0,1,0) 4 8 9 10 10 10 9 8 3
a=(0,0,1) 3 7 9 10 10 10 9 7

Table A.7: Bin count table for the .96-optimal item pool (Test Specification 2, moderate
correlation, without item exposure control)

MDIFF -32 -28 -24 -2 -16 -12 -08 -04 0O 04 08 12 16 2 24 28 32
a=(1,00 0 3 5 6 7 8 9 10 10 9 9 6 2 1
a=(0,1,0 1 3 5 6 7 8 9 10 10 10 9 8 7 6 5 3 1
a=(,01 1 3 5 6 7 8 9 10 10 10 9 9 7 6 5 3 1

Table A.8: Bin count table for the .86-optimal item pool (Test Specification 2, moderate
correlation, without item exposure control)

MDIFF 32 -24 -16 08 0 08 16 24 32
a=(1,0,0) 1 6 8 10 10 10 8 6 1
a=(0,1,0) 2 7 9 10 10 10 9 6
a=(0,0,1) 2 7 9 10 10 10 9 7 2
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Table A.9: Bin count table for the .96-optimal item pool (Test Specification 3, high correlation,
without item exposure control)

MDIFF 32 -28 -24 -2 -16 -12 -08 -04 0 04 08 12 16 2 24 28 32

a=(,0,0) 2 4 5 6 7 71 71 8 7 6

a=(0,1,00 3 4 5 6 7 7 71 8 8 7 7 7 6 5 4 3
6 5

MDIFF 56 -49 -42 -35 -28 -21 -14 -07 07 14 21 28 35 42 49 56
a=(1,11) 3 4 6 6 7 7 8 8 8 8 7 7 6 5 4 3

8
8
a=(0,0,1) 2 4 5 6 7 7 7 8 8 8 1 1 1
0
8

Table A.10: Bin count table for the .86-optimal item pool (Test Specification 3, high correlation,
without item exposure control)
MDIFF 32 -24 -16 -08 0 08 16 24 32

a=(1,0,00 3 6 7 8 8 7 6 3
a=(0,1,0 3 6 7 8 6
a=(0,0,1 3 6 7 8 6 3

MDIFF 56 42 -28 -14
a=(1,11) 4 7 8 9

14 2.8 4.2 5.6
9 8 7 4

O© | O |00 0 o

Table A.11: Bin count table for the .96-optimal item pool (Test Specification 3, moderate
correlation, without item exposure control)

MDIFF 32 -28 -24 -2 -16 -12 -08 -04 0 04 08 12 16 2 24 28 32
a=(1,00 1 3 4 5 6 7 1 7 5 1
a=(,1,00 1 3 4 5 6 7 1 71 707 7 5 1
a=(001 2 3 4 5 6 17 1 7 6 3 1

MDIFF 56 -49 -42 -35 -28 -21 -14 -07
a=(1,11 1 3 5 6 7 7 8 8

07 14 21 28 35 42 49 56
8 7 7 7 6 5 3 1

| o|m N o™
~
~
~
(o}

Table A.12: Bin count table for the .86-optimal item pool (Test Specification 3, moderate
correlation, without item exposure control)
MDIFF 32 -24 -16 -08 0 08 16 24 32
a=(1,0,0) 2 5 7 8 8 8 7 5 2
a=(0,1,0) 2 5 7 8 8 7 5 2
a=(0,0,1) 2 5 7 8 8 8 7 5 3
0
9

MDIFF 56 -42 -28 -14
a=(1,1,1) 2 6 8 9
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Table A.13: Bin count table for the .96-optimal item pool (Test Specification 1, high correlation,
with item exposure control)
MDIFF -32 -28 -24 -2 -16 -12 -08 -04 0 04 08 12 16 2 24 28 32
a=(1,00 4 6 9 11 12 13 14 15 17 15 14 13 12 11 9 7
a=(0,1) 4 7 9 11 12 13 14 15 17 15 14 13 12 11 9 7 3

Table A.14: Bin count table for the .86-optimal item pool (Test Specification 1, high correlation,
with item exposure control)

MDIFF 32 -24 -16 -08 0 08 16 24 32
a=(1,0) 6 11 13 17 32 17 13 11 6
a=(0,1) 6 11 13 17 32 17 13 11

Table A.15: Bin count table for the .96-optimal item pool (Test Specification 1, moderate
correlation, with item exposure control)

MDIFF 32 -28 -24 -2 -16 -12 -08 04 0 04 08 12 16 2 24 28 32

a=(1,00)0 2 5 8 10 11 12 13 14 18 14 13 12 11 9 8 5

a=(0,1) 2 5 8 9 11 12 13 14 18 14 13 12 11 10 7 5

Table A.16: Bin count table for the .86-optimal item pool (Test Specification 1, moderate
correlation, with item exposure control)

MDIFF 32 24 -16 08 0 08 16 24 32
a=(1,0) 4 10 13 18 33 18 13 10
a=(0,1) 4 10 13 18 33 18 13 10
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Table A.17: Bin count table for the .96-optimal item pool (Test Specification 2, high correlation,
with item exposure control)

MDIFF -32 -28 -24 -2 -16 -12 -08 -04 0O 04 08 12 16 2 24 28 32
a=(1,00) 2 4 6 7 8 9 10 10 12 10 10 7 2
a=(0,1,0 2 4 6 7 8 9 10 10 12 10 10 9 8 7 6 4 2
a=(,01 1 4 6 7 8 9 10 10 12 10 10 7 1

Table A.18: Bin count table for the .86-optimal item pool (Test Specification 2, high correlation,
with item exposure control)

MDIFF 32 -24 -16 08 0 08 16 24 32
a=(1,0,0) 3 7 9 12 22 12 9 7 3
a=(0,1,0) 3 8 9 12 21 12 9 8
a=(0,0,1) 3 7 9 12 21 12

Table A.19: Bin count table for the .96-optimal item pool (Test Specification 2, moderate
correlation, with item exposure control)

MDIFF -32 -28 -24 -2 -16 -12 -08 -04 0O 04 08 12 16 2 24 28 32
a=(1,00 © 2 4 6 7 8 9 10 12 10 9 6 2 1
a=(0,1,0 1 3 5 6 7 9 9 10 12 10 9 8 7 6 5 3 1
a=(,01 1 3 5 6 8 9 9 10 12 10 9 9 7 6 5 3 1

Table A.20: Bin count table for the .86-optimal item pool (Test Specification 2, moderate
correlation, with item exposure control)

MDIFF 32 24 -16 08 0 08 16 24 32
a=(1,0,0) 1 6 8 12 2 12 8 6
a=(0,1,0) 2 6 9 12 2 12 9 6
a=(0,0,1) 2 6 9 12 2 12 9 6 2
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Table A.21: Bin count table for the .96-optimal item pool (Test Specification 3, high correlation,
with item exposure control)

MDIFF 32 -28 -24 -2 -16 -12 -08 -04 0 04 08 12 16 2 24 28 32
a=(L,O,) 2 4 5 6 7 7 7 8 8 8 717 71 1 6

a=(0,1,00 3 4 5 6 7 7 7 8 8 7 71 71 1 6 5 4 3
a=(0,0,1) 2 4 5 6 7 7 7 8 8 8 7 71 71 6 5

MDIFF 56 -49 -42 -35 -28 -21 -14 -07 0 07 14 21 28 35 42 49 56
a=(1,11) 3 4 6 6 7 7 8 8 9 8 8 7 7 6 5 4 3

Table A.22: Bin count table for the .86-optimal item pool (Test Specification 3, high correlation,
with item exposure control)
MDIFF 32 -24 -16 -08 0 08 16 24 32
a=(1,0,0) 3 6 7 9 15 9 7 6
a=(0,1,0) 4 6 7 9 14 9 7 6
a=(0,0,1) 3 6 7 9 15 9 7 6
MDIFF 56 -42 -28 -14 0 14 28 42 56
a=(1,1,1) 4 7 8 10 17 10 8 7 4

Table A.23: Bin count table for the .96-optimal item pool (Test Specification 3, moderate
correlation, with item exposure control)

MDIFF 32 -28 -24 -2 -16 -12 -08 -04 0 04 08 12 16 2 24 28 32
a=(1,00 1 3 4 5 6 7 71 71 9 71 7 5 1
a=(0,1,00) 1 3 4 5 6 7 7 1 8 7 6 6 1
a=(0,001) 1 3 5 6 6 7 7 71 8 71 71 71 6 6 3 1

MDIFF 56 -49 -42 -35 -28 -21 -14 -07 0 07 14 21 28 35 42 49 56

a=(1,11 1 3 5 6 7 7 8 8 10 8 7 7 7 6 5 3 1

Table A.24: Bin count table for the .86-optimal item pool (Test Specification 3, moderate
correlation, with item exposure control)
MDIFF 32 -24 -16 -08 0 08 16 24 32
a=(1,0,0) 2 5 7 9 15 9 7 5 2
a=(0,1,0) 2 5 7 9 15 9 7 5 2
a=(0,0,1) 2 5 7 9 15 9 7 5 2
MDIFF 56 -42 -28 -14 0 14 28 42 56
a=(1,11) 2 6 8 10 18 10 8 6 2
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