

This is to certify that the thesis entitled

Effect Of Outdoor Air Pollution On Hospital Admissions For Asthma In Detroit, Michigan

presented by

Alireza Sadeghnejad

has been accepted towards fulfillment of the requirements for the

M.S.

degree in

Epidemiology

Alba LJ Major Professor's Signature

2/24/04

Date

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
		······································
	I	6/01 c:/CIRC/DateDue.p65-p.1

Effect Of Outdoor Air Pollution On Hospital Admissions For Asthma

In Detroit, Michigan

By

Alireza Sadeghnejad

A THESIS

Submitted to Michigan State University In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

DEPARTMENT OF EPIDEMIOLOGY

ABSTRACT

EFFECT OF OUTDOOR AIR POLLUTION ON HOSPITAL ADMISSIONS FOR ASTHMA IN DETROIT, MICHIGAN

By

Alireza Sadeghnejad

We investigated the spatio-temporal relationship between number of asthma hospital admissions and levels of air pollutants ozone, particulate matter, nitrogen dioxide and sulfur dioxide. For the period 1999-2000, data were obtained on daily asthma hospital admissions for a contiguous region covering 23 zip codes in the East Seven Mile and Linwood areas of Detroit, Michigan.

Each zip code falls within a 4-kilometer radius of an air quality monitoring station that provided detailed data on the air pollutants and meteorological assessments. Exposure to a pollutant was assessed based on its mean daily level in the 4-day period preceding a hospital admission. Linwood and East Seven Mile areas were predominantly African-American (about 66%). Mean daily admission rates per 100,000 for asthma were 1.4 in Linwood, and 1.1 in East Seven Mile. The month of September showed a very sharp increase in admissions. In a negative binomial model, we estimated an average of 8% increase in the number of daily asthma hospital admissions by 6 ppb increase in nitrogen oxide levels. We observed a significant protective effect for ozone. The levels of nitrogen dioxide and ozone were negatively correlated.

Higher levels of nitrogen dioxide might increase asthma hospital admissions. Individual level data are needed to verify air pollutant effects on asthma.

DEDICATIONS

This work is specially dedicated to my parents and my wife Negin.

ACKNOWLEDGEMENTS

The planning, designing, implementation and completion of this work is the result of a team of dedicated individuals. Sincere gratitude to my thesis advisor, Dr. Wilfried Karmaus, for his insight, supervision and moral support in the process of completing this thesis.

I would also like to thank the other members of my thesis committee, Drs. Joseph Gardiner and Rober L. Wahl for taking time from their busy schedule to provide support during this project.

TABLE OF CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
BACKGROUND	1
METHODS	8
RESULTS	16
DISCUSSION	
APPENDIX	40
BIBLIOGRAPHY	43

LIST OF TABLES

TABLE 1. Zip codes contained in each of the two sites 9
TABLE 2. Correlation among various pollutants in the two sites during
specified periods
TABLE 3. Means and percentiles for daily average levels of pollutants during
the study period21
TABLE 4. Means and percentiles for daily meteorological variables during the
study period22
TABLE 5. Statistics for daily hospital admissions in East 7 Mile 26
TABLE 6. Statistics for daily hospital admissions in Linwood
TABLE 7. Demographic characteristics, site of residence and year of
admission for census data along with hospital admissions
TABLE 8. Mono-pollutant models [†] (SO ₂ , NO ₂ or O ₃) controlling for year and/
or month of admission
TABLE 9. Tri-pollutant model (SO ₂ , NO ₂ or O ₃) controlling for year and month
of admission32
TABLE 10. Bi-pollutant model ^{\dagger} (NO ₂ and O ₃) controlling for year and month of
admission

LIST OF FIGURES

FIGURE 1. NO ₂ in the pathway of O_3 production
FIGURE 2. The two stations and a 4-kilometer radius around them
FIGURE 3. Different steps for merging the four data sets to get working data
set13
FIGURE 4. Distributions of pollutants during the study period
FIGURE 5. Mean monthly levels of pollutants in East 7 Mile during study
period19
FIGURE 6. Mean monthly levels of pollutants in Linwood during the study
period19
FIGURE 7. Variation of mean daily levels of pollutants during week in East 7
Mile in the two years of study23
FIGURE 8. Variation of mean daily levels of pollutants during week in
Linwood in the two years of study23
FIGURE 9. Monthly averages for the mean daily temperature and the mean
daily relative humidity in Detroit area during study period24
FIGURE 10. Distribution of total daily asthma admissions during 1999-2000
in Detroit, East 7 Mile26
FIGURE 11. Distribution of total daily asthma admissions during 1999-2000
in Detroit, Linwood
FIGURE 12. Total number of asthma hospital admissions by age group and
gender during the study period

FIGURE 13. Monthly number of asthma hospital admissions in	the two sites
during the study period	28
FIGURE 14. Asthma hospital admissions by day of the week of	during the study
period	29
FIGURE 15. Average number of daily asthma hospital admissi	ons for different
levels of NO_2 and O_3	

LIST OF ABBREVIATIONS

CO	Carbon Monoxide
CI	Confidence Interval
ED	Emergency Department
MDCH	Michigan Department of Community Health
MDEQ	Michigan Department of Environmental Quality
NA	Not Available
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
O ₃	Ozone
P ₅	
P ₅₀	Median
P ₉₅	
PM _{2.5} Particulate N	latter with a diameter less than 2.5 micrometer
PM ₁₀ Particulate M	Matter with a diameter less than 10 micrometer
ppb	Parts Per Billion
ppm	Parts Per Million
SAS	Statistical Analysis Software
SO ₂	Sulfur dioxide
VOCs	Volatile Organic Compounds
μ	Mean
µg/m ³	Microgram per cubic meter

BACKGROUND

Asthma prevalence has been increasing since the mid 1970s¹ and has emerged as a major public health problem over the past 20 years in the United States². The overall rate of hospitalization for asthma increased during the late 1980s and has since plateaued. However, the rate among African Americans remained 2-3 times higher than for white Americans². Air pollution is considered as a risk factor for asthma hospital admission. Asthmatics appear to be more susceptible to short-term peak concentration of air pollutants³. Research has strongly shown that air pollution increases asthma hospitalization through exacerbation of attacks in asthmatics. We tabulated previous published studies (Appendix). The following studies are from the North America.

In 1993, a study conducted over a 13-month period in Seattle reported that the relative risk of asthma emergency room visits for a $30\mu g/m^3$ increase in particulate matter PM₁₀ was 1.12 (95% confidence interval: 1.04, 1.20)⁴. They noted that the mean of the previous 4 days' PM₁₀ was a better predictor than shorter lag periods. In addition for the number of asthma emergency room visits, an evident peak was observed during September.

In New Brunswick during 1984-1992, for the period May-September, Stieb et al. examined the relationship between asthma emergency department visits and air pollutants nitrogen dioxide (NO₂), ozone (O₃), and sulfur dioxide (SO₂) Daily emergency department (ED) visit frequencies were filtered to remove day of the week and long wave trends. Filtered values were regressed on air pollution

and weather variables for the same day and the 3 days previous to the ED visits. They found a positive relationship for higher levels of O_3 and the increased number of ED visits, but not for other pollutants ⁵.

For the period 1987-1994 in Seattle, Washington, Sheppard et al. reported the effects of ambient air pollution on non-elderly asthma hospital admissions ⁶. In a Poisson regression model controlling for time trends, seasonal variations, and temperature-related weather effects, they regressed daily hospital admissions on levels of O₃, particulate matter with a diameter, both less than 2.5µm and less than 10µm (PM_{2.5} and PM₁₀) and SO₂. An estimated 4-5% increase in the rate of asthma hospital admissions associated with an interquartile range increase PM₁₀ and PM_{2.5} levels with one-day lag (19.0 µg/m³ for PM₁₀ and 11.8 µg/m³ for PM_{2.5}). Similar findings for carbon monoxide (CO) and O₃ but not SO₂ were observed. Correlations between levels of pollutants were: +0.8 for (PM₁₀, PM_{2.5})-CO, -0.23 for O₃-PM_{2.5}, +0.34 for O₃-SO₂ and +0.22 for PM_{2.5}-SO₂⁶.

In 2000, Tolbert et al. reported Pediatric emergency room visits for asthma in relation to O_3 , PM_{10} , NO_2 in Atlanta, Georgia during the summers of 1993-1995 ⁷. The estimated relative risk per 20 parts per billion (ppb) increase in the maximum 8-hour O_3 level was 1.04 (p < 0.05). The estimated relative risk per 15 μ g/m³ increase in PM₁₀ was 1.04 (p < 0.05). Exposure-response trends (p < 0.01) were observed for ozone (>100 ppb vs. <50 ppb: odds ratio = 1.23, p = 0.003) and PM₁₀ (>60 μ g/m³ vs. <20 μ g/m³: odds ratio = 1.26, p = 0.004). In models with ozone and PM10, both terms became nonsignificant because of collinearity of the variables (r=0.75). Correlation between pairs of pollutants were: +0.51 for O_3 -NO_x and +0.44 for PM₁₀-NO_x⁷.

In 2001, Ritchie et al. studied 1 to 17 year old children admitted to one of 20 hospitals within nine counties in the Indianapolis metropolitan area. For warmer months (May-September), during 1997-1999, they found that as O_3 concentrations increased, asthma hospitalization probability decreased. During the study period, the mean for 24-daily O_3 concentration was 0.038 ppm and the daily one-hour maximum was 0.066 ppm ⁸.

Although study design varies in previous studies, but in almost all of them, exposure was allocated by aggregative method. The period that has been used to assess exposure prior to admission (lag period) varied between 1-5 days. For all pollutants these studies found an adverse or no effect on asthma hospital admissions. The only exception was O_3 . Some studies, including Ritchie et al. reported a protective effect of O_3 on the number of asthma hospital admissions ⁸⁻¹¹. Correlation coefficients between pairs of pollutants were reported as positive in previous studies. The only exception to this was O_3 that showed both positive and negative correlation with other pollutants ^{6,10}.

Most of the above-mentioned studies have demonstrated seasonal patterns in hospitalizations associated with asthma. A Canadian study examined the seasonal patterns of asthma hospitalizations for a 15–34 year age group, and found that hospitalizations peaked in the autumn season ¹². Marked differences between the number of asthma hospitalization for males and females have been

reported in the literature, with admissions for young males being higher than for young females ¹³.

The only previous study conducted in Michigan to investigate the relationship between the daily air pollution levels and asthma hospital admissions was by Thorell. He examined the relationship between the daily air pollution levels and occurrences of asthma hospitalization as well as emergency department visits at Hurley Medical Center, Flint, MI. The study was limited to children under age 16 residing in ten zip codes in Flint. He found increases in emergency department visits and hospitalization when O₃ levels increased by 135.1 μ g/m³ above the mean daily maximum. There was also an increase in emergency visits when SO₂ levels increased by 21.8 μ g/m³ above the mean daily maximum ¹⁴.

In 1998 the Michigan Department of Community Health (MDCH) reviewed inpatient hospital records and death certificates for children less than age 15 with asthma diagnoses for the period 1985-94 ¹⁵. The overall annual state childhood asthma hospitalization rate for this period was 34.3 cases per 10,000 children, with much higher rates for African American children. Wayne County (with an annual rate of 53.7/10,000) was among a group of counties with rates above the overall annual state rate for childhood asthma. The highest Detroit rates were for those children residing in zip codes^{*} 48208, 48201, 48202, 48206, 48226, and 48238. Ingham County had an annual hospitalization rate lower than the state as a whole (22.5/10,000).

They were included in this thesis.

The purpose of this aggregative study is to investigate potential associations between different air pollutants (NO₂, O₃, PM_{2.5} and SO₂, as described below ¹⁶) and asthma hospital admissions. In order to conduct this investigation, we used four data series (air pollution, meteorological, hospitalization and census data) on two geographical areas in Detroit, Michigan. The units of analysis were sites of residence stratified by age, gender, and race. Institutional Review Board at Michigan State University approved us to work on these existing data sets.

Nitrogen dioxide (NO₂)¹⁶

Nitrogen oxides (NO_x) are byproducts of fuel burned at high temperatures, as in a combustion process. The primary sources of NO_x are motor vehicles (49%), electric utilities (27%), and other industrial, commercial, and residential sources that burn fuels (24%).

In a complex reaction, NO reacts with volatile organic compounds (VOCs) to produce NO_2 (Figure 1). Then NO_2 and oxygen reaction is catalyzed by sunlight to produce NO and O_3 .

$$NO + VOCs \rightarrow NO_2$$

Sunlight
$$\downarrow NO_2 + O_2 \xrightarrow{\downarrow} NO + O_3$$

Figure 1. NO₂ in the pathway of O₃ production

Ozone (O_3)

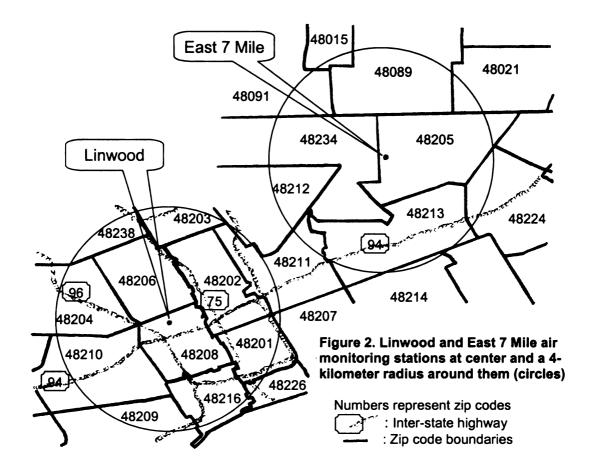
Within the scope of this thesis, ozone refers to ground level (tropospheric) ozone, such as smog, and not to stratospheric ozone. Stratospheric ozone is the layer of ozone gas in the upper atmosphere that screens out harmful ultraviolet radiation from the sun. Ground level ozone is not emitted directly into the air, but is formed through complex chemical reactions between precursor emissions VOCs and nitrogen oxides (NO_x) in the presence of sunlight (Figure 1). VOCs are emitted from sources such as automobiles, dry cleaners, and paint shops. NO_x, as stated earlier come from sources including coal-fired power plants and motor vehicles. The chemical reactions that produce O₃ are activated by sunlight and high temperature; therefore peak O₃ levels occur mostly during the summer when the weather is warmer and in the middle of the day as emissions build up and the temperature rises ¹⁶.

Typically, the length of the O_3 season is May through October, coinciding with the warmer months of the year. Since varying meteorological conditions influence ambient levels and year-to-year trends, O_3 monitoring seasons may vary from one area of the country to another.

Particulate Matter (PM)

Particulate matter includes dust, dirt, soot, smoke and liquid droplets that are directly emitted into the air from sources such as windblown dust, automobiles, construction sites, factories, and fires. PM is also formed in the atmosphere by condensation or by the transformation of emitted gases such as

 SO_2 , NO_x , and VOCs. Particulate matter is distinguished by it diameter. Fugitive sources such as agricultural tilling, construction, fires, and unpaved roads contribute much more PM_{10} (PM with a diameter less than 10µm) emissions in specific regions than others (this include dry forested areas susceptible to fire and agricultural areas).


Sulfur dioxide (SO₂)

SO₂ is a gaseous product from stationary and mobile sources burning coal and oil-containing sulfur. Processes found in pulp and paper mills and in nonferrous metal smelters also contribute to SO₂. The largest contributors to SO₂ emissions are coal-burning power plants. Once released, SO₂ and other oxides of sulfur combine with oxygen to form sulfates, and with water vapor to form aerosols of sulfurous and sulfuric acid. This mixture is a precursor of acid rain. Many emissions originate from tall stacks enabling them to be dispersed according to the pattern of the wind and variable wind speed. For example, Vermont's air quality is partly affected by emissions carried from more industrialized areas both close by and far away. Sulfur compounds also contribute to visibility impairment in areas other than the primary source area.

METHODS

First, we will define the two geographical sites included in this study. Then population and the four data sets of study will be addressed. After defining exposure, outcome and potential confounders, we will describe methods proposed for descriptive and regression analysis in "Statistical analysis".

Information from Linwood and East Seven Mile, two geographical areas in Detroit, Michigan was used in this study. Each site was defined by an air pollution monitoring station and zip codes that were wholly or partially contained within a 4-kilometer radius of the air pollution monitoring station (Figure 2). The 4kilometer radius around the East Seven Mile and Linwood sites wholly or partially contained 10 zip codes and 13 zip codes respectively (Table 1).

Eas	t 7 Mile	Linw	bod
48015	48214	48201	48209
48021	48224	48202	48210
48089	48234	48203	48211
48091		48204	48216
48205		48206	48226
48212		48207	48238
48213		48208	

 Table 1. Zip codes contained in each of the two sites

Study population and data

Residents of the two sites at who aged one to 45 years' people comprised the study population. We used data on census, air pollution, meteorological indices and hospital admissions in this study. Census data was obtained from the United States Census Bureau, the later three data sets were provided by MDCH and Michigan Department of Environmental Quality (MDEQ).

Census data

By assuming that the population was steady during the two years of study period, we used year 2000 census data as the reference. Data was available online through the United States Census Bureau ¹⁷. We downloaded census data for the desired zip codes by race, gender and age in years and converted the data to SAS (Statistical Analysis Software) format for the two sites.

Air pollution data

The Michigan Air Sampling Network measures air quality throughout the state. The pollutants that we used were nitrogen dioxide (NO_2), ozone (O_3), particulate matters with a diameter less than 2.5 micrometer ($PM_{2.5}$) and sulfur dioxide (SO_2). Pollutant concentrations were monitored using a direct reading instrument by standardized methods. These methods and their units were:

•	Gas-phase chemiluninescence, ppb	for	NO ₂
•	Ultra violet analysis, ppb	for	O ₃
•	R&P 2025 sequential sampler /gravimetric method, µg/m ³	for	PM _{2.5}
•	Ultra violet fluorescence, ppb	for	SO ₂

Hourly measurements were recorded and electronically sent to the Air Quality Division of MDEQ. In the two air monitoring stations, air pollution data has been incompletely collected from January 1, 1999 through December 31, 2001. For each site, MDCH calculated daily mean and maximum levels of SO₂, NO₂ and O₃ as well as daily PM_{2.5} values. We used mean daily levels of the pollutants and built up a SAS file.

Meteorological data

Both sites shared the same daily measurement for minimum and maximum temperatures as well as mean daily relative humidity during 1999 and 2000. This information was gathered in Detroit-Linwood station. We made a SAS formatted data from this information.

Hospital admission data

Information from almost all Michigan hospitals is included in the Michigan Inpatient Database. We received a file with the data on the number of patients with a discharge diagnosis of asthma. Data structure was based on the date of admission, zip code of residence, age in years, gender and race. We used data from January 1, 1999 till December 31, 2000 based on the date of admission. We organized final hospital admission data set as a SAS-formatted data set by date of admission, site (versus zip code in the original data set) of residence, age in years, gender and race.

Outcome, exposure and confounders

<u>Outcome</u>

We defined outcome as the number of patients admitted to Michigan hospitals, per day and by the site of residence, age, gender and race. Outcome quantification was based on the following criteria:

- Patient age, between one year and 45 years
- Diagnosis of asthma at discharge (code 493 in the International Classification of Diseases, version 9)
- Use of date of admission for calculating number of daily asthma hospitalization

Exposure

We assessed exposure to NO₂, SO₂, PM_{2.5} and O₃. Using an aggregative method we allocated exposure to individuals. Residents in zip codes that completely or incompletely felt into a 4-kilometer radius of each air monitoring station were assumed to have the same amount of exposure to the pollutants. There were two zip codes that felt in both sites. We assigned each of these zip codes to the site that predominantly encountered it.

In previous studies exposure to pollutants was assessed using different lag periods between daily levels of pollutants and subsequent hospital admissions. Previously lag periods with a range between one day and 5 days were used, however there is no universally agreed standard. In this study we used mean level of pollutants during preceding four days of admissions ^{4,6,9,18}.

Confounders

Variables that could be related to the level of air pollutants as well as daily number of hospital admissions assumed to be year, month and the weekday of admission; race, age and gender of admitted patients; and meteorological indices 5,7,9

For each of the meteorological variables (minimum, maximum and mean temperature as well as mean relative humidity), we calculated an average in the preceding 4-day period of admission and controlled for that in the models.

Statistical analysis

We used SAS software, Release 8.2 ¹⁹ to conduct statistical analysis. In this part, we present the way to get a working data set from the four data sets (Figure 3). Then methods for descriptive analysis and regression will be explained. Finally, we will discuss modeling strategies.

Working data set

We created a working data set (Figure 3) by merging hospital admission, census, meteorological and air pollution data sets. Following are the steps of getting final data set

- A data frame (linkage file) made to resemble all potential combinations of sites and dates of admission as well as age groups, gender and racial groups of admittees. We used this data frame as a base for merging the four data sets.
- 2. Hospital data set was merged with the linkage file by site, date, age group, gender and racial group.
- 3. Census data set was merged with the data from step 2 by site, age group, gender and racial group.
- 4. As both sites shared the same meteorological data, we assigned information to both sites and then merged it with the data set from step 3 by site and date.
- 5. Air pollution data set was merged by site and date with the data set derived from step 4.
- At the last step, we calculated average level for each of the pollutants and meteorological indices in the 4 preceding days of admission in the final data set (Figure 3).

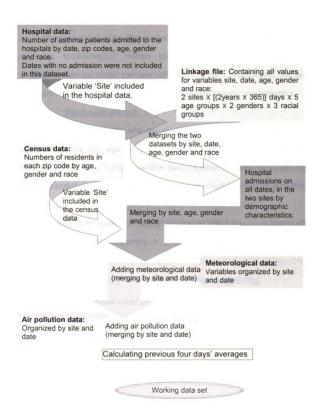


Figure 3. Different steps for merging the four data sets to get working data set

Descriptive analysis

We investigated distribution as well as spatial and temporal trends of air pollutants, meteorological indices and hospital admissions. Spearman correlations were calculated between daily levels of pairs of pollutants. The two sites were compared on their pollutant levels and demographic characteristics.

Regression analysis

The outcome variable was the count of hospital admissions that was calculated by site, day, age group, gender and racial group. We modeled the outcome variable as a Poisson variable (and negative binomial) and used log linear regression analysis to assess relative risk of hospital admission according to the pollutants level.

Formally let Y= number of hospital admissions and $\underline{x} = (x_1, ..., x_m)$ being set of relevant covariates (exposure + potential confounders). The Poisson assumption is:

$$P(Y=k|\underline{x}) = e^{-\mu(\underline{x})} [\mu(\underline{x})]^k / k!, \quad k=0, 1, \text{ where } \mu(\underline{x})=E(Y|\underline{x})$$

The log-linear model would be: $\log \mu(\underline{x}) = \beta_0 + \beta_1 x_1 + ... + \beta_m x_m$

In our analysis we should include an offset term which represents the population at risk (=N(\underline{x})). So, the modification to the above equation is:

 $\log \mu(\underline{x}) = \log N(\underline{x}) + \beta_0 + \beta_1 X_1 + \ldots + \beta_m X_m$

Parameter interpretation

We modeled $E(Y/N(\underline{x}) | \underline{x}) = \mu(\underline{x}) / N(\underline{x})$. The analysis of the incidence index with a Poisson or negative binomial regression allows the estimation of Relative Risks (RR), which are equal to the ratio y_j / y_0 where y_j is the incidence of admissions in level j, and y_0 corresponds to the reference (first) level ²⁰.

Assessing the fitted model

GENMOD procedure in SAS was used to fit log linear models. We applied deviance and scaled Pearson χ^2 statistics in order to gauge adequacy of fit. The scaled values should be close to one ²¹. The reason for the inadequacy of fit could be due to over-dispersion (a condition that occurs when variance of the distribution is larger than its mean). If the fit seems inadequate one should use the negative binomial method instead of Poisson to incorporate over-dispersion ²⁰. In order to choose the appropriate method of analysis we looked at the distribution of the outcome variable and criteria for 'Goodness of fit'.

(Y~ NB E(Y)= μ Variance(Y)= μ + $k\mu^2$, k>0). This also provides an approach to test H₀ : k=0 (the alternative hypothesis, H_a : k>0). Statistically this test must be performed carefully because the null hypothesis places the dispersion parameter on the boundary of the parameter space ²⁰.

Modeling strategies

Average of pollutants and meteorological indices over a 4-day period preceding hospital admissions were ranked by their quartiles. Fully saturated models were run with only one pollutant in each along with all the potential confounders. If the risk ratio was significant for the pollutant, backward elimination was used to get the most parsimonious model. While rate ratios of pollutants in several reduced single-pollutant models show significance, models with combinations of pollutants were run.

RESULTS

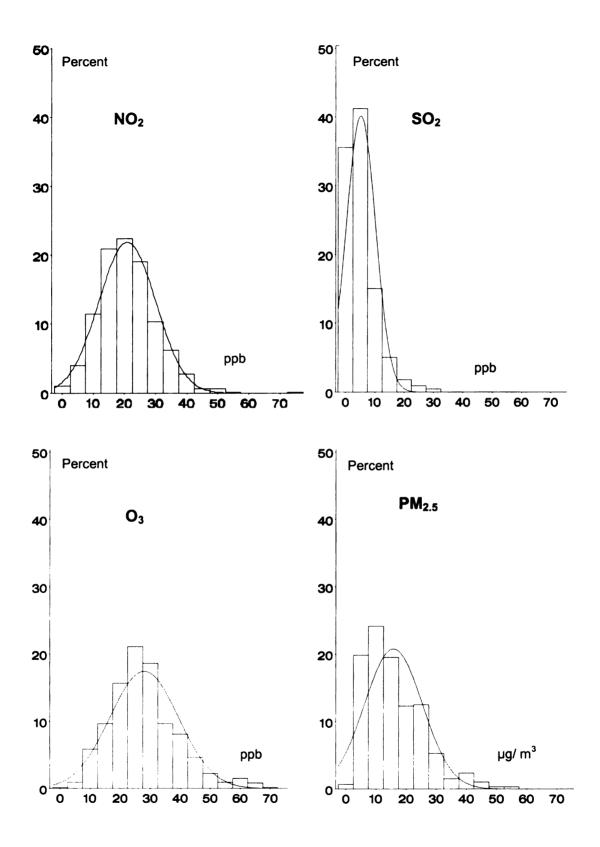
The first two part of this section will focus on descriptive analysis of air quality, meteorological, hospital admission and census data. In the third part, results of regression analyses will be provided.

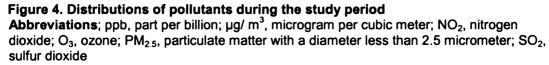
Descriptive analyses of air quality and meteorological data

In this part, we present distribution of mean daily levels of NO₂, SO₂, PM_{2.5} and O₃ along with their monthly variations and their variations upon weekdays. Correlations among daily levels of pollutants are also provided in this part. For meteorological data, statistics in terms of mean and percentiles along with monthly variations of minimum, mean and maximum temperature as well as relative humidity investigated.

Distributions of daily mean levels of pollutants were generally skewed to the left (Figure 4). This was more prominent for SO_2 and $PM_{2.5}$. O_3 possessed the most symmetrical distribution in comparison to the other pollutants.

 NO_2 and SO_2 levels were available for all months of the study period in the two sites (Figure 5 and Figure 6). The yearly measurement period for O_3 was April through September in both sites. In East Seven Mile, $PM_{2.5}$ was not measured during first three months of each year.


Monthly variation was present for all the four pollutants. While O_3 levels showed obvious peaks in June and July, concurrent drop of mean monthly NO_2 levels in these two months was evident. Mean monthly levels of SO_2 and $PM_{2.5}$ did not resemble a pattern.


Mean daily levels of pollutants varied during week (Figure 7 and Figure 8). On weekends (Saturday and Sunday), there was a decrease in NO_2 levels and an increase in O_3 levels. SO_2 and $PM_{2.5}$ were almost stable during the week in Linwood, but not East Seven Mile.

The highest correlations among pollutants were observed in Linwood between NO₂ and SO₂ during cold months (Table 2). Generally, NO₂, PM_{2.5} and SO₂ were significantly correlated. Significant correlations between O₃ and PM_{2.5} were found. O₃ was not correlated significantly with NO₂ or SO₂. All pollutants were significantly correlated with PM_{2.5}.

Mean daily levels of NO₂ were higher in colder periods of the two years in the two sites (Table 3), a situation that was true in the case of SO₂ just in East Seven Mile. $PM_{2.5}$ also had higher mean daily levels in colder period of year. In Linwood, mean daily levels of O₃ were lower and of NO₂ were higher than their levels in East Seven Mile.

The year 2000 was colder and more humid than 1999 in the Detroit area (Table 4). The warmest month in the study period was July and the coldest, January (Figure 9).

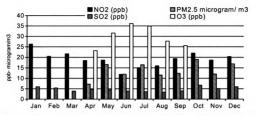


Figure 5. Mean monthly levels of pollutants in East 7 Mile during the study period

Abbreviations; ppb, part per billion; $\mu g/m^3$, microgram per cubic meter; NO₂, nitrogen dioxide; O₃, ozone; PM_{2.5}, particulate matter with a diameter less than 2.5 micrometer; SO₂, sulfur dioxide

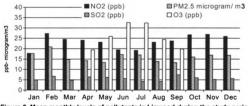


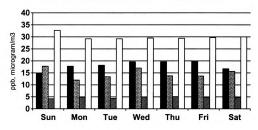
Figure 6. Mean monthly levels of pollutants in Linwood during the study period

Abbreviations; ppb, part per billion; $\mu g/m^3$, microgram per cubic meter; NO₂, nitrogen dioxide; O₃, ozone; PM_{2.5}, particulate matter with a diameter less than 2.5 micrometer; SO₂, sulfur dioxide

		Spearm	an correlation o	coefficient (P va	alue)
			Number o	of days	
Site name Period	Pollutant	NO ₂	PM _{2.5}	SO ₂	O ₃
East 7 Mile	NO ₂	1.00 344			
	PM _{2.5}	0.14 (.36) 40	1.00 41		
Apr- Sep	SO ₂	0.41(<. 001) 315	0.31(.07) 35	1.00 319	
	O ₃	–0.10(.05) 337	0.47 (.001) 41	0.15 (.006) 314	1.00 356
	NO ₂	1.00 208			
Oct- Dec Jan- Mar	PM _{2.5}	0.63 (<. 001) 27	1.00 29		
	SO ₂	0.55 (<. 001) 204	0.30 (.10) 28	1.00 239	
Linwood					
	NO ₂	1.00 249			
Ant Son	PM _{2.5}	0.54 (<. 001) 211	1.00 259		
Apr- Sep	SO ₂	0.57(<. 001) 249	0.51(<. 001) 259	1.00 366	
	O ₃	–0.10(.10) 249	0.52 (<. 001) 259	–0.02 (.64) 360	1.00 360
	NO ₂	1.00 267			
Oct- Dec Jan- Mar	PM _{2.5}	0.51(<. 001) 248	1.00 255		
	SO ₂	0.69 (<. 001) 267	0.70 (<. 001) 255	1.00 365	

Table 2. Correlation among various pollutants in the two sites during specified periods

Abbreviations: NO₂, nitrogen dioxide; O₃, ozone; PM_{2.5}, particulate matter with a diameter< 2.5 μm

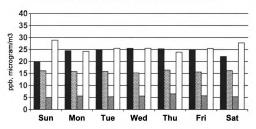

σ
<u>o</u>
Ĕ
ă
5
Ð
Ξ
st
0
Ē
g
Ŀ.
3
Ð
S
f
ltan
Ę
Ĭ
Ō
٥.
2
8
8
6
-
Ĕ
g
IVera
Š
é
y Y
É
la
s for daily averag
÷
ŝ
l
Ē
P L
្
6
ă
and p
č
1
S
S
89
ž
•
- mi
able :
م
a
F

								٩	Pollutant (unit)	t (unit)							
			NO ₂ (ppb)	(ddd)		đ	PM _{2.5} (µg/m3)	ig/m3			SO ₂ (ppb)	(qdd			O ₃ (ppb)	(qdc	
Site/ Year	Period	д	٩ ۶	P_{50}	P_{95}	п	P5	P ₅₀	P_{95}	л	Ps	P_{50}	P_{95}	٦	Ρ,	P ₅₀	P_{95}
	Apr- Sep	16.7	2.7	17.2	29.0	NA	AA	AN	AA	3.7	0.1	3.0	9.5	32.4	11.0	30.9	59.0
E. 7 Mile/ 1999	Jan- Mar Oct- Dec	20.2	6.7	18.9	33.2	AN	AN	٩N	AN	5.3	0.4	3.4	15.9	AN	٩	٩N	AN
E. 7 Mile/ 2000	Apr- Sep	16.5	6.7	14.7	28.8	13.8	3.5	11.8	28.5	4.5	1.2	3.7	11.4	27.7	13.1	26.9	46.9
	Jan- Mar Oct- Dec	21.5	9.7	21.0	35.7	16.0	3.8	14	40.6	6.2	0.4	5.5	14.8	NA	٩	۸A	AN
	Apr- Sep	21.7	9.9	21.2	35.0	16.7	5.2	13.8	40.6	5.9	0.5	3.6	17.4	27.9	11.6	26.5	47.9
	Jan- Mar Oct- Dec	25.4	14.0	24.3	41.3	16.2	4.5	13.5	39	5.9	0.4	3.5	18.4	NA	AN	AN	AN
	Apr- Sep	22.6	10.4	21.6	37.2	13.7	4.5	12.3	27.7	5.4	4.0	3.2	20.0	24.0	9.5	23.9	40.3
Linwood/ 2000	Jan- Mar Oct- Dec	25.4	10.4	24.6	40.7	17.3	4.8	16.0	36.0	5.2	0.3	4.2	13.3	NA	AN	AN	٨A
Abbreviations: μ, Mean; P ₅ , 5 th percentile; diameter< 2.5 μm; SO ₂ , sulfur dioxide; ppl	ean; P ₅ , 5 th perc 0 ₂ , sulfur dioxi	centile; l ide; ppb	P ₅₀ , M	edian; oer bill	P ₅₀ , Median; P ₉₅ : 95 th percentile; N b, part per billion; NA, not available	ⁿ perce	ntile; h ailable	NO2, n	percentile; NO ₂ , nitrogen dioxide; O ₃ , ozone; $PM_{2.5}$, particulate matter with a not available	dioxide	03.0	ozone;	PM _{2.5} ,	particu	llate n	latter v	vith a

									Variables	ables							
		F	Minimum Temperature	num rature	A		_ emp∈	Mean Temperature	a		Maxi empe	Maximum Temperature		Σ	Mean Relative Humidity	ean Relativ Humidity	e j
Year	Period	л	Р,	P ₅ P ₅₀ P ₉₅	P_{95}	Л	P ₅	µ Р ₅ Р ₅₀ Р ₉₅	P_{95}	Д	P ₅	µ P ₅ P ₅₀ P ₉₅	P_{95}	Л	µ P ₅ P ₅₀ P ₉₅	P ₅₀	P_{95}
	Apr- Sep	56.6	38.0 57.0	57.0	71.0	65.8	45.0	65.8 45.0 67.7 79.7	79.7	74.7	51.0	74.7 51.0 76.0 90.0	0.06	66.3	66.3 42.8 65.8	65.8	86.1
1999 J	Jan- Mar Oct- Dec	28.5	7.0	30.0	48.0	36.5	14.4	36.5 14.4 36.6 57.2	57.2	44.2	20.0	44.2 20.0 43.0 69.0	69.0	70.0	51.8 71.0	71.0	87.8
2000	Apr- Sep	55.0	36.0 57.0		68.0	63.6	63.6 45.0 66.0	66.0	75.5	72.3	72.3 51.0 75.0	75.0	85	70.9	48.0 71.3	71.3	88.6
	Jan- Mar Oct- Dec	28.3	5.0	5.0 30.0 52.0	52.0	36.3	13.2	36.3 13.2 35.4 60.0	60.0	43.3	19.0	43.3 19.0 40.0 69.0	0.69	73.2	73.2 53.4 72.9 91.0	72.9	91.0

Table 4. Means and percentiles for daily meteorological variables during the study period

Abbreviations: µ, Mean; P₅, 5th percentile; P₅₀, Median; P₉₅: 95th percentile



■NO2, ppb IIPM2.5,microgram/m3 IISO2, ppb IIO3, ppb

Figure 7. Variation of mean daily levels of pollutants during week in East 7 Mile in the two vears of study

Abbreviations; ppb, part per billion; NO2, nitrogen dioxide; O3, ozone; PM25, particulate matter with a diameter less than 2.5 micrometer:

SO₂, sulfur dioxide

Figure 8. Variation of mean daily levels of pollutants during week in Linwood in the two years of study

Abbreviations; ppb, part per billion; NO2, nitrogen dioxide; O3, ozone; PM25, particulate matter with a diameter less than 2.5 micrometer:

SO₂, sulfur dioxide

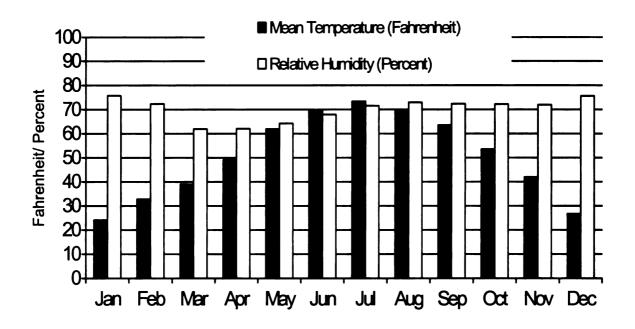


Figure 9. Monthly averages for the mean daily temperature and the mean daily relative humidity in the two sites during the study period.

Descriptive analyses of hospital admissions and census data

Hospital admissions along with census data are presented by demographic characteristic, site of residence and year of admission (Table 7).

During 1999 and 2000, a total number of 4,847 hospital admissions with a discharge diagnosis of asthma were recorded in the Michigan inpatient database for patients who were one to 45 years of age and resided in the 23 zip codes used in this study.

Distribution of the number of daily hospitalizations per site (Figures 10 and 11) represents an asymmetric left skewed curve. The average of the above-

mentioned hospital admissions was 3.3, with a variance of 6.02, median of 3 and mode of 2 (Table 5 and 6).

Asthma hospital admission ratios in African-Americans compared to Caucasians were about 5:1 in Linwood and 3:1 in East 7 Mile. Residents up to 18 years old showed a higher rate of hospital admissions in both sites. Linwood had more admissions than East Seven Mile. In 2000 more admissions were recorded in comparison to the previous year, 1999 (Table 7).

For ages less than 19 years, male had greater number of asthma admissions. On the other hand, for ages 19 years and older, females were more often admitted due to asthma (Figure 12). In warmer months, the total monthly admissions dropped in June and July, then increased in August and peaked in September (Figure 13). Mondays and Tuesdays had the maximum number of admissions among weekdays (Figure 14). African-Americans had a higher proportion in Linwood in comparison to East 7 Mile (68.6% versus 59.6%, Table 7). Mean daily admissions rate was higher in Linwood than East 7 Mile (1.4 versus 1.1 per 100,000).

Variable	Estimate
100% Max	20
99%	12
95%	7
50% Median	3
5%	0
0% Min	0
Mode	3
Mean	3.11
Variance	5.76

 Table 5. Statistics for daily hospital

admissions in East 7 Mile

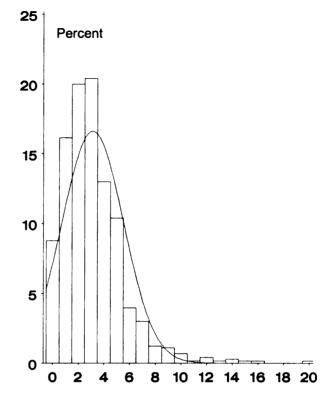
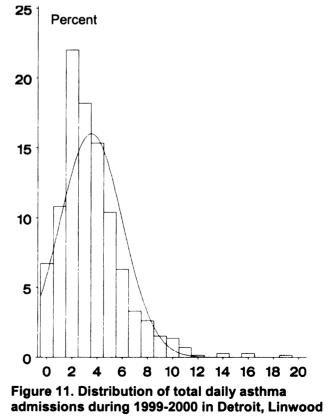



Figure 10. Distribution of total daily asthma admissions during 1999-2000 in Detroit, East 7 Mile

Table 6. Statistics for daily	hospital
admissions in Linwood	

Variable	Estimate
100% Max	19
99%	11
95%	8
50% Median	3
5%	0
0% Min	0
Mode	2
Mean	3.51
Variance	6.21

	E	E. Sever	n Mile			Linwo	od	
	Year 2000	Yea	irly admi	issions	Year 2000	Year	ly admi	ssions
_	population (Percent)	Year	N	Rate (per 10⁵)	population (Percent)	Year	N	Rate (per 10⁵)
Race								
African-	165988	1999:	881	530	171337	1999:	1108	647
American	(59.6%)	2000:	1091	657	68.6%	2000:	1290	723
	76675	1999:	124	161	54658	1999:	64	117
Caucasian	(27.6%)	2000:	178	232	21.9%	2000:	85	155
Other	35572	1999:	0	0	23690	1999:	10	42
races	(12.8%)	2000:	4	11	9.5%	2000:	12	51
Age (years)								
1-5	32148	1999:	257	799	29840	1999:	276	925
1-5	(11.6%)	2000:	338	1051	(11.9%)	2000:	378	1267
0.40	89934	1999:	375	417	74545	1999:	343	460
6-18	(32.3%)	2000:	476	529	(29.8%)	2000:	399	535
40.00	20319	1999:	31	152	21959	1999:	37	168
19-22	(7.3%)	2000:	48	236	(8.8%)	2000:	49	223
~~~~	40310	1999:	83	206	41170	1999:	94	228
23-29	(14.5%)	2000:	90	223	(16.5%)	2000:	139	338
00.45	95524	1999:	259	271	82171	1999:	432	526
30-45	(34.3%)	2000:	321	336	(32.9%)	2000:	422	513
Gender								
Famala	141449	1999:	523	370	123331	1999:	597	484
Female	(50.8%)	2000:	633	447	(49.4%)	2000:	686	556
Mala	136786	1999:	482	352	126354	1999:	585	463
Male	(49.2%)	2000:	640	468	(50.6%)	2000:	701	555
Total	278235	1999:	1156	415	249685	1999:	1283	514
10(a)	(100%)	2000:	1122	403	(100%)	2000:	1286	515

 Table 7. Demographic characteristics, site of residence and year of admission for census

 data along with hospital admissions

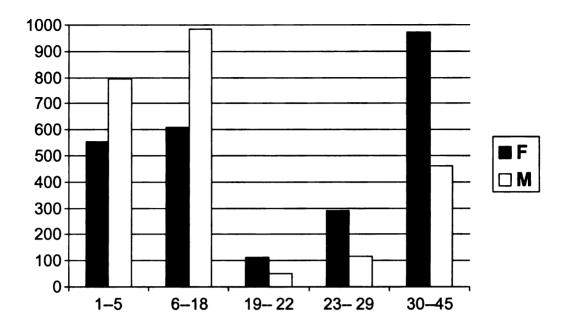



Figure 12. Total number of asthma hospital admissions by age group and gender during the study period

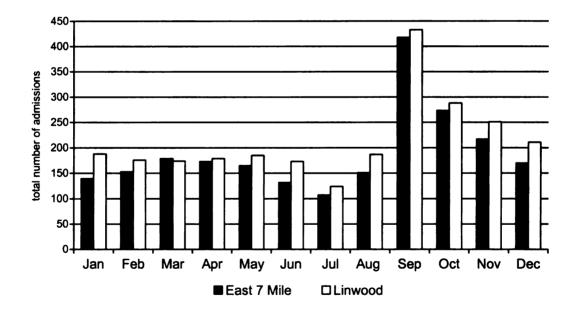



Figure 13. Monthly number of asthma hospital admissions in the two sites during the study period

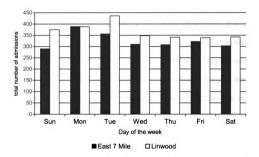



Figure 14. Asthma hospital admissions by day of the week during the study period

#### Regression analyses

The variance of daily hospital admission (6.02) was greater than its mean (3.3) and the distribution of daily hospital admissions was over-dispersed. We used negative binomial regression to investigate possible associations between air pollution levels and daily hospital admissions. Potential confounders were assumed to be year, month, weekday of admission; with age group, racial group, and gender of admittees; as well as average of relative humidity, minimum, mean and maximum temperature for the 4 days preceding of admission. Among fully saturated models (Table 8) with only one pollutant, models for NO₂, SO₂ and O₃ were significantly associated with hospital admissions for certain levels of the pollutant. Final (the most parsimonious) models were models with variables that dropping them could have changed RR more than 10%. In other words, year or

month or both were the only confounders. In the final model for  $SO_2$ , risk ratio was significant only for the third quartile of  $SO_2$  level; additionally, the risk ratios did not pursue a trend in this model. In the final model of  $NO_2$ , the first quartile level of the pollutant was not significantly associated with hospital admissions, but higher levels of  $NO_2$  were associated with the number of hospital admissions. All three levels of  $O_3$  showed a significant protective effect on the number of hospital admissions. In the  $NO_2$  and  $O_3$  models, one can notice an obvious trend in RR for different levels of the pollutants. At the next step, a model with year, month,  $SO_2$ ,  $NO_2$  and  $O_3$  was run (Tri-pollutant model, Table 9).  $SO_2$  failed to show significance in the tri-pollutant model. Finally we ran a model with two pollutants,  $NO_2$  and  $O_3$ , controlling for year and month of admissions. This model was considered as our final model with having significant RR for both  $NO_2$  and  $O_3$  (Table 10). The interaction term of  $NO_2$  and  $O_3$  did not gain statistical significance.

In mono-pollutant models,  $SO_2$  and  $NO_2$  were positively and  $O_3$  was negatively associated with the daily asthma hospital admissions. Association between  $PM_{2.5}$  and hospital admissions was not evident.

In a tri-pollutant model including those pollutants that showed any association in mono-pollutant models (SO₂, NO₂ and O₃), SO₂ was no more associated with the outcome. NO₂ had still a positive and ozone a negative association with the outcome.

Model	Pollutant (unit)	Equidistant levels	RR (95% CI)	k (95% CI)	Quartile levels	RR (95% CI)	k (95% CI)
SO ₂ + Month	SO ₂ (ppb)	SO ₂ (ppb) 0.1-4.0 (Ref.) 4.1-8.0 8.1-12 12.1-16.2	1.00 1.06 (0.94, 1.18) 1.26 (1.02, 1.54) 1.51 (1.18, 1.94)	0.1-3.0 0.08 3.1-4.7 (.0513) 4.8-6.9 7.0-16.3	0.1-3.0 (Ref.) 3.1-4.7 4.8-6.9 7.0-16.2	1.00 1.07 (0.93, 1.24) 1.08 (0.94, 1.25) 1.37 (1.17, 1.60)	0.07 (.041)
NO ₂ + Month	NO ₂ (ppb)	NO ₂ (ppb) 1.7-13.0 (Ref.) 13.1-24.3 24.4-35.6 35.7-46.9	1.00 1.01 (0.84, 1.21) 1.29 (1.04, 1.06) 1.22 (0.76, 1.98)	0.08 (.0513)	1.7-16.5 (Ref.) 16.6-20.3 20.4-24.8 24.9-46.9	1.00 1.01 (0.87, 1.16) 1.25 (1.07, 1.44) 1.37 (1.17, 1.66)	0.07 (.041)
O ₃ + Year+ Month	O ₃ (ppb)	O ₃ (ppb) 5.9-19.2 (Ref.) 19.3-32.5 32.6-45.8 45.9-59.1	1.00 0.79 (0.69, 0.90) 0.71 (0.59, 0.86) 0.67 (0.49, 0.92)	0.03 (.00909)	5.9-22.1 (Ref.) 0.03 22.2-27.0 .00909) 27.1-32.7 32.8-59.1	1.00 0.90 (0.78, 1.04) 0.85 (0.74, 0.99) 0.79 (0.66, 0.93)	0.03 (.0109)

Table 8. Mono-pollutant models[†] (SO₂, NO₂ or O₃) controlling for year and/ or month of admission

In fully saturated models all the potential confounders were controlled for. The per-

*Average level for 4 preceding days of admission Abbreviations; CI, confidence interval; ppb, part per billion; µg/ m³, microgram per cubic meter; Ref., reference level; RR, risk ratios; k. Dispersion parameter; NO₂, nitrogen dioxide; O₃, ozone; SO₂, sulfur dioxide

Pollutant [®] (unit)	Equidistant levels	RR ( 95% CI)	k ( 95% CI)	Quartile levels	RR ( 95% CI)	k ( 95% CI)
SO ₂ (ppb)	0.1-4.0 (Ref.)	1.00	Ö	0.1-3.0 (Ref.)	1.00	
•	4.1-8.0	1.07 (0.96, 1.19)	Ĉ	3.1-4.7	1.11 (0.98, 1.27)	
	8.1-12	1.14 (0.94, 1.39)	4	4.8-6.9	1.07 (0.93, 1.22)	
	12.1-16.2	1.21 (0.95, 1.55)	7.	7.0-16.2	1.15 (0.98, 1.35)	
NO ₂ (ppb)	1.7-13.0 (Ref.)	1.00	-	1.7-16.5 (Ref.)	1.00	
	13.1-24.3	0.98 (0.82, 1.16)	0.02 1	16.6-20.3	1.06 (0.93, 1.21)	
	24.4-35.6	1.07 (0.87, 1.33)	(.00409) 20.4-24.8	0.4-24.8	1.20 (1.05, 1.38)	0.02
	35.7-46.9	1.09 (0.70, 1.71)	Ň	24.9-46.9	1.19 (1.00, 1.40)	(.00409)
O ₃ (ppb)	5.9-19.2 (Ref.)	1.00	ی ک	5.9-22.1 (Ref.)	1.00	
	19.3-32.5	0.79 (0.67, 0.87)	N	22.2-27.0	0.90 (0.79, 1.04)	
	32.6-45.8	0.69 (0.57, 0.83)	3	27.1-32.7	0.85 (0.74, 0.98)	
	45.9-59.1	0.64 (0.47, 0.87)	ñ	32.8-59.1	0.78 (0.66, 0.93)	

admission 4 ł £ controlling for Table 9. Tri-pollutant model[†] (SO₂, NO₂ and O.) Abbreviations; CI, confidence interval; ppb, part per billion; µg/ m³, microgram per cubic meter; Ref., reference level; RR, risk ratios; k. Dispersion parameter; NO₂, nitrogen dioxide; O₃, ozone; SO₂, sulfur dioxide

Pollutant (unit) Equidistant levels	Equidistant levels	RR ( 95% CI)	k ( 95% CI)	Quartile levels	RR ( 95% CI)	k ( 95% CI)
NO ₂ (ppb)	1.7-13.0 (Ref.)	1.00	1.7-	1.7-16.5 (Ref.)	1.00	
	13.1-24.3	1.00 (0.85, 1.18)	16.6	16.6-20.3	1.07 (0.94, 1.21)	
	24.4-35.6	1.16 (0.96, 1.41)	20.4	20.4-24.8	1.24 (1.09, 1.40)	
	35.7-46.9	1.18 (0.76, 1.82)	0.02 24.9	24.9-46.9	1.25 (1.09, 1.43)	.025
O ₃ (ppb)	5.9-19.2 (Ref.)	1.00	(.00609) 5.9-22.1 (Ref.)	22.1 (Ref.)	1.00	(.00708)
	19.3-32.5	0.78 (0.69, 0.89)	22.2	22.2-27.0	0.92 (0.81, 1.05)	
	32.6-45.8	0.70 (0.59, 0.85)	27.1	27.1-32.7	0.87 (0.76, 1.00)	
	45.9-59.1	0.65 (0.48, 0.89)	32.6	32.8-59.1	0.81 (0.69, 0.95)	
t The period involv	red in this model wa	as April-September. eac	h year and the nun	nber of observation	1 The period involved in this model was April-September, each year and the number of observations (days in the two site) were 582.	e 582.

Table 10. Bi-pollutant model^{$\dagger$} (NO₂ and O₃) controlling for year and month of admission

F

*Average level for 4 preceding days of admission Abbreviations; CI, confidence interval; ppb, part per billion; µg/ m³, microgram per cubic meter; Ref., reference level; RR, risk ratios; k. Dispersion parameter; NO₂, nitrogen dioxide; O₃, ozone

## DISCUSSION

Among residents of 23 zip codes in Detroit, Michigan, we conducted an aggregative study to investigate the relationship between daily asthma hospital admissions and levels of four pollutants nitrogen dioxide (NO₂), ozone (O₃), particulate matter with a diameter less than 2.5  $\mu$ m (PM_{2.5}) and sulfur dioxide (SO₂).

Using negative binomial models and taking into account the average levels of pollutants over the 4-day period preceding daily asthma hospital admissions, regression analysis revealed that number of daily asthma hospital admissions was positively associated (increased) with NO₂ levels and negatively associated (decreased) with O₃ levels (adjusted for year and month of admissions). Asthma hospital admissions showed a positive association with SO₂ levels in single-pollutant model, but this association disappeared when we controlled for NO₂ and O₃. No association was evident between particulate matter (PM_{2.5}) and asthma hospital admissions.

For NO₂, the only pollutant that consistently showed a positive association with the outcome, an exposure-response trend was suggested. The estimated relative risk per 6 ppb increase in NO₂ (an increment roughly equal to one standard deviation) was 1.08.

It has been shown that both NO₂ and O₃ increase inflammatory response in lung and bronchial tissues ²². Although it is in debate whether or not these pollutants are associated with the incidence of new diagnosis of asthma ²³, most of the previous studies support at least a triggering effect for them even at low

levels ²⁴. Our finding that increasing NO₂ levels are positively associated with asthma hospital admissions is consistent with previous studies.

A conflicting finding in this study was the protective effect of increasing  $O_3$  levels on the number of daily asthma hospital admissions (As  $O_3$  levels increased, the number of admissions dropped). However in several previous studies with the same methodology as ours, increasing  $O_3$  levels appeared to be negatively associated with the number of asthma hospital admissions ⁸⁻¹¹.

In fact  $O_3$  is not emitted to the air directly and it is the product of a complex reaction between volatile organic compounds (VOCs) and nitrogen oxides in the presence of sunlight ¹⁶. We did not have data on the pollutants that are related to  $O_3$  levels, except for NO₂. Our data showed that  $O_3$  and NO₂ were negatively correlated. Additionally, the negative effect of  $O_3$  levels on average numbers of daily asthma hospital admissions was best seen when NO₂ was low in contrast to situations when level of NO₂ was high (Figure 15). Based on these explanations and the fact that  $O_3$  is a byproduct of other pollutants, we think that the negative association between  $O_3$  and the daily number of asthma hospital admission, found in this study might be due to the simultaneous lower levels of other pollutants, such as VOCs and not independently due to  $O_3$  levels.

Additional investigation, in the presence of data on pollutants involved in the pathway of  $O_3$  production such as VOCs and various nitrogen oxides (Figure 1), may help to further explain the effect of  $O_3$  levels on asthma hospital admission.

In the analysis, race emerged as a strong independent predictor of hospital admissions (asthma hospital admission was 3-5 times higher in African-Americans compared to Caucasians). Our results are inconclusive whether 'race' can affect asthma hospital admission due to air pollution. The pattern of hospital admission by gender is in agreement with previously reported studies (Figure 12).

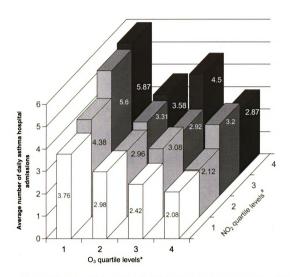
The effect of seasonality on asthma hospital admissions is a well-known phenomenon. We noticed a sharp rise of asthma hospital admissions in September. Other studies reported a seasonal variation in the asthma hospital admission ^{12,25} and Sheppard et al. had identical findings ⁶.

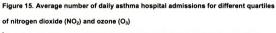
It has been argued that parents pay more attention to their children's preventive measures for asthma during holiday, as well as children being under less stress than when at school ¹². Indeed those who travel and become admitted out of the state are no longer being calculated for the number of hospital admissions. In our study, the September peak was evident for all age groups, particularly for ages less than 19 years. Holiday travels facilitate the acquisition of new viral strains by the community. It is possible that children share new strains of viruses and carry them to their families when they first come back to school. Viral upper respiratory infections, especially rhinovirus, are reported to be the most common cause of acute asthma exacerbations. Looking at asthma hospital admissions, Johnston et al. showed that viruses are associated with 80 to 85% of asthma exacerbations in school-age children ²⁶.

### Limitations and strengths

In this study we assumed that residents of zip codes within the 4-kilometer radius of each air-monitoring station were exposed to the same amount of pollutants. This assumption may evoke information bias, because the monitoring stations were not necessarily at the point that the overall effect of pollution in the site had been exhibited. For example the distance of the Linwood station to the three Interstate highways (I-75, I-94 and I-96) is less than a mile, while distance of most other points at this site is much further from these highways (Figure 2).

Ecological fallacy may apply to this investigation as we assumed all residents exposed to the same amount of the pollutants. Data that might affect individual exposures was not available (such as the duration the residents spent outside and individual level factors such as cigarette smoking). Although we did not have data on pollen count and flu episodes (that are related to asthma), however they are not likely to be related to air pollution. The data included information on the daily number of hospital admissions by age, gender and race, so we were unable to account for re-admissions and severity of attacks. Daily hospital admissions may have been biased due to different level of access to hospital among the study population, but the data had the potential to capture nearly all asthma hospital admissions because all hospitals in Michigan are committed to participate in the Michigan Inpatient Database.


We attempted to analyze the data using Poisson regression models as similar previous studies explained but the fit was not adequate in Poisson


regression models. Using negative binomial models we achieved an excellent goodness of fit for our models of regression analysis.

### **Conclusion**

This thesis, adds to the body of evidence that supports an adverse effect of air pollution on the increase of asthma hospital admissions and is an example of using regression analysis for the count data in epidemiologic studies. Because of the ecological nature of this study, the results do not necessarily indicate a causal association.

Among the four pollutants studied in this thesis, increasing NO₂ levels seemed to be related to higher daily asthma hospital admissions. Our analyses did not support the adverse effect of  $PM_{2.5}$  and  $SO_2$  on asthma hospital admissions. The conflicting protective effect of  $O_3$  on the number of asthma hospital admissions needs more investigation. We suggest designing future studies that take into account pollutants, which are important in the pathway of  $O_3$  production, such as VOCs and nitrogen oxides. Additionally conclusion, the best setting to study the effect of the air pollutants on asthma would be the assessment of exposures, confounders and outcomes at the individual level.





O₃ quartile levels (parts per billion): 1, 5.9-22.1; 2, 22.2-27.0; 3, 27.1-32.7; 4, 32.8-59.1 *NO₂ quartile levels (parts per billion): 1, 1.7-16.5; 2, 16.6-20.3; 3, 20.4-24.8; 4, 24.9-46.9

	Comments		In the 15-60 age group, asthma and respiratory visits were correlated in summer with SO2 and SO4 levels		Maximum number of admissions in September	Study population was predominantly African- American		Acute wheezy episodes as outcome	
		$SO_2$	0	+	o	AN	0	+	NA
	itant	Md	AN	+	0	AN	AN	AN	NA
	Pollutant	ő	0	+	+	+	+	+	+
		NO ₂	0	+	AN	AN	AN	o	AN
	Outcome	1	ED visits	Hospital admissions	ED visits	ED visits	ED visits	ED visits	ED visits
	Population	-	All ages	All ages	<65 years	1-16 years	≤16 years	≤16 years	All ages
studies	Location		Vancouver Canada	Helsinki	Seattle	Atlanta	Mexico City	London	Saint John Canada
Appendix. Summary of previous studies	Period of Ref.	study	1984- 1986 Ү-S-W	1987- 1989	1989- 1990	1990 S	1990 Jan- Jun	1992- 1993	1984- 1992 S
Appendix. Sur	First	(Year)	Bates (1990)	Ponka (1991)	Schwartz (1993)	White (1994)	Romieu (1995)	Buchdahl (1996)	Stieb (1996)

Abbreviations; +, positive effect; -, negative effect; o, no effect; NA, not available; S, summer; W, winter; Y, whole year; NO₂, nitrogen dioxide; O₃, ozone; SO₂, sulfur dioxide; PM, particulate matter; ED, emergency department

(Appendix Cont'd)	Cont'd)									
First	Period of	Ref	l ocation	Population	Outcome		Pollutant	ant		Comments
(Year)	study					NO2	õ	Md	$SO_2$	
Holmen (1997)	1990- 1993		Halmstad, Sweden	Kids≤ 15 Adults> 15	ED visits	+ in kids – in Adults	– in kids +in Adults	NA	0	<ul> <li>0.70 correlation between ozone and nitrogen dioxide</li> </ul>
Medina (1997)	1991- 1995		Paris	All ages	Doctors' home calls	+	+	+	+	
Anderson (1998)			London	All ages	Hospital admissions	+ 0	+ 0	+ 0	+ 0	All pollutants found to have significant associations with daily hospital admissions for asthma, but there was a lack
-	1987- 1992 W						1 0			groups in the specific
Garty (1998)			Israel	1-18 years	ED visits	+	Ì	ο	+	An exceptionally high incidence of ED visits of asthmatic children was observed during September
, include	0001			3-12 years	ED vieite	+	+	+	+	Positive associations found in
Cnew (1999)	1994 1994		Singapore	13-21 years		0	0	0	0	younger age group and no association for older
Sheppard (1999)	1987- 1994		Seattle, Washington	<65 years	Hospital admissions	NA	ο	+	0	Both PM _{2.5} and PM ₁₀ were studied
Abbreviatio O ₃ , ozone; 3	Abbreviations; +, positive effect; O ₃ , ozone; SO ₂ , sulfur dioxide; F	effect; - oxide; PN	Abbreviations; +, positive effect; –, negative effect O ₃ , ozone; SO ₂ , sulfur dioxide; PM, particulate ma	ect; o, no effect; NA, not available; \$ matter; ED, emergency department	A, not available jency departmer	; S, sumr nt	ner; W, w	inter; Y,	whole	<ul> <li>-, negative effect; o, no effect; NA, not available; S, summer; W, winter; Y, whole year; NO₂, nitrogen dioxide;</li> <li>&gt;M, particulate matter; ED, emergency department</li> </ul>

	Period of study	Ref.	Location	Population	Outcome		Poll	Pollutant		Comments
(Year)					-	NO ₂	õ	Mq	$SO_2$	
Tolbert (2000)	1999 S		Atlanta	≤16 years	ED visits	0	+	+ 10µm	AN	0.75 of correlation between PM ₁₀ - O ₃
Wong (2001)	1993- 1994		Hong Kong	<15 years	Hospital admissions	+	0	<b>+</b> 10µm	+	
Ritchie (2001)	1997- 1999 S		Indianapolis	1-17 years	Hospital admissions	+	I	NA	+	
Jaffe (2002)	1991- 1996 S		Ohio	5-34 years	ED visits	ο	o	+ 2.5- 10μm	+	Summer months, June- August
Lin (2002)	1981- 1993		Toronto	6-12 years	Hospital admissions	AN	NA NA	+	AN	5-6 day's average of both PM _{2.5} and PM ₁₀ were in the study- Individual subjects
Wong (2002)	1992- 1994		London	15-65 years	Hospital	+	+	+	+	Significant negative association between O ₃ and
	1995- 1997		Hong Kong	<65 years	admissions					cardiac disease admissions in London

nehan Abbreviations; +, positive effect; –, riegause effect; –, riegause effect; ED, emergency oo3, ozone; SO₂, sulfur dioxide; PM, particulate matter; ED, emergency o


(Appendix Cont'd)

# BIBLIOGRAPHY

- 1. Weisel CP. Assessing exposure to air toxics relative to asthma. Environ Health Perspect 2002;110 Suppl 4:527-37.
- 2. Redd SC. Asthma in the United States: burden and current theories. Environ Health Perspect 2002;110 Suppl 4:557-60.
- 3. Lebowitz MD. Epidemiological studies of the respiratory effects of air pollution. Eur Respir J 1996;9(5):1029-54.
- 4. Schwartz J, Slater D, Larson TV, Pierson WE, Koenig JQ. Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am Rev Respir Dis 1993;147(4):826-31.
- 5. Stieb DM, Burnett RT, Beveridge RC, Brook JR. Association between ozone and asthma emergency department visits in Saint John, New Brunswick, Canada. Environ Health Perspect 1996;104(12):1354-60.
- 6. Sheppard L, Levy D, Norris G, Larson TV, Koenig JQ. Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994. Epidemiology 1999;10(1):23-30.
- 7. Tolbert PE, Mulholland JA, MacIntosh DL, Xu F, Daniels D, Devine OJ, Carlin BP, Klein M, Dorley J, Butler AJ, Nordenberg DF, Frumkin H, Ryan PB, White MC. Air quality and pediatric emergency room visits for asthma in Atlanta, Georgia, USA. Am J Epidemiol 2000;151(8):798-810.
- 8. Ritchie I. Health effects of ozone and other environmental measures on children in the Inianapolis metropolitan area. 2001.
- 9. Buchdahl R, Parker A, Stebbings T, Babiker A. Association between air pollution and acute childhood wheezy episodes: prospective observational study. Bmj 1996;312(7032):661-5.
- 10. Anderson HR, Ponce de Leon A, Bland JM, Bower JS, Emberlin J, Strachan DP. Air pollution, pollens, and daily admissions for asthma in London 1987-92. Thorax 1998;53(10):842-8.

- 11. Garty BZ, Kosman E, Ganor E, Berger V, Garty L, Wietzen T, Waisman Y, Mimouni M, Waisel Y. Emergency room visits of asthmatic children, relation to air pollution, weather, and airborne allergens. Ann Allergy Asthma Immunol 1998;81(6):563-70.
- 12. Crighton EJ, Mamdani MM, Upshur RE. A population based time series analysis of asthma hospitalisations in Ontario, Canada: 1988 to 2000. BMC Health Serv Res 2001;1(1):7.
- 13. Weiss KB. Seasonal trends in US asthma hospitalizations and mortality. Jama 1990;263(17):2323-8.
- 14. Thorell D. The effect of ambient air pollution on chilhood asthma hospital admissions and emergency room visits in Flint, Michigan, 1999.
- 15. MDCH. An Analysis of Childhood Asthma Hospitalization and Deaths in Michigan, 1989-1993. Lansing, MI: Michigan department of community health, 1998.
- 16. EPA. Criteria air pollutants. http://www.epa.gov.
- 17. U.S. Census Bureau. http://www.census.gov/.
- 18. Atkinson RW, Anderson HR, Strachan DP, Bland JM, Bremner SA, Ponce de Leon A. Short-term associations between outdoor air pollution and visits to accident and emergency departments in London for respiratory complaints. Eur Respir J 1999;13(2):257-65.
- 19. SAS/STAT Software. Cary, SAS Institute Inc. NC 2001.
- 20. Cameron A. C, Trivedi, P.K. Regression Analysis of Count Data Cambridge University Press, 1998.
- 21. Stokes ME, C. S. Davis and G. G. Koch, Categorical Data Analysis Using the SAS System SAS Institute, 1995.
- 22. Bowler RP, Crapo JD. Oxidative stress in allergic respiratory diseases. J Allergy Clin Immunol 2002;110(3):349-56.

- 23. McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, Avol E, Margolis HG, Peters JM. Asthma in exercising children exposed to ozone: a cohort study. Lancet 2002;359(9304):386-91.
- 24. Gent JF, Triche EW, Holford TR, Belanger K, Bracken MB, Beckett WS, Leaderer BP. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. Jama 2003;290(14):1859-67.
- 25. Khot A, Burn R, Evans N, Lenney C, Lenney W. Seasonal variation and time trends in childhood asthma in England and Wales 1975-81. Br Med J (Clin Res Ed) 1984;289(6439):235-7.
- 26. Johnston SL, Pattemore PK, Sanderson G, Smith S, Campbell MJ, Josephs LK, Cunningham A, Robinson BS, Myint SH, Ward ME, Tyrrell DA, Holgate ST. The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis. Am J Respir Crit Care Med 1996;154(3 Pt 1):654-60.

