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ABSTRACT

Collision-Free Communication in Sensor Networks

By

Umamaheswamn Ammugam

Sensors networks are often constrained by limited power and limited communication

range. If a sensor receives two messages simultaneously then they collide and both

messages become incomprehensible. In this thesis, we present a simple time division

multiple access (TDMA) algorithm for assigning time slots to sensors and show that

it provides a significant reduction in the number of collisions incurred during com-

munication. We present TDMA algorithms customized for different communication

patterns that occur commonly in sensor networks. Our solution deals with several

difficulties, e.g., unidirectional links, unreliable links, long links, failed sensors, sen-

sors that are sleeping in order to save energy, and location errors. Our algorithms are

self-stabilizing, i.e., TDMA is restored even if the system reaches an arbitrary state

where the sensors are corrupted or improperly initialized. Further, we show that our

algorithms ensure collision-freedom whereas collision-avoidance protocols like carrier

sense multiple access (CSMA) suffer significant number of collisions. Moreover, as an

application to our TDMA algorithms, in this thesis, we present transformation algo-

rithms for the sensor network model of computation, called, write-all—with-collz'sz’on

model. Using the transformation algorithms, we transform programs written in this

model into programs in other models considered in the literature, and vice versa.
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CHAPTER 1

Introduction

In recent years, sensor networks have become popular in the academic and in-

dustrial environments due to their applications in data gathering, active and passive

tracking of unexpected/undesirable objects, environment monitoring and unattended

hazard detection [1-3]. Due to their low cost and small size, it is possible to rapidly

deploy them in large numbers. These sensors are resource constrained and can typi-

cally communicate with other (neighboring) sensors over a wireless network. However,

due to limited power and communication range, they need to collaborate to achieve

the required task.

One of the important issues in sensor networks is message collision: Due to the

shared wireless medium, if a sensor simultaneously receives two messages then they

collide and, hence, both messages become incomprehensible. Such collision is unde-

sirable as it results in wastage of power to transmit the message that resulted in a

collision. And, it also requires several transmissions to get a single message across.

Moreover, collision detection is further complicated by the fact that a given message

may collide at one sensor and be received correctly at another sensor.

Collision among messages is especially problematic in the context of system-wide

computations where some sensors need to communicate some information to the entire

network (respectively, a subset of the network that satisfies the geographic proper-

ties of interest). Such computations arise when a sensor needs to communicate the

observed value to the base station or when we want to organize these sensors in a

suitable topology (e.g., tree). In such system-wide computation (diffusion), every



sensor that receives a message transmits it to its neighbors (in the given direction).

It follows that at any time multiple sensors may be forwarding the sensor values to

their respective neighbors. Therefore, the possibility of collision increases.

Challenges in communication. One of the important issues in sensor networks is

the scenario where two sensors can communicate with each other only with a very low

probability. Also, sensor networks suffer from unidirectional links where one sensor

can communicate with another with a high probability although the probability of

the reverse communication is very low. In a situation where sensor jcan only commu-

nicate occasionally with sensor 1:, it is expected that the signal strength received by k

is so small that k cannot correctly determine all the bits in that message. However,

the signal strength that k receives is often strong enough that it can corrupt another

message that was sent to k at the same time. The above discussion suggests that we

need to consider the situation where two sensors cannot effectively communicate with

each other although they can effectively interfere with each other.

Now, we briefly outline the collision—free communication algorithms proposed for

sensor networks. Then, in Section 1.1.1, we state an application of our collision-free

communication algorithms. Subsequently, in Section 1.2, we list the contributions of

this thesis.

1.1 Communication in Sensor Networks

In this thesis, we propose collision-free diffusion and time division multiple access

(TDMA) algorithms for sensor networks. A collision-free diffusion is advantageous in

obtaining clock synchronization and TDMA. More specifically, when a sensor receives

the diffusion message, it can uniquely determine its clock by considering the clock

value when the diffusion was initiated and the path that the diffusion took to reach



that sensor. If clocks are synchronized, we can assign slots to each sensor such that

simultaneous message transmissions by two sensors do not collide.

A closer inspection of diffusion and TDMA shows that these two problems are

interdependent. More specifically, if clocks are not synchronized then the diffusion

may fail in the following scenario: the clock values of two sensors differ, one of these

sensors transmits the diffusion message and the other sensor transmits an unrelated

message at the same time. It follows that a collision in this situation will prevent the

diffusion message from reaching all the desired destinations. Moreover, if the diffusion

does not complete successfully then the clocks may remain unsynchronized forever.

It is therefore necessary that diffusion be stabilizing fault-tolerant [4,5], i.e., starting

from an arbitrary state, the system should recover to states from where subsequent

diffusing computation is collision-free. A stabilizing fault-tolerant solution also deals

with the case where the sensors are inactive for a long time and subsequently become

active, although at slightly different times.

1.1.1 Application: Model Conversions for Sensor Networks

We observe that the sensor networks pose a new model of computation. We can

view this model as a write-all-with-collision (WAC) model. Intuitively, in this model,

in one atomic action, a sensor (process) can update its own state and the state of all

its neighbors. However, if two sensors (processes) simultaneously try to update the

state of a sensor (process), say k, then the state of It remains unchanged.

Designing model conversion algorithms is one of the important research areas

in distributed systems. It allows one to write programs in one model (typically a

specific/restrictive model) and then later, transform them into another model (typ-

ically a general/less restrictive model). We apply our collision-free diffusion and



TDMA algorithms to transform a program in other distributed models of computa-

tion into a program in the WAC model for timed/synchronous systems. Specifically,

for timed/synchronous systems with grid-based communication topology, we propose

a transformation algorithm that transforms a program in the read/write model, where

in one atomic action, the program can either write its own state or read the state of

one of its neighbors, into a program in the WAC model.

Additionally, we identify other transformations, where a program in the read/write

model is transformed into a program in the WAC model for untimed/asynchronous

systems. Furthermore, we present an algorithm that transforms a program in the

WAC model into a program in the read/write model.

1.2 Thesis Contributions

In this thesis, we concentrate on designing collision-free communication algorithms

for sensor networks. Also, as an application to our collision-free communication algo—

rithms, we design model conversion algorithms, where programs in the WAC model

are converted into programs in other distributed computing models, and vice versa.

The main contributions of the thesis are as follows:

0 We present TDMA algorithms with a deterministic startup algorithm (i.e.,

collision-free diffusion) for commonly occurring communication patterns in senor

networks. Further, we show how stabilizing fault—tolerance [4,5] can be added

to our TDMA algorithms. Thus, starting from an arbitrary state, the TDMA

algorithm recovers to states from where collision-free communication among

sensors is achieved. Additionally, we show that the TDMA algorithms can deal

with unreliable sensors/links.



0 We verify that the proposed TDMA algorithms are collision-free (using sim-

ulations). Furthermore, we compare the TDMA algorithms with collision-

avoidance protocols like carrier sense multiple access (CSMA) and show that

CSMA suffers from significant number of collisions. Additionally, we show that

our TDMA algorithms can tolerate errors in the location, i.e., even if the sen-

sors are moved slightly from their ideal location, the percentage of collisions is

within the application requirements.

0 We outline the middleware architecture of our TDMA algorithms. Towards this

end, we show how our algorithms are implemented as a middleware service. We

identify the application programming interfaces (APIs) of the prOposed service.

0 We present an application of collision-free diffusion and TDMA algorithms in

model conversions for sensor network. We consider the write all with collision

(WAC) model that commonly occurs in sensor networks, and present transfor-

mations from (respectively, to) programs in the WAC model to (respectively,

from) programs in other models of computation. Further, for timed systems,

we show that if the original program is stabilizing fault-tolerant then the trans-

formed program is also stabilizing fault-tolerant. In other words, we show that

the transformations are stabilization preserving for timed systems.

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we describe the sensor network

model and state the assumptions made in this thesis. In Chapter 3, we present

the collision-free diffusion algorithm. Specifically, we present four versions of the

collision-free diffusion algorithm based on the ability of sensors to communicate with

each other and their ability to interfere with each other. Subsequently, in Chapter



4, we discuss a simple TDMA algorithm for sensor networks. Further, we show how

our algorithms can be made stabilizing. Also, we provide extensions to the collision-

free diffusion and TDMA algorithms, where some of the sensors in the network are

failed/sleeping, or the communication topology is different. In Chapter 5, we present

the TDMA algorithms customized for different communication patterns that occur

commonly in sensor networks. Further, we show how our TDMA algorithms can

be implemented as a middleware service for sensor networks, especially, for MICA

motes [3,6] developed by University of California, Berkeley. In Chapter 6, we present

stabilization preserving transformation algorithms for transforming a program in the

sensor network model into a program in other models, and vice versa. Finally, in

Chapter 7, we identify the related work, and in Chapter 8, we present the concluding

remarks and the scope for future research.



CHAPTER 2

Model and Assumptions

In this chapter, we present the sensor network model and state the assumptions

made in our algorithms.

Topology. Initially, we assume that sensors are arranged in a grid where each

sensor knows its location in the network (geometric position). Each message sent by

a sensor includes this geometric position. Thus, a sensor can determine the position,

direction and distance (with respect to itself) of the sensors that send messages to

it. We assume that the sensor network has a perfect grid topology (cf. Figure 2.1)

and no sensors have failed or are in sleeping state. By making these assumptions, we

can design algorithms for perfect grid-based sensor networks. Then, we extend the

algorithms to deal with the case where sensors (other than the initiator) have failed.

Communication and interference ranges. We assume that each sensor has a

communication range and an interference range. Communication range is the distance

up to which a sensor can communicate with certainty/high probability. Interference

range is the distance up to which a sensor can communicate, although the probability

of such a communication may be low. Thus, given two sensors, j and k if k is in the

interference range of j but It is not in the communication range of j then It receives

messages sent by j with a low probability. However, if k receives another message

while j is sending a message, it is possible that collision between these two messages

can prevent I: from receiving either of those messages. Based on the definition of the

interference range, it follows that it is at least equal to the communication range.

For example, in Figure 2.1, the communication range is 1 and interference range is



2. Also, we assume that the sensors are aware of their communication range and

interference range.

Legend

® Distinguished sensor

 

 

 

.. -------- Q Sensors in communication range of <0, O>

. Sensors in interference range of <0, 0>

Figure 2.1: Sensor network t0pology where a sensor communicates with its

distance 1 neighbors and interferes with its distance 2 neighbors. The numbers

associated with a sensor indicates the grid position of the sensor.

Distinguished sensor (process). We assume that there is exactly one initiator

that initiates the diffusion. For simplicity, initially, we assume that the sensor at the

left-top (at location (0,0)) is the initiator (cf. Figure 2.1). This assumption is made

since we can view the diffusion as propagating from this sensor to all the sensors in

the network in one single (south-east) quadrant. Later, we remove this assumption

and provide an algorithm where the initiator is not at the left-top position.

Clock speed. Additionally, we assume that one clock tick of the sensor corresponds

to the propagation time of a message. Though the sensors can have high-precision

clocks, for communication, we use only the higher-order bits that correspond to the

propagation time of a message.



CHAPTER 3

Collision-Free Diffusion

In this chapter, we provide an algorithm for collision—free diffusion for sensors

arranged in a two-dimensional grid. As mentioned in Chapter 1, whenever a sen-

sor receives a diffusion message for the first time, it retransmits the message to its

neighbors. However, if two (nearby) sensors transmit the diffusion message at the

same time then the messages collide. The collision becomes even more problematic in

sensor networks where it is often not possible to detect whether collision has occurred

or not. Also, it is possible that a message sent by one sensor collides at one receiver

whereas another receiver correctly receives it.

To deal with these problems, we define the problem of collision-free diffusion as

follows. The first requirement for collision-free diffusion is that the diffusion message

should reach every sensor. The second requirement is that collisions should not occur.

More specifically, when sensor j transmits a message, it is necessary that a collision

should not occur at any sensor that is expected to receive the message from j, i.e.,

a sensor in the communication range of j. Thus, if sensor k transmits concurrently

then the set of sensors in the communication range of j should be disjoint from the

set of sensors in the interference range of 1:. Thus, the problem statement is defined

as follows:



 

Problem Statement: Collision-Free Diffusion

Given a sensor grid; if a sensor initiates diffusion then the following properties

should be satisfied:

1. Diffusion message should reach every sensor.

2. If two sensors j and k transmit at the same time,

(Sensors in communication range of j) H

(Sensors in interference range of k) = O.    

Figure 3.1: Collision-Free Diffusion

We present four versions of our collision-free diffusion algorithm based on the

ability of the sensors to communicate with each other and their ability to interfere

with each other. For simplicity, in Sections 3.1-3.4, we assume that the sensor at

(0,0) initiates the diffusion. In Section 3.1, we discuss the algorithm for diffusion

in networks where a sensor can communicate only with its distance 1 neighbors.

In Section 3.2, we extend this version for diffusion in networks where a sensor can

communicate with its distance 23,2: 2 1, neighbors. In both these algorithms, we

assume that the interference range of a sensor is same as its communication range.

We weaken this requirement in Sections 3.3, and 3.4. Specifically, in Section 3.3, we

extend the first version (cf. Section 3.1) to deal with the case where a sensor can

communicate with its distance 1 neighbors and interfere with its distance y, y 2 1,

neighbors. And, in Section 3.4, we extend the third version (cf. Section 3.3) to deal

with the case where a sensor can communicate with its distance as, a: 2 1, neighbors

and interfere with its distance y,y 2 :r, neighbors. In Section 3.5, we provide an

algorithm for collision-free diffusion initiated by an arbitrary sensor. Although in

Sections 3.1-3.5 we assume that the communication range (respectively, interference

range) of all sensors are identical, observations made in Section 3.6 show that the

algorithm can be applied even if they are different.

10



3.1 Version 1: Communicate 1, Interfere 1

Consider a simple grid network where a sensor can communicate with sensors that

are distance 1 away (cf. Figure 3.2). (Note that, in these examples we have used the

Manhattan distance between sensors where the distance between two sensors (1:1,y1)

and ($2,312) is Irrl — 51:2] + Iyl — ygl. Our algorithms can be applied even if we consider

the geographic distance between sensors. See the first observation in Section 3.6.)

 

 

l 3

2 3| 4 5 ..... Legend

4 5]: 6 7 O Sensors in communication range of <0, 0>

 

Figure 3.2: Sample diffusion in networks where a sensor communicates with

its distance 1 neighbors. The number associated with a sensor shows the slot

in which it should transmit.

From this figure, we observe that sensors (1,0) and (0,1) should not transmit at

the same time as their messages will collide at sensor (1, 1). The following algorithm

provides a collision-free diffusion in networks where sensors can communicate only

with their distance 1 neighbors.

11



 

when sensor j receives a diffusion message from sensor k

if (k is west neighbor at distance 1)

transmit after 1 clock tick.

else if (k is north neighbor at distance 1)

transmit after 2 clock ticks.

else // duplicate message received from east/south neighbor

ignore   
 

Figure 3.3: Version 1: Communicate 1, Interfere 1

Theorem 3.1 The above algorithm satisfies the problem specification of collision-free

diffusion.

Proof. Let us assume that the source sensor (0,0) starts transmitting at time t = 0.

By induction, we observe that sensor (i, j) will transmit at time t = i + 2j . Now, we

show that collisions will not occur in this algorithm.

Consider two sensors (i1,j1) and (i2, jg). Sensor (i1,j1) will transmit at time

t1 = i1 + 2j1 and (i2, j2) will transmit at time t2 = i2 + 2jg. Collision is possible only

ifi1+2j1 = i2 +2j2, i.e., (i1 —i2)+2(j1—j2) = 0. Also a collision can occur only if the

distance between (i1,j1) and (i2,j2) is at most 2, i.e., Iil —i2|+]j1-j2| g 2. Moreover,

a collision occurs only if (i1,j1) and (i2,j2) are distinct, i.e., lil - i2] + Ijl — j2] Z 1.

Thus, the conditions for a collision are as follows:

’ (i1 ‘15) + 201"]5) = 0-

’ Ii1—12I+Ij1—j2I_<_ 2-

’ Ii1_i2I+Ij1"j2I21'

From the first condition, we conclude that lil -— i2] is even. Combining this with

the second condition, we have lil — i2| = 0 or ljl — jg] : 0. However, if |i1 — i2] : 0
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(respectively, Ijl —j2| = 0) then from the first condition (jl —j2) (respectively (i1 —i2))

must be zero. If both (i1 —i2) and (jl —j2) are zero then the third condition is violated.

Thus, collisions cannot occur in this algorithm. [3

3.2 Version 2: Communicate :c, Interfere :1:

Consider a grid network where a sensor can communicate with sensors that are

distance {13,1} 2 1 away (cf. Figure 3.4, where a: = 2).

1
 

Legend

. Sensors in communication range of <0, O>

 

 

V

Figure 3.4: Sample diffusion in networks where a sensor communicates with

its distance 2 neighbors. The number associated with a sensor shows the slot

in which it should transmit.

From Figure 3.4, we observe that sensors (2,0) and (0,2) should not transmit

at the same time as these messages will collide at (2, 2). Since the sensor (0, 0) can

communicate at a larger distance and the sensors (0, 2), (2, 0) propagate the diffusion,

sensors (0,1), (1, 0) and (1,1) need not transmit. The following algorithm provides a

collision-free diffusion in networks where sensors can communicate with their distance

x,:c Z 1, neighbors.
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when sensor j receives a diffusion message from sensor k

if (k is west neighbor at distance 11:)

transmit after 1 clock tick.

else if (k is north neighbor at distance 11:)

transmit after 2 clock ticks.

else //duplicate message from east/south neighbor or too close to source

Ignore   
 

Figure 3.5: Version 2: Communicate m, Interfere :2:

Theorem 3.2 The above algorithm satisfies the problem specification of collision-free

diffusion. E]

3.3 Version 3: Communicate 1, Interfere y

Consider a grid network where a sensor can communicate with sensors that are

distance 1 away and interfere with sensors that are distance y, y 2 1 away (cf. Figure

3.6, where y = 2).

 

 

l 3 ..........

3 4 5 6 .......... Legend

6 7 8 9 . Sensors in communication range of <0, O>

 

V _ _ """"" Q Sensors in interference range of <0, O>

Figure 3.6: Sample diffusion in networks where a sensor communicates with its

distance 1 neighbors and interferes with its distance 2 neighbors. The number

associated with a sensor shows the slot in which it should transmit.

Once again, we observe that sensors (1,0) and (0,1) should not transmit at the

same time. Also, sensors (2,0) and (0,1) should not transmit at the same time as

14



their messages will collide at (1,1) and (2,1). The third version of the algorithm is

as follows:

 

when sensor j receives a diffusion message from sensor k

if (k is west neighbor at distance 1)

transmit after 1 clock tick.

else if (k is north neighbor at distance 1)

transmit after y + l clock ticks.

else // duplicate message received from east/south neighbor

ignore   
 

Figure 3.7: Version 3: Communicate 1, Interfere 3;

Theorem 3.3 The above algorithm satisfies the problem specification of collision—free

diffusion.

Proof. Let us assume that the source sensor (0,0) starts transmitting at time t = 0.

By induction, we observe that sensor (i, j) will transmit at time t = i + (y + 1)j.

Now, we show that collisions will not occur in this algorithm. Consider two sensors

(ihjl) and (i2,j2). Sensor (i1,j1) will transmit at time t1 = i1+(y +1)j1 and (i2,j2)

will transmit at time t2 = i2 + (y + 1)jg. Collision is possible only if the following

conditions hold:

0 t1 = t2, i.e., (i1 — i2) + (y +1)(j1—j2)= 0.

° Ii1—i2I+Ij1 —j2I S 9+1.

' Iii—i2I+Ij1—j2I21-

From the first condition, we conclude that (i1 — i2) is a multiple of (y + 1). Com-

bining this with the second condition, we have lil — i2| =0 or Ijl — jg] :0. However,
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if |i1 — i2] =0 (respectively, Ijl — j2| =0) then from the first condition (jl — jg) (re-

spectively, (i1 -— i2)) must be zero. If both (i1 - i2) and (jl — j2) are zero then the

third condition is violated. Thus, collisions cannot occur in this algorithm. Cl

3.4 Version 4: Communicate 2:, Interfere y

Consider a grid network where a sensor can communicate with sensors that are

distance 23,2: 2 1 away and interfere with sensors that are distance y, y 2 2: away.

This network can be viewed as a modified network where the intermediate sensors

are removed. Hence, in this modified network, a sensor can communicate with its

distance 1 neighbors and interfere with its distance [5] neighbors. Now, we apply

version 3 of our algorithm with parameters communicate 1, interfere [g].

3.5 Diffusion by an Arbitrary Sensor

If sensor k (other than, (0,0)) initiates the diffusion, we split the network into

four quadrants with sensor k at the intersection of 2; and y axes. For each quadrant,

we can use the algorithm similar to that in Sections 3.1-3.4; we simply need to ensure

that messages in different quadrants do not collide (on 2: and y axes). For the case

where communication range = interference range = 1, we can achieve this as follows:

(Extensions for other values of communication and interference range are also similar.)

Sensors in the south-east quadrant transmit the diffusion message as before (i.e., a

sensor (i, j) will transmit the diffusion at It I +2|3|) As shown in Figure 3.8, sensors in

the north—east and south-west quadrants (including the —ve x—axis and +ve y-axis but

excluding the +ve x-axis and —-ve y-axis) transmit the diffusion similar to the south-

east quadrant, but with 2 clock ticks delay. This is to ensure the diffusion messages do

not collide at the :r and y axes. Specifically, a sensor (i, j ) in the north-east quadrant
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lil + 2|j| + 4 lil + 2le + 2

C I Legend

> O Initiator at <0, O>

\ . Sensors in communication range of <0, 0)

lil + 2le + lil + 2|jl

Figure 3.8: Sample diffusion in networks with arbitrary initiator

or in the south-west quadrant transmits the diffusion at |i| + 2|j] + 2. Sensors in the

north-west quadrant (excluding the axes) transmits the diffusion similar to the other

quadrants except that the delay here is 4 clock ticks (cf. Figure 3.8). In other words,

a sensor (i, j) in the north-west quadrant transmits the diffusion at Ii] + 2|j I + 4.

3.6 Observations about Our Algorithm

We make the following observations about our algorithm:

1. In Sections 3.1-3.5, we considered the Manhattan distance between sensors,

i.e., if the interference range is y then we said that sensors (i1,j1) and (i2, j2)

interfered with each other only if lil — i2] + |j1 — j2| S y. We note that our

algorithm works correctly even if we say that sensors (i1, jl) and (i2, jz) interfere

only if lil —i2| g y and |j1 —j2| _<_ y. It follows that our algorithm works correctly

even if we consider the geographic distance between sensors and say that two

sensors (i1,j1) and (i2, jg) interfere with each other if the geographic distance

 

between them, \/|i1 — i2|2 + Ijl — jglz, is less than or equal to y.

2. Even if the interference range is overestimated, our algorithm works correctly.
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3. Even if the communication range is underestimated, as long as it is at least 1,

our algorithm works correctly.

4. We can apply our algorithm even if the communication and interference ranges

of different sensors vary. We can use the minimum of the communication range

of each sensor (underestimate) and the maximum of the interference range of

each sensor (overestimate).
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CHAPTER 4

Time Division Multiple Access (TDMA)

In this chapter, we present an algorithm for time—division multiple access (TDMA)

in sensor networks using the collision-free diffusion algorithm discussed in Chapter

3. Time-division multiplexing is the problem of assigning time slots to each sensor.

Two sensors j and k can transmit in the same time slot if j does not interfere with

the communication of k and it does not interfere with the communication of j. In

this context, we define the notion of collision-group. The collision-group of sensor j

includes the sensors that are in the communication range of j and the sensors that

interfere with the sensors in the communication range of j. Hence, if two sensors j

and k are alloted the same time slot then j should not be present in the collision-

group of k and It should not be present in the collision-group of j. Thus, the problem

of time-division multiple access is defined as follows:

 

Problem Statement: Time Division Multiple Access

Assign time slots to each sensor such that,

If two sensors j and k transmit at the same time then

(j ¢ collision-group of sensor 1:).    

Figure 4.1: Time Division Multiple Access (TDMA)

Now, we present the algorithm for allotting time slots to the sensors. In Section

4.1, we present the algorithm for TDMA in perfect grids. In Section 4.2, we discuss

how stabilization is achieved starting from an improperly initialized state.
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4.1 Simple TDMA Algorithm

In this section, we present our simple TDMA algorithm that uses the third version

of the diffusion algorithm (cf. Section 3.3) where communication range is 1 and

interference range is y. Let 3' and k be two sensors such that j is in the collision

group of k. Let t, (respectively, tk) be the slots in which j (respectively, k) transmits

its diffusion message. We propose an algorithm where the slots assigned for j are

t]- + c * MCG where c 2 0 and MCG captures information about the maximum

collision group in the system.

From the correctness of the diffusion computation, we know that t,- 74 tk. Now,

future messages sent by j and k can collide if tj + cl * MCG = tk + c2 * MCG, where

c1, c2 2 0. In other words, future messages from j and k can collide iff |tj—tk| is a

multiple of MCG. More specifically, to ensure collision-freedom, it suffices that for

any two sensors j and k such that j is in the collision group of k, MCG does not

divide Itj—tkl. We can achieve this by choosing MCC to be max({\7’j : j is in the

collision group of k : ltj—tk|}) + 1.

In the third version of our algorithm, if j is in the collision group of k then ltj—tk]

is at most (y + 1)2; such a situation occurs if j is at distance of y + 1 in north/south

of k. Hence, the algorithm for time division multiplexing is as follows:

 

If sensor j transmits a diffusion message at time slot tj,

j can transmit at time slots, vc : c 2 0 : t,- + c a: ((3; +1)2 +1).
  
 

Figure 4.2: Simple TDMA Algorithm

The algorithm assigns time slots for each sensor based on the time at which it

transmits the diffusion. Thus, a sensor (say, j) can transmit in slots: tj, t,- + ((y +

20



1)2 +1), t, + 2((y +1)2 +1), ..., etc. Figure 4.3 shows a sample allocation of slots to

the sensors.

0,101.11 2’12 37-1.3. 

3,13 4,14 5,15 6,16 Legend

Q Sensors in communication range of <0, 0>

6, 16 7. 17 8. 18 O9. 19 O Sensors in interference range of <0, 0>

 

 

Figure 4.3: Sample TDMA in networks where a sensor communicates with its

distance 1 neighbors and interferes with its distance 2 neighbors. The numbers

associated with a sensor shows the slots in which it could transmit.

Theorem 4.1 The above algorithm satisfies the problem specification of TDMA. D

4.2 Stabilization of TDMA and Diffusion

We now add stabilization to the TDMA algorithm discussed in Section 4.1, i.e.,

if the network is initialized with arbitrary clock values (including the case where

there is a phase offset among clocks), we ensure that it recovers to states from where

collision-free communication is achieved. The simple TDMA algorithm relies on the

collision-free diffusion algorithm discussed earlier (cf. Section 3.3). Whenever a sensor

does not get the diffusion message for certain consecutive number of times, the sensor

shuts down, i.e., it will not transmit any message until it receives a diffusion message.

The network will eventually reach a state where the diffusion message can be received

by all sensors. From then on, the sensors can use the TDMA algorithm to transmit

messages across different sensors. Moreover, if there are no faults in the network and

the links are reliable then no sensor will ever shut down.
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Dealing with unreliable links. Now, we show that in the absence of faults, a sensor

rarely shuts down even if the link between the neighboring sensors are unreliable. Let

p be the probability that a sensor receives a message from its neighbor. Also, let it be

the number of diffusion periods a sensor waits before shutting down. Now, consider

a sensor j that receives a diffusion message after 1 intermediate transmissions. The

probability that this sensor does not receive the diffusion message is 1 — p’ and the

probability that this sensor shuts down in the absence of faults is (1 — 19')". Note

that this is an overestimate since a sensor receives the diffusion message from more

than one sensor. If we consider p = 0.90, l = 10 and n = 10, the probability that the

sensor j will incorrectly shut down is less than or equal to 0.0137.

Observations about our stabilizing fault-tolerant algorithms. We make the

following observations about our stabilizing fault-tolerant algorithms:

1. If there are no failures in the network and the links are reliable then no sensor

will ever shut down.

2. If there are no failures in the network and the links are unreliable then sensors

may shut down rarely. However, the probability that a sensor shuts down

incorrectly due to unreliable links can be made as small as possible.

4.3 Extensions: Other Topologies

In this section, we provide algorithms for collision-free diffusion and TDMA for

other communication graphs. Specifically, in Section 4.3.1, we present the TDMA al-

gorithm for hexagonal grids and, in Section 4.3.2, we present the TDMA algorithm for

triangular grids. In Section 4.3.3, we show how collision-free diffusion is performed on

a multi-dimensional rectangular grids. Finally, in Section 4.3.4, we provide algorithms

for collision-free diffusion in arbitrary communication graphs.
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4.3.1 TDMA Algorithm for Hexagonal Grids

Consider a hexagonal grid network where a sensor can communicate with its dis-

tance 1 neighbors and interfere with its distance 2 neighbors (cf. Figure 4.4). We

assume that the initiator of the diffusion, which assigns the initial slots to the sensors,

is located at the left-most corner on the left-top hexagon in the network (cf. Figure

4.4).

Legend

0 Initiator

o Sensors in communication range of initiator

 

O Sensors in interference range of initiator

Figure 4.4: TDMA slot assignment in hexagonal-grid network where commu-

nication range=1 and interference range=2. The number associated with each

sensor denotes the time at which it can send a message. Slots for some sensors

are not shown.

From Figure 4.4, we observe that whenever the initiator transmits, sensors located

at the top (say, j) and bottom (say, k) of the initiator at geometric distance 1 from the

initiator can transmit next. However, if both these sensors transmit simultaneously

then collision occurs at the initiator. Hence, we proceed as follows: whenever j

receives the diffusion message from the initiator, it retransmits the message after 1

clock tick. Likewise, whenever 1: receives the diffusion message from the initiator,

it retransmits the message after 23/ clock ticks, where y is the interference range of

the sensors. Further, whenever a sensor receives a message from its neighbor on the

straight edge (cf. Figure 4.4), it forwards the message after 1 clock tick.
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Once the initial slots are assigned, each sensor can determine future slots based

on the time it forwards the diffusion message. In this context, we use the notion of

collision-group. As discussed earlier in this chapter, the collision group of sensor j

includes the sensors that can interfere with the communication of j. In this communi-

cation topology, the collision group of j includes the sensors that are within distance

y + 1 from j. Now, j can transmit again once the sensors in the collision group of j

transmit the diffusion message. For a hexagonal grid, the period between successive

slots, P=2y(y+1)+ ]%]+1 suffices. Thus, the TDMA algorithm for hexagonal grids

is as follows:

 

const P=2y(y+1)+ [3‘21] +1;

// Initial slot assignment for hexagonal grids

when sensor j receives a diffusion message from k

if (k is at distance 1 in the same level

(i.e., j — k is a straight edge))

transmit after 1 clock tick.

else if (k is at distance 1 in the lower level)

transmit after 1 clock tick.

else if (k is at distance 1 in the upper level)

transmit after 2y clock ticks.

else // duplicate message

ignore

// TDMA algorithm for hexagonal grids

If sensor j transmits a diffusion message at time slot tj,

j can transmit at time slots, Vc : c 2 0 : tj + c a: P.    
Figure 4.5: TDMA algorithm for hexagonal grids

Theorem 4.2 The TDMA algorithm for hexagonal grid guarantees collision-freedom. El
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4.3.2 TDMA Algorithm for Triangular Grids

We now show how the TDMA algorithm for hexagonal grid network can be used

in a triangular grid network. Consider a triangular grid network, where the commu-

nication range is 1 and interference range is 2 (cf. Figure 4.6).

 

l 2

' Legend

0 6 o Initiator

o Sensors in the communication range of the initiator

4 5 0 Sensors in the interference range of the initiator

Figure 4.6: Initial slot assignment in triangular-grid network where communi-

cation range=1 and interference range=2. The number associated with each

sensor denotes the time at which it forwards the diffusion message.

From Figure 4.6, we observe that it is possible to convert a triangular grid into

a hexagonal grid. Once the hexagonal grid is obtained, the TDMA algorithm for

the hexagonal grid network can be used to allot time slots to different sensors. In

this algorithm, the intermediate sensors within the hexagons (cf. Figure 4.6) will not

get time slots. However, we can allow the sensors in the boundary of the hexagon

(called boundary sensors) to share their slots with the intermediate sensors. In order

to allow boundary sensors to share their TDMA slots with the intermediate sensors

in the grid, we need to increase the collision group size. Specifically, collision group

of a sensor, say j, should include the sensors that are within distance y + 2. This

ensures that the communication of the intermediate sensors in the slots assigned to

the boundary sensors does not collide.
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The sharing scheme can be designed based on the application requirements and

fairness issues. Since each boundary sensor appears in 3 hexagons, a simple sharing

scheme is as follows: for every 3 TDMA slots assigned to boundary sensor j, j allows

the intermediate sensor in one of 3 hexagons to transmit alternatively. Note that the

slot assignments to the intermediate sensors can be communicated using the TDMA

slots of the boundary sensors.

4.3.3 Diffusion in Multi-Dimensional Grids

Consider a multi-dimensional grid where each sensor has n neighbors, one in each

dimension. Figure 4.7 illustrates collision-free diffusion in a cube (3-dimensional grid)

where each sensor can communicate with its distance 1 neighbors. (Similar extension

is also possible for other values of communication range and interference range.)

'1‘ Legend

0 Sensorsin communication range of <0,0,0>    9-!

 

Figure 4.7: Three—dimensional grid network where a sensor communicates with

its distance 1 neighbors in its 2:, y and z axes. The number associated with a

sensor shows the slot in which it should transmit.

In two-dimensional grid topology, diffusion is done such that the transmissions

in each dimension do not interfere or collide with each other. Our algorithm for

collision-free diffusion in multi-dimensional grids is similar; we use the algorithm in

Section 3 for each plane while ensuring that the messages from two planes do not

collide. Specifically, the algorithm for n-dimensional grid is as follows:
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Let sensor k be a neighbor (in the direction towards the initiator) of sensor j

in its i-th dimension.

When sensor j receives a diffusion message from sensor k

j transmits after 2‘ clock ticks.    

Figure 4.8: Diffusion in n-D grids

Theorem 4.3 The above algorithm satisfies the problem specification of collision-free

diffusion.

Proof. The above algorithm provides collision-free diffusion in each plane. Let us

consider the different planes in a multi-dimensional grid. The algorithm for a given

plane is similar to the algorithm in Section 3, which is collision free. The algorithm

is collision-free across different planes since the diffusion is separated by a sufficient

time delay. Cl

4.3.4 Diffusion in Arbitrary Graphs

In this section, we extend our algorithm for collision-free diffusion in sensor net-

works where the underlying graph is not a grid. Specifically, we consider arbitrary

graphs and apply our algorithms by embedding a grid in it.

Embedding a grid in arbitrary graphs. Collision-free diffusion in other graphs

can be achieved by embedding a (partial) grid in that graph. (Note that the goal

of this solution is to show the feasibility of such extension. If additional information

about the topology is available then it is possible to improve the efficiency of the

diffusion on the transformed graph.) To show one approach for embedding such a

partial grid, we begin with the observation that, an arbitrary tree can be mapped

into a (complete) binary tree. Also, a complete binary tree can be mapped on a

2-dimensional grid with dilation (i.e., longest path to which any edge of the original

27



graph is mapped) [(k -— 1) / 2] where k is the depth of the tree [7]. If the degree of a

node is more than 3, we split that node to construct a binary tree (cf. Figure 4.9).

  
30 12 g “-18)-”:389 é.18

\_—' 01:30 I 1.0 1.4 I00 01

.2 Legend

I11“Il l |1I7 Normal link

' uO—(g—O """ Broken link

10 1112136 780 81

 

Complete binary tree from arbitrary tree 2-dimensional grid

Figure 4.9: Mapping an arbitrary tree into a 2-dimensional grid

We can observe from Figure 4.9 that node 1 is split into 5 nodes, 1.0...1.4.

Hence, node 1 will get 5 different time slots for communication. Also, nodes in the 2-

dimensional grid can communicate with the nodes that are at distance 1 (except in the

case where the link drawn is a broken link). Some of the nodes in the 2-dimensional

grid can communicate with nodes that are at a larger distance. For the purpose

of collision-free diffusion, we can treat this communication as interference (e.g., in

Figure 4.9, the communication between 1.1 and 3.1 can be treated as interference). It

follows that given an arbitrary tree, we can embed a partial grid in it; in this partial

grid, the communication range is 1. And, the interference range is determined based

on the way in which nodes of degree more than 3 are split.

Finally, for an arbitrary graph, we can use its spanning tree, and embed a partial

grid in it. Then, we can add the remaining edges to this partial grid and treat them

as interference-only. With such an approach, it is possible to apply the collision-free

diffusion algorithm to arbitrary graphs.
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4.4 Extensions: Dealing with Failed/Sleeping Sensors

In this section, we discuss extensions that remove some of the assumptions made

in Section 2. In Section 4.4.1, we extend the algorithm to deal with the case where

sensors are subject to fail-stop faults. Then, in Section 4.4.2, we extend our TDMA

algorithm to deal with failed sensors. While the solutions presented in Sections 4.4.1

and 4.4.2 are discussed with respect to rectangular grids, we note that it can also be

applied in other grid-based topologies.

4.4.1 Diffusion in Imperfect Grids or Grids with Failed Sen-

sors/Links

In this section, we consider the case where sensors can fail, links between sensors

can fail, or the grid can be improperly configured (with some sensors missing).

Based on the extension in Section 3.5, without loss of generality, assume that the

left-top sensor initiates the diffusion. In the absence of failure of sensors or links

between them, the sensors receive the diffusion messages from their north or west

neighbors before receiving duplicate messages from their east or south neighbors.

Hence, if a sensor receives the diffusion message for the first time from its east or

south neighbor, it can conclude that some of the sensors in the network are missing

or failed. When a sensor receives such a message from the south/east neighbor, it

updates its clock based on the time information in the diffusion message. Based on its

geographic location, it then determines the slot in which it would have transmitted

the diffusion if no sensor had failed. Finally, it uses the TDMA algorithm (cf. Section

4.1) to find the next slot when it can transmit a message; this slot would be used for

retransmitting the diffusion message. Thus, the algorithm for collision—free diffusion

in the presence of failed/sleeping sensors is as follows:
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when sensor j receives a diffusion message for the first time from sensor k

update local clock;

determine the ideal diffusion slot;

find the TDMA slots using the algorithm in Section 4.1;

transmit in ideal diffusion slot or next TDMA slot, whichever is earlier;   
 

Figure 4.10: Diffusion in presence of failed/sleeping sensors

Remark. We can embed a multi-dimensional grid in a non-planar graph using

the above algorithm by considering the thickness [8] of the given graph. With this

embedding, we can obtain collision-free diffusion and time-division multiplexing by

combining the above algorithm and the algorithm for multi-dimensional grid (cf.

Section 4.3.3).

4.4.2 Extending TDMA for Dealing with Failed Sensors

In this section, we focus on providing TDMA service in the presence of failed or

sleeping sensors. We assume that the initiator does not fail and that the network

remains connected.

In the TDMA algorithm discussed in this chapter, a sensor normally receives the

diffusion message for the first time from a sensor that is closer to the base station.

In presence of failed/sleeping sensors, a sensor may receive the diffusion message for

the first time from the sensor that is (physically) farther away from the base station.

The TDMA algorithm in Section 4.1 ignore such message as duplicate. However, in

presence of failed/sleeping sensors, a sensor should forward such a diffusion message

(cf. Section 4.4.1). This ensures that the diffusion message reaches all the active

sensors.

This modification, however, also assigns slots to failed/sleeping sensors. To reas—

sign the slots assigned to failed/sleeping sensors, we consider the notion of collision
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group. Recall that the collision group of sensor j includes the sensors that interfere

with the communication of j. To improve the bandwidth utilization, we consider the

problem of reducing the collision-group size to deal with the sensors that are sleeping

or have failed. Our solution involves three tasks: (1) allowing each sensor to deter-

mine its collision-group, (2) computing the maximum collision group size (MCG) in

the network, and (3) communicating the MCG to all sensors

Determining collision group of each sensor. Regarding the first part, if

a sensor, say j, plans to be inactive for a long time, it should inform the sensors

in its collision-group before it becomes inactive. This can be achieved as follows:

When j wants to become inactive, it informs its neighbors (in a slot allotted by

the TDMA algorithm). These neighbors, in turn, inform their neighbors until the

information reaches all sensors in the collision-group of j. Alternatively, if j fails

(or becomes inactive without informing its neighbors), its neighbors can detect this

fact by observing that no communication was received in the slot allotted to j. This

information, in turn, will be communicated to the sensors in the collision-group of j.

A sensor, say k, updates its collision-group to max(collision-—group of k, {W : i is in

the collision of k : |t,- — tk|}) where t,- (respectively, tk) is the time slot at which sensor

i (respectively, k) transmits a diffusion message.

Computing the MCG. Regarding the second part, we use the initial slot as-

signment algorithm (cf. Section 3.3) where the communication range is 1 and the

interference is greater than or equal to 1. Once again, for simplicity, we assume

that left-top sensor ((0,0)) communicates the size of the collision-group when it ini-

tiates the diffusion. Whenever a sensor, say j, propagates the diffusion, it sets the

collision-group to max (collision-group included in a message that was received by j,

collision-group of j). It follows that the sensor in the right-bottom corner will be able
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to obtain the MCG in the network. This MCG can then be communicated to the

left-top sensor using the current collision-free TDMA algorithm. If the right-bottom

sensor has failed, this responsibility can be delegated to other sensors.

Communicating the MCG. Finally, regarding the third part, once the left-top

sensor learns the new collision-group, it can include this when it initiates the next

diffusion. This diffusion will allow the sensors to learn the size of the new collision-

group that will then be used by the TDMA algorithm.

If the size of the collision-group for a sensor, say j, is less than MCG then the

bandwidth in the neighborhood of j is underutilized. There are several approaches to

deal with this difficulty. For one, j can choose to use the unassigned slots at the risk

of causing collision. For two, j can use the collision-free slot allotted to it to request

access to future slots that are unassigned.

We would like to note that the above description is intended to show that it

is possible to change the size of the collision-groups to ensure optimal bandwidth

utilization. The parameters involved in changing the collision-group are the frequency

with which sensors update their collision-group and the frequency with which the

sensor(s) at the right-bottom communicate the group change information. Also, it is

possible to accelerate the change using the distributed reset [9,10].
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CHAPTER 5

TDMA Service for Sensor Networks

In this chapter, we present the TDMA service for sensor networks for different

communication patterns. Our TDMA service lets one customize the assignment of

time slots to different sensors by considering the commonly occurring communication

patterns in sensor network applications. Specifically, we consider three commonly oc-

curring communication patterns: broadcast, convergecast, and local gossip. In broad-

cast, a message is sent to all the sensors in the network. Broadcast is useful when a

base station wants to transmit some information (e.g., program capsules for repro-

gramming the sensors [11]) to all the sensors in the network. We also consider two

other communication patterns, convergecast and local gossip. These algorithms are

based on our experience with Line in the Sand demonstration [12]. In this demon-

stration, the sensors are arranged in a thick line (grid). When an intruder crosses this

line, the sensors detect it. Now, to classify the intruder, the sensors that observed the

intruder communicate with each other. We consider two ways of classification, inter-

nal and external. In an internal classification, the sensors that detect the intruder

communicate with each other locally. Based on this motivation, we consider the com-

munication pattern, local gossip, where a sensor sends a message to its neighboring

sensors within some distance. In an external classification, the sensors send their data

to the base station that exfiltrates the data outside the sensor network. Based on this

motivation, we consider the communication pattern, convergecast, where a group of

sensors send a message to a particular sensor.
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We present the TDMA algorithms customized for different communication pat-

terns in Section 5.1 and their implementation in Section 5.2. Then, we introduce the

simulation model in Section 5.3 and present simulation results in Section 5.4.

5.1 Algorithms for TDMA Service

In this section, we present the algorithms for TDMA service for different commu-

nication patterns. In Section 5.1.1, we discuss the algorithm for broadcast. Then, in

Section 5.1.2, we discuss the algorithm for convergecast and subsequently, in Section

5.1.3, we discuss the algorithm for local gossip.

5.1.1 TDMA Service for Broadcast

The TDMA algorithm in Section 4.1 is more suitable for broadcast where the

base station sends some data to all sensors in the network. To see this, observe that,

when sensor j transmits the broadcast data, the sensors that receive that data (in the

southeast quadrant of j) can transmit it immediately; slots assigned to the sensors in

the southeast quadrant of j are just after the slots assigned to j (cf. Figure 5.1).

0,101,11 2,12 3.13
 

3,13 4,14 5, 15 6,16 Legend

""""""" Q Sensors in communication range of <0, 0>

6. 16 7. 17 8. 18 O9. 19 O Sensors in interference range of <0, 0>

V

 

 

Figure 5.1: Sample TDMA in networks where a sensor communicates with its

distance 1 neighbors and interferes with its distance 2 neighbors. The numbers

associated with a sensor shows the slots in which it could transmit.
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5.1.2 TDMA Service for Convergecast

The algorithm in Chapter 4 introduces a significant delay for convergecast, where

a group of sensors send data (for example, information about the activities of an

intruder in the field [12]) to the base station. Hence, in this section, we present the

TDMA algorithm customized for convergecast.

To reduce the delay for convergecast, we change the slot assignment as follows: If

j receives a message from its left neighbor then it chooses to transmit the diffusion

in (—1)"‘ slot (in circular sense). In other words, j transmits in the (P — 1)“ slot,

where P (=(y + 1)2 + 1) is the interval between slots assigned to a sensor and y is the

interference range of the sensors. If j receives a message from its top neighbor then

it transmits in the (—(y + 1))“ slot. (For example, see Figure 5.2 for slot assignment

for the case where y = 2.) After the first slot is determined, the sensors can then

transmit once in every P slots.

0 9 18 27

 

 ........... Legend

14] 2:4 32] 41] o Sensors in communication range of <0, O>

9—9— 9_9""""" ' o Sensors in interference range of <0, 0>

Figure 5.2: Sample diffusion for convergecast where communication range=1,

interference range=2. The number associated with each sensor denotes the

time at which it forwards the diffusion message.

As we can see from Figure 5.4, with the above slot assignment, delay for con-

vergecast is reduced. Specifically, when a sensor transmits a message that is to be

relayed by sensors closer to the base station (left-top sensor), such a relay introduces
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only a small (respectively, no) delay. Thus, the TDMA algorithm customized for

convergecast is as follows:

 

const P=(y +1)2 +1;

// Initial slot assignment for convergecast

When sensor j receives a diffusion message from k

if (k is west neighbor at distance 1)

transmit in the P + (—1)"‘ slot.

else if (k is north neighbor at distance 1)

transmit in the P + (—(y +1))‘h slot.

else // duplicate message

ignore

// TDMA algorithm for convergecast

If sensor j transmits a diffusion message at time slot tj,

j can transmit at time slots, Vc : c 2 0 : t, + c =1: P.    
Figure 5.3: TDMA algorithm for convergecast
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Figure 5.4: TDMA slot assignment for convergecast where communication

range=1, interference range=2. The number associated with each sensor de-

notes the time at which it can send a message. Some initial slots are not

shown.

Theorem 5.1 The above algorithm satisfies the problem specification of TDMA. [1

Remark. We note that the above algorithm is designed for a rectangular grid. We

can also customize the TDMA service on a hexagonal/triangular grid for convergecast.
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Towards this end, we need to change the initial slot assignments and the TDMA

period P similar to the modifications discussed for convergecast on rectangular grids.

Specifically, for hexagonal/triangular grid, whenever sensor j receives the diffusion

message, it forwards the message in its negative slot (i.e., it forwards the message in

(P—tj)‘h slot, where t, is the time at which it is supposed to forward according to

the original algorithm).

5.1.3 TDMA Service for Local Gossip

For local gossip, the communication is in all directions. Hence, we need an ap-

proach that combines the slot assignment for broadcast and convergecast. We proceed

as follows: We increase the value of the period (P) to 2((y + 1)2 + 1), twice the pre-

vious value. With this increased value, each sensor gets two slots (even and odd) in

this period. Let the slots assigned to the initiator be 0 and P — 1. To simplify the

presentation, let us assume that the initiator starts a diffusion in its even or the 0‘“

slot. When j receives the diffusion from its left neighbor, it chooses the slot that is

2 higher than that used by the left neighbor. Likewise, when j receives the diffusion

from its t0p neighbor, it chooses the slot that is 2(y + 1) higher than that used by

the top neighbor. (For example, see Figure 5.6 for slot assignment for the case where

y = 2.) Note that the diffusion messages are forwarded in the even slots. In our

solution for gossip, whenever sensor k transmits in the even slot, say tk, it can also

transmit in ((P—1)—tk) mod P, the odd slot. Thus, the TDMA algorithm customized

for local gossip is as follows:
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const P=2((y +1)2 +1);

// Initial slot assignment for local gossip

When sensor j receives a diffusion message from k

if (k is west neighbor at distance 1)

transmit after 2 clock ticks.

else if (k is north neighbor at distance 1)

transmit after 2(y + 1) clock ticks.

else // duplicate message

ignore

// TDMA algorithm for local gossip

If sensor j transmits a diffusion message at time slot tj,

j can transmit at time slots,

chc20ztj+c*P,

(((P—1)—tj) mod P) + c =1: P.   
 

Figure 5.5: TDMA algorithm for local gossip
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Figure 5.6: TDMA slot assignment for gossip where communication range=1,

interference range=2. The number associated with each sensor denotes the

time at which it can send a message. Some initial slots are not shown.

Theorem 5.2 The above algorithm satisfies the problem specification of TDMA. C1

Based on Figure 5.6, in the case where TDMA is customized for local gossip, the

interval between two successive slots of a sensor can be twice as much as in the case

where TDMA is customized for broadcast/convergecast. Thus, if a sensor needs to

transmit a message then the worst case delay is larger when the TDMA service is
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customized for local gossip. In spite of this deficiency, the TDMA service provides

substantial benefits for broadcast and convergecast even if it is customized for local

gossip. To see this, observe that once the base station sends the broadcast message in

its even slot, any sensor receiving it can forward it with a small delay (cf. Figure 5.6).

Likewise, if a sensor transmits a convergecast message in the odd slot, any sensor

receiving it can forward it with a small delay. In fact, as seen from Figure 5.6, in the

TDMA service customized for local gossip, if a sensor wants to transmit a message

in any given direction (east, west, north, south, southeast, southwest, northeast, or

northwest) then the sensor that receives that message can forward it with a small

delay.

Based on the above discussion, if the most common communication pattern is

known to be broadcast or convergecast, we can customize the TDMA service accord-

ingly. Even if the communication pattern is unknown or varies with time, customizing

the TDMA service for local gossip provides significant benefits for other communica-

tion patterns.

Remark. We note that the above algorithm is designed for a rectangular grid. We

can also customize the TDMA service on a hexagonal/triangular grid for local gossip.

Towards this end, we need to change the initial slot assignments and the TDMA

period P similar to the modifications discussed for local gossip on rectangular grids.

5.2 Implementation of TDMA Service

The TDMA service includes APIS for initialization, send and receive. We discuss

each of these APIs and their internal details, next.

Initialization. As discussed in Section 5.1, one of the parameters to the service

is the interference range used by sensors. We assume that the interference range of
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all sensors is identical. For initialization, the TDMA service assumes that once the

sensor network is deployed, there is a delay before the application begins. This delay

is used to perform a diffusing computation and to assign initial slots. Additionally,

the diffusion is performed periodically to (re) validate the slots and to deal with clock

drift among sensors. Thus, one of the parameters to the service is the period after

which diffusion is used to (re) validate the slots that sensors need to use for TDMA.

Yet another parameter for TDMA service is the time slot (in physical time) that

should be assigned for sending a message. Until now, we made a simplifying assump-

tion that it takes one unit of time to send a message. The time slot parameter for

TDMA service determines the length of this unit. Hence, we choose the slot time so

that it is larger than the time (including preamble, CRC, etc.) required to send a

message of maximum length.

The TDMA service also takes the parameter that identifies the communication

pattern for which the service should be customized. The application can use this

parameter to customize the communication that occurs most frequently. As discussed

in Section 5.1, if the commonly occurring communication pattern is not known then

customizing TDMA for local gossip is beneficial.

Send. Although TDMA service ensures that when two sensors, say j and k,

transmit simultaneously, neighbors of j (respectively, k) receive messages from j

(respectively, k) without collision, we still use CSMA. Thus, if j is about to transmit

in its TDMA slot and it observes that the channel is busy then j backs off until the

next TDMA slot. Although in our simulations and in experiments with small number

of motes such a back off never occurred, it is expected that it may occur in a larger

experimental setup. We expect that using CSMA in addition to TDMA will reduce

the collisions that may occur due to unsynchronized clocks, larger interference range
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than that used by the TDMA algorithm or interference range that varies with time

or other environment factors.

The send is non-blocking. Hence, if the TDMA service receives more than two

messages and the sum of their lengths is less than the maximum message length, we

combine those messages and send them in the next time slot.

Receive. There are no special tasks performed when TDMA service receives

a message. All received messages are forwarded to upper layer. Additionally, if

the received message includes multiple embedded messages then the receive action

separates them.

Figure 5.7 shows the partial nesC [13,14] code of the TDMA component designed

in this chapter. Specifically, Figure 5.7 shows the application programming interfaces

(APIs) of the TDMA service, structure of a TDMA message and the wiring logic.

The TDMA component TDMAC' is wired with the implementation TDMAM of the

TDMA service and other required TinyOS components.

5.3 Simulation Model

In this section, we discuss the simulation model of the experiments. We use a

probabilistic wireless network simulator, prowler [15] which is a simulation environ-

ment for embedded systems especially for MICA motes [3, 6]. The simulator has

a modular design. Each layer of the system architecture is designed as a separate

module.

Using prowler, one can prototype different sensor network applications, communi-

cation models, propagation models and topology. For our TDMA simulations, we use

the radio/communication model that is based on the algorithms in Section 5.1. To

compare our algorithms with the existing implementation, we use the default radio
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typedef struct TDMAMsg {

uint8_t type; // Diffusion or TDMA message

uint8_t senderID;

uint8_t size;

uint8-t seqNo;

char data[TDMA-MESSAGE_LENGTH];

} TDMA.Msg;

typedef TDMA-Msg :1: TDMAMsgPtr;

interface TDMA {

command result-t init(uint8_t ID, uint8-t baseStationID,

uint8_t gridX, uint8_t gridY, uint8-t interferenceRange);

command result-t send(uint8-t messageSize, TDMAMsgPtr data);

event result-t sendDone(TDMA.MsgPtr sent, result.t success);

event result-t receive(TDMA.MsgPtr data);

}

configuration TDMAC {

provides { interface TDMA; interface StdControl; }

}

implementation {

components TDMAM, GenericComm as TComm, ...;

TDMA = TDMAM;

StdControl = TDMAM;

Figure 5.7: Sample data structure, interface, and component wiring definitions

in nesC

models provided by prowler. These models include CSMA and a primitive model

that uses no access protocol. Finally, we use the rectangular grid as the underlying

topology since it reflects the topology used in [12]. Specifically, in [12], the sensors

are arranged in a rectangular grid and the base station is placed at one corner in this

grid.
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Now, we discuss the simulations we performed in the context of these communi-

cation patterns. Then, we discuss the simulations we performed to study the effect

of location errors.

Broadcast. The base station (sensor at left—top corner) initiates a broadcast. It

sends the broadcast message to its neighbors in the communication range. Whenever

a sensor receives the broadcast message for the first time, it relays it (for sensors

farther from the base station). We conduct the broadcast simulations for different

network sizes. In these simulations, we consider the following metrics: maximum

delay incurred in receiving the broadcast message, number of sensors that receive the

broadcast message, and number of collisions. Since CSMA (respectively, no MAC

layer) does not guarantee reception by all sensors, we also consider the delay when

a certain percentage of sensors receive the broadcast message. Regarding collisions,

we compute the ratio of the number of collisions to the number of messages. Note

that this ratio can be greater than 1 as one message can potentially collide at several

sensors.

Convergecast. For convergecast, a set of sensors send a message to the base station

(approximately) at the same time. In our experiments, we keep the network size fixed

at 10x10. We choose a subgrid of varying size; sensors in this subgrid transmit the

data to the base station. We make the worst case assumption in these experiments

and assume that the subgrid that sends the data to the base station is in the opposite

corner from the base station, i.e., the subgrid is farthest from the base station. For

these simulations, we compute maximum delay incurred for receiving messages at

the base station, the percentage of sensors whose messages are received by the base

station and the number of collisions. Once again, as in broadcast simulations, we
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compute the delay for the case where a certain percentage of messages are received

by the base station.

Local gossip. In local gossip, a subgrid of nodes send the data. The goal is to

transmit the data from these sensors to the sensors in the subgrid and the neighbors

of the sensors in the subgrid. Thus, local gossip is applicable in locally determining

the set of sensors that observed a particular event. In our experiments, we keep the

network size fixed at 10x10. And, we choose different sizes of subgrids; sensors in this

subgrid transmit the gossip messages. For these simulations, we compute the average

delay incurred for receiving messages at the nodes that are expected to receive the

local gossip and number of collisions.

Location errors. One of the important concern in any communication protocol

for sensor networks is the errors in sensor location. Errors are introduced in sensor

location due to misplacement of sensors or external factors like wind, vehicle move-

ment, etc. Communication protocols that depend on sensor location should be able

to tolerate such errors.

To model location errors, we randomly perturbed the sensors. In our simulation,

the error in sensor location is determined using a normal distribution, N(p, o), where

u is the mean error distance and or is the standard deviation of the error. The direction

of perturbation was randomly selected from 0 degrees to 360 degrees. To ensure that

the grid remains connected in spite of perturbations, during these simulations we

increased the communication range. We note that this is a reasonable assumption in

that if we need to tolerate location errors then the distance between two neighboring

sensors should be less than or equal to the communication range.
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5.4 Simulation Results

In this section, we present our simulation results that compare our TDMA algo-

rithm from Section 5.1 with the case where CSMA is used and with the case where

no MAC layer is used. We first present our results for broadcast. Then, we consider

convergecast and local gossip. Finally, we consider the issue location errors. Based

on the values used in [12], in convergecast and local gossip, the TDMA service groups

up to 4 messages in the queue into a single message before transmitting. In Section

5.4.5, we discuss the effect of grouping on the performance of the TDMA algorithms.

5.4. 1 Broadcast

In Figure 5.8, we present our simulation results for broadcast for the case where

communication range and interference range is 1. Figure 5.8(a) identifies the number

of collisions that occur in different algorithms. As expected, TDMA is collision free

for all network sizes. By contrast, in CSMA, about 10% of messages suffer from

collisions. However, if no MAC layer is used then the number of collisions is more

than the number of messages sent. This is due to the fact that one transmitted

message often collides at more than one sensor.

Figure 5.8(b) identifies the maximum delay incurred in receiving broadcast mes-

sages. Since all sensors may not receive the broadcast message when CSMA is used,

we consider the delay when a certain percentage, 80-10070, of sensors receive the

broadcast message. As we can see, the delay in TDMA based schemes is only slightly

higher.

Figure 5.8(c) identifies the number of sensors that receive the broadcast message.

We find that with CSMA/TDMA, all sensors receive the message. However, without

the MAC layer, the number of sensors that receive the message is less than 50%.
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Figure 5.8: Results for broadcast with communication range = 1, interference

range = 1

In Figure 5.9, we present the simulation results for broadcast for the case where

communication range is 1 and interference range is 2. As we can see, these results

are similar to those in Figure 5.8.

5.4.2 Convergecast

In Figure 5.10, we present our simulation results for convergecast for the case

where communication range and interference range is 1. Figure 5.10(a) identifies the

number of collisions that occur in different algorithms. As we can see from Figure
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Figure 5.9: Results for broadcast with communication range = 1, interference

range = 2

5.10(a), although the TDMA based solution is collision free, there are a significant

number of collisions with CSMA. Regarding delay, as we can see from Figures 5.10(b)

and (c), the delay incurred by TDMA is reasonable and that the base station receives

all the messages sent by the sensors. By contrast, with CSMA, approximately 50% of

the messages are received when the number of sensors sending the data to the base

station increases.

We note that the number of collisions without the MAC layer is significantly more

than that for CSMA/TDMA. The number of collisions decrease as the size of the field
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sending data increases. This anomaly occurs due to the fact that when the number

of sensors that start the convergecast is more, many of their messages fail on the first

few links. Effectively, this reduces the number of collisions as collisions occur only on

initial links. In fact, as we can see from Figure 5.10(c), without MAC layer, no data

reaches the base station.
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ence range = 1
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In Figure 5.11, we present the simulation results for convergecast for the case

where communication range is 1 and interference range is 2. As we can see, these

results are similar to those in Figure 5.10.
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Figure 5.11: Results for convergecast with communication range = 1, interfer-

ence range = 2

5.4.3 Local gossip

In Figures 5.12(a) and 5.12(b), we present our simulation results for local gossip

for the case where communication range is 1 and interference range is 1.
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5.12(a) identifies the number of collisions as the size of the group performing local

gossip increases. As we can see, CSMA based solution suffers significant collisions

whereas TDMA based solution is collision free. Note that the percentage of collisions

decrease as the size of the group performing local gossip increases. As discussed in the

case of convergecast, this is due to the fact that with increased communication, many

messages create collisions in the initial part of the network and then they are lost.

Also, as seen from Figure 5.12(b), the delay in TDMA is somewhat more than that

in CSMA. However, unlike TDMA where all sensors receive the necessary messages,

in CSMA, the sensors receive approximately 50% of messages.

Once again, the results are similar for the case where interference range is increased

to 2 (cf. Figures 5.12(c) and 5.12(d)).

5.4.4 Effect of Location Errors

In our location error experiments, even if the sensors are perturbed from their

ideal position, as long as the perturbation is small and the communication range is

increased so that the network remains connected, the results are close to the those

presented earlier. We introduce location errors in the sensors as follows. Let (a, b) be

the ideal location of a sensor. Let ed be the distance a sensor is perturbed from its

ideal location, and 0., be the angle of perturbation. The error distance ed is determined

using the normal distribution N(u, o), where p is the mean error distance and o is

the standard deviation of ed. Thus, the error in location on 95% of the sensors is in

the range (—p—2o, ,u+2o). Hence, to determine the topology, we increase the physical

communication range by u+2o. However, the communication and interference range

used by the algorithm is 1. For small perturbations (i.e., u g 0.2), increasing the

physical communication range is sufficient to ensure that the network is connected.
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Figure 5.12: Results for local gossip; (a) and (b) with communication range

= 1, interference range = l, (c) and (d) with communication range = 1,

interference range = 2

However, for larger perturbations (i.e, [.t > 0.2), if the communication and interference

range used by the algorithm is 1, number of collisions increase significantly. Hence, we

need to increase the interference range that the algorithm uses, say, to 2. Additionally,

if the predicted u is less than the actual mean error, the algorithm can increase its

interference range when it observes significantly higher number of collisions using the

approach to change the collision group size (cf. Section 4.4.2).
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In our simulations, ,u takes the following values: 0.0—0.4 and 0 takes the following

values: 0.0—0.2. And, 6,; is determined using the uniform distribution U(0, 27r). Thus,

the actual location of the sensor is (a+edcos(0d), b+edsin(6d)).

Broadcast. In Figure 5.13, we present the simulations results for broadcast

with location errors. Figure 5.13(a) identifies the percentage of collisions during

broadcast. As we can see, when It increases, the number of collisions increases.

However, the collisions are within 2%. Figure 5.13(b) identifies the maximum delay

involved in delivering the broadcast message to all the sensors. We can note that

the delay is within 10% when compared to the case where no location errors are

introduced. Finally, Figure 5.13(c) identifies the number of sensors receiving the

broadcast message. As we can observe, all the sensors receive the message except for

the case where 11:02 and 0:01. Even in this case, more than 96% of the sensors

receive the broadcast message. Table 5.1 shows the percentage of collision for the

case where u = 0.4 and interference range=2. As we can observe, the percentage of

collisions is small with increased interference range.

Convergecast. In Figures 5.14(a) and 5.14(b), we present the simulation results for

convergecast with location errors. Figure 5.14(a) identifies the number of collisions

during the message communication. We note that, as the error in sensor location

increases, collisions increase. Further, as observed earlier, the collisions are within

acceptable limits, i.e., within 8%. Figure 5.14(b) identifies the average delay involved

in delivering the convergecast messages to the base station; the average delay is within

2% when compared to the case where were no location errors are introduced. Further,

similar to the case where no location errors are present, the base station receives all

the convergecast messages. Moreover, if the mean error distance increases, we can
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Figure 5.13: Results for broadcast with location errors

keep the percentage of collisions small by increasing the interference range (cf. Table

5.1).

Local gossip. In Figures 5.14(c) and 5.14(d), we present the simulation results

for local gossip with location errors. Similar to the observations made earlier in this

section, from Figure 5.14(c), we observe that the number of collisions during message

communication is small (i.e., within 4%). Further, the delay involved in delivering

the local gossip messages is within 15% when compared to the case where no location

errors are introduced. Finally, all the local gossip messages are delivered to the group
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Figure 5.14: Results for convergecast and local gossip with location errors

that expects such messages. Moreover, if the mean error distance increases, we can

keep the percentage of collisions small by increasing the interference range (cf. Table

5.1). From these simulations, we conclude that the location errors do not significantly

affect the performance of our TDMA service.

5.4.5 Effect of Grouping Constant

In the proposed TDMA service for sensor networks, if the TDMA service receives

two or more messages and the sum of the message lengths is less than the maximum
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Table 5.1: Results for 11:04, 0:02, and interference range=2
 

  

 

Broadcast Convergecast Local Gossip

Network Size % of Collisions Field Size % of Collisions % of Collisions

4 9.6 4.9

25 0 9 8.8 7.1

100 5 16 11.7 7.5

225 6.8 25 11.5 6.6        

message length of a TDMA message, TDMA service combines these messages into

a single TDMA message. In this section, we study the effect of grouping. Specifi-

cally, we study the effect of varying the number of messages grouped into a single

TDMA message for convergecast and local gossip. Note that in the simulations for

broadcast only one message is transmitted, and hence, we do not consider the issue

of grouping for broadcast. Further, in this section, we present results only for the

delay in delivering the messages. In our simulations, the base station (respectively,

the group expecting the gossip messages) receives all the convergecast (respectively,

gossip) messages. Also, the percentage of collisions is zero.

In Figures 5.15(a) and 5.15(b), we present the simulation results for convergecast

and local gossip where the communication range is 1 and interference range is 1. We

consider the following values for grouping constant (GP): 1, 2, and 4. In Figure

5.15(a), we can observe that as the size of the field sending convergecast message to

base station increases, the delay increases. Further, delay increases when the number

of messages grouped into single TDMA message decreases. With GP as 1 (i.e., no

grouping), we observe that the delay increases significantly as size of the network

increases.
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Figure 5.15: Effect of grouping constant; with communication range = 1,

interference range = 1, for (a) convergecast and (b) local gossip, and with

communication range = 1, interference range = 2, for (c) convergecast and ((1)

local gossip

In Figure 5.15(b), we present the results for local gossip. We observe that the

results are similar to convergecast. Specifically, as GP decreases, delay in delivering

the local gossip messages increases.

Once again, the results for the case where the communication range is 1 and

interference range is 2 are similar (cf. Figures 5.15(c) and 5.15(d)).
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CHAPTER 6

Application: Model Conversions for Sensor Networks

The ability of modeling abstract distributed programs and transforming them

into concrete programs that preserve the properties of interest is one of the impor-

tant problems in distributed systems. Such transformation allows one to write a

program in one (typically a simpler/restrictive) model and run it on another (typi-

cally a general/less restrictive) model. Hence, several algorithms (e.g., [16—21]) have

been proposed for enabling such transformation.

As discussed in [22] (cf. Chapter 1), the model of computation in sensor networks

can be viewed as write all with collision (WAC) model. Intuitively, in this model, in

one atomic action, a sensor (process) can update its own state and the state of all

its neighbors. However, if two sensors (processes) simultaneously try to update the

state of a sensor (process), say 1:, then the state of k is unchanged.

Moreover, in sensor networks, detecting such collisions is difficult due to several

reasons. For example, it is possible that a sensor succeeds in updating the state of one

of its neighbors even though its update causes collision at another neighbor. Hence,

we assume that collisions are not detectable. We would like to note that most of our

results are also applicable for the case where collisions can be detected. We discuss

this issue in Section 6.5.

While previous literature has focused on transformations among other models

of computation (e.g., [16—21]), the issue of transformation from (respectively, to)

WAC model to (respectively, from) other models has not been considered. To redress

this deficiency, we focus on the problem of identifying the transformations that will
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allow us to transform programs in the WAC model to other models considered in the

literature, and vice versa

Existing models and semantics for distributed programs. Some of the

commonly encountered models of computations include a message passing model, a

read/write model, and a shared memory model. In these models, a program consists

of a set of processes and each process consists of a set of actions. And, the tasks

that are performed in an action depend upon the model of computation. In message

passing model, processes share no memory and they communicate by sending and

receiving messages. Thus, in each action, a process can perform one of the following

tasks: send a message, receive a message, or perform some internal computation.

A read/write model reduces the complexity in modeling message passing programs.

In read/write model, the variables of a process are split into public variables and

private variables. In each action, the process can either (1) read the state of one of its

neighbors (and update its private variables), or (2) write its own variables (public and

private) using its own variables (public and private). Thus, read/write model allows

one to hide the complexities of message queues, message delays, etc. The shared

memory model simplifies the read/write model further in that in one action it allows

a process to atomically read its state as well as the state of its neighbors and write

its own state. Thus, the shared memory model hides the intermediate states, where

a process has read the state of a subset of its neighbors, that occur in read/write

model.

For shared memory model, there are different types of semantics that are often

used. Some of the commonly encountered semantics include, interleaving (also known

as central daemon), maximum-parallelism and power-set semantics (also known as

distributed daemon). In interleaving semantics, given a set of enabled actions, i.e.,

58



actions whose execution will change the state of some process, one of those actions is

non-deterministically chosen for execution. In maximum-parallelism, all enabled ac-

tions (one from each process) are executed concurrently. And, in power-set semantics,

any non-empty subset of enabled actions (at most one from each process) is executed

concurrently.

In this chapter, we focus on transformation from WAC model under power-set

semantics into read/write model, and vice versa. We show that previously studied

concepts such as graph coloring (e.g., [23—25]), local mutual exclusion (e.g., [19,20])

and collision-free diffusion [26] can be effectively used for obtaining these transforma-

tions. The main results are as follows:

0 For untimed (asynchronous) systems, we present an algorithm for the trans-

formation of programs in read/write model into programs in WAC model. We

also show the optimality of this transformation; specifically, we show that if

the transformed program is deterministic, cannot use time and cannot perform

redundant writes (see Section 6.2.1 for definition) then at most one process can

execute at a time. Also, we argue that these transformations cannot be made

stabilization preserving.

o For timed systems, we present algorithms for the transformation of programs

in read/write model into programs in WAC model for a grid topology and also,

for arbitrary graphs. These transformations permit concurrent execution of

multiple processes. We also Show that if the given program in read/write model

is stabilizing fault-tolerant [4,5], i.e., starting from an arbitrary state, it recovers

to states from where its specification is satisfied, then, for a fixed topology, the

transformed program in WAC model is also stabilizing fault-tolerant.
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c We present an algorithm for the transformation of programs in WAC model

into programs in read/write model. We show that this transformation is also

stabilization preserving. This transformation does not assume that the topology

is fixed or known in advance.

0 We show how to transform programs in shared memory/message passing model

to WAC model, and vice versa.

In Section 6.1, we present the formal definitions of the atomicity models and our

approach for proving that our transformation algorithms are stabilization preserving

and also, identify the system assumptions. In Section 6.2, we present an optimal

approach for the transformation of programs in read/write model into programs in

WAC model under power-set semantics for untimed systems. Subsequently, in Section

6.3, we present the transformation for timed systems. Then, in Section 6.4, we present

an approach for the transformation of programs in WAC model under power-set

semantics into programs in read/write model. Finally, in Section 6.5, we discuss

some of the questions raised by the transformations.

6.1 Atomicity Models, Preserving Stabilization and System

Assumptions

In this section, we first precisely specify the structure of the programs in read/write

model and in WAC model. Then, we define stabilizing fault-tolerance and discuss our

approach to show that our transformation algorithms preserve stabilization. Finally,

we present the assumptions made about the underlying system.

The programs are specified in terms of guarded commands; each guarded com-

mand (respectively, action) is of the form:

guard —> statement,
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where guard is a predicate over program variables, and statement updates pro-

gram variables. An action 9 —-> st is enabled when 9 evaluates to true and to execute

that action, st is executed atomically. A computation of this program consists of a

sequence so, 51, . . . , where 334.1 is obtained from s,- by executing actions (one or more,

depending upon the semantics being used) in the program.

A computation model limits the variables that an action can read and write.

Towards this end, we split the program actions into a set of processes. Each action is

associated with one of the processes in the program. We now describe how we model

the restrictions imposed by the read/write model and the WAC model.

Read/Write model. In read/write model, a process consists of a set of public

variables and a set of private variables. In the read action, a process reads (one or

more) public variables of one of its neighbors. For simplicity, we assume that each

process j has only one public variable v.j that captures the values of all variables

that any neighbor of j can read.

Furthermore, in a read action, a process could read the public variables of its

neighbor and write a different value in its private variable. For example, consider

a case where each process has a variable a: and j wants to compute the sum of the

:17 values of its neighbors. In this case, j could read the a: values of its neighbors

in sequence. Whenever j reads x.k, it can update a private variable sum.j to be

sum.j + :r.k. Once again, for simplicity, we assume that in the read action where

process j reads the state of k, j simply copies the public variables of k. In other

words, in the above case, we require j to copy the :r values of all its neighbors and

then use them to compute the sum later.

Based on the above discussion, we assume that each process j has one public

variable, v.j . It also maintains copy.j.k for each neighbor k of j; copy.j.k captures
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the value of 21.16 when j read it last. Now, a read action by which process j reads the

state of k is represented as follows:

true —> copyjkzuk

And, the write action at j uses 12.j and copy.j (i.e., copy variables for each neigh-

bor) and any other private variables that j maintains to update i).j . Thus, the write

action at j is as follows:

predicate(v.j,copyj,0ther.private_variables.j) ——+ update v.j,0ther.private_

variables.j ;

Remark. Note that the above representation assumes that the read action is always

enabled. If this is not the case then j can ignore the value it read when the read

action was not enabled. This can be achieved as follows: In addition to maintaining

copy.j.k, j also maintains rcopy.j.k. When the read action in the given program is

enabled, j executes the above read action to set copy.j.k to v.k and then set rcopy.j.k

to copy.j.k. Since copy.j.k and rcopy.j.k are local variables, these two actions can

be trivially serialized. With these modifications, when the read action at j is not

enabled, any update to copy.j.k is ignored.

Write-All—With-Collision (WAC) model. In WAC model, each process consists

of write actions (to be precise, write-all actions). Each write action at j writes the

state of j and the state of its neighbors. Similar to the case in read/write model, we

assume that each process j has a variable v.j that captures all the variables that j

can potentially write to any of its neighbors. Likewise, process j maintains l.j.k for

each neighbor k; l.j.k denotes the value of 11.1: when k wrote it last. Thus, an action

in WAC model is as follows:
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predicate(v.j,l.j,other_private_variables.j) -—> update ’U.j, other_private_

variablesj;

Vk : k is a neighbor of j :

l.k.j = v.j;

Remark. In the rest of the chapter, we leave the additional private variables

considered above implicit.

Preserving stabilization. Since our transformations are stabilizing fault-tolerant,

we discuss our approach in proving stabilization now. Towards this end, we define the

notion of equivalence between a computation of the given program and computation of

the transformed program. This notion is based on the definition of refinement [27,28]

and simulation [28].

Consider the transformation of program p in read/write model into program 11’ in

WAC model. Note that in WAC model, multiple writes can occur at once whereas in

read/write model, at most one read/write can occur at a time. Hence, each step of the

program in WAC model would be simulated in read/write model by multiple steps.

Hence, if c’ = (30,191,” .) is a computation of p’ and c is a computation of p, we say

that c and c’ are equivalent if c is of the form (t00,t01, . . . ,t0f0(= tm),t11, . . .,t1f,(=

tgo), . . .), where ‘v’j : 3,- and tjo are identical (subject to renaming of variables) as far

as the variables of p are concerned. For the transformation of p’ in WAC model into

p in read/write model, the definition of equivalence is similar. We require that c can

be expressed as (t00,t01, . . .) by commuting the read/write actions in c in such a way

that the effect of these transitions does not change due to such commutation.

To show that our transformations are stabilization preserving, we proceed as fol-

lows: Let p be the given program, say, in read/write model, and let p’ be the trans-

formed program in WAC model. We show that given any computation of p’, there
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exists a suffix of that computation such that there is a computation of p that is

equivalent to that suffix. If the given program, p, is stabilizing fault-tolerant then

any computation of p is guaranteed to reach legitimate states and satisfy the speci-

fication after reaching legitimate states. It follows that eventually, a computation of

19’ will reach legitimate states from where it satisfies its specification.

System assumptions. We assume that the set of processes in the system are

connected. If the set of processes are partitioned then the algorithms in this chapter

can be executed for each partition. Further, we assume that in the given program

in read/write model, for any pair of neighbors j and k, j can never conclude that k

does not need to read the state of k. In other words, we require that the transforma-

tion should be correct even if each process executes infinitely often. Further, in our

transformation from read/write model to WAC model, we assume that the topology

remains fixed during the program execution, i.e., failure or repair of processes does

not occur. Thus, while proving stabilization, we disallow corruption of topology re-

lated information. This assumption is similar to assumptions in previous stabilizing

algorithms where the process IDs are considered to be incorruptible. We note that

our transformation from WAC model to read/write model does not assume that the

topology is known up front and the topology can change at run time.

We consider two types of systems, timed and untimed. In a timed system, each

process has a clock variable. We assume that the rate of increase of the clocks is same

for all the processes. In an untimed system (also known as asynchronous systems),

processes do not have the notion of time or the speed of processes.

64



6.2 Read/Write Model to WAC Model in Untimed Systems

In this section, we discuss the first of our transformations where we transform

a program in read/write model into a program in WAC model. Recall that in the

read/write model, each program action is either a read action or a write action. In

the WAC model, there is no equivalent of a read action. Hence, an action by which

process j reads the state of k in the read/write model can be modeled in the WAC

model by requiring process I: to write the appropriate value at process j. Of course,

when k writes the state of j in this manner, it is necessary that no other neighbor

of j is writing the state of j at the same time. Finally, a write action in read/write

model can be executed in WAC model as is.

To obtain the transformed program that is correct in WAC model, we organize

the processes in the given program (in read/write model) in a ring. Such a ring can

be statically embedded in any arbitrary graph by first embedding a spanning tree in

it and then using an appropriate traversal mechanism to ensure that each process

appears at least once in the ring (cf. Figure 6.1).

 

  
Communication graph for Ring for transformed program

given program

Legend

—— Edges used by the program in WAC

----- Additional edges in the given graph

Figure 6.1: In the transformed program, ‘A’ will execute actions of processes

0 and 6, ‘B’ will execute actions of processes 1, 3 and 5, and so on.
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Let the processes in this ring be numbered 0 . . .n— 1; note that if a process from

the original graph is repeated in the ring then that process gets multiple numbers in

this ring. Now, in the transformed program, process 0 executes first. When process 0

executes and writes the state of process 1 (and any other processes that are neighbors

of process 0 in the original communication graph), process 1 is enabled and permitted

to execute. When process 1 executes, it allows process 2 to execute, and so on. The

actions of process j in the transformed program are as follows: (If a process in the

original graph has multiple numbers in the ring, it executes the actions corresponding

to all those values.)

process j

const

n; // number of processes in the ring

var

v.j, l.j, counter.j;

initially

set 22.j according to the initial value of v.j in read/write model;

set I .j according to the initial value of copy.j in read/write model;

counter.j = 0;

begin

counter.j=j ———> if(predicate(v.j,l.j)) update v.j;

counter.j=(j +1) mod n;

We : k is a neighbor ofj : l.k.j,counter.k = v.j, (j + l)mod n;

// this write action will enable process numbered j + 1

end

Figure 6.2: Read/write model to WAC model in untimed systems

Theorem 6.1 For every computation of the transformed program in WAC model

under power-set semantics there is an equivalent computation of the given program

in read/write model.
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Proof. The main idea in this proof is that every step of j in the transformed pro-

gram is equivalent to the following computation of the original program in read/write

model: (write action by j, followed by read action by each neighbor of j).

Consider a computation so, 31,32, . . . of the transformed program in WAC model.

Based on the initial values of the counters, (so, 31) is a transition of process 0. Let

$1,:r2, . . . ,1710—1 be the neighbors of 0. Now, for the transition (so, 31), we construct a

computation (t00,t01, tog, . . . , t0f0> of the original program. Since tab is a state of the

program in the read/write model, we identify the v and copy values for tab.

0 For state too: Vj :: v.j(t00) = v.j(so), Vj, k :: copy.j.k(t00) = l.j.k(so).

0 State tm is obtained from too by executing the write action at process 0 (i.e.,

the process that was numbered 0 during transformation).

0 State tOw,1 < w 3 f0, is obtained from tom—1) where process $w_1 reads the

value of 12.0.

Now, in t10 = two, we have Vj :: v.j(t10) = v.j(sl), Vj,k :: copy.j.k(t10) =

l.j.k(sl). Further, by induction, if so, 31, 32, . .. is a computation of the transformed

program in WAC model then there exists an equivalent computation too,t01, . . . , tOfo (=

tlo),t11, . . . that is a computation of the given program in read/write model. B

6.2.1 Optimality Issues

In this section, we discuss the optimality of the above transformation. Towards

this end, we first identify the notion of redundant writes. Based on the definition of

WAC model, the guard of any action, say of process j, in WAC model depends only

on the local variables of j. Now, consider the case where process j executes its action

(and writes its state as well as the state of its neighbors) and an action of j is still
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enabled after this execution. It follows that j can again execute and write the state

of its neighbors. In this scenario, one of the writes of j is redundant if the system

was untimed and no collision had occurred. To Show the optimality of the above

transformation, we assume that processes do not perform such redundant writes.

Redundant writes. We say that process j does not perform redundant writes if after

the execution of any action by j, all actions of j are disabled until a neighbor of j

executes and writes the state of j.

Theorem 6.2 An algorithm for transforming programs in read/write model to pro-

grams in WAC model can allow at most one process to execute at a time, if the system

is untimed and processes are deterministic, cannot detect collisions, and cannot per-

form redundant writes.

Proof. As discussed in Section 6.1, in this proof, we assume that the transfor-

mation algorithm does not have any information about the fact that some processes

execute only finite number of times in the given read/write program. In other words,

the transformation should succeed even if each process executes infinitely often in

the given program. We also assume that the transformation algorithm should work

correctly even if communication among neighbors is bidirectional, i.e., it should not

assume that communication between some neighbors be only unidirectional.

Further, we observe that in WAC model, if the system is untimed and processes are

deterministic then a process can go from being disabled to being enabled only if one

of its neighboring processes writes its state. Now, consider a program in read/write

model that is designed for the system in Figure 6.3. In the transformed program,

assume that j executes at some step. This could allow processes in the left part and

the processes in the right part to execute concurrently. Now, we show that if such
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concurrent execution is permitted then it is impossible to ensure that j can execute

once more.

Since c1 and c2 may need to write the state of j, the transformation algorithm

must ensure that j is disabled at some point after it executes. This will allow one of

these neighbors to write the state of j. However, for the write to j to succeed, either

c1 should execute or c2 should execute, but not both. As we can see, in an untimed,

deterministic system, there is no way to ensure that exactly one process from c1 and

c2 executes if they write the state of j once. Thus, for the system in Figure 6.3, only

one process can execute at a time.

Figure 6.3: Impossibility of executing more than one process in untimed sys-

tems

Moreover, even if there are additional edges (other than c1 H j, c2 H j) among

processes in the left network (left of process j), processes in the right network (right

of process j), and process j, the above argument still holds. Thus, the theorem holds

for all arbitrary connected graphs with at least 3 processes. Note that the proof is

trivial for graphs with only 1 or 2 process(es). Thus, an algorithm for transforming

programs in read/write model into programs in WAC model, where the system is

untimed and processes are deterministic, cannot detect collisions, and cannot perform

redundant writes, can allow at most one process to execute at a time. C]
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There are several ways to improve the performance of the transformation if we

weaken some of the assumptions made above. Specifically, we can remove the assump-

tion that processes cannot perform redundant writes in order to allow concurrency

in the programs in WAC model. Next, we present a solution that provides potential

concurrency if processes are allowed to perform redundant writes. Another approach

would be to remove the assumption about untimed systems. If the processes are

allowed to use time, we can design transformation algorithms that allow more con-

currency (cf. Section 6.3).

Concurrent executions. We show that it is possible to design transforma-

tion algorithms that allow concurrent executions of processes with redundant writes.

Specifically, in this section, we present an algorithm where a concurrency of 2 is po-

tentially possible. In this example, initially, processes are mapped onto a logical ring.

The communication graph of the original program can have additional links.

For simplicity of presentation, we consider a ring with 6 processes as shown in

Figure 6.4. Let s and t be two special processes. Process 3 is initially enabled.

Whenever s executes, it passes a token to the process chains a1, a2 (top processes) and

b1, b2 (bottom processes), allowing them to execute concurrently. In this execution,

we guarantee that the write actions of the top processes always succeed. Whenever

process t is enabled due to the write actions of the top processes, process t reverses

the token circulation direction. In other words, when t executes, it passes the token to

the process chains ()2, b1 and a2, a1, thereby allowing them to execute concurrently. In

the reverse pass, we guarantee that the write actions of the bottom processes always

succeed.

Now, we describe how we ensure that the write action of top (respectively, bottom)

processes succeed in the forward (respectively, reverse) circulation of token. In the

70



 

Figure 6.4: Executing more than one process in untimed systems. The num-

bers associated with each process denotes the number of writes the process

executes in the corresponding round.

forward pass, when 3 executes, it writes the state of a1 and b1, thereby enabling

them. Now, processes a1 and b1 can execute concurrently. Since their write actions

may collide, we need to ensure that at least one of their writes succeed. To ensure that

the writes of the processes in tOp chain (i.e, a1, a2) succeed, when a1 executes, it writes

more than the sum of number of write actions of the processes in the bottom chain

(i.e., b1, b2). In our solution, when b1 executes, it writes once, and when I); executes, it

writes twice. Hence, when a1 executes, it writes four times, and when a2 executes, it

writes five times. Thus, one or more of the write actions of a1 and a2 succeed, thereby

enabling successive processes a2 and t respectively. When the write actions of both

a1 and b1 succeed at s in the forward pass, 3 receives confirmation for its write, and

hence s cancels its pending writes. When a2 (respectively, t) writes its state to al

(respectively, (12) successfully, a1 (respectively, a2) cancels its pending writes. Now,

process t will be enabled since one of the write actions of a2 would succeed. Note that

process t is enabled only by the write action of process a2, even though the writes of

process b2 may succeed at t. When process t executes, it reverses the token circulation

direction. Further, it initiates the next round, and hence, the number of write actions

by each process change accordingly (cf. Figure 6.4). Moreover, if the write action of t
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succeeds at b2 before b2 executes all its forward writes, b2 cancels its pending forward

writes. And, process t cancels its pending writes when it receives confirmation about

its successful writes at b2 and a2.

In the reverse pass, we ensure that the writes of the processes in bottom chain

succeed. Thus, similar to the above discussion, when (12 executes, it writes six times,

and when a1 executes, it writes seven times. Hence, when b2 executes, it writes 14

times, and when b1 executes, it writes 15 times. Further, process 3 is enabled only

by the write action of b1, even though the write actions of 01 may succeed at 3.

Continuing thus, we can allow two processes to execute concurrently.

We observe that it is not possible to bound the number of write actions by each

process in this solution. Further, in this solution, it is possible to have a scenario

where only one process is executing at a time. For example, consider the following

scenario. Initially, process 3 executes, and allows process chains a1, a2 and b1,b2 to

execute. However, the bottom chain is slow, and hence, process t becomes enabled

by the execution of the top processes. If t executes, writes of the bottom processes

may be canceled. Therefore, it is possible to have a scenario where only one process

executes at a time. However, as we have discussed above, there is a potential for

concurrency.

6.2.2 Stabilization Issues

Based on the assumption that processes do not perform redundant writes, for

each process, say j, there exists a local state of that process where none of its actions

are enabled. Also, since the guard of an action at process j depends only on local

variables of j, we can perturb the given program to states where none of the actions
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are enabled. It follows that it will not be possible for the program to reach legitimate

states from such a state.

In the context of the above result, a reader may wonder if a stabilizing token ring

circulation algorithm could be used to achieve stabilization in the above transfor-

mation. To add stabilization to the transformed program in WAC model, we need

a stabilizing token ring circulation algorithm that is correct under the WAC model.

By contrast, existing stabilizing token ring circulation algorithms are correct under

read/write model.

Note that the above impossibility result depends on the assumption that the sys-

tem is untimed and processes are deterministic, cannot detect collisions, and cannot

perform redundant writes. If the assumption about untimed system is removed then

it is possible to preserve stabilizing fault-tolerance. We present such stabilization

preserving algorithms in Section 6.3.

6.3 Read/Write Model to WAC Model in Timed Systems

In this section, we present the algorithm for the transformation of a program

in read/write model into a program in WAC model for timed systems. We present

two transformations; one for a grid topology (cf. Section 6.3.1) and the other for

an arbitrary topology (cf. Section 6.3.2). For these two transformations, we assume

that the clocks of the processes are initialized to 0 and the rate of increase of the

clocks is same for all processes. In Section 6.3.3, we present an approach to deal with

uninitialized clocks; this approach enables us to ensure that if the given program in

read/write model is stabilizing fault-tolerant then the transformed program in WAC

model is also stabilizing fault-tolerant.
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6.3.1 Transformation for Grid Topology

This algorithm is based on the collision-free diffusion algorithm presented in [26].

Let the processes be arranged in a 2-d grid topology as shown in Figure 6.5. Also,

assume that there is a distinguished process at the left-top position (process (0,0)).

This distinguished process starts the computation in the transformed program. First,

this distinguished process executes and writes the state of processes (1, 0) and (0,1).

Now, either (1,0), (0,1) or both can execute. However, if both (1,0) and (0,1)

execute simultaneously, their write actions collide at process (1,1). Hence, we use

the following algorithm to ensure collision-freedom during write actions: process (1, 0)

executes one cycle (i.e., time required to execute one action in the WAC model) after

(0,0) writes its state. And, process (0,1) executes after two cycles. In general, if

the distinguished process starts the computation when its clock is equal to 0, then

process (a, b) executes at clockza + 2b.

 

 

 

Figure 6.5: Time slots for processes in a grid. The numbers associated with a

process show the first two slots in which it could execute.

Further, in the above algorithm, the distinguished process can execute again when

its clock equals 5 (cf. Figure 6.5). In this case, the write action of (0,0) does not

collide with simultaneous write actions of other processes. Hence, in general, process

j located at (a,b) can execute and write its state to its neighbors at Vc : e Z 0 :
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slot.j + c * 5, where slot.j(z a + 2b) is the initial slot assignment. The actions of

process j at location (a, b) are as follows:

process j // located at (a,b)

const

slot.j =a + 2b; // by symmetry, slot.j could also be initialized to 20 + b

period=5;

var

v.j, l.j, clockj;

initially

set 12.j according to the initial value of v.j in read/write model;

set I.j according to the initial value of copy.j in read/write model;

clock.j = 0;

begin

(3c : clock.j :slot.j + c =1: period) —-> if(predicate(v.j, l.j)) update v.j;

Vk : k is a neighborj : l.k.j=v.j;

end

Figure 6.6: Transformation for grid topology

Theorem 6.3 For every computation of the transformed program in WAC model

under power-set semantics there is an equivalent computation of the given program

in read/write model.

Proof. Consider the program in the WAC model. Based on the initial values of the

clocks, the distinguished process (process (0,0)) starts the computation. Further, the

initial values of the variables of the program are assigned according to the program

in the read/write model.

Similar to the proof of Theorem 6.1, a write action by process j in the trans-

formed program is equivalent to the following computation of the original program in

read/write model: a write by process j, followed by the read actions by the neighbors

ofj.
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Further, we note that concurrent executions are possible in the program under

WAC model. Since each action of the program in WAC model is guaranteed to

be collision-free, even if multiple processes execute their write actions simultane-

ously, the resulting state change can be obtained by a computation in the read/write

model. Thus, for a computation of the transformed program in the WAC model under

power-set semantics, there is an equivalent computation of the given program in the

read/write model. 1:]

Observation 6.4 There exists a suffix of the computation of the transformed pro-

gram where the number of processes enabled at any instant of time is maximal. El

6.3.2 Transformation for Arbitrary Topology

In this section, we extend the solution in Section 6.3.1 so that programs in

read/write model on arbitrary communication graphs can also be transformed into

programs in WAC model. The main idea behind this extension is graph coloring. For

this extension, let the communication graph in the given program in read/write model

be 02 (V, E). We transform this graph into 6’2 (V, E’) such that E’= {(x, y)|(:1: 76

y) /\ ((111, y) E E V (32: :: (:13, z) E E A (z, y) E E))} (cf. Figure 6.7). In other words,

two distinct vertices x and y are connected in G" if distance between a: and y in G

is at most 2. Let f : V ——> [0. . . K—l] be the color assignments such that (Vj, k : k

is a neighbor of j in G" : f (j) 76 f (k)), where K is any number that is sufficient for

coloring G".

Let f.j denote the color of process j. Now, process j can execute at clock.j = f.j .

Moreover, process j can execute at time slots Vc : c 2 0 : f.j + c * K. When j

executes, it writes its own state and the state of its neighbors in G. Based on the
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Figure 6.7: Transformation using graph coloring. The number associated with

each process denotes the color of the process.

color assignment, it follows that two write actions do not collide. The actions of

process j are as follows:

process j

const

f.j ; // color of the process

K; // colors used to color the transformed graph

var

v.j, l.j, clock.j;

initially

set 1).j according to the initial value of v.j in read/write model;

set l.j according to the initial value of copy.j in read/write model;

clock.j = 0;

begin

(3c : clock.j =f.j + c =1: K) —) if(predicate(v.j,l.j)) update v.j;

Vk : k is a neighbor of j in the original graph :

l .k.j = v.j ;

end

Figure 6.8: Transformation for arbitrary topology

Theorem 6.5 For every computation of the transformed program in WAC model

under power-set semantics there is an equivalent computation of the given program

in read/write model.

Proof. The proof of this transformation is similar to that of Theorem 6.3. C]
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Theorem 6.6 If the maximum degree of G is d, then the period between successive

executions of a process is at most d2 + 1.

Proof. If the maximum degree of G is d then the maximum degree in G" would

be at most d2. In [25], it has been shown that if each subgraph of a graph has a

vertex of degree K—1 or less, then the graph can be colored with K colors. Hence, G"

can be colored with at most K 2d? + 1 colors. Thus, the period between successive

executions of process j is at most d2 + 1. [:1

Remark. The above theorem presents the upper bound on the performance of

the transformation for arbitrary graphs. For sensor networks (e.g., [3,6]), maximum

degree d is usually small. Hence, the period between successive executions of a process

is small. Moreover, d2 + 1 is the upper bound for the period. For example, for a grid

topology, maximum degree, d =4, and period=K =5.

6.3.3 Preserving Stabilization during Transformation

In this section, we discuss the modifications for the transformation algorithms in

Section 6.3.2 to ensure that stabilization is preserved during transformation. (Similar

modification can be achieved for transformation in Section 6.3.1.) Towards this end,

we first discuss how we deal with the case where the clocks are not initialized or

clocks of processes are corrupted. (Note that the rate of increase of the clocks is

still the same for all processes.) Then, we show that with these modifications, if the

given program in read/write model is stabilizing fault-tolerant then the transformed

program is also stabilizing fault-tolerant in WAC model.

To recover from uninitialized clocks, we proceed as follows: Initially, we construct

a spanning tree of processes. Let p.j denote the parent of process j in this spanning

tree. Process j is initialized with a constant c.j which captures the difference between
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the initial slot assignment of j and p.j (i.e., the difference between the clocks of j and

p.j when j and p.j execute for the first time).

If clocks are not synchronized, the action by which p.j writes the state of j may

collide with other write actions in the system. Process j uses the absence of this write

to stop and wait for synchronizing its clock. When j later observes the write action

performed by p.j , it can use 0.j to determine the next slot in which it should execute.

Since the root process continues to execute in the slots assigned to it, eventually,

its children will synchronize with the root. Subsequently, the grandchildren of the

root will synchronize, and so on. Continuing thus, the clocks of all processes will be

synchronized so that the further computation will be collision-free.

In the absence of topology changes, the spanning tree constructed above and the

values of f.j (slot assigned to j based on graph coloring) and c.j (difference between

slots assigned to j and p.j) are constants. Hence, for a fixed t0pology, we assume

that these values are not corrupted; this assumption is similar to the assumption that

process IDs are not corrupted. Under these assumptions, if the program is perturbed

then eventually, the clocks recover to states from where the subsequent computation

is collision-free. Once the clocks are restored, from Theorem 6.5, for the subsequent

computation of the transformed program, there is an equivalent computation of the

given program in read/write model. Also, if the given program is stabilizing fault-

tolerant then every computation of that program reaches legitimate states. Combin-

ing these two results, it follows that every computation of the transformed program

eventually reaches legitimate states. Thus, we have

Theorem 6.7 If the given program in read/write model is stabilizing fault-tolerant

then transformed program (with the modifications discussed above) in WAC model

is also stabilizing fault-tolerant. C]
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6.4 WAC Model to Read/Write Model

In this section, we focus on the transformation of a program that is correct in the

WAC model under power-set semantics into a program in read/write model. Recall

that an action of the program in WAC model allows a process to write its own state

and the state of its neighbors. By contrast, a program in read/write model can either

read the state of one of its neighbors or write its own state. Hence, during this

transformation, we need to split an action in WAC model into multiple actions in

read/write model. Specifically, an action by which j writes its own state and the

state of its neighbors is split so that j writes its own state and then allows each of its

neighbors to read its state.

However, if multiple fragmented WAC actions are executed simultaneously in the

read/write model, their execution may not correspond to the sequential (respectively,

parallel) execution of those actions in the WAC model. For example, consider the

execution of two actions, a.j and a.k, at neighboring processes j and k in the WAC

model. In a fragmented execution of these two actions, the following execution sce-

nario is feasible: j writes its own state as prescribed by action a.j , k writes its own

state as prescribed by a.k, j reads the state of k, and k reads the state of j. However,

such a scenario is not possible in WAC model. Specifically, if a.j and a.k are executed

simultaneously then, due to collision, j (respectively, k) will not be able to write the

state of k (respectively, j). And, in a sequential execution where a.k is executed

after a.j , k will be aware of the new state of j and use that in the execution of a.k.

By contrast, in the above fragmented execution, this property was not true. Thus,

the fragmented execution of two actions in the WAC model may not correspond to

their sequential or parallel execution. Hence, to transform the given program in WAC
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model, we ensure that two neighboring processes do not simultaneously execute their

fragmented WAC actions.

The problem of ensuring that neighboring processes do not execute simultaneously

is a well-known problem in distributed computing. It has been studied in the context

of local mutual exclusion (e.g., [19,20]), dining philosophers (e.g., [18,29]) and drinking

philosophers (e.g., [18, 29]). Since either of these solutions suffices for our purpose,

we simply describe the features of these solutions that are of importance here. Note

that the local mutual exclusion algorithm used in this context must be correct in

read/write model only. And, solutions in [18-20,29] are indeed correct in read/write

model.

Each of the solutions in [18—20, 29] has the following two actions: enterCS and

eritCS. These solutions further guarantee that when a process is in its critical section

(i.e., it has executed enterCS but not exitCS) none of its neighbors is in its critical

section. Using these two actions, next, we demonstrate how one can transform a

program in WAC model into a program in read/write model. (Note that the last

action appears to allow j to read the state of all its neighbors; this action can be

slowly executed so that j reads the counters of its neighbors one at a time.)
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process j

var

v.j , copy.j , counter.j ; // bounding of counter.j is discussed in Section 6.5

initially

set 1).j according to the initial value of v.j in WAC model;

set copy.j according to the initial value of l.j in WAC model;

Vk :: counter.j.k=0;

begin

upon executing enterCS ——+ counter.j.j :2 counter.j.j + I;

execute ‘write part’ of the WAC

atomicity action to update 12.j;

counter.j.k, copy.j.k := counter.k.k,v.k;

execute emitCS;

request for CS again;

counter.j.k < counter.k.k

(Vk : counter.k.j Z counter.j.j) i
t

end

Figure 6.9: WAC model to read/write model

Theorem 6.8 For every computation of the transformed program in read/write

model there is an equivalent computation of the given program in WAC model under

power-set semantics.

Proof. Consider a computation of the transformed program in read/write model. In

the absence of state perturbations, we have, (Vj, k :: counterkj 5 counter.j.j). Now,

when j executes enterCS, it increments counter.j.j . It follows that j cannot execute

eritCS until all neighbors of j copy the new value of v.j . Based on the guarantees

of local mutual exclusion, neighbors of j do not execute until j exits critical section.

Thus, the write action at j followed by read action by neighbors of j is equivalent to

the action in WAC model that writes the state of j and all its neighbors.

Further, in the above transformation, it is guaranteed that two neighbors are

not in the middle of executing a write action. Thus, for the computation of the

transformed program in read/write model, there is an equivalent computation where

the corresponding actions in WAC model are executed sequentially. In other words,
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for every computation of the transformed program in read/write model there is an

equivalent computation of the original program in WAC model under interleaving

semantics. Based on the definition of power-set semantics, for every computation of

the transformed program in read/write model there is an equivalent computation of

the original program in WAC model under power-set semantics. El

6.4.1 Preserving Stabilization during Transformation

In this section, we show that if we use a local mutual exclusion algorithm that

is stabilizing (e.g., [18—20]) then the above transformation is stabilization preserving.

To show this, we first observe that any stabilizing solution for local mutual exclusion

must ensure that eventually some process enters its critical section. Consider the

case where process j is in critical section. If there exists a neighbor, say k, of j

such that counterk.j < counter.j.j then k will copy counter.j.j. Thus, eventually,

j will be able to exit critical section. Based on the above discussion, it follows

that the stabilization prOperty of local mutual exclusion is preserved. Hence, the

program will recover to states from where no two neighboring processes are in their

critical sections. Once every process enters CS sufficiently many times (equal to the

maximum counter value in the initial state), the counter values will be restored, i.e.,

Vj,k : counterk.j g counter.j.j will be true. Once counter values are restored,

based on Theorem 6.8, for the subsequent computation of the transformed program

in read/write model there is an equivalent computation of the given program in WAC

model. Thus, we have

Theorem 6.9 If the given program in WAC model is stabilizing fault-tolerant then

the transformed program in read/write model is also stabilizing fault-tolerant. Cl
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6.5 Discussion

Our transformations from (respectively, to) WAC model to (respectively, from)

read/write model raises several questions. We discuss some of these questions and

their answers, next.

In this chapter, we considered transformations of programs in read/write model to

WAC model, and vice versa. Can similar transformations be done for shared memory

model or message passing model?

Yes. It is possible to transform a program in shared memory model or message

passing model to WAC model, and vice versa. Towards this end, we need to combine

the algorithms presented in this chapter with the transformations from these models

to read/write model. For example, given a program in shared memory model, we

can transform it to obtain a corresponding program in read/write model. Examples

of such transformation algorithms include [18,20]. Given a program that is correct

in shared memory model, these algorithms transform it to obtain a corresponding

program that is correct under the read/write model. Once we obtain a program that

is correct in read/write model, we can use the algorithms in Section 6.2 or 6.3 to

transform it into a program that is correct under the WAC model. Moreover, given a

program in WAC model, we can use the algorithm in Section 6.4 to transform it into

an algorithm that is correct in read/write model. By definition, it is correct under

shared memory model.

Regarding transformation from WAC model to message passing model, we can

first use our algorithm from Section 6.4. Then, we can use the approach in [18] to

transform it to a program in message passing model. Likewise, given a program in
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message passing model, we can first obtain a program in read/write model and then

transform it into a program in WAC model.

How efficient are these transformations?

First, we compute the efficiency of the transformation algorithm from read/write

model to WAC model. For untimed systems, according to Theorem 6.2, at most one

process can execute at a time, if the system is untimed and processes are determin-

istic, cannot detect collisions, and cannot perform redundant writes. Hence, the one

enabled process may take up to 0(N) time before it can execute next, where N is

the number of processes in the system. Thus, in untimed systems, the transformation

from read/write model to WAC model can slow down the algorithm in WAC model.

However, as shown in Section 6.2.1, for this model this delay is inevitable. For timed

systems, a process executes once in K slots where K is the number of colors used

to color the extended communication graph. Thus, in timed systems, the transfor-

mation can slow down the given algorithm by a factor of K that is bounded by d2,

where d is the maximum degree of any node in the graph. Note that this slow down

is reasonable in sensor networks where topology is typically geometric and value of

K is small. For example, in commonly occurring grid topology K =5.

Likewise, in the transformation from WAC model to read/write model, the local

mutual exclusion algorithm prevents two neighboring processes from executing con-

currently. The slow down caused by this is 0(d) where d is the maximum degree in

the given communication graph.

In the transformation shown in Section 6.4, the value of counter is unbounded. Can

it be bounded?

Yes. Although it is preferred to bound the size of variables in stabilizing programs,

the definition of self-stabilization does not preclude unbounded counters. Moreover,
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a simple modification from [30] allows us to bound the counter while preserving

stabilization. To bound the counter using the approach in [30], we maintain the

bound B on counter to be a number greater than N2 + 1 where N is the number

of processes in the system. Now, the counter is incremented modulo B. While the

details of this algorithm and the proof of boundedness is beyond the scope of this

thesis, we describe the modifications needed to bound the counter value.

With this modification, j increments counter.j.j if the counter values of its neigh-

bors are in the (circular) range [counterj.j, counter.j.j +N] If j and k are neighbors

such that the circular difference between counter.j.j and counter.j.k is larger than N

and counter.j.j >counter.j.k then j resets its counter to 0.

Are the transformations discussed in this chapter possible if the processes can detect

collisions?

Yes. The transformations proposed in Section 6.2 for untimed systems and in

Section 6.3 for timed systems are correct even if the processes can detect collisions.

However, the optimality of the transformation for untimed systems (cf. Section 6.2.1)

may not hold. Specifically, in Theorem 6.2, we assume that a process can go from

being disabled to being enabled only if its neighbor writes its state. In an algorithm

where collision detection is possible, a process can also go from being disabled to

being enabled when it detects a collision.

How does the WAC model differ from ‘point-to-point message passing’ with collision

model?

The model considered in this chapter is different from ‘point—to—point message

passing’ with collision model. Notably, if we consider a network with four processes,

1,2,3,4, arranged in a line, then simultaneously, process 1 can send a message to

2 while 3 sends a message to 4. By contrast, in WAC model, if 1 and 3 transmit
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simultaneously then there will be a collision at 2. We have chosen the WAC model

as in sensor networks (e.g., [3, 6]), the only available communication primitive is

broadcast to neighbors.
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CHAPTER 7

Related Work

In this chapter, we focus on the previous work in sensor networks, medium access

control (MAC) protocols for radio and sensor networks, energy-efficiency issues in the

design of MAC protocols, and time synchronization. In Section 7.1, we introduce the

challenges and opportunities that are inherent in sensor networks. Also, we discuss

some of the recent developments in the field of sensor hardware, operating systems and

programming language. Then, in Section 7.2, we discuss the previous work on com-

munication protocols for radio/wireless networks. The protocols discussed here may

not directly apply to sensor networks due to resource constraints. However, in Section

7.3, we discuss MAC protocols for sensor networks that enhances the protocols dis-

cussed in Section7.2 by dealing with the challenges in sensor networks. Further, most

MAC protocols need the sensors to have synchronized time. Time synchronization is

an important problem by itself. Previous work on time synchronization is discussed

in Section 7.4 with emphasis on sensor networks. Finally, since our algorithms are

self-stabilizing, we discuss related work on self-stabilizing protocols in Section 7.5.

7. 1 Sensor Networks

In this section, we discuss the challenges and opportunities in sensor networks [1,2].

Further, we discuss the hardware limitations and operating system design for sensor

networks [3,6].
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7.1.1 Challenges and Opportunities

Challenges, applications, and current technologies in sensor networks.

In [1], Estrin et al introduce the challenges in the design of applications for sen-

sor/pervasive networks, classify the expected types of systems, and discuss the cur-

rent technological developments as well as future research directions. Specifically, the

authors argue that sensor networks pose the following challenges: scale, access, and

environment. By scale, the authors claim that applications usually require a large

number of sensor devices. By access, the authors argue that the sensors are deployed

in places where human access is limited. And, the authors visualize the environment

where the sensors would be typically deployed. Next, the authors classify the appli-

cations based on three parameters: scale, variability, and autonomy. By scale, the

authors mean that the systems can be classified by the amount of activity sensors

perform, or extent to which the sensors are deployed. By variability, they mean that

the systems can be classified based on the topology structure used, task performed,

or mobility model used. And, by autonomy, the authors classify the system based on

modalities or complexity. Finally, the authors provide a summary on recent techno-

logical developments, especially, in sensing and actuation, and localization services.

In this thesis, we show that our algorithms can handle the challenges in sensor

networks. Specifically, our algorithms can be used to assign time slots to all the sen-

sors in one collision-free diffusing computation. Further, time slots can be assigned

without human intervention by sending a signal to the base station to start the dif-

fusion. Finally, our algorithms can work in different environments and moreover, our

algorithms can tolerate errors introduced in sensor location due to vehicle/intruder

movement in the field. Thus, our algorithms deal with the challenges identified in [1].
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Design principles for sensor networks. In [2], Estrin et a1 identify the design

considerations for applications in sensor networks. Specifically, they argue that the

networking model for sensor networks should be data-centric and application-specific,

rather than traditional models like the Internet. Further, they motivate the neces-

sity of localized algorithms for sensor networks, which rely on coordination among

different sensors to execute a certain task. More specifically, since a sensor can com-

municate only with its neighbors up to a certain distance, localized algorithms are

important to achieve a global property/goal. The authors illustrate their claim using

a localized clustering algorithm for electing extremal sensors to report the location

of an intruder/object. Further, the authors introduce directed diffusion, where ab-

stractions for communication patterns that occur mostly in localized algorithms are

provided. A more formal treatment of directed diffusion can be found in [31]. Fi-

nally, the authors provide the following design suggestions for designing localized

algorithms. First, develOp/model simple localized algorithms (e.g., adaptive fidelity

algorithms where the quality is compromised for energy, bandwidth, etc). Then,

characterize the performance of the localized algorithms.

In this thesis, we proposed TDMA algorithms customized for the application re-

quirements. Further, the sensors coordinate among themselves to assign the initial

slots and also, to determine the future TDMA slots. Thus, our algorithm follow some

of the design considerations proposed in [2].

7.1.2 Sensor Hardware, Operating System and Programming

Language

In this section, we introduce the hardware, operating system, and the program-

ming language for sensor networks. In [3,6], the authors introduce the sensor hard-

ware, MICA motes, develOped by the University of California, Berkeley. Also, the
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authors briefly outline the operating system, TinyOS, developed for such devices.

In [13,14], the authors discuss the design and implementation of the programming

language, nesC, used to program these devices. We used MICA motes, TinyOS, and

nesC in our implementation. Now, we briefly outline the features of MICA motes,

TinyOS, and nesC.

MICA Motes. A typical MICA mote includes the following: a 4MHz Atmel

ATMEGA103 processor, 128KB of flash memory to store application and operating

system programs, 4KB of data memory, a single-channel low-power radio, 512KB of

EEPROM secondary memory, and a sensor board with sensors such as photo sensor,

thermostat, microphone, sounder, magnetometer, accelerometer, etc, attached to the

main board on an expansion bus. The power consumption of these devices range from

5uA—5mA.

TinyOS. TinyOS is an event-driven tiny operating system for low-power, re-

source constrained sensor devices. It uses a component-based (or modular) archi-

tecture. Typically, each component consists of commands, events, tasks, and a frame.

Commands are non-blocking requests to low-level component services. Events are

asynchronous and deal with the hardware directly/indirectly. Tasks are light-weight

threads that are atomic (i.e., run-to—completion). Tasks are usually scheduled by a

FIFO scheduler. Frame is the memory/state of a component. Commands, events and

tasks operate in the context of the frame. Frame has a fixed-size which is known at

compile—time.

Components can be classified into three types: hardware abstractions, synthetic

hardware, and high-level software components. Hardware abstraction components
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map the hardware to the component model of TinyOS. Synthetic hardware com-

ponents performs the role of device drivers. And, high-level software components

provide the higher-level functionalities.

A typical TinyOS application is written by wiring the interface of different com-

ponents. Note that this wiring need not be 1:1. At compile-time, all the wiring

information is translated into assembly-level logic.

TinyOS has an additional feature called crossing-layers without buffering. This is

similar to the acknowledgement based protocols, where the upper layer sends more

data when it receives an acknowledgement from the lower layer. Further, in TinyOS,

components such as CSMA, TDMA, time synchronization, power-management, lo-

calization, routing can be added as a middleware service to an application. Hence,

the operating system remains small and is applicable in tiny embedded systems.

nesC. nesC [13], an extension of C, is the language used for programming MICA

motes. Some of the ideas used in nesC are as follows:

0 Component-based design of programs. Components are the basic building

blocks of programs. As discussed earlier, components consists of commands,

events, frame, and tasks.

0 Interface-based specification of component behaviors. Component behaviors

are expressed using interfaces. A component may use an interface (meaning, use

the behaviors/functionalities exposed in the interface), or provide an interface

(meaning, provide the behaviors/functionalities exposed in the interface).

0 Static/compile-time linking of components. Components are statically wired to

form the whole application. This allows the designer to statically analyze the

program.
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In addition to the features listed above, nesC provides the support for event-driven

programming and concurrency. Further, since the components are statically linked, it

allows whole—program analysis, race-detections and resource reduction Optimizations.

The language also provides features like parameterized interfaces, thereby allowing

more instances of the same component in a program. Further, it reflects the design

of TinyOS and hence, is more suited for MICA motes.

7.2 Communication Protocols for Radio/Wireless Networks

Related work that deals with communication issues in radio/wireless includes

[32~34]

Fault-tolerant broadcasting. In [32], Kranakis et al provide a fault-tolerant

broadcasting algorithm in radio networks. The model proposed in [32] assumes that

the upper bound on the number of faulty nodes is known at start. They also assume

that the faults are permanent. The authors do not consider the notion of interference

range for nodes. The authors propose two versions of broadcasting algorithm for

networks of line/grid topology: a non-adaptive version and an adaptive version. In the

non-adaptive version, all transmissions are scheduled in advance while in the adaptive

version, nodes can schedule future transmissions based on the communication history.

The adaptive algorithm has two phases: a pre—processing phase and a broadcasting

phase. In the pre—processing phase, the nodes determine fault status of other nodes

and in the broadcasting phase, the actual transmission takes place. The work reported

in [32] differs from our approach considerably. The assumption about knowledge of

the number of faults is not made in our algorithms. Also, unlike [32], we allow sensors

to fail/recover during computation. In order to reduce the collision-group size, we
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use the diffusion messages and there are no separate slots assigned for determining

faulty nodes.

Broadcasting in mobile/ad hoc networks. Work reported in [33,34] provide

algorithms for deterministic broadcasting. Specifically, in [33], Gasieniec et a1 provide

algorithms for completely connected synchronous broadcast networks. The paper

studies the difference between a globally synchronous (global clock) and a locally

synchronous (local clock with same rate of increase) model with known/unknown

network size. In [34], Chlebus et al provide algorithms for mobile/ad hoc networks.

They provide broadcasting algorithms for a model without collision detection and a

model with collision detection. These two papers assume that the network is fully

connected. These algorithms are not stabilizing fault-tolerant.

MAC protocols for wireless networks. MAC layer protocols for wireless net-

works are discussed in [35]. It introduces the different collision-freedom and collision-

avoidance protocols that are commonly used. Collision-free protocols like FDMA

and TDMA are analyzed and compared. The authors argue that the static collision-

free protocols do not utilize the medium effectively. Specifically, they argue that

FDMA and TDMA waste bandwidth when the medium is lightly loaded. Further,

the authors show that the two schemes have almost similar throughput delay charac—

teristics. Another collision-free protocol, called code division multiple access (CDMA)

is introduced in [36]. However, in CDMA, encoding and decoding of messages in the

link-layer can be expensive.

Collision-avoidance protocols like CSMA and CSMA/CD are also used in wireless

networks. Although such protocols are highly applicable in wired networks, CSMA

and CSMA/CD are still used in wireless context. The main problem with CSMA and

CSMA/CD is the hidden-terminal effect. With the use of request-to—send (RTS) and
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clear-to—send (CTS) signals, CSMA becomes a valuable option in wireless scenario.

But, collision-detection and backoff requires more power as the nodes need to listen to

the medium regularly and determine the correct time to transmit a message. In [35],

the authors give a detailed analysis of the collision-avoidance protocols applicable in

radio/wireless networks.

7.3 MAC Protocols for Sensor Networks

Designing MAC layer protocols is one of the important research area in sensor

networks. The protocol should be efficient in terms of the resources it uses due to

the constraints inherent in sensor networks. Collision-freedom and collision-avoidance

MAC protocols are proposed for sensor networks. Collision-avoidance medium access

control (MAC) protocols like carrier sense multiple access (CSMA) [35,37] try to avoid

collisions by sensing the medium before transmitting a message. Another example

of collision-avoidance protocol is carrier sense multiple access and collision detection

(CSMA/CD). CSMA/CD [35] is difficult to use in the context of sensor networks

as the collisions are often detected at some receivers whereas other receivers and

sender(s) may not detect the collision.

Collision-free medium access control protocols such as frequency division multiple

access (FDMA), code division multiple access (CDMA), and time division multiple

access (TDMA) ensure that collisions do not occur while the sensors communicate.

FDMA [35] ensures collision-freedom by allotting different frequencies for the sen-

sors. FDMA is not applicable in the context of sensor networks since the sensors

(e.g., University of California, Berkeley’s MICA motes [3,6]) are often restricted to

transmit only on one frequency. CDMA [36] requires that the codes used to encode



the message be orthogonal to each other so that the destination can separate differ-

ent messages. Thus, CDMA requires expensive operations for encoding/decoding a

message. Therefore, CDMA is not preferred for sensor networks that lack the special

hardware required for CDMA and that have limited computing power.

Work reported in [37] presents a CSMA based protocol for sensor networks, es-

pecially, for motes [3,6]. Majority of other work on medium access are based on

collision-free MAC protocols, more Specifically, TDMA based protocols. In Section

7.3.1, we discuss a CSMA based MAC protocol for sensor networks and compare it

with our approach. And, in Section 7.3.2, we present collision-free MAC protocols

for sensor networks and compare them with our approach. As noted earlier, energy

efficiency in sensor networks is a major concern in designing any algorithm. In Sec-

tion 7.3.3, we discuss some of the energy efficient MAC protocols from the literature.

Also, we show how our protocol differs from others.

7.3.1 CSMA Based MAC Protocols

In [37], Woo and Culler introduce a new CSMA based MAC protocol for sensor

networks. Specifically, the authors propose an algorithm that does not use RTS/CTS

signals to solve the hidden-terminal problem. Their algorithm is however similar to

the traditional CSMA/CD algorithms found in wired networks, where nodes sense the

medium before transmitting a message. To reduce contention, the standard random

backoff strategy is used.

The authors propose an adaptive transmission control scheme to control the

amount of messages currently transmitted in the network. Further, this scheme helps

in taking care of the hidden terminal problem in a multi—hop scenario (i.e., multi-hop

hidden terminal problem). The transmission control scheme is similar to the linear
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increase and multiplicative decrease approach to control the rate of transmission.

Whenever the medium is not busy (i.e., successful transmission of a message), trans-

mission rate is increased by a linear factor. And, whenever the node senses contention

(i.e., failed transmission of a message), transmission rate is multiplicatively decreased.

Multihop hidden terminal problem is solved using the transmission control scheme

and phase changes. If a node sends a message at time t, it expects that the child

would transmit the message at time t+x+PA CKE'T.TIME, where a: is the processing

time at child, and PACKET.TIME is the propagation time of a message. Thus, the

adaptive transmission control scheme reduces the transmission rate such that a node

does not contend for the medium with its children.

7.3.2 Collision-Free MAC Protocols

In this section, we discuss the related work on collision-free MAC protocols in

sensor networks. Collision-free protocols for sensor networks mainly includes TDMA

based schemes. TDMA protocols can be classified as randomized and deterministic

protocols, based on the way time slots are alloted to different sensors or the startup

algorithm works. Randomized TDMA protocols include [38—40]. And, deterministic

TDMA protocols include [26,41].

TDMA for distributed embedded systems. In [38], Claesson et al have pro-

posed a randomized startup algorithm for TDMA. Whenever a collision occurs during

startup, exponential backoff is used for determining the time to transmit next. In

Chapter 4, we propose a deterministic startup algorithm that guarantees collision-

freedom and stabilization in case of fail-stop failures. Further, the complexity of the

algorithm proposed in [38] is 0(N) where N is the number of system nodes, whereas
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the complexity of our diffusion algorithm is 0(D) where D is the diameter of the net-

work. Moreover, the algorithm in [38] optimizes time and communication overhead

with increased computation overhead, while our diffusion algorithm optimizes all the

three overheads. The disadvantage of our algorithm is that it has a single point of

failure (i.e., initiator of difl'usion). In situations where the initiator fails, we can use

the startup algorithm from [38] to assign TDMA slots.

TDMA and network organization. In [39], Sohrabi and Pottie propose a

network self-organization protocol, where nodes identify the presence of other nodes

and form a multi-hop network. In [40], Heinzelman et a1 propose a hierarchical

clustering algorithm. In both these papers, initially, nodes are in random-access

mode (i.e., nodes use CSMA scheme to communicate) and TDMA slots are assigned

to the nodes during the process of network organization. During network organization,

unlike [40], the protocol proposed in [39] allow nodes to communicate. Further, in [39],

a node periodically spends time in random access mode to identify other nodes in the

network. In [40], nodes use the alloted TDMA schedule only in the steady-state phase

(i.e., after network organization is complete). By contrast, in our TDMA service, we

use a collision-free deterministic startup algorithm to assign time slots to diflerent

sensors.

In [41], Arisha et al propose a TDMA based MAC scheme for sensor networks.

Their approach uses clustering to allot time slots to different sensors. Each cluster

has a gateway node. The gateway node informs each sensor in its cluster about

the time slots in which the sensor should listen and also, the time slots in which

the sensor can transmit messages. This model combines the MAC layer protocols

with the routing protocols. The protocol consists of the following phases: data-

transfer phase, refresh phase, and event-triggered/refresh-based re—routing phase. In
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the data-transfer phase, sensors send messages in their alloted time slots. In the

refresh phase, sensors inform the gateway node about its status in their pre-assigned

time slot. And in the event-triggered/refresh-based re-routing phase, sensors update

their routing/forwarding table. Event-triggered re—routing is done to conserve energy

and the refresh-based re-routing is done whenever the routing information changes,

due to some sensors becoming non-functional. Unlike our approach, this scheme

combines the MAC layer protocol and routing protocol. Further, the sensors are

organized into a multiple-cluster based networks with a leader/gateway node.

7.3.3 Energy Efficient MAC Protocols

As discussed earlier, energy efficient algorithms are desired for sensor networks.

Work reporting energy-efficient MAC layer protocols include [41—43].

Energy-efficiency through periodic updates. The MAC layer protocol proposed

in [41] (cf. Section 7.3.2), achieves energy-efficiency by allowing the sensors to update

their forwarding table periodically. Further, the routing information updates routes

based on the sensors energy-usage. Thus, if a particular sensor has limited energy,

then the protocol can choose a different route where the sensors in the path have

enough energy. Moreover, simulation results in the paper show that the number of

packets lost in the network due to the presence of non-functional sensors approaches

zero, when the buffer size at each sensor is increased. Also, the protocols allow sensors

to go to idle state. However, the sensors should periodically inform the gateway node

about their status. Thus, the protocol differs from the approach presented in Chapter

4, where the sensors need to inform only its neighbors about their state.

Power aware MAC protocol. Another interesting energy efficient MAC layer

protocol is presented in [42] for ad hoc networks. Singh and Raghavendra propose
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a power aware MAC protocol called PAMAS. PAMAS is based on the multiple ac-

cess with collision avoidance (MACA) protocol [44]. This protocol uses a separate

signaling channel that is different from the packet transmission channel. Signaling

channel based protocols are studied in [45,46]. Note that the RTS/CTS signals asso-

ciated with the MACA protocol is transmitted in the signaling channel. Further, this

signaling channel can be used to determine the time for which nodes can power-off.

The protocol has 6 states: idle, where the nodes cannot transmit or receive any pack-

ets, awaitCTS, where a node waits for CTS after transmitting RTS in the signaling

channel, binary exponential backoff (BEB), where the nodes backoff for some period

if CTS is not received, transmit packet, where the nodes transmit the packet after

receiving CTS, await packet, where the nodes wait for the packet after transmitting

CTS, and receive packet, where a node receives packet. Further, when a node is in

receive packet state, a busy-tone is signaled in the signaling channel. The authors

also provide simulation results and mathematical bounds on power-conservation.

PAMAS is not directly applicable in sensor networks. PAMAS requires sepa-

rate radio channel for signaling purposes. Also, it uses lot of resources, especially

for detecting collisions, computing the sleep time, etc. Finally, RTS/CTS signaling

mechanism is not applicable in sensor networks directly. To overcome the difficul-

ties in applying PAMAS to sensor networks, in [43], a new MAC protocol for sensor

networks is designed.

Sensor-MAC (S-MAC) protocol. In [43], Ye et a1 propose a energy effi-

cient sensor-MAC (S-MAC) protocol. The paper identifies the sources of energy

waste: collisions, where the sensors waste energy in transmitting the collided mes-

sages, overhearing, where the sensors listen messages that were not intended for them,

idle listening, where the idle sensors need to listen to the medium in order to receive
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the messages destined from them, and control packet overhead, where energy is spent

in transmitting control messages. S-MAC proposes the following ideas in order to

reduce the energy consumption:

1. periodic listen and sleep (reduces energy spent in idle listening).

2. based on PAMAS, using in-channel signaling to allow some neighboring sensors

to sleep when the sensor is transmitting messages for other sensors.

3. using message-passing model in order to reduce the latency perceived by the

applications and also, the control overhead involved.

The basic model of S-MAC is similar to CSMA protocol with RTS/CTS to avoid

collisions. This approach differs from the protocol presented in Chapter 4. Specif-

ically, our approach uses time-synchronization protocols to assign time slots to dif-

ferent sensors. Further, the time slots assigned can be validated in future (using the

diffusing computation). Also, we show sensors can go to sleep as necessary except

that they need to listen for the diffusion message periodically.

Table 7.1 lists the different approaches used in the design of energy-efficient MAC

protocols. As we can observe from the table, a sensor must send status updates

in order to save energy, if it uses a time-slot based MAC protocol. However, the

advantage of using such an approach is that the sensor can inform its neighbors and

go to sleep state at any time. In non-time slot based MAC protocols, the sensors

are required to listen to the control commands like RTS/CTS in order to go to sleep

state.
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Table 7.1: Comparing different energy—efficient MAC protocols
 

 

MAC protocol Signaling When sensors Status updates

can go to sleep

Arisha et al [41] TDMA In-channel Any time Periodically

update the

gateway node

Singh et al [42] MACA Separate sig- Based on the None

naling channel busy tone in

the signaling

 

 

 

channel

Ye et al [43] CSMA In-Channel When other None

sensors are

using the

channel

Kulkarni et a1 [26] TDMA In-Channel Any time Update the

collision group

size used in

the network

or listen in

diffusion slots      
 

7.4 Time Synchronization

Time synchronization is important in wireless/sensor networks that use TDMA

based MAC protocols. Specifically, time synchronization is necessary to ensure that

all sensors agree upon the time slots they use and that the time slots of neighboring

sensors are sufficiently separated. Also, synchronization is necessary to deal with clock

skew in the sensors. In [38], time synchronization protocol is proposed for assigning

time slots to different nodes in a distributed embedded system. Work related to time

synchronization in sensor networks are reported in [47-49].

TDMA synchronization for distributed embedded systems. As discussed

in Section 7.3.2, in [38], Claesson et al present a startup algorithm for synchronizing

the nodes in the network to use TDMA. The important assumption in this paper

is that each node has unique message length, and hence the propagation time of a
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message is unique among different senders. The synchronization/TDMA protocol

uses this information in assigning time slots to different nodes. The synchronization

protocol works in three modes: normal, resynchronization, and recovery. Initially, all

the nodes are in recovery mode.

0 Recovery mode. In recovery mode, a node (say, r) records the correct/incorrect

reception of a message. If messages from majority of the nodes are received

correctly then the protocol goes to normal mode. Further, node r records its

time slot as TC, = STs+tms, where ST, is the local time when the message

was sent by s, and tms is the propagation time. If node 7‘ sends a message

successfully in its alloted time slot, then the protocol goes to resynchronization

mode.

0 Normal mode. In normal mode, a node (say, r) updates its time slot for

every correctly received message from s as TC,=TC,+tm3. If an incorrect/no

message is received, the time slot TCr is incremented by propagation time of

the expected message. Further, similar to recovery mode operation, it records

the correct/incorrect reception of messages from other nodes. If majority of the

messages are incorrectly received, then the protocol goes into resynchronization

mode.

0 Resynchronization mode. In resynchronization mode, similar to the other

modes of operation, nodes record the correct/incorrect reception of messages.

Here, the protocol operations are similar to the normal mode operation. How-

ever, if the medium is completely silent for one full communication cycle (i.e.,

propagation time of the longest message), then it goes into recovery mode.
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Moreover, the paper also presents proof of correctness of the above protocol and

validates it experimentally. As discussed in Section 7.3.2, it has a number of short-

comings compared to the startup algorithm proposed in Chapter 3.

Design principles for time synchronization service in sensor networks.

In [47], Elson and Romer argue that the synchronization protocols designed for tradi-

tional networks are not applicable in sensor networks. Moreover, the authors suggest

the following design principles for time synchronization service in sensor networks:

energy-efficiency, scalability, robustness, and ad hoc deployment. Further, the paper

argues using global timescale is not feasible in sensor networks. Moreover, the paper

recommends post-facto synchronization instead of synchronizing a priori. Another de—

sign principle suggested is to adapt the protocol for the application in hand. However,

since the application requirements vary over time, tunable protocol/service is desired.

Also, parameterizable or adaptive fidelity algorithm is proposed (as discussed in [2]).

Thus, the system can choose from a set of synchronization algorithms based on the re-

quirements of the application. Additionally, the paper also suggests to use the domain

knowledge available. For example, in [50], time synchronization is achieved by lever-

aging the properties of the communication medium. Specifically, reference-broadcast

based synchronization is achieved using the physical-layer broadcast channel.

Post-facto synchronization. In [48], Elson and Estrin propose the post-facto

synchronization protocol, which rely on a third-party node. The paper identifies

three main sources of error that affect the time synchronization service: receiver

clock skew, variable delays (in detecting the synchronization signal due to nondeter-

minism in hardware and operating system) on the receivers, propagation delay of the

synchronization signal/pulse. In their solution, nodes are normally considered to be

unsynchronized. When a stimulus arrives, nodes record the stimulus time using their
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local clock. Immediately, a third-party node, sends a synchronization pulse. Nodes

receiving this pulse normalize their stimulus time using the time when they received

the synchronization pulse as reference. By using a third-party node, the error factors

that affect the protocol are reduced.

Tree and max algorithm for time synchronization. In [49], Herman proposes

a time synchronization service for tiny sensor devices (e. g., motes [3,6]). This service

maintains a tree structure of motes where the root sends a periodic beacon message

about its time. Each non-root node gets the best-approximation of the root’s time

from the neighbor which is closest to the root.

Table 7.2: Comparing different time-synchronization protocols
 

Protocol Assumptions Assumptions

about messages about third—

party node
 

Claesson et al [38] Based on the unique prOp- Each sensor has None

agation time of messages a unique mes-

 

 

by different senders sage length

Elson and Estrin [48] Normalization of time None Yes. Sends the

based on the synchro— synchronization

nization and stimulus pulse

pulses

Herman [49] Tree-based algorithm: None None

time.j = time.(parent.j).

Recent algorithm:      time.j = maa:(Vk : time.k)
 

Based on our observations with motes, collision-freedom is important in these

system-wide computations. Hence, we designed collision-free diffusion and TDMA

algorithms. Moreover, the TDMA algorithm discussed in Chapter 4 are orthogonal

to the time synchronization approaches proposed in these papers. Specifically, the
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TDMA algorithm can be used for collision-free transmission of the time synchro-

nization messages, thereby enhancing the proposed time synchronization services.

Further, time synchronization service can be used to validate the time slots assigned

by by the TDMA algorithm. Table 7.2 compares the different approaches for time

synchronization.

7.5 Self-Stabilization

As defined in Chapter 1, starting from an arbitrary state, a self-stabilizing system

recovers to states from where the system specification is satisfied [4]. Self—stabilization

was motivated by Lamport in [51]. According to Lamport, self-stabilization is one

of important concept in fault-tolerance. He regards Dijkstra’s seminal work on self-

stabilization [4] as one of the greatest in the field of fault-tolerance.

In this section, we discuss self-stabilization in the context of sensor networks.

Specifically, in Section 7.5.1, we discuss self-stabilizing algorithms and, in Section

7.5.2, we discuss stabilization preserving transformation algorithms.

7.5.1 Self-Stabilizing Algorithms

Self-stabilization was formally introduced by Dijkstra in [4]. In this paper, Dijkstra

presents three self-stabilizing algorithms for ensuring that the system is in a legitimate

state. The system recovers to legitimate states in spite of initial state or arbitrary state

corruptions. Note that the legitimate states depend on the problem specification.

Many self-stabilizing algorithms for distributed systems are proposed in the liter-

ature, especially for clock synchronization and communication protocols.

Clock synchronization. Some of the self-stabilizing solutions for clock synchroniza-

tion can be found in [52—55]. The main difference among the algorithms proposed in

these papers and the algorithms discussed in Section 7.4 is that underlying model is
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different. In [56], Dolev presents a self-stabilizing clock synchronizing protocol for a

general communication graph. Further, the author discusses impossibility results for

general graphs. Specifically, the paper argues that in the presence of even a single

faulty Byzantine process, it is impossible to design a digital clock synchronization

protocol.

Communication protocols. Self—stabilization is important in communication pro-

tocols as transient faults are more common in computer networks. Further, with

the advent of wireless communication, self-stabilization plays an important role in

communication protocols. Some of the previous work on self-stabilizing solutions for

communication protocols are reported in [57—59]. Most of these papers consider the

classical problems on computer networks, such as, sequencing, routing, etc.

Self-Stabilizing Algorithms for Sensor Networks

In [60], Arora motivated the design of self-stabilizing algorithms in sensor net-

works. In his talk, he discussed the model of sensor networks and its larger scale

deployment requirements. Further, he motivated the need for self-stabilization, since

the sensor networks pose new challenges by introducing new classes of faults, for ex-

ample, noisy data, link asymmetry, and regional failures. Furthermore, he discussed

the progress made in design of algorithms for sensor networks. Specifically, he dis—

cussed the applications, the pursuer-evader problem [61] and the Line in the Sand

(LITeS) project [12], where sensor networks are extensively helpful.

Pursuer-evader problem. A pursuer-evader problem is the problem of tracking the

evaders with help of sensor networks. Sensors (typically, motes) help the pursuers

track the evaders by maintaining a tracking tree which is always rooted at the evader.

In this paper, a self-stabilizing solution for tracking the evader is provided, where the

evader knows all the moves of the pursuer (i.e., the evaders are omniscient) and the
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pursuer relies on the sensor network to provide the tracking information. Further,

the paper provides information on how fast the evaders are tracked.

Line in the sand (LITeS). LITeS is a technology demonstration project for the

DARPA’s Networked Embedded Software Technology (NEST) program. In this

project, sensors (motes) help in identification and classification of intruders (typi-

cally, a person, a soldier carrying a pistol/gun, a car, or a heavy vehicle) along a

thick line. Sensors are deployed around this line in a rectangular grid. Magnetometer

and micro-powered impulse radar (MIR) are used in this application. Whenever an

intruder comes closer to this grid, the sensors send tracking messages (sensors val-

ues and the class of the intruder) to the repeater (at the corners of the grid). The

repeater forwards the messages to the base station which does high level processing

of the messages. The base station provides a visualization facility which displays the

sensor grid and the intruders activity.

In both these applications, collision-free communication is very important. As

discussed earlier, collisions are very frequent in sensor networks. Further, applications

cannot rely on layers above MAC layer to provide transmission control, due to the

resource constraints inherent in the sensors. Thus, a collision-free MAC protocol is

necessary. In [26] and in Chapter 4, a new self-stabilizing TDMA protocol is proposed.

Furthermore, the delay in delivering a message using TDMA is within the limits of

the application requirements (cf. Chapter 5).

7.5.2 Stabilization Preserving Model Conversions

The existence of model conversion algorithms allows one to write programs in

one model and later, transform it to another, typically, restrictive model. Further, it

is preferred that if the original program is self-stabilizing, the transformed program
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be self-stabilizing. In other words, transformation algorithms should be stabiliza-

tion preserving. In [5], Dolev discusses some of the traditional model conversion

algorithms, where programs written in central daemon are converted to distributed

daemon, programs in shared memory model are converted to message-passing model,

etc.

Atomicity refinements. In [18], Nesterenko and Arora propose a stabilization

preserving transformations of programs written in an abstract model (i.e., shared

memory model) to a concrete model (i.e., read/write model). Their solution is based

on the stabilizing dining philosophers problem [29]. The main idea is to split the

high atomicity action (i.e., read action of the program in shared memory model)

into a sequence of low atomicity actions (i.e., sequence of individual read actions

of the program in the read/write model). However, since the actions of different

processes can interleave in the low atomicity program, a local mutual exclusion is

necessary to ensure neighboring processes are not in the critical section (i.e., reading

the state of one of its neighbors) simultaneously. Note that, similar strategy is used

in our transformation algorithm, where a program in WAC model is transformed to a

program in read/write model (cf. Chapter 6). Moreover, in [18], the authors provide

extensions to their refinement algorithm, where they further refine the program in

read/write model to message-passing model. Also, they show how their refinement

algorithms can be extended to solve stabilization preserving semantics refinement.

As mentioned in Chapter 6, model conversions algorithms are also reported in

[16,17,19—21]. The solutions are based on local mutual exclusion. In [19, 20], self-

stabilizing local mutual exclusion algorithms are proposed. In [16,17], the authors

present algorithms that transform programs in serial model to programs in distributed
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computing environments. With the help of a linear alternator, the concurrent actions

of the transformed program are synchronized.
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CHAPTER 8

Conclusion and Future Work

In this thesis, we presented stabilizing algorithms for collision-free communication

using collision-free diffusion and TDMA. We presented four versions of our collision-

free diffusion algorithm based on the ability of sensors to communicate with each other

and their ability to interfere with each other. While the solutions were designed for

a grid network, we showed how we can modify them to deal with failed sensors as

well as with arbitrary topologies. With these modifications, our solutions deal with

commonly occurring difficulties, e.g., failed sensors, sleeping sensors, unidirectional

links, and unreliable links, in sensor networks.

The algorithms permit sensors to save power by turning off the radio completely

as long as the remaining sensors remain connected. These sleeping sensors can pe-

riodically wake up, wait for one diffusion message from one of its neighbors and

return to sleeping state. This will allow the sensors to save power as well as keep

the clock synchronized with their neighbors. Moreover, the algorithms are stabilizing

fault-tolerant. Thus, even if all sensors are deactivated for a long time causing ar-

bitrary clock drift, our algorithm ensures that starting from such an arbitrary state,

eventually the diffusion will complete successfully and TDMA will be restored.

Mote-connectivity protocol. One of the important issues in our algorithms is

to determine the communication and interference range of a sensor. There are sev-

eral ways to achieve this: For example, we can begin with the third version of our

algorithm (cf. Section 3.3) where the communication range is 1 and the interference
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range is greater than 1. Initially, we overestimate the interference range by con-

sidering the manufacturer specification about the ability of sensors to communicate

with each other. Subsequently, we can use the biconnectivity experiments by Choi et

al [62] to determine appropriate communication range and appropriate interference

range. Given any two sensors, j and k, these results allow these sensors to determine

the probability that j can communicate with k and the probability that k can com-

municate with j. Using these results, we can update the communication range and

the interference range: j is in the communication range of k iff min(probability with

which j can communicate with k, probability with which k can communicate with j)

exceeds a certain threshold. And, j is in the interference range of k iff max(probability

with which j can communicate with k, probability with which k can communicate

with j) is less than a certain threshold. Using the approach in Chapter 4 for dealing

with failed/sleeping sensors , we can communicate the communication range and in-

terference range of all sensors to the initiator of the diffusion. The initiator can then

change the communication range and interference range appropriately.

The initiator of a diffusion can handoff its responsibility to other sensors as the

diffusion can be initiated by any sensor as long as only one sensor initiates it. Thus,

the current initiator can designate another sensor as subsequent initiator if the current

initiator has low battery or if the initiating responsibility is to be shared by multiple

sensors.

Communication patterns. We considered three types of communication pat-

terns, namely, broadcast, convergecast and local gossip that occur frequently in sensor

networks. We showed how the TDMA service is optimized for each of the communi-

cation patterns. Thus, based on the types of communication pattern encountered in

a given application, it is possible to optimize the TDMA service.
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As discussed in Chapter 5, we recommend that if the application requirements

are unknown, then the TDMA service for the local gossip be used. Towards this end,

we observe that the period used for local gossip is twice that for the case of broad-

cast/convergecast. Hence, it is possible that initiator(s) of broadcast/convergecast

suffer extra delay when the local gossip solution is used. However, once the initiator

sends its message, subsequent relaying occurs quickly. This is due to the fact that the

solution for local gossip also ensures that the communication patterns such as broad-

cast and convergecast incur small delays at intermediate sensors. Thus, the solution

for local gossip provides substantial benefit to broadcast and convergecast. In fact,

he TDMA solution optimized for local gossip also enables a sensor to send data in

any given direction in such a way that the delay incurred by the data at intermediate

sensors is small.

Implicit acknowledgements. We can combine the TDMA algorithm with previ-

ous work on implicit acknowledgments [12]. We expect that for known communication

patterns such as broadcast, convergecast and local gossip, combining TDMA with im-

plicit acknowledgments will be especially useful. In these communication patterns,

when sensor j transmits a message to k, k is expected to retransmit it to its successor

(unless k is the last sensor to receive that communication). Since message sent by k is

broadcast to all its neighbors, j can also hear that message. Thus, the retransmission

by k acts as an implicit acknowledgment for j. With TDMA, j can wait until the

TDMA slot assigned to k; if k does not transmit in that slot, j can conclude that k

did not receive its message. Thus, j can reduce the power spent in waiting for the

implicit acknowledgment by listening to the radio only in the TDMA slot for k.
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Model conversions for sensor networks. Further, as an application to the

collision-free diffusion and TDMA algorithms, we considered a novel model of com-

putation, write all with collision (WAC), and presented stabilization preserving trans-

formations to (respectively, from) other distributed computation models. Specifically,

we compared the WAC model of computation with read/write model (as well as shared

memory model and message passing model) considered in the literature. We showed

that it is possible to transform a program in read/write atomicity into a program in

WAC atomicity, and vice versa. However, while transforming a program in read/write

model into a program in WAC model, if the transformed program is deterministic and

cannot use time then the transformed program is considerably slow; at most one pro-

cess can execute at a time. We showed that for a deterministic, untimed algorithm,

where processes cannot detect collisions and cannot perform redundant writes, this

transformation is Optimal. We identified transformations where concurrent execu-

tions are possible if the processes are allowed to perform redundant writes. Also, we

showed that, in a timed model, it is possible to allow processes to execute concur-

rently. Thus, we find that if the processes do not have the ability to read then the

ability to determine time consistently is important.

Our transformation algorithms are designed for the case where collisions are as-

sumed to be undetectable. These transformations can be easily used in contexts

where collisions are detectable. However, the issue of optimality for untimed systems

is open for the case where processes can detect collision.

For timed model, if the topology of processes is fixed, our transformation algo-

rithm preserves the stabilization property of the given program in read/write model.

Further, the transformation of programs in WAC model to read/write model is also

stabilization preserving. This transformation does not assume a fixed t0pology.
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Future work. There are several questions raised by this work: First, an interesting

question is how to determine the initial sensor that is responsible for initiating the

diffusion. In some heterogeneous networks where some sensors are more powerful

and more reliable, these powerful/reliable sensors can be chosen to be the initiators.

Alternatively, during deployment of sensors (e.g., by dropping them from a plane),

we can keep several potential initiators that communicate with each other directly

and use the approach in [33,34] so that one of them is chosen to be the initiator.

Another interesting extension of this work is to combine TDMA service with previous

work on security [63, 64], dynamic composition [65] and wireless reprogramming in

MICA motes [3,6,11] to provide a secure and reliable dynamic composition of TinyOS

components over a radio network.

Work on model conversions for sensor networks also raised several questions.

One of these problems is to develop fault-tolerance preserving transformations from

read/write model to WAC model. Since our algorithms require some offline setup

(e.g., graph coloring), they cannot deal with topology changes. Based on the results

in Chapter 6, we expect that such transformations may not be possible in untimed, de-

terministic systems. However, we expect that such transformations could be obtained

for timed systems. One of the interesting extension to this work is to design prim-

itives that would allow us to identify transformations where concurrent executions

are possible. In this thesis, we identified two such primitives, time and redundant

writes. Another interesting extension of this work is to develop programs in WAC

model that permit concurrent execution for untimed systems using the knowledge

about the speed of processes. Furthermore, another extension is to weaken the as-

sumption about rate of change for clocks in timed systems and allow a clock drift

among processes.
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