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ABSTRACT
DESIGNING AND IMPLEMENTING A MODEL OF SYNCHRONIZATION
CONTRACTS IN OBJECT-ORIENTED LANGUAGES
By

Karl Reimer Behrends

This thesis describes the design and implementation of a synchronization mechanism,
called the universe model, that is based on declaratively specified contractual relation-
ships between client and supplier components. These synchronization contracts not only
specify basic mutual exclusion and semantic predicates, but also explicit logical compo-
sition of those basic contracts by boolean operators, and implicit composition to recom-
bine contracts that have been decomposed in order to modularize them. Such contracts
are negotiated implicitly and transparently by a runtime system that observes the abstract
state of the program, instead of using explicit procedural synchronization primitives. We
present a classification scheme for synchronization contracts, and describe how they can
be added to existing object-oriented languages by means of a simple declarative language
that expresses these contracts. We also present an implementation of a runtime system that
negotiates these synchronization contracts: It draws upon ideas from garbage collection

and distributed databases, and adapts them to negotiate synchronization contracts in a fash-



ion that avoids deadlocks and starvation where feasible. While the resulting algorithms are
complex, we have implemented them and present empirical validation to show that this

implementation is efficient.



TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF FIGURES viii
1 Introduction 1
1.1 Synchronization Contracts . . . . . . . . ... ... ... 2
12 TheUniverse Model . .. ... ... ... ... .. ... .. ... .... 3
1.3 ThesisOverview . . . . . . . .. . e 5
2 State of the Art 6
2.1 Synchronization in Shared Memory Systems . . . . . . ... ... ... .... 7
2.2 MessagePassingSystems . . . . ... ... oo oo 11
2.3 High-Level Synchronization Paradigms . . . . .. .. ... .... ... ... 15
2.3.1 Server-side Synchronization for Passive Objects . . . . . ... .. ... ... 16
2.3.2 Client-side Synchronization for Passive Objects . . . . . .. ... ... ... 18
2.3.3 ActiveObject Approaches . . . . . . ... ... .. ... . ... 21
2.4 Synchronization of Multi-step Transactions . . . . ... ... ......... 24
2.5 Synchronization and Composability . . . .. ... ... ... ... ...... 25
2.6 A Classification of Synchronization Mechanisms . . . ... ... ....... 30
2.6.1 Existing Approaches for Explicit Composition of Synchronization Contracts 31
2.6.2 Beyond Composition of Exclusion Contracts . . . . ... .......... 34
3 The Universe Model 38
3.1 MotivatingExample . . ... ... ... ... o o oo 39
3.2 Formal introduction to the universemodel . . . . ... ... ... ... ..., 43
3.3 Contract language: Concurrency constraints . . . . . . . . . . .. . ... ... 45
3.3.1 Conditions and Condition Verification . . . . ... ... ........... 45
3.3.2 Constraints and Constraint Satisfaction . . . . ... ... .......... 47
3.4 Contract Negotiation and the Run-time System . . ... ... ...... ... 51
4 Realm update 54
4.1 Run-timerepresentationofrealms . . . ... ... ... ... ......... 55
4.2 Realm-updateprocedure . .. .. ... .. .. ... ... .. ... 57
43 Realmcontraction . . . . . . . ... ... ... .. e 59
44 Realmcompletion. . . . . . ... ... ... ... 63
4.5 Preventing Starvationand Deadlock . . .. ... ... ... ... ... ..., 66

v



S Feature: Deadlock Avoidance

5.1 Specification . .. ... ... ..
52 DataRefinement . ... .. ....... ... ... ... ...,
52.1 Staterefinements . . . . ... ... ...
5.2.2 Inter-process messaging . . . . . . . . ... e e et e e
5.2.3 Additional primitives . . . . . . ... oL L e
53 Algorithms . . ... .. .. .. . e e
5.3.1 Universe Acquisition . . . . . . ... ... ... ... ...
5.32 UniverseSurrender . . . . . . . . . . ... ...
533 UniverseRelease . . . ... ... ... ... ... ... 0.,

6 Feature: Deadlock Recovery

6.1 Specification . . . ... ...
6.1.1 NegotiationRefinement . . . .. ... .. ... ... ... ...,
6.1.2 Restart Condition: Conceptual Definition . . . . . .. ... ... ......
6.1.3 Restart Condition: Effective Definition. . . . . . .. ... ... .......
6.2 DataRefinement . ... .......... .. ... ... ...,
6.3 Algorithms . . . ... ... ... ... ...
7 Feature: Conditional Contract Negotiation

8 Eiffel Language Extensions for the Universe Model

8.1 Defining and Creating Universes . . . . ... ... ... ... .........
8.1.1 DefiningUniverses . . . . . . . ... ... ...
8.1.2 Universe Classes and Inheritance . . . . ... .. .. ... ..........
8.1.3 Alternate Universe Declaration . . . . . ... ... .. ............
814 CreatingUniverses . . . . .. .. ... ... ...,
8.2 Defining and Creating Processes . . . . . ... ... ... .. .........
82.1 The Constituent Partsof aProcess . . . ... ... ... ...........
82.2 AnExampleof ProcessCreation . . . . ... ... ..............
83 AccessingGlobalData . . . ... ... ......... ... ... ... ...
84 Assignmentsand Data Access . . . . ... ... o oo e e e
84.1 Motivation . . . . ... ... e e
84.2 Shared and NormalReferences . . . . ... ... ... ... .........
8.4.3 Locality of Objects and Variables . . . .. ... ... ... .........
844 Semanticsof Assignment. . . . ... ... ... ... ...
84.5 Semantics of ArgumentPassing . . . ... .... .. ... .. .......
84.6 AssignmentofValues. . .. ... ....... ... ... . ... . ....
847 DeepCopying. . . . . . . . . . e
8.5 Summary of Language Extensions . . . . .. ... .. .............
9 Performance Evaluation

9.1 The Benchmark Infrastructure . . . . . ... ... ... ... .........
9.1.1 TheClassSchema . ................. ... ... .0.o....
9.1.2 InputParameters . . . .. ... ... ... ... .. ...

70
71
73
74
75
77
71
78
82
85

87
88
89
91
92
95
97

101

105
106
106
109
110
111
112
113
115
119
123
124
125
127
128
130
131
132
137

139
140
140
142



9.1.3 Output Valuesand Precision . . . . ... ...................
9.14 ConfigurationOptions . . . . . .. .. ... ... ...
9.2 BenchmarkResults . ... ... ... ... ... .. ... ... .. . ...,
9.3 Analysis . . . . .. e e
9.3.1 UniprocessorResults . . . . . .. ... ... ... ... ... ...,
9.3.2 SMPArchitectures . . . . . .. ...

10 Conclusion and Future Research

10.1 Comparison of the Universe Model to Existing Approaches . . . . . . ... ..
10.1.1 Explicit Composition beyond the Universe Model . . . . . ... ... .. ..
10.1.2 Intra-objectContracts . . . . . . . . . . . . . oo v it
10.1.3 Implicit Composition of Contracts in the Universe Model . . . . . . ... ..
10.2 OpenResearch Questions . . . . . . . . ... ... .. .............
10.2.1 Treatment of Disjunctions . . . . . . . ... ... ..............
10.2.2 Composition of Conditional Contracts . . . . ... ... ... ........
103 Outlook . . . . . . . .. e e e e

APPENDICES

A Low-Level Algorithmic Details

A.1 The Message Passing Subsystem . . . . . ... ... ... ...........
A.1.1 Checking forrealmcompletion. . . . . . ... ... .. .. .........
A.1.2 Message Transmission . . . . .. ... ... ... ... ... ...,
A.13 In-statepredicates . .. ... ... .. ... ... ...
A.2 Releasing and Requesting Universes . . . . . . ... ..............
A.2.1 Manipulating the Set of Blocked Universes . . .. ... ...........
A2.2 RequestingaUniverse . ... .........................
A.2.3 Releasing aProcess fromaQueue . . . ... ... ... ... ...,

vi



2

LIST OF TABLES

Scenarios 1 and 2 — No contention and with contention. . . . . . ... ... 146

Scenario 3 — Process contention.

....................... 147

vii



=0 00 NV AW =

15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

LIST OF FIGURES

TWO CONCUITENt PTOCESSES . . . . .« v ¢ v v v v et e e e e e e e e e e 8
Message Ordering . . . . . . . . . .. ... 12
Causality . . . .. . . . . . . e 13
EnrollmentExample . . ... ... ... ... ... ... .. ... .. ..., 20
Dining PhilosophersinLinda . . . . . . . ... ... ... . ... ... .. 22
Dining Philosophers using Monitors . . . . . ... ... ... ... .. ..., 27
A Composability Problem . . . .. ... ... ... ... . . 000, 28
UML model of page classes in the wikiexample. . . . ... .......... 40
Elided definition of class REAL_PAGE in (universe-model extended) Eiffel. . . 41
Elided definition of class EVENT_MONITOR. Notice constraint includes a con-

ditional universereference. . . . . . ... ... ... L. 45
Functions and procedures for realm contraction. . . . . . ... ... ...... 62
Functions and procedures for realm completion. . . . . . . ... ... ... .. 64
Protocol of negotiation by a process forauniverse. . . ... ... ....... 66
Refinement of protocol in Figure 13 to avoid deadlocks using wound-wait

] 1 ¢ 10 4/ 72
Functions and procedures for acquiring a universe while avoiding deadlock. . . 79
Procedures for surrendering a universe to another process. . . .. ... .. .. 82
Example: Surrendering auniverse . . . . . ... ... o L 84
Procedures for releasing a universe fromarealm. . . ... ... ........ 86
Refinement of protocol in Figure 14 with cautious waiting for deadlock recovery 90
Refinement of function getMessage to support deadlock recovery. . . . . . . 98
Refinement of protocol in Figure 19 to negotiate conditional contracts. This

diagram depicts the most refined negotiation protocol. . . . . . . . ... .. 102
Areentrant mutex . . . . . . . . . ..ot e e e e e e e e e e e e e 108
Improvedreentrantmutex . . . . . . . . . . .. ... o 109
The PROCESS_BASEclass . . . . .. .. ... ... .. ..., 114
The PROCESSclass. . . . . . . . . o i ittt e it eeee 115
Aneventmonitor . . . . . . . . . ...t e e e e e e e e 116
Anevent generator . . . . . . . . ... i i e e e e e e e e e e 116
Creating ProCeSSES . . . . . v v v v v v et e e e e e e e e e e e e 117
Accessingglobaldata . . . . .. ... .. ... ... oL oo, 122
Thread-local once functions . . . . .. ... .. .. ... ... ...... 123
SharedData . . . . . ... . ... . ... .. 127
Deep Copy Example . . . . ... .. ... .. .. .. .. .. ... ... 136
Schema used to generate benchmark classes. . . . . . ... ........... 143

viii



34  Various algorithms for message passing and negotiation-state observation. . . . 163
35 Support procedures for requesting and releasing universes. . . ... ... ... 165



Chapter 1

Introduction

Applications in which multiple threads operate on shared data are notoriously difficult to
design. Without proper synchronization, concurrent access to shared objects can lead to
race conditions [NM92], and incorrect synchronization logic can lead to starvation and
deadlock. To address these concerns, we and others have looked to extend and articulate
Meyer’s design by contract method to raise the level of abstraction with which to design
such systems (cf. [Mey97, BJPW99, BS00, SBD03]). Contracts used for this purpose are
called synchronization contracts because they specify and constrain the legal sequences

!'in a concurrent system. For example, in a

of interaction among objects and processes
client—server system with one server and multiple clients, a synchronization contract could
assert that a client can perform a sequence of server operations without interference by

other clients. Our universe model [BS00, SBD03] is a powerful model of synchronization

contracts that integrates well with existing object-oriented languages. A key concept in this

1'We shall henceforth use the term process rather than thread, as the former is the term used more
frequently by other researchers. Throughout this thesis we treat these terms as synonyms.
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model is a run-time system that dynamically negotiates contracts among multiple groups
of objects by scheduling processes so as to guarantee mutual exclusion while attempting
to avoid starvation and avoid or recover from deadlock situations. This thesis describes the
design of a programming model for such contracts, the algorithms used to implement run-
time negotiation for them, documents extensions for the Eiffel programming language to

use that model, and provides evidence for its scalability.

1.1 Synchronization Contracts

The term contract refers to a formal agreement between client and supplier modules. Beug-
nard and others [BJPW99] identify a taxonomy of different kinds of contracts, the most fa-
miliar type being behavioral contracts, which include the pre- and post-condition features
of Eiffel [Mey92]. Behavioral contracts are specified in the interface of a supplier mod-
ule, and they spell out the module’s rights and responsibilities. In the design-by-contract
method, each module is designed to assume the rights and guarantee the responsibilities of
its contract, and the designer must verify that a client guarantees the rights assumed by any
supplier the client uses. Meyer shows how such contract-aware modules are dramatically
smaller and simpler than their contract-unaware counterparts [Mey97]. For example, the
former will not contain code to check operation pre-conditions, as the designer will have
verified that clients only invoke the operation when the pre-condition is satisfied.
Synchronization contracts afford a similar simplicity by allowing a designer to declar-
atively specify constraints on concurrent interaction in lieu of programming low-level syn-
chronization mechanisms and protocols. Unlike behavioral contracts, synchronization con-
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tracts are not verified at design time, but rather are negotiated at run time. In Java, for
example, when multiple client objects (running in different threads) invoke a synchronized
method on the same supplier object, the clients negotiate for exclusive access to the sup-
plier. The mechanism used to support this negotiation is a simple mutex, which each client
will attempt to lock before entering the method, but neither the client modules nor the
supplier module contains code for acquiring and releasing this mutex.

More powerful synchronization contracts employ more powerful synchronization
mechanisms. Consider, for example, a contract that guarantees a client exclusive access
to multiple suppliers. To prevent undesirable phenomena, such as starvation and deadlock,
clients and suppliers must negotiate this contract using a protocol, such as one of the com-
mon two-phase protocols [RSL78, FR85, HZ92, FHRT92]. The logic for such protocols is
not localized to a single client or supplier module. Thus the ability to specify this behav-
ior declaratively, via a contract, should simplify (as well as decouple) the implementation
of client and supplier modules. We believe that integrating ever more powerful models of
synchronization contracts into programming languages will dramatically simplify the de-

velopment and improve the reliability of multi-threaded shared-memory systems.

1.2 The Universe Model

The universe model supports a powerful class of synchronization contracts. The most ba-
sic forms are exclusion contracts, which guarantee exclusive access to a supplier S from
a client C, and conditional contracts, which guarantee that C has exclusive access to S
once some condition in S is satisfied. The model also supports composite contracts, which

3



combine exclusion and conditional contracts by conjunction and disjunction. Composite
contracts are used, for example, to guarantee a client exclusive access to multiple suppli-
ers. Moreover, composite contracts may arise implicitly, as when one module m; has an
exclusion contract with a supplier module mg, which itself has an exclusion contract with
another supplier m3. This transitivity of contract dependencies is essential for guaranteeing
mutual exclusion without violating information hiding, especially in hierarchically layered
systems [BS00]. Finally, the model also supports parameterized contracts, which prefix
a contract with an enabling predicate that may refer to complex state conditions (i.e., the
parameters) in the client. Parameterized contracts are used to specify how a client’s needs
change according to changes in the state of the client. At runtime, changes to these param-

eters implicitly trigger a renegotiation of the contract.

Because the underlying mechanisms to negotiate individual exclusion and conditional
contracts are well understood, support for these basic contracts is common in modern
object-oriented languages. By contrast, composite contracts have yet to gain widespread
adoption in general purpose programming languages?, presumably because the synchro-
nization mechanisms required to dynamically negotiate them are still the subject of current
research. This thesis contributes the design of a model for the general composition of syn-
chronization contracts, and an algorithm that uses a combination of synchronization mech-
anisms and protocols to dynamically negotiate these composite contracts while avoiding
starvation and avoiding or recovering from a large class of deadlocks. To validate the algo-

rithm, we extended the Eiffel language with primitives to declare universe-model contracts,

2A counterexample is [FP97].



and we implemented a compiler and run-time system for this extended language.

1.3 Thesis Overview

The remainder of the thesis is organized as follows. First, we survey existing research in the
area of concurrency, and establish the relationship between synchronization mechanisms
and synchronization contracts (Chapter 2). Second, we formally introduce the universe
model and its contract-specification language (Chapter 3). A major portion of the thesis
(Chapter 4 through Chapter 7) describes our algorithm to dynamically negotiate contracts
and schedule processes. This algorithm borrows and extends ideas from reference-counting
garbage collection [BAL*01] and combines deadlock avoidance and recovery mechanisms
[RSL78, HZ92],in order to negotiate contracts of the power expressible in the universe
model. For clarity of exposition, we first present the algorithm for a restricted class of con-
tracts, namely exclusion contracts and their explicit and implicit composites, and a negoti-
ation protocol that is starvation free and that avoids a limited class of deadlocks. We then
successively refine this algorithm to include a deadlock-recovery heuristic, which expands
the class of preventable deadlocks, and to handle the (more general) conditional contracts.
Chapter 8 then describes a set of extensions to the Eiffel programming language that make
the semantics of the universe model available to the programmer. Finally, we demonstrate
that the algorithm, as implemented in our extended Eiffel implementation, operates with
reasonable efficiency (Chapter 9) and conclude by comparing the universe model to alter-
native mechanisms that support synchronization contracts and discussing follow-on open

research questions (Chapter 10).



Chapter 2

State of the Art

Before defining the universe model in detail, we first survey the state of the art of current
research with respect to concurrency management. Fundamental for the study of concur-
rency management is the distinction between the two most common execution models for
concurrent systems, shared memory and message passing environments. These two models
differ both in their implementation and the programming paradigms that are available in
each model. In the shared memory model, concurrent processes access shared data and this
access must be regulated to avoid race conditions [NM92] (Section 2.1). In the message
passing model, each concurrent process exists in a separate dataspace and communicates
with other processes only via the sending and receiving of messages. Message passing in
a concurrent system is inherently non-deterministic and must be coordinated to avoid un-
predictable behavior (Section 2.2). A variety of approaches have been developed based on
these paradigmatic differences. Both execution models, however, assign client and server
(or supplier) roles to objects and resources, where clients access servers (concurrently) to
request services. This provides another dimension along which concurrent programming
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models can vary, focusing either on the client or the supplier as being responsible for syn-
chronization (Section 2.3)

A major challenge with either approach is to create high-level models that support the
programming of reliable concurrent systems. A key element in the design of such high-level
approaches is the treatment of multi-step transactions, which perform multiple operations
on one or more server objects atomically. Language support for multi-step transactions is
scarce (Section 2.4) and where available, introduces modularity problems, such as viola-
tion of information hiding, in hierarchically structured software designs (Section 2.5). We
conclude the survey of current research with an overview of existing synchronization mech-
anisms that support multi-step transactions, and classify them according to their capabilities

(Section 2.6).

2.1 Synchronization in Shared Memory Systems

The shared memory model of parallel programs assumes that processes share a common
memory area. Processes communicate by writing to and reading from a shared object in
that area. While communication through shared data structures is an essential feature of the
shared memory model, it is also an inherent problem. Consider the code in Figure 1, which
depicts two processes, P1 and P2. When P1 and P2 are running concurrently, instructions
can be executed in a variety of orders. The sequence (1), (2), (3), (4) is just as possible
as (1), (3), (2), (4) or (3), (1), (2), (4). Each version will result in the variables x and y
containing different values. Also, statements (1) and (3) can be executed simultaneously,
which makes the contents of t unpredictable. In other words, P1 and P2 interfere with each

7



process P1 process P1

t:=x*cl (1) t:=y*c2 (3)
x:=t (2) y:=t (4)
end process end process

Figure 1: Two concurrent processes

other.

Interference between processes occurs due to race conditions [NM92], which can take
the form of either data races, where two processes access the same data item simultane-
ously, or general races, where the execution of a process Q concurrently with another pro-
cess P alters the behavior of P. For example, in Figure 1, both data races and general races
can occur. Program correctness in shared memory systems is therefore generally predicated
on the concept of non-interference [0G76], which requires programming mechanisms that

guarantee non-interference by eliminating race conditions.

Traditionally, to guarantee non-interference, one must identify critical sections of code,
where processes might interfere with one another, and then use mutual exclusion mech-
anisms, such as semaphores [Dij68], to protect these critical sections. Most concurrent
programming languages provide higher-level constructs, such as monitors [Hoa74], which
automatically lock and unlock a module on procedure entry and exit, to describe mutual
exclusion mechanisms. One typically says that a shared resource or object has been locked

or acquired by a process when other processes are excluded from accessing it.

Semaphores and monitors supply all the mechanisms needed to ensure non-
interference. The real problem, however, is the correct identification of critical sections

8



and the generation of correct mutual exclusion code. If critical sections are misidentified,
then shared resources can be accessed concurrently, leading to unpredictable errors. Fur-
thermore, if mutual exclusion for more than one shared resource is needed, incorrect mutual
exclusion code may introduce deadlock or starvation [Tan92]. Most high-level approaches
that employ a shared memory model (including the universe model) employ mechanisms
to reduce or eliminate the potential for error. In particular, all data races can be eliminated
automatically by ensuring that a shared object is locked before it is accessed or modified.
Automatic elimination of data races is thus a minimum non-interference guarantee that any
safe synchronization mechanism can offer, though several elect not to follow the above ap-

proach for efficiency reasons [GJISB96] or to allow intra-object parallelism [CH74, Mit95].

However, this assurance cannot automatically be extended to general races. General
races occur primarily during multi-step transactions, which consist of sequences of service
invocations by and among multiple shared objects. We use the word transaction to suggest
that the sequence should either run to completion or not at all; that is, we want to remove
the possibility that service requests from other concurrent processes can interfere with the

sequence.

Many programming languages allow the programmer to guard transactions with a
mechanism for locking an object for the duration of such a transaction. However, even
if one requires that an object is locked before it is accessed (as in [Mey93]), there is no
guarantee that the lock is held throughout the acquisition. For instance, process P1 in the
above example could be rewritten as follows, where the synchronized statement locks

t for the duration of the enclosed block:



process P1

synchronized t do
t:=x*cl
end

synchronized t do

Xx:=t
end
end process

Observe that the code, after having been augmented with synchronization instructions,
will not access the shared object t without locking it first; however, the program is just as
vulnerable to interference as the original. While this defect is easy to detect in such a brief
segment of code, common programming practice can easily hide it.

Assume, for example, that x, t, and c1 are matrices. In such a case, the matrix op-
erations are often performed by subroutine calls, and temporary results are stored in an
intermediate variable to avoid unnecessary copying of a two-dimensional array. Suppose
that functions multiply and assign_from tmp reference an intermediate variable
(called t), which is global (i.e., not local to these functions). The correct code to avoid

non-interference would then look as follows:

process P1
synchronized t do
call multiply(x, c1)

call assign_from_tmp(x)

10



end

end process

To write the correct synchronization code requires that the programmer inspect the
internals of multiply and assign_from tmp to derive that t needs to be locked for
the duration of the transaction. This obligation is easy to overlook and its omission is a
clear violation of basic information hiding, because it exposes t. However, moving the
synchronized instruction inside the subroutines for proper information hiding would
allow other processes to interfere with the operation.

In summary, the shared memory model is prone to interference due to race conditions.
Race conditions must be eliminated through mutual exclusion mechanisms, which cannot

always guarantee the absence of general races and may violate information hiding.

2.2 Message Passing Systems

In a message passing system, each process has its own memory area, disjoint from all
the others. Processes communicate by sending messages to one another. Having exactly
one process per memory area automatically eliminates all data races and is considered
the major advantage of the message passing model [Hoa85]. Also, convenient formalisms
exist that make it easy to reason about the correctness of such programs [Hoa85, Mil80].
However, if one wishes to harness the message passing model for concurrent programming
by providing general purpose programming mechanisms, a number of new concurrency-
related problems arise that do not exist in the shared memory model. In this section, we
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Figure 2: Message Ordering

explore these problems and possible solutions to them.

The first problem is that of a copying overhead. When two processes want to access the
same data structure, the data must be copied. In the case of complex data structures, the
messages sent between processes can become so large that the communication overhead
dwarfs the actual computation. Since memory access speed has not increased at the same

rate as CPU speed, this can be a concern for time-critical applications.

The second problem is that of message ordering. Where the shared memory model has
a non-determinism problem when it comes to accessing shared data, the corresponding
problem in the message passing model is message ordering for computations that involve
several processes. Consider the time diagram in Figure 2. Horizontal lines represent pro-
cesses, arrows represent messages being sent, and the filled circles represent the events that
occur when messages are received. An event being depicted to the right of another event
means that it occurred at a later time. Whether event e3 occurs before event e4 (as depicted
in the figure) or vice versa depends solely on the order in which the corresponding mes-
sages arrive. The underlying problem is that message passing is an asynchronous operation
(meaning that messages initiate an independent thread of control in the receiver, while the
sender’s thread continues in parallel), whereas procedure calls in the shared memory model

12
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Figure 3: Causality

are synchronous operations.

Non-deterministic message arrival can cause problems when it violates causality. In-
tuitively, causality violations occur when an event e’ depends on the results of an event e,
but a process observes and acts upon the effects of e’ before it observes and acts upon the
effects of e (a formal definition can be found in [SM94]). For example, in Figure 3, process
P2 sends a message (e to e3) to inquire about P1’s state. P1 then sends a reply message (e3
to e6) with the required data. By the time the message arrives (e6), P1 has received another
message (e4), which has altered the state, so that the information is out of date. Here, e4
depends on the results of e3, but P2 observes and acts upon the results of e4 in e5, before it

observes and acts upon the results of e3 in e6. This is a causality violation.

The third problem is that because of the non-determinism of message passing, it can
be difficult to obtain a globally consistent view of the state of more than one process (also
called a distributed global snapshot). Specifically, if we have processes Py, ..., Py, with
states S1(1), ..., Sn(f) expressed as a function of the time #, then we may wish to compute a
function f that depends on several of the S;(r). Because message transit takes an unknown,
but non-zero amount of time, the values of the S;(r) will typically be gathered at different

13



times. If any state changes occur between the beginning and the end of the computation (a
violation of causality), then the result of f may be incorrect. The general problem of com-
putations that depend on the state of more than one process is sufficiently complex to have
spawned several independent research areas [Mat93]. Specifically, the case of obtaining a

consistent global snapshot has been shown to be inherently non-trivial [CT90].

Both the second and the third problem can be solved by having a message passing
mechanism that preserves causality. Unfortunately, the known general purpose algorithms
[Fid88, Mat89] that preserve causality use a vector of timestamps, containing one times-
tamp per process, and require a worst-case O(n) overhead per message, where n is the
number of processes. While there also exist a number of more efficient algorithms for the
area of distributed discrete-event simulations [CM81, Jef85] that preserve causality, they
require that each event carry a global timestamp. This requirement limits their applicability

to other domains.

Despite these problems, the message passing model has the advantage that it is very
amenable to being used in combination with formal methods [BB89, Mil80]. Even when
a full formalization is not possible, event-based schemes are generally so well understood
that they can be analyzed with reasonable ease by modeling them with statecharts [Har87].
However, based on the existing research we conjecture that a fully automated way to handle
causality-related problems may incur a substantial overhead that is linear in the number of
processes.
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2.3 High-Level Synchronization Paradigms

Having discussed the underlying execution models, we now turn to higher-level paradigms
that provide abstractions to deal with these execution models in a more convenient fashion.
Object-oriented techniques fall either in the category of passive objects or active objects.
In the active object model [Nie95], every object is driven by an autonomous process, com-
municating with other objects via message passing. Since it is often not practical to have
one separate thread of control for each object in a large system, most approaches actually
have one active object offering services and controlling several non-active objects that it
communicates with via synchronous communication [Car90, YT87]. In the passive object
model, objects do not embody processes. Instead, processes are threads of control that ex-
ist outside the object system and that call methods of shared objects directly. When one
relates these models to message passing and shared memory approaches, active objects
are the object-oriented equivalent of the message passing model, whereas passive objects

implement the shared memory model.

Both active and passive object systems distinguish between clients and servers. A server
object is a provider of services, which can be invoked by one or more clients. In the pas-
sive object model, services are invoked by procedure or method calls; in the active object
model, services are invoked by sending a message to the server. Synchronization for a
client-server interaction can either be performed by the server or by the client, and syn-
chronization mechanisms can vary considerably depending on which side is responsible

for synchronization [Bri72, CH74, FP97, Hoa74, Hol99, Mey93].

The design by contract approach prefers to call servers suppliers, but server is the es-
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tablished term for concurrent systems. We will therefore use the term server in the context
of synchronization mechanisms as an object or process that interacts concurrently with a
client, and the term supplier to emphasize the role as the provider of services in a contrac-

tual context.

2.3.1 Server-side Synchronization for Passive Objects

Among the first high-level mechanisms for shared memory systems was the concept of a
monitor [Hoa74], developed by Hoare and Brinch Hansen. A monitor is strictly a server-
side synchronization mechanism that is associated with each shared object: each time a
method in the shared object is invoked, the object is locked; upon return from the called
method, the object is unlocked. Monitors incorporate the concept of condition variables,
which embody an abstract condition. Processes can wait for the condition to become true
or signal that the condition has become true.

Monitors localize synchronization within the shared object that is being accessed and
automatically eliminate all data races. However, they cannot easily handle multi-step trans-
actions. Specifically, a monitor cannot be locked for a sequence of service invocations or
manage transactions that need to invoke services on more than one shared object without
risk of interference. While this problem can be handled for transactions by migrating client
code into the server (where the code becomes non-interruptible), such migration inflates
the module interface of server objects and cannot solve the problem where a client needs

to lock multiple servers.

Subsequent approaches attempted to correct the problem of dealing with multi-step
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transactions. Path expressions [CH74] allow a programmer to specify as part of the in-
terface of a shared object all legal combinations of service invocations. Such combina-
tions include both sequences of service invocations (thus handling multi-step transactions)
and which services can be invoked concurrently (increasing parallelism when compared to
monitors). The disadvantage of path expressions is that an error in the specification of a
path expression can create data races. Also, with respect to multi-step transactions, a path
expression has to anticipate all possible sequences of service invocations in order for a
client to be able to actually use them. Should the actual access pattern by a client and the
path expression disagree, this error is not necessarily detectable. Moreover, path expres-

sions cannot handle transactions that involve multiple servers.

A recent approach that attempts to deal with multi-step transactions on the server side
is the concept of synchronization rings [Hol99]. Synchronization rings are wrapper objects
around server objects that are separate from the server proper, but that can intercept service
invocations on one or more servers for synchronization purposes. Monitors can be simu-
lated by having one synchronization ring for each shared object, which locks the object
upon the beginning of a service invocation and unlocks it at the end. Unlike a monitor,
however, a synchronization ring can intercept service invocations for more than one shared
object and can synchronize access for entire multi-step transactions in a fashion similar
to path expressions. The disadvantage of synchronization rings is that they cannot guaran-
tee the absence of data races in general, and (like path expressions) need to anticipate and
duplicate all possible sequences of service invocations by clients.
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2.3.2 Client-side Synchronization for Passive Objects

Given the inherent difficulty of modeling synchronization for multi-step transactions on the
server side, a fair amount of research has focused on client-side synchronization. One of
the most powerful early approaches was that of conditional critical regions [Bri72]. While
never implemented in their original form, conditional critical regions formed the prototype
for more advanced approaches, as well as proof techniques such as the Owicki-Gries model
[OG76].

A conditional critical region is a statement of the form
lock R when C do S end.

This statement declares that as soon as the shared object R is available and condition C
becomes true, R is locked and statement S is executed. By ensuring that R can only be
accessed from within a conditional critical region, data races can be avoided. Obviously,
conditional critical regions can handle multi-step transactions of arbitrary length without
additional effort, as long as they use only the single server R during the transaction.

An obvious extension to conditional critical regions is to let R be a set of shared ob-
jects, which are locked atomically as a group, rather than R being a single resource. In this
extension, all resources in R have to be locked and C has to be true before S is executed.
Such extended conditional critical regions are the core concept upon which modern client-
side synchronization mechanisms such as SCOOP [Mey93, Mey97] and the Concurrent

Extensions of Eiffel (CEE) [JP93] are built!. CEE implements a holdif statement that has

IWhile it has been argued whether SCOOP and CEE use active and passive objects, both use
mechanisms that translate easily to general passive object schemes.
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the semantics of extended conditional critical regions. SCOOP implements extended con-
ditional critical regions as procedures: each argument passed to such a procedure that is a
shared object is considered to be part of R, and the precondition of the procedure functions
as the equivalent of C (preconditions are explicitly written in Eiffel, the language on which
SCOOP is based). The programming language Sather [Omo91] extended the concept of
conditional critical regions even further, allowing the specification of several alternative
sets of resources, where the acquisition of one of those alternative sets was sufficient to en-
ter the critical region. Thus, one could express conditions where exclusive access to either
one set of resources or another (or yet another, and so forth) was required. Sather’s lock-
ing mechanism is very powerful, but the actual implementation allowed for data races on
shared objects, if the programmer accidentally forget to include them in the lock statement.

In general, while client-side mechanisms can handle multi-step transactions more easily
than server-side mechanisms, they are frequently criticized because synchronization code
needs to be replicated in each client, rather than being encapsulated in a single shared object
[Blo79]. A large number of client-side synchronization mechanisms also permit data races
(notably Java [Han99]).

An inherent problem in client-side synchronization mechanisms is that a client may
specify that more than one server object is to be locked atomically, and that naive imple-
mentations of the locking of multiple shared objects may lead to deadlock. For example,
if a process P1 locks a shared object A first, and another shared object B second, while
another process P2 locks B first and A second, it is then possible that P1 has acquired A,
P2 has acquired B, at which point P1 cannot acquire B nor can P2 acquire A, and the two
processes are deadlocked. To solve the problem of acquiring multiple shared objects, one
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Figure 4: Enrollment Example

has therefore to construct a procedure for doing so that avoids deadlocks.

The problem of locking multiple shared objects occurs commonly in practice. Con-
sider, for example, Figure 4, taken from [BS00]. It depicts part of the enrollment system
of a fictional university. Boxes indicate objects in a passive object system, and arrows in-
dicate that one object uses the services of another. Alice’s ongoing transaction involves
no fewer than five shared objects (the accounting subsystem, EnrollCSE814, CSES814,
CSEA470, MTH472). Bob’s transaction, when it is his turn, will require at least three (the
accounting subsystem, StandaloneCSE814, CSE814). The objects EnrollCSE814 and Stan-
daloneCSE814 are distinct because they implement different synchronization contracts and
provide different methods (the former requiring access to a course and its prerequisites, the
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latter requiring access only to the course). The enrollment scenario therefore requires the

locking or acquisition of multiple shared objects.

2.3.3 Active Object Approaches

Because the focus of this thesis is on passive object schemes, we only briefly discuss
the most interesting active object synchronization schemes. One of the oldest approaches
to synchronization is Hoare’s concept of Communicating Sequential Processes, or CSP
[Hoa78]. It has been the basis both for programming languages such as OCCAM-2
[INM88] and specification languages such as LOTOS [BB89]. Its influence can also be

seen in the design of Ada’s Rendezvous mechanism.

CSP combines concurrency control (such as parallel and alternate execution) and input
and output (across message channels) as primary programming language constructs based
on the message passing model, facilitating the development of concurrent programs at a
higher level of abstraction. In addition, CSP was the first attempt at a process algebra.
Process algebras, such as CSP, CCS [Mil80], or ACP [BK85], provide algebraic languages

for the specification of processes and calculi for reasoning about their behavior.

More recently, the field of coordination languages [PA98] evolved from the idea that
computation and coordination can be separated in active objects. Coordination, in its most
general form, “is the process of building [concurrent] programs by gluing together active
pieces” [CG92]. Hoare’s Communicating Sequential Processes can be viewed as a model
for a coordination language, though Linda [GCCC85] is typically considered the earliest
genuine coordination language.
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process philosopher(i) process main

loop fori:=1to5do
think; out(“fork”, i);
in(“room ticket™); eval(philosopher(i));
in(“fork™, 1); ifi < 5 then
in(“fork”, imod 5 + 1); out(“room ticket”, i);
eat; end
out(“fork”, 1); end
out(“fork”, imod 5 + 1); end
out(“room ticket™);

end

end

Figure 5: Dining Philosophers in Linda

Among coordination languages, we distinguish between data-driven and control-driven
languages. Linda is the prototypical example of the former: all processes are separate enti-
ties, but have access to a shared data space, called a tuple space. The two basic primitives
in Linda allow the programmer to insert an item (a tuple) into the tuple space, or to retrieve
an item that matches a certain pattern. Figure 5 shows the classical dining philosophers

problem in Linda.

Here, the out primitive inserts a tuple such as ("fork", 1) into the shared tuple
space. The in primitive retrieves a tuple from the tuple space; should there be no matching
tuple in the space, the process blocks until another process inserts one. The main advantage
of a shared tuple space is that as a central authority on concurrency management, it reduces

the causality and global view problems of active object systems.

This solution to the dining philosophers problem is already much more straightforward
than the traditional ones based on mutual exclusion (such as in [Tan92]). But the more
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general advantage of a coordination language is that processes can be designed separately

from one another, interfacing through separate coordination interfaces.

Unlike data-based coordination languages, control-based coordination languages do not
know the concept of a shared data space. In control-based coordination languages, pro-
cesses are black boxes, communicating with their environment via input ports and output
ports defined in their interfaces. Channels between processes then create a set of producer-
consumer relationships between output ports of producers and input ports of consumers.
Examples of control-based coordination languages are PCL [TGC93], the POLYLITH

Software Bus [Pur94], or WRIGHT [AG97].

Of particular interest among the control-based variants are compositional coordination
languages such as Strand [Pat90] or PCN [Fos96]. Rather than coordinating processes as
black-box modules, these languages allow pieces of functional code to be composed to
form more complex processes. Their major disadvantage is that they require programs to
be written using functional or logical languages, since code with side-effects does not meet

their requirements for composability.

Almost all coordination languages rely on the active object model. Like CSP, they share
its advantages and shortcomings. Relying on data flow architectures, few coordination lan-
guages support coordinated multiple resource access natively (an exception is the synchro-
nizer concept [FA93], which operates in a fashion similar to the synchronization rings dis-
cussed in Section 2.3.1).
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2.4 Synchronization of Multi-step Transactions

In Section 2.1, we introduced the concept of a multi-step transaction as a sequence of
service invocations by and among multiple objects to perform some task and noted that
most languages guard transactions with a mechanism for synchronizing access to an object
for the duration of such a transaction, such as Java’s synchronized primitive or the holdif
statement of CEE. For example, in Java, the statement synchronized(ob) { ... }
directs the run-time system to execute an entire block of statements atomically with respect
to the object ob. Consequently, the process may perform a multi-step transaction on ob

without concern for interleaved invocations from other (concurrent) processes.

Unfortunately, a compiler cannot determine if a sequence of statements should exe-
cute as a multi-step transaction. Consequently, the proper use of such a feature cannot
be checked by the compiler and therefore requires designer discipline to use correctly.
Consider, for example, that the programmer forgot to encapsulate an intended multi-step
transaction inside the synchronized(ob) { ... } construct. The program would
compile without error, and the omission might go undetected for many runs until some

unfortunate timing sequence leads to an undesired interference by another process.

In traditional programming languages, multi-step transactions and the participation of
an operation in a multi-step transaction cannot be declared as part of a server module’s in-
terface. Instead, transactions must be implemented inside client code, which means that the
client programmer must know that certain sequences of server operations must be protected
in order to run atomically. Moreover, the use of features like synchronized violates the
principle of information hiding (as we have seen in Section 2.1), because the programmer
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may have to expose information about the implementation of the synchronized code to
properly use this feature.

Features such as synchronized are symptomatic of the generally limited support
[FP97] that popular programming languages provide for separation of concurrency con-
cerns. The module interface of ob lists a set of services with no hint of constraints on the
sequence of invocations of these services. Because interfaces cannot represent sequencing
constraints in client-side synchronization schemes, there is no way for a compiler to detect
the absence of a synchronized statement or to enforce the proper sequencing at run time.
However, to avoid an error, a programmer must know to guard a sequence of ob-service

invocations from interleaved ob calls by other concurrent processes.

2.5 Synchronization and Composability

Multi-step transactions are often not confined to accessing the services of only a single
server, as seen in Figure 4 in Section 2.3.2. Instead, they may access multiple shared ob-
jects, all of which need to be locked for the duration of the transaction. We now discuss how
the specification of transactions that access multiple shared objects affects the modularity
and composability of code.

The archetypical example for transactions that access more than one shared object is
the case of the dining philosophers, where each philosopher (as a multi-step transaction)
will repeatedly pick up two forks, eat with them, and put the forks down again. Textbook
solutions usually involve tricky semaphore manipulations, whereas the basic constraint of
the system is straightforward: Whenever a philosopher eats, he requires access to both the
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fork on his left-hand side and the fork on his right-hand side.

In a semi-formal notation, we might express this constraint as follows:

eating => left_fork N right_fork

and write the code for a philosopher as follows, where eat implements the relevant multi-

step transaction:

process philosopher
loop
think;
eating := true;
eat(left_fork, right fork);
eating := false;
end

end

From this code and the accompanying constraint, a runtime system should be able to
derive proper synchronization requirements. Now, compare how this brief, elegant require-
ment translates to an ad-hoc monitor-based solution in Figure 6, taken from [BA90].

From the standpoint of understandability, the solution in Figure 6 is inferior to the
smaller and more transparent solution above. Not only does the former fail to capture the
essence of the problem, but the salient synchronization information has been merged with
the program code in a way that makes it close to impossible to identify concurrent interac-
tion. Instead of abstracting and separating this information, the information is spread across
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monitor Fork Monitor
Fork: array(0..4) of Integer range 0..2:=(others=>2);
OK_to_eat: array(0..4) of Condition;

procedure Take Fork(I: Integer) is

begin
if (Fork(I) /= 2 then Wait (OK_to_Eat(I))); end if;
Fork((I+1) mod 5) := Fork((I+1l) mod 5)-1;
Fork((I-1) mod 5) := Fork((I-1l) mod 5)-1;

end Take_Fork;

procedure Release_Fork(I:Integer) is
begin
Fork (I+1l) mod 5) := Fork((I+1l) mod 5)+1;
Fork(I-1) mod 5) := Fork((I-1) mod 5)+1;
if Fork((I+1l) mod 5)=2 then
Signal (Ok_to_Eat((I+1l) mod 5);
end if;
if Fork((I-1) mod 5)=2 then
Signal (Ok_to_Eat((I-1) mod 5);
end if;
end Release_Fork;
end Fork_Monitor;

Figure 6: Dining Philosophers using Monitors
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Figure 7: A Composability Problem

and interleaved with the computation. Observe that the encapsulation of the mechanism in a
monitor does not serve to localize synchronization information. Instead, the monitor func-
tions as a central authority to avoid deadlock problems, but contains code that belongs
in the client, thereby violating information hiding. One indication of this violation is that
adding more clients (philosophers) requires the modification of the monitor code.

We recognize this problem as one of poor separation of concerns; the migration of
client code to a central monitor is due to the exigency of preventing deadlocks, making it
impossible to factor the code out. A side effect of this poor separation of concerns is a lack
of reliability. Code such as the one in Figure 6 is hard to verify, and the effect of changes is
not always apparent. Moreover, there is no mechanism in the code in Figure 6 to indicate
whether we have proper mutual exclusion.

Another problem encountered here is that of composability. If we were not using a cen-
tral locking mechanism in the code, adding more clients would run the risk of correctness
problems, most importantly race conditions and deadlocks. There are solutions that avoid
the need of a central locking mechanism (as discussed in Section 2.3.2), but they are diffi-
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cult to use correctly in an ad-hoc fashion. We cannot just connect modules together as we
do for sequential code and have some confidence that the combination works as expected.

This problem of composability becomes particularly visible if one considers a hierar-
chically layered system. How does one specify process interaction in such a way that hidden
implementation details at lower layers are not exposed to higher layers? For instance, sup-
pose there are two processes P1 and P2, accessing a shared object D through separate front
ends A and B (see Figure 7).

Unfortunately, making D visible violates the principle of information hiding—the pro-
cesses should only access the objects A and B directly, and their dependence on D should
not be exposed to the implementation of P1 or P2. But if D isn’t visible to P1 or P2, multi-
step transactions by P1 and P2 are likely to interfere with one another, because P1 and
P2 do not know that they have to lock D for the duration of such a transaction. Moving
the requirement to lock D to the code of A or B would lead to the same delocalization as
observed in the previous example.2

To solve this problem, one needs to determine the set of shared objects that are affected
by a transaction. This cannot be done in an ad-hoc fashion by the programmer without
exposing information that is private to A and B. The best way to infer the set of affected
shared objects would be to have the compiler or the runtime system infer the set of affected
objects automatically or semi-automatically. To allow the compiler or runtime system to
perform such inference requires in general that synchronization dependencies be declared,

i.e. a contractual approach be used.

2Note that while certain existing language mechanisms, such as Sather’s multi-branch locks or
SCOOP, can handle transactions that access a known set of shared objects, they do not effectively
handle layered systems.
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2.6 A Classification of Synchronization Mechanisms

We now turn to the discussion of non-trivial synchronization mechanisms for passive ob-
jects. We call a synchronization mechanism non-trivial if it can handle the atomic acquisi-
tion of multiple shared resources. Existing approaches specify the resources that are to be
acquired in a variety of ways. We organize these approaches according to a hierarchy of
synchronization contracts and classify the power of synchronization mechanisms according

to this hierarchy.

Specifically, we say that a synchronization mechanism is obviated by a family of syn-
chronization contracts, if the behavior implemented by the mechanism can be specified
declaratively using such contracts. The family of synchronization contracts that obviates
a synchronization mechanism therefore provide an upper bound on the expressiveness of
the mechanism without regards to implementation details. We adopt the following nota-
tional conventions to describe synchronization contracts. An exclusion contract between a
client C and a supplier S is denoted C — S, and a conditional contract between a client
C and a supplier S that depends on a predicate P is denoted C L. Also, if A and A’ are
synchronization contracts, then A A A’ and A v A’ describe their explicit conjunction and
disjunction, respectively. We do not explicitly consider parameterized contracts, because
the predicate on which a parameterized contract depends is not itself a contract but rather

an enabling condition on the actual contract.

We begin the classification by exploring two common approaches to synchronization—
two-phase locking and general resource allocation—and show that these approaches are ob-
viated by the explicit composition of exclusion contracts (Section 2.6.1). Such approaches
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provide the bottom-most tier in our hierarchy of synchronization mechanisms, although
the underlying deadlock avoidance and recovery mechanisms are the foundation on which
more powerful mechanisms have been built. We conclude with the survey of recent re-
search into more powerful synchronization mechanisms, specifically those that provide for
the explicit composition of conditional contracts, and explicit composition of contracts by

disjunction.

2.6.1 Existing Approaches for Explicit Composition of Synchroniza-

tion Contracts

The most common of the non-trivial synchronization mechanisms are obviated by the ex-
plicit composition of exclusion contracts. The client in such a contract is an active entity,
such as a process or a job running within a process. Clients employ a synchronization
mechanism (or collaborate with other clients according to a synchronization protocol) to
gain exclusive access to one or more suppliers. Each supplier is a passive entity, such as a
database record, a shared operating system resource, or in-memory data accessed as part of
a session in an e-commerce application. We discuss two typical styles of such mechanisms,
namely two-phase locking and resource allocation.

Additionally, there are also synchronization mechanisms that are more powerful in the
sense that they cannot be obviated by the explicit composition of exclusion contracts. In-
stead, they can only be obviated by the explicit composition of exclusion and conditional
contracts. Likewise, there exist other contractual synchronization models besides the uni-
verse model that allow for the explicit composition of conditional contracts. We discuss
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both of these types of contracts in Section 2.6.2.

Two-phase Locking Schemes

Two-phase locking [EGLT76] is a mechanism for consistent concurrent access to shared
resources in transaction-based systems, such as databases [BK91], CORBA Concurrency
Control Services [SKT196], and multi-user collaboration systems for software develop-
ment or CAD/CAM [ABAK9S5, Kai95]. In the two-phase locking model, a transaction con-
sists of two phases. In the first or growing phase, all shared resources are acquired, while
in the second or shrinking phase, all shared resources that have been acquired during the
growing phase are released. Resources can be acquired either en bloc at the start of the
growing phase, or on demand, as they are needed by the transaction, at any time during
the growing phase. They are, however, never released before the beginning of the shrinking
phase, and no further resources can be acquired once the shrinking phase has begun.
During the growing phase, concurrency control mechanisms are employed to ensure
that no deadlock occurs. Examples of concurrency control mechanisms for two-phase lock-
ing are wound-wait [RSL78], wait-die [RSL78], cautious waiting [HZ92], running prior-
ity [FR8S], immediate restart [SPG91], general waiting [BHG87] and wait-depth limited
(WDL) [FHRT92]. Of these, only wound-wait is automatically deadlock- and starvation-
free. Wait-die, cautious waiting, running priority, and immediate restart are deadlock-free,
but not starvation-free, and must be augmented with a mechanism to avoid starvation. WDL
and general waiting are not necessarily deadlock-free. To avoid deadlock using one of these
schemes requires a background process [ACM87, Che95] that determines if there is a cycle
of transactions waiting for one another. Because each of these algorithms vies for a fixed
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set {Ry, ..., Ry} of resources, they are collectively obviated by synchronization contracts
of the foorm T — Ry A ... AT — Ry, where the client is a transaction 7.

Most approaches to two-phase locking attempt to hide the details of concurrency control
from the programmer in ways that do not involve synchronization mechanisms or contracts.
In particular, many transaction-based systems do not require transaction code to explicitly
acquire resources before using them, thus making resource acquisition transparent to the
programmer. For example, the Enterprise JavaBeans specification suggests that a resource
should be automatically locked the first time it is accessed [DYKO01] without being directed
to do so explicitly by the programmer. Such automatic locking can eliminate the need for
both explicit synchronization mechanisms and explicitly specified synchronization con-
tracts.

Unfortunately, these automatic locking mechanisms recover from deadlock by rolling
back transactions. While transaction-based systems in general support rollback, it is prac-
tically infeasible to integrate rollbacks into a general purpose programming language.
Rolling back an arbitrary computation would involve storing and later recovering the en-
tire state of a process, including processor registers, the processor stack, and the state of
the operating system kernel with respect to the process, which in itself can be difficult or
impossible [EAWJ96]. In addition, certain operations, such as I/O or the creation of pro-
cesses, cannot be undone at all, and have to be delayed until no rollbacks are possible. This
is a common requirement of rollback-based systems such as [Jef85], and requires pervasive
changes to the language implementation and libraries. Finally, the need to store duplicate
state information requires CPU and memory overhead, which can be considerable [CPF99].

In summary, synchronization contracts obviate a large class of synchronization mech-
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anisms, as they are commonly used in transaction-based systems. Unlike mechanisms that
require rollback capability, a contractual approach can be supported by general purpose

programming languages.

Resource Allocation in Distributed Systems

Synchronization mechanisms for composite synchronization contracts have also been in-
vestigated extensively for distributed message passing systems, generally under the term
resource allocation. Resource allocation assumes that there is a set of processes, such that
each process P has a corresponding set R of resource requirements. Most commonly, each R
is simply a set {Ry, ..., Ry} of resources, all of which must be exclusively acquired by the
corresponding process P. Deadlock-free acquisition protocols for such requirements can
be found in [CM84, Rhe98, CS99]. This type of resource allocation protocol is obviated
by synchronization contracts of the form P — R; A ... A P — Ry. Alternatively, each
R can also be a set of sets {{R1,1,...,Ri .}, {Ri1,- - ,R,,k’}} of resources, where
exclusive access to one of the {R; 1, ... ,R,-,k'.} is needed to satisfy the resource require-
ments of P. Examples of deadlock-free acquisition protocols for these requirements can
be found in [BB98, BBFO1]. They are obviated by synchronization contracts of the form

(P—-)Rlyl/\.../\P——*Rl’kl)v...V(P—->R111/\.../\P—>Rl,k1).

2.6.2 Beyond Composition of Exclusion Contracts

In addition to the common mechanisms discussed so far, a number of more powerful syn-
chronization mechanisms have also been proposed. These more powerful mechanisms are
not obviated by the arbitrary composition of exclusion contracts, but are obviated by the
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composition of exclusion and conditional contracts. We present two representative synchro-
nization mechanisms [FP97, JP93] to illustrate this point. We then describe two contractual
synchronization models [Mey97, Hol99] that support the composition of conditional con-
tracts.

One of the more powerful procedural synchronization mechanisms that has been im-
plemented in a programming language is Sather’s multi-branch locking statement [FP97].

Its basic syntax is:

lock
whenl;,,...,L; Ky then statement_list|
whenlL;;,..., L : then statement_list,
end

When executed by a process P, this statement is used to regulate exclusive or conditional
access to a set of shared resources. Each L; ; can be either a mutex or a semantic condition.
A mutex provides exclusive access to an object §; ;, whereas a semantic condition provides
exclusive access to an object §; ; once L; ; has been acquired (if it is a mutex) or is satisfied
(if it is a semantic condition).3 As soon as all of the locks and conditions of a given when
branch can be locked or verified, respectively, the corresponding statement_list; is executed
and has exclusive access to all §; ;. Let A; j be the exclusion contract P — §;; if L;j is a

Li;
mutex, or the conditional contract P — S;j if L; j is a semantic condition. Then each when

3When we say that the mutex or condition provides exclusive access to an object, we describe
the intended use of this construct. This use is not enforced by the language implementation. For
example, Sather does not actually associate mutexes with specific shared resources, and it is legal
to access a shared object without executing a lock statement at all.
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branch of the multi-branch lock is obviated by the conjunction of those A; ; that obviate the
L;; of that particular branch. The entire multi-lock statement is obviated by a disjunction
of these conjunctions, namely (Aj 1 A ... A Al,kl) Vo..VALL AL A A’»"I)‘

In addition to the basic syntax above, Sather also allows the statement to have an else-
branch that is taken when none of the when-branches can be taken. The behavior of such an
else-branch cannot be obviated by synchronization contracts that conform to our existing
classification.*

Another powerful synchronization mechanism is expressed by the holdif statement of
the Concurrent Extensions of Eiffel [JP93]. The syntax of the holdif statement is holdif
condition then statement_list end. The condition of the holdif statement can be an arbi-
trary semantic predicate involving one or more supplier objects, Sy, . . ., Sp. The semantics
prescribe that all the S; are locked atomically as soon as the condition is true. Once that
occurs, the statement_list will be executed. Consequently, the holdif statement is obviated
by composite conditional contracts of the form P Cond S1AN...ANP Cond Sn, where
Cond is the condition of the holdif statement and P is the process executing it. Note that
Cond can be a predicate that depends on the state of more than one of the S;, such as
S1.size + So.size > M, with M being a constant.

A contractual approach that obviates the CEE holdif construct is described in the
SCOOP extension of Eiffel [Mey97]. SCOOP expresses synchronization contracts implic-

itly through the type and contract signature of an Eiffel routine. An Eiffel routine may have

arguments that are shared suppliers S1, ..., S,, and, optionally a precondition Pre. Such

4However, in Section 10.1.1 we will discuss how to extend that classification to cover alternative
interpretations of disjunctions that would obviate the behavior of the else-branch.
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a routine functions as a synchronization contract insofar as entry into the routine body is
blocked until exclusive access to all of the S; has been obtained and until Pre is verified.
This expresses a synchronization contract of the form P — S§; A ... A P — §p if the
routine has no precondition, and P bre SIN...AP bre Sp if there is a precondition Pre.
In either case, P is the process calling the routine.

The synchronization rings proposed in [Hol99] are another contractual approach. Con-
ceptually, a synchronization ring is a wrapper around one or more shared supplier objects
that intercepts access to these suppliers, permitting access only when one or more contracts
(called constraints) are satisfied, and blocking access otherwise. More than one synchro-
nization ring can be wrapped around a supplier, and in this case all the constraints provided
by any of the rings must be satisfied for a process to be granted access to the supplier
wrapped by these rings. The basic contracts that can be expressed by synchronization rings
are exclusion and conditional contracts, and by wrapping multiple synchronization rings
around the same supplier, they can effectively be composed by conjunction.’ An enhance-
ment that synchronization rings provide over synchronization contracts as expressed in our
classification scheme is that they allow for finer granularity of exclusion or conditional

contracts, and can specify that two processes can access a shared supplier concurrently, if

they do not interfere with one another within that supplier.6

5The synchronization ring model also offers shorthand forms of commonly used conditional
contracts as well as contracts that ensure quality of service, but these contract types are beyond the
scope of this thesis.

6Conce:pts that can express such concurrent access to a shared supplier are beyond the scope of
the universe model, but will be addressed in detail in Section 10.1.2.
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Chapter 3

The Universe Model

The universe model supports the declarative specification and run-time negotiation of ex-
clusion and conditional synchronization contracts, parameterized contracts, and their com-
posites. Under this model, processes operate in conceptually disjoint data spaces, which
expand and contract over the lifetime of a program in order to satisfy the synchronization
contracts of each process. We first introduce these ideas informally, in the context of an
example (Section 3.1), followed by a more formal description of the basic concepts (Sec-
tion 3.2). Contracts take the form of data invariants, called concurrency constraints, and
are associated with modules that encapsulate cohesive groups of objects, called universes
(Section 3.3). A run-time system negotiates these contracts by migrating universes among
the data spaces of the competing processes in order to satisfy the contracts that pertain to
these universes. The run-time system also schedules or suspends processes to guarantee
that dataspaces contain the necessary universes while ensuring the dataspaces remain dis-
joint (Section 3.4). A formal semantics of negotiation appears in [SBDO03]. In the sequel,
we refine the notion of a data space into a connected, directed graph of universes in shared
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memory, thus enabling migration among data spaces to be implemented by linking and
unlinking edges. Moreover, we refine the functionality of the run-time system into a proce-
dure that is invoked by each process to update its graph in a way that satisfies contractual

obligations.

3.1 Motivating Example

Consider the design of a web-based whiteboard, generally known as a wiki [LCO1], which
is used for on-line collaboration. A wiki allows a group of authors to use a web browser
to concurrently view, create, and edit text pages that are maintained in a shared repository.
Each page contains marked-up text with simple formatting instructions and hyperlinks to
other pages. Figure 8 depicts the design of classes to represent the pages that can be stored
and manipulated in a wiki.! Pages can be either permanently stored on secondary storage
(REAL_PAGE) or created dynamically from other data (VIRTUAL_PAGE). Virtual pages
generally provide various types of information about the system, such as lists of changes,
differences between two versions of a page, the local or global hyperlink structure, un-
reachable pages, or resource usage. To avoid accidental deletion of data, updating a real
page does not simply overwrite the old version, but stores that old version in a database, so
that it can be restored at a later date. In our design, the current version of a real page is al-
ways kept resident in memory, which allows for rapid browsing of pages, including global

full-text searches. Of course, keeping these pages in memory requires careful concurrency

I'The diagram uses the UML class diagram notation [BJR99], where boxes denote classes, lines
with a triangle denote generalization relationships where the triangle points to the more general
class, and arrows denote references.
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Figure 8: UML model of page classes in the wiki example.

management to avoid data races, starvation, and deadlock.

Figure 9 depicts part of the definition of class REAL_PAGE in our extended version of
Eiffel. The class definition is prefixed by the keyword universe (line 1), which indicates
that instances of this class may participate in the negotiation of synchronization contracts.
For brevity, we defer the formal definition of universe classes to Section 3.2. Lines 3-9 de-
clare class attributes of which there are three different types. The attributes query_db and
updating are called condition variables; they encode different synchronization states

of instances of this class and may be referenced in the premise of a parameterized con-
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1 universe class REAL_PAGE inherit PAGE

2 feature -- artributes

3 id: STRING -- name of this page

4 current_source: STRING -- most recent version of this page
5 history: LIST[VERSION] -- list of valid versions

6 database: DATABASE

7 change_log: CHANGE_LOG

8 cross_refs: CROSS_REFS

9 query_db, updating: BOOLEAN
10 feature -- methods
11 create_new_version(source: STRING) is
12 local now: TIME; version: VERSION
13 do
14 updating := true
15 now := get_current_time
16 version := database.add_new_version(id, source, now)
17 cross_refs.delete_links(id, links(current_source))
18 current_source := source
19 cross_refs.add_links(id, links(current_source))
20 change_log.register_change(" New Version", id, version, now)
21 history.prepend(version)
22 updating := false
23 end
24 concurrency
25 (query_db or updating) => database
26 updating => change_log and cross_refs

27 end -- class REAL_PAGE
Figure 9: Elided definition of class REAL_PAGE in (universe-model extended) Eiffel.

tract or the condition of a conditional contract. The attributes database, change_log,
and cross_refs are called universe variables; they reference objects that are instances
of universe classes.? Finally, attributes id, current_source, and history are local
object references that are neither condition nor universe variables.

A universe is a cohesive group of objects that migrate together during contract negoti-

ation. By virtue of being declared a universe class, instantiating REAL_PAGE creates not

2for brevity, the declarations of these other classes are elided in Figure 9
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only an instance of the class but also a new universe in which the instance is placed. This
will contain the actual instance of class REAL_PAGE, hereafter called the root object of the
universe. Here, and in the sequel, when we refer to a universe in a context that requires an
object, we mean the root object of the universe. The universe will also contain any objects
referenced by any (non-universe variable) attributes of an object that is already in the uni-
verse. Thus, for example, the universe will also contain the objects referenced by attributes
id, current_source, and history, along with any object references in these objects

recursively.

Lines 11-23 define a method that creates a new version of a page. This code adds the
new version to the global database, registers the change in the change log, and updates the
cross reference information. Synchronization is governed by the contract, or concurrency
constraint, which specifies that instances of the class may access database if query_db
or updating is true and that the class may also access change_log and cross_refs
if updating is true (lines 25-26). Only condition and universe variables may be refer-

enced in a synchronization contract.

Observe that create_new_version does not use low-level synchronization mech-
anisms to guarantee mutual exclusion. Instead, it simply manipulates the boolean at-
tribute updat ing. The run-time system uses the values of updating and query_db3
to determine which objects need to be migrated into the data space of the current pro-
cess, and this migration is performed automatically, without further intervention by the

programmer. Conceptually, boolean variables such as query_db and updating en-

3The query_db attribute is not manipulated in this example.
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code the abstract state of a universe; whereas universe references, such as database,
change_log, and cross_refs, denote shared resources that are needed by instances of
REAL_PAGE to implement its methods. The contract relates different configurations of the
abstract state to different resource requirements. Specifically, each universe reference—
database, change_log, and cross_ref s—denotes an exclusion contract with the
referenced universe; the predicates updating and query_db or updating denote
different synchronization-relevant state conditions; and the combination of these entities

by implication and conjunction constitutes a parameterized composite contract.

3.2 Formal introduction to the universe model

A program in the universe model comprises one or more sequential processes, each of
which is a thread of control whose data space, or realm, comprises a collection of universes
that the process is said to own. A universe (and thus any object contained within a universe)
cannot be owned by more than one process concurrently. In addition, a process cannot
legally access an object in a universe that it does not own. For example, accessing the object
referenced by the universe variable database (line 16 of Figure 9) would be illegal if this
object was not in the accessing process’s realm. Our model prescribes that an illegal access
results in a run-time exception. Consequently, programs written using the universe model
are guaranteed to be free of so-called data races as defined in [NM92].

Processes communicate indirectly using a mechanism called universe migration,
through which the owner of a universe changes at run time. Over the lifetime of a pro-
gram, a universe might change owners many times. Indeed, there could be times when a
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universe is not owned by any process at all. Process scheduling is managed by a run-time
system that attempts to migrate universes so as to satisfy the requirements of synchroniza-
tion contracts. A process can be scheduled only if every contract that pertains to every
universe in its realm is satisfied; we call such a realm sufficient.

A programmer manipulates a universe by performing operations on a distinguished
group member called the root object. Each universe has exactly one root object, and the
creation/destruction of a universe coincides with the creation/destruction of its root. A root
object is distinguished as such by being an instance of a universe class, which (in Eiffel)
we denote using the keyword universe, as depicted in Figure 9 (line 1). Attributes of a
universe class may be condition variables, universe variables, or regular attributes that are
not used to declare a contract. Instantiating a universe class creates both a new object and a
new universe in which to place the newly instantiated object. Instantiating a non-universe
class creates a new object and places it in the same universe as the object that invoked the
creation procedure to construct the newly instantiated object.

During the execution of a program, a process will occasionally execute an instruction
that affects the contents of its realm. In Figure 9, for example, the assignment to the instance
variable updat ing on line 13 affects the realm because the contract requires database,
change_log, and cross_refs to be a part of the realm whenever updating is true.
Likewise, the assignment on line 22 affects the realm. When a process invokes one of these
realm-affecting operations, execution of the process is suspended and the realm is adjusted
by universe migration. This adjustment involves both removing unneeded universes from
the realm and adding universes that are required to make the realm sufficient. If the ad-
Jjustment is successful, then the process can resume execution; otherwise, the process is
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1 universe class EVENT_MONITOR

2 feature { NONE } - private attributes

3 channel : CHANNEL - universe variable
4 reading : BOOLEAN - condition variable

5 concurrency
6 reading => channel when channel.has_data
7 end - class EVENT_MONITOR

Figure 10: Elided definition of class EVENT_MONITOR. Notice constraint includes a con-
ditional universe reference.

blocked until its needs can be satisfied.

3.3 Contract language: Concurrency constraints

Contracts in our model are expressed as concurrency constraints, which specify the con-
ditions under which operations over objects in a given universe might access objects in
other universes. A concurrency constraint is a limited propositional formula, whose atomic

propositions are either conditions or universe references.

3.3.1 Conditions and Condition Verification

A condition is a (full) propositional formula, whose atomic propositions are condition vari-
ables. We distinguish two classes of conditions—local and remote. The syntax of a local

condition is defined as follows:

local_condition ::= true

|  conditionVar
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|  mot local_condition
| local_condition and local_condition
| local_condition lor local_condition

|  local_condition = local_condition

Here, the terminal symbol conditionVar refers to a condition variable, and the terminal
symbol rrue is the trivial condition. Also, the usual precedences and associativities of logi-

cal operators apply.

Likewise, a remote condition is a full propositional formula, whose atomic propositions
are either condition variables or a remote condition variables, which are condition variables

of a universe that is referenced indirectly through a universe variable. More formally:

remote_condition = true
|  conditionVar
|  universeVar . conditionVar
|  not remote_condition
|  remote_condition and remote_condition
|  remote_condition lor remote_condition

|  remote_condition = remote_condition

Here, the terminal symbol universeVar refers to a universe variable, and (while not shown
in this grammar) a remote condition may reference at most one universe variable. For
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example, u.x and u.y is a syntactically legal remote condition; whereas u.x and v.y is illegal
because it references two universe variables (4 and v). The atomic constraints of the
concurrency constraint on line 6 in Figure 10 illustrate both types of conditions, where

reading and channel.has_data denote local and remote conditions, respectively.

A condition is verified by universes, the root objects of which provide value assign-
ments to condition and universe variables that appear in the condition. Let u be a universe
and ¢ be a local condition whose free variables refer to condition variables in u. We say
that u verifies c if, by substituting the value u.x for each condition variable x that is free
in c, the resulting formula is logically valid. Remote conditions must be verified by two
universes, a local universe (#) and a remote universe (v). Let ¢ be a remote condition all of
whose free variables refer either to a condition variable in «, a condition variable in v, or
a distinguished universe variable x in u. We say that 4 and v verify c if, by substituting the
value u.y for each local condition variable y in ¢, and by substituting v.y for each remote

condition variable x.y in c, the resulting formula is logically valid.

3.3.2 Constraints and Constraint Satisfaction

Syntactically, concurrency constraints are limited propositional formulae whose atomic
propositions are either conditions or universe references, which specify mutually-exclusive
access dependencies. Here, and in the sequel, we adopt a typographic distinction between
conditions and constraints, using using lower-case italic letters at the beginning of the al-
phabet (e.g., c, ¢’) to refer to conditions and capital calligraphic letters at the beginning
of the alphabet (e.g., C, C’) to refer to constraints. The formal syntax of a concurrency
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constraint is as follows:

constraint = true
|  universeVar
|  universeVar when remote_condition
| local_condition = constraint
|  constraint and constraint

|  constraint or constraint

A constraint may be the trivial constant true (line 1), a definite universe reference (line 2),
a conditional universe reference (line 3), a contextual constraint (line 4), or a composite
constraint (lines 5-6). A definite universe reference asserts that the referent is in the same
realm as the client universe to which the constraint applies. The reference to change_log

in line 26 of Figure 9 is an example of a definite universe reference.

A conditional universe reference also asserts that the referent is in the realm, but it
contains an additional condition (called a when clause) that is used to defer the migration
of a universe into a realm until the condition can be verified. For example, the expression
channel when channel.has_data (line 6 of Figure 10) is a conditional universe
reference.* A contextual constraint of the form ¢ = C asserts C whenever condition ¢

holds. Definite and conditional universe references are used to declare exclusion and con-

4This example is described in detail in [SBD03]. Also, notice that the when-clause is a new
feature added after the publication of [BS00]. It replaces: reading => queue.has_data A queue
with reading = queue when queue.has_data.
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ditional contracts respectively;> whereas contextual constraints are used to declare param-
eterized contracts.

Semantically, we say a concurrency constraint is satisfied by a universe in the context
of a set of dependent universes. Here, and in the sequel, we carefully distinguish the term
verify, which we use to evaluate conditions, with satisfy (or locally satisfy), which we use
to evaluate constraints. Let U be a set of (root objects of) universes, u € U be a specific
object in this set, and C be a well-typed constraint that pertains to u. We say that C is locally

satisfied by u in the context of U if C is logically valid under the following substitution:

1. Each local condition c that appears as the premise of a contextual constraint in C is
replaced with the value:
e true if u verifies c; and
o false otherwise
2. Each definite (resp. conditional) universe reference v (resp. v when c) in C is replaced
with the value:
e true if u.vis either null or an element of the set U.
o false otherwise
Observe that there are two distinct cases to consider in the local evaluation of a universe

reference. First, the referent could be null, in which case we interpret the reference as

vacuously true.® On the other hand, the referent might not be null, in which case we

5 A conditional contract C L S in the universe model requires that P depends only on the state
of C and S, but on no other universes.
6See [SBD03] for the rationale behind this decision.
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interpret the reference as true provided that the universe «’ associated with the referent is
contained in the context U. Observe also that an unverified when clause can only defer
migration into a realm; it does not affect the local satisfiability of a constraint and thus

cannot cause the referent universe to be migrated out of a realm.

For example, the full constraint in Figure 10 enforces the following behavior: While
reading is false, nothing is required; however, once a process assigns reading the
value true, if the referent of channel is non-null, then the process may not continue unless
the referent is in its realm. If the referent is not already in the process’s realm, its migration
into the realm will be deferred until such time as the attribute channel .has_data is set
(by another process) to true. This design not only ensures mutual exclusion; it also causes
EVENT_MONITOR objects to block until the channel contains data. Moreover, once the
channel is in the realm, it will remain there until the process sets reading to false, even
if some operation on the channel causes channel.has_data to become false, which
could happen for example if the process empties the channel. Thus, a when clause is merely
a mechanism for deferring migration into a realm; it cannot be thought of as an invariant

that holds whenever the referent universe is in the realm.

We use local satisfaction to formally define the sufficiency of a realm. A set U of uni-
verses is sufficient if, for every u € U, we can show that u locally satisfies its associated
concurrency constraint in the context of U. Sufficiency is the basis for process scheduling
and universe migration, which we now discuss.
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3.4 Contract Negotiation and the Run-time System

The universe model includes the concept of a run-time system, which is responsible for
negotiating contracts and scheduling processes for execution. Under this model, the op-
erational state of a process alternates between being runnable and being blocked, and a
runnable process remains runnable until it executes a realm-affecting operation, i.e., it mod-
ifies a condition or universe variable in some universe in its realm. A programmer using the
universe model understands the synchronization effects of her program by thinking of each
such operation as trapping into the kernel of this run-time system. The idea is that a realm-
affecting operation could create a new universe or modify the parameters of a parameterized
or conditional contract, all of which could cause active contracts to be re-negotiated. In re-
sponse to such an operation, the run-time system then renegotiates any affected contracts

and returns control to a process once all of its relevant contracts are satisfied.

More precisely, a process is deemed runnable if its realm satisfies the following condi-
tions. At minimum, the realm of a process must contain any universe whose root object is
actively executing a method. That is, the realm must contain any universe whose root is the
object of a method’ with an activation record on the call stack. We refer to the set of such
universes as the universe stack and denote it using the symbol S, where p is the process
to which it applies. In addition to these minimum requirements, the realm of a runnable

process must be sufficient and minimal. More formally, a blocked process p with realm U

7By “object of a method”, we mean the object referred to by the keyword this in C++, self
in SmallTalk, or Current in Eiffel. An activation record is created with a this pointer that
references object ob whenever a statement of the form ob.method (. . .) is invoked.
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is deemed runnable if and only if:

S, CU
A

sufficient(U)
A

=30 ' CU|S, CU" A sufficient(U’)

We refer to a realm that satisfies these conditions as a complete realm, and we refer to the

process of making a blocked process runnable as updating the realm.

The run-time system is responsible for updating the realms of all the processes in the
system. This is accomplished by migrating universes among the realms of all contending
processes in order to complete as many realms as possible. Thus, the operational semantics
of process scheduling are defined entirely in terms of universe migration.8 A major contri-
bution of this thesis is a distributed algorithm for negotiating universe-model contracts by
simulating the migration of universes among the realms of competing processes. Because
real threads operate over shared memory as opposed to private data spaces, universe migra-
tion need not involve physically copying the objects to new memory locations. Rather, each
universe is attributed by a handle that identifies the owner process, and migration is sim-
ulated by manipulating that attribute. More generally, the realm-update procedure is run
independently by each process in a running system and several processes may be running
the realm-update procedure for their respective realms concurrently; universe migration
is implemented as a protocol of universe acquisition and release, such that processes will

fairly negotiate for contended universes and a process will block if it cannot acquire all of

8For a detailed treatment of these semantics see [SBDO03].
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the universes it needs; and acquisition and release are implemented by manipulating data
in shared memory. The challenge to implementing such an algorithm is to efficiently rep-
resent realms and to design the algorithm so that processes running the algorithm avoid

starvation and deadlock.
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Chapter 4

Realm update

Our realm-update procedure, which is invoked when a process performs a realm-affecting
operation, renegotiates the contracts of the invoking process and returns once this renego-
tiation concludes and the realm of the process is once again complete. Before delving into
the algorithms used in this procedure, we first show how a realm is a directed graph of
universes that satisfy a reachability property and that we can represent the realm to which a
given universe belongs using a marking strategy (Section 4.1). Our algorithms maintain the
reachability property using depth-first and breadth-first search procedures that consult and
update these markings. The algorithm that releases unneeded universes is based on con-
cepts from garbage collection [Wil92], specifically the use of reference-counting collection
with cycle detection [BAR 03] (Section 4.3). By contrast, the algorithm that acquires new
universes (Section 4.4) combines several ideas to fairly migrate universes while avoiding
or automatically recovering from a large class of deadlock conditions (Chapter 5).
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4.1 Run-time representation of realms

To motivate our implementation of realms and the algorithms that maintain them, we begin
by viewing the set of universes in a running system as a directed graph. Let G represent
the global universe graph, whose nodes correspond to the universes in a running system,
and each of whose directed edges corresponds to a link from a source to a referent universe
through a universe variable. Then a complete realm R, of a process p is a subgraph of G
that contains the universe stack Sp and all nodes reachable via a path of so-called accessible
edges. Anedge u — v € G is accessible if v is in a minimal set of universes that are needed
to locally satisfy u’s constraint. In such a case, we also say that v is accessible from u. For
instance, if u has the constraint (¢ = v;) A (—c¢ = v9) and c is true, then the edge u — v;
is accessible, whereas u — v» is not accessible.

The function accessibles returns a set of target nodes that are accessible from a

given source node:
function accessibles( u : Universe ) returns Set[Universe];

This function is computed based on the concurrency constraint associated with u and
the values of condition variables in u. For efficiency, our compiler generates a custom
accessibles function for each universe class using a symbolic encoding based on
binary-decision diagrams (BDDs) [Bry86]. Note that accessibles (u) is only well-
defined when u is in the realm of the current process.

Because concurrency constraints may contain disjunctions, the set of accessible targets
is non-deterministic. The implementation of accessibles resolves the non-determinism
by choosing from among the multiple possible choices and remembering the choice. More
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precisely, the choice made by accessibles (u) persists until # witnesses a realm-

affecting operation or is migrated to another realm.

The extent of a realm can be computed using reachability algorithms, such as breadth-
first search, by recursively exploring the accessible edges that emanate from nodes on the
universe stack. In the sequel, we present algorithms that update a realm dynamically, fol-
lowing a realm-affecting operation. To support these algorithms, each universe contains an
owner attribute, which records the process that currently owns the universe, and a reference
count, which records the number of universes in the same realm from which this universe is
accessible. More precisely, the reference count of a universe u, with respect to a process p,
is the number of accessible edges v — u where u is the target universe, plus one if u € Sp.
These attributes are accessed using the functions owner and RC respectively. The function
raccessibles (u) (short for “realm” accessibles) returns the set of universes that are
in the set accessibles (u#) and also in the same realm as u (i.e., for which the owner is

the same is the owner of u).

To implement the algorithms that follow, we rely on a few basic synchronization prim-
itives. First, we assume that every universe u and every process p has an associated mutex,
which can be locked by the instructions LOCK (u) or LOCK (p) , respectively, and similarly
be unlocked by the instructions UNLOCK (u) or UNLOCK (p) . Second, to handle waiting
for conditions, we assume the presence of an abstract wait until primitive with the follow-

ing syntax and semantics.

wait until cond; then statement,
or until cond, then statementq
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or until cond, then statement,

end

A wait until statement suspends the current process until one of the conditions cond; is true,
at which time the corresponding statement; is executed. We assume that when a process p
executes a wait until statement, checking for conditions is an atomic operation enclosed in
LOCK (p) ...UNLOCK (p) statements. If more than one cond; is true, the first alternative in
the list is chosen. We have designed the cond; so that a straightforward semaphore-based

implementation is possible.

4.2 Realm-update procedure

A realm-affecting operation causes an implicit release of a set R~ of universes that are no
longer required and an implicit request for a set Rt of new universes needed to complete the
new realm. The semantics of the universe model guarantee that every universe in R~ U R™
is reachable from the universe w that witnessed the realm-affecting operation. Our realm-
update procedure computes and releases R~ using a procedure called realm contraction
and then computes and acquires R using a procedure called realm completion.

Both Rt and R~ can be derived from the change to accessibles (w) and the
change to the universe stack S, between the previous realm update and this one. The
change to accessibles (w) could make edges inaccessible that were previously ac-
cessible from w or vice versa. Likewise, the change in Sp could make inaccessible those
universes that are no longer on the stack, or make accessible those universes that have been
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added to the stack since the previous realm update. Thus, to update a realm requires know-
ing: (1) the value of accessibles (w) immediately before and immediately after the
operation, and (2) the contents of the universe stack immediately following and immedi-
ately preceding the previous and current realm-update operations respectively.

Letold ustack (p) be the universes in Sp immediately following the previous realm
update, and let ustack (p) be the set of universes in S, upon invocation of the current
update procedure. Let o1d_acc be the set of universes accessible from w after the previous
realm update and new_acc be the set of universes accessible from w at the beginning of
this update (i.e., immediately following the most recent realm-affecting operation). R™
is then the set of universes that become inaccessible as a result of deleting edges from
w to universes that occur in old_ustack (p) or old_acc, but not in ustack (p) or
new_acc. Conversely, Rt is the set of universes that become accessible as a result of
adding edges from w to the universes that occur in ustack (p) or new_acc, but not in
old.ustack (p) orold.acc.

This process is implemented by procedure updateRealm:

proc updateRealm( witness : Universe,
old_acc : Set[Universe],
new_acc : Set[Universe],
p : Process ) is
var garbage, newlinks : Set[Universe];
begin
garbage := (old_ustack(p) + old_acc) -

(ustack(p) + new_acc);
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newlinks := (ustack(p) + new_acc) -
(old_ustack(p) + old_acc);
contractRealm(garbage, p);
completeRealm(witness, newlinks, p);
old_ustack(p) := ustack(p);

end

The procedure first computes sets garbage and newlinks, which describe those uni-
verses that have become disconnected or have been made immediately accessible, respec-
tively. Procedure contractRealmis invoked to compute and remove R~ from the realm
and completeRealm is invoked to compute and add R* to the realm. Finally, the uni-
verse stack is saved for the next invocation of upda teRealm. The remainder of this chap-

ter describes the realm contraction and realm completion procedures in detail.

4.3 Realm contraction

A realm is contracted by unlinking edges between universes that, as a result of a realm-
affecting operation, are no longer accessible from either the witness or the universe stack. If,
after being unlinked, a universe is no longer the target of any accessible edges, then the uni-
verse is inaccessible to the process and is thus released and made available for migration to
other realms. Of course, releasing one universe could unlink others, which may cause more
universes to be released. This behavior is reminiscent of the way in which dynamically
allocated memory is returned to the heap using reference-counting approaches to garbage
collection. Our realm-contraction algorithm borrows from recent results in this area, specif-
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ically reference-counting with cycle detection [MWL90, JL96, BAL*01, BAR103], which
we now briefly review.

Simple reference-counting approaches to garbage collection cannot handle cycles of
garbage because nodes in a garbage cycle will have non-zero reference counts even when
these nodes are not reachable. To handle cycles, a collector must treat each node with a
non-zero reference count as a potential root in a garbage cycle. The algorithms of Bacon
et al. [BAR'03] detect cycles by performing a depth-first search of each potential cycle
root, subtracting the reference counts to see if they go to 0. If the reference count of every
visited node goes to zero, then a garbage cycle has been discovered, and every such node
can be released. By contrast, the existence of a node with a non-zero reference count refutes
the existence of a garbage cycle involving that node; thus any reference counts that were
decremented during cycle detection must now be repaired. We adapted these algorithms to
the needs of the universe model.

Figure 11 depicts our realm-contraction algorithms. The function unlink uses two
supporting functions—df sDecRef and df sIncRef—to remove a link to a universe
and return the set of universes that need to be released as a result of removing this link.
Function dfsDecRef performs a depth-first traversal of all universes reachable from a
given universe u. When a universe is visited, its reference count is decremented by one, and
it is added to a buffer of visited universes, which is returned to the caller. Upon completion,
all universes reachable from u will have been visited along every realm-accessible edge.
Moreover, the reference count of each visited universe will have been decremented by the
number of incoming edges that were traversed.

Function df sIncRef is used to repair the reference counts of universes that are not
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members of a garbage cycle. Following df sDecRef, any universe u € nodes with a
non-zero reference count is still reachable; thus any universe v reachable from u is not part
of a garbage cycle. The set of all such v is discovered by a depth-first traversal, originating
at u. A side-effect of this traversal is to increment the reference count of each such v, thus
repairing it. Observe that the function will be initially invoked on a universe with a non-
zero reference count, and the intention is to increment the reference count of each universe
reachable from this source but not increment the count of the universe itself. We achieve
this effect using a parameter inc, which defaults to 0 when the function is invoked without
providing a value for this parameter, but which is always supplied with the value 1 when
the function is invoked recursively.

The unlink function works in three phases. First, df sDecRef is invoked to decre-
ment the reference count of every universe reachable from the universe referenced by pa-
rameter t along every reachable edge. These universes are returned in the set nodes. Many
of these nodes will have reference counts of 0; however, some of these counts may be in-
correct, as df sDecRef may have decremented the reference count of a universe whose
reference count is unaffected by the unlinking of t. The for loop discovers and repairs the
count of such universes by first identifying those universes s € nodes with non-zero refer-
ence counts and then incrementing the reference counts of all universes reachable from each
such s (using df sIncRef (s) ). Each invocation of df sIncRef unmarks and returns a
set of universes, each of which has a reference count greater than 0, and these universes are
removed from nodes. Notice that the loop iterates over a copy of the set nodes and thus
the iteration is unaffected by the removal of unmarked universes from nodes in the body
of the loop. When the loop terminates, every universe that remains in the set nodes will
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function dfsDecRef( u : Universe )
returns Set[Universe] is
var visited : Set[Universe] := @,

begin
RC(u) :=RC(u) - 1;
if (- Marked(u)) then

Marked(u) := true;
insert u into visited;
for (s € raccessibles(u)) do
visited := visited
U dfsDecRef(s);
end
end
return visited;
end

function unlink( t : Universe )
returns Set[Universe] is
var nodes : Set[Universe];
var changed : bool;
begin
nodes := dfsDecRef{(t);
for (s € nodes) do
if (RC(s) # 0 and Marked(s)) then
nodes := nodes - dfsIncRef(s);
end
end
return nodes;
end

function dfsIncRef( u : Universe,
inc : Natural :=0)
returns Set[Universe] is
var liveNodes : Set[Universe] := &;
begin
RC(u) := RC(u) + inc;
insert u into liveNodes;
if (Marked(u)) then
Marked(u) := false;
for (v € raccessibles(u)) do
liveNodes := liveNodes
U dfsIncRef(v, 1);
end
end
return liveNodes;
end

proc releaseAll( nodes : Set[Universe],
p : Process) is
begin
for (s € nodes) do
release(s, p);
end
end

proc contractRealm(garbage : Set[Universe],
p : Process) is
begin
for (g € garbage) do
releaseAll(unlink(g), p);
end
end

Figure 11: Functions and procedures for realm contraction.
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have a zero reference count. This set is returned to the caller.

The function contractRealm modifies the realm by first determining which targets
of the witness universe should be unlinked and then calling unlink on each such uni-
verse. The function releaseAll merely invokes another function, release, on every
universe in the set returned by unlink. Observe that whereas every function in Figure 11
operates within the realm of a given process, these functions do not require additional
synchronization logic. By contrast, release modifies resources that are used by realm-
completion functions; thus we defer its treatment to the sequel.

Finally, our implementation actually incorporates several optimizations of these algo-
rithms. First, because most realms tend to be trees, df sDecRef is optimized to handle
tree structures more efficiently. If the initial universe has a reference count of 1 prior to
being marked, then the universe can be released immediately and not inserted into the set
returned by df sDefRef. This same optimization can be applied to all children recur-
sively, provided that no child has a reference count greater than 1 prior to marking. In
addition, function contractRealm optimizes its calls to unlink by performing all of
the df sDecRef operations over the universes in garbage before performing any of the
df sIncRef operations. This improves the efficiency of contraction in the case when a

cycle spans the set of universes reachable from two or more of the universes in garbage.

4.4 Realm completion

A realm is completed by linking universes that, as a result of a realm-affecting operation,
are now accessible. Linking a universe 4 may require linking universes that 4 depends upon
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proc completeRealm( w : Universe,
newlinks : Set[Universe],
p: Process ) is

proc link( u : Universe,
p : Process,
rc : Natural := 1) is

var u : Universe; begin
begin LOCK(u),
witness(p) := w; if (owner(u) = p) then
pending(p) :=0; RC(u) := RC(u) + rc;
for (s € newlinks) do else
link(s, p); acquire(u, p, rc);
end end;
while (—realmComplete(p)) do UNLOCK((u);
u := nextAcquired(p); end
bfsLink(u,p);
end
end

function bfsLink( r : Universe,
p : Process ) is
begin
for (c € accessibles(r)) do
link(c, p);
end
end

Figure 12: Functions and procedures for realm completion.

to satisfy its concurrency constraint. Thus, our algorithms (Figure 12) operate by travers-
ing (breadth first) edges that are accessible from universes in the realm—specifically from
a witness universe w or from a universe that has appeared on the universe stack since the
previous realm update. This initial set of universes to traverse is provided by the param-
eter newlinks, supplied by the call from the procedure updateRealm. As with any
recursive graph traversal, our algorithm employs a marking strategy, where a universe is
considered to be marked if it is part of the realm of the process whose realm is being com-

pleted.

Function 1ink attempts to link a universe u using rc as the initial reference count for
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u.! A marked universe is linked by incrementing its reference count; whereas an unmarked
universe is linked by acquiring it. Note that 1 ink needs to be atomic to avoid interference

by other processes and thus locks the target universe for the duration of its execution.

Because a process may not be able to immediately acquire a universe, acquisition is
a two-step protocol of negotiation. Figure 13 depicts the different steps of negotiation as
states and transitions in an hierarchical labeled-transition system (LTS).2 Process p begins
negotiation for a universe u by first requesting to acquire u, as indicated by the transition
acquire. If u is being used by another process, then p’s negotiation for u stalls in the
Requesting state, where it cannot proceed until the other process finishes using it. Later,
when the process that owns u releases it (by calling procedure release), that process
will check to see if any other processes have requested acquisition for 4 and then explicitly
notify one of these requesters. In the sequel, we describe how procedure acquire handles
this case by registering a request for 4 and then returning, so that p may try to acquire other
universes while waiting for u. In Figure 13, this notification is depicted by the ACQUIRED
transition, after which we say that p owns u. Note that for simplicity in our algorithms, we
follow this two-step negotiation even when a requested universe is not in use by another
process. Such acquisitions will also complete with a notification to the requesting process,

but in this case the notifying process is the same as the requesting process.

For every call to acquire, the caller (i.e., completeRealm) is obliged to wait for

the notification. This is accomplished by invoking the nextAcquired function, which

1When invoked from bf sLink, the value of rc will always be 1. In the sequel, we show that
link is also used after a process is forced to surrender a universe, which may occur when the
universe is the target of multiple links in the realm.

Zusing the UML state-diagram notation [BJR99].
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Figure 13: Protocol of negotiation by a process for a universe.

waits for a notification and returns the acquired universe. Once acquired, a universe is
considered marked, and the search proceeds by traversing its outgoing accessible edges.
This is accomplished by recursively invoking bf sLink on the newly acquired universe.
After every such edge is traversed, the search terminates, and the realm has been extended
by R*. We coordinate this traversal by recording, for each process, the number of pending
acquisition requests (i.e., pending (p) ), and testing for termination using the function

realmComplete, which consults this pending attribute.

4.5 Preventing Starvation and Deadlock

As processes negotiate for universes, care must be taken to prevent starvation and deadlock.
To this end, we adapt and integrate existing deadlock avoidance strategies and deadlock re-
covery heuristics to mediate negotiations among processes for universes. Ultimately, all
of these algorithms are implemented in terms of the four primitive functions—acquire,
nextAcquired, realmComplete, and release—used by our realm-update proce-
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dure. Because these algorithms collaborate by manipulating data in shared memory, there
are many special cases to consider, and thus the algorithms are complex.

A key concept in our understanding and development of these algorithms is the negoti-
ation abstraction, which supports two dimensions of refinement that help to clearly specify
and validate our algorithms. The first dimension is a form of feature refinement [FKO01],
whereby a state-based specification is extended with new behavior by adding new states
and transitions but never removing any of the existing states or transitions. Using feature
refinement, we were able to incrementally extend the basic negotiation protocol in Fig-

ure 13 to incorporate:

1. an advanced deadlock-avoidance strategy (Section 5.1);

2. an advanced deadlock-recovery heuristic (Section 6.1); and finally

3. support for negotiating conditional contracts (Chapter 7).

Each of these three refinements involves expanding a state in the less refined specification to
include substates and adding a small number of transitions into and among these substates.

In addition to supporting feature refinement, it is also straightforward to apply more
traditional data refinements that demonstrate how the abstract states and transitions in a ne-
gotiation protocol are implemented as concrete data structures and algorithms. In our case,
the data structures attribute the Process and Universe objects to which the negotiation
refers, and the algorithms correspond to case logic that fleshes out the four functions we
need to implement to complete the suite of realm-update procedures. Observe, in discus-
sions, that we will often refer to an individual negotiation, as if it is an object as opposed
to an abstract state of collaboration among multiple objects. We adopt the notation (p, u) to
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refer to the negotiation by process p for universe . This simplifies presentation by enabling
us to talk about a particular negotiation being “in” a given state or witnessing a transition,
but bear in mind that negotiation is only an abstraction and that there is no single run-time

data structure that localizes this state.

In presenting the refinements, we often need to say that a negotiation is “in” a given
state. We denote the current state of a negotiation by adjoining the process and universe
identifiers to the name of the name of the abstract state. For example, Owned(p,u) says
that negotiation (p, u) is state Owned. Most of our data refinements relate predicates over

concrete data structures to the abstract states of a negotiation. For example, the notation:

Owned(p,u) = owner(u) = p A —-migrating (u)

specifies that negotiation (p, u) is in the state Owned if and only if the owner attribute of

u equals p and the migrating attribute of u is false.

We structure the presentation of our algorithms around these two dimensions of re-
finement. Specifically, each of Chapters 5, 6, and 7 concerns a feature refinement of the
negotiation protocol and algorithms of the section that precedes it. Moreover, each section
is organized so as to first present the specification of the negotiation protocol at that level of
feature refinement followed by a data refinement that shows how to implement that spec-
ification. Before continuing, we introduce one final concept that will be used in all of the

subsequent refinements.

All deadlock-prevention strategies work by coercing a process to relinquish resources
that it has previously acquired. In the universe model, contractual obligations limit the
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universes that a process can relinquish. We define the core of a process p, written Core(p),
to be the universes in Realm(p) that cannot migrate out without violating a contract that is
in force prior to (and is unaffected by) the operation that caused the realm to be updated.
When a process is executing user code, Core(p) = Rp; whereas when a process is updating
its realm, Core(p) = R\ R , i.e. the set of universes that remain in the realm of the process
after realm contraction. Also, note that our negotiation protocol represents the membership
of a universe in the core of a process. Specifically, when a process p completes its realm
(i.e., when the function realmComplete returns true), all negotiations for universes in

Rj,’ will finalize, which means they all simultaneously transition into the final state Core.
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Chapter 5

Feature: Deadlock Avoidance

Our first refinement extends the negotiation protocol to allow multiple concurrent processes
to acquire multiple (non-core) universes while avoiding starvation and deadlock. The pro-
cedure borrows ideas from a resource-allocation strategy called wound-wait, under which
processes can preemptively steal resources allocated to other processes [RSL78]. The idea
is that when two or more processes attempt to acquire the same universe, priority is given
to the oldest process. We say that a process p is older than another process g if p began its
most recent realm-update operation earlier than q. Suppose, without loss of generality, that
p is older than q. If g attempts to acquire a universe currently held by p, then g waits for
p. Conversely, if p attempts to acquire a universe currently held by g, then p wounds q by
signaling g to surrender the universe. Following this scheme, and provided that processes
compete only for non-core universes, the oldest process in the system will eventually be
able to acquire all the universes it needs and thus complete its realm. Successively, the
same then applies to the second-oldest process, the third-oldest process, and so on.
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5.1 Specification

Based on this strategy, we refined the negotiation protocol to allow processes to com-
municate by exchanging messages with one another. Under this protocol, inter-processes
communication is asynchronous, and there are two kinds of messages—ACQUIRED and
SURRENDER, both of which are parameterized by a reference to the universe under con-
tention. Intuitively, a process p sends a message of the form ACQUIRED (u) to a process q
to signal that g is the new owner of u. Observe that p and g may be the samé process, which
might happen if, when attempting to acquire a universe, the process discovers that there are
no contending processes. In contrast to signaling acquisition, a process p sends a message

of the form SURRENDER (u) to a process g # p to signal g to relinquish ownership of u.

Figure 14 refines the negotiation protocol to incorporate the wound-wait strategy. Re-
questing is now an hierarchical state with two sub-states. Upon entering Requesting(p,u),
if no other process can legally claim ownership of u, we say u is migrating to p; otherwise
we say that p is waiting for u. Entry into Migrating(p,u) coincides with a process sending
an ACQUIRED (u) message to p. Thus, migrating implies that there are no obstacles to p
acquiring u other than for p to actively receive and handle the message, and negotiation
transitions to Owned once the message is handled. By contrast, Waiting(p,u«) implies that
there are obstacles to p acquiring u, e.g., if another process currently owns u.! Observe
that when Migrating(p, «) is entered from Unused or Owned, p is both the sender and the

receiver of the ACQUIRED (u) message. However, if the state is entered via the enable

I'There is another kind of obstacle, namely that p is negotiating a conditional contract for  and
the condition cannot be verified. At this level of feature refinement, we are only concerned with the
negotiation of exclusion contracts. We deal with the unverified condition obstacle in Chapter 7.
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Figure 14: Refinement of protocol in Figure 13 to avoid deadlocks using wound—wait strat-
egy.

transition, then the message will come from a process other than p.

The refinement includes two transitions to implement the wounding of one process
by a higher-priority process. Suppose a process p attempts to acquire a universe u that
is owned by another process g, such that u ¢ Core(q). If p is older than g, then p
will send a SURRENDER (u) message to g coincident with entry into Waiting(p,u).Z The
SURRENDER(q,u) transition is taken when g receives and acts on this message. In ad-
dition to causing g to release ownership of u, this transition can engender orphan(q, v)
transitions in other negotiations (g, v) where u # v. This can happen, for example, if v
is accessible from u and the release of u causes v to be released. We refer to this process

as orphaning a universe and note that a universe could be orphaned at any time during

2This phenomena is not depicted in the diagram.
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negotiation.

Finally, the negotiation protocol assumes some inter-negotiation synchronizations that
are not depicted in the diagram. For example, the transition SURRENDER(g, u) is co-
incident with the transition enable(p, u) when q releases universe 4 and p, which was
waiting for u is sent the ACQUIRED (u) message. Note that sending the ACQUIRED mes-
sage is not depicted in the diagram. A similar synchronization occurs when p is waiting
for u € Core(q), and g executes a realm-affecting operation that causes it to release u
(during realm contraction). In the sequel, we will refine the responsibility for such inter-
process synchronizations into operations over universes (which are passive objects) rather
than processes, which only communicate asynchronously. Finally, all of the negotiations
for a given process must synchronize on the finalize transition. In the sequel, we refine
the responsibility for this intra-process synchronization into an atomic operation on the the

process object, without reference to any of the universe objects.

5.2 Data Refinement

We now describe the primitive data structures and functions used to implement the protocol
presented in Section 5.1. One category of primitives refines the abstract states of negotiation
into concrete data structures that can be queried and manipulated by our algorithms (Sec-
tion 5.2.1). Another category of primitives implements the message-passing infra-structure
(Section 5.2.2); while a third describes some additional book-keeping attributes that are
necessary for advanced deadlock avoidance. For brevity, all of the functions introduced in
this section appear in the appendix.
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5.2.1 State refinements

Our specification (Section 5.1) refers to several concepts that are used to define observable
states in the protocol. These include process priority, the core of a realm, and the various
negotiation sub-states in Figure 14. We refined these concepts into concrete data structures
that attribute processes and universes, thus allowing efficient representation and observation

of these abstract states.

Both process priority and membership of a universe in the core of its realm are rep-
resented using time stamps. Each process contains a start time, which is the time when
the process began its most recent realm-update operation. The relative age of two pro-
cesses can be established by comparing these times, e.g., if start_time (p) is less than
start_time (q), then p is older than q. Likewise, each universe contains an acquisition
time, which records the start time of its owner at the time the owner began to migrate the
universe into its realm. To test if a universe is in the core of its owner’s realm, one can
simply check if the acquisition time of the universe is less than the start time of its owner.
When this check returns true, we can infer that the universe was acquired by a previous

realm-update operation, which means it must be in its owner’s core.

The start time of a process is also used to order processes that are competing to acquire
the same universe. We associate with each universe a priority queue with which to buffer
requests for acquisition. Each queue element is an ordered pair that comprises a process
identifier and a reference count. Elements are ordered by the start time of the process co-
ordinate, such that the head of the queue is the oldest process (i.e. the process p with the
lowest value of start_time (p)). We use the attribute reqQ (u) to access the priority
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queue associated with universe u. In addition to the standard enqueue and dequeue op-
erations, these priority queues support an operation contains, which determines whether
a given process is waiting inside the queue, and an operation upda t eQueueRC, which ad-
justs the reference count associated with a process that is waiting in the queue.

Finally, our algorithms must distinguish among the various states of negotiation, as de-
picted in Figure 14. We distinguish between states Migrating and Owned by associating
a boolean attribute migrating, with each universe u. This attribute is set when a uni-
verse begins to migrate into the realm of a process and reset once the process receives the
ACQUIRED message and completes the migration. Negotiation is in the Waiting state if a

process is in the request queue of the universe. More forrnally:3

Migrating(p,u) = owner (u) = p A migrating (u)

b

Owned(p,u)

owner (u) = p A -migrating (u)

Waiting(p,u) = contains(reqQ(u), p)

5.2.2 Inter-process messaging

We implement inter-process messaging using FIFO queues and two procedures—signal
and getMessage. A process sends a message to a receiver process by invoking procedure
signal, which is parameterized by the process, the message and the receiver. Messages
are stored in a message queue associated with the receiver. The message queue of a pro-

cess p is accessed using the attribute msgQ (p) . Function getMessage retrieves the next

3The pair (owner (u4), migrating («)) must be tested and set atomically in order to avoid
race conditions. This can be accomplished by encoding the process identifier of the owner and the
migrating flag in a single machine word.
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message in the associated process’ queue, blocking if the queue is empty.

To monitor the progress of realm completion, we attribute each process with the number
of pending requests for universes that the process has requested but does not yet own.
The value of pending (p) is incremented each time p attempts to acquire an unused
universe and decremented each time p successfully negotiates ownership of a new universe.
Once pending (p) reaches zero and all messages have been processed (i.e., msgQ (p) is

empty), then the realm is complete.

Before concluding, note that because our protocol is asynchronous, messages might
become stale while they are waiting to be processed. A message ACQUIRED (u) (or
SURRENDER (u) ) grows stale when, in the interval between when the message is sent
and when it gets processed, the receiver is forced to surrender u from its realm. Observe
that a process might surrender a universe indirectly, as a side-effect of being forced to sur-
render another universe. Suppose, for example, that a process receives a SURRENDER (v)
message and that there is a realm-accessible edge v — u to another universe u. Then re-
leasing v will decrement the reference count of u, and if this count goes to zero, ¥ must
be released. If u is released, then any pending messages of the form ACQUIRED (u) or
SURRENDER (u) are stale. We handle stale messages by explicitly checking for staleness

whenever we retrieve a message from the queue.

4pseudocode for both of these procedures appears in the appendix. In Section 6.3, we refine the
getMessage function to incorporate deadlock recovery.
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5.2.3 Additional primitives

Finally, the attribute blocked (p) contains the set of all universes on which p is blocking
indefinitely. A process is blocking indefinitely on a universe if that universe is in the core
of another process or has been requested by an older process. The process is blocking
indefinitely in this case because it requires an action by the other process to release the
universe. A universe is added to this set by calling recordBlocked (p) and removed
from it by calling recordUnblocked (p) . Note that while the value of blocked (p)
is not necessary for the basic algorithm, it will be used in the advanced deadlock avoidance

scheme to determine potential deadlock.

5.3 Algorithms

We defined the universe-acquisition protocol from the point of view of a given process to be
the orthogonal composition of independent negotiations associated with that process. The
completeRealm algorithm (Figure 12) simulates the composition of these independent
negotiations by successively issuing requests to acquire universes and then looping over
the acknowledgements of these acquisitions (possibly issuing new requests) until, by some
measure, the realm is determined to be complete. We use this (event-driven) sequential
control structure to simulate the concurrent execution of negotiations within a given pro-
cess. Moreover, we assign responsibility for implementing the various negotiation transi-
tions (Figure 14) to the procedures acquire, nextAcquired, and realmComplete,
which are used as primitives in the completeRealm algorithm (Section 4.4).

We present these algorithms by first defining acquire and nextAcquired (Sec-
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tion 5.3.1). In terms of the negotiation protocol, acquire implements the acquire tran-
sition, and nextAcquired implements ACQUIRED and SURRENDER for negotia-
tion (p,u). By contrast, function completeRealm implements the simultaneous tran-
sition finalize(p,u) for all u for which there exists a negotiation (p, u), using function
realmComplete to decide when it is appropriate to take the transition. The implemen-

tation of realmComplete is trivial and appears in the appendix.

To implement SURRENDER in nextAcquired, we use an auxiliary function called
surrender (Section 5.3.2). This procedure implements the orphan transition. Pro-
cedure surrender also uses the release procedure, which we first referenced in
contractRealm. The algorithm for release (Section 5.3.3) implements the enable tran-

sition, thus completing the algorithmic refinement of the negotiation protocol.

5.3.1 Universe Acquisition

Universe acquisition is a multi-step process, initiated by invoking the procedure acquire
and completed by invoking the function nextAcquired, both of which are depicted in
Figure 15. Procedure acquire is invoked with three parameters—a reference u to the
universe to be acquired, a reference p to the process wishing to acquire u, and a refer-
ence count rc with which to set u once it becomes part of the realm of p. Negotiation
then begins, entering the Requesting state, in which there are two cases to consider. If
u has no owner, then it is available for migration, in which case migration is initiated
by calling enterMigrating, which sets the owner, RC, acquisition time, and
migrating attributes, and then sends an ACQUIRED (u) message to p. Alternatively,
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proc acquire( u : Universe,
p : Process,
rc : Natural ) is
begin
if (owner(u) = L) then
pending(p) := pending(p) + 1;
enterMigrating(u,p,rc);
else
enter Waiting(u,p,rc);
end;
end

proc enterMigrating( u : Universe,
p : Process,
rc : Natural ) is
begin
Marked(u) := false;
migrating(u), owner(u) := true, p;
RC(u) :=rc;
acquisition_time(u) := start_time(p);
LOCK(p);
signal(p, ACQUIRED, u);
UNLOCK(p);
end

proc enterWaiting( u : Universe,
p : Process,
rc : Natural ) is
begin
request(u,p,rc);
if (— wound(u,p)) then
recordBlocked(u,p);
end
end

proc enterOwned( u : Universe,
p : Process ) is
begin
migrating(u) := false;
pending(p) := pending(p) - 1;
recordUnblocked(u, p);
end

function nextAcquired( p : Process )
returns Universe is
var msg : MessageType;
var u : Universe;
begin
loop
(msg, u) := getMessage(p);
if (msg = ACQUIRED) then
if (inMigrating(u,p)) then

enterOwned(u, p);
return u;
end
else /* msg = SURRENDER */
if (inOwned(u,p)) then
surrender(u, p);
end
end
end
end

function wound( u : Universe,
p : Process )
returns boolean is
var wounded : boolean := false;

begin

if ( start_time(p) < acquisition_time(u)

A p = head(reqQ(u)) )
then

LOCK(owner(u));

if (u ¢ Core(owner(u)))

then

signal(owner(u), SURRENDER, u);

wounded := true;
end
UNLOCK(owner(u));
end
return wounded;
end

Figure 15: Functions and procedures for acquiring a universe while avoiding deadlock.
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if u has an owner, then negotiation enters the Waiting state, which is accomplished by
invoking the procedure enterWaiting.

Within enterWaiting there are two cases to consider: Either p has priority over the
current owner of u, in which case p can preemptively steal u from its owner, or p must
block, waiting for the current owner (and possibly other competing processes of higher
priority) to release u. In either case, p must register in the priority queue of u, which is
accomplished by invoking the procedure request, whose implementation appears in the
appendix. After registering p with u, p then attempts to wound the owner of u. If p lacks
the priority to wound the owner of u, then p must wait for the owner to release u. In
this case, we say that p is blocked on u, and we record this fact by invoking the function
recordBlocked. This information will be used in the version of these algorithms that
incorporates deadlock recovery (Chapter 6). |

Function wound first checks to see if the process p can legally preempt u from its
owner. For the preemption to be legal, (1) p must have higher priority than the owner of u;
(2) p must be at the head of the request queue of u; and (3) u must not be in the core of its
owner’s realm. The pseudo-code incorporates some optimizations. If p has higher priority
than the owner of u, then the start time of p must be less than the start time of the owner
of u. This condition can be efficiently checked by comparing the start time of p against the
acquisition time of u, because the latter value equals the start time of owner (u), unless
u is in the core of its owner’s realm. Observe that owner (u) must be locked so that the
test for u being in the core and the subsequent signal to surrender are atomic. If conditions
(1)—(3) are satisfied, then p signals the owner to surrender u. If any of these checks fails,
function wound returns false.
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Function nextAcquired isresponsible for handling messages sent to a process. Each
call to this function retrieves and returns the next ACQUIRED message in the calling pro-
cess’ message queue. To find an ACQUIRED message, nextAcquired might encounter
zero or more SURRENDER messages, each of which are handled without returning from
this function. If the queue becomes empty prior to finding an ACQUIRED message, then

nextAcquired will block.

ACQUIRED messages are meant to trigger a state transition from Migrating to Owned.
To handle such messages, nextAcquired first checks to see if the current state of
negotiation is Migrating (by invoking function inMigrating). If so, negotiation en-
ters the Owned state (by invoking enterOwned), and u is returned to the caller of
nextAcquired. Observe that the check is necessary because, as described in Sec-
tion 5.2.2, the message could have become stale while it was waiting to be serviced. By
the same reasoning, nextAcquired must also check that SURRENDER (u) messages
are not stale. Commensurate with the protocol, such a message is only meaningful when
negotiation is in the Owned state, which we check using the function inOwned (defined

in the appendix).

Finally, procedure enterOwned completes the migration process by setting
migrating (u) to false and recording that p no longer blocks on u, if that was the case
before. In addition, the count of pending acquisition requests is decremented.
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proc surrender( u : Universe,
p : Process ) is
var rc : Natural,
unlinked : Set[Universe];
begin
if (— migrating(u)) then
for (s € raccessibles(u)) do
unlinked := unlink(s);
releaseFringe(unlinked, p);
releaseAll(unlinked, p);
end
releaseAll(accessibles(u) -
raccessibles(u), p);
end
rc := RC(u);
release(u, p, rc);
link(u, p, rc);
end

proc releaseFringe( nodes : Set[Universe],
p : Process) is
begin
for (s € nodes) do
releaseAll(accessibles(s) -
raccessibles(s), p);
end;
end

Figure 16: Procedures for surrendering a universe to another process.

5.3.2 Universe Surrender

Function nextAcquired delegates responsibility for handling the transition from
Owned to Requesting to a procedure called surrender, which causes a process p to
release and then immediately re-request a universe u. Once u is released, a higher-priority
process will be able to acquire it, and p will then wait for 4 to become available again. Of
course, if p owns or is currently requesting other universes that are accessible only from u,
then these other universes must also be released. Thus, surrendering a universe is similar to
removing all incoming accessible links to the universe; however, there are two important
differences. First, the reference count of u prior to the surrender must be stored somewhere
so that RC (u) can be properly reestablished once p re-acquires 4. Second, and most impor-

tant, the algorithms developed in Chapter 4 for recursively releasing inaccessible universes
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only traverse links between universes that are realm accessible (i.e., both the source and the
target of the link is in the realm). However, when p is instructed to surrender u, p might be
negotiating for universes that are accessible but not yet realm-accessible from u. Thus, the
surrender algorithm must handle this case separately.

Figure 16 depicts the algorithm for procedure surrender, which releases and then
immediately relinks a universe u. Notice that surrender may be invoked when (p, u) is
in state Migrating or state Owned. While no action other than releasing and relinking u
is necessary in state Migrating, in state Owned, p will have already requested universes
accessible from u. Moreover, the realm of p might comprise accessible edges that are not
yet realm accessible, because the targets of these edges have not yet been acquired. We refer
to the targets of such edges collectively as the fringe of the realm. Because unlink only
traverses realm-accessible edges, the set of universes that it returns will not include fringe
universes. Thus we must compute (and then release) these fringe universes separately. The
procedure releaseFringe computes and releases fringe universes that are accessible
from a set of universes that are known to be in the realm, after which all accessible edges
originating at u will have been unlinked. Finally, u is released and then immediately re-
linked.

Figure 17 contains a step-by-step example that illustrates the process of surrendering a
universe. In this figure, black circles denote owned universes, gray circles denote requested
universes (the fringe), and white circles denote unused universes. Each universe has an as-
sociated reference count listed next to it. Arrows denote accessible edges. Arrows become
dashed when they are unlinked (in function df sDecRef or release) and the reference
count of the target universe is decremented. Dashed arrows become solid again when the
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Figure 17: Example: Surrendering a universe
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link is reestablished (in function df sIncRef) and the reference count of the target uni-

verse is incremented.

The example begins with the process receiving a SURRENDER message for universe
s. Because s has a realm-accessible edge s — b, function unlink is invoked on b,
which then results in df sDecRef being called on b, as depicted in Step 1. Observe that
df sDecRef does not traverse the edges d — h or f — g, since the target universes are
notin raccessibles (d) or raccessibles (f), respectively. Thus the set returned
by df sDecRef (b) is {b,c,d,e,f}. Out of these universes, only ¢ has a reference count
> 0. Thus, in step 2, df sIncRef is called on ¢, which reestablishes the edges ¢ — e and
¢ — f. At this point, b and d are the only universes that are set to be released. In Step 3,
however, the call to releaseFringe on the set {b,d} releases universe h. Step 4 then
releases the universes b and d. Finally, in step 5, s is released, followed by an immediate

re-acquisition attempt via 1 ink, making it a requested universe.

5.3.3 Universe Release

Both contractRealmand surrender use the utility procedure release (Figure 18)
which, when invoked on a universe u, decrements the reference count of u and migrates u
out of the realm if appropriate. There are three cases to consider: Either (p, ) is in state
Waiting, Migrating, or Owned. If waiting, then p is not the owner of u, and the only action
to take is to update the entry in the request queue of u. This update is accomplished by
procedure releaseFromQueue, which appears in the appendix. Alternately, if waiting
or owned, then p is the owner of u. In either case, we decrement the reference count of u,
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proc release( u : Universe, proc migrateNext( u : Universe ) is

p : Process, var newOwner : Process;
rc : Natural :=1)is newRC : Natural;
begin begin
LOCK(u); if (- empty(reqQ(u))) then
if (owner(u) # p) then ( newOwner, newRC ) :=
releaseFromQueue(u, p, rc); dequeue(reqQ(u));
else enterMigrating(u, newOwner, newRC);
RC(u) :=RC(u) - rc; else
if (RC(u) < 0) then owner(u) := L;
if (migrating(u)) then end
pending(p) := pending(p) - 1; end
end
migrateNext(u);
end
end;
UNLOCK(u);

end

Figure 18: Procedures for releasing a universe from a realm.

and if it goes to zero, then u must be migrated out of the realm. This is accomplished by
invoking procedure migrateNext. If (p, u) was in state Migrating on entry to release,
then the number of pending requests in p must be decremented to reflect the release of u.
Procedure migrateNext is responsible for actually migrating a universe out of the
realm of its current owner and into the realm of a new owner if another process is waiting
to acquire it. If there are waiting processes, the function retrieves a new owner and refer-
ence count from the request queue and initiates migration to this new owner by invoking
enterMigrating. If the queue is empty, then the owner is set to L to denote that the

universe is unused.
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Chapter 6

Feature: Deadlock Recovery

We now refine the deadlock-avoiding protocol with capability that prevents a larger class of
deadlock situations. Suppose that processes p and g are contending for a universe v, that g
is also contending for a universe u € Core(p), and that q is older than p. Then p can neither
release u nor preempt g to acquire v, and the resulting deadlock cannot be avoided using the
wound-wait strategy. Our next refinement incorporates a heuristic that can automatically

recover from deadlocks in which, for any processes p and g such that g is older than p:

R;,LOR;;#Q A R;ﬂCore(p)#Q A R;ﬂCore(q)=®

That is, when there is at least one universe that both p and g need to acquire, the universes
that g seeks to acquire may overlap with p’s core, but not vice versa. The heuristic borrows
ideas from an approach that was first informally introduced in [BBD82] and later refined
under the name cautious waiting [HZ92]. Under cautious waiting, a process that requests
a resource will wait for the owner of the resource only if this owner is not also waiting.
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Should the owner be waiting, the requestor will restart its operation by first releasing and
then attempting to re-acquire its resources. Once released, these resources can be acquired
by other processes, thereby breaking the deadlock. We apply this heuristic to recover from
deadlocks caused when a high-priority process (the requestor) attempts to acquire universes

in the core of a lower-priority process (the owner).

6.1 Specification

To add cautious waiting to our protocol required precisely formulating a restart behavior
and a restart condition that triggers this behavior. Because restarting a process is expensive,
we designed the condition to forestall triggering the behavior as long as possible, relying
on avoidance capability to prevent the majority of deadlocks. This condition optimistically
assumes a process is not waiting for another waiting process, barring substantial evidence
to the contrary. We formalized the condition into a direct waiting predicate, that can be
refuted by any negotiation in which a process is engaged, and we formalized the behavior
as the simultaneous transition of all such negotiations. Section 6.1.1 refines the individual
negotiation protocol with new states and transitions that simplify the specification of the
predicate and the effect of the behavior. The direct-waiting predicate is an approximation
of a more intuitive condition (Section 6.1.2), which is difficult to compute efficiently. We
show how the direct-waiting predicate approximates this more intuitive condition to yield
an effective and efficient test (Section 6.1.3)
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6.1.1 Negotiation Refinement

Figure 19 refines the negotiation protocol to support checking the restart condition and
effecting the restart behavior. Waiting is now an hierarchical state with two sub-states.
Upon entering Waiting(p, ), if no process with higher priority is negotiating for u and u ¢
Core(owner(u)), we say that p is preempting the owner of u; otherwise, we say p is blocking
on u. A preempting negotiation can reasonably expect to transition into Migrating in the
near term; whereas a blocking negotiation could block for some indeterminate amount of
time. In the sequel, the existence a preempting negotiation is sufficient (but not necessary)

to refute the restart condition.

Restarting a process p consists of p: (1) releasing any universe u such that
Negotiating(p, u), (2) artificially lowering its priority by updating its start time, and then
(3) attempting to reacquire all of its released universes. This operation can break a deadlock
by making all of p’s universes available to competing processes while preventing p from
immediately re-acquiring them by preemption. We refer to p’s release of and low-priority

re-request for a universe u as reordering the negotiation (p, u).

We specify the reordering of a negotiation using a new transition called reorder, which
transitions into Negotiating. While it might seem that reorder(p, ) should transition into
Waiting, there are cases in which, after reordering, (p,u) could be either migrating or
preempting. If 4 is not under contention by other processes then p will reacquire it despite
its lowered priority. Alternately, because restart is not an atomic operation, other processes
could complete their realms and then release a universe that was under contention prior to
the completion of the restart operation.
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6.1.2 Restart Condition: Conceptual Definition

We define the restart condition in terms of a process’s belief in its ability to continue making
progress in negotiation. To make the condition precise requires some new terminology. Let
p and q be distinct processes, and let W be a set of universes. We say p directly waits for W

relative to g, if:

1. W0

2. p has requested all of the universes in W but has no reason to believe it can continue

negotiating for them until they are released by g; and

3. there is no smaller set W/ C W that satisfies conditions 1 and 2.

If such a W exists, we refer to it as p’s wait-for set relative to g. For example, suppose p
requests a set U of universes. Then p’s wait-for set relative to g, will contain U N Core(q)
and any universes in U for which g is a contender with higher priority. As this example
illustrates, the wait-for sets of a given process need not be disjoint.

Likewise, we say p indirectly waits for for W relative to g if:

1. p directly waits for W relative to g; and

2. there exists a set X and a process r such that g directly waits for X relative to r.

Observe that p and r might refer to the same process, which demonstrates indirect waiting
is necessary (but not sufficient) for even the simplest form of (unavoidable) deadlock. Our
reformulation of the cautious waiting heuristic can therefore be stated as follows:
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Indirect waiting heuristic. Restart any process p whose set of outstanding re-
quests is the union of wait-for sets relative to processes for which p is indirectly

waiting.

In the sequel, we refer to the condition that triggers the restart as the indirect waiting con-
dition.

Checking the indirect-waiting condition is complicated by two factors. First, it could
require the run-time system to check if the owner of each requested universe is directly-
waiting on another process, a potentially expensive operation if the number of outstanding
universes is large. Second, even if the inspection of each universe is inexpensive, the inspec-
tion of the whole set is not an atomic operation. To make the check atomic would add to the
complexity and expense of the overall algorithm. To avoid such potentially complex and
expensive operations, we instead implement a safe approximation of the indirect-waiting

condition in terms of sustained direct waiting over a time interval.

6.1.3 Restart Condition: Effective Definition

We approximate the check that a process p indirectly waits for some indeterminate process
if there exists a process g, such that p directly waits for g and has continued to do so for
some (heuristically determined) time T € R*. This approximation works because direct
waiting that is not caused by a deadlock will be resolved in finite time; whereas direct
waiting due to deadlock will persist until the deadlock is broken. Thus, our approximation
of the indirect-waiting heuristic can be stated as follows:
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Direct waiting heuristic. Restart any process p whose set of outstanding re-
quests is the union of wait-for sets relative to processes for which p has been

directly waiting for some time interval T € R,

In the sequel, we refer to the condition that must persist for time T as the direct-waiting

condition and denote it mathematically via the function:

directWaiting : Process — Bool

The direct-waiting condition is a safe approximation of the indirect-waiting condition in the
sense that the former will detect any indirect waiting that persists for at least 7 time units.
Indirect waiting that does not persist for at least T time units could not have contributed to
an unavoidable deadlock. On the other hand, the approximation can yield false positives,
which incur unnecessary restart operations. While not desirable, false positives are safe
because a restart cannot introduce any new direct or indirect waiting conditions, and thus
no new deadlocks.

To precisely formulate the direct-waiting condition, we analyze the state space of nego-
tiation to determine the different ways in which a given negotiation can refute the condition.
Then, using the pigeonhole principle, we define directWaiting(p) to be the absence of any
of these refuting cases. Let U be the set of universes with which a requesting process p is
negotiating, and let P C U be the set of pending requests, i.e., the set of universes that p has
requested but does not yet own. Certainly, if P is empty, then p cannot be directly waiting,
i.e.

P = @ = —directWaiting(p) 6.1)
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Suppose further that P is not empty, and consider a universe # € P. Then the negotia-
tion (p,u) can be in only one of three states—Preempting, Blocking, or Migrating. If
preempting or migrating, p has reason to believe it can continue negotiating for u. More

formally:

(3u: P e Migrating(p,u)) = —directWaiting(p) (6.2)

(3u : P e Preempting(p,u)) = -—directWaiting(p) (6.3)

Thus, for directWaiting(p) to be true, it is necessary (but not sufficient) for the negotiation

corresponding to every outstanding request be in state Blocking.

A negotiation (p, u) in Blocking can only transition out of blocking via an orphan
or an enable transition. Thus, for p to believe it can continue negotiating for u, p must
believe that one of these transitions is imminent. There is really no way to predict when a
blocking negotiation will be enabled, as this timing is a function of the computation being
performed by the owner of u and also the number of contending processes with priority
over p. By contrast, the orphaned transition may occasionally be predictable. Recall that
(p, u) can be orphaned if p is negotiating for another universe v, from which u is reachable,
and (p, v) undergoes a SURRENDER transition. Always the optimist, we treat the occur-
rence of a SURRENDER transition as a potential generator of orphan transitions in other
negotiations. Thus, if there were some way to detect that a SURRENDER transition was

imminent, such would refute the direct-waiting condition. More formally:

(3u: U\ P e imminentSurrender(p,u)) = —directWaiting(p) (6.4)
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Because the direct waiting condition is defined in terms of universes that p has requested,
but does not yet own, equations 6.1. 6.2, 6.3, and 6.4 cover all of the possible refutations of

directWaiting(p). That is:

—directWaiting(p) <& P=0 (6.5)
V'  3u: U\ P e imminentSurrender(p, u) (6.6)
vV 3Jv: P e Migrating(p,v) 6.7)
vV 3w : P e Preempting(p, w) (6.8)

We call the negation of this formula the direct-waiting predicate, but in order to simplify

the data refinement below, we delay this negation.

6.2 Data Refinement

We now apply several identities and logical manipulation to refine the direct-waiting pred-
icate into an efficient predicate over the attributes of a process object. Observe first that a
SURRENDER(p, u) transition is imminent if there is a SURRENDER (u) message waiting

on the message queue of p. More formally:

imminentSurrender(p, u) <> SURRENDER (u4) € msgQ (p) (6.9)

Moreover, a negotiation (p, u) transitions to Migrating coincident with the insertion of an
ACQUIRED (u4) message onto the message queue of p. By combining this knowledge with
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lines 6.6 and 6.7, and by duplicating the disjunct in line 6.7 and rewriting it alongside line

6.8, we get:

—directWaiting(p) <& P=0
V size(msgQ(p)) >1

vV 3Jv: P e Migrating(p,v) vV Preempting(p, v)}

Then by negating both sides, we get:

directWaiting(p) < empty (msgQ (p))
AN P£o

A VYv: P e Blocking(p,v)

Finally, observe that algorithms developed in the previous section support the blocking—
preempting distinction, as we associate with each process p a set blocked (p) that con-

tains the universes for which p could not immediately acquire or preempt. More formally:

Blocking(p,u) < u € blocked (p)

By simple substitution, we derive that the direct-waiting condition is true if and only if

empty (msgQ (p) )

A pending (p) >0
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A pending (p) = size(blocked(p))

Thus, the restart condition can now be checked by testing that the above condition persists

for a sufficiently long time.

6.3 Algorithms

We integrate our modified cautious-waiting heuristic into the deadlock-avoiding algo-
rithms by refining the getMessage primitive. Figure 20 depicts the refinement, called
getMessageCooperatively, which replaces getMessage in the overall system.
In contrast to getMessage, getMessageCooperatively checks the direct-waiting
predicate concurrently with waiting for message reception, and invokes a restart operation
if predicate is satisfied. This concurrent check is handled by the alternate conditions of the
wait until primitive. The first alternative is taken when there is a message in the message
queue for process p, in which case the message is dequeued and returned in a fashion iden-
tical to the original getMessage function. The second alternative is taken only if the
first alternative fails (per our definition of wait until). Consequently, we know that: (1) the
message queue is empty and (2) pending (p) > 0.! This case checks the remaining
conjunct (i.e., that the size of the blocked set equals the number of pending requests) and
that the timeout has expired. If these conditions are true, then process p must be restarted.

The restart procedure must take care to avoid starvation. Consider, for example, that

process p directly waits for process g, which directly waits for another process r due to

Ibecause getMessageCooperatively is called from nextAcquiredonly if (1) is false
or (2) is true.
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function
getMessageCooperatively( p : Process )
returns MessageType x Universe is
begin
loop
wait until (- empty(msgQ(p))) then
LOCK(p);
msg, u := dequeueMsg(msgQ(p));
UNLOCK(p);
return ( msg, u );
or until (size(blocked(p)) = pending(p)
A timeout(p)) then
start_time(p) := current_time();
dfsRestart(witness(p), p);
increaseTimeout(p);
end
end
end

proc dfsRestart( u : Universe,
p : Process ) is
begin
for (s € accessibles(u)) do
if (-~ marked(p,s) A s € Core(p)) then

if( reorder(p,s) ) then
dfsRestart(s, p);
end;
end;
end;
end

function reorder( p : Process,
u : Universe )
returns boolean is
var pOwnsU := false;
begin
LOCK(u);
mark(p,u);
if (owner(u) = p) then
acquisition_time(u) := start_time(p);
pOwnsU := empty(reqQ(u));
UNLOCK(u);
if (- pOwnsU ) then
surrender(u, p);
end
else
reorderQueue(reqQ(u));
UNLOCK((u);
end,;
return pOwnsU;
end

Figure 20: Refinement of function getMessage to support deadlock recovery.
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conflicting requests on a single universe u. Such a situation will trigger a restart, causing p
to surrender and then attempt to re-acquire 4. Moreover, after surrendering u, p will update
its start time, thereby lowering its priority. Now assume that immediately after p surrenders
u, but before p can update its start time, the (OS-level) scheduler gives both g and r enough
time to successively acquire, release, and re-request u. Then when p is scheduled and tries
to re-acquire u, it will once again find itself indirectly waiting on u relative to g, and this
will trigger another restart operation. Theoretically, this can continue indefinitely, leading
to starvation.

To avoid starvation, we manipulate the timeout interval 7. Observe that if T is large
enough, starvation cannot occur, because p will be able to acquire the universes released
by r and g before an indirect waiting condition is asserted by the expiry of the timeout. Of
course, if T is too large, then the time it takes to recover from a real deadlock will be at
least T. To reconcile these concerns, T is initially set to a small value and increased after
each restart. Eventually, T will be large enough so that in our example p will not restart
before r and g have completed. At this point p becomes the highest-priority process and
can preemptively acquire the universes under contention and complete its realm. A detailed
discussion of this starvation-prevention mechanism can be found in [FP97], along with
advice on how to select values for T.

Thus, restarting a process comprises three steps. First, the start_time of p is
updated. Second, the procedure df sRestart is invoked upon the witness of the last
realm-affecting operation. Its purpose is to perform a depth-first search of Rg, starting at
witness (p), updating the attributes of each universe to reflect the reordering of (p, u).
Finally, the timeout of p is increased.
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Function df sRestart has two parameters: a universe u at which to start the traversal
and the restarting process p. The for-loop and outermost if-condition implement a depth-
first search with a marking strategy. Core universes are considered to be marked by default?,
and non-core universes are marked using the procedure mark, whose implementation we
elide for brevity. When an unmarked universe s is traversed, we attempt to implement the
reorder(p, s) transition, after which either p owns s or it does not. If p owns s after the re-
ordering, we invoke the traversal recursively, as negotiations involving universes accessible
from s will need to be reordered.

Function reorder (p, u) implements the transition reorder(p,u), returning true if p
owns u after the transition. There are three cases to consider. First, suppose the owner of u
is p. In this case, we have to update the acquisition time of u to reflect the reprioritization of
p. If u is not under contention, (i.e., the request queue of u is empty), then there is nothing
else to do to reorder (p,u), and reorder returns true to indicate that p (still) owns u.
Otherwise, u it must be surrendered.3 If p does not not own u, reordering (p, u) reduces to

modifying the entry for p in the request queue of u to reflect to the new (lower) priority of

P.

2Because restarting a process changes its start time, the test for a universe being in the core must
refer to the initial start time assigned at the beginning of realm update. In our implementation, we
provide a process attribute called initial_start_time (p), which is consulted by functions
df sRestart, surrender and wound.

30bserve that the surrender operation checks independently that the universe is not in the
core. Therefore, the acquisition time is updated in this case as well, so that surrender will not
mistakenly believe that the universe is in the core.
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Chapter 7

Feature: Conditional Contract

Negotiation

We conclude our treatment of contract negotiation by refining the algorithms to handle
conditional contracts. To motivate this treatment, observe that exclusion contracts are sub-
sumed by conditional contracts in that an exclusion contract of the form u is semantically
equivalent to a conditional contract of the form u when true. By analogy, a conditional
contract with a (non-trivial) condition behaves exactly like an exclusion contract when
the condition is verified. However, if the condition is not verified, then any migration that
would have occurred as a result of negotiating the corresponding exclusion contract must
be deferred until the condition can be verified. Negotiations that are deferred have much in
common with negotiations that are blocking; thus we generalize our model of the negotia-
tion of exclusion contracts to handle conditional contracts by refining what it means for a
negotiation to be blocking.

Suppose p owns a universe v whose constraint contains a conditional universe reference
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102



of the form u when ¢ for some (possibly trivial) condition c. Then, the negotiation (p, u) is

blocking if
1. p lacks the priority to link the edge v — u into its realm; or else

2. u and v fail to verify c.

To say that p has priority to link ¥ means either no other process currently owns u, or
u & Core(owner(u)) and p is the oldest process contending for u. Observe that if c is the
trivial condition, this definition reduces to the definition of a blocking negotiation for an
exclusion contract, again as expected. A deferred negotiation is one that is blocking because
of condition (2).

Figure 21 depicts the final (most refined) model of the negotiation state space. In this
refinement, state Blocking partitions into substates Deferred and NonDfrd!. Briefly, a ne-
gotiation is in state NonDfrd if the blocking is caused by condition (1) above; whereas the
negotiation is in state Deferred if the blocking is caused by condition (2). Observe that a
negotiation over an exclusion contract can only block in state NonDfrd; whereas a nego-
tiation over a (non-trivial) conditional contract can block in either NonDfrd or Deferred.
Observe also that in a deferred negotiation, p will have checked condition ¢ and found it not
verified by u and the client of the contract; whereas in a non-deferred but blocking negoti-
ation, p will not have checked ¢ and will thus have no knowledge of its truth assignment.

Figure 21 also depicts two new transitions, both named defer, from Owned and Mi-
grating into Deferred. These transitions arise when p negotiates for u to satisfy multiple

contracts, one or more of which are exclusion contracts and one or more of which are con-

Lshort for non-deferred.
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ditional. Consider the case where p, while negotiating an exclusion contract, has acquired
(or is in the process of acquiring) u. If p then attempts to negotiate a non-trivial conditional
contract whose referent universe is «, and if the 4 and the client fail to verify the referent
condition, then p must release u, and (p, u) must enter Deferred. That is, unsatisfied con-
ditional contracts trump exclusion contracts that refer to the same universe, for otherwise p
would hold onto u but could not modify it to make the condition true.

To implement deferred negotiations and the transitions into and out of state Deferred
requires associating with the negotiation any referent conditions of contracts that pertain
to the universe under negotiation. Because these conditions are specific to a given negoti-
ation, and not merely to a given universe, we store the set of them as part of the tuple that
is placed in reqQ (u) (i.e., in addition the process identifier and reference count). When
a process releases a universe u and looks to the request queue of u to discover which ne-
gotiation to enable, the process must first check to see if the relevant conditions are true.
These additional checks involve straightforward additions to procedures 1ink, acquire,
enterWaiting, and release. Finally, observe that unavoidable deadlocks may arise
due to deferred negotiations. However, because deferred is a substate of Blocking, the

algorithms presented in Chapter 6 will handle those deadlocks.
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Chapter 8

Eiffel Language Extensions for the

Universe Model

We extended the Eiffel programming language with language constructs and libraries that
support the universe model and implemented a compiler for these extensions. This chapter
documents the language features available to a programmer who wishes to use this com-
piler. The core part of the language extension is the reification of universes (Section 8.1)
and processes (Section 8.2) by means of language constructs and library classes. These
language constructs and the supporting library classes allow the definition and instantiation
of universes, processes, and their realms. Section 8.3 describes our handling of global data.
Local data exists on the stack of a process and can always be accessed in a thread-safe
fashion; heap data is partitioned into universes and access to it is regulated by the mech-
anisms of the universe model. Conversely, access to global data—which, by definition, is
accessible to all processes—requires special precautions. Finally, the universe model re-
quires special assignment semantics (Section 8.4). Under these semantics, it is sometimes
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necessary to implement the assignment of an object reference to a variable by copying the
referent in order to prevent inadvertent sharing of data between two processes. The chapter

concludes with a summary of the new language features (Section 8.5).

8.1 Defining and Creating Universes

The reification of universes involves declaring universes via language constructs and the
creation of runtime instances of universes. We declare universes by writing universe classes.
Instantiating a universe class creates both an object, called a universe root, and a new uni-
verse, whose sole member is the universe root. In this section, we first describe how uni-
verse classes can be defined (explicitly, via inheritance, or by means of a type modifier) and

then define the semantics of the universe creation process.

8.1.1 Defining Universes

A universe class is defined by prefixing a class definition with the keyword universe. Thus,

the definition
universe class U . . . end

creates a universe class named U.

A universe class definition can also declare one or more concurrency constraints, intro-
duced by the keyword concurrency. For example, the following class definition defines a
universe class U2 with a concurrency constraint <constraint>.

106



universe class U2

concurrency
<constraint>

end

Concurrency constraints follow the abstract syntax defined in Chapter 3. Operators have
the standard Eiffel precedence and associativity [Mey92]. The new when operator is not
associative and has a higher precedence level than the and operator and lower precedence
than the comparison operators in standard Eiffel. The new => operator is synonymous with

the existing implies operator and has the same precedence and associativity.

In addition to the concurrency constraint language defined in Chapter 3, our extension
allows a convenient shorthand for arithmetic expressions. For example, consider the uni-
verse class definition in Figure 22, which provides a simple emulation for a low-level reen-
trant mutex mechanism. This class provides methods to lock and unlock the universe ref-
erenced by the variable target_universe. Calls to 1ock and unlock can be nested,
and a depth variable ensures that the universe is released only if the same number of calls
to unlock as to lock have occurred. The source code in the example is complicated,
because the code must keep track of the nesting depth and update a boolean condition vari-
able accordingly. Figure 23 shows a simpler implementation. Rather than having an explicit
condition variable, the expression depth > 0 is used, greatly simplifying the code.

Generally, any legal Eiffel expression that uses only variables and constants of type
BOOLEAN, INTEGER, REAL, and DOUBLE, arithmetic operators (including addition, sub-
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universe class REENTRANT_LOCK
feature
target_universe: UNIVERSE_BASE
locked: BOOLEAN
depth: INTEGER

feature

lock is

do
if depth = 0 then

locked := true

end
depth := depth + 1

end

unlock is
do
depth := depth - 1
if depth = 0 then
locked := false
end
end

concurrency
locked = target_universe
end -- class REENTRANT_LOCK

Figure 22: A reentrant mutex
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1 universe class REENTRANT_LOCK
2 feature
3 target_universe: UNIVERSE_BASE
4 depth: INTEGER
5 feature
6 lock is
7 do
8 depth :=depth + 1
9 end -- lock
10 unlock is
11 do
12 depth :=depth - 1
13 end -- unlock
14 concurrency
15 (depth > 0) = target_universe
16 end -- class REENTRANT_LOCK

Figure 23: Improved reentrant mutex

traction, multiplication, division, and modulo), and comparison operators, can be used in
lieu of a boolean condition variable. The compiler will treat each such expression as though
there were a separately declared boolean condition variable that is updated each time the

expression changes.

8.1.2 Universe Classes and Inheritance

Universe classes can be inherited by other universe classes. When one universe class (the
child) inherits from another universe class (the parent), the child inherits the instance vari-
ables, methods, class invariants, and concurrency constraints defined in the parent. For
example, a universe class can inherit from the class in Figure 22 and use the 1ock and
unlock methods to acquire and release exclusive access to the target_universe
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without having to redefine the concurrency constraint. In the case of multiple inheritance,
the inherited constraint is the logical conjunction of the constraints of all parents. Like any
other class, a parent universe class can also be deferred, which means that the class de-
clares one or more abstract operations. (Such classes are often called abstract classes in
other languages.)

If a universe class does not explicitly inherit from another universe class, then it implic-
itly inherits from the special class UNIVERSE_BASE, which is provided by our standard
library. This predefined class provides the instance variables and methods necessary to im-
plement the realm update algorithm (Chapter 4). Any universe class is either a direct or
indirect descendant of UNIVERSE_BASE. Therefore, a variable that is defined to be of
type UNIVERSE_BASE can hold a reference to any universe root in the program.

Inheritance provides a convenient way for the programmer to reuse concurrency and
synchronization patterns (such as the one embodied in the REENTRANT_LOCK class).
Thus, inheritance allows a software designer to easily reuse predefined client-side syn-

chronization logic.

8.1.3 Alternate Universe Declaration

It is sometimes inconvenient to define a new class to declare a universe. For example, if a
universe class contains no concurrency constraint, then its definition differs from that of a
normal class only by the presence of the keyword universe. As a convenience feature, our

language extension provides a shorthand notation for such simple universe classes.

Given an existing type T, the type declaration universe T declares a universe class with
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the same class signature (i.e., methods, instance variables, and class invariants) as 7. For

example, the declaration

feature

x: universe HASH_TABLE;

declares an instance variable x of a universe class that has the same class signa-
ture as HASH_TABLE and the concurrency constraint true. As with any other uni-
verse class without an explicit inheritance clause, this class also implicitly inherits from

UNIVERSE_BASE.

8.1.4 Creating Universes

Universe classes are instantiated in the same fashion as any other Eiffel class, using either

the create instruction or the alternate ! ! syntax. Given an instance variable

feature

x: universe T;

where T has a constructor make with no arguments, each of the following instructions

create a universe.

create x.make

! x.make

After either instruction has completed, x will contain a reference to the universe root of the
newly created universe.
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Observe that for the constructor (i.e., make) to be called, the newly created universe
must be part of the realm of the process that executes the create instruction. Otherwise, the
process would be accessing an object outside its realm. The language implementation must
therefore adjust the realm of the current process to includé the newly created universe. This
adjustment occurs after the universe and the universe root have been created, but before
the constructor is called. Similarly, after the creation instruction has been completed, the
universe must again be excluded from the realm. Otherwise, it might be impossible for
other processes to acquire the newly created universe.

More precisely, we adjust the realm both upon entry into and upon exit from the con-
structor. Upon entry, the newly created universe is pushed on the universe stack (cf. Sec-
tion 3.4) and the realm update algorithm is invoked to add the universe to the realm. The
constructor is then executed. Upon return from the constructor, the universe is removed
from the universe stack and the realm update algorithm is invoked again to remove the

universe from the realm.

8.2 Defining and Creating Processes

Like universes, processes are reified by declaring them via language constructs and then
creating run-time instances. The declaration must provide the code that the process will
execute. The runtime instantiation consists of both a representation of a processl in the

underlying operating system and a realm within which the process will execute.

1 As before, we include light-weight processes and threads in the notion of operating system
processes.
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8.2.1 The Constituent Parts of a Process

To define the code that a process will execute, the programmer must create a class that
inherits from the predefined class PROCESS_BASE (an excerpt of which is presented in
Figure 24) and that defines a start method, which contains the code that the process will
execute. For example, Figure 26 defines a class EVENT_MONITOR. A process executing
the start method defined in EVENT_MONITOR will enter an infinite loop, constantly

retrieving events from an event channel and handling them, but never terminating.

Creating a running process from such a descendant of PROCESS_BASE comprises two
steps, the creation of an initial universe to populate the realm of the process, and the creation
of an operating system process that executes the code provided by the start method. The
first step is performed by creating an instance of the descendant of PROCESS_BASE. This
instance will be the universe root of the initial universe with which the realm of the process

will be populated. We call it the process root of the process.

Second, a process in the underlying operating system must be created that will then
execute the start method of the process root. This step is performed by creating an
instance of the standard library class PROCESS, which represents operating system pro-
cesses. (An excerpt of the class can be seen in Figure 25.) This class has a constructor
called with _root, whose sole argument is the process root of the new process. Invoking
the constructor will create an operating system process that will populate its realm with the

supplied process root and will then execute the root’s start method.

The precise semantics of the with root constructor are as follows. Given a variable
process of type PROCESS and another instance process_root of a universe class
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deferred universe class PROCESS_BASE
feature

start is deferred end
end -- class PROCESS_BASE

s W N R

Figure 24: The PROCESS_BASE class

that inherits from PROCESS_BASE, the instruction

create process.with_root(process_root)

creates a new operating system process. This new process then performs the following
operations. First, it pushes the universe referenced by process_root on the universe
stack and invokes the realm update algorithm. The result of the realm update will be that
the process root is inserted into the realm of the new process. Second, the new process calls
process_root.start. This operation is safe, because process_root is now part of
the realm of the new process. Third, once the start method terminates (either normally
or by an uncaught exception), the process releases all universes in its realm and terminates
itself. Note that the original process (i.e., the one that executed the create instruction) will
not block while the new process performs these steps, but will continue concurrently. The
result of the create instruction in the original process will be that process now references
an instance of PROCESS that provides a handle for the new process. Thereafter, process
can be used to manipulate the attributes of the new operating system process (such as its
priority).

Creating processes in two independent steps is necessary to gain maximum control over
the details of process creation. In particular, the two-step process allows the programmer
to obtain a reference to both the process root of the process and the operating system rep-
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class PROCESS
creation with_root
feature { NONE }

with_root(process_root: PROCESS_BASE) is
do

end
end -- class PROCESS

0 Jowunbd W N

Figure 25: The PROCESS class

resentation of the process. Otherwise, if the creation of a process root (i.e., an instance of
a descendant of PROCESS_BASE) implicitly also created a new operating system process,
it would not be possible for the programmer to reliably identify or otherwise reference that
process, because the only output of the constructor of the process root is the process root
itself. If the flexibility of the two-step process is not needed, the programmer can design

simpler custom procedures to create processes.

8.2.2 An Example of Process Creation

For a non-trivial example of process creation, consider Figure 28, which uses the
EVENT_MONITOR class from Figure 26 and the EVENT_GENERATOR class from Fig-
ure 27. The EVENT_GENERATOR class generates events and inserts them into an event
channel. At the other end of the event channel, an instance of EVENT_MONITOR retrieves
the generated events from the channel and processes them.

Initially (lines 12-14), instances of the event channel, monitor, and generator are cre-
ated. Each instance is a universe root, and channel is passed as an argument to the con-
structors of the monitor and generator universe classes, so that they can reference it. Once
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universe class EVENT_MONITOR
inherit PROCESS_BASE

creation make

feature
event_channel: EVENT_CHANNEL
reading: BOOLEAN

make(channel: EVENT_CHANNEL) is
do event_channel := channel end

start is
local event: EVENT
do
from until false loop -- infinite loop
reading := true
event := event_channel.dequeue
reading := false
handle(event)
end
end

concurrency
reading = event_channel when event_channel.size > 0
end -- class EVENT_MONITOR

Figure 26: An event monitor

universe class EVENT_GENERATOR
inherit PROCESS_BASE

feature
event_channel: EVENT_CHANNEL
writing: BOOLEAN

make(channel: EVENT_CHANNEL) is
do event_channel := channel end

start is
do ...end

concurrency
writing = event_channel
end -- class EVENT_GENERATOR

Figure 27: An event generator
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universe class MAIN
inherit PROCESS_BASE

feature

start is
local

do

end

end

generator: EVENT_GENERATOR

monitor: EVENT_MONITOR

channel: EVENT_CHANNEL
monitor_process, generator_process: PROCESS

-- create universes

create channel.make

create monitor.make(channel)

create generator.make(channel)

-- create processes

create monitor_process.with_root(monitor)
create generator_process.with_root(generator)
-- suspend self

suspend

Figure 28: Creating processes
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the universes have been created, the next step is to create and start the processes (lines
16-17). First, the monitor process is created by instantiating PROCESS with the construc-
tor with _root. The argument of the constructor is the root of the monitor universe. The
with _root constructor builds the initial realm for the monitor process so that it includes
the monitor universe and then calls monitor.start. The same procedure is then re-
peated for the generator process and the generator universe. Finally, the main process sus-
pends itself via the standard library method suspend (line 19) so as not to take CPU time
away from the generator and monitor processes.

The duration of the start method determines process lifetime. Just as a process starts
by beginning to execute this method, a process terminates when the start method of
its process root returns, either normally, or via an exception. In our example, the start
method of the monitor process contains an infinite loop. Because the monitor process will
never return from start, it does not terminate, but runs indefinitely.

Figure 28 also shows how to define the initial process of the system. A specially des-
ignated class MAIN2 describes the code and the initial realm of the initial process of the
system. The runtime system will execute this process implicitly at program start, and as
soon as the initial process terminates, the entire program terminates as well. Therefore,
we use the suspend method to keep the program active>. Alternatively, the MAIN class
could subsume the functionality of either the event monitor or the event generator pro-
cess, thereby eliminating the need for that process. This design would obviate the call to

suspend.

2The name of this class can be changed by setting a compiler option.
3Without the call to suspend, the program would immediately terminate.
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In summary, the reification of a process requires that the programmer define a descen-
dant of PROCESS_BASE and instantiate both that descendant and the standard library class
PROCESS. The descendant provides the code for the process to execute; the instance of the
descendant populates the initial realm of the process; and the instance of PROCESS reifies

the underlying operating system process that executes the code of the descendant.

8.3 Accessing Global Data

Like all programming languages, Eiffel allows access to global data (as opposed to the local
data of methods and the heap data that makes up the instance variables of an object). Such
access can be regulated in one of two ways. First, each item of global data (which may be
a single global variable or the variables of an entire module) can be treated as a universe.
A reference to such data can then be assigned to the universe variable of an object and
access to the data can be regulated by means of concurrency constraints. As an alternative,
storage for global data can be replicated for each process. Then each process would have its
own separate instance of the global data. For example, a global variable could be replicated
for each process, and each process could access and alter its own version independently
without affecting the others. The second approach makes each replicated version of the
storage global only for a single process (and such data is therefore often called thread-local
data), whereas in the first approach, data is globally shared by the entire program (at the
expense of having to explicitly regulate access to it).

In Eiffel, global data is accessed by means of so-called once functions. The syntax of a
once function differs from that of a regular function by the use of the keyword once instead
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of do to denote the start of the function body (cf. Figure 29, line 4). A once function in
standard Eiffel is evaluated only once per program run: Even if it is called several times,
the result is calculated only the first time, and stored in a global location. On any subsequent
call, the result that was calculated the first time is retrieved from that location and returned.
In this respect, once functions implement the Singleton design pattern [GHIV95]. Note
that in a concurrent system, initializing and accessing the global location must occur in a
thread-safe fashion.

In the universe model, the semantics of a once function depend on whether the return
type of the function is a universe class or not. If the return type is a universe class, then
the once function is evaluated once per program and access to the resulting universe is
regulated normally via concurrency constraints. Otherwise, the once function is evaluated
once per process and the result is stored in thread-local storage of the process, where it can
be accessed without interference by other processes. In the sequel, we illustrate both cases.

Figure 29 shows an alternate implementation of the event channel example that
uses a once function whose return type is a universe class to represent the globally
shared event channels. The class EVENT_GLOBALS declares a single once function
(global_channel, lines 3-6). Its body creates an instance of EVENT_CHANNEL.
Result is a special variable, which holds the return value of a function and is of the
same type as the function itself. It can be used like any other variable: It can be the target
and source of assignments and the target of a creation instruction. Therefore, the result of
global_channel will be a globally unique instance of EVENT_CHANNEL, no matter
how often the function is called.

Other classes can now use the function defined in EVENT_GLOBALS by inheriting
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from EVENT_GLOBALS. The property that a once function will be called only once per
program remains true even when it is inherited: When two different classes inherit from
EVENT_GLOBALS, both will obtain the same result when calling the inherited function
global_channel. In our example, both EVENT_GENERATOR and EVENT_MONITOR
can therefore reference a shared event channel by accessing the global_channel func-
tion. Lines 13-16 of Figure 29 demonstrate how a constructor has to be written to use that
function. The class definition of EVENT_MONITOR is very similar and has been elided for
brevity.

The start method of the program can now be written without reference to the chan-
nel universe (lines 22-36). The creation of the channel universe has been omitted entirely,
since it will be automatically created the first time that global_channel is called. Lines
29-30 create the monitor and generator universes, but do not pass an argument to their
constructors.

Figure 30 illustrates the case where the return type of a once function is not a universe
class. Here, primes is part of a hash table implementation. However, by the semantics
of standard Eiffel (that primes is evaluated only once per program), the result would be
shared among all processes. This could violate the basic principle that only one process
may access an object at any time.

To correct the behavior for functions whose type is not a universe class, we require that
a once function is evaluated once per program execution only if the type of the result of
the function is a universe class. If the type of the result of the function is not a universe
class, then the function is evaluated once per process. The result of the function is stored
in thread-local storage for each process. Therefore, no two processes can access the result
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universe class EVENT_GLOBALS is
feature

global_channel: EVENT_CHANNEL is
once

create Result.make
end -- global_channel

end -- class EVENT_GLOBALS
universe class EVENT_GENERATOR

inherit PROCESS_BASE; EVENT_GLOBALS

creation make
feature

event_channel: EVENT_CHANNEL
make is
do

event_channel := global_channel
end

end -- class EVENT_GENERATOR

universe class MAIN

inherit PROCESS_BASE

feature

end

start is
local
generator: EVENT_GENERATOR
monitor: EVENT_MONITOR
monitor_process, generator_process: PROCESS
do
-- create universes
create monitor.make
create generator.make
-- create processes
create monitor_process.with_root(monitor)
create generator_process.with_root(generator)
-- suspend self
suspend
end

Figure 29: Accessing global data
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1 class HASH_TABLE

2 feature

3 primes: ARRAY[INTEGER] is

4 once

5 -- calculate primes in Result
6 end

7

8

end -- class HASH_TABLE
Figure 30: Thread-local once functions

of the once function at the same time.

Once functions therefore provide convenient access to both global and thread-local data.
Global data is defined as a once function that returns an instance of a universe class. In order
to access global data defined through a once function, the result of that function has to be
assigned to a universe variable, and a concurrency constraint must exist that makes the
universe accessible. Conversely, thread-local data is defined as a once function that returns
an instance of a normal class and can be accessed safely at any time without the need to
manipulate concurrency constraints. [CW02] derived similar semantics for once functions
for an implementation of Eiffel’s SCOOP mechanism that were omitted from the original

specification [Mey93, Mey97].

8.4 Assignments and Data Access

The condition imposed by the universe model that no process access objects outside its
realm requires adjustments to the semantics of assignments and method invocations. In
particular, assignments of references to variables and the passing of references as actual
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parameters to methods can result in more than one process referencing the same object. In
order to avoid uncontrolled concurrent access to such objects, one has to either guard each
access with a runtime check that ensures that accessed objects are in the realm of the current
process, or replicate objects so that they cannot be referenced by more than one process.
In the sequel, we show how these requirements affect the semantics of assignments and

method invocations.

8.4.1 Motivation

As a motivating example, consider line 14 of Figure 26. This assignment retrieves a refer-
ence to an instance of EVENT from the event_channel universe and assigns it to the
event variable. If the data referenced by event were part of the channel universe, then
once reading had been set to £alse (in line 15), the process method (that is called

in line 16) would be unable to legally access the object referenced by event.

To avoid this problem, we treat any assignment where the source might be in a different
universe than the destination differently from normal assignments: A copy of the source
object is created and assigned to the destination variable. Thus, the process method can
safely work on event (which has been copied into the event monitor universe) without

crossing realm boundaries.

However, creating such a copy is potentially an expensive operation. Not only does the
object itself have to be copied, but, if any of its instance variables reference other objects,
those objects may have to be copied as well, proceeding recursively through all objects
that are reachable directly or indirectly from the source of the assignment. Therefore, while
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simple data such as an integer or string is handled efficiently by the copying approach, it
can be very expensive in general. It is therefore desirable for the programmer to be able to

suppress such copying when it is not warranted.

8.4.2 Shared and Normal References

We alter the semantics of assignments in our language extension to accommodate these
requirements. The normal semantics of assignment prescribe that assigning a reference to
a variable (a reference assignment for short) will not create a copy of the referent. Instead,
the semantics of reference assignment are preserved only when it can be guaranteed at
compile time that the destination and source of the assignment lie within the same uni-
verse. Observe that for a strictly sequential program—a single process existing in a single
universe—the semantics of reference assignment will not be affected at all. Thus, the alter-
ation of reference assignment semantics only affects newly written concurrent code (where
the programmer is aware of these semantics), but will leave existing sequential code intact.

In addition to altering the semantics of normal references, we also provide shared ref-
erences that allow reference assignments without creating a copy, even if the source and
the destination of the assignment do not lie within the same universe. Given a type T, the
declaration of a variable as being of type shared T will mark the variable as a shared refer-
ence. (We call such a variable a shared variable for short.) As with the universe keyword,

a class can also be declared as shared. For example, the class definition

shared class S ... end

declares a shared class S, which has the same class signature as a class definition without
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the shared prefix. A variable declaration such as:

feature

x: S

then makes the declared variable x a shared variable. A shared variable can hold references
to objects in any universe, whereas normal variables can only hold references to objects in
the same universe. Note that variables whose type is a universe class behave like shared
variables in that they can hold a reference to any universe root, regardless of the universe
of which the referent is a root. Therefore, assigning an object reference to a shared variable
or to a variable whose type is a universe class will not create a copy of the referent, even if
the referent is contained in a different universe. It is the responsibility of the programmer
to make sure that concurrency constraints allow access to the objects referenced by shared
variables.

To illustrate the use of shared, Figure 31 shows a variant of the event monitor code
from Figure 26 that uses a shared variable. The main difference is the use of the keyword
shared (line 11). Because event is now shared, the call of handle (event) (line 16)
will access data contained in the event channel. Therefore, the realm-affecting assignment
to reading now has to occur after the call of handle (event), because otherwise the
event channel universe would be removed from the realm and hand1le could not access it.

Because a shared variable can point to any object in the system, each access to a shared
variable must be preceded by a runtime check (which is generated by the compiler). That
check verifies that the referent is part of a universe that is in the realm of the current process.
Should the check fail, a runtime exception is raised. The same check is necessary when
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universe class EVENT_MONITOR
inherit PROCESS_BASE

creation make

feature
event_channel: EVENT_CHANNEL
reading: BOOLEAN

make(channel: EVENT_CHANNEL) is
do event_channel := channel end

start is
local
event: shared EVENT
do
from until false loop -- infinite loop
reading := true
event := event_channel.dequeue
handle(event)
reading := false
end
end

concurrency
reading = event_channel when event_channel.size > 0
end -- class EVENT_MONITOR

Figure 31: Shared Data

accessing an instance of a universe class. A variable that is declared to be of a universe

class can, like a shared variable, reference objects in any universe. Conversely, normal

references only reference objects in the same universe and do not require a check.

8.4.3 Locality of Objects and Variables

The semantics of a reference assignment in our language extension depend on the location

of the source and the destination of the assignment. In order to make these semantics pre-

cise, we define what it means for an object or variable to be local to a universe. An object

is local to a universe if and only if it is contained within that universe. An instance variable
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of an object is local to a universe if and only if the object is contained within that universe.
A local variable of a method (including its formal parameters and the special Result vari-
able) is local to a universe if the current object of that method (i.e., the value of Current)
is contained within that universe. Note that any variable or object is local to exactly one

universe, which we call the containing universe of the variable or object.

We also define whether a type is local or not. A type is local if and only if any variable
of that type can only reference or contain objects whose containing universe is the same as
the containing universe of the variable. Otherwise, we say the type is non-local. In Eiffel,

both shared and universe classes are non-local types. All other classes are local types.

8.4.4 Semantics of Assignment

Whether the source of an assignment has to be copied before being assigned to a variable
depends on the source and the destination of the assignment. Semantics vary depending on
whether the source and destination are local to the same universe. To generate efficient code
for assignments, we infer this information at compile time from the types of the source and

destination of the assignment.

An assignment var := expr in Eiffel has only a limited number of variants, which we
will enumerate in the sequel along with their semantics. The destination var of the assign-
ment can only be an instance variable or the local variable of a method (local variables
include the formal parameters of the method and the special Result variable that holds the
result of a function). The source expr can be either a local variable, an instance variable, or
a method call. Note that operators in Eiffel are just an alternative syntax for a method call.
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For instance, the expression 1 + 2 is rendered as an invocation of the method infix "+"
on the target 1 with argument 2. Similarly, constants can be interpreted as parameterless
once functions, and access to instance variables of an object other than Current can be be

implemented through parameterless methods that return the contents of the variable.

We consider first the case where both var and expr are local or instance variables. If the
type of var is non-local, no copying is necessary, because a variable of a non-local type can
reference an object in any universe. Likewise, if both var and expr are of a local type, then
no copying is necessary, because expr can only reference objects in the same universe, and
var can reference objects in the same universe. However, if expr is of a non-local type, and

var is of a local type, then the assignment must assign a copy of expr to var.

The semantics of assignment where expr is a method call of the form

target.method(argy, . ..,argn)

are more complex, because target may be either local to the current universe or not, which
affects the containing universe of the result of the function. First, if target is declared to
be of a local type, then the semantics of the assignment are the same as if expr were an
instance variable of the current object; i.e., copying is necessary if and only if the type of
the result of method is of a non-local type and var is of a local type. This is because the
Result variable of a function that is declared to be of a local type can only reference an
object local to the same universe that var is local to. Second, if target is of a non-local
type, then we must assume that it is possible that the result of method is not local to the
containing universe of var. While the method itself may have been declared to be of a
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local type, the result will be local to the containing universe of target, not the containing
universe of the object invoking the method. Therefore, the result of such a method call must

be copied.

8.4.5 Semantics of Argument Passing

Assignment also implicitly occurs when a reference is passed as an argument to a method.
Such argument passing will assign the reference to a formal parameter of the method.
Without loss of generality, we consider only methods with a single argument to derive the

semantics of such implicit assignments.

Consider a method call

target.method(expr)

where expr is assigned to a formal parameter par of method and target is declared to be of
a local type. In this case, par is local to the containing universe of the current object and the

semantics are identical to that of the assignment par := expr, where par is a local variable.

However, if target is declared to be of a non-local type, then the containing universe of
par is the same as that of rarget, and par may not be local to the containing universe of expr.
Under these circumstances, if par is declared to be of a local type, then the assignment has
to create a copy of expr, which is then assigned to par. Conversely, if par is declared to be
of a non-local type, then it can hold a reference to an object in any universe, and no copying
occurs.
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8.4.6 Assignment of Values

Eiffel’s type system supports not only reference types, but also so-called expanded types.
A variable that is declared to be of an expanded type does not contain a reference to an
object, but instead contains the object itself. An expanded type in Eiffel would generally
correspond to a record type in Pascal or Modula-2 or a struct type in C/C++, whereas a
reference type would correspond to a pointer to a record or struct. Examples of expanded
types include the basic arithmetic types, such as INTEGER or REAL, but also user-defined
classes that are prefixed by the keyword expanded. The following class definition defines

a class COMPLEX that is an expanded type.

expanded class COMPLEX
real: DOUBLE

imaginary: DOUBLE

end

In standard Eiffel, assignment between expanded types is performed componentwise.
For example, if one has two variables z1, z2 of type COMPLEX, then the assignment
z1 := z2 is performed by assigning z2.real to z1.real and z2.imaginary to
zl.imaginary.

In our extension of Eiffel, assignment of values of expanded types also occurs compo-
nentwise. That is, the assignment of an expression expr to a variable var, where var and

expr are of an expanded type, is replaced by an (atomic) sequence of assignments

var.xy := expr.xj
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var.xy := expr.x;

for each component x; of the type of var. Because expr may have side effects, it is evalu-
ated only once for each such sequence. If an x; is itself of an expanded type, the process
is repeated for that x; until the original assignment has been replaced by a sequence of as-
signments of either reference types or expanded types that do not contain references (such
as INTEGER). The resulting sequence of assignments then follows the basic rules for ref-

erence assignments described above.

8.4.7 Deep Copying

If an assignment to a variable of a local type necessitates copying by the above rules, this is
a deep or recursive copy, which copies not only the object itself, but also objects referenced
by instance variables of that object, and so forth. In this section, we define the precise
semantics of the deep copy of a data structure.

The purpose of creating a deep copy is to avoid inadvertent access to an object that is
not part of the realm of the current process. Consider, for instance, that the type EVENT in

our example is defined as:

class EVENT

feature
priority: INTEGER
message: STRING
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end

Copying only the event object itself from the event channel to the event monitor universe
would leave the message object inside the event channel universe. If process were de-

fined as

class EVENT_MONITOR

feature
process(event: EVENT) is
do
print(event.message)

end

end

it would access an object (event .message) that is not part of the current realm. The
result of such an operation would be undefined. Note that if message were to be declared
as being of type shared STRING, then the access would result in defined behavior, namely
aruntime error if message is not part of the current realm. A deep copy operation transfers
not only the object referenced by the source of an assignment to another universe, but also
any object referenced directly or indirectly by instance variables (excluding those instance
variables that are of a non-local type).

We first define what objects need to be copied. For this purpose, we define a local
reachability relation on objects. An object o9 is locally reachable in one step from an
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object 07 if 07 has an instance variable of a local type that references or contains 03. An
object o, is locally reachable from an object o, if there are objects o9, . .., 0,1 such that
0;+1 is locally reachable in one step from o; for all i < n, or if 07 = op. Effectively,
local reachability is the reflexive, transitive closure of one-step local reachability. The set
of objects that are locally reachable from o0; can be computed by recursively traversing all
instance variables that are declared to be of a local type. Instance variables that are shared
or whose type is a universe class are not traversed. Thus, the deep copying procedure will
not access objects outside the realm of the current process.

Let S be the set of objects locally reachable from an object source. For all 0 € S, we
create a new object copy(o) such that copy(o) is an identical copy of 0. We now have a
copy of each object locally reachable from source. However, the instance variables of these
copies may be incorrect. For instance, if object source had an instance variable (of a local
type) that referenced ob, the corresponding instance variable of copy(source) would still
reference the original ob instead of copy(ob). Therefore, these instance variables must be
updated in a final pass.

For all o € S, we update the instance variables of copy(o). Let v be an instance variable
of copy(0). If v is declared to be of a non-local type, then it is not changed. If v is declared
to be of a local type and it references an object o’ € S, then v is assigned a reference to
copy(0'). If v is declared to be of a local type and it references an object o’ & S, then v
is not changed. Finally, if v does not reference an object (e.g., if it is of type INTEGER or
another expanded type that does not contain references), then v is not changed, either. After
all instance variables have been updated, copy(source) contains a deep copy of source.

To illustrate this process, consider the instance diagrams in Figure 32. Each box in
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this diagram describes an object, with the shaded rectangle at its top describing the name
and type of the object and the white rectangles describing the instance variables and their
types. An arrow emanating from a white rectangle points to the object that the correspond-
ing instance variable references. The objective of this example is to show the process of
a deep copy with source being the object obl. The set S of objects reachable from obl
are {obl,0b2,0b3}. The object ob4 is not reachable, since it is only referenced by the
shared variable b2 of 0b2. The copying process then creates objects oblcopy = copy(ob2),
ob2copy = copy(ob2), and ob3copy = copy(ob3). Updating the instance variables of
oblcopy changes a to reference ob2copy instead of 0ob2 and leaves b unchanged (since it
is of a non-local type). Updating the instance variables of ob2copy changes c to reference
oblcopy instead of obl and b to reference ob3copy instead of 0b3, while b2, being of a
non-local type, remains unchanged. Finally, updating the instance variables of 0b3 is not

necessary, since its only instance variable is an integer which does not reference any object.

In summary, this definition of deep copying satisfies the requirement that objects out-
side the realm of the current process will not be accessed. The copying algorithm itself will
only access objects in the same universe as source, which is already part of that realm. Once
the data structure originating at source has been copied, it is not possible for user-defined
code to access objects outside the realm via copy(source), either. All objects that can be
accessed via copy(source) are either local to the same universe as copy(source) itself or
are referenced by a variable of a non-local type and all accesses through variables of a
non-local type are checked at runtime.
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Figure 32: Deep Copy Example
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8.5 Summary of Language Extensions

Our extensions introduce the new keywords universe, concurrency, and shared, the new

symbol => and provide additional semantics for the existing keywords when and once.

e The keyword universe begins the declaration of a universe class (Section 8.1.1 and

Section 8.1.3).

e The keyword concurrency declares a concurrency constraint (Section 8.1.1).

The keyword shared declares a shared class or variable (Section 8.4.2).

The keyword when and the symbol => are operators for concurrency constraints

(Section 8.1.1)

e The keyword once declares once functions, which have special semantics in our ex-

tension (Section 8.3).

In addition, we provide new standard library classes, called UNIVERSE_BASE,

PROCESS_BASE, and PROCESS.

e UNIVERSE_BASE is an ancestor for all universe classes (Section 8.1.2).

e PROCESS_BASE is a deferred class, from which other classes inherit to define the
code of a process. This descendant is then instantiated to define the process root

(initial universe) of a realm (Section 8.2.1).

e The instances of PROCESS are representations of actual processes as provided by
the underlying operating system (Section 8.2.1).
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Finally, we alter the semantics of assignment and method invocation to prevent inad-

vertent concurrent access to shared data (Section 8.4).
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Chapter 9

Performance Evaluation

We now turn to the issue of how well the realm update algorithm performs. The perfor-
mance of each of the individual components of our algorithm (e.g., wound-wait, cautious
waiting, and reference counting) has been analyzed before in isolation [BKH97, HZ92,
BAR™03]. Given that our algorithms combine these disparate techniques in a manner that
involves complex interactions, a full complexity analysis is beyond the scope of this thesis.
Instead, we chose to evaluate the algorithm empirically. To this end, we have devised a
parameterized benchmark, which, dependent on a set of input parameters describing realm
size and degree of contention, will yield the overhead of adding universes to a realm and
removing them from it. We first introduce the benchmark in Section 9.1, including the pa-
rameters and their meaning. Section 9.2 explores the results we obtain for various settings
of these parameters. Section 9.3 discusses the cost of adding universes to a realm or remov-
ing them from a realm on a uniprocessor machine. This cost is essentially linear in terms
of the number of universes involved, with a small cost per universe, even under artificially
high levels of contention. On a symmetric multi-processor architecture, execution cost for
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our benchmarks is dominated by an OS-specific context switch overhead that is inherent to

any completely fair scheduling approach.

9.1 The Benchmark Infrastructure

The benchmarks described in this section are generated from a simple class schema (Fig-
ure 33) and a set of input parameters. The generated code is passed to our extended Eiffel
compiler, and the compiled code is then executed to estimate the overhead caused by the

realm update algorithm for the given input parameters.

9.1.1 The Class Schema

The class schema (Figure 33) comprises a condition variable ¢ (line 8), a set of universe
variables uj,...,u, (line 9)1, a concurrency constraint ¢ = u; A ... A up (line 30)1
over these variables. The schema also provides a procedure iterate that repeatedly flips
¢, thereby implicitly invoking the realm update algorithm to either add (when ¢ becomes
true) or remove (when ¢ becomes false) universes in the set {uj, ..., un }. The body of this
procedure consists of a pair of nested loops, the outer loop of which loops forever over its
body. The body consists of three statements, the first of which is the inner loop (lines 18-20)
that controls the interval between invocations of the realm update algorithm. Its duration is
determined by the function interval_length (see below). The second is an instruction

(line 21) to toggle the condition variable c. Changing ¢ is a realm-affecting operation,

INote that the code listed in the schema is a placeholder for the actual code. The code generator
instantiates this schema to produce syntactically correct code.
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and thus causes the invocation of the realm update algorithm. Finally, at the end of each
iteration of the outer loop, the routine record_iteration is called, which is a special
benchmarking routine (implemented in C and assembly language to avoid distortions of
the benchmark results). Its purpose is to check whether a given number of iterations of the
outer loop has been reached, and to end the benchmarking process once that happens. It
does this by incrementing a global counter (shared by all threads) atomically, and if a set
number of iterations is reached, it terminates the program and outputs the time spent since

its inception.

The function interval_length, which determines the duration of the inner loop,
and thus the time between invocations of the realm update algorithm, generates pseudo-
random numbers with a fixed average. The purpose of having it generate pseudo-random
numbers is to avoid having the realm update algorithm accidentally operate in lockstep with
the operating system scheduler or other operating system events. The function is calibrated
so that an average iteration of the outer loop takes ~ 1000 clock cycles. The pseudo-random

numbers follow the standard exponential distribution over the interval (0, co).

Observe that n may be zero, in which case we omit any declaration of universes in line 9,
and set the concurrency constraint (line 30) to be ¢ = true. Even though toggling the value
in ¢ has no effect on the satisfiability of this constraint, assignments to ¢ are nevertheless
realm affecting operations. Thus, they invoke the realm-update algorithm and allow us to
estimate the overhead for the basic invocation.
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9.1.2 Input Parameters

Three input parameters affect the generated benchmark code. The first parameter, Number-
Processes, is a positive integer that sets the number of processes. Second, DeltaRealm is
a non-negative integer that controls how many universes are added to (or removed from)
the realm of a process on each iteration. DeltaRealm corresponds to the value of n above.
Third, Overlap is a non-negative integer less than or equal to DeltaRealm, which defines the
overlap between two processes: Suppose that processes are numbered pq, ..., px. Then the
maximum realm of p; will have Overlap universes in common with the maximum realm of
pi+1 for 1 < i < k, and the maximum realm of p; will have Overlap universes in common

with the maximum realm of p;.

9.1.3 Output Values and Precision

For any set of input parameters, we track two output values. One is the average Overhead
incurred by invoking the realm update algorithm. We determine that value by running the
benchmark twice, once with the realm update algorithm enabled, and once with the al-
gorithm disabled. We disable realm updates by removing the invocation of the procedure
from the code generated by the compiler for the ¢ := mnot c instruction?. The difference
between the two runs, divided by the number of total iterations performed, is the average
overhead caused by the realm update algorithm per iteration. To minimize errors, we further
average the result over several runs.

The other output value is SignalRate, the number of times per thousand invocations (%o)

20bserve that this is safe and does not generate any runtime errors, since no process actually
ever accesses any of the u;.
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universe class BENCHMARK
inherit PROCESS_BASE

feature { NONE } -- artributes

c: BOOLEAN
ul, ..., un: UNIVERSE_BASE -- declaration will be generated for n >= 0

feature { ANY } -- public routines

iterate is
local
j: INTEGER
do
from until false loop -- infinite loop
from j := interval_length until j = 0 loop
j=j-1
end
c :=not ¢ -- invokes scheduler
record_iteration
end
end

concurrency
¢ =>ul and ... and un -- constraint will be generated for n >= 0

end -- class BENCHMARK

Figure 33: Schema used to generate benchmark classes.
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of the realm update algorithm that one process signals another process the sending of an
ACQUIRED or SURRENDER message. This value is an indirect indicator for the degree of
universe contention. Note that the implementation is optimized to not signal other processes
for every single message sent in order to avoid unnecessary process context switches, so it

is not an indicator for the number of messages being sent between processes.

The relative variation of Overhead is generally less than a few percent between indepen-
dent runs. The absolute error for SignalRate can be as much as 0.5%o, which corresponds

to one signal per two thousand scheduler invocations.

9.1.4 Configuration Options

Our runtime library can be configured by a number of parameters at compile time, some
of which require a certain degree of processor support. The PORTABLE option selects an
implementation that has a high degree of portability across systems that support the POSIX
API [IEE96]. The FASTLOCKS option supports customized mutexes that were optimized
for our purposes instead of using the POSIX implementation. Our optimization essentially
removes overhead due to API differences and unnecessary options provided by the POSIX
interface and the Linux implementation, but is otherwise a typical mutex implementation.
Additionally, it is reduced to a single compare-and-swap call in the absence of contention.
The SMP_SUPPORT option can be chosen in conjunction with the FASTLOCKS option.
Disabling it removes an inherent overhead in synchronization mechanisms on symmetric
multi-processors using the Intel architecture. Finally, USER_THREADS selects an experi-
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mental implementation of user level threads3, which requires compiler support to be pre-

emptive, but eliminates synchronization overhead completely.

9.2 Benchmark Results

To measure the performance of our algorithm as a function of the input parameters, we
have constructed a number of scenarios. Each scenario keeps all but one or two of the input
parameters fixed, and varies the other parameters along a (usually linear) scale. For each
scenario and set of input parameters, we list the output values. We do not explicitly list
the value of SignalRate in scenarios where no contention occurs, because in that case it is
always zero.

Our benchmarks were performed on an Intel Xeon processor, running at an effective
frequency of 2.175 GHz, using a Linux operating system (kernel version 2.2.17 configured
for uniprocessor use) and the POSIX threads implementation that is part of the GNU libc
2.3.1 implementation. We used the FASTLOCKS option and disabled SMP_SUPPORT?*,
unless specified otherwise.

The first scenario (Table 1 a) attempts to capture the effect of the DeltaRealm parameter,
all else being equal. For this purpose, we set Overhead to zero so as to avoid contention.

The NumberProcesses parameter was kept at 2 throughout the scenario. Observe that the

3The USER_-THREADS option is based on the portable GNU threads library [Eng00]. It is exper-
imental only insofar as the thread library cannot yet be used in conjunction with the Boehm-Weiser
conservative garbage collector [BW88] that we are using, but is otherwise functional.

4Enabling SMP_SUPPORT on 80x86 processors introduces a fixed overhead per synchroniza-
tion primitive, caused by prefixing atomic instructions such as compare-and-swap with an instruc-
tion that locks the system bus and keeps processor cache lines synchronized. Unfortunately, that
overhead varies greatly between processor types, from ~ 30 to ~ 160 clock cycles according to our
measurements, and decreases the reproducibility of results.
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DeltaRealm Overhead Overlap Overhead SignalRate

0 216 0 1310 0.00%0
1 428 1 1376 1.49%o
2 564 2 1331 1.34%0
3 756 3 1333 1.90%0
4 847 4 1356 1.38%0
5 1049 5 1339 1.77%0
6 1290 6 1265 1.86%0
7 1341 7 1330 1.63%o

(a) (b)

Table 1: Scenarios 1 and 2 — No contention and with contention.

value of Overhead can be approximated well by a linear function.

The second scenario (Table 1 b) examines various degrees of contention between re-
sources. While still keeping the number of processes at 2, we vary the Overlap parameter
from O through 7. DeltaRealm is kept at a constant value of 7, so that we examine every
situation from no contention to 100% contention. While the non-zero SignalRate indicates
that contention does indeed occur, there is no effect on the value of Overhead that exceeds

the error of measurement.

Finally, the third scenario (Table 2) measures what happens if multiple processes con-
tend for the same set of resources. In this scenario, we track the overhead for 1 through 5
processes contending for the same set of resources. We vary NumberProcesses from 1 to 5,
and for each value of NumberProcesses, we vary DeltaRealm from 1 to 5 and from 10 to 30.
For each run, Overlap will be the same as DeltaRealm to create complete contention. This
time, we observe a minor performance penalty that increases with the number of processes.
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Overhead

DeltaRealm = Overlap

S 1 2 3 4 5 10 20 30
S 1 412 599 721 877 1006 1637 3036 4398
£ 2 450 574 760 859 1065 1801 3222 4494
s 3 466 597 779 880 1073 1741 3432 4585
E 4 496 613 796 898 1105 1858 3391 4618
Z 5 512 672 840 941 1158 1906 3404 4754
SignalRate
DeltaRealm = Overlap

S 1 2 3 4 5 10 20 30

S 1 000% 000% 0.00% 0.00% 0.00% 000%  0.00%  0.00%
& 2 L14% 119% 151% 098% 1.11%  1.65%  1.28%  2.50%
§ 3 321% 338% 307% 498% 371%  5.15%  721%  6.45%
E 4 697% 635% 629% 6.14% 8.14%  8.59%  9.86%  12.98%
Z 5  961% 1098% 9.17% 9.72% 11.69% 12.29% 14.10%  20.58%0

9.3 Analysis

Table 2: Scenario 3 — Process contention.

We have provided performance data for our scheduler on a uniprocessor system using

stock hardware and an off-the-shelf operating system, when performing under a variety

of circumstances. We now discuss the meaning of these results, what they reflect of our

implementation, and why we didn’t provide similar data for an SMP architecture.

9.3.1 Uniprocessor Results

In the absence of contention, the realm update algorithm has a cost that is approximately

linear in the number of universes involved in an update, with the cost increasing by ~ 160

clock cycles per universe. This is the expected outcome, since the realm update algorithm

has a cost that is linear in the number of universes for that case, as long as the underlying

graph is tree-shaped.
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For two processes and up to 30 shared universes we do not see any increase in cost
that significantly exceeds any error due to caching, pipelining, and other sources of error
immanent to a modern microprocessor. In particular, for DeltaRealm = 30 the value of
SignalRate does not exceed a value of 2.5 per thousand invocations of the realm update
algorithm for two threads, compared to a value of 1.14 for DeltaRealm = 1. That means
that while there is minimal overhead due to contention, the cost of contention per universe
is negligible in comparison.

For more than two processes, the situation is more complex. For any given number
of processes, the increase in SignalRate is roughly linear in terms of DeltaRealm, and
there appears to be a matching increase in Overhead, though that is too small compared to
the immanent error due to caching, pipelining, etc. to make any reliable statements. The
cost per universe appears to be largely dependent on the number of threads involved, and
increases non-linearly. However, for all our test cases, the overhead per each additional
thread never exceeds 5% of the cost for the case where there is no contention.

To further analyze the case where two or more threads contend for one or more uni-
verses, note that the additional cost for contention is dominated by the cost of process
context switches. In our implementation, the cost of a context switch is 10-100 times that
of the various synchronization primitives that we employ (usually around ~ 4000 clock
cycles for a context switch, ~ 40+ clock cycles for a synchronization primitive). Thus,
even relatively infrequent context switches can contribute significantly to the overall over-
head. Context switches can occur either voluntarily by one process transferring control to
another, or involuntarily, when a time slice of the OS scheduler has ended.

Involuntary context switches are rare on a uniprocessor, and in our implementation,
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voluntary context switches on a uniprocessor can only occur as a side effect of involuntary
context switches, due to ACQUIRE or SURRENDER messages being sent. Furthermore,
note that if one process initiates a process switch by signaling the sending of such a message
to another process, this can also result in a third process being scheduled instead, causing
further contention, as there are now three or more processes negotiating for the acquisition
of universes. It is therefore to be expected that the overhead in contention scenarios depends
both on the number of universes under contention and the number of processes contending

for them.

We conclude that the realm update algorithm has a reasonable cost and scales well on

uniprocessors, even for artificially large degrees of contention between processes.

9.3.2 SMP Architectures

We have not provided data for our benchmarks when running on an SMP architecture, be-
cause they expose a pathological case of SMP scheduling. For example, when running two
processes with DeltaRealm = Overlap = 1 and AvgintervalLength ~ 1000 on the same
architecture with an SMP-capable OS kemnel, we have Overhead > 5000 clock cycles, over
ten times times the uniprocessor cost, and SignalRate > 950 per thousand realm updates,
meaning a process context switch for almost every invocation. Of the signals delivered,
over 99.9% were for universe acquisitions, and less than 0.1% for SURRENDER messages.
Therefore, the increased overhead is almost entirely attributable to the increase in Signal-
Rate and the concomitant context switches. In particular, the context switch overhead alone
exceeds the synchronization cost on uniprocessors even for very large realm sizes.
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This massive increase in overhead is not a shortcoming of the realm update algorithm,
but simply due to lock contention; a similar increase in overhead could be observed when
replacing the realm update procedure with code that locks a semaphore when ¢ = true
and unlocks it when ¢ = false. To understand the reason, observe that on a uniproces-
sor, once a process P relinquishes a resource and transfers control to another process Q, P
will be suspended for a full time slice, where it can’t interfere with Q’s operation. On an
SMP architecture under the same circumstances, P continues running, until it is blocked
when attempting to acquire the shared resource again. Essentially, on an SMP architec-
ture under high contention, almost each resource acquisition carries the additional cost of
a context switch.

Observe that this problem need not occur if resource management is not completely
fair. A uniprocessor scheduler does not have the problem because Q is allowed to acquire
the resource several times before P can attempt it again. This approach sacrifices fairness
for performance. To obtain similar performance in the SMP case under high contention, a
resource management algorithm will have to give up a degree of fairness to avoid the above
scenario.

This phenomenon occurs in practice as well. Previous research has found that applica-
tions that use blocking synchronizations can spend a third of their time on context switching
[KLMOB91], while another study [JS99] that used the SPLASH-2 benchmarks found that
for some applications half the time was spent waiting on synchronization. A commonly
proposed solution [KLMO91, TF02] is to use busy waiting (“spinning”) instead of idle
waiting to eliminate context switches in those cases where context switch overhead domi-
nates execution time. To study this, we implemented an experimental spinning approach for
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our realm update algorithm by inserting a busy waiting loop that delayed until u.owner
# nil at the beginning of request. By doing this, the overhead of the realm update
became comparable to the uniprocessor case (within 10%). Unfortunately, this simple so-
lution can potentially lead to starvation, does not scale well for multiple universes, and
can unnecessarily occupy processors on multi-user machines. An alternative solution to the
problem of excessive context switch overhead is to use user-level threads (which can be en-
abled in our implementation by setting the USER_THREADS option in the runtime system),
which are limited to a single processor, but consequently cannot exploit the parallelism of
SMP systems. Further research is needed to determine the best solution to deal with such

scenarios.
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Chapter 10

Conclusion and Future Research

We have presented an approach to synchronization that relies on the specification of declar-
ative contracts, rather than the embedding of synchronization mechanisms in the procedu-
ral code of a class. This approach can be integrated easily in object-oriented languages. We
have provided algorithms for the most difficult parts of its implementation, validated their
efficiency, and provided a set of language extensions for Eiffel that allow a programmer to
use the model. The remaining open questions are the relative power of the universe model
relative to existing approaches and what additional features may have to be supported by a

contractual model in the future.

10.1 Comparison of the Universe Model to Existing Ap-

proaches

The universe model does not provide capabilities for every single concept that has been
discussed so far, especially not all of the features of the synchronization mechanisms and
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contractual models presented in Section 2.6.2. Sather, CEE, and SCOOP have features for
the explicit composition of contracts that are not covered by the universe model, and which
we discuss first. Second, we consider the issue of intra-object synchronization contracts,
which are provided by the synchronization ring model, but not by the universe model. Con-
versely, the universe model supports the implicit composition of synchronization contracts,

which is not available in any of the other approaches.

10.1.1 Explicit Composition beyond the Universe Model

A distinguishing feature of Sather that cannot currently be replicated in the universe model
is the else clause of its multi-branch lock statement. It specifies an alternate execution path
that can be taken when none of the available branches can be taken. The universe model
as a contractual model does not support such semantics. [FP97] describe three possible
alternative semantics for the else-branch, none of which is clearly superior to all of the
others. Should semantics similar to the else-branch be found to be desirable, a contractual
approach would be to use timeout contracts, which are contracts that are satisfied after a

certain time, but not before. For instance, the contract

C — 81V C — SgV timeout(t)

can be satisfied by acquiring either S or So within ¢ time units, or after the expiration of
t > 0 time units if neither S7 nor So can be acquired before the timeout expires.

Beyond the synchronization contracts allowed by the universe model, both SCOOP
and CEE allow the programmer to express the obligations of a conditional synchroniza-
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tion contract that involves a predicate that can depend on the state of several shared ob-
jects. Conversely, the universe model only allows for synchronization contracts of the form

P(E;S) S, where P(C, S) depends only on the state of C and S. Restricting conditional
contracts in such a fashion was a conscious design decision. It simplifies the correct imple-
mentation of when clauses considerably, which is important, given the already considerable
complexity of the basic deadlock avoidance/recovery algorithm. There is no principal prob-
lem in extending the language of concurrency constraints to allow the condition of when
clauses to depend on the state of additional universes, except that implementation of such
a scheme would be non-trivial. We believe that extending the language of concurrency

constraints to cover more powerful conditional contracts should not be done until there is

sufficient evidence that the additional power is useful in practice.

10.1.2 Intra-object Contracts

A type of synchronization contract that we have not studied in this thesis is that of intra-
object synchronization contracts, which are supported by the synchronization ring model
[Hol99]. Whereas our existing classification of synchronization contracts assumes that a
process has either exclusive access to a supplier or no access at all, intra-object synchro-
nization contracts specify if (and under what circumstances) multiple clients that are owned
by different processes can access the same shared supplier concurrently (a classic exam-
ple of this type of contract are path expressions [CH74]). A common case of intra-object
concurrency is that of the multiple readers, where multiple processes access a shared sup-
plier, as long as they only read the supplier’s data, but do not modify it. This is obviously
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thread-safe and can significantly improve the level of concurrency.

One way to specify intra-object synchronization contracts is the concept of ports
[Hol99]. Using this notion, shared objects are accessed via a specific port. For example,
there might be both a read-port R, which allows only read-only access, and a write-port W,
which allows read-write access. More than one process can access the same supplier via
port R, but if one process accesses the supplier via port W, then no other process can access

the same supplier.

While intra-object synchronization is well understood for the multiple readers problem,
one can specify more complex requirements for intra-object concurrency, which signif-
icantly complicates the negotiation of synchronization contracts. In particular, a general
approach would allow the specification of an arbitrary set of ports Py, ..., P;. One has to
then define which ports can be accessed concurrently and which cannot, and has to en-
sure that no unwanted interference can occur, which is a non-trivial problem. As [Hol99]
notes, however, intra-object concurrency is required only infrequently in practice. Consid-
ering also that intra-object contracts require a more complex runtime system to negotiate
them, possibly to the point of affecting its efficiency, we have deferred the specification and

implementation of intra-object synchronization contracts to future work.

10.1.3 Implicit Composition of Contracts in the Universe Model

In addition to providing synchronization contracts as a first-class language feature, the
universe model exceeds the contractual capabilities of the mechanisms discussed so far
by allowing for the implicit composition of contracts. Whereas previously discussed ap-
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proaches assume that the client of a synchronization contract is a process, job, or transac-
tion, the universe model assumes that the client of a synchronization contract is a shared
resource (specifically, a universe) owned by a process. By this token, the supplier of one
synchronization contract can become the client of a second (and possibly third, fourth, etc.)
synchronization contract. This chaining of synchronization contracts, as described by the
notion of accessible links in Chapter 4 is not possible if the client and the supplier of a
synchronization contract are a process and a shared resource, respectively.

In addition to being able to construct chains of synchronization contracts, one has also
to be able to evaluate the composition of synchronization contracts that occur along these
chains, which is only feasible in a contractual model. For example, in order for the client
C of an exclusion contract C — S to know about the behavior of S with respect to syn-
chronization, the essential information about that behavior must be available through the
interface of §. If S were to employ a procedural synchronization mechanism, C would have
to perform procedural analysis of the code of § in order to infer the same information,
which is both undecidable in the general case and violates basic information hiding prin-
ciples. Thus, we conclude that language support for implicit composition is only possible
if a supplier S informs its clients about the synchronization requirements S has when it is

itself acting as a client. In other words, S must publish its contractual relationships.

10.2 Open Research Questions

We conclude this discussion by describing two open research problems. First, our classifi-
cation scheme provides only one way to represent disjunctions, namely the V operator. As
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noted already in Section 10.1.1, this is insufficient to represent the else-branch of Sather’s
lock statement. But more generally, there are several feasible interpretations of the seman-
tics of the disjunction of synchronization contracts, which creates an inherent ambiguity.
The second problem is that the negotiation of certain composite conditional contracts may
require influencing the OS scheduler in non-trivial ways. Unlike the first, the second one
is a concern for procedural and contractual approaches to synchronization alike, and may
simply prove to be infeasible. We now address these two problems in turn, and show for the
first one how it can be solved by extending the classification scheme for synchronization

contracts.

10.2.1 Treatment of Disjunctions

The ambiguity of composing synchronization contracts by disjunction arises from a subtle
fairness problem in their interpretation. As an example, consider the composite contract
C — §; V C — §7. Each time that this contract is negotiated, the system has to acquire
either S or S3. One has to avoid always choosing the same supplier S; to avoid starving
the other supplier. Were one to acquire the first supplier (either S; or Sp) that became
available, then it would be possible that §; would always be selected and S never, or vice
versa. On the other hand, acquiring the first supplier to become available will likely result
in better performance. Judging from just the synchronization contract without additional

information, either interpretation may be the one intended by the programmer.

Both interpretations can feasibly be implemented in practice as follows and are there-
fore not purely theoretical considerations. If one has a deadlock- and starvation-free algo-
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rithm to implement synchronization contracts composed by conjunction, it is always possi-
ble to derive an algorithm for composition by disjunction as well and either interpretation
of the V operator above has an effective implementation. To illustrate, consider a contract
A1V ...V Ay, where the A; are conjunctions of arbitrary basic contracts. For a completely
fair algorithm that does not exploit parallelism, select one of the A; at random, and attempt
to satisfy it. For a maximally concurrent (but possibly unfair) algorithm, attempt to satisfy
the conjunction Aj A ... A Ap. As soon as there is a j such that A; is satisfied, release all
resources that are not needed by A;. We call this the eager approach to negotiating disjunc-
tions. Since neither approach can be disregarded as infeasible, the question remains which
one was intended by the programmer.

In order to disambiguate between these (and possibly other) interpretations, not all types
of disjunctions can be represented by the same operator V. Instead, a plurality of operators
may be needed to encode the intent of the software designer. A related notion exists in
the concurrent specification language CSP [Hoa85], which has two distinct operators to
describe non-deterministic choice. Likewise, providing an or-else operator would allow
synchronization contracts to obviate Sather’s lock statement entirely. Whether such an ex-
tension of the language of synchronization contracts is necessary, or one interpretation can
satisfy most situations that occur in practice, can only be answered by experience.

Regarding existing practice of dealing with the ambiguity of disjunction, those synchro-
nization mechanisms that effectively implement composition by disjunction seem to only
provide one interpretation of disjunction, which is either the eager option [BBF01], leaving
faimess management up to the programmer, or a hybrid approach. An example of a hybrid
approach is the implementation used by the programming language Sather [FP97]. Sather’s
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algorithm attempts to satisfy each of the disjuncts (in random order) in turn. After attempt-
ing to satisfy one of them, the algorithm waits for a specified time interval (which increases
with each attempt) before trying the next alternative. While this does not absolutely guaran-
tee fairness, it makes starvation unlikely, as long as locks are not held for a time exceeding
the initial time interval. The algorithm that we described in this thesis uses the completely
fair approach, though chiefly to simplify its presentation. An implementation like Sather’s

would be a straightforward extension of the existing implementation. !

10.2.2 Composition of Conditional Contracts

The fair negotiation of composite conditional contracts creates a non-trivial scheduling

problem. Consider the composite contract

chsincls,

Let P(r) and Q(r) be the value of P and Q, respectively, at time ¢, and suppose that P(z) and
Q(t) both become true infinitely often, and independently of one another. However, whether
P(1) A Q(t) ever becomes true depends entirely on scheduling. It is possible for scheduling
to occur in such a fashion that P(r) is true only when Q(r) is false, and vice versa. Thus,
any negotiation mechanism that tries to satisfy the composite contract has to do one of two
things. It can either simply observe P A Q without interfering with the scheduling, and
wait for P A Q to become true, or it can attempt to control the execution of processes that

alter P and Q, steering them to a point where P A Q becomes true. The observing approach

10ne simply has to reevaluate accessibles after each invocation of df sRestart in Chap-
ter 6.
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has the potential to lead to starvation; the controlling approach is difficult to implement in
the general case. Therefore, most existing approaches that allow for composite contracts
either use a strictly observing approach (such as [CW02]) or use an observing approach
augmented by some simple timing heuristics that can delay processes to apply a minimum
of control (such as [FP97]). Our implementation likewise provides means for an observa-
tional approach with timing-based heuristics; we consider a fully controlling approach for
the conjunction of conditional contracts to be an open research question, which may prove

to be infeasible.

10.3 Outlook

Our long-term research vision is that the use of synchronization contracts may funda-
mentally simplify the development and improve the reliability of multi-threaded shared-
memory systems. Specifically, we believe that declaratively specified (and automatically
negotiated) contracts will obviate the need for complex ad hoc synchronization mechanisms
and protocols, thereby reducing the dominant source of complexity in these programs. As
the use of powerful synchronization contracts is a relatively new programming paradigm,
validating the long-term vision will require more research into building systems using this

paradigm. Thus, we cannot yet make any general claims on this point.
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Appendix A

Low-Level Algorithmic Details

A.1 The Message Passing Subsystem

A.1.1 Checking for realm completion

Figure 34 depicts the function realmComplete, which performs two services for the
completeRealm algorithm. Procedure completeRealm invokes realmComplete
to decide whether to terminate the loop over pending requests for universe acquisition.

When this loop terminates, the realm must be officially completed by moving all of the

acquired universes into the core of p. For efficiency reasons, realmComplete actually
performs the movement into the core in addition to returning the boolean value true to
signal termination of the acquisition loop in completeRealm

More precisely, realmComplete (p) returns true if and only if:
1. Yu: (p,u) € Negotiating e (p, u) = Owned and

2. and p has no knowledge of an imminent transition within any of its negotiations.
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proc signal( p : Process,
msg : MessageType,
u : Universe )
begin
enqueueMsg(msgQ(p), ( msg, u ));
end

function realmComplete( p : Process)
returns boolean is

var pendingMessages: boolean;
begin

if (pending(p) > 0) then

return false;
end;
LOCK(p);
pendingMessages := true;
if (empty(msgQ(p))) then

pendingMessages := false;
start_time(p) := current_time();
end;
UNLOCK(p);
return — pendingMessages;
end

function getMessage( p : Process )
returns MessageType x Universe is
var msg: MessageType; u: Universe;
begin
wait until (- empty(msgQ(p))) then
LOCK(p);
msg, u := dequeueMsg(msgQ(p));
UNLOCK(p);
end;
return ( msg, u );
end

function inMigrating( u : Universe,
p : Process )
returns bool is
begin
return migrating(u) A owner(u) = p;
end

function inOwned( u : Universe,
p : Process )
returns bool is
begin
return —migrating(u) A owner(u) = p;
end

Figure 34: Various algorithms for message passing and negotiation-state observation.
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This condition is checked by evaluating whether p has any pending acquisition requests or
pending messages. If there are no pending acquisition requests or messages in the queue,

then all of the requested universes are moved into the core by updating the start time of p.

A.1.2 Message Transmission

Inter-process messages are transmitted by procedure signal and retrieved by procedure
getMessage. These procedures implement message passing by appending or remov-
ing messages from a process’ message queue. Procedure signal is trivial. Procedure
getMessage retrieves the first message on the queue, blocking if the queue is empty. By

our definition of the wait until primitive, p is locked for the duration of the test.

A.1.3 In-state predicates

Functions inMigrating(u, p) and inOwned (u, p) return true if (p,u) =
Migrating and (p, u) = Owned respectively. The actual conditions checked are explained

in Section 5.2.1.

A.2 Releasing and Requesting Universes

A.2.1 Manipulating the Set of Blocked Universes

Procedures recordBlocked and recordUnblocked add (respectively remove) a uni-
verses to (respectively from) the set of blocked universes of a process (CalloutFigure-
fig.request.release). Both implementations are straightforward. Observe that if the set is
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proc request( u : Universe,
p : Process,
rc : Natural ) is
var oldHead : Process := head(reqQ(u));
begin
if (contains(reqQ(u), p)) then
updateQueueRC(reqQ(u), p, rc);
else
enqueue(reqQ(u),
start_time(p), p, rc);
pending(p) := pending(p) + 1;
if (oldHead # L A
head(reqQ(u)) # oldHead) then
recordBlocked(u, oldHead);
end;
end
end

proc recordBlocked( u: Universe,
p : Process ) is
begin
LOCK(p);
blocked(p) := blocked(p) + { u };
UNLOCK(p);
end

proc releaseFromQueue( u : Universe,

p : Process,
rc : Natural ) is
var preempting : bool;
begin
LOCK(p);

preempting := u ¢ blocked(p);
UNLOCK(p),
updateQueueRC(reqQ(u), p, -rc);
if (—contains(reqQ(u), p)) then
pending(p) := pending(p) - 1;
recordUnblocked(u, p);
if (preempting
A - empty(reqQ(u))
A start_time(head(reqQ(u)))
< acquisition_time(u))
then
recordUnblocked(u,
head(reqQ(u)));
end
end;
end

proc recordUnblocked( u: Universe,

p : Process ) is
begin
LOCK(p);
blocked(p) := blocked(p) - { u };
UNLOCK(p);
end

Figure 35: Support procedures for requesting and releasing universes.



changed for a process that is not the currently executing process, then it might trigger the
wait until test in function getMessageCooperatively (Figure 20). Thus, depending

on the implementation of wait until, this condition might need to be signaled explicitly.

A.2.2 Requesting a Universe

Procedure request enqueues a request, by a process p, for a universe u with reference
count rc (Figure 35). The procedure begins by storing the current head of the queue in a
local variable (01dHead) for later reference. It then tests if the queue already contains the
process p, and if so, the reference count in the queue for that process is updated, and no fur-
ther action is taken. Otherwise, p is inserted into the queue according to its start_time,
and pending (p) is incremented to reflect that there is one more outstanding request.
Inserting a new process into the queue could make the new process the head of
the queue, if for example the priority of p exceeds that of oldHead. In this situation,
oldHead must be informed that its negotiation for u is now blocking. Observe that it is
possible that the negotiation was already blocking prior to the insertion, but the negotiation

could also have been preempting.

A.2.3 Releasing a Process from a Queue

Procedure releaseFromQueue removes from the request queue of u some number (rc)
of link requests on behalf of process p. This removal is accomplished by decrementing the
reference-count entry in the tuple associated with p. If this operation removes all pending
link requests on behalf of p, then the tuple associated with p is removed, in which case
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the number of pending requests for p must be decremented by one and 4 must be removed
from blocked (p) . The operation becomes more complicated if the entry for p was at
the head of the queue and if (p, ) was preempting because then removing the entry for p
might affect the blocked status of a another process in the queue.1 Specifically, if what was
the second entry in the queue becomes the new head of the queue, the process associated
with this second entry might need unblocked. To test this case, the procedure sets the flag
preempting to record whether (p, u) = Preempting. This implies that p was at the head
of the queue prior to the decrementing of link requests. If p was preempting, the queue is
not empty, and the start time of process q that is the new head of the queue is less than the

acquisition time of the universe, then (g, ) must transition from Blocked to Preempting.

INotice that accessing the start time of the process at the head of the queue must be synchronized.
Whereas the queue is ordered by the start time of the process component of its elements, we assume
here that we can access this time from the tuple at the head of the queue, as opposed to accessing it
from the process component of this tuple.
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