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ABSTRACT

PARALLEL NETWORK RAM

EFFECTIVELY UTILIZING GLOBAL CLUSTER MEMORY

FOR LARGE DATA-INTENSIVE PROGRAMS

By

Jonathan James Oleszkiewicz

Large scientific parallel applications demand large amounts of memory space. Cur-

rent parallel computing platforms schedule jobs without fully knowing their memory

requirements. This leads to uneven memory allocation in which some nodes are over-

loaded. This, in turn, leads to disk paging, which is extremely expensive in the context

of scientific parallel computing. To solve this problem, we propose a new peer-to—peer

solution called ”Parallel Network RAM”. This approach avoids the use of disk, better

utilizes available RAM resources, and will allow larger problems to be solved while

reducing the computational, communication and synchronization overhead typically

involved in parallel applications.
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Chapter 1

Introduction

1. 1 Problem Statement

Many scientific computing applications demand a large amount of processing

power, memory space and I/O accesses. Cluster systems with networked server nodes

are becoming more popular for executing high-performance scientific computing ap—

plications for both economic and technical reasons [16]. One standard approach to

reducing the runtime of such applications is to parallelize them into multiple parallel

processes so many cluster nodes can run parts of the application simultaneously. An

advantage of this approach is the CPU and memory resources of the application are

evenly distributed and used. However, this advantage may not serve the best perfor-

mance interests of parallel processes because a balanced workload distribution among

parallel processes may result in unbalanced resource utilization in a cluster. Uniform

use of resources at the parallel process level does not necessarily mean the system

itself is evenly utilized.

We can attempt to adjust memory load by adjusting the number of processes each

parallel process has, but there are trade-offs between memory usage and efficiency. In

order to ensure each node has enough memory space to accommodate processes, we



could partition parallel processes into a large number of processes. This results in less

work and more required synchronization for each process. As a consequence, the CPU

on each node may be underutilized. Parallel speedup is very hard to improve as the

number of processes increases, due to increasing communication and synchronization

overhead. This problem is sometimes referred to as the performance exponential

degradation issue.

To ensure good CPU utilization we must limit the number of processes in a

parallel process. But, as the problem size increases, nodes may run out of available

memory and be forced to use the local disk as a swapping site [3, 4]. Performance will

suffer from frequent page faults since hard disks are orders of magnitude slower than

RAM. Research has shown that disk paging results in unsatisfactory performance on

parallel platforms and should be avoided [3, 4, 26].

We can increase the number of cluster nodes or the amount of RAM at each

node, but doing so may be impossible or very expensive given the cluster setup. In

addition, it is unlikely that the additional nodes will offer any real benefit over the

long-term, since it is likely the users of the cluster will simply increase their usage

of the system to match the new resources available. This will lead us back to the

original problem.

The key problem is memory usage, and this problem has two parts: memory

fragmentation and paging overhead. The aggregate memory capacity of the system

may be enough to satisfy memory demands, but cluster memory is distributed into

small chunks. Usage of these chunks may be uneven and inefficient. On the most

heavily loaded nodes, disk paging is invoked which incurs a high cost.

Network RAM [1, 18] has been proposed for use by sequential jobs in clusters to

even memory load and reduce paging overhead. This technique allows applications to

allocate more memory than is available on the local machine while avoiding paging to

disk by allocating idle memory of other machines over a fast interconnecting network.



This remote RAM is treated as a new layer in the memory hierarchy between RAM

and disk. Resulting page accesses are slower than RAM, but faster than disk [1, 9,

18,23,39]

Existing network RAM techniques should not be directly applied to parallel

jobs for performance gains. One issue is that processes from the same parallel job

synchronize regularly. If each node hosting these processes seeks network RAM in-

dependently, they may be granted an uneven amount of network RAM. With this

uneven allocation, the processes executing on these nodes will run at different speeds.

However, the parallel job as a whole will only run at the speed of the slowest process,

due to synchronization. The nodes with extra network RAM waste it, since their

hosted processes will spend most of their time waiting for other processes. Therefore,

coordination is required to grant overloaded nodes equal portions of memory to allow

hosted processes to run at equal speeds.

Another issue is network congestion. If parallel processes individually seek out

network RAM with no coordination among themselves, a potentially large amount of

unnecessary network traffic will result. This may induce congestion on the cluster.

Parallel applications require high performance networks to run efficiently. Congestion

could seriously impact the performance of jobs on the system.

We propose a new peer-to-peer solution, called Parallel Network RAM (PNR), so

overloaded cluster nodes can utilize idle remote memory. In this scheme, each node

may request memory resources from remote nodes and provide memory resources

for others. Requests are indirect: each node contacts a manager (super-peer) node

and requests that it allocate network RAM on its behalf. Managers coordinate the

allocation of network RAM of several nodes and ensure that memory resources are

distributed evenly to the nodes hosting parallel processes belonging to the same par-

allel job. PNR will allow more jobs to execute concurrently without resorting to

disk paging. This will lead to decreased average response times and higher system



throughput.

This thesis makes several contributions.

0 We first identify the unbalanced resource utilization problem in a cluster with

a mixed workload of jobs with different resource requirements. Existing tech-

niques cannot maximize the performance gain of parallel jobs in such an envi—

ronment in terms of both parallel speedup and execution time.

0 We propose a novel and effective solution to this problem called Parallel Net-

work RAM (PNR). PNR makes it possible for parallel jobs in a cluster to utilize

memory resources from available remote nodes. The CPU cycles will be pro-

vided by a small subset of nodes while the global memory space of the cluster

- is open to the memory demands of any parallel job. Since the speed gap be-

tween accessing local memoryand remote memory is shrinking, and the speed

gap between accessing local disk and remote memory continues to enlarge, the

proposed scheme is expected to be beneficial. for large scale scientific computing

applications now and in the future.

0 We build a simulator that models a cluster and several proposed PNR algo-

rithms. Conducting trace-driven simulations, we compare the performance of

six different PNR designs to each other and to a disk paging-only solution. We

then identify which proposed algorithms are superior and under what condi-

tions.

The rest of this thesis is organized as follows. Chapter 1 describes the prob—

lem presented in cluster systems and reviews related work on this issue. Chapter 2

describes Parallel Network RAM, the algorithms used to implement PNR, different

proposed PNR designs and their strengths and weaknesses. Chapter 3 describes the

simulator we have created to test our PNR algorithms and it describes the specific



experiments set up for these tests. Chapter 4 describes the results of the experi-

ments introduced in chapter 3. Chapter 5 discusses the results gathered and draws

conclusions about the various designs.

1 .2 Terminology

The systems described in this thesis include computing clusters and supercom-

puters. We describe individual computers in the clusters and CPUs in the super-

computers with the terms ”PE” (Processing Element) and ”node”. The terms are

equivalent and will be used interchangeably.

The terms ”parallel process” and ”job” are also equivalent and are used to de—

scribe programs that have multiple threads of execution that run on separate nodes.

”Thread” and ”process” denote the individual threads of execution of parallel pro-

cesses.

We define four different Parallel Network RAM designs. We compare these de-

signs to a system that uses only disk paging (no network RAM). For brevity, we will

use acronyms to identify these designs. The following list defines each acronym.

DP - Disk Paging - applies to systems that do not use Parallel Network RAM.

PNR - Parallel Network RAM - a generic label for all Parallel Network RAM designs.

CEN - Centralized PNR — only one manager exists.

CLI - Clients only PNR - a pure peer-to—peer design.

MAN - Local Managers PNR - a design that uses randomly selected local managers.

BBX - Backbone PNR — a design where a certain number of servents (represented

by X) act as ”backbone” managers.



1.3 Background and Related Work

The majority of work in this area has focused on parallel job scheduling. In

this section, we describe various parallel job schedulers and previous solutions to the

problem of overloaded memory on cluster systems.

1.3.1 Parallel Scheduling Algorithms

The primary duty of the scheduler on a cluster system is to ensure high system

throughput and low overall response times of submitted jobs. The most simplistic

scheduling model is the dedicated machine model. In this model, only one job runs

on the system at a time. Each job is scheduled using a priority queue which may be

sorted in a variety of ways, such as first-come first-serve (FCFS), estimated shortest

job first, best fit, or worst fit. Each job runs until completion and may not be

preempted. This model lacks time sharing and space sharing and since most parallel

jobs do not use all of the available nodes in the cluster, this scheme can waste a large

amount of resources.

An approach that makes better use of available resources is the space sharing

model. Space sharing allows more than one job to be scheduled on the cluster at

one time. Each node is devoted to one process, and each job runs until completion

without preemption. The space sharing model is vulnerable to large, long-running

jobs monopolizing the system and a bad scheduling decision is difficult to correct.

The dedicated machine model shares this problem [16].

Gang scheduling combines both space sharing and time sharing to avoid the

problems associated with large jobs. Each job is alloted a time slot and the job may

execute in its time slot. Nodes within each time slot are space shared. When a time

quantum has expired, all jobs in the current slot are preempted and replaced with jobs

in the next slot. The preemption process is called a ”Parallel Context Switch” (PCS)



and involves a certain amount of overhead. There is at most one process running

on each node at any given time, although some schemes relax this constraint [36].

The time slot mechanism ensures no large job may monopolize the system for a long

period of time.

The maximum number of time slots allowed is known as the Multi-Programming

Level (MPL). Setting the MPL to a low number is a convenient way to reduce PCS

overhead and reduce overall memory load on nodes. A system with an MPL value of

one is a simple space sharing system with no time sharing.

The length (in time) of time slots varies. It is intuitive to make each time slice the

same length. Fixed-length time slots range from 1 second [4] to 120 seconds [29]. One

disadvantage of uniform-length time slices is that excessive idleness can be caused by

short jobs [10]. Some research has shown that variable length time quantums may be

desirable to increase efficiency [14, 34] .‘

There are a variety of processor allocation strategies and variations of gang

scheduling. These include first fit, best fit, left—right by size, left-right by slots, load-

based allocation strategies, ”buddy” systems such as distributed hierarchical control,

and migration-based algorithms [10, 41].

One problem with gang scheduling is that the usage of nodes within time slots

may become fragmented as jobs terminate and new jobs take their place. Two tech-

niques can reduce node fragmentation: alternative scheduling and slot unification.

Alternative scheduling discovers time slots that have idle nodes and finds jobs that

run on these same nodes in other time slots. These jobs are allowed to run in both

their original time slot and the partially idle slot. This effectively doubles the amount

of time the selected jobs are allowed to run, increasing system utilization and reducing

average response time.

Slot unification attempts to unify time slots which use disjoint nodes. Typically,

such situations occur after job termination [10]. This technique reduces the total



number of time slots used by the scheduler and increases the speed of the system as

perceived by the parallel processes.

Another available technique is backfilling. If users provide estimated job run

times, the scheduler can identify idle areas in the schedule which can be filled with

smaller, lower priority jobs. The smaller jobs must not interfere with the scheduled

running time of jobs ahead in the queue. If a backfilled job runs for too long, it is

killed. Backfilling has been shown to increase utilization and reduce response time.

Several variations of backfilling have been studied [24, 28, 32, 33, 35, 40].

The MAUI scheduler, a particularly popular and mature scheduler for cluster

systems is a space—sharing, backfilling scheduler [20]. Research work has been done

to implement gang schedulers on both supercomputing platforms [7] and clusters of

workstations [19].

1.3.2 Previous Solutions to the Memory Problem

Previous studies agree that unmodified disk paging results in severely reduced

performance on parallel systems [4, 30]. Generally speaking, previous solutions to

this problem either attempt to avoid disk paging entirely or attempt to reduce its

effect.

Various ways to avoid paging by altering the system scheduler have been sug-

gested. If no memory information about incoming jobs is known, then the simplest

solution is to keep MPL to a minimum [24]. Another solution attempts to guess mem-

ory usage information based on information about the job provided by the user and

information contained in the program executable. This guess is used in scheduling

decisions [3]. Another solution uses speedup information known about jobs ahead

of time to make scheduling decisions [26, 27]. Given this information, the sched-

uler can choose to give more processors to efficient jobs to increase utilization or to

memory—intensive jobs to increase throughput.



User-provided runtime and memory information can be used in scheduling deci-

sions as well. In fact, the use of user estimates of runtimes is the basis of backfilling.

However, it is well known that such information is unreliable, as users will tend to

estimate numbers that will ensure they get a good position in the scheduler queue.

Some backfilling schemes attempt to take advantage of systemic inaccurate runtime

estimations [28].

One method that is aimed at reducing the disk paging penalty is called block

paging. In this scheme, the system groups sets of pages together and acts upon

these groups as units. Groups are defined by the system based on memory reference

behavior of jobs [34].

1.3.3 Network RAM

Network RAM is a technique that reduces paging overhead. Much work has

been done for sequential job scheduling with memory considerations. Regarding net-

work RAM implementations, the Global Memory System (GMS) [9] and the Remote

Memory Pager [23] attempt to reduce page fault overhead by using remote paging

techniques. DoDo [1] is designed to improve system throughput by harvesting idle

memory space in a distributed system. In DoDo, processes running on the local

system have the highest priority for using CPUs and memory on their workstations.

This divides the global memory system into different local regions.

A memory ushering algorithm is used in MOSIX for memory load sharing [2].

This solution is a job—migration—based load sharing approach. Recently, several load

sharing alternatives have been developed. These techniques consider both CPU and

memory resources with known and unknown memory demands [37, 38]. The objective

of the designs is to reduce the number of page faults caused by unbalanced memory

allocations of distributed jobs so that overall performance can be significantly im-

proved.



Chapter 2

Parallel Network RAM

2. 1 Introduction

We propose a novel and effective technique called Parallel Network RAM (PNR)

to better utilize both CPU and memory and minimize communication and synchro-

nization overhead. We demonstrate the basic idea of PNR in Figure 2.1. In this figure,

application 2 runs on nodes P3, P4 and ”P5 but utilizes available memory space in

nodes P2, P6 and P7 where non-memory intensive applications 1 and 3 reside. With

PNR, instead of three nodes being overloaded while four are underloaded, all seven

nodes are fully utilized.

Our objective is to fundamentally improve the efficiency of large-scale scientific

Application 1 Application 2 Application 3

 

 

Figure 2.1: Diagram of Parallel Network RAM. Application 2 is assigned to PEs P3,

P4 and P5 but utilizes available memory space of P2, P6 and P7.

10



computing. Under our proposed solution, CPU and memory resource allocations

are considered separately. CPU utilization requirements can be taken into account

during the scheduling phase, and memory requirements can be handled as needed

during execution. In this way, CPU usage can be optimized to maximize utilization

and minimize communication and synchronization overhead while memory usage can

include both the local memory space from the assigned CPUs and the remote memory

space in other nodes (as needed). With PNR, speedup can be scaled as the available

remote memory increases, and performance can also be scaled as the problem size

increases.

Because CPU usage and memory usage are considered separately, PNR does

not coordinate with or receive information from the assumed centralized scheduler of

the system. This allows PNR to be implemented on a variety of platforms without

changes to their existing scheduling policies.

2.2 Generic Description

In brief, all nodes in the system host PNR servents (see figure 2.2). All servents

act as PNR clients and servers. Some servents may act as managers. Managers act

as proxies for clients to communicate with servers. The purpose of managers is to

coordinate client requests.

2.2.1 Clients

A PNR client attempts to allocate and deallocate network RAM on the behalf

of its hosting node. The node uses allocated network RAM as additional virtual

memory just as it would with disk space. When a process starts execution on a node,

it allocates the amount of memory it will use during its execution. If the node’s client

determines that this allocation will lead to disk usage, the client contacts a manager

11



 

Server

 

Mana er

Servent g

 

Client

   

Figure 2.2: The architecture of a servent. Each servent can act in three roles.

and requests network RAM. Once network RAM is allocated, the client is informed

by the manager what machines are serving the network RAM, and how much was

allocated. The client may then start sending pages to the servers for storage and later

retrieval.

Similarly, when a process stops execution it will deallocate its memory. If the

client detects that network RAM previously allocated is no longer needed, then the

client signals a manager that it may be deallocated. Clients deallocate chunks of

memory first from servers believed to have the highest memory load.

2.2.2 Managers

PNR managers are the centerpiece of most of the proposed PNR algorithms.

They do the majority of allocation and deallocation work and act as proxies between

clients and servers.

Network RAM Request

Managers listen for network RAM requests from clients (including the client

residing on the same node as the manager). Depending on the PNR strategy, the

manager may act immediately on this request or wait for other requests to come in

12



before acting. Most strategies require that all threads within a parallel job must

contact the same manager before the manager is allowed to act on any one of the

threads’ requests. For this to work, it is assumed that the manager can discover the

total number of threads belonging to the parallel job. As each new request comes in,

information on the aggregate memory request is stored in a request table.

Server Request and Response

When all requests are received from relevant clients, the manager attempts to

select a server from an availability list. Multiple selection schemes are possible. Cur-

rently, a randomized worst-fit scheme is used. That is, the server perceived to have

the most RAM available for remote allocation (i.e. the server with the most idle

RAM) is always selected. If servers tie for the highest amount of RAM available, one

server is randomly chosen.

The server contacted may grant, partially grant, or deny the request. It is im-

portant to note that a server that was listed as having RAM available for allocation

may not have the same amount available by the time the request message reaches it.

The server’s response is received by the PNR manager. If too little memory was

allocated, the PNR manager will attempt to contact another server. The process is

repeated until enough network RAM is granted by multiple servers or until no servers

are left to query.

Network RAM Request Response

When either enough network RAM is allocated or when all possible servers are

queried, the manager will calculate the total amount of network RAM granted. Based

on this, the manager will divide network RAM evenly among the requesting clients.

If a client requests less network RAM than it would get in its fair share, exactly as

much as it requests is granted and the remainder is reserved for other clients. If a

13



client requests more network RAM that it would get in its fair share, it gets its share

and only receives more if other clients do not need all of their shares. Each client is

informed of which servers are hosting the granted network RAM.

The even distribution of network RAM is done to ensure that each process in

a parallel job runs at roughly the same speed. If network RAM were granted hap-

hazardly, each process would run at different relative speeds. The job as a whole

would run at the speed of the slowest process because of synchronization and the fast

processes will be held back.

Network RAM Deallocation Notification

It is assumed that deallocation notifications are only sent at job termination time.

The manager will listen for deallocation notifications from clients. The deallocation

amounts indicated in the messages may have nothing to do with how much was previ-

ously allocated to those clients: In some cases, no network RAM may be deallocated

because it is still needed by the client. ‘In most strategies, the manager will wait for

each client associated with a parallel job to send a deallocation notification.

Server Notification and Response

When all deallocation notifications are received by the manager, the manager

determines how much network RAM needs to be deallocated and on which servers.

Each server is then notified that it may deallocate the specified amount of RAM. The

server will respond to this message with an acknowledgment.

Broadcasting Availability Information

During each message-passing interaction, clients and servers piggyback current

memory load information onto messages sent to managers. The manager receives this

information in addition to the relevant payload. It uses this up-to-date memory load

14



information to update its own network RAM availability table. It uses this table for

server selection.

Some PNR strategies may prefer to share this information by broadcasting it

to all servents. Other strategies may only broadcast to selected servents. Currently,

broadcasts are only executed after network RAM has been allocated or deallocated.

It should be noted that memory load information may already be out-of-date

before it is even broadcast. There is no way around this problem, since it is possible

for memory loads to change as messages are being passed on the network. We believe

this broadcasting solution provides an economical way to keep availability information

reasonably up—to—date.

2.2.3 Servers

Servers receive requests from managers for network RAM. If the server has more

unallocated RAM than a certain threshold, it will grant the network RAM request

and allocate memory to the manager up to. that threshold. Currently, the unallocated

memory threshold is set to a low value - a tenth of a megabyte. This value can be

adjusted and may be useful for future work.

After the memory is allocated, servers receive requests to read and write the

allocated network RAM directly from clients. Servers grant all valid deallocation

attempts.

2.3 Designs

We propose four different PNR designs. Each design has a slightly different

architecture and has different amounts of communication overhead associated with

it. This section describes these designs.
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Figure 2.3: Client-only design. Figure 2.4: Centralized design.

   

  

2.3.1 Client

In this strategy (CLI), each client uses its servent’s manager to send allocation

requests (see figure 2.3). The local manager does not wait for messages from other

clients - it acts immediately upon the client’s request. The manager attempts to

[allocate as much network RAM as possible for its client. When the client receives

network RAM, it begins execution immediately. It does not wait for the other threads

in the parallel job. The local manager does not share memory load information with

other servents.

This strategy allows clients to allocate network RAM quickly and eliminates all

coordination overhead. It is scalable, since each client is responsible only for itself. It

is also simple to implement, since there is no need for a manager at all.

However, this solution has major drawbacks. First, memory load information is

not shared. Each client must discover memory load information for itself and this

may lead to a large amount of ineffective network RAM allocation requests.

Second, and more serious, the clients do not coordinate memory allocation with

each other. Some clients may receive large amounts of network RAM if they get their

messages to the servers first while other clients get very little network RAM. This

will not improve the performance of parallel jobs as a whole, since each job will only
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execute at the speed of its slowest thread.

In fact, this scheme may worsen overall performance, since much of the network

RAM allocated is wasted. Thus, no benefit is gained from network RAM and higher

memory loads on the servers may induce disk paging, the very problem we are trying

to avoid!

2.3.2 Centralized

In this strategy (CEN), only one manager exists, and it receives all client requests

(see figure 2.4). All servents know the identity of this manager. All clients will contact

this manager and it will coordinate network RAM allocation. The server uses memory

load information sent in by clients and servers to make allocation decisions. Since only

one active manager exists, the centralized manager does not broadcast any memory

load information it receives.

I” This‘scheme has the advantage of one agent having all of the information and

making all of the decisions. No time or network bandwidth is wasted in sending

coordination messages to other managers. The disadvantage of this strategy is that

it is not scalable. As the system size grows, the network connections leading to the

node hosting the manager will become a bottleneck and limit the performance of the

system. In the real world, the computational and memory overhead of hosting this

central manager would also become major factors. However, in our simulator, these

are not taken into account.

2.3.3 Local Managers

In this strategy (MAN), each client contacts a ”local” manager (see figure 2.5).

Specifically, whenever a job starts or stops, one of the servents running on a node

associated with that job will volunteer to act as the manager in addition to acting as

a client. Each servent involved must agree on which servent will act as the manager.
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Figure 2.5: Local manager design. Figure 2.6: Backbone design.

 

  

  

  

    

  

   

All clients from the involved servents will contact this manager. The manager will

take their requests, allocate network RAM (if possible), and divide the received net-

work RAM evenly among the requesting clients. At the end of each allocation and

deallocation, the manager will broadcast memory load information to each servent in

the system. This is necessary since each servent on the system can potentially act as

a manager. '

Since no single node is loaded with all requests, this solution is scalable. It makes

good use of allocated resources via the coordination of client requests. Broadcasting

the memory load information should keep the tables of the servents relatively up—to-

date.

However, the major drawback of this approach is the broadcasting step. Sending

a message to each servent on the system can introduce congestion into the system,

especially if no real broadcasting facility exists and broadcasting must be implemented

via multiple point—to-point messages. The larger the system, the bigger this issue will

become.

Also, since there is no central authority on memory allocation information, ser-

vents may be more likely to act on outdated information. Like the centralized strategy,

waiting time is incurred in the coordination step by waiting for all clients to send in
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their requests.

2.3.4 Backbone

This strategy is a hybrid of the centralized and local manager strategies. Here, a

variable—sized subset of servents will act as managers (see figure 2.6). This subset of

servents will be well known and all clients will contact these servents for their network

RAM requests. Clients will randomly select a manager for service. As in the MAN

design, all clients associated with a job must agree on who to contact.

The backbone of managers will coordinate among themselves by broadcasting

memory load information only to managers. If the backbone of managers consists of

only one member, then this strategy is equivalent to the centralized strategy. If the

backbone of managers consists of all servents, then this strategy is closely equivalent

to the local managers strategy.

This scheme can potentially be a ”best of both worlds” solution, compared to

the centralized and local managers solutions. It is more scalable than the centralized

solution, since load is shared among many servents, and it uses fewer messages for

coordination than the local managers solution, since broadcast messages only need to

be sent to a subset of nodes.

The backbone strategy also has the advantage of being customizable to the cluster

setup. If the network is small, then a small backbone (perhaps a backbone of one)

may be all that is required. As the network gets larger, then the number of servents

in the backbone can be increased appropriately to manage scalability.

19



Chapter 3

Methodology

3. 1 Simulator

To test our proposed PNR designs, we created a simulator that models a parallel

platform, parallel jobs, and our PNR algorithms [25]. This simulator is written in

C++ and compiles under UNIX systems. We used a modified version of Sim++ as

our main simulation library. Sim++ is the C++ version of Simpack, a simulation

library created by Paul Fishwick [6, 17]. Sim++ is open-source, and we modified the

implementation to suit our needs and maximize performance.

This chapter describes the models we implemented in our simulator and the

experiments we ran on the simulator.

3. 1. 1 Workload Model

Many workload traces and synthetic workload generators exist for use by simula-

tors. However, no standard memory usage benchmarks currently exist [5]. We decided

to use a large trace with memory allocation information that has been assembled and

discussed by Feitelson [11].

The trace has been gathered from the CM-5 parallel platform at the Los Alamos
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National Lab. It contains information about 201,387 jobs run through the majority

of 1996. We will use a subset of jobs from this well-studied trace. Since the workload

profile at a given site tends to be fairly stable over time [22], using a subset of jobs

should be indicative of the general load on the system. However, using a workload

trace may be biased toward that collected site’s policies and not representative of all

workloads [5, 15, 22]. For example, in our trace no process attempts to allocate more

memory than is physically available on a node and all jobs allocate PES in powers

of two [13]. Obviously, not every cluster installation will have a workload with these

characteristics.

3. 1.2 System Models

To complement the CM-5 workload trace, we model a system architecture similar

to the CM-5. Each node in thesimulated system runs at 33 Mhz and has 32 MB

of local memory. The original CM-5 did not support paging [13] and we add this

capability to our simulated system. Each node has a disk of infinite capacity that

runs at 7200 RPM with a seek time of 9 ms and a transfer rate of 50 MBps. The

interconnecting network is assumed to be a simple Ethernet 100 Mbps star topology.

Each link has a latency of 50 nanoseconds and the central switch has a processing

delay of 80 microseconds. The original CM-5 had 32 processors dedicated solely to

system tasks, so it is assumed that the operating system of the CM-5 imposes no

CPU or memory load on the nodes.

Network Models

The simulator provides simulated network links. A link connects either one

computer to another computer (or set of computers) or a computer to a switch. Only

one message may be transmitted on a link at a time. A link has a fixed latency

time and a transmission time based on the bandwidth and the size of the message
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transmitted. In our experiments, we set the latency of each link to be that of the

speed of light through 10 meters of copper wire (50 nanoseconds). No collisions occur

on the simulated links. Incoming messages are queued if the link is currently in use.

A simulated network switch stores communications and forwards them to the

appropriate link. Switches may only forward one message at a time and all other

messages are queued. Switches are assumed to have a single infinite length queue

sorted in FIFO order. Switches have a fixed length processing delay that can be set

as a parameter. The base value of this delay is set to 80 microseconds.

Point—to-point messages traverse links and switches only. Routes including nodes

as intermediate points are not used. Some PNR methods use broadcasts to send

information to servents. In our simulator, broadcasts are simulated using N point-to-

point messages from the broadcasting node to each other node.

3.1.3 Job Behavior Models

Each job is composed of multiple processes. It is assumed that each process allo—

cates a static amount of memory at start time. Each process accesses memory at its

node independently. Previous studies have shown that parallel scientific applications

generate memory references every three to five CPU cycles and have a cache hit ratio

that ranges from approximately 50% to 65% [8, 31]. We assume that our processes

access memory every four CPU cycles and have a cache hit ratio of 50%.

Synchronization Model

All processes in a job synchronize with each other at regular intervals. The

synchronization pattern is a simple master/worker pattern. One process is chosen

as the ”master” process and all other threads in the job are ”workers”. After a

certain amount of CPU time, each worker sends a message to the master. After the

master receives all messages, the workers are allowed to proceed with execution. In
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our experiments, we set the time interval between synchronizations to be one CPU

second (once every 32 million cycles). This is not a heavy synchronization load.

Future experiments should use more complex and heavier loads.

Page Fault Detection Algorithm

Originally, we used a memory access model similar to that presented in [3] to

produce a low-locality memory access pattern. However, its usage became a bottle-

neck in our simulator. We replaced its use with a new model based on an exponential

function.

Each thread has an average memory access rate. The page fault detection algo-

rithm determines how much time will elapse between the current time and the time

when the next page fault will occur. For example, if no pages of the currently running

thread are loaded into memory, then the first memory access will be a page fault and

the time until the next page fault will be the same as the average memory access rate.

If all pages of the thread are loaded into memory, then the amount of time until the

next page fault will be infinite.

If some, but not all, pages are loaded into memory, there should be some time

between page faults that is greater than the time between memory accesses, since

some references will be to pages already loaded. In fact, this should happen often

due to locality of memory references. We construct a model to mimic this behavior.

To start, we define the time until the next page fault to be T. We then define

the average memory access rate to be R. If we assume no pages are ever loaded into

memory, then the next page fault will occur in exactly this amount of time.

T = R

The operating system will load a page into memory when a page fault occurs. It

is very likely that subsequent memory accesses will reference the same page because

memory accesses, in general, follow locality. If the program accessed memory linearly,
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then the memory references will traverse the entire loaded page before encountering

a new, unloaded page. We assume this is the case and multiply the memory access

rate by the page size P. In the case of our simulated system, P has the value 4096.

T = R x P

No thread will ever access memory perfectly linearly and it is possible that the

thread will return to pages already loaded into memory. The more data that is loaded

into memory, the more likely it is that this situation will occur. We define the data

brought in from page faults as D. D starts at a zero value and increases by the size

of a page at each page fault event. There must be a limit on the amount of memory

paged in by a single thread, and that limit is L. L is defined as the minimum of the

total amount of memory overallocated on the node and the thread data size. If, for

instance, the amount of memory overallocated on the current PE is 32 MB, and the

current thread size. is 16 MB, L is 16.

L = min(N0deOverallocati0n, ThreadSize)

We can calculate the amount of overallocated data 0 of the thread not currently

in RAM by subtracting D from L.

0 = L — D

From this amount, we can calculate the percentage of overallocated data not

currently in RAM. We call this value U.

U = 0/L

We can then apply U to the calculation of T. Dividing our previous equation

by U will cause the average time until the next page fault to go up as more data is

loaded into RAM. Note that when U is 0%, T will be defined as infinite.

T = (R x P) /U

Finally, the resulting T is given to an exponential distribution as an average. The

distribution will randomize the time between accesses while still following a general

trend.
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T = ecrpntl((R x P)/U)

One problem with this model is that it does not handle processes that are larger

than physical RAM correctly. Specifically, this model will have the processes load

a only finite amount of data into RAM. This is not correct for very large processes

where, in order to page parts of a program in, other parts will have to be paged out.

In this case, it is possible that the process will thrash between localities forever.

We avoid this problem using the following method. When all of the process’ data

(as determined by the model) is loaded into memory (U = 0%), the simulator will

reset the amount of memory unloaded using a triangle distribution. This triangle dis-

tribution is given the parameters A = P, B = P, and C’ = (RAMSize—ThreadSize).

This makes the amount unloaded likely to be small - generating a low level of page

faults for future execution. This model mimics locality changes in the program and

will produce the desired behavior of continued page fault activity for very large pro-

CCSSBS.

Network RAM Access Model

The paging model is used as the foundation of the network RAM access model.

When a page fault occurs, the simulator checks what percentage of virtual memory of

the node is stored as network RAM and what percentage is stored on disk. A random

number is chosen to decide if network RAM or disk has just been referenced.

If the disk is referenced, then the activity is no different than normal paging.

If network RAM is used, a round-trip message occurs between the host and the

server node storing its pages. It is assumed that the page is read from remote RAM

instantaneously and the only time penalty is that caused by communication overhead.
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3. 1.4 Scheduler Models

It is assumed there is one centralized scheduler for the system. In our simulations

we experiment with two schedulers: a space sharing scheduler and a gang scheduler.

For both schedulers, we use FCFS as our queuing discipline since it has been shown

to be a simple yet efficient ordering which guarantees fairness [24]. Most simple node

packing schemes lead to identical performance, so we use best-fit packing to follow the

example of [10]. It is assumed that the schedulers have no knowledge of the memory

requirements of jobs. Neither scheduler takes these requirements into account when

scheduling decisions are made.

Each time slice in the gang scheduler runs for a 60 second quantum as suggested

by [29]. The time required to perform a PCS is fixed at 4 ms [4]. The maximum

number of time slices (MPL) is set to two. This number is conservative and limits

paging activity [24]. Alternative scheduling and slot unification are provided.

3. 1.5 Metrics

There are no universally valid and accepted metrics. In fact, different metrics

can give contradictory results [12, 15, 21]. However, most installations use a few ”de

facto” standard metrics such as response time and utilization [5]. In this section we

list and justify the metrics we use in our experiments.

The first metric is average response time, or total wallclock time from submit to

finish. This metric is used very often and directly reflects the goal we are attempting

to achieve - improved parallel process performance. One disadvantage of this metric

is that it can overemphasize large jobs. In parallel workloads, small jobs account for

the majority of jobs. [10, 12, 15]

To directly compare DP to the various PNR designs, we create another metric:

”optimization ratio”. This metric is based on average response time and represents

the improvement of a PNR design over DP.
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Optimizati0nRatz'0(PNRDesign) =W x 100%

We also calculate the average and standard deviation of node memory allocation

and disk allocation by sampling the memory allocation information of each node every

50,000 simulated time seconds.

Many other possibly useful metrics, such as utilization, throughput, slowdown,

and bounded slowdown are not reported here. We have briefly examined these metrics

and trends in response times appear to match well with trends in these metrics.

However, additional comparisons with these metrics may yield interesting data and

could be the focus of future work.

3.2 Experimental Setup

To determine the effectiveness of PNR in comparison to DP, we define several

experiments. The basic set of experiments is defined in table 3.1. These experiments

reflect our main points of interest:

0 Performance under varying memory loads.

0 Performance under varying network speeds.

0 Performance under different network topologies.

Performance under different scheduling strategies.

The basic experiment table becomes multidimensional as we apply it to seven

different paging methods, workloads of 4,000 and 5,000 jobs, and to 64 and 128 node

systems. The total number of experiments performed for this thesis based on table

3.1 is 560. Some additional experiments are performed.
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RAM Network Topology Space Sharing
 

150% 10 Bus 50%

135% 100 Star 75%

125% 1,000 Connected 100%

115% 10,000

100% 100,000

85%

75%

65%

50%      
 

Table 3.1: Table of Experiments.

3.2.1 Experiment Table Detail

RAM

To test each scheme under varying memory loads we vary the amount of RAM

available at each node while holding memory demands of jobs constant. The parame-

ter given signifies the relative amount of RAM present at each node in the experiment.

For instance, for the 150% experiment, we adjust the default 32 MB of RAM to 48

MB (or 150% of the original value).

Network

To test each scheme under varying network performance, we alter link bandwidth

and switch processing delay. The base value of the network performance is 100 Mbps

with a 80 microsecond switch processing delay. The parameter value 1000 signifies

performance 10 times better than the base value - with link bandwidth at 1000 Mbps

and switch processing delay at 8 microseconds. 10,000 and 100,000 values follow the

same pattern. Parameter value 10 has link bandwidth of 10 Mbps but does not alter

the switch processing delay.
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Topology

To test each scheme under different topologies, we define three topologies:

0 Star - N links and 1 switch

0 Bus - 1 link

0 Connected - N(N — 1) links - a fully connected system with links for both

directions.

The star is the base topology. Note that N is the total number of nodes in the

system.

Scheduler

I To test each scheme under different scheduling strategies, we define both a gang

scheduler and a space sharing scheduler. The gang scheduler is used as the base

’ scheduler. The space sharing scheduler is simply the gang scheduler with an MPL of

one. When we use the space sharing scheduler, we run the scheduler under varying

RAM workloads. Following the same pattern as the gang scheduling experiments, we

vary the RAM ratio from 50% to 100%. We do not simulate anything beyond 100%

RAM because of the CM-5 scheduling policy which prevented any jobs larger than

the RAM available from running.

3.2.2 Dimensions of the Experiment Table

Each experiment defined in table 3.1 is run on 4,000 and 5,000 job workloads.

We discovered in early experiments that jobs start to become backlogged under the

gang scheduler with the 5,000 job workload. By comparing the 4,000 and 5,000 job

workloads we can understand how each solution performs under different types of

system loads.
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Each experiment is run on a 64 node cluster and a 128 node cluster. Running

experiments on different-sized systems will indicate how well the various designs scale.

Note that each workload was originally collected on a 1,024 node system and if the

system is scaled down, the workload is sealed with it. For example, a job that asked

for 512 processors under the original workload will ask for 32 processors in the 64

node system, and 64 processors in the 128 node system. Congestion on the larger

networks will increase since more communication is required for synchronization and

broadcasts.

We run seven different paging methods against each experiment. The base is

disk paging (DP). We test six PNR methods: the centralized method (CEN), the

client-only method (CLI), the local managers method (MAN), and three variants of

the backbone method (BB). The three backbone methods define the number of PNR

managers to be ith, éth, and T’éth the total number of nodes in the system. For

instance, on the 64 node system, the number of managers is defined as 16 (BB16), 8

(BB8), and 4 (BB4), respectively.
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Chapter 4

Performance Evaluation

4.1 64 Node Cluster

This section describes the results of the experiments introduced in table 3.1 run

on a simulated 64 node cluster. Note that we define the ”base” set of experiments as

experiments where all of the default parameters described in chapter 3 are set.

4. 1. 1 Base Experiments

In figure 4.1 we see the results for the base set of experiments for five different

workloads. Response time for each design follows an exponential curve as workloads

get larger. For the 5,000 job workload, jobs are starting to get backlogged. This

increases average response time for all paging designs. This trend continues for the

6,000 job workload (not shown). We focus on the 4,000 and 5,000 job workloads to

observe the difference between backlogged and non-backlogged systems.

Figure 4.2 shows the 4,000 job workload where all PNR designs are close in

performance. Each design has an optimization ratio of 10-12% over disk paging

(figure 4.3). Interestingly, CLI has the best optimization ratio at 12.08%. This goes

against the expectation that CLI will always lead to poor performance due to lack of

31



R
e
s
p
o
n
s
e
T
i
m
e

(
s
e
c
o
n
d
s
)

O
p
t
i
m
i
z
a
t
i
o
n
%

R
e
s
p
o
n
s
e
T
i
m
e

(
s
e
c
o
n
d
s
)

70000 T-ee-—'- ,

64 Nodes

 

 
60000 -

50000 ‘

 

 

 
40000

30000
 

 
20000

 

’
‘

l‘
‘.

l
.

8
2
3
2
3
5
2
5
2
5
2
3
5
2
?

1
.
.
.
.

 10000 [Twe V.

.
3
9
'
0
'

      

.
3
2
0
.

  0 l

1000

   

2000 3000

Jobs

4000

   

I DP

[1 CLI

gCEN

[a BB.

[E BBS

N 3316

[a MAN  

Figure 4.1: Base experiment - 64 PE - several workloads - response time.

 

 

 

64 Nodes - 4000 Jobs

DP CLl CEN BB4 BBB BBlG MAN

Deggn

Figure 4.2: Base experiment — 64 PE - 4,000 jobs — response time.

64 Nodes - 4000 Jobs

12.5 f
 

 

CLI BBSBB4

Defign

Figure 4.3: Base experiment - 64 PE - 4,000 jobs - optimization ratio.

32



R
e
s
p
o
n
s
e
T
i
m
e

(
s
e
c
o
n
d
s
)

O
p
t
i
m
i
z
a
t
i
o
n
%

64 Nodes - 5000 Jobs

70000 ..-1-__., -_--._ ._ 

  

 

   

sooooa—g—“wI j~a~-«——-.—v.—-eew.s cz1_.1.1.11_,..

WWOfl am l_::wmu~m44+mmfln_w__

40000-—l -—] «w—j [4—T“Ti_4, ,.

30000]-, --3 *] l—w~l 3.4; l

zooooaal «a—] 111] [a] [1.] ] . 3

10000]—] fl—. ——‘ a-———l (“4' i , .“

0 __. _l._--._. ”n L“ was T- L1__._l__ ,_ l___l._l,__t T l .1. .l.__l ,_

DP cu CEN BB4 BBB BBl6 MAN

Defign

Figure 4.4: Base experiment - 64 PE - 5,000 jobs - response time.

  

  

 

 
            

 
  

40- 1, ~ _- ——w —— — —~

30~ +~ e~e ._l -— Af”"" 11 ——
V .. TNT]

20 -4 4s — - L —— — —

,0 _ w _ ]_ __ I___ _

0*] 1 ~— 4

CLI CEN BB4 BBB 3816 MAN

Deggn

Figure 4.5: Base experiment - 64 PE - 5,000 jobs - optimization ratio.

33



servent coordination.

The average memory usage for DP was 6.88 MB, with a standard deviation of

4.96 MB. All PNR designs had a standard deviation around 4.4 MB. CLI did not

lead to significantly uneven memory allocation (as was expected).

Figure 4.4 demonstrates that, for the 5,000 job workload, the PNR designs are

more differentiated. CLI was the only design with an average response time higher

than DP’s. Figure 4.5 shows that BBl6 is the best design at a 33.38% speedup over

DP. This figure shows us that BB16 is at the top of a curve, where performance of

the coordinating designs is worst at CEN, gets better as the solution becomes more

distributed (BB4 and BB8) and degrades past a certain point of distribution (MAN).

These results are more in line with our initial hypothesis that a hybrid of centralized

and decentralized approaches would have the best performance.

All non-CLI PNR methods experienced approximately 70% or less the number of

page faults DP experienced. This can be attributed to the fact that, since PNR jobs

finish faster, they experience fewer PCSs. This, in turn, leads to less page loading

due to memory contention by multiple processes.

We observe some interesting statistics for memory allocation for each design. DP

had highest average memory allocation at 17.87 MB per node with standard deviation

of 5.17 MB. All PNR designs had lower allocation averages - ranging from 14.45 MB

to 16.37 MB. BB16 had the lowest average at 14.45 MB, but it also had the highest

standard deviation of all designs at 5.76 MB! In fact, each PNR design except for

MAN had a higher standard deviation than DP - ranging from 5.18 to 5.76 MB (with

MAN having 4.98 MB).

This results comes as a surprise, since PNR should be smoothing out memory

usage, not creating more hotspots! Fhrther, it may be possible that BB16 had the

lowest response time only by chance - since the hotspots created were not in heavy

use by the system.
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4. 1.2 RAM Variations

For both the 4,000 and 5,000 job workloads, we see response times for all designs

converge as RAM is increased (figures 4.6 and 4.9). In the 4,000 job workload,

response time converges earlier. In the 5,000 job workload, the designs converge

later (due to backlog) at RAM ratio 135%. Data is omitted from the figures when

optimization rate is 0%. As RAM is decreased, all designs increase response time

exponentially. Presumably, response times will also converge when so little RAM is

available that allocating network RAM is impossible.

At the 100% RAM ratio and above in the 4,000 job workload all PNR methods

use 0 MB of disk space on average. Standard deviation for each is 0 MB. This accounts

for similarity of results for the PNR methods.

For the 4,000 job workload, we see a very large initial boost in performance as

RAM is decreased. The optimization ratio is the among the highest observed for

all experiments - in the 75% to 100% range (figure 4.7). This advantage quickly

evaporates at 65%, where most designs actually underperform DP. At 50%, most of

the PNR designs recover, but have a lower performance benefit (between 25-50%).

CLI is the clear loser in each of the experiments where the RAM ratio is less

than 100%. MAN consistently outperforms or performs as well as other methods in

each scenario. The other methods are more difficult to judge, since their performance

fluctuates.

In the 5,000 job workload, one immediately obvious feature is the big performance

boost PNR receives as RAM is initially increased (figure 4.9). The 4,000 job workload

experienced no such benefit. The extra RAM must help PNR efficiently clear out the

backlog of jobs. As RAM is increased past a certain point (around 135%) PNR and

DP converge.

Interestingly, despite these favorable response times at RAM ratio 115% and

125%, the average allocated memory and standard deviation metrics are not unusually
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Figure 4.6: RAM experiments - 64 PE - 4,000 jobs — response time.
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favorable. In fact, some PNR methods have an average and standard deviation higher

than DP. The differentiating characteristic between DP and PNR must be the average

disk usage. While DP uses about 1.25 MB on average, each PNR method uses about

0.5 MB or less at RAM ratio 115%. Similarly, at 125% RAM ratio, DP uses 0.32 MB

whereas each most PNR methods use less than 0.1 MB.

W'hen RAM becomes more scarce MAN offers consistent performance benefits

but this time it is not always the best design. At 85% and 75% we observe smaller-

scale versions of the performance boosts observed in the 4,000 workload. At 65%

there is another performance hit - but, again, at a smaller scale. At 50%, modest

improvements are back.

4.1.3 Network Performance Variations

For all cluster setups and workloads, the performance of PNR at 10 Mbps of

bandwidth was so poor, it was not included in the figures for these experiments.

To get an idea of the performance, the total simulatedtime elapsed for the 5,000

workload rose an order of magnitude from 106 to 107 seconds. This result shows that

PNR is extremely sensitive to low-performance networks.

Figures 4.10 and 4.11 show the 4,000 job workload, where the methods with the

most coordination overhead suffer at bandwidth 100 Mbps. However, as bandwidth is

increased beyond 100 Mbps, all PNR methods become equivalent in terms of response

times and optimization ratios.

No PNR method in these experiments uses disk paging at any bandwidth. The

limiting factor here is coordination overhead. It makes sense that as communica-

tion becomes less costly, coordination overhead becomes such a small factor that the

various methods converge to the same response time.

Figure 4.12 and 4.13 show that, for the 5,000 job workload, the general curve

observed in the base test is preserved until bandwidth 100,000 Mbps, where the results
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Figure 4.9: RAM experiments — 64 PE - 5,000 jobs - optimization ratio.
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are noisy. Increases in network performance benefits CEN the most but also tends to

increase the performance of each method.

CLI performs worse than every other PNR method in all cases. However, for

bandwidth greater than 100 Mbps, CLI still manages to beat DP. In fact, CLI even has

lower average memory usage (5.46 MB) and standard deviation (2.02 MB) compared

to DP (6.09 and 2.71 MB).

For this experiment, synchronization overhead must not be the only limiting fac-

tor. The backlog of jobs must be influencing the experiment and producing noisy

results. The phenomena may be explained if we consider that if processes are be-

coming backlogged in the 5,000 job workload, and if network performance results in

higher job turnover, then longer-running jobs will tend to start running together in

greater frequency than under lower-performing networks. Longer-running jobs tend

to demand more memory than shorter jobs so, given this situation, memory load and

response times will rise.

4.1.4 Network Topology Variations

For the 4,000 job workload (figures 4.14 and 4.15), PNR designs are superior

to DP on all topologies. For the bus topology, it appears that less coordination

overhead results in higher performance. This is not too surprising since the potential

for congestion on a bus network is very high. For the connected network, we observe

results similar to those at the high bandwidth network. Each PNR design has roughly

equivalent performance.

Since the connected network does not increase bandwidth, and since the op-

timization ratio is similar to that found on the high-performance networks, we can

conclude that the significant factor in this experiment and in the network experiments

is congestion. The problem with low-performing networks was not simply the message

service time, but the queuing delay introduced by the slower-moving messages.
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For the 5,000 job workload (figure 4.16) we have noisier results. In the bus

topology, the general trend still appears to be the less synchronization, the better.

For the connected topology, all designs (including DP) get a performance boost except

MAN. BB16 is the superior method at a 60% optimization ratio. Notably, CLI still

underperforms DP. It is diflicult to say there is a definite pattern in these results.

4.1.5 Space Sharing Scheduler Experiments

For all workloads, recall that no individual job is larger than the CM-5’s available

RAM. So, with a space-scheduler, no two jobs will be loaded on one node and, at RAM

ratio 100%, no node should ever be overloaded. All designs should experience nearly

identical performance. This result is confirmed in all RAM ratio 100% space-sharing

experiments (with trivial differences resulting from PNR coordination methods).

Figure 4.18 shows that, for the 4,000 job workload, each method has approxi-

mately the same performance at 75% RAM ratio with CLI having a slight edge. For

50%, CLI loses its edge while all the rest of the methods gain a performance boost.

Figure 4.21 shows the same results for the 5,000 job workload. Each method has

approximately the same performance at 75%. CLI again loses its performance benefits

at 50% while the rest of the PNR methods approach a respectable 45% optimization

ratio.

4.2 128 Node Cluster

This section describes the results of experiments run on a simulated 128 node

cluster. These experiments are primarily done to test scalability as compared to the

64 node cluster.
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4.2. 1 Base Experiments

When we run the base set of experiments over various workloads (shown in figure

4.22), we see the same exponential curve in response time as in the 64 node system.

In the 4,000 job workload, the CLI optimization ratio beats the other PNR

designs by a significant margin (figure 4.24). While each other PNR design is between

5% and 7.5% optimization ratio, CLI approaches 15%. CLI also had the lowest

average memory allocated and the lowest standard deviation at 5.52 MB and 4.35

MB, respectively. DP had an average of 7.54 MB and standard deviation of 5.23 MB

and MAN, for instance, had an average of 6.28 MB and a standard deviation of 4.65

MB.

In the 5,000 job workload there appears to be scalability problems. CLI and BB8

are the only methods that experience significant performance enhancement (about

5%). Others (CEN, BB16, MAN) experience performance degradation.

This result is not unexpected since the underlying network topology is a star.

The bottleneck resource, the central switch, becomes more congested as the network

becomes larger and as more messages are sent. As observed earlier, PNR is very

sensitive to poor network performance and it makes sense that PNR performs poorly

here. CLI has a natural advantage in larger networks because individual peers do not

synchronize with each other. With each other design, coordination overhead must be

incurred.

Interestingly, each PNR design had a lower standard deviation in memory usage

than DP. Each PNR design also used less disk space than DP. However, some PNR

designs had a significantly higher average memory allocation. All PNR designs still

experienced fewer page faults. The number of page faults ranged from 50% to 80%

that of DP.
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4.2.2 RAM Variations

Note that there is data missing at 65% and 50% RAM ratios for both the 4,000

and 5,000 job workloads due to simulation time constraints.

For the 4,000 job workload (shown in figures 4.27 and 4.28) PNR converges as

expected as RAM is increased. As in the 64 node cluster, large performance increases

are observed for 85% and 75% RAM ratios (approaching 100% and 50% improvement,

respectively) The improvement at 75% RAM ratio is not as pronounced as in the 64

node system. Interestingly, the % backbone solution experiences a performance hit in

both the 64 node and 128 node systems. The performance penalty is more pronounced

in the 128 node system.

For the 5,000 job workload (in figures 4.29 and 4.30), we observe the PNR op-

timization ratio converging as expected. However, for 125% RAM ratio, there is a

large performance penalty felt by all of the PNR designs (with CLI being affected the

least). All PNR designs except CLI experience at least a 4100% optimization ratio.

All designs improved average response time from 115% to 125%, but DP improved

more than each PNR method. It is not known if this is a statistical fluke or something

more interesting. More tests need to be performed.

As RAM becomes more scarce, the optimization ratio of the PNR methods don’t

reach as high as in the 64 node network (not much above 50%). As in the 64 node

network, the best performance gains are observed at 85% and 75% RAM ratios.

4.2.3 Network Performance Variations

For the 4,000 job workload, PNR performance improves as soon as network

performance is improved. For network bandwidths of 1,000 Mbps and higher, the

average response time of each PNR design is equivalent (figure 4.31). Each PNR

design is superior to using DP. The optimization ratio settles at about 12.5% (figure

4.32).
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For the 5,000 job workload, each method improves dramatically with higher

bandwidth. Similar to the 64 node system, each PNR design outperforms DP at

network bandwidth 1,000 Mbps and higher. BBB and BB16, in particular, have

optimization ratios in the 50—75% range at bandwidth 1,000 Mbps and 10,000 Mbps

(figure 4.34). However, they lose their lead at 100,000 Mbps while CEN, BB32 and

MAN all gain. It is difficult to say what the general trend here is, other than that

better network performance tends to elevate the performance of each PNR design.

4.2.4 Network Topology Variations

For the 4,000 job workload, we do not show the results for the bus topology in

figure 4.35 or 4.36. This is because the bus response times were orders of magnitude

higher than the star and connected topologies. For the CEN method, for instance,

the optimization ratio was a staggering -2,500%! Obviously the bus network does not

scale well and PNR is hit hard by this. With the connected topology, each method

is close to equivalent.

Figures 4.37 and 4.38 show the 5,000 job workload results. Just as in the 4,000

job workload, the bus network causes all PNR designs to behave poorly. CLI is least

effected and CEN experiences a huge performance hit - almost reaching —300% (figure

4.38)! It is interesting that this negative performance is better in comparison to the

4,000 job workload. In the 4,000 job workload, the PNR methods all use less disk

space than the PNR methods do in the 5,000 job workload. We speculate that the

bus network actually drives average network service time higher than disk service

time, and the PNR methods in the 4,000 job workload use network RAM more than

in the 5,000 job workload.

The connected network gives results similar to the high bandwidth experiments.

Here, all PNR designs have better performance than DP. BB8 and BB16 are the clear

winners at an optimization ratio greater than 50%.
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Figure 4.40: Space sharing experiments - 128 PE - 4,000 jobs - optimization ratio.

4.2.5 Space Sharing Scheduler Experiments

The results for both workloads echo those of the 64 node network and are shown

in figures 4.39, 4.40, 4.41, and 4.42. In both sets of results, designs are equivalent

at RAM ratio 100%, CLI has an advantage at RAM ratio 75%, and CLI loses its

advantage at RAM ratio 50%. At RAM ratio 75% and 50% all non—CLI PNR designs

experience almost identical performance.
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Figure 4.42: Space sharing experiments - 128 PE - 5,000 jobs - optimization ratio.
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Chapter 5

Analysis

5. 1 Discussion

We have described our results in chapter 5. We now interpret these results to

discover the general models of performance PNR follows. Also, we identify platforms

and configurations on which PNR would be useful.

5. 1 . 1 Memory Load

Given our observations, it is clear that both PNR and DP follow an exponential

curve as memory load is changed. As memory load increases, PNR and DP both tend

toward infinite response times. As memory load decreases, PNR and DP will converge

on a constant number. PNR does not offer a fundamentally difference performance

curve, but PNR’s curve is lower than DP’s by a constant factor.

This model implies that adding PNR to lightly loaded systems (with high per-

formance networks) should not harm performance and under moderate memory loads

PNR can lead to large improvements over disk paging. As observed, this improve-

ment can approach 100%. However, as memory becomes too scarce to share, PNR

performance will converge to DP performance.
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One surprising result of our simulations is that the proposed PNR designs do

not necessarily smooth out memory usage as measured by the standard deviation of

system memory usage. For some experiments, PNR memory usage was even more

non-uniform than DP’s memory usage. This indicates that more work must be done

to ensure PNR itself does not create more overloaded nodes.

Also, some of the exceptions to our proposed model are troubling. Specifically,

the 125% RAM ratio experiment on the 128 node cluster unexpectedly had most

PNR methods with an optimization ratio of -100% or more. Other experiments had

occasional incidents where all PNR methods do very well except for one (e.g. 85%

RAM Ratio on 128 node system with 4,000 job workload). To determine if this is

a problem with PNR or just an artifact, we need to re—run our experiments with

different random number seeds, different portions of our collected workload, and with

different workloads.

5.1.2 Network

PNR is very sensitive to network performance. The general shape of results

is another exponential curve, where PNR response time tends toward infinity as

network service time is increased and converges to some constant number as service

time decreases. Since low network performance results in low PNR performance,

PNR should not be considered on systems with low bandwidth or high message RTT

times. A standard 100 Mbps network should be considered a minimum for satisfactory

performance.

Topology is also an important consideration. Our experiments show that con-

gestion is a major source of waiting time. In order for PNR to scale, it will have

to run on a network that scales well as nodes are added. Bottlenecks, such as the

central switch in the star topology, will quickly degrade PNR performance as nodes

are added. Switching to a network topology that has no bottlenecks has the same
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effect as upgrading a topology with bottlenecks to a very high speed network. To

get maximum performance, PNR should be used on a fast network with few (or no)

bottlenecks.

When network performance is high and RAM is relatively plentiful, we observe

that each PNR design has equivalent performance. This is because coordination

of memory resources is not a crucial issue when RAM is plentiful, and coordination

overhead is less important with a fast network. These are the two main differentiating

factors among the PNR designs, and when they are eliminated, they all perform

similarly.

5. 1.3 Scheduling

On a space sharing system, as RAM becomes more scarce, each PNR method

except CLI appears to perform equivalently. The main limiting factor on the space

sharing system is network RAM allocation coordination. Network speed is less impor-

tant because PCSs are eliminated on this system - which eliminates a large portion

of network activity (i.e. the large amount of page faults after a PCS). This reduces

overall congestion. All of the schemes that use coordination appear to work equally

well in each space sharing system tested. Depending on the workload and cluster

setup, the best performance gains can be anywhere between 15-60%. If only a light

load is expected, CLI is the best choice for a space sharing system.

On the gang scheduling systems, however, network performance is crucial to PNR

performance. PCS’S introduce large, regular bursts of network activity and PNR de-

signs that use the network to coordinate allocation suffer. When a high-performance

network is available, however, PNR can produce pronounced performance gains. Un-

der the 4,000 job workloads, the maximum speed up using PNR was typically in

the 10-12.5% range, although when RAM became scarce, optimization ratio could

reach as high as 100%. For the 5,000 job workload, the maximum optimization ratio
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observed was 75%, but large ratios were more common than in the 4,000 job workload.

It is interesting to note that the absolute response times of DP and PNR on the

space sharing scheduler are better than the gang scheduler for the 5,000 job workload.

Backlogged jobs introduce a huge paging penalty to both PNR and DP. However, for

the 4,000 job workload, gang scheduling results in better response times, since no

backlogging is occurring and the benefits of time sharing outweigh paging penalties.

For heavily-loaded systems, PNR can significantly reduce the response time of

jobs as compared to DP. However, it may make sense to attempt to avoid paging

entirely by using a space sharing system instead. Using a small MPL in conjunction

with PNR may produce results better than both alone. For moderately to lightly

loaded systems, the advantages of time-sharing outweigh the disadvantages of in—

creased paging, and PNR is recommended to reduce average response times.

5.1.4 PNR Designs

CLI does surprisingly well in certain situations. If RAM is plentiful, CLI benefits

since it requires very little overhead to allocate network RAM. When the network is

slow, CLI performs better than its counterparts because it contributes relatively little

to network congestion. If it is known that a system has a slow network and will be

lightly loaded, CLI may be the best method to implement due to its simplicity and

low overhead costs.

However, CLI performs poorly in heavy-load situations where RAM is scarce. In

these situations, it becomes necessary for network RAM allocation to be coordinated

to avoid wasting it. In these situations, that leaves us with CEN, BBX, and MAN.

When the network is fast, all three can potentially be used effectively. When the

network is slow, only BBX and MAN should be considered since CEN will introduce

significant congestion on the network resources that service the central server.

It is difficult to choose between the BBX and MAN methods. There appears
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Low Load High Load

Fast Network ANY CEN, BBX, MAN

Slow Network CLI BBX

 

 

     

Table 5.1: Recommended PNR Design Usage.

to be a tendency for 8816 to be the superior method in the 64 node network (% of

nodes) and BB8/BB16 to be superior in the 128 node network (1% and % of nodes).

However, no definite conclusion can be reached from the results gathered. We will

tentatively claim that BBX has an advantage over MAN in slow networks because

less messages must be broadcast for synchronization purposes.

If the network is fast, and RAM is plentiful, then each of the PNR designs are

equivalent. Any one could be used. It may make sense to use CLI in this situation

since it eliminates the need for a manager (proxy) entirely.

A summary of these recommendations is in table 5.1.

5.2 Conclusion

In this thesis we identified a novel way of reducing page fault service time and

better utilizing memory resources in a cluster system running parallel processes. This

method, which we call Parallel Network RAM, uses remote idle RAM as another tier

in the memory hierarchy for parallel jobs in clusters. We proposed several different

PNR designs and evaluated the performance of each under different conditions. We

discovered that different designs are appropriate in different situations and that simply

applying PNR to an existing system is not a guarantee of increased performance.

Applied correctly to lightly loaded systems, performance gains between 10-25%

can be achieved. Applied correctly to heavily loaded systems, performance gains can

be as high as 100%. Applied incorrectly, PNR can result in extreme performance

losses. The highest observed in our simulations were approximately -2500%.
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Parallel Network RAM is probably best applied in conjunction with other meth-

ods to reduce page load. For instance, a combination of job migration, Parallel

Network RAM, heuristics used to guess memory usage at the scheduler, and other

scheduler techniques would likely result in better performance than PNR alone.

5.3 Future Work

This thesis only took a survey of PNR performance given a variety of cluster

configurations and did not focus on any particular experiment. Our experiments’ sta-

tistical significance should be confirmed by re-running our experiments with different

random number seeds and with different subsets of the workload trace.

A surprising result of our work was that no single PNR design worked well under

all conditions. This indicates that, to create a single, unified PNR design that works

under a variety of cluster conditions, a design that can intelligently change its behavior

based on current cluster conditions should be developed. Such an algorithm could

simply use the designs proposed in this thesis, but switch among which design is being

used based on the current state of the cluster. This would make the implementation

of PNR much easier, since only one system needs to be developed for all clusters.

This thesis only used a specific subset of a single trace from a particular parallel

system. To our knowledge, traces such as the one we used that include memory

information are very rare. It would be invaluable to collect a new trace on a modern

parallel system running cutting-edge parallel programs. Not only would this allow us

to compare how PNR acts on a modern system, it would also allow us to calibrate

our simulator and ensure that the models used (e.g. page fault models) are realistic.

This simulator only explores jobs that use a static amount of memory determined

at runtime. It would be useful to know how PNR performs given a more realistic

dynamic memory workload. The simulator also only simulates a very simplistic job
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synchronization model. A more intense and complex model would give us more

realistic results.

Our approach only allocates and deallocates network RAM at job start and stop

time. It would be interesting to know if allowing the PNR system to allocate and

deallocate memory at additional times would lead to increased performance. A more

periodic approach may better accommodate memory usage.

This approach does not consider job migration. A system which is allowed to

choose between job migration and PNR to balance load would be very interesting

and may potentially combine advantages from both methods.

A comparison of PNR methods against methods which attempt to avoid paging

by guessing memory usage would be interesting. One method may be superior to

another or, more likely, the combination of the two methods may yield increased

performance.
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