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ABSTRACT

MODULAR FINITE ELEMENT MODELING BY DISTRIBUTED INTERNET

ENGINEERING DESIGN AGENTS

By

Umar Farooq

Finite Element Analysis of structural assemblies using distributed Internet

Engineering Design Agents (i-EDA) is presented here. Finite Element modeling of

distributed models in the past has been a complicated issue. Typically, the assembly of

these structures has required global reformulation of the Finite Element equations for

solution and this reformulation consumes time and prevents efficient development of

large models. Structural models with incompatible Finite Element meshing are

assembled here using of the Modular Modeling Method (MMM). The method presented

here does not require reformulation and allows efficient distributed model assembly and

solution.

The MMM is a power-based systematic technique that eliminates global

reformulation of model equations. The method uses displacement and work constraints

to assemble the components at connections. This method is implemented through a set of

Internet Engineering Design Agents (i—EDA) to assemble the Finite Element Models

from models provided by component subsystem agents. The structural analysis of Plate

Assembly of two triangular plates is used as an example and 4 cases presented. Models

of the plate component and an assembly of these two plates are published as software

agents on the worldwide Internet.
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Introduction

Structural analysis problems frequently involve the assembly of two or more

components to form the structural system to be analyzed. Structural design and analysis

widely incorporates the Finite Element method. Finite Element method is a systematic

modeling method that generates mathematical models in structural design [Zienkiewicz,

1977 i]. While the Finite element method (FEM) can yield accurate, detailed stress

solutions for individual subsystem components, FEM is not efficient at assembling

components into assemblies. This is because every change in a substructure finite

element model requires global reformulation of equations to ensure compatible nodal

geometry of components at their interfaces. Reforrnulation of finite element mesh

equations is the single most time consuming activity in FEM analysis. It involves

rewriting the set of equations for each component and hence prevents efficient

development of assembly models. Additionally, the need to reformulate component

nodal geometries prevents the reuse of FEM models in a distributed modeling system.

At each component connection, the finite element method typically requires

compatible node geometry across the boundary connecting components. Mesh nodal

compatibility is typically required to construct a finite element model of an assembly

from the finite element models of its components. Methods that do not require nodal

compatibility still require that at the common interface the nodes on all subdomains must

have the same number and same type of degrees of freedom. These methods either need

interface elements to connect subsystems [Aminpour et a1, 1995ii] or require additional

constraints, typically in form of Lagrange multipliers for coupling the components into



system [Farhat and Geradin, 1992i“, Farhat and Roux, 1991”]. Both cases add to the

degrees of freedom of the system that results in overall increase of the size of the

problem. The Modular Modeling Method does not require equation reformulation or

nodal compatibility and does not add additional degrees of freedom to the system by

adding extra constraints to it.

Modular Modeling is a relatively new method for solving structural analysis

applications of distributed models. Modular modeling is a systematic equation assembly

scheme well suited to multi DOF systems. While this method can be used in several

energy domains like Electrical, Hydraulics, Acoustics and Heat transfer, the method will

be applied here to structures. This method is a power-based systematic modeling method

that eliminates equation reformulation from large model design, development, and

refinement across multiple energy domains [Byam and Radcliffe, 1999"]. The Modular

Modeling Method is a systematic approach to generate mathematical models with fixed

input-output structure.

The Modular Modeling Method couples the subsystems or components having

independent finite element modeling. The components need not to be nodally

compatible. The Modular Modeling Method uses constraint equations that identify the

relationship of the components to derive a model of the assembly of those components.

These assembly models then have the same fixed input-output structure as their

components and can be used to derive more complex assemblies.

Agent software facilitates the engineering design in a globally distributed

environment. Gosciak, [2001“] developed a component based design agent prototype



based on the i-EDA methodology [Radcliffe and Sticklen, 2001Vii] that uses a strict

communication protocol. The Design Agents are capable of representing the whole

system by providing answers to system attribute queries. In the work presented here,

individual components are modeled as design agents, their assembly is done according to

Modular Modeling Method and then the agents and the assembly are published on the

intemet using the i-EDA system.



The Modular Modeling Method

Fixed input-output structure is important to the Modular Modeling Method. Fixed

input-output structure requires standardization of input and output variables. In the

structural models discussed here, all inputs are nodal forces and all outputs are nodal

displacements. With standardized input and output variables, the mathematical model

that describes each component can remain fixed, independent of the system model into

which it is inserted. The assembled system generated by Modular Modeling has the same

standardized input and output variables [Byam and Radcliffe, 1999

Structural components defined by the FEM can be assembled using the Modular

Modeling method. In this work, the components are constructed independently and their

finite element models need not to have compatible nodal geometry. FEM models

generated without applied boundary conditions have rigid body modes and singular

stiffness matrices. Modular Modeling uses systems of constraint equations to connect

these singular component stiffness matrices by requiring conservation of power at

structural connections. This eliminates the need for both global reformulation and

compatible component nodal geometry. Because assembly models are assembled

without applied boundary conditions, they also have rigid body modes and singular

stiffness matrices.

Displacement Constraints connect two components by requiring consistent

displacements along their connecting boundaries. In this work, the components are

termed as Master and Slave components because the interface boundary displacements of

the slave component are written in terms of the master component. The idea of Master



and Slave is not new. Cook et a1 [1989“] used these terms within a subsystem. In the

substructure or component the nodes at boundary were called master and internal nodes

interior in that component were termed as the Slave nodes. Here, the whole component is

assigned the respective name. The component having fewest nodes at connection is used

as the master component. This allows nodal displacements of the slave to be written in

terms of the master component and results in removal of unconstrained nodes of slave

component at the connection. Work constraints require conservation of work along the

boundary of physical connections. By definition, work is the product of force and

displacement. The total work done across the connection boundary must sum to zero in

this static analysis.

Assembly of components using these constraints condenses out the connection

boundary nodes of slave component and retains connection boundary nodes of the master

component. The assembled model has the same fixed input output structure as its

constituent components. The model now can either be used a new subsystem to connect

to other subsystems or some boundary conditions and loads can be applied to allow for

the solution of the system displacement response.



Modular Assembly of Two Components

Static analysis of assembly of two components using the M is presented here.

The analysis assembles two components, which may or may not have nodal compatibility

at their connecting boundary. The stiffness matrices of both components are obtained

independently and are written in the linear form,

[KlIU] = [F] (1)

K is a component structure stiffness matrix, U is the vector of component nodal

displacements and F is vector of component nodal loads. Because every nodal

displacement has an associated nodal force, K is square. Additionally, K is often

symmetric [Zienkiewicz and Taylor, 1989*] and, in the MMM assembly, if all component

stiffness are symmetric, the assembly stiffness will also be symmetric. Here the

component structures have rigid body modes associated with them, thus K is singular.

The assembly of the component equations begins with the unconstrained, uncoupled,

[‘3‘ élfiiHiiil <2>

Displacement and work constraints will be used to assemble the subsystems. The

system equations,

displacement constraints are a set of equations that identify the physical relationships

between displacement output values at each connected node of the components. The

displacement values of connected nodes of one component are written in terms of

displacement values of the other component. The system equations are first rearranged,
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U and E are nodal displacement and force variables included in the work constraints.

Using the master “M” and slave “S” component notation, the stiffness matrices of the

components obtained are represented in the form of master and slave subsystems.

1

FKMlI KMlz 0 -61"- “FM—

KMZI. .....KM22K...........KW EM = EM (4)

° Ki” .3: 1193:
_ 21 22‘ ‘ T A     

The displacement constraints give the slave nodal displacementUS as a linear

combination of the master nodal displacements UM

[OSHSHOMI (5)

When these displacement constraints are applied, the number of columns of the system

equations is reduced by the number of slave displacements along interface boundary, the

constrained assembly equations result in a rectangular assembly matrix

   

KM“ KM12 0 W—UMF FFM-

$72.1. .....KMzz ..... .0.... 0 = FM (6)
0 KSIZSEKS“ :1"- F5

_ K5228 K52 :US _ _FS_

  



Work constraints are applied to remove E M and generate a square system matrix. The

work constraints require work done across the assembled component boundaries to be

zero when no external forces are present at the connected nodes. If some external forces

are present at the connected nodes (for example reaction forces), then this relation sums

to that external force vector.

FAI'IUM +F§US = AgxtfiM (7)

where the first product is the work done on the master component by the connection and

the second term is the work done on the slave component. Applying displacement

constraints on (7) yields

in}; + 1313810,, = 13;,(1M (8)

Because (8) must be valid for any displacement vector UM,

A TA A

FM +S F5 =Fex, (9)

The work constraints (9) applied to (6) results in a square, symmetric, assembly stiffness

model,

 

 

  

KMH KM12 0 UM EM

1‘ T " _ ‘

KMzi [KMzz +8 K5228] S K321 EM. — Eff. (10)

0 K s K Us Fs
512 511  

This new mathematical model of the assembly has different characteristics from its

component models in terms of nodes and geometrical shape. The matrix is symmetric as

long as the constituent stiffness matrices of master and slave components are symmetric.



The assembly model completely describes the structural properties of the assembled

model, has the same form as component models (1) and can be used to assemble more

complex assemblies.



Assembly Examples for FEM Plate Structure Models

The mathematical modeling of the structural assembly of two components has been

described using the Modular Modeling Method. This method will be applied below to a

square steel plate (Figure. 1) assembled from two triangular component models and

solved to verify the modular assembly method discussed above.

    

 

l<————c

: ilmlll““""«miiillitmuiimamii“

 

Modulusof ElastICIty 20x106N/cm?

Poisson‘5 Ratio: 0.27

6
0
m

i ‘4‘

Hi“ RN” .1!“

 
' ‘ “ ' """"“”‘“" V“ "U ‘ Load=141 N

Figure 1: The Steel Plate Example

  
Four cases are presented for different finite element meshes of each triangular plate.

The first two cases have compatible interface geometry with different grid size and are

used to compare the M result with conventional FEM assembly. The third case

generates an assembly with incompatible nodal geometry from the elements developed in

cases one and two. This case has no conventional FEM model comparison, however, so

10



its accuracy must be evaluated against similar FEM. models that should bound this case

from both above and below. Finally, a case of higher mesh resolution is presented to

demonstrate that, the higher the FEM component model resolution, the better is the

accuracy of the resulting, assembled, MMM model.

The individual component stiffness matrices are computed using triangular finite

elements by standard finite element procedures [Segerlind, 1984’“) and assembled with

the Modular Modeling Method. Boundary conditions and applied load shown in Figure 1

are applied to enable a solution [Cook et a1 1989“] of the singular assembled stiffness

matrix. The displacement values at each node are compared with the solution generated

by ANSYS for the first two cases and the RMS difference is calculated to verify the

accuracy of the M results. Finally, a third incompatible nodal geometry case is

demonstrated whose FEM component mesh resolution are in-between the first two cases.

This final case is then compared against the displacements predicted by the two; high and

low resolution results from ANSYS.

Case 1: Two, Single Element, Nodally Compatible, Plate Models

Case one is a simple 2D problem (Fig. 2) that assembles two triangular plates each

consisting of one triangular element with three nodes. Plates are assumed to have 2 DOF

at every node and two nodes along each side. Because their meshes have the same

number and placement of boundary nodes, the plates have compatible nodal geometry at

the boundary. Plates are assigned master and slave names, the stiffness matrices of both

plates derived, and the components are assembled using MMM. The boundary

conditions and loads are then applied and the nodal displacements found at each node for

comparison with commercial finite element software ANSYS results.

11
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Plate Assembly

Figure 2 Finite Element Meshes Of Plates and Assembly

The FEM models of these component plates are relatively small and are given as.

' 1.97

0.00

—1.97

1.97

0.00

_—1.97 
' 5.39

0.00

-5.39

1.46

0.00

L—1.46 

0.00

5.39

1.46

—5.39

—1.46

0.00

0.00

1.97

1.97

— 1.97

- 1.97

0.00

—1.97 1.97

1.46 —5.39

7.36 -3.42

—3.42 7.36

-5.39 1.46

1.97 —1.97

- 5.39 1.46

1.97 —1.97

7.36 — 3.42

- 3.42 7.36

-1.97 1.97

1.46 — 5.39

 

0.00 —1.97' in” “ ' f,,

—1.46 0.00 u., f,,.

_5.39 1.97 x106 ”2x = f2x

1.46 -1.97 “2,. f,,

5.39 0.00 us. f,,

0.00 1.97 _ _u,_,. _M _f,,, _M

0.00 —1.46' "ulx ' ' f1, '

-1.97 0.00 uly fly

1.97 1.46 ux106 2x = f2x

1.97 0.00 :43, f3,

0.00 5.39 d —u3y-S _f3y_s 

-

    

    

(11)

(12)

The assembly of master (11) and slave (12) models uses the displacement constraints (5),
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so that the constraint matrix S = I . The work constraints (9) are,
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” 7.36

- 3.42

—1.97

1.46

— 5.39

1.97

0.00

_ 0.00 

— 3.42

7.36

1.97

—5.39

1.46

—1.97

0.00

0.00

— 1.97 1.46 — 5.39

1.97 - 5.39 1.46

7.36 0.00 0.00

0.00 7.36 — 3.42

0.00 — 3.42 7.36

- 3.42 0.00 0.00

— 5.39 1.97 -—1.97

1.46 - 1.97 1.97

H
O
O
O

 

1.97

—1.97

— 3.42

0.00

0.00

7.36

1.46

    

fr. Ff].

f f

" = " (14)

f3): f3x

Lf3yJS -f3y4

0.00 0.00 “ Fug.” "f2.-

0.00 0.00 an f2,

—5.39 1.46 u... fr.

1.97 -1.97 u

x106 1” = f” (15)

— 1.97 1.97 u3. f3.

1.46 ”5.39 “3), f3),

7.36 -3.42 u... f...

—5.39 -3.42 7.36 _. Lu“)- ..f4yd     
The assembly process (3) — (10) requires a reordering of the nodal variables and the

above result reflects the new nodal displacement and force order. Now boundary

conditions and Nodal forces are applied to further reduce the order of the problem (see

Appendix). The result of application of boundary conditions and load is the set of nodal

displacements shown in Table 1. Because standard element equations are used for the

finite element model, these results agree exactly with the results computed by ANSYS for

this simple model.

Table 1 Displacement Values At Each Node For Both Plates With 1 Element Each

 

 

 

 

 

    
 

 

Node X-Displacement X-Displacement Y-Displacement Y-Displacement

Number Ux (ANSYS) (cm) Uy MMM (cm) Ux (ANSYS) (cm) Uy (MMM (cm)

1 0.0000E-O4 0.0000E-O4 0.0000E-04 0.0000E-04

2 0.0000E-O4 0.0000E-O4 0.1403E-04 0.1403E-O4

3 -O.1 137E-04 -O.1 137E-O4 0.4407E-O4 0.4407E-O4

4 0.3137E-O4 0.3137E-O4 0.6350E-04 0.6350E-04

RMS DIFFERENCE I Ux=0.0000E-O4 J U, =0.0000E-04  
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Case 2: Nodally Compatible Component Plates with 4 Elements

This case involves two finite element models with 3 nodes on each side. Again this is

a case of compatible nodal geometry. This case demonstrates thatM produces the

same results as a standard FEM package for multiple element models and will be used for

later verification of the nodally incompatible model.

 

 

 

 

     
   

Master Plate 5 5

4 9
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4 .

2 . MMM
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Slave Plate 2 3 Y Plate Assembly

 

Figure 3 Component Plate FEM Meshes With 4 Elements Each And The Assembled

Model

The master plate stiffness matrix,
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Nodal Displacements,

U = [111x L11

and Nodal forces,

F=[f1,r fly fzx fzy f3x f3y

y “2x
uzy

“3x

The Slave plate stiffness matrix,
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The corresponding Nodal Displacements and Forces are
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The displacement constraints (5) for this case are
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The assembly is done using the above constraints. By applying boundary conditions and

loads, nodal displacements are found and compared with ANSYS results. The RMS

difference calculated for this nodally compatible assembly shows no difference in results.

Table 2 Nodal Displacements For Both Plates With 4 Elements In Each Plate

 

 

 

 

 

 

 

 

 

     
  

Node X-Displacement X-Displacement Y-Displacement Y-Displacement

Number (Ux ) (ANSYS) (Ux ) (Modular Uy (ANSYS) Uy (Modular

(cm) Modeling) (cm) (cm) Modeling) (cm)

1 0.0000E-04 0.0000E-04 0.0000E-04 0.0000E-04

2 0.0067E-04 0.0067E-04 0.1493E-04 0.1493E-04

3 0.0009E-04 0.0009E-04 0.3641 E-04 0.3641 E-04

4 0.0000E-04 0.0000E-04 0.241 1 E-04 0.241 1 E-04

5 -0.1621 E-04 -0.1621 E-04 0.3796E-04 0.3796E-04

6 -0.2241 E-04 -0.2241 E-04 0.7092E-04 0.7092E-04

7 0.3003E-04 0.3003E-04 0.4024E-04 0.4024E-04

8 0.5739E-04 0.5739E-O4 1 .0127E-04 1 .0127E-04

9 0.0319E-04 0.0319E-04 0.7784E-04 0.7784E-04

RMS DIFFERENCE x=0.0000E-04 l Uy =0.0000E-04

 

Case 3: Nodally Incompatible Plate Assembly Model.

Here a plate problem with incompatible interface nodes is solved. The assembly

involves a master plate having 2 nodes on each side and a slave plate with 3 nodes on

each side as shown in figure (4). This case is combination of previous two cases. The

finite element model already found in (12) is connected with finite element model already
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found in (16) to make an assembly of finite element models having incompatible nodal

geometry.
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Figure 4 Assembly of Models having Incompatible Nodal Geometry. Grayed Node Is

Condensed Out

The displacement constraints given for this case are
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(20)

Note that the S matrix is not identity in this case as opposite to the previous two cases.

The work constraints conserving work at the boundary in this case are
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The assembled model uses the constraint equations (20-21) for assembly.
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(21)

The

application of nodal loads and boundary conditions results in nodal displacements shown

in table 3.

Table 3 Displacement Values Of Assembled Plate Of Incompatible Nodal Geometry

 

 

 

 

 

 

 

Using Modular Modeling

Node X-Displacement Y-Displacement

Number Ux (cm) Uy (cm)

1 0.0000E-04 0.0000E-04

2 0.3236E-04 0.7543E-04

3 -0.1 884E-04 0.5699E-04

4 -0.0648E-04 0.1281 E-04

5 0.0000E-04 0.2237E-04

6 -0.1 584E-04 0.3035E-04     
The displacement values are in accordance with the expectations as this model lies in

between the stiff model (case 1) and the relatively compliant model (case 2). The grayed

node “A” is the simple linear interpolation of nodes 1 and 3 and its displacement values

are defined by the displacement constraints in terms of nodes 1 and 3. The connection

force values can be ascertained by substituting the displacement values calculated above

(table 3) in the assembled model.
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The comparison of displacement values for all 3 cases shown in graph 1 indicates the

behavior of displacement values at the interface. Case 3 is less stiff than case 1 and more

stiff than case 2 so the nodal displacement values obtained in this case are expected to lie

between the first two cases. Figure 5 indicates the expected results. It also indicates that

whether the nodal interface geometry is compatible or not, MMM assembles the model

and gives the expected results. Thus it can be assumed that MMM correctly assembles

the model

 

Total Displacements Along Interface Boundary
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Figure 5 Comparisons Of The Displacement Values At Nodal Interface Boundary

Case 4: Assembly of Higher Resolution Finite Elements.

The assembling of higher resolution meshes is done in the same way as discussed

above. Consider the same example plate with the master and slave plates having 3 and 4

nodes along their boundaries shown in figure (6). This is a problem with relatively large

DOF and more incompatibility at the interface boundary. The displacement and work

constraints are given respectively as
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Figure 7 Assembled Model With Incompatible Nodal Geometry. The Gray Nodes

Indicate Condensed Nodes

The displacement values obtained at each node are given in Table 4.

Table 4 The Displacement Values Of Assembled Plate Of Incompatible Nodal

Geometry Using Modular Modeling Method

 

 

 

 

 

 

 

 

 

 

 

 

    

Node X-Displacement Y-Displacement

Number U, cm Uy (cm)

1 0.0000E-04 0.0000E-04

2 0.3153E-04 0.4606E-04

3 0.5899E-04 1 .1037E-04

4 -0.0075E-04 0.4265E-04

5 0.0188E-04 0.8704E-04

6 -0.2874E-04 0.7985E-04

7 -0.0005E-04 0.1397E-04

8 -0.0669E-04 0.21 14E-04

9 -0.0918E-04 0.3178E-04

10 0.0000E-04 0.2965E-04

1 1 -0.1688E-04 0.3380E-04

12 -0.2610E-04 0.5476E-04
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The case predicts the displacement response of the system at meshes that have higher

resolutions than the previously discussed cases. It is evident from the results that the

displacement response actual solution as the number of DOF of system increase as shown

in fig 8. Again, the displacement values of gray shaded nodes “A” and “B” are the

combination of nodal values of l, 4 and 6 as defined in (23).
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Figure 8 Comparisons Of All Cases At Nodal Interface Boundary
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Internet Agents for Plate Models and their Assembly

A globally distributed market requires software to design, manufacture and market

the assemblies of components and subsystems. An intemet-based engineering design

system would reduce design cycle time and increase efficiency. These intemet-based

agents should, not only be able to effectively and rapidly assemble these components but

also protect proprietary information underlying these models. In earlier work by Gosciak

(2001), a prototype system of Internet Engineering Design Agents (i-EDA) was

organized (Radcliffe and Sticklen, 2001) to facilitate the exchange of engineering design

performance data between corporate organizations while protecting proprietary design

information. The current work incorporates the plate models and their assemblies into

the i-EDA system (Fig 9).
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Figure 9 The i—EDA System Schematic Showing A User Client That Queries Model

Agents Registered in the Agent Registry Using Valid Queries From the Query Ontology.
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Users of the i—EDA system employ client software to submit queries to agents

representing physical components and systems from which a new design is to be

assembled. The agents are registered with the i-EDA Registry. The i-EDA system

includes an Ontology, or ordered list, of valid queries. Typical queries return information

on engineering, geometric, and or economic performance of the physical objects they

represent. The model agents represent either components or assemblies of components.

The framework of an i-EDA agent is shown in Fig. 10. The individual design agent

includes a network communication protocol, a query handler, a knowledge based system

and the resource set. Queries are received via the communication protocol and parsed by

query handler into a suitable form. The knowledge base then utilizes the internal

resources to assemble the response. For agents representing system, these resources may

consult agents representing system components.

 

Communication via TCP/IP

 

Query Handler

 

Knowledge base system

 

  

Resources

Model Application Rule

Database Software Database

        
 

Figure 10 The Framework of an Agent in the i-EDA System
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The distributed Design Agents for the plates, represented by two separate companies

“Upper Plates Inc” and “Lower plates Inc” were added to the existing i—EDA system.

These design agents are component agents that provide independent answers to the query

for stiffness and return the plate stiffness matrix for each of these components. In

addition queries for cost, color, weight, area, size and delivery time are answered. These

plate models follow the same architecture as existing agents for truss and spans system

assemblies formed from bar components. The attributes are requested as queries to the

design agents. For answering the queries, separate software routines address each query

attribute for any part number of the specific plate. The front panel, block diagram and

framework of the plate agents are similar.

The stiffness query responses for the l-element models of the upper and lower plates

are shown in Fig (1 1). For a specific plate part number as shown, the agents build and

display the FEM model of the plate. Here, the stiffness matrices displayed on the front

panels of both plate agents are same as the stiffness matrices generated in (13-14).
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Figure 11 The Front Panels Showing Stiffness Matrices Of The Upper And Lower

Component Plates
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The plate agent assembler “Miller Smith Plates”(fig 12) is a system class of design

agents that uses the information provided by the component plate agents to answer the

queries. As an example, this design agent takes the FEM models provided by the other

plate agents as input, assembles the combined Plate stiffness matrix using Modular

Modeling Method for a plate part number and represents the stiffness of the assembled

plate as a new attribute. Different part numbers for different plates that may or may not

have compatible nodal geometry are visible on the front panel. Future class of agents can

further use the information provided by this agent in the similar fashion. This is the

advantage of i-EDA that generalized architecture allows for use of the resources by other

design agents. The stiffness matrix obtained here is same as obtained in (15).
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Figure 12 The Front Panel Of Plate Agent Assembler.

26

  



Conclusions

The new method (MMM) of solving structural problems is both efficient and time

saving. It avoids the reformulation of system equations and allows easy assembling for

problems that involve Incompatible Finite Element meshing without adding constraints to

them. Also, it condenses the order of problem to a level that is far more convenient than

some of the methods currently used.

Modular modeling of structures using independent, Finite Element formulations for

components has been explained. This method does not require components to have

compatible finite element grids, assembles the components without reformulating

equations or requiring any interface element or additional constraints.

For assembling the two components the displacement and work constraints were

applied after the partitioning of components into connected and unconnected nodes.

These equations conserved the work done at connections and eliminated the linearly

dependent equations of the system thus reducing the order of the system. The assembly

model formed from its component models had different shape and nodal geometry but the

same input output structure as its components. This model can now be used

independently as a new finite element model of plate assembly. This model can also be

used as a component for further assemblies.

Four test cases were presented. Each test case represents differing resolution models

of identical physical plate geometry, boundary conditions and nodal loads. The first two

cases are of compatible nodal interface geometry, first case having course mesh
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resolution resulting in a stiff model, and the second having relatively fine mesh resulting

in a compliant problem. Solving these cases demonstrated that MMM produces the same

results as any standard FEM used for the solution of such problems. The third case is an

incompatible nodal interface geometry case that uses the FEM models obtained by the

first two cases. This case demonstrated that the MMM produced the expected results that

are less stiff than the first case and less compliant than the second case. The fourth case

completed the examples by demonstrating that as resolution of models increases there is

an improvement in the results, and that MMM accurately predicts the displacement

response along the boundary of models.

These test cases show

0 Modular Modeling Method derived for assembling components agrees exactly with

the standard FEM package hence it is valid.

0 Modular Assembly has the same fixed input output structure as its components. The

assembly of components does not require reformulation of system equations and the

order of the system equations is reduced.

0 Modular Modeling Method accurately predicts the behavior of models having

incompatible nodal interface geometry.

0 Method uses simple constraints to assemble any two components. The methodology

is generic for all cases and no special element or additional constraints are required to

assemble the models with incompatible interface boundary.

Internet Design agents for component plate models and their assemblies have been

built for global distribution of engineering design database. It is shown that the plate
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agent models generate the same FEM models as other commercial FEM packages. The

plate assembly agent assembles the FEM models of different plates provided by plate

agent models using the Modular Modeling Method. The plate assembly agents maintain

the structural properties of assembly by maintaining the fixed input output structure thus

enabling the assembly to be used as a component for further assemblies. The system of i-

EDA allows publishing of these models over the global internet market.

Structural assemblies of models involving incompatible nodal geometry require

special treatment either in the form of global reformulation or additional constraints. The

Modular Modeling Method presented here avoids the global reformulation of equations

or additional constraints and efficiently assembles the systems giving accurate results.

Thus it avoids complicated designs and saving computation time. The modeling methods

developed here form the analytical foundation for new i-EDA agents permitting

distributed modeling of structural systems.
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Appendix

The Finite Element Model Of Plate

The triangular plates used in analysis are equal in dimensions (6 x 6 x 0.5) and are

assembled to form a square plate shown in (figure 1). Plates are made of steel and have a

Young’s Modulus of 30 x 106 N/cmz. Each plate uses one or more Triangular Elements

to form the stiffness matrix of the plate. The stiffness matrix obtained for each plate is

according to standard FEM procedure [Segerlind, 1984] for triangular elements.

For case 1, after the model is assembled in (15), the rigid body modes are removed by

the application of Boundary conditions and Nodal forces according to (figure 1). The

applied forces can be resolved into 100 N in x and y directions. Also, since node 1 has

zero displacement in both x and y directions and node 3 has zero displacement in x

direction only, hence the equations associated with these nodal displacements are deleted

and the model is reduced to the form

 

”7.36 1.45 -1.97 0.00 0.00" ’11,,“ '0‘

1.45 7.36 0.00 -1.97 1.97 14,, 0

-1.97 0.00 7.36 1.45 .5.39 x106 14,, = 0

0.00 -1.97 1.45 7.36 -342 11,, 100

_0.00 1.97 -539 -342 736‘ or,“ 1100‘     

This square symmetric matrix is inverted and nodal displacements are ascertained.
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Script CJR

This script executes the Modular Modeling examples for Structural analysis

Problem The user provides the Plates’ dimensions and their connectivity

One Element Example

XM = [0 0 6]; XS = [0 6 6]; Input of dimensions For both plates

YM=[O66]; YS= [006];

SM =[1 0 0 0 0 0; Connectivity Matrix for Master Plate

0 1 0 0 0 0;

0 0 0 0 1 0;

0 0 0 0 0 1];

SS = SM; Connectivity Matrix for Slave Plate

For Both Plates With 4 Elements

XM= [00303 6]; YM=[03 3666] 4Elements in Both Plates

XS=[036366];YS=[000336]

SM=[100000000000;

010000000000;

000010000000;

000001000000;

000000000010;

000000000001];

SS=[10000000000Q

01000000000Q

00000010000m

00000001000m

00000000001m

000000000001L

For Master Plate With 9 Elements And Slave Plate With 4 Elements

XM = [0,0,2,0,2,4,0,2,4,6]; YM = [O,2,2,4,4,4,6,6,6,6];

XS = [O,3,6,3,6,6]; YS = [0,0,0,3,3,6] ;

SM=[10000 000000000000000;

01000 000000000000000;

00001/20 00001/20 00000000;

0000 01/2000001/200000000;

00000 000000000000010;

00000 00000 0 000000001];

SS=[100000000000;

010000000000;

000000100000;
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000000010000;

000000000010;

000000000001];

KM = Build (XM, YM,'M'); Finds Stiffness Matrices from function Build

KS = Build (XS, YS,'S');

[K] = Assemble (KM,KS,SM,SS) Stiffness of Assembled Components from Assemble

Boundary Conditions and Solution ofequations.

Compatible Plates With lOne Element In Each Plate

Kmodular = K([[2:2],[5:8]],[[2:2],[5:8]]); Application of Boundary Conditions

Fmodular = [0;0;0; 100; 100]; Application of Nodal Forces.

Umodular = Kmodular\Fmodular Nodal Displacements

Compatible Plates With Each having Four elements :-

Kmodular = ktransform([[l:2],[4:6],[9:18]],[[1:2],[4:6],[9:18]]);

Fmodular = zeros (15,1);

Fmodular (12,1) = 100;

Fmodular (13,1) = 100;

Umodular = Kmodular\Fmodular;

Finally Master Plate with 9 elements and slave with 4 elements

Kmodular: K ([[1:6], [8:12], [15:26]], [[1:6], [8:12], [15:26]]);

Fmodular = zeros (23,1);

Fmodular (20,1) = 100;

Fmodular (21,1) = 100;

Umodular = kmodular\fmodular
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The Function ASSEMBLE

function [KC] = Assemble( KM, KS,SM,SS)

[rowa cola] = size(KM);

[rowb colb] = size(KS);

TM = 1:cola;

TS = 1:colb;

[SM,KM,TM,count] = Kparse(SM,KM,TM);

[SS,KS,TS,countS] = Kparse(SS,KS,TS);

katrans = KM ;

kbtrans = KS;

kal l = katrans([l:count],[1:count]);

ka12 = katrans([lzcount],[count+1:rowa]);

ka21 = katrans([count+ l :rowa],[ 1 :count]);

ka22 = katrans([count+ l :rowa],[count+ l :rowa]);

kbll = kbtrans([l :countS],[1:countS]);

kb12 = kbtrans([l:countS],[countS+l:rowb]);

kb21 = kbtrans([countS+1:rowb],[ 1 :countS]);

kb22 = kbtrans([countS+l:rowb],[countS+1:rowb]);

[rowkall colkal l] = size(kal l);

[rowkbll colkbl 1] = size(kbl l);

ktransforrn = [ kall ka12 zeros(rowkall,colkb11);

ka21 [ka22+(SM')*(kb22)*(SM)] (SM')*(kb21);

zeros (rowkbl 1, colkal 1) kb12*SM kbl l];

KC=ktransform;

*****************************************************************

The Function BUILD

function [k]: Build(X,Y,plate)

% This function computes stiffness matrices of Triangular Plates with Plates'

% dimensions given as input.

% k = Output in the form of stiffness matrix

% X = Input of X co-ordinate of any Triangular Plate

% Y = Y co-ordinate of the triangular plate.

% Plate = Master or Slave Plate

[numelements, nodesperside] = CalcElements(X);

N = connect (nodesperside, plate);

N1 = N(1,:); NJ = N(2,:); NK = N(3,:); elem = length(NI);

*******************************************************************
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The Function CalcElements

function [numelements, nodesperside] = CalcElements (X)

% function CalcElements (X)

% This function computes the number of elements and nodes

% in each side of plate, given the nodal Positions/total nodes.

m = length(X); Calculates length of input vector

dummy=3; A dummy variable introduced to map the nodal elements and dimensions.

n=1; A counter

m = m - dummy;.

while In > 0 For more than one elements procedure is straightforward.

dummy = dummy+ 1;

m = m-dummy;

n = n+1;

end

nodesperside = n + 1; Gives nodes on each side of plate.

numelements = n"2 Gives the total number of elements

*************************** ***************************************

The Function Kparse

function [S,K,T,count]=Kparse(S,K,T)

% Kparse parses a stiffness matrix K

% based on a supplied constraint matrix S

% and modifies the mapping transform vector T

[N,M]=size(K); find the number of DOF N

[M,P]=size(T) Is T a column vector?

if P~=1; T=T'; M=P; end If not, make it a column vector

Test entry data

if size(T) ~= N

disp('size(T) not equal to DOF‘)

return

end

if N~=M

disp('stiffness matrix and T do not agree')

return

end

Parse stiffness matrix

j=1 ; Point to end

count=0 ;

for i=1 :N

n=N-i+j; start at last column

if S(:,n)==0 test for no involvement in constraints S

K=[ K(:,n) K(:,lzn-l) K(:,n+1:N)]; If not move nth column left to top

K=[ K(n,:); K(l:n—1,:); K(n+l:N,:)]; and move nth row up to top
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T=[T (n);T(l:n-1);T(n+1:N)]; Also reorder transformation map T

S=[S (: ,n) S(:, 1 :n— 1) S(:,n+1 :N)]; also move nth column of S left to top

j=j+1 ; found a constraint

count=count+1 ;

d: N-count

end

end

S=S (:,count+ 1 :M);

************************** **************************************

The Function Stiffnessmat

function K = stiffnessmat(X,Y,NI,NJ,NK,elem)

% Stiffness Matrix Computation Function for a 2D Plate

% X = X Coordinate of the Plate

% Y = Y Coordinate of the Plate

% Nn= Node Numbering for each element, n=I,J,K

% elem = Total number of elements in the Plate

Defining System Constants

EE = 20* 10"6 Modulus of Elasticity in N/cm2

u = 0.27; Poisson's Ratio

t = 0.5; Thickness in cm

Kall= zeros(2*length(X),2*length(Y)); Allocation of space for Variables

for n=1:elem This Loop Computes 'B' used

Bi(n)=Y(NJ(n)) - Y(NK(n)); in Triangular elements

Bi(n)=Y(NK(n)) - Y(N1(n));

Bk(n)=Y(NI(n)) - Y(NJ(11));

Ci(n)=X(NK(n)) - X(NJ(11));

Cj(n)=X(N1(n)) - X(NK(n));

Ck(n)=X(NJ(11)) - X(NI(n));

M = [ 1 X(NI(1)) Y(NI(1));

1 X(NI(1)) Y(NJ(1));

1 X(NK(1)) Y(NK(1))];

A = 0.5*det(M) Area of each ELEMENT

DD = (EE/(l-u*u))*[ l u 0; Since areas are the same for all elements

U 1 0; Compute Just ANY One of them

0 0 (l-u)/2];

ij=l
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forn=lzelem

BB(:,ij:ij+5)=(0.5*[Bi(n) 0 Bj(n) 0 Bk(n) 0;

0 Ci(n) 0 Cj(n) 0 Ck(n);

Ci(n) Bi(n) Cj(n) Bj(n) Ck(n) Bk(n)])/A;

K(:,ij:ij+5) = t*A*((BB(:,ij:ij+5)')*DD)*BB(:,ij:ij+5);

ij=ij+6;

end

ijk=zeros(l,6);muj = 1;

for n = lzelem

ijk(1)= 2*NI(n) -1;

ijk(2) = 2*NI(n) ;

ijk(3) = 2*NI(n) -1;

ijk(4) = 2*NJ(n) ;

ijk(5) = 2*NK(n) -1;

ijk(6) = 2*NK(n);

Ktemp = K(:,muj:muj+5);

for mj=l :6

for mi = 1:6

Kall(ijk(mi),ijk(mj)) = Kall(ijk(mi),ijk(mj)) + Ktemp(mi,mj);

end

end

muj = muj +6;

end

K=Kall;

************************ *******************************************

The Function Connect

function [nodalcords] = connect(nodesperside,plate)

% function nodalcords = connect(nodesperside,plate)

% This function computes nodal coordinates " N "

% if the input is in the form of nodes on any side,

% for both Master and Slave Plates.

switch plate

case 'M'

nodesperside = (nodesperside-1)*(nodesperside- 1);

maxrow = sqrt(nodesperside) + 1;

maxcol = sqrt(nodesperside) + 1;

row = maxrow;

col = 1;

count = 0;

rownum = l;

coltest = 1;

structmatM = zeros(maxrow,maxcol);

nodalcords = zeros(3,nodesperside);

while coltest <= maxcol
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for traverse = 1 : rownum

count = count + 1;

structmatM(row,col) = count ;

col = col + 1;

end

rownum = rownum + 1;

if row ~= 1

row = row -1;

end

col = 1;

coltest = coltest + 1;

end

structmatM;

nodecol = l;

noderow = 1;

flag = 1;

row 2 maxrow;

col = 1;

nodetest = 1;

while nodetest <= nodesperside

if flag ==1

nodalcords (noderow,nodecol) = structmatM(row,col);

row = row - 1;

col = col + 1;

noderow = noderow + 1

nodalcords(noderow,nodecol) = structmatM(row ,col);

noderow = noderow + 1

col = col - l;

nodalcords(noderow,nodecol) = structmatM(row,col);

if structmatM(row+ l ,col+ 1)::

flag: 1; col = 1;

else

flag = 2;

end

elseif flag == 2

row = row +1;

nodalcords(noderow,nodecol) = structmatM(row,col);

col = col + 1;

noderow = noderow + 1;

nodalcords(noderow,nodecol) = structmatM(row,col);

noderow = noderow + 1;

row = row - l;

nodalcords(noderow,nodecol) = structmatM(row,col);

row = row+1;

flag = 1;

end
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end

nodetest = nodetest + l;

nodecol = nodecol + 1;

noderow = 1;

otherwise

maxrow = nodesperside;

maxcol = nodesperside;

row = maxrow;

col = 1;

count = 0;

rownum = maxrow;

coltest = l;

structmat = zeros(maxrow, maxcol);

elem = (nodesperside-1 )"2;

nodalcords = zeros(3,elem);

while coltest <= maxcol

for traverse = 1:rownum

count = count + 1;

structmat (row, col) = count ;

col = col + 1;

end

rownum = rownum - 1;

if row ~= 1

row = row - 1;

end

coltest = coltest + 1;

col = coltest;

end

structmat; row = maxrow; col = 1;

noderow = 1; nodecol=l; nodetest = 1;

flag = 1;

while nodetest <= elem

if flag ==

nodalcords(noderow,nodetest) = structmat(row,col);

col = col + 1;

noderow = noderow + l;

nodalcords(noderow,nodetest) = structmat(row,col);

row 2 row -1;

oderow = noderow + 1;

nodalcords(noderow,nodetest) = structmat(row,col);

if col == maxcol

col = (maxrow - row) + 1;

flag = 1;

else

flag = 2;
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end

else

row 2 row + l;

nodalcords(noderow,nodetest) = structmat(row,col);

col = col + 1;

row = row -1;

noderow = noderow + l;

nodalcords(noderow,nodetest) = structmat(row,col);

col = col - l;

noderow = noderow + l;

nodalcords(noderow,nodetest) = structmat(row,col);

row = row + 1;

flag = 1;

end

noderow = l;

nodetest = nodetest + 1;

end

nodalcords;

end

********************* **************************************************
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