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ABSTRACT
HEADWATER RIPARIAN INVERTEBRATE COMMUNITY CHANGES IN
RESPONSE TO RED ALDER STAND COMPOSITION IN SOUTHEASTERN
ALASKA
By

Christian Michael LeSage

The objective of this study was to assess how management strategies of young
upland forests in southeastern Alaska affect riparian invertebrate abundance, thus
influencing food abundance for fish and wildlife. Southeastern Alaska forests are
dominated by coniferous trees including Sitka spruce (Picea sitchensis (Bong.) Carr.),
western hemlock (Tsuga heterophylla (Raf.) Sarg.), with mixed stands of red cedar
(Thuja plicata Donn.). Red alder (Alnus rubra Bong.) is hypothesized to influence the
productivity of young-growth conifer forests and through forest management may
provide increased riparian invertebrate abundance. To assess invertebrate densities
between coniferous and alder riparian habitats, leaf litter and wood debris samples were
collected from eleven headwater streams on Prince of Wales Island, Alaska, during the
summers of 2000 and 2001. The Acari and Collembola were the most abundant taxa
collected in leaf litter. Alder litter had significantly higher mean taxa richness than
conifer litter. The Acari were the most abundant group collected on wood debris. Alder
wood had significantly higher mean taxa richness and biomass than conifer wood. Alder
wood debris in more advanced decay stages had the highest mean taxa richness and
biomass compared to the other wood debris types, while conifer late decay wood debris
had the highest densities of invertebrates. The presence of alder in young-growth conifer

forests appears to increase taxa richness and biomass of riparian forest invertebrates.
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HEADWATER RIPARIAN INVERTEBRATE COMMUNITY CHANGES IN
RESPONSE TO RED ALDER STAND COMPOSITION IN SOUTHEASTERN
ALASKA
INTRODUCTION

Southeast Alaska forests are dominated by coniferous trees, primarily Sitka
spruce (Picea sitchensis (Bong.) Carr.), western hemlock (Tsuga heterophylla (Raf.)
Sarg.), western red cedar (Thuja plicata Donn), and Alaska yellow-cedar
(Chamaecyparis nootkatensis (D. Don) Spach). Red alder (Alnus rubra Bong.)
frequently regenerates in these stands following disturbances, such as timber harvesting
or landslides. Forest landscape management has been historically directed toward the
harvest of Sitka spruce and western hemlock through clear-cutting (USDA 1997). Forest
clear-cutting involves the removal of all standing timber on a section of land and can lead
to the regeneration of an even-aged stand. These stands eventually become dense and
can have negative effects on fish and wildlife (Wallmo and Schoen 1980; Schoen et al.
1981, 1988; Thedinga et al. 1989). Even-aged stands eventually prevent other vegetation
from becoming established through canopy closure, and may completely eliminate
understory vegetation for up to 100 yr (Alaback 1982, 1984; Tappeiner and Alaback
1989).

It has been documented that young-growth red alder may provide many benefits
to the forest ecosystem, including more diverse vegetative understory (Hanley and Hoel
1996; Deal 1997), increased habitat quality for small mammals (Hanley 1996), and
increased forage for herbivores such as deer and arthropods. Red alder is a deciduous
tree that may benefit floodplain and stream ecosystems by increasing soil nitrogen

content through nitrogen fixation, and by providing greater structural diversity than



homogeneous conifer stands (Deal 1997). Red alder is a pioneer species that is shade
intolerant and usually dies standing, thus producing woody debris, such as branches,
twigs, logs, and standing dead trees, which are known to have ecological importance to
terrestrial and aquatic ecosystems (Triska and Cromack 1980; Benke ef al. 1985; McCinn
1993; Bragg and Kershner 1999; Braccia and Batzer 2001; Wipfli et al. 2003). Woodland
floodplains may serve as temporary storage areas for leaf litter detritus, before it enters
streams or rivers (Merritt and Lawson 1992; Cummins et al. 1989).

Small headwater streams drain the natural and harvested landscapes of
southeastern Alaska, and timber harvesting eliminates a potential source of large woody
debris into these streams. Many aquatic macroinvertebrates and fish depend on this
woody debris (Dudley and Anderson 1982; Duncan and Brusven 1985; Wallace et al.
1999), which provides habitat (Hunt 1975; Sedell and Triska 1975; Anderson et al. 1978;
Neilsen 1992; Wipfli et al. 2003), and can enhance channel morphology as well as
sediment and water routing (Keller and Swanson 1979; Bilby and Likens 1980). The
river continuum concept proposed that riparian zones influence the regulation of energy
flow and nutrient cycling in forested headwater streams (Vannote et al. 1980; Ward et al.
1998). Wipfli and Gregovich (2002) reported that small headwater streams in southeast
Alaska are potentially important to downstream salmonids, and Piccolo and Wipfli
(2002) found over half of the prey biomass consumed by juvenile salmonids was
terrestrial, originating from adjacent riparian habitat. Forest landscape management
techniques affect both the forest and aquatic resources (USDA 1997); thus, forest
managers are interested in finding compatible new techniques for managing the forested

watersheds. According to Wipfli et al. (2002), information about red alder and its



ecological role in southeastern Alaska is lacking, and most information about this species
is based on research from other regions.

The focus of this study was to compare and contrast riparian invertebrate
communities within mixed coniferous and red alder forests across a 0 — 55% basal area
alder gradient (Table 1). Red alder has been hypothesized to influence young-growth
conifer forest productivity and other forest ecosystem resources (Wipfli et al. 2002,
2003). Past forest management practices included thinning red alder from riparian and
upland forest stands in an effort to enhance conifer productivity; however, the inclusion
of red alder in young-growth conifer forests may increase the abundance of both riparian
invertebrate abundance and aquatic and terrestrial invertebrates as well (Wipfli ef al.
2003). An increase in invertebrate abundance and diversity is expected to benefit the
forest ecosystem by providing more food for birds, bats, and downstream fish (Wipfli et
al. 2002).

My overall objectives were to: 1) compare taxa richness, density, and biomass of
riparian invertebrate communities associated with red alder and conifer leaf litter along
headwater streams; and 2) compare taxa richness, density, and biomass of invertebrate
communities associated with different decay classes (early or late) of red alder and
conifer woody debris in riparian areas along headwater streams. I tested the null
hypothesis that red alder and conifer leaf litter and woody debris would not differ in
invertebrate taxa richness, densities, and biomass.

METHODS
This study was conducted in the Maybeso Experimental Forest on Prince of

Wales Island, southeastern Alaska (132°67°W, 55°49°N) located within the Tongass



National Forest (Figure 1). Southeastern Alaska supports a temperate rainforest which
has a maritime climate, moderate temperatures, and high amounts of annual precipitation
(that can exceed S00 cm per year) (Harris et al. 1974). The Maybeso Experimental
Forest was clear-cut during the 1950’s and management practices in the forest allowed
red alder to grow uninhibited.

I sampled riparian zones of 10 headwater streams in the Maybeso Experimental
Forest and one headwater stream in the adjacent Harris River catchment in conifer stands
with 0 — 55% by basal area or 1 — 82% by canopy cover of red alder (Table 1).
Streamside vegetation methods for alder basal area and percent canopy coverage were
those described in Wipfli et. al. (2002). Each sampling site was one 150 m transect
divided into five 30 m sections. One leaf litter sample was collected from three of the
five sections randomly in 2000 and 2001. Three and four sections were randomly

selected for woody debris sampling in 2000 and 2001, respectively.

Leaf Litter
Thirty-three leaf litter samples were collected within 1 m of the stream’s edge

during June and July of 2000 and 2001 (total of 66 samples) at random distances within
each segment. A stovepipe core sampler (0.15 m diam.) was used to enclose each litter
sample. Samples were placed into Zip lock© bags and processed in the lab within hours
of collection. Invertebrates were initially separated from the litter using a Berlese funnel,
and then hand sorted under magnification to collect invertebrates not separated using the
funnel. Invertebrates were preserved in 80% ethanol, their body lengths measured to the

nearest millimeter (excluding antennae and cerci), counted, and identified to the lowest



practical taxonomic unit using Borrer et al. (1996), Stehr (1987, 1991), Christiansen and
Bellinger (1981) and McAlpine et al. (1981, 1987, 1989). Invertebrate taxa richness was
expressed as numbers of taxa per sample. The area of the grab sample was estimated
using the equation for a circle, and invertebrate density (# - m?) and biomass (mg - m?)
were calculated. Invertebrate dry biomass was estimated using taxon-specific length
regression equations (Rogers et al. 1977; Smock 1980; Sample et. al. 1993; Hodar 1996;
Benke et. al. 1999). Non-animal litter components were picked and separated into alder
and conifer. Each component was dried in an oven at 42°C for 24 h and weighed to

quantify the dominant litter type.

Wood Debris

Wood debris samples were sorted into decay classes (early and late) and by type
(alder and conifer) for a total of four classes (alder early, alder late, conifer early, and
conifer late). Wood debris decay class determination was based on three criteria:
amount of bark, amount of decay, and friability. Wood debris samples that were too
large to fit into a 26 cm x 28 cm Zip lock© bag were cut to fit using a handsaw, and a Zip
lock© bag was placed over one end to catch any dislodged invertebrates during the
cutting process. Invertebrates were washed from wood samples into a five-gallon bucket
with a pressurized backpack sprayer. Each wood piece was carefully dissected and
visually inspected to remove all invertebrates that were not removed by pressure
washing. A 250-micron sieve was used to separate the sample, and it was then placed
into a 250 ml Whirlpak® bag, preserved with 80% ethanol, and picked under 10X

magnification. Invertebrates were processed, identified, measured, and dry mass was



computed in the same manner as those for leaf litter. Richness was expressed as numbers
of taxa per sample, regardless of wood size. Wood surface area was estimated from
length (13.9- 35.0 cm range) and diameter (1.8— 9.8 cm range) using the equation for
surface area of a cylinder, and invertebrate density (# - m’?) and biomass (mg - m?) were
calculated.

Density and biomass data were log;o (x + 1) transformed to overcome non-normal
distributions. Data collected from both year’s sampling events (2000 and 2001) were
combined in order to increase sample size for each sample type. Multiple T-tests and
ANOV As were generated to contrast taxa richness, density, and biomass between litter
types (alder or conifer) and among wood debris taxon-age classes (early and late decay
for both alder and conifer) (SAS Institute 1996). Following a significant ANOVA (p <
0.05), a Tukey’s Studentized Range (HSD) post-hoc test was used to compare means.
Correlation analyses were performed using percent alder basal area and percent alder
canopy cover to test for a treatment effect of alder on litter and woody debris samples.

All graphs and tables are presented using nontransformed data.

RESULTS
Leaf Litter

A total of 50 taxa representing 15 orders and 24 families were collected from
riparian leaf litter samples (Table 2). A similar number of invertebrate taxa were
collected in alder (40) and conifer (39) leaf litter (Table 2). The majority of invertebrates
collected in litter samples were collected in both types, although a few were only

collected in one litter type. Because more invertebrates were associated with red alder



leaf litter on average, mean taxa richness was significantly higher in alder litter (p < 0.05)
compared to conifer litter (Figure 2a). Invertebrates commonly collected in leaf litter
were Oligochaeta, Acari, Collembola, Coleoptera, and Diptera (Table 2, Figure 3).

Invertebrate mean densities were similar for both litter types (Table 3, Figure 2b).
Acari, and Collembola were the most abundant taxa collected in leaf litter, and together
comprised more than 60% of the leaf litter invertebrate community (Figure 3). Riparian
invertebrate biomass was not significantly different between alder and conifer litter types
(Figure 2c). The Oligochaeta were the dominant biomass component and contributed
nearly 40 % for each type of litter (Table 3, Figure 4). Other groups contributing to leaf
litter biomass included: Coleoptera, Diptera, Acari, Chilopoda and Diplopoda.

As the percentage of riparian alder increased, there was no correlation in litter
samples between the percent of alder basal area or percent canopy cover in any attribute

(taxa richness, density, or biomass).

Wood Debris

A total of 47 taxa representing 16 orders and 29 families were collected from
riparian wood debris samples (Table 2). More invertebrates were associated with conifer
wood debris (40) than alder wood (32), and nearly all invertebrates collected on wood
debris were associated with late decay wood (Table 2). There were more taxa
associated with late decay conifer wood (39) than late decay alder wood (31), and the
lowest number of taxa were associated with early decay wood (Table 2).

Even though more riparian invertebrate taxa were associated with conifer wood,

alder wood had significantly higher (p < 0.05) mean taxa richness on a per sample basis



(Figure 5a). Late decay wood had significantly higher taxa richness (p < 0.05) than early
decay wood (Figure 6a). Invertebrates commonly associated with riparian wood debris
included: Acari, Collembola, and Diptera (Table 3, Figure 7).

Mean densities for late decay wood were significantly higher (p < 0.05) than for
early decay wood debris (Figure 6b). Invertebrate densities were similar between late
decay alder wood and conifer wood; however, conifer late decay wood had higher
densities. Early decay conifer had the lowest invertebrate densities. The dominant taxon
collected in all wood debris samples was Acari, which comprised more than 50% of the
total density for each wood type (Table 3, Figure 7). Acari, Collembola and Diptera were
the most abundant taxa collected in wood debris, and together comprised more than 90%
of the invertebrate community (Figures 7 and 8).

Riparian invertebrate biomass was significantly different between wood decay
classes (p < 0.05) and wood types (p < 0.05) (Figures 5c and 6¢). The highest
invertebrate biomass was found in late decay alder wood and lowest in early decay
conifer wood. Groups largely contributing to wood debris biomass included Acari,
Diploda, Chilopoda, Coleoptera and Diptera (Figures 9 and 10).

There was no correlation in wood debris samples between the percent of alder
basal area or percent canopy cover in any attribute (taxa richness, density, or biomass), as

the percentage of stream alder increased.

DISCUSSION

Leaf Litter



Although there were similarities between invertebrates associated with both litter
types, alder litter had significantly greater taxa richness than conifer litter (Table 2 and
Figure 2a). The occurrence of red alder along these young-growth coniferous-dominated
streams may provide more variety in terms of forage base for riparian invertebrates to
utilize. These findings agreed with Wipfli et al. (2003) who suggested that because alder
detritus decays faster than conifer, it is a more desirable food source for invertebrates. In
a study conducted in some of the same headwater streams and adjacent watersheds
(Prince of Wales, Alaska), Hernandez (2001) found streams with an alder-dominated
young-growth riparian vegetation had a richer, more diverse fauna with higher
macroinvertebrate densities. Even though taxa richness in riparian alder litter was
significantly higher in this study, densities were not different between litter types.

Riparian leaf litter invertebrate densities and biomass were similar between alder
and conifer litter types (Figures 2b and 2c). Because Acari and Collembola were
percentage wise the most abundant invertebrates in both litter types, it would be
reasonable to assume that densities would also be similar for both litter types. Other
studies have also documented the dominant role of Acari and Collembola in leaf litter.
Hutchens and Wallace (2002) compared invertebrate assemblages and leaf litter
breakdown in streams, banks, and uplands along two southern Appalachian headwater
streams. They found that Acari were the dominant noninsect group in bank and upland
habitats, and Collembola were the dominant insect group comprising these two habitats.
Kaczmarek (1977) studied the role of Collembola in different habitats in two forest types
(43-year-old pine forest and deciduous forest) and found Collembolan numbers and

biomass were higher in the deciduous forest compared to the pine forest. In contrast, my



data showed higher numbers of Collembola in conifer versus alder litter, although I
recorded higher Collembola biomass in alder litter compared to conifer litter.

Oligochaeta were common in riparian leaf litter samples as well. Both litter types
had high densities of Oligochaeta (Table 3, Figure 3) which have been estimated to
consume up to 93.8% of the total annual leaf fall on a Michigan woodland floodplain
(Knollenberg, Merritt, and Lawson 1985). The Oligochaeta were the dominant biomass
component in this study and contributed nearly 40 % for each litter substrate (Figure 4).
Other groups contributing to leaf litter biomass included: Coleoptera, Diptera, Acari,
Chilopoda and Diplopoda.

The Coleoptera (17) and Diptera (10) represented the highest diversity of
invertebrates collected from riparian litter (Table 2). Three tipulid (Diptera) genera
(Limonia sp., Molophilus sp., and Pedicia sp.) were collected in riparian leaf litter
samples; the latter being the most commonly collected. Tipulids have been shown to be a
very diverse group associated with litter in floodplain habitats (Merritt and Lawson
1977). The dipteran families Cecidomyiidae and Sciaridae were the most numerous for
both litter sample types. Cecidomyiidae has been associated with living and dead trees of
different species, and Sciaridae have been associated with decaying wood as a herbivore,
primarily feeding on fungus associated with decaying wood (Teskey 1976). The dipteran
genus Forcipomyia sp. (Ceratopogonidae) was collected in several alder litter samples
and Teskey (1976) described the association of some genera to moss associated with

decaying wood, even though this genus was not collected in any of our wood debris

samples.



Wood Debris

I observed differences in invertebrate communities associated with alder and
conifer wood, and between early and late decay classes. Overall, there were more
taxonomic groups collected on conifer wood than alder wood, however, on average alder
wood had higher numbers of taxa for any given decay stage (Table 2 and Figures Sa , 6a).
Late decay wood had significantly higher invertebrate taxa richness than early decay
wood, which is in agreement Braccia and Batzer (2001) who reported an increase in
invertebrate richness as wood decayed along streams in South Carolina.

Late decay wood also had significantly higher densities than early decay wood,
and late decay conifer had the highest mean invertebrate densities overall. This may be a
response to a higher number of cracks and crevices associated with conifer decay
processes, providing increased refugia for invertebrates (Wipfli et al. 2003) or possibly
due to greater food availability as the decay process progresses.

Acari and Collembola were the most abundant groups on conifer wood debris in
the study. Abbott and Crossley (1982) also observed that these two groups were the
dominant taxa of decaying wood in North Carolina. Diptera densities were higher than
Collembola for both alder wood decay types.

Higher numbers of Diptera subsequently resulted in significantly higher
invertebrate biomass between wood and decay types. Diptera was the dominant
component in biomass for both alder decay types comprising 31% for early decay and
40% for late decay. In contrast, Braccia and Batzer (2001) found little evidence that
invertebrate density or biomass was affected by woody debris decay classes in a

southeastern forested floodplain wetland in South Carolina.
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Previous studies have documented the important role that invertebrates play in
woody debris decomposition in uplands, and invertebrate density and diversity have been
found to increase in woody debris as it decays (Abbott and Crossley 1982; Irmler et al.
1996). I also found this relationship to be true in riparian wood debris samples in this
study. Riparian late decay wood had significantly higher invertebrate taxa richness,
densities, and biomass than early decay wood, regardless of type. Riparian alder wood
debris contributed to significantly higher invertebrate taxa richness and invertebrate
biomass along southeast Alaskan headwater streams.

In terms of diversity, the orders Diptera (14) and Coleoptera (9) had the most
representatives collected from riparian wood debris (Table 2), which is in agreement with
the findings of Braccia and Batzer (2001). Members of the dipteran family
Cecidomyiidae were the most numerous in all samples including litter, a group that is
associated with many species of living and dead trees (Teskey 1976). Sciaridae (Diptera)
also were abundant in all samples except early decay alder, and these two dipteran
families have been associated with the fungi of decaying wood (Teskey 1976). The
family Tipulidae (Diptera) was more abundant in wood debris than in litter samples, but
only two genera (Limonia sp. and Pedcia sp.) were collected in association with wood
debris. There were several dipteran families collected in alder wood debris that were not
collected in litter, and their associations with decayed wood have been mainly anecdotal
(Teskey 1976). These included larvae of Cramptonomyia spenceri (Pachyneuridae)
which has been found associated with decaying alder (Vockeroth 1974); Symmerus

cogulus (Mycetophilidae) associated with decaying wood (Munroe 1974); and

12



Xylophagous sp. (Xylophagidae) that are predators recorded from decaying wood
(Teskey 1976).

The only occurrence of the chironomids, Boreochlus sp. and Krenopelopia sp.,
were collected on a single late decay conifer piece which also had other midge genera
(Metriocnemus sp. and Paraphaenocladius sp.). ‘The latter genera accounted for nearly
all of the Chironomidae collected in the study, and Teskey (1976) reported members of
this genus colonizing damp, decaying alder in well-shaded forests of British Columbia,
Canada. However, I collected Paraphaenocladius sp. in all samples, including alder and
conifer wood debris and litter samples.

I collected a rare representative, or possibly an undescribed species, of Caurinus
sp. (Mecoptera) which has been found associated with both late decay wood types and

recorded from moist forested sites (Russell 1979).

CONCLUSION

The results of this study showed that a riparian component of red alder provided a
richer, more diverse riparian invertebrate community with higher standing crop biomass
than riparian zones without an alder component. Small headwater streams dissect the
landscape of southeastern Alaska and these forested streams form an arterial network of
pathways that are influenced by riparian vegetative cover that in turn influence larger
downstream ecosystems. Riparian forest landscapes can influence stream allochthonous
inputs as well as provide critical habitat for terrestrial invertebrates which fall prey to

fish, particularly juvenile salmonids (Piccolo and Wipfli 2002).
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These results support the importance of providing a red alder component to the
young-growth upland forests of Prince of Wales Island and perhaps to other similar
watersheds. Increasing or promoting red alder should benefit riparian invertebrate
richness, diversity, and biomass through the colonization of riparian wood and litter, and
lead to a potential increase in a terrestrial invertebrate food source for downstream
salmonids. Wipfli and Gregovich (2002) indicated that the biomass of flying insects,
consisting primarily of Diptera, Lepidoptera and Plecoptera, significantly increased in
stream drift as the percent basal area of red alder increased along riparian zones.
Although this study did not find the same relationship with regard to increased litter and
wood invertebrates with increased percent of basal alder, it did demonstrate that the mere
presence of riparian alder can increase riparian invertebrate richness, diversity and
biomass that could contribute to increased production that may be realized by higher

trophic levels.
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Table 1. Riparian forest red alder percentages of headwater streams of Maybeso

Experimental Forest and adjacent Harris River watershed Prince of Wales Island, Alaska.

Study site* Basal Area (% red alder)’ Canopy Cover (% red alder)®
Big Spruce 31.5 66.3
Broken Bridge East 473 80.7
Broken Bridge West 38.7 82.4
Brushy 533 66.0
Cedar 1 35.6 73.4
Cedar 2 3.8 22.0
Gomi 25.0 60.4
Lost Bob 0.0 1.4
Upper Good Example 1.5 11.4
Upper Morning 3.9 12.9
Mile 22 29.2 59.2

*sites and methods as described in Wipfli et al. 2002
'percent red alder as a proportion of total stand basal area

2percent canopy cover based on viewing tube

15
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(a) Invertebrate richness

Taxa/litter grab sample

(b) Invertebrate density 5000
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Figure 2. (a) Invertebrate taxa richness (number of distinct taxa/litter grab sample),

(b) density (Indlvmuals/m2 ), and (c) invertebrate dry biomass (mglmz) among leaf litter
grab samples (error bars = +/-1 SE). Means with * are significantly different (p<0.05).
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(a) Invertebrate richness 16

Taxa/piece of wood

(b) Invertebrate density

3000
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Individuals/m?
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(c) Invertebrate biomass

Dry Biomass mglm2

ALDER CONIFER
Type
Figure 5. (a) taxar of distinct of wood),

(b) density (Im:llvldualz;lm2 ), and (c) invertebrate dry biomass (mglmz) among wood

debris samples (error bars = +/-1 SE). Means with * are significantly different (p<0.05).
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(a) Invertebrate richness

Taxa/piece of wood

(b) Invertebrate density

Individuals/m?
g

(c) Invertebrate biomass 1200

Dry Biomass mglm2
-]
8

AO = Late Decay Alder
CO = Late Decay Conifer 0
AR = Early Decay Alder

CR = Early Decay Conifer

Wood Type

Figure 6. (a) Invertebrate taxa of distinct debris (b)

density (Indlvldualslm2 ), and (c) invertebrate dry biomass (mg/mz) among wood debris

samples (error bars = +/-1 SE). Means with letters are significantly different (p<0.05).
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Appendix 1
Record of Deposition of Voucher Specimens*
The specimens listed on the following sheet(s) have been deposited in the named museum(s) as samples of
those species or other taxa, which were used in this research. Voucher recognition labels bearing the

Voucher No. have been attached or included in fluid-preserved specimens.

Voucher No.: 2003-10

Title of thesis or dissertation (or other research projects):

HEADWATER RIPARIAN INVERTEBRATE COMMUNITY CHANGES IN RESPONSE TO RED

ALDER STAND COMPOSITION IN SOUTHEASTERN ALASKA

Museum(s) where deposited and abbreviations for table on following sheets:

Entomology Museum, Michigan State University (MSU)

Other Museums:

Investigator’s Name(s) (typed)
CHRISTIAN LESAGE

Date __ December 8, 2003

*Reference: Yoshimoto, C. M. 1978. Voucher Specimens for Entomology in North America.
Bull. Entomol. Soc. Amer. 24: 141-42.

Deposit as follows:
Original: Include as Appendix 1 in ribbon copy of thesis or dissertation.

Copies: Include as Appendix 1 in copies of thesis or dissertation.
Museum(s) files.
Research project files.

This form is available from and the Voucher No. is assigned by the Curator, Michigan State University
Entomology Museum.
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