THE ACCELERATION OF THE URANIUM (IV) -URANIUM (VI) ELECTRON EXCHANGE REACTION BY TARTARIC ACID

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY

E. Phillip Benson, Jr.
1963

C. 2

LIBRATY
Michigan Lo J
University

MICHIMAN STATE UNIVERSITY
DEPARTMENT OF CHEMISTRY
, MICHIGAN

ABSTRACT

THE ACCELERATION OF THE URANIUM(IV) — URANIUM(VI) ELECTRON EXCHANGE REACTION BY TARTARIC ACID

By E. Phillip Benson, Jr.

The effect of several organic acids on the exchange reaction between uranium(IV) and uranium(VI) in aqueous perchloric acid was studied. The catalytic effect of these acids was found to increase in the order malonic acid < maleic acid < maleic acid < tartaric acid.

More detailed studies of the reaction in the presence of tartaric acid revealed that the order of the reaction is 1.3 with respect to uranium(IV) and 0.47 with respect to uranium(VI). The exchange is 0.90 order with respect to tartaric acid and hydrogen ion has an order of -2.9.

The predominant uranium species in solution are ${\rm U}^{+4}$ and ${\rm UO_2}^{++}$. The following three paths for exchange

$$U^{+4} + H_2O \iff UOH^{+3} + H^{+}$$
 (fast)

$$UOH^{+3} + UO_2^{+2} \iff Y^{+3} + 2H^+$$
 (fast)

$$Y^{+3} + UOH^{+3} \iff Z^{+6}$$
 (rate-determining)

and

$$U^{+4} + H_2O \iff UOH^{+3} + H^+$$
 (fast)

$$UOH^{+3} + HTar^{-} \longrightarrow (A.C.)^{+2}$$
 (rate-determining)

$$(A.C.)^{+2}$$
 + UO_2^{++} \longrightarrow products (fast)

E. Phillip Benson, Jr.

(fast)

(A.C.) (A.C.) products

combine to give an expression for the overall rate

$$R = \frac{5.7 \times 10^{-4} [\text{U}^{+4}]^2 [\text{UO}_2^{++}]}{[\text{H}^+]^4} + \frac{7.3 \times 10^{-5} [\text{U}^{+4}] [\text{H}_2 \text{Tar}]}{[\text{H}^+]^2}$$
$$+ \frac{1.2 \times 10^{-3} [\text{U}^{+4}] [\text{H}_2 \text{Tar}] [\text{UO}_2^{++}]}{[\text{H}^+]^2}$$

Rates calculated using this expression agree well with rates obtained experimentally.

The rate of the reaction increased with increasing ionic strength and was markedly accelerated by temperature increases. Irradiation with an ultraviolet lamp caused a very large increase in the rate of the reaction.

THE ACCELERATION OF THE URANIUM (IV) - URANIUM (VI) ELECTRON EXCHANGE REACTION BY TARTARIC ACID

Ву

E. Phillip Benson, Jr.

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

9 3317 1

ACKNOWLEDGMENTS

The author wishes to acknowledge the advice and encouragement of Professor Carl H. Brubaker, the patience and understanding of his wife, Beverley, and the financial aid of the Atomic Energy Commission.

TABLE OF CONTENTS

																												PAGE
INTRODU	CTION	V.	•	•	•					•	•						•				•	•	•	•	•	•	•	1
THEORET	ICAL	•	•	•	•	•	•		•	•			•	•	•	•			•		•	•	•	•	•		•	14
EXPERIM	ENTAI	•	•	•	•	•			•	•	•		•	•	•	•		•			•	•	•	•	•	•	•	19
RESULTS			•		•	•				•		•	•	•	•	•		•	•			•	•		•		•	41
DISCUSS	ION .		•						•		•		•	•	•				•			•	•	•			•	52
SUMMARY			•	•		•	•							•	•		•			•		•	•	•	•	•	•	66
LITERAT	URE (CITE	ED		•	•	•			•		•	•	•	•	•		•	•					•	•	•		68
APPENDI	CES																											
Α.	Pre	paı	rat	ic	n	oí	: E	Exc	cha	ang	ge	Sc	1ι	ıti	or	ns	us	sir	ng	a	рŀ	I I	¶e t	eı	?			72
В.	Con	nput	ter	F	rc	gr	an	n					•					•				•	•	•	•	•		75
c.	Ori	igiı	na:	l F	(ir	net	: i c	: I	Dat	ta																		80

LIST OF TABLES

TABLE		PAGE
I	Isotopic composition of tracer	. 20
II	Melting points of organic acids	. 29
III	Oxidation of uranium(IV) stock solutions	. 32
IV	Effect of various organic acids on the exchange rate .	. 45
V	Dependence of exchange rate on the concentration of uranium(IV) and uranium(VI)	. 48
VI	Dependence of exchange rate on the concentration of hydrogen ion	. 48
VII	Dependence of exchange rate on the concentration of tartaric acid	. 50
VIII	Dependence of exchange rate on ionic strength	. 51
IX	Dependence of exchange rate on temperature	. 51

LIST OF FIGURES

FIGURE		P	AGE
1.	Uranium(IV) preparation and storage flasks		24
2.	Nitrogen purification train		26
3.	Adaptor for volumetric flask		34
4.	Typical rate data for different organic acids		44
5.	Log R \underline{vs} log of concentration of uranium(IV) and uranium(VI)		47
6.	Log R \underline{vs} log of concentration of hydrogen ion and tartaric acid		49
7.	Known hydrogen ion concentration as a function of measured pH		53
8.	A function of R \underline{vs} uranium(VI) concentration		58

INTRODUCTION

In the last fifteen years, many papers have appeared which are concerned with the kinetics of inorganic oxidation-reduction reactions.

The increase came partly as a result of the development of many new techniques of kinetic observation, and partly because of the increased availability of radioactive nuclides.

As a result of the increased activity in experimental work in this area, interest grew in the nature of the mechanisms by which such reactions occurred. Shaffer¹,² and Michaelis³ were the first to attempt to explain the observed rates of reactions as dependent on some factors other than thermodynamic considerations.

Michaelis' principle of "compulsory univalent oxidation steps" invokes the limitation that all oxidation-reduction reactions involving stable oxidation states that differ by two electrons (e.g. $T1^+ - T1^{+3}$, $Sn^{+2} - Sn^{+4}$) occur by successive one electron steps. It evolved from consideration of a limited number of oxidation-reduction reactions and is now believed to be without universal validity.

Shaffer's rule of "equivalence change" states that reactions between one-equivalent oxidizing agents and two-equivalent reducing agents (or vice-versa) are often slow, compared with those between one-equivalent reducing agents and one-equivalent oxidizing agents or between two-equivalent oxidizing and two-equivalent reducing agents. Examples are the slow reduction of T1⁺³ by Fe⁺⁺, or of Ce⁺⁴ by T1⁺ compared with the rapid reduction of T1⁺³ by Sn⁺² or of Ce⁺⁴ by Fe⁺². The slowness of the former types of reactions is explained by mechanisms which involve either a termolecular step or the formation of unstable intermediate oxidation states.

Although there is still no complete compilation of data for extensive comparison, Halpern⁴ has compared three systems involving combinations of one and two electron equivalent oxidizing and reducing agents. While he concludes that one cannot draw any detailed results from the comparison, the rates for two of the systems studied (Fe⁺² - Tl⁺³ and Tl⁺ - Co⁺³) are not lower than those of the corresponding exchange reactions, as would be predicted, but are intermediate between them. This would indicate that the principle of equivalence change is not a uniquely applicable rule. Halpern considers the principle further in a recent review article.⁵

Accompanying the increase of experimental work on the kinetics of aqueous oxidation-reduction reactions has been an increase of interest in the theoretical aspect of electron transfer, since it is only recently that systems have been investigated in which clear-cut interpretation of results is possible. In an electron transfer reaction, it is not known if the electron lost by the reducing agent is the same one that is gained by the oxidizing agent and how this electron moves from the reducing agent to the oxidizing agent. Most of the systems studied have come to be explained by two important forms of the activated complex in electron transfer. These are usually denoted as the "outer sphere" activated complex and the "inner sphere" or "bridged" activated complex. The distinction between the two is not always sharp and many reactions at this stage cannot be assigned with certainty to either class.

In the "outer sphere" activated complex, the number and identity of the groups comprising the first coordination sphere remains unaltered by electron transfer. This means that substitution is a much less rapid process than transfer. In this case the readjustments which

accompany electron transfer take place largely in the solvent, and there is little change in the dimensions of the molecules on electron transfer.

Wahl⁸ has summarized results for some reactions of this type.

The other general class of electron-transfer mechanisms involves the "bridged" activated complex. The first clear demonstration was by Taube⁹ in the reaction of $[(NH_3)_5CoC1]^{+2}$ with Cr^{+2} to give NH_2^+ , Co^{+2} , and $CrC1^{+2}$. Since both the Co^{+3} complex and the Cr^{+3} product are substitutionally inert, electron transfer must occur through a bridged intermediate of the type

$$[(H_3N)_5 \text{ Co}^{+3} - \text{C1} - \text{Cr}^{+2} (OH_2)_5]^{+4}$$

in which C1 is simultaneously coordinated to both metal ions. It should be noted that although the bridging ligand is generally transferred from the oxidant to the reductant, this is not a necessary requirement for electron transfer. Also, catalysis by anions or incorporation of anions into the coordination sphere of the oxidized metal ion does not indicate the participation of the anion as a bridging ligand. ¹⁰ Fumarate and p-phthalate are of special interest as bridging ligands in the oxidation of ${\rm Cr}^{+2}$ by $[(H_3N)_5 {\rm Co} \, L]^{+2}$, since the rates are much higher than for other carboxylic acids. ¹¹ This has been interpreted in terms of a bridged intermediate in which the two metal ions are coordinated through the "remote" carboxylate groups

$$[(H_3N)_5 \text{ Co } - O \qquad O - Cr(OH_2)_5]^{+4}$$

 $\begin{bmatrix} C - CH = CH - C \\ O & OR \end{bmatrix}$

where R = H, CH_3 , or C_2H_5 , with the electron being transferred between them by "conduction" through the conjugated π -electron system. This

attack is sterically favored over attack at the adjacent carboxyl group. The use of such conjugated bridging groups for distinguishing between the two types of mechanisms and for the systematic variation of structural parameters makes these systems extremely valuable.

A possible mechanism of electron transfer between metal aquo-ions, first suggested by Dodson and Davidson¹², is through transfer of a hydrogen atom between hydration shells. There is some evidence in support of such a mechanism. For example, the rates of the Fe^{+2} - Fe^{+3} and the Fe^{+2} - $FeOH^{+2}$ reactions are lowered by a factor of two in passing from H_2O to D_2O as the solvent.¹³ In addition, the activation energies of a large number of diverse redox reactions involving metal aquoions are close to 10 kcal/mole, and their activation entropies close to -25 eu, suggesting that they proceed by a common mechanism involving water.

A modified view¹⁴ of the role of water in these reactions is that the coupling of the hydration shells of the two ions by hydrogen bonding lowers the energy of the activated complex and, by increasing the overlap between the exchanging orbitals, provides a more effective conducting path for electron transfer. In this context transfer of hydrogen is incidental to its bridging role, and whether or not it occurs depends on the relative proton affinities of the two hydration shells after electron transfer.

In some cases redox processes proceed through mechanisms which do not involve direct reaction between the oxidizing and reducing agents. Such indirect mechanisms are frequently responsible for catalytic effects in redox systems.

One possible alternative is the release of an electron by the reducing agent to the solvent and its subsequent capture by the oxidizing agent. Also oxidizable or reducible ligands can act as electron carriers between metal ions. Intermediate oxidation of the bridging ligand without release from the bridged complex is another mechanism of electron transfer. In addition, ions which can exhibit two or more stable oxidation states may also serve to transport electrons in redox reactions through a chain mechanism.

Various theoretical aspects of electron transfer processes in solution have been considered by W. F. Libby, ¹⁵, ¹⁶ R. A. Marcus, ¹⁷, ¹⁸ N. S. Hush, ¹⁹ R. J. Marcus, B. Zwolinski, and H. Eyring, ²⁰ and K. J. Laidler²¹, ²² Nearly all these treatments have emphasized the dependence of the rate on the following factors: electrostatic interactions between the overall charges of the reactants, the reorganization energy of the ligands and of the surrounding medium prior to andduring electron transfer, associated with the Franck-Condon restriction, and the rate of the electron-transfer process itself in the activated complex.

Libby 15 discussed the formation of the activated complex and emphasized the restrictions of the Franck-Condon principle in its application to electron transfer in aqueous solution. The Franck-Condon principle states that transfer should be inhibited by the relatively long times required for movement of the heavy water molecules constituting the hydration spheres compared to the transit time for the electron. The differences in rates of movement of the electron and the extra energy of hydration due to the electron exchange process mean that the electron must make the transition against a barrier comparable in magnitude to the amount of energy involved in the subsequent slow orientation of the

water molecules to the new charge situation. This gives rise to the principle that electron exchange can be catalyzed by complexing the exchanging ions in such a way that the complexes are symmetrical. In a later article, Libby 16 applied the principle to oxidation-reduction reactions of the transition elements in which a bridged activated complex is operative.

R. A. Marcus¹⁷ has attempted a quantitative treatment, incorporating the restriction of the Franck-Condon principle, to describe a mechanism for electron transfer. In the reaction between two reactants, A and B, the following steps may take place

$$(2) X^* \xrightarrow{k_2} X$$

(3)
$$X \xrightarrow{k_3} \text{products}$$

$$(4) v = kc_a c_b$$

where c's denote concentration and k is the observed rate constant. If the forward step is at least as probable as the reverse step in reaction (1), then

(5)
$$k \approx k_1$$

Using the restriction that only slight overlap of the electronic orbitals of the two reacting species in the activated complex is necessary, he obtains a value for the overall rate constant that is given by

(6)
$$k \approx k_1 = Z \exp(-\Delta F^{*}/kT)$$

where

 Z_{\star} = collision number in solution ΔF^{\star} = free energy of formation of X^{\star} in excess of that for two neutral, nonreactive particles in solution

k = Boltzmann constant
T = absolute temperature

ΔF* is obtained in terms of known quantities, such as ionic radii, charges, and the standard free energy of reaction. In a second article 18 he applied the model to some previously reported homogeneous isotopic exchange reactions and obtained impressive agreement with the experimental data.

N. S. Hush¹⁹ has also proposed a theory of electron transfer for processes in which the coordination shells about the ions are not disrupted on electron transfer. The central concept is that the probability density for electron transfer in each step can readily be found and the equations for the calculation of the free energy, enthalpy, and entropy of activation are then easily derived. Reasonably good agreement with experiment is found for isotopic exchange reactions. This method of approach is similar to that of R. A. Marcus and the general conclusions obtained by either method are similar.

R. J. Marcus, B. Zwolinski, and H. Eyring²⁰ have classified available data pertaining to electron-exchange reactions on the basis of the entropy of reaction: one group with negative entropies of activation and another with positive entropies of activation. In the oxidation-reduction reactions considered, the ions modify their structures in such a way that transfer of the electron leaves the total energy unchanged. During the approach of the reactive ionic species leading to the transition, ionic repulsion forces are overcome and the coordination and

hydration shells of both ions are rearranged until their electronic states are symmetrical, thus permitting a rapid transition to take place. Those configurations which give the fastest reaction will be the ones measured. Since these will not have too high a free energy of activation, any measurable rate for an oxidation-reduction reaction involves a transmission coefficient (probability of transition) less than unity. Its magnitude will be determined by the height and thickness of the electronic barrier for this transition. For convenience the electronic transmission coefficient (κ_e) can be represented in the following form:

(7)
$$K_e = \exp \left[\frac{-8}{-8} r_{ab} (2m (V - W))^{1/2} \right]$$

where

V = height of the electron barrier

= kinetic energy of tunnelling electron

r_{ab} = tunnelling distance m = electron mass

h = Planck's constant.

The class of reactions with positive entropies of activation have an electronic barrier that is quite thin at the transition point with the transmission coefficient near unity. The reactions characterized by apparent negative entropies of activation are those with appreciable electron barrier widths at the activated state, consistent with smaller energies of activation at larger critical distances of ion approach.

Laidler²¹,²² has also given a theoretical treatment of electrontransfer reactions involving quantum-mechanical tunnelling. His more complete calculation also includes terms which account for repulsive

free energy and the energy of solvent reorganization. His calculation for the reaction

(8)
$$Fe^{+2} + Fe^{*+3} \iff Fe^{+3} + Fe^{*+2}$$

predicts a minimum weighted value of 15.9 kcal/mole for free energy of activation at an interionic separation of 4.2 Å. This compares well with the experimental value of 16.8 kcal/mole.

Newton and Rabideau²³ have reviewed many of the aqueous oxidation-reduction reactions of uranium, neptunium, and plutonium. They summarized all of the kinetic information in terms of the equations for the net activation processes and the associated thermodynamic quantities of activation. Using the assumption that all of the reactions were one-electron oxidation-reduction reactions, the equations for the net activation processes were obtained from the rate laws. The equations were formulated in terms of any rapid equilibrium reactions which may have occurred prior to the rate-determining step. The result described the formation of the activated complex without regard to the detailed mechanism.

The thermodynamic quantities of activation, ΔF^* , ΔH^* , ΔS^* , were calculated from the equations of the absolute reaction rate theory. ²⁴ The quantity called \overline{S}^* complex is the formal ionic entropy of the activated complex calculated from ΔS^* using the standard entropies of the ordinary species present or:

(9)
$$\overline{S}^*_{\text{complex}} = \Delta S^* + \sum \overline{S}^{\circ}_{\text{reactants}}$$

The values for these standard entropies are calculated on the convention that $\overline{S}_{H}^{0}+=0$.

It was observed that the data reviewed did not fall into distinct classes as suggested by R. J. Marcus, B. Zwolinski, and H. Eying²⁰ but

instead exhibited a range of values. This wide range is reduced when allowance is made for the hydrolysis equilibria involved.

A relation between ΔH^* and the heat of reaction, ΔH^0 , was found to hold for a large number of oxidation-reduction reactions of the actinide elements. Within this correlation, ΔH^* for purely "electron-transfer" reactions such as

(10)
$$Pu^{+3} + PuO_2^{+2} \iff Pu^{+4} + PuO_2^{+}$$

appeared to be somewhat lower than for reactions involving hydrolytic or structural changes such as

(11)
$$Np^{+4} + NpO_2^{+2} + 2H_2O \iff 2NpO_2^{+} + LH^{+}$$

which presumably reflects an additional contribution to ΔH^{\times} from bond rearrangement in the latter cases.

A series of formally identical reactions exhibited varying values of ΔS^* but had approximate agreement among the $\overline{S}^*_{complex}$ values. This indicates that an important source of the difference in the ΔS^* values lies in the differences in the entropies of the reactant ions.

The most important single factor which determines the entropy of the activated complex appears to be its charge. It was found that all reactions with an activated complex having a given charge type exhibited the same values of $\overline{S}^*_{complex}$. It was noted that the activated complexes of simple electron exchange reactions exhibited values of $\overline{S}^*_{complex}$ similar to those of other reactions.

Electron exchange reactions between uranium(IV) and uranium(VI) have been studied in sulfate solutions by Betts, 25 in chloride solutions by Rona, 26 and in perchlorate solutions by King, 27 and by Masters and Schwartz. 28

King reported only that the exchange reaction was slow and suggested that this was due to the formation and breaking of metal-oxygen bonds. Betts reported the exchange in sulfate medium in the presence of constant external illumination. Although he presented no detailed mechanism for the exchange, it has been suggested that the active intermediate in the exchange is uranium (V). It has been shown by Heal²⁹ that illumination causes a considerable increase in the concentration of uranium (V).

Rona has studied the exchange reaction in chloride solutions and found that it is second order in uranium (IV), first order in uranium (VI), and negative third order in hydrogen ion concentration. She also noted no effect due to added ions or due to illumination of the solutions. The reaction was found to have an apparent activation energy, (\mathbf{E}_2) , of 33.4 kcal per mole.

She explained her results by means of the following mechanism. While uranium (VI) is present as ${\rm UO_2}^{++}$ in these solutions, uranium (IV) is present according to the following rapid equilibrium

(12)
$$U^{+4} + H_2O \iff UOH^{+3} + H^{+}$$

The value of the equilibrium constant, $\mathbf{K}_{\mathrm{h}},$ had previously been evaluated by Kraus and Nelson. 30

Rona suggests that UOH^{+3} will react more readily with UO_2^{++} to form an intermediate ion, Y^{+3} , containing an oxygen bridge according to the following equation:

(13)
$$UOH^{+3} + UO_{2}^{++} + 2H_{2}O \iff Y^{+3} + 2H^{+}$$

The equilibrium constant for this reaction is K_1 . This intermediate ion now reacts further with uranium (IV) in the rate determining step to form the activated complex, Z^{+6}

(14)
$$Y^{+3} + UOH^{+3} \longrightarrow Z^{+6}$$

which breaks down into the final products

(15)
$$Z^{+6} \longrightarrow \text{products.}$$

This mechanism gives a calculated reaction rate, v, that agrees well with the experimental results.

(16)
$$V = k[Y^{+3}] [UOH^{+3}]$$

and substituting

(17)
$$v = kK_1 \frac{[U(IV)]^2 [UO_2^{++}]}{[H^+]^2 K_h + 1} [H^+]^2$$

More recently Masters and Schwartz have investigated the uranium (IV)-uranium (VI) system in perchlorate solutions. They confirmed Rona's work in perchlorate solutions and identified another path which predominates at conditions of low uranium (IV) ion concentrations and at temperatures above 25° C. This path was found to be first order in uranium (IV), first order in uranium (VI) and negative third order in hydrogen ion. The energy of activation, (E_a), was found to be 38.1 kcal per mole.

The strong effect due to ultraviolet irradiation suggested that the reaction path involved uranium (V) as an intermediate. The formation of U(V) can be given by the expression

(18)
$$\frac{d}{dt} [UO_2^+] = 2k [U^{+4}] [UO_2^{++}] [H^+]^{-3}$$

which is twice the experimentally measured rate. The disproportionation of U(V) is given by

(19)
$$-\frac{d}{dt}[UO_2^+] = k_D[UO_2^+]^2[H^+]$$

By equating the above equations, the equilibrium constant, $K_{\underline{E}}$, may be determined

$$(20) K_E = k_D/2k$$

Masters and Schwartz obtained a value of 1.02 x 10^9 for K_E which agrees well with the value of 1.05 x 10^9 observed by Kraus and Nelson³¹ in polarographic studies of the U(IV)-U(V)-U(VI) equilibrium.

This result meant that the activated complex formed in the exchange reaction was identical with that formed in the disproportionation reaction. The mechanism may be described schematically as

(21)
$$U^{+4} + UO_2^{++} + 2H_2O < \frac{-3H^+}{+3H^+}$$
 (HO-U-O-UO₂) +3

and

(22)
$$(HO-U-O-UO_2)^{+3} \leftarrow \frac{-H^+}{+H^+} > 2UO_2^+$$

This reaction sequence is formally identical with that encountered in reactions of other members of the actinide series.²³

THEORETICAL

In an exchange reaction

(23)
$$AX + BX^* = AX^* + BX$$

where X^* designates the isotopically labeled compound, let R be the rate of exchange. ³² If the concentrations are designated as follows,

(24)
$$[AX] + [AX^*] = a$$

(25)
$$[BX] + [BX^*] = b$$

(26)
$$[AX^*] = x, [AX] = a - x$$

(27)
$$[BX^*] = y, [BX] = b - y$$

then the net rate is given by

(28)
$$\frac{dx}{dt} = -\frac{dy}{dt} = R \frac{y}{b} \frac{(a - x)}{a} - R \frac{x}{a} \frac{(b - y)}{b} = \frac{R}{ab} (ay - bx)$$

But since

(29)
$$y - y_m = x - x_m$$

and

(30)
$$x_m/y_m = a/b$$

therefore

(31)
$$\frac{dx}{dt} = \frac{R}{ab} [(a + b) (x_{\infty} - x)]$$

On integration one obtains

(32) In
$$[x_{\infty}/(x_{\infty}-x)] = \frac{R}{ab} (a + b)t$$

The more familiar form of the equation is

(33) In
$$[1 - x/x_0] = -\frac{a + b}{ab}$$
 Rt

The quantity x/x_{∞} is the fraction of exchange and is often merely designated as F. An exchange system conforms to this rate expression if a graph of ln (1-F) \underline{vs} t is rectilinear. If a straight line is obtained, then R may be determined directly from the slope of the line.

The fraction of exchange can be conveniently determined in a variety of ways. If the separation is not quantitative or reproducible, it is often convenient to use the specific activity (counts per unit time per unit weight) of one of the exchanging species. Prestwood and Wahl³³ have shown that

(34)
$$F = \frac{S - S_0}{S_0 - S_0}$$

where S is the specific activity of AX at time t, S_0 the specific activity at zero time, and S_0 the specific activity when complete exchange has occurred.

The rate of the exchange reaction, R, is equal to some function of the various concentrations involved and one or more rate and equilibrium constants. For example, for a simple bimolecular reaction

(35)
$$R = k[a][b]$$

where k is the specific reaction rate constant. The order with respect to each species in solution may be determined by systematically varying its concentration while all others are kept constant.

This dependence of reaction rate on temperature 34 has been quantitatively formulated by Arrhenius as

 E_a is the activation energy for the reaction and A is known as the pre-exponential (or Arrhenius) factor. Experimentally a graph of ln k \underline{vs} the reciprocal of the absolute temperature gives E_a from the slope and ln A as the intercept.

It should be pointed out that the above discussion applies only to individual specific reaction rate constants. A complex reaction may appear to follow a simple kinetic order over a limited range of experimental conditions. The apparent rate constant for such a reaction is not a rate constant for a single process but may be a complicated function of many rate constants. If this rate constant is plotted against temperature it may be expected that the Arrhenius equation will not be obeyed. This lack of agreement is often useful in indicating the complexity of the reacting system.

In the theory of absolute reaction rates, 24 the equilibrium between reactants and the activated complex can be represented as

(37) aA + bB +
$$\stackrel{--}{\leftarrow}$$
 M*

where M^{*} represents the activated complex and the equilibrium constant can be represented as

(38)
$$K = \frac{c^*}{c_A^a c_B^b \dots}$$

where C^* is the concentration of the activated complex. The rate of reaction of the activated complex formed is given by

(39) rate =
$$k_r C_A^a C_B^b \cdots$$

where k_r is the rate constant. From the theory of reaction rates a pseudo equilibrium constant, K^* , can be defined that is related to the

rate constant for the reaction by

(40)
$$k_r = (\frac{kT}{h}) K^*$$

where \underline{k} is the Boltzmann constant, T is the absolute temperature, and h is Planck's constant. Thus, the definition of quantities analogous to the thermodynamic functions associated with equilibrium constants is possible.

$$(41) \qquad \Delta F^* = - RT \ln K^*$$

(42)
$$\Delta H^{*} = RT^2 \frac{d \ln K^{*}}{dT}$$

or

(43)
$$\Delta H^* = RT^2 \frac{d \ln k}{dT} r - RT$$

and

(44)
$$\Delta S^* = \frac{\Delta H^* - \Delta F^*}{T}$$

It follows that

(45)
$$K^* = \exp(-\Delta F^*/RT) = \exp(\Delta S^*/R) \exp(-\Delta H^*/RT)$$

or in terms of the rate constant

(46)
$$k_r = (\underline{k}T/h) \exp(\Delta S^*/R) \exp(-\Delta H^*/RT)$$

The relations derived from the theory of absolute reaction rates can be compared with the Arrenhius equation to calculate thermodynamic quantities. The differential form of the Arrhenius equation is

$$(47) \quad \frac{d \ln k}{dT} = E_a/RT^2$$

If this equation is compared with equation (43) it can be seen that

(48)
$$\Delta H^* = E_a - RT$$

By substituting the above equation in (46), the entropy of activation,

 ΔS^* , can be determined from the result

(49)
$$k_r = ekT/h \exp(\Delta S^*/R) \exp(-E_a/RT)$$

if the rate constant at a given temperature and the experimental activation energy are known.

EXPERIMENTAL

Materia1s

All reagents used were reagent grade chemicals or were purified before use.

The perchloric acid used was Baker's Analyzed Reagent which was used without further purification.

Stock solutions of sodium perchlorate were made up from sodium perchlorate monohydrate obtained from the G. Frederick Smith Chemical Company. It was dissolved in demineralized water, filtered to remove the inevitable insoluble material, and placed on the hot plate to reduce the solution volume. This process was continued until a thin crust of salt appeared on the surface of the solution. The walls of the beaker were then washed down with a minimum of demineralized water to dissolve the crust. A narrow, more dilute, aqueous phase formed above the phase containing the concentrated sodium perchlorate solution. The beaker was then transferred to an oven held at 50-60°C. It was kept there until a large crop of needle-like crystals appeared. The needles were filtered off and the filtrate was returned to the hot plate and the process was repeated. The crystals were dissolved in demineralized water and recrystallized twice more before being used. After the sodium perchlorate had been recrystallized three times it was dissolved in the minimum amount of demineralized water, giving a solution which was about 8.4 M. This solution was then stored in a volumetric flask and used as the stock in making up solutions for kinetic runs.

Demineralized water was used in all experimental work. This was prepared by passing distilled water through a mixed bed of cation and anion exchange resins. The unit used was a Crystal Research Laboratories, Inc. Deeminizer, Model CL-5. Love³⁵ observed no difference in the results of kinetic experiments carried out in distilled water and those in conductivity water which had been prepared by repeated distillation from an alkaline permanganate solution.

The uranium isotope used as the tracer in the kinetic studies was 233 U having a half-life of 1.62 x 10⁵ years. The 233 U isotope was obtained from the Nuclear Materials and Equipment Corporation, Apollo, Pennsylvania, in the form of the oxide powder. The analysis of this material is given in Table I.

Table I. The composition of uranium tracer

Jranium Isotope	Per cent of Total					
233Մ	97.3 ± 0.1					
23 4 U	1.6 ± 0.1					
235 _U	< 0.1					
238Մ	1.1 ± 0.1					

The ²³³U tracer was purified by a modification of the method of Masters and Schwartz. ²⁸ Since the ²³³U is in secular equilibrium ³⁶ with its daughter, ²²⁹Th, and the succeeding products of radioactive decay are all very short lived compared to the two nuclides mentioned, the problem reduces to obtaining a good separation of thorium from

uranium. The ²³³U oxide powder was dissolved with 11 ml of concentrated nitric acid in a 50 ml beaker. The residue in the shipping bottle was washed with 6 M nitric acid and the two solutions combined. When heating on a hot plate had reduced the volume to about 50 ml, an equal volume of concentrated hydrochloric acid was added. When further heating had reduced the volume to 30 ml, 10 ml of concentrated hydrochloric acid was added and the heating repeated until near dryness. This process was repeated until the addition of hydrochloric acid to the concentrated solution gave no evolution of nitrogen dioxide.

The resulting 10 ml of a chloride solution was then passed through an anion exchange column (Dowex 1X-10, 200-400 mesh, chloride form, Baker Analyzed Reagent) where a chloro complex of uranium was retained while the thorium passed directly through. The column was washed with two 10 ml portions of 1:1 hydrochloric acid to remove the thorium and then the uranium was eluted with demineralized water. The solution containing the uranium was repeatedly heated nearly to dryness with 10 ml portions of concentrated perchloric acid to drive off the remaining hydrochloric acid. When this process was completed, the remaining solution was diluted to 100 ml in a volumetric flask and stored in the water bath.

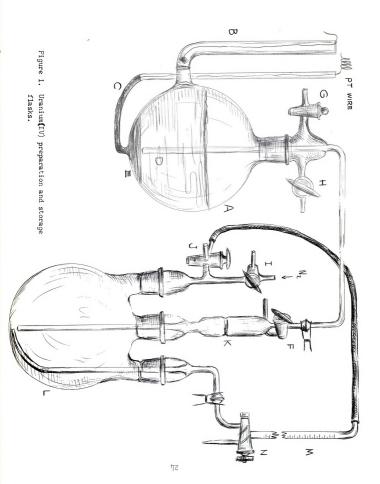
This procedure was previously tested using 0.53 g of natural uranium oxide to which 0.1 g of thorium nitrate was added. Tests of the effluent from the ion exchange column indicated excellent separation was obtained.

The starting material used in preparing both the U(IV) and U(VI) stock solutions was Baker Analyzed Reagent uranyl nitrate hexahydrate. Three different purifications were carried out using a modification of

of an established method.³⁷ One pound of uranyl nitrate hexahydrate was dissolved in approximately 700 ml of demineralized water and then filtered through a medium fritted funnel. The filtrate was then placed on the hot plate and kept at approximately seventy-five degrees centigrade. Thirty per cent hydrogen peroxide (Baker's Analyzed Reagent) was slowly and carefully added, with rapid stirring, to the above solution. A coarse lemon yellow precipitate of uranium (VI) peroxide soon formed. This was filtered on a coarse fritted funnel and washed with demineralized water.

For convenient handling one-half of the uranium (VI) peroxide thus obtained was placed in a beaker, 500 ml of demineralized water was added, and then 50 ml of concentrated perchloric acid was added with vigorous stirring. The beaker and contents were then left on the hot plate until the peroxide dissolved. If solution did not occur within twenty-four hours, another 10 ml of concentrated perchloric acid was added and the beaker was again left on the hot plate. This process was repeated until a clear yellow solution resulted. The remaining uranium peroxide obtained was treated in a like manner.

The uranium (VI) perchlorate solutions thus obtained were carried through the precipitation process two more times to yield a purified uranium (VI) peroxide product which was air dried and then used to make up all uranium (IV) and (VI) stock solutions.


The handling quality of the uranium (VI) peroxide precipitates obtained was variable at first. The ability to get coarse precipitates which filter easily apparently is an acquired art. Particular attention must be paid to the amount of perchloric acid used to dissolve the precipitate for the peroxide is difficult, if not impossible, to reprecipitate

from solutions that are too acidic.

Various stock solutions of uranium (VI) perchlorate were prepared by dissolving the purified uranium peroxide in perchloric acid. In earlier experiments, such as are described in Appendix A, care was taken to use as little perchloric acid as possible so that the free hydrogen ion concentration was kept as low as possible. In later experiments more acid conditions were used and so low acidity in the stock solutions was not required. Originally attempts were made to prepare solutions approximately 0.1 M in uranium (VI), based on the assumption that the uranium peroxide was $UO_4 \cdot 2H_2O$. These solutions had to be made more concentrated before standardization since the peroxide invariably contained more water than the above formula indicated. After the peroxide had all dissolved, the solution was boiled for one-half hour to insure that all of the hydrogen peroxide present had been destroyed. The solution was then transferred to a one liter volumetric flask and enough water was added to bring the volume to between 900 and 1000 ml. Then ten milliliters of the ²³³U stock solution was pipetted out of the storage flask and added to the solution. The solution when made up to the one liter mark was ready for standardization.

Uranium (IV) perchlorate \mathbf{w} as prepared by an electrolytic procedure similar to that of Ahrland³⁸ using an apparatus modified from that described earlier by Quinn.³⁹

The apparatus for the electrolysis of uranium (VI) and the storage of uranium (IV) is shown in Figure 1. The electrolysis flask (A) is a modified one-liter single-neck flask. On one side of the flask is attached a bent 15 mm "L" shaped tube (B) containing a coarse fritted disc

3 cm from the main body of the flask. This tube forms the anode compartment in an electrolysis. A curved piece of 7 mm tubing (C) which extends up to the neck is attached to the bottom of the flask. It enables an external connection to be made to the cathode.

Since uranium (IV) solutions are oxidized by the atmosphere, all preparations were carried out in an atmosphere of specially pruified nitrogen. A drawing of the apparatus used to purify nitrogen is shown in Figure 2.

Prepurified nitrogen (The Matheson Co., Inc., 8 ppm of oxygen) was used as a cover gas for all experiments as well as in the electrolytic production of uranium (IV). The train shown in Figure 2 was used to insure complete removal of oxygen. The nitrogen passes successively through copper gauze in a tube furnace (A) at 450°C, active copper (B) deposited on kieselguhr at 175° C, 40 and through an approximately 0.4 M solution of chromous sulfate (C,D). After these treatments the gas is scrubbed in a gas washing bottle (E) containing water and then passes through a 2.0 M solution of sodium perchlorate (F) maintained at the temperature of the experiment. The sodium perchlorate maintains constant water vapor pressure in the gas phase. Manipulation of stopcock (G) enables the nitrogen flow to be directed into the preparation apparatus or into the flasks for the kinetic runs.

The copper gauze and the copper on kieselguhr were activated by passing hydrogen through them until all evidence of the oxide was gone. The hydrogen was conveniently passed through this apparatus by utilizing stopcocks (H) and (I). The chromous sulfate solutions had to be replaced approximately every three months when gummy deposits of hydrous chromium (III) oxide eventually plugged the fritted discs.

175°C

Figure 2. Nitrogen purification train,

H₂ + H₂O ESCAPE A pool of mercury (E) 6 cm in diameter was next placed on the bottom of flask (A) and the uranium (VI) solution was added through the 24/40 standard taper joint. The apparatus was then assembled as shown in Figure 1 and flushed out thoroughly with a rapid flow of nitrogen before the electrolysis was begun. The flow was reduced to about one bubble per second at the exit tube (D) when electrolysis was begun.

Because it has been shown⁴² that complete reduction of uranium (VI) to uranium (IV) can be obtained only at 0° C., all reductions were begun only after the electrolysis flask had been immersed in an ice-salt mixture for about one-half hour. The temperature of the bath was thus able to be kept near 0° C.

The cathode for the reduction process was the 6 cm pool of mercury (E) on the bottom of the electrolysis flask. This was connected to the outside circuit by a platinum wire which dipped into the mercury in the tube (C). The anode was a one centimeter square piece of platinum fastened to a platinum wire which was suspended in the anode compartment (B). During electrolysis the anode compartment was filled with a perchloric acid solution of the same concentration as the solution in the cathode compartment.

The electroyses were carried out by passing a current of 0.7 ampere through the uranium (VI) while it was being stirred by the slow passage of purified nitrogen through tube (D). The direct current source was an Electro Products Laboratories, Model D-612 T Filtered D.C. Power Supply. The voltage required for a current of 0.7 amperes varied with the solution used and usually ranged between 10 and 18 volts. The length of time required for the electrolysis varied depending on the

uranium (VI) and hydrogen ion concentrations, increasing with increasing uranium (VI) concentration and decreasing with increasing hydrogen ion concentration.

The reduction was complete when uranium (III) began to be produced. Uranium (III) was easily detected since the green solution of uranium (IV) turned dark when red uranium (III) was produced. The red color could easily be detected if the electrolysis was allowed to proceed too long. Any uranium (III) produced was removed by passing a stream of oxygen in the outlet of stopcock (F) and bubbling it through the solution. When all of the uranium (III) had been removed, a fast flow of nitrogen through the electrolysis flask was maintained for another half hour.

When the preparation of the uranium (IV) was complete, stopcock (G) or (H) was closed and stopcock (I) opened to the atmosphere. A piece of rubber tubing was then attached to the exit tube of stopcock (I). Corks were then tightly fitted in the two sidearms of the electrolysis flask. The solution was then transferred through the fritted disc (K) to the storage flask (L) by passing a very rapid nitrogen flow through stopcocks (I) and (H) into the electrolysis flask and exiting at stopcock (J). The transfer process could normally be completed in about ten minutes. When the transfer was complete, stopcocks (I) and (F) were closed. The electrolysis apparatus was then removed for cleaning and storage. The uranium (IV) stock solutions were normally stored in this manner with all stopcocks closed and with no nitrogen flow. Samples could be forced into the buret (M) by admitting nitrogen in stopcock (I). They were delivered out the Teflon stopcock (N) by allowing nitrogen to flow through both stopcocks (I) and (J).

Analytical reagent grade tartaric acid (Mallindrodt Chemical Works) was used without further purification. The melting point of the acid was 168-170°C, corresponding to pure d-tartaric acid.

The other organic acids used were those previously purified by Quinn³⁹ and stored in a dessicator. They were used without further purification.

Table II indicates the melting points of the acids.

Table II. Melting points of organic acids

M.P. (43)	Observed Melting Point (uncorrected)
138°C	Began subliming at 136°C
128-129°C (d1)	127-129 ° C
130-135 ° C	135-136°C
	138°C 128-129°C (d1)

Analytical Determinations

A 0.44 \underline{N} sodium hydroxide solution was prepared as described by Kolthoff and Sandell44 and stored in a large polyethylene bottle protected from the carbon dioxide in the atmosphere by an Ascarite guard tube. It was standardized against potassium acid phthalate (Mallinckrodt Analytical Reagent - primary standard) using phenolphthalein as the indicator. The potassium acid phthalate was dried at 110°C before use. No carbonate precipitate appeared in the standard base and no change in titer occurred in a period of over one year.

Solutions of perchloric acid were prepared by diluting the 70% reagent (Baker's Analyzed Reagent) to the appropriate concentration

with deionized water. Solutions of approximately 6 \underline{M} were made up and acidity was determined by titration with the standard base.

The concentrated stock solutions of sodium perchlorate were analyzed by the method described by Masters and Schwartz.²⁸ One milliliter aliquots were delivered into previously dried and weighed platinum crucibles and the solutions evaporated to dryness in an oven held at 155-160°C. The crucibles containing the anhydrous salt were then reweighed and the concentration was determined.

Cerium (IV) in sulfuric acid was used to determine uranium (IV).

The solutions were prepared from ammonium hexanitratocerate (IV) (G.

Frederick Smith Chemical Co. - Reagent Grade) and analyzed as described by Leininger and Stone. The standarization utilized arsenic (III) oxide as the primary standard. Osmium (VIII) oxide was the catalyst for the reaction and the endpoint was indicated by Ferroin (G. Frederick Smith Chemical Company). No change in the titer of the standard cerium (IV) solution was noted during an interval of one year.

Uranium (IV) analyses were originally attempted using the method of Willard and Young⁴⁶ but unsatisfactory results were obtained. The reaction between cerium (IV) and uranium (IV) is slow and solutions must be heated for the titration. However, since the reaction between cerium (IV) and iron (II) is rapid⁴⁷ and uranium (IV) is quickly oxidized by iron (III) according to the following equation

(50) $U^{+4} + 2Fe^{+3} + 2H_2O \longrightarrow UO_2^{++} + 2Fe^{++} + 4H^+$ with one equivalent of iron (II) produced for each equivalent of uranium (IV) oxidized, the iron (II) released in the reaction can then be titrated with the standard serium (IV).

The procedure used was as follows. Samples of uranium (IV) ranging from 0.5 ml to 2.0 ml, depending on the concentration of the stock solution, were treated with 1.0 or 2.0 ml of a 2% solution of iron (III) chloride (depending on the concentration of the uranium (IV)). To this was added 2 ml of a solution made by diluting 25 ml of concentrated sulfuric acid with 100 ml of deionized water. This step is taken to make certain the cerium (IV) will remain in a sulfate solution since the potential for the reduction of cerium (IV) to cerium (III) depends on the medium. The solution was next diluted with 20 ml of water and two drops of the iron (II)-o-phenathroline complex (Ferroin) added. The solution was now titrated at room temperature with the standard cerium (IV), the endpoint being indicated by the color change from redorange to pale blue which occurs when the Ferroin is oxidized to a complex containing iron (III). An indicator blank was run.

Uranium (VI) was the only other oxidation state present in the uranium (IV) stock solutions. Any uranium (III) formed was removed immediately after the electrolysis and any uranium (V) disproportionated under these conditions.

The total uranium content was determined by pouring the same size sample through a Jones reductor of with 5 ml of a 1:9 concentrated sulfuric acid-water solution and washing with two 10 ml portions of deionized water. Air was bubbled through this solution for two minutes to oxidize any uranium (III) formed to uranium (IV). The reduced solution was then titrated as before except no dilution was necessary. The uranium (VI) concentration in the stock can be found by difference.

The total hydrogen ion content, (H_t^+) , of the stock solutions was determined by passing an aliquot (usually 0.5 to 1.0 ml) through a

column of Dowex 50W-X12 ion exchange resin (Baker's Analyzed Reagent, 100-200 mesh, hydrogen form). Uranium (IV) attaches itself to the column, releasing four moles of hydrogen ion for each mole of uranium (IV). 38 The column is eluted with fifteen milliliters of deionized water and the eluant titrated with standard base. The free hydrogen ion concentration, (H_0^+) , in the stock solution can be calculated by the equation:

(51)
$$H_0^+ = H_+^+ - 4C_4 - 2C_6$$

where C_4 is the concentration of uranium (IV) and C_6 is the concentration of uranium (VI) in moles per liter.

It should be noted here that although all of the uranium (VI) was reduced in the electrolysis to produce uranium (IV) and the uranium (IV) was stored in a closed flask under an inert atmosphere, small amounts of the uranium (IV) appeared to be oxidized over a period of time, as illustrated in Table III.

Table III. Oxidation of uranium stock solutions

Date	Elapsed Time	[H ⁺]	U (IV)	U (VI)
5/24/63		0.842 <u>N</u>	0.368 ₆ <u>N</u>	0.000 <u>N</u>
6/3/63	10 days		0.364 ₂ <u>N</u>	0.002 ₅ <u>N</u>
6/27/63	34 days	0.892 <u>N</u>	0.353 ₃ <u>N</u>	0.016 ₀ <u>N</u>
7/11/63	48 days	0.910 <u>N</u>	0.341 ₂ <u>N</u>	0.027 ₈ <u>N</u>
8/25/63	93 days	1.123 <u>N</u>	0.233 ₄ <u>N</u>	0.135 ₆ <u>N</u>

Since the half-reaction for the oxidation of uranium (IV) is

it can be seen that the hydrogen ion concentration will increase more rapidly than the uranium (VI) concentration. Because of these changes in titer all uranium (IV) solutions were restandardized before a series of runs was made, if more than four days had elapsed since the last restandardization.

Stock solutions of uranium (VI) were analyzed for uranium in the same manner as the total uranium content of the uranium (IV) stocks was determined. The free hydrogen ion content was also determined in the same manner.

Kinetic Studies

This section describes the steps involved in following an exchange reaction using the normal procedure. Earlier work utilizing another method is presented in Appendix A.

The exchange experiments were carried out at a molar ionic strength of 2.00 in 100 ml flasks which had been blackened by dipping them first in X-I-M bonding material (H. Forsberg Company) and then in black enamel paint. The flasks were cleaned by allowing aqua regia to stand in them overnight after which they were thoroughly rinsed and dried. The rinsing process included a minimum of six washings with distilled water followed by a minimum of six more with deionized water. Since the reactions are very slow, the solutions were protected from the atmosphere by nitrogen.

A 14/35 standard taper joint was fitted with 6 mm inlet and outlet tubes as shown in Figure 3. The vertical tubing served as the nitrogen inlet and the horizontal tubing acted as the outlet to the next inlet

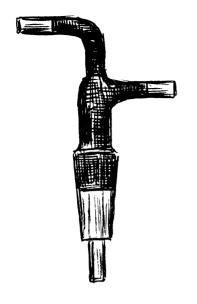


Figure 3

a constant temperature bath with these special adapters in series as tops. The flasks were flushed before use by maintaining a rapid nitrogen flow overnight. Experiments carried out with a positive nitrogen pressure above the solutions were studied for a period of four weeks without detectable loss of uranium (IV).

The exchange solutions were prepared by combining the required amounts of water, sodium perchlorate, perchloric acid, tartaric acid and uranium (VI) perchlorate in that order in a 150 ml beaker. Then the proper amount of uranium (IV) perchlorate stock was added, the resulting solution mixed with a stirring rod, and then poured into one of the previously flushed flasks while a slow flow of nitrogen was maintained.

Earlier results indicated that the experiments would have to be carried out at conditions where the hydrogen ion concentration would be $1.0\ \underline{M}$. Although the amount of hydrolysis of both uranium species is low at these conditions, stock solutions of uranium (IV) and uranium (VI) were made up with free hydrogen ion concentrations near $1.0\ \underline{M}$. This minimized any change from the calculated hydrogen ion concentration by hydrolysis changes which might occur when the stock solutions were mixed.

The total mixing process required a maximum of fifteen minutes. Qf this time the uranium (IV) was exposed to the atmosphere for a maximum of two minutes although Lundell and Knowles⁵¹ note that solutions of uranium (IV) undergo no change in titer on exposure to the atmosphere

for one half hour.

For reactions carried out above room temperature the procedure was altered in the following manner. The uranium (IV) was withdrawn and added directly to the reaction flask. The solution made up of the other reagents was stored in a clean flask in another part of the bath. After a lapse of four hours to allow the contents of each flask to attain the bath temperature, the contents of the flask containing the uranium (VI) were poured into the reaction flask, the protective top replaced, and the flask agitated vigorously to complete mixing.

Separation Procedure

The separation procedure used was adapted from that described by Masters and Schwartz.²⁸ Five milliliter aliquots of the reaction solution were withdrawn from the reaction flask and delivered into five milliliters of a 0.1 M solution of 4,4,4-trifluoro-1, (2 thieny1) -1,3-butanedione (hereafter called thenoyltrifluoroacetone) in benzene contained in a 25 ml separatory funnel. The separatory funnel was shaken vigorously for one and one half minutes and the lower layer drawn off. The uranium (IV) was extracted into the benzene layer as a complex containing four moles of the thenoyltrifluoroacetonate anion.

Five milliliters of a 0.5 $\underline{\text{M}}$ perchloric acid solution was added and the funnel shaken vigorously for another one half minute. The lower layer was drawn off again and discarded. The uranium (IV) was then re-extracted into the aqueous phase by shaking it vigorously with 5 ml of 3.0 $\underline{\text{M}}$ hydrochloric acid for one and a half minutes. The uranium (IV)

is extracted as a chloro complex into the acid solution. The five milliliters of aqueous solution was drawn off into a twenty milliliter beaker for sampling.

The thenoyltrifluoroacetone (Columbia Southern Chemical Company) was purified by sublimation in a vacuum of approximately one millimeter at room temperature. The purified product was dissolved in benzene (C.P. grade) to prepare the solution used for the extraction. One molar perchloric acid, 0.5 M perchloric acid, and 3.0 M hydrochloric acid were prepared by adding the calculated amount of the concentrated reagent (perchloric acid - Baker's Analyzed Reagent and G. Frederick Smith Chemical Company Reagent; hydrochloric acid - Baker's Analyzed Reagent and E.I. Du Pont de Nemours Reagent) to deionized water.

The time of each separation was taken as the time when the sample was delivered into the separatory funnel. Since the reactions were slow, the time was read to the nearest minute from an electric clock. For convenience, zero time for a reaction was taken as the time when the first sample was removed.

Handling of the Sample

Three 0.5 ml aliquots of the uranium (IV) in 3.0 M hydrochloric acid were withdrawn and were placed on three separate 25 mm watchglasses. Since this was near the capacity of the watch glasses, the edge of each watchglass was ringed with a line drawn with a grease pencil that prevented the solution from creeping over the edge of the watchglass.

Each set of three samples was heated to dryness under an infrared

lamp and transferred to a muffle furnace. When the samples had been heated to a temperature of 500 to 550°C, they were cooled and removed from the oven. This treatment converted the samples to orange uranium (VI) oxide.

The above preparation of the triplicate counting samples gave a uniform deposit of uranium (VI) oxide over the surface of the watchglass since evaporation was rapid. This prevented a large build-up of sample in the center of the watchglass and thus helped to lower the amount of self absorption of the α -rays emitted. The triplicate samples were always very similar in appearance. Since there were only small variations in the amount of uranium (IV) extracted for each separation during a run, the difference in self-absorption from separation to separation was negligible.

The samples were counted for alpha activity in the proportional region using a windowless preflush flow counter (Radiation Instrument Development Laboratory - Model 2-7) with external pre-amplifier and a glow tube scaler (Baird-Atomic, Inc. - Model 131A). A 90% argon and 10% methane gas mixture (The Matheson Company) was used. If the observation time, t, is short compared to the half-life of the isotope, 52 then the standard deviation is given by

(54)
$$s = \sqrt{M}$$

where M is the average number of atoms disintegrating in the time, t.

If a reasonably large number, m, of counts has been obtained, that
number, m, may be used in the place of M for the purpose of evaluating s. The counting rate R is given by

$$(55) \qquad R = m/t$$

and the standard deviation of the rate is given by

(56)
$$s_R = (m)^{1/2}/t$$

Five or ten minute intervals were usually sufficient to reduce \boldsymbol{s}_R to about 2% of the rate, R.

The uranium (IV) in hydrochloric acid solution that remained after the counting samples were withdrawn was used to determine the concentration of the solution. The sample was placed in a one centimeter quartz cell and the absorbance measured at a wavelength of 650 m μ , using a Beckmann DU spectrophotometer. Solutions of uranium (IV) in hydrochloric acid obey Beer's law and have a molar absorptivity of about 58 M⁻¹cm⁻¹. Therefore, the concentration of the solution can be determined from the following relationship:

(57)
$$C = A/\epsilon 1$$

Where A is the measured absorbance, $\boldsymbol{\epsilon}$ is the molar absorptivity, C is the concentration of the solution in moles per liter, and 1 is the path length of the cell used.

Infinite time or complete exchange samples were prepared by taking advantage of the fact that the specific activity is the same in both oxidation states when the exchange is complete. 53 An "H" cell was prepared by connecting two six inch test tubes by a length of ten millimeter tubing that contained a coarse frit. Into one side of the cell was placed an appropriate amount of concentrated perchloric acid and deionized water to make 6 or 7 ml of a solution that was 2.5 to 3.0 $\underline{\text{M}}$ in hydrogen ion. One milliliter of concentrated perchloric acid was placed in the other side of the cell and to this was added a 5.0 ml aliquot of

l			
1			
 - -			

the exchange solution. Electrolyses were carried out at one half ampere for 60-75 minutes using a platinum square for the anode and a carbon rod for the cathode. The solution produced, which contained all of the uranium as uranium (IV), was separated and treated as above.

Miscellaneous Experiments

Initially the attempt was made to study the exchange reaction using a separation technique described by Rona.²⁶ This technique separated uranium (IV) from uranium (VI) by precipitating it as uranium (IV) fluoride.

It was soon discovered that a separation by this means gave erratic and unreproducible results. Attempts were made to improve the results using thorium (IV) as a carrier in the precipitation since the solutions were not very concentrated in uranium (IV). This gave no increase in the efficiency of the separation and still gave erratic results as well.

In addition the hydrofluoric acid used attacked the volumetric ware and thus required the use of constant calibrations. The extraction method of separation was successful.

The geometry of the flow counter was determined by doing a standard separation on a known sample which contained only natural uranium (IV) and counting aliquots from this separation. Calculations indicated that the geometry was 85.6%. This high value is probably due to a large amount of back-scattering.

The spectra of the uranium (IV) and uranium (VI) stocks were determined on the Beckmann DK-2 spectrophotometer and were found to agree with those reported in the literature.⁵⁴ Samples from several kinetic

runs where the tartaric acid concentration was varied were also measured, but no evidence for any complex formation could be observed.

It was observed that solutions made up for kinetic studies would often form a white to pale gray precipitate if tartaric acid was present. The stability of such solutions depended on the relative concentrations of the uranium (IV), free acid, and tartaric acid present. For example, when $[U^{+4}] = 0.025 \,\underline{\text{M}}$, $[UO_2^{++}] = 0.0274 \,\underline{\text{M}}$, $[H_2\text{Tar}] = 0.260 \,\underline{\text{M}}$, $[H^+] = 1.00 \,\underline{\text{M}}$, and I = 2.00, a stable solution results. If the concentration of uranium (IV) or tartaric acid is increased or the amount of free acid decreased, precipitation occurs immediately. The precipitate slowly dissolves on the addition of perchloric acid to give a stable solution.

With maleic, malonic, or malic acids, it is found that when other conditions are as above the $[H^+]$ can be lowered to 0.27 \underline{M} without any precipitation occurring.

Two experiments were carried out in which solutions in clear flasks at 25°C were subjected to the light emitted from a 250 W ultraviolet lamp (Kenmore; Sears, Roebuck, and Company). It was found that a solution containing $[U^{+4}] = 0.025 \,\underline{\text{M}}$, $[UO_2^{++}] = 0.0274 \,\underline{\text{M}}$, and $[H^+] = 1.00 \,\underline{\text{M}}$ with I = 2.00 exhibited a half-time for exchange of only 750 minutes while a similar solution without light would be expected to have a half-time of exchange of 7.8 x 10⁵ min. A similar solution 0.130 $\underline{\text{M}}$ in tartaric acid was found to have a shorter half-time of 100 minutes compared to 2.4 x 10^4 minutes without the influence of light.

RESULTS

From the triplicate counting samples and their corresponding absorbance values, specific activity values (hereafter designated by the symbol S) were obtained. These were corrected for the radioactive ²³⁸U present by subtracting the specific activity of a sample made up without any added ²³³U. This simple correction was valid since the maximum amount of ²³³U present was 2% of the total uranium and the half-life of ²³⁸U is 28,000 times that of ²³³U.

Calculations were carried out by means of a program written for and executed by a Control Data Corporation 160-A computer. A print-out of the program, including the input for an experiment, is shown in Appendix B. In addition a reproduction of the results from the calculations performed on the data is duplicated on the next page of Appendix B.

The fraction of exchange (F) was calculated from the following relation

(34)
$$F = \frac{S - S_0}{S_0 - S_0}$$

For convenience the first sample was taken as the zero time sample and its activity was used for S_0 . The specific activity of a sample that had been electrolyzed for an hour was taken as S_0 , which is possible because the specific activity of either oxidation state is the same at infinite time. The samples which determine S are taken as a function of time.

The McKay equation is written in the form of the equation of a straight line

(58)
$$Y = K^{\dagger} x + P$$

where K', the slope, has the value -R/ab (a+b), P, the intercept, is given by 1n 100, y is the value of 1n (100-100F) and x is the elapsed time, t. Since the most probable slope of such a straight line is given by a least squares treatment, 57 this calculation was performed on all data using the equations

(59)
$$K' = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

(60)
$$P = \sum_{x \in \mathbb{Z}} \frac{x^2 \sum y - \sum x \sum xy}{x^2 \sum x^2 - (\sum x)^2}$$

where n is the number of values of x and y.

The standard deviations of the results were then calculated by the treatment in Youden. 58 In this treatment it has been assumed that the values of x are known with negligible error compared with the values of y, a valid assumption, because the reactions are slow, and thus there is relatively little error in measuring time.

If this treatment is used, an estimate of the standard deviation of a single y measurement (s) is given by

(61)
$$(n-2)s^2 = y^2 - \frac{(\sum y)^2}{n} - \frac{1}{n} \frac{(n\sum xy - \sum xy)^2}{n\sum x^2 - (\sum x)^2}$$

The quantity (n-2) is used instead of (n-1) since the data were used to estimate K' as well as least squared values of y.

The data were tested for the rejection of points in the following manner. Least squared values of y (labelled Y) were calculated for each value of x. The absolute value of the difference between this value and the experimental value (y) was then determined. Any

experimental value which did not fit the following test

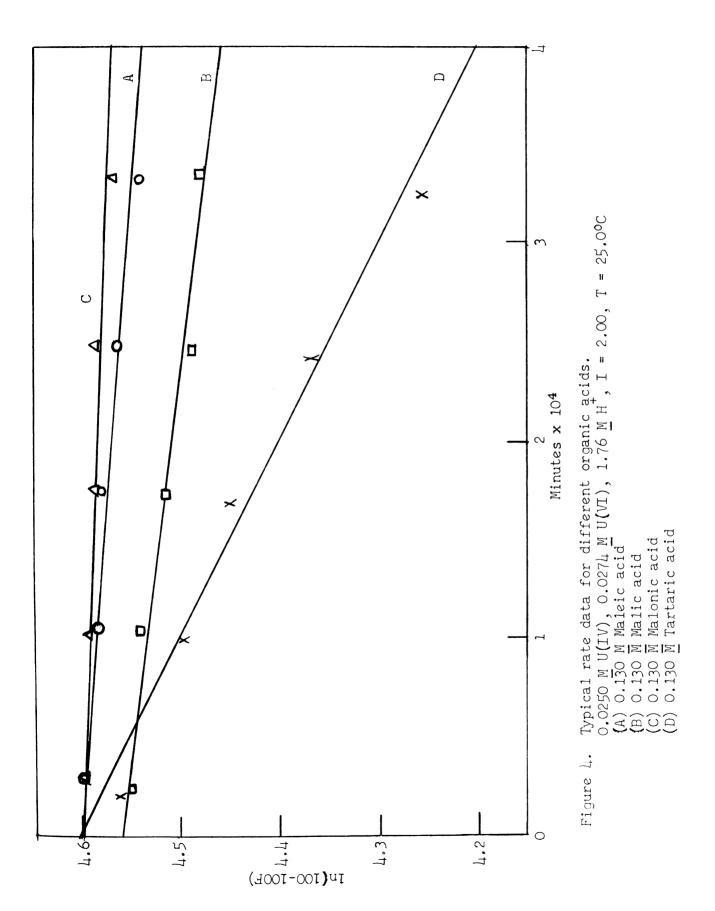
was rejected.

The standard deviations of the slope $(s_{K'})$ and the intercept (s_p) were then calculated by means of the following equations:

(63)
$$s_{K'}^2 = \frac{ns^2}{n\sum x^2 - (\sum x)^2}$$

and

(64)
$$s_p^2 = \frac{s^2 \sum x^2}{n \sum x^2 - (\sum x)^2}$$


The standard deviation of the intercept showed that there was no evidence of induced exchange by the separation method, since all values for the intercept from the least squares treatment were within ± 2% of the theoretical value. The standard deviation in the slope is used in determining the standard deviation of the rate. Since

(65)
$$R = (-K') \frac{ab}{a+b}$$

then

(66)
$$s_R = s_K, \frac{ab}{a+b}$$

A survey of the effects of several organic acids on the exchange reaction was carried out. Figure 4 shows some typical graphs of In(100-100F) against t for different acids. Since the rate of the reaction at these conditions without any added organic acid was too slow to measure conveniently, it was estimated by extrapolation of Rona's data. It can be seen that tartaric acid has the greatest accelerative effect on the reaction. Maleic and malic acids have a similar

effect on the rate while malonic acid has little effect on the reaction. Table IV shows the calculated half-times for these reactions.

The stability of the solutions containing the organic acids was studied further. It was found that solutions that were 0.0250 \underline{M} in U(IV), 0.0274 \underline{M} in U(VI), and 0.013 \underline{M} in organic acid were stable down to hydrogen ion concentrations of 0.708 \underline{M} for tartaric acid and to 0.270 \underline{M} for the others. At these limits the effect due to tartaric acid was still greater than the others. Therefore, a more detailed study of the reaction in the presence of tartaric acid was carried out. These studies were conducted at a hydrogen ion concentration of 1.00 \underline{M} so that the tartaric acid concentration could be studied over a moderate range.

Table IV. Effect of various organic acids on the exchange rate.

Uranium (IV) perchlorate = 0.0250 M, Uranium (VI) perchlorate = 0.0274 M, Perchloric acid = 1.76 M, Organic acid = 0.130 M, Ionic strength = 2.00, Temperature = 25.0°C.

Organic Acid	Rate M min 1	T _{1/2} min
None [*]	1.93 x 10 ⁻⁹	4.68 × 106
malonic	8.46×10^{-9}	1.07×10^6
maleic	2.24×10^{-8}	4.05×10^{5}
malic	3.32×10^{-8}	2.72×10^{5}
tartaric	1.29×10^{-7}	7.01×10^4

^{*}Estimated value.

A log-log plot of the gross rate of exchange, from independent variation of uranium (IV) and uranium (VI) concentrations, exhibits the expected linear relationship in Figure 5. When the uranium (IV) concentration was varied while the uranium (VI) concentration was held constant, it was found that the order with respect to uranium (IV) was 1.3 ± 0.1 . The maximum concentration of uranium (IV) that could be used in these studies was $0.040\,\mathrm{M}$; above that concentration precipitation occurred in a short time. The lower limit was governed by the slowness of the reaction at reduced uranium (IV) concentrations. Constant values of uranium (IV) concentration and variation of uranium (VI) concentration resulted in an order with respect to uranium (VI) of 0.47 ± 0.07 . These data are summarized in Table V.

The effect of hydrogen ion on the exchange was evaluated over the range from $0.80~\underline{\text{M}}$ to $1.25~\underline{\text{M}}$. These data, summarized in Table VI and graphed in Figure 6, show that the order with respect to hydrogen ion is -2.9 \pm 0.2. Here again, the narrow range of the investigation was dictated by the precipitation that occurred in solutions with hydrogen ion concentrations less than $0.80~\underline{\text{M}}$. Because of the higher order dependence on hydrogen ion concentration, the rate becomes too slow to measure conveniently above 1.25 M.

Two different investigations of the effect of varying the concentration of tartaric acid on the rate were carried out. One investigation was carried out using solutions made up in the normal manner as described in the experimental section. These data gave an order with respect to tartaric acid concentration of 0.89 ± 0.11 . They are reported in Table VII. Another series of experiments carried out with

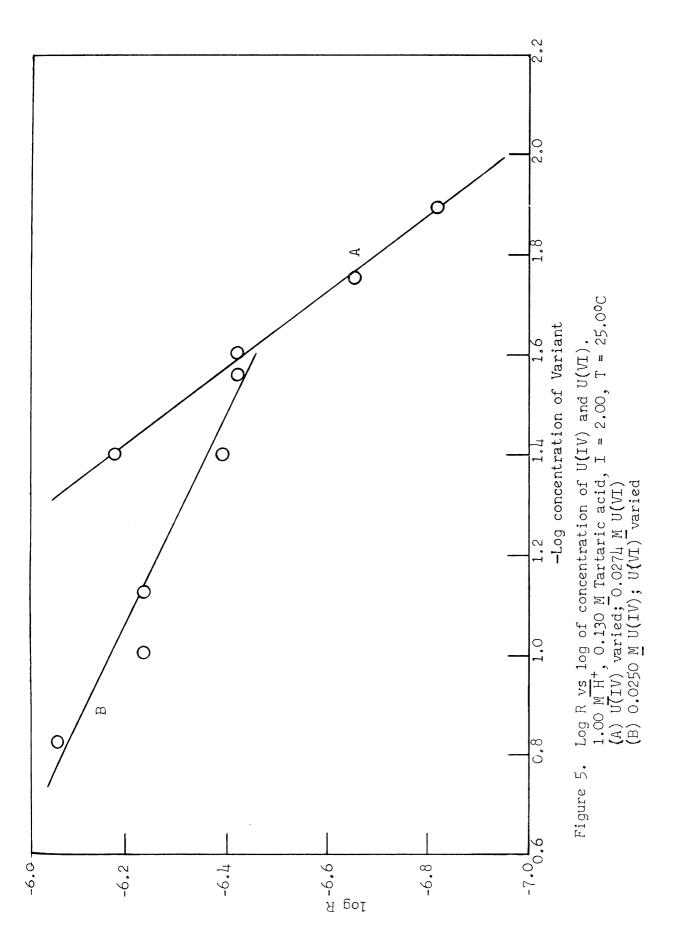
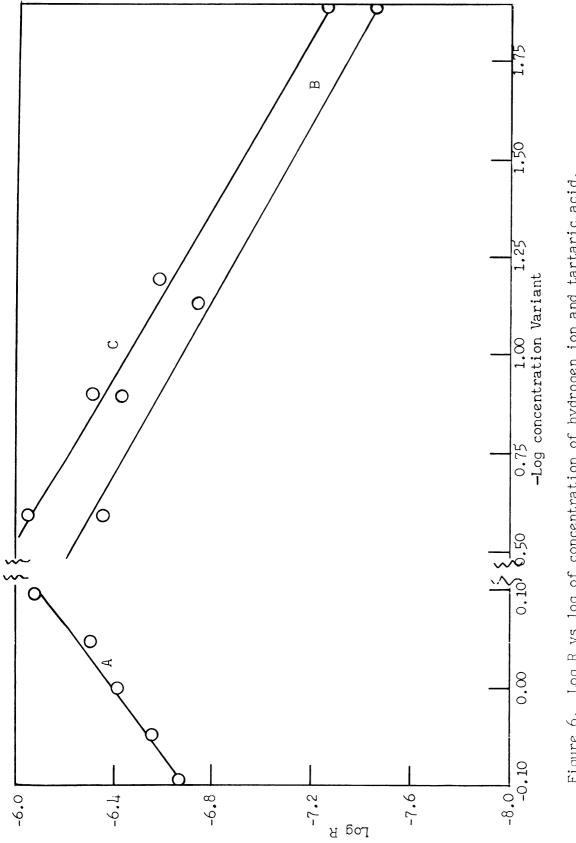


Table V. Dependence of exchange rate on concentration of uranium (IV) and uranium (VI).


Perchloric acid = 1.00 M, Tartaric acid = 0.130 M, Ionic strength = 2.00, Temperature = 25.0° C.

[U(IV)]	[U (VI)] <u>M</u>	R x 10 ⁷ (calc) M min ⁻¹	R x 10 ⁷ (obs)
0.0120	0.0274	1.68	1.51
0.0178	0.0274	2.51	2.13
0.0250	0.0274	3. 55	3.82
0.0400	0.0274	5.77	6.68
0.0250	0.0274	3.55	3.82
0.0250	0.0400	4.08	4.07
0.0250	0.0750	5.58	5 . 9 3
0.0250	0.100	6.65	5.90
0.0250	0.150	8.80	8.79

Table VI. Dependence of exchange rate on the concentration of hydrogen ion.

Uranium (IV) = 0.0250 M, Uranium (VI) = 0.0274 M, Tartaric acid = 0.130 M, Ionic strength = 2.00, Temperature = $2\overline{5}.0^{\circ}$ C.

[H ⁺] <u>M</u>	a _H + <u>M</u>	R x 10 ⁷ (ca1c)	R x 10 ⁷ (obs) M min ⁻¹
0.800	0.846	5 . 62	8.22
0.900	0.964	4.40	4.94
1.00	1.08	3.55	3.82
1.12	1.23	2.79	2.84
1.25	1.38	2.25	2.19

 $\ensuremath{\mathsf{Log}}\ \ensuremath{\mathsf{R}}\ \ensuremath{\mathsf{vs}}$ log of concentration of hydrogen ion and tartaric acid. Figure 6.

0.0250 M U(IV), 0.0274 M U(VI), I = 2.00, T = 25.00C (A) H⁺ varied; 0.130 M Tartaric acid (B) and (C) 1.00 M H⁺; Tartaric acid varied

solutions made up in the manner described in Appendix A gave an order of 0.90. Graphs of these data are also shown in Figure 6.

Table VII. Dependence of the exchange rate on the concentration of tartaric acid.

Uranium (IV) = 0.0250 M, Uranium (VI) = 0.0274 M, Perchloric acid = 1.00 M, Ionic strength = 2.00, Temperature = $\overline{25.0^{\circ}C}$.

Tartaric Acid	R x 10 ⁷ (calc) M min ⁻¹	R x 107 (obs) M min 1
0.0130	0.442	0.364
0.0750	2.09	1.86
0.130	3.55	3.82
0.260	6.99	4.44

The effect of varying the ionic strength, I, is seen in the data reported in Table VIII. The data could not be extended to lower values of ionic strength at the conditions used.

Experiments were also carried out to measure the effect of temperature on the rate of the reaction. The data in Table IX indicate the marked increase of the rate with increasing temperature. Analysis of these data to determine activation energies could not be carried out due to the complexity of the reaction.

Table VIII. Dependence of exchange rate on the ionic strength.

Uranium (IV) = 0.0250 \underline{M} , Uranium (VI) = 0.0274 \underline{M} , Perchloric acid = 1.00 \underline{M} , Tartaric acid = 0.130 \underline{M} , Temperature = 25.0°C.

Ionic Strength	R x 10 ⁷ (obs) M min ⁻¹
1.33	2.87
1.67	3.19
2.00	3.82

Table IX. Dependence of the exchange rate on temperature.

Uranium (IV) = 0.0250 $\underline{\text{M}}$, Uranium (VI) = 0.0274 $\underline{\text{M}}$, Perchloric acid = 1.00 $\underline{\text{M}}$, Tartaric acid = 0.130 $\underline{\text{M}}$, Ionic strength = 2.00

Temperature	$\frac{R \times 10^7}{\underline{M} \min^{-1}} (obs)$
25.0°C	3.82
32.0°C	8.40
39.8°C	25.7

DISCUSSION

Several experiments were first carried out on the uncatalyzed system in order to repeat some of the work of Rona. 26 In experiments where hydrogen ion was varied, the order was found to be -3.5 compared with Rona's value of -3.0. This difference may be reconciled partially by briefly examining the mechanism she reports. One of the important preliminary steps is the hydrolysis of uranium (IV). As equations (12) to (15) show, incorporation of this step in the mechanism predicts a negative second order dependence on hydrogen ion at low acidities and a negative fourth order at conditions of high acidity. Since the acid concentrations used in this work extended beyond the high acid end of the range used by Rona, a larger negative order might be expected.

In addition it should be noted that experiments carried out at conditions that were supposedly identical with Rona's gave rates higher than those she found. This increase in rate can be attributed to a difference between the hydrogen ion concentrations calculated from her pH measurements and the true hydrogen ion concentrations of her solutions.

Rona reported that pH measurements were made at the beginning and the end of each of her experiments. However, the pH measured probably varied from experiment to experiment since no attempt was made to control ionic strength during her studies. A calibration described in Appendix A and illustrated in Figure 7 shows the linear relation between true hydrogen ion concentration and measured pH at a high ionic

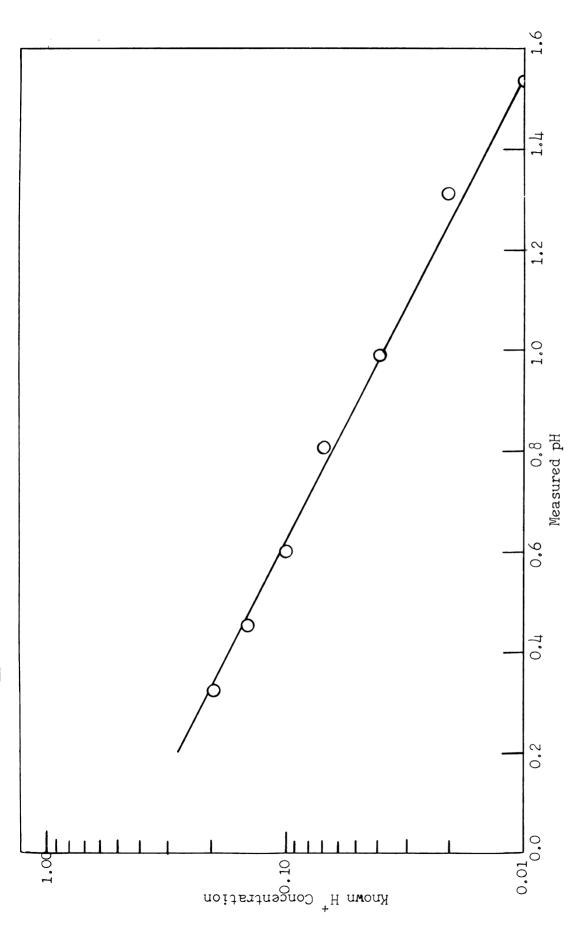


Figure 7. Known hydrogen ion concentration as a function of measured pH.

strength. The correction factor thus obtained will be a function of ionic strength.

The results of the two series of experiments, in which the tartaric acid concentration was varied, show the same disagreement in the value of the estimated hydrogen ion concentration. Line C of Figure 6 shows a log-log plot for exchange solutions made up by the method described in Appendix A. Graph B exhibits a similar result for a series of solutions made up in the standard manner. It can be seen that, although the order of the reaction with respect to tartaric acid concentration is the same, the absolute values of the slopes (K'), and therefore the rates, for reactions supposedly made up to the same conditions differ by a constant amount. This difference is undoubtedly due to the method used in making up the solutions. The method used in Appendix A is suspect since it involves a large increase in the hydrogen ion concentration after the pH measurement has been made. Dissociation of the tartaric acid which had occurred prior to this measurement would now be repressed. However, the primary effect is probably a decrease in the amount of hydrolysis of U+4. These discrepancies support the idea that the solutions made up as described in the experimental section are close to the desired hydrogen ion concentration.

From the experimental results, the following rate law is established

(67)
$$R = \frac{k' [U(IV)]^{1\cdot 3} [U(VI)]^{0\cdot 47} [H_2 Tar]^{0\cdot 90}}{[H^+]^{2\cdot 9}}$$

The appearance of fractional orders in the expression suggests that more than one principal path is contributing to the overall observed rate. The large, negative order for hydrogen ion concentration may be interpreted as a result of hydrolysis or ionization reactions.

A knowledge of the principal species in solution is necessary before a mechanism can be proposed. Since perchlorate is a very weak complexing anion, 59 its use as the anion in solution reduces the possibilities for complex species. Therefore, the main species in the solutions would be U^{+4} , UO_2^{++}, and undissociated tartaric acid.

There have been several studies on the hydrolysis of UO_2^{++} ion.⁶⁰, 61,62,63 Calculations from equilibria presented in these studies indicate that the main species found in the present experiments is UO_2^{++} with no more than 0.03% of the uranium(VI) present as the dimer, $(UO_2)_2(OH)_2^{++2}$.

Studies have also been made on the hydrolysis of U(IV). 30 , 64 , 65 Consideration of the equilibria presented show that U^{+4} is the principal species in the present studies. Less than 3% of the uranium (IV) is present as the hydrolyzed species, UOH^{+3} .

The other species present in the experimental rate law is tartaric acid. Consideration of its stepwise ionization constants show that unionized tartaric acid was the main species present in the exchange solutions with an upper limit of 0.3% of the tartaric acid present as the bitartrate ion.

A rate law which will fit the data obtained for this reaction will probably contain at least two terms since there are fractional orders observed. It seems quite likely that some contribution due to the uncatalyzed path postulated by Rona²⁶ will be present although the high acidity of the solutions relegate it to a minor contribution to the rate, since the concentration of the intermediate UOH⁺³ is minimal.

Extrapolation of Rona's data allows evaluation of the rate at $[H^{\dagger}]$ = 1.00 \underline{M} . Calculations based on her rate law at conditions of high acidity

(68)
$$R = \frac{k_1[U^{+4}]^2[UO_2^{++}]}{[H^+]^4}$$

give a value of 5.7 x 10^{-4} moles² $/1^2$ - min. for k_1 .

If a two term rate law such as

(69)
$$R = \frac{k_1[U^{+4}]^2[UO_2^{++}]}{[H^+]^4} + \frac{k_2[U^{+4}][H_2Tar]}{[H^+]^2}$$

is fitted using the data from the experiments in which the concentration of tartaric acid is varied, then the rate law can be written as

(70)
$$R = F + k_2C$$

and values of the constant k_2 determined. When k_2 is substituted in this equation, using the rest of the data, a poor fit is obtained when the data involving the variation of ${\rm UO_2}^{++}$ is tested. This indicated there is a path that is operative which involves both uranium(VI) and tartaric acid.

If this third path is taken into account, the rate law then becomes

(71)
$$R = \frac{k_1[U^{+4}]^2[UO_2^{++}]}{[H^{+}]^4} + \frac{k_2[U^{+4}][H_2Tar]}{[H^{+}]^2} + \frac{k_3[U^{+4}][H_2Tar][UO_2^{++}]}{[H^{+}]^2}$$

which can be written

(72)
$$R = F + k_2C + k_3C [UO_2^{++}]$$

where

(73)
$$C = \frac{[U^{+4}][H_2Tar]}{[H^+]^2}$$

This can be rearranged to the form

(74)
$$\frac{R-F}{C} = k_2 + k_3 [UO_2^{++}]$$

A graph of (R-F)/C vs $[UO_2^{++}]$ for the experiments where the UO_2^{++} concentration was varied should give a straight line if this equation is followed. The result is shown in Figure 8. From the graph k_2 is estimated to be 7.3 x 10^{-5} and k_3 to be 1.21 x 10^{-3} . Rates calculated from this rate law show good agreement except for the one obtained at the lowest hydrogen ion concentration.

The second term of the proposed rate law is consistent with the mechanism

(75)
$$U^{+4} + H_2 Tar + 2H_2 O \iff (A.C.)_{21}^{+2} + 2H^+$$

with a rate constant k_{21} for the forward step. The quantity $(A.C.)_{21}^{+2}$ represents the activated complex in the theory of absolute reaction rates²⁴ for the first mechanism proposed for the second term of the rate law. This step is followed by a rapid reaction with UO_2^{++}

(76)
$$(A.C.)_{21}^{+2} + UO_{2}^{++} \longrightarrow \text{products}$$

In this case the rate is given by

(77)
$$R'' = \frac{k_{21}[U^{+4}][H_2Tar]}{[H^+]^2}$$

Identical results are obtained by considering the following mechanism for the second term. The two equilibria

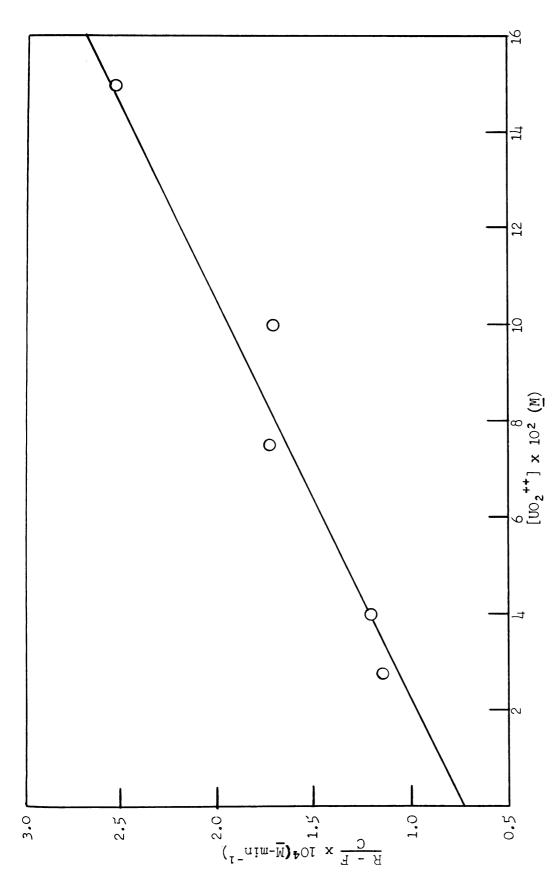


Figure θ . A function of R vs uranium(VI) concentration.

(12)
$$U^{+4} + H_2O \iff UOH^{+3} + H^{+}$$

with equilibrium constants \mathbf{K}_h and \mathbf{K}_1 respectively would be present in the exchange solutions. The species formed in these equilibria would then react to form the activated complex

(79)
$$UOH^{+3} + HTar^{-} \longrightarrow (A.C.)_{22}^{+2}$$

in the rate determining step with a rate constant k_{22} followed by a rapid reaction with ${\rm UO_2}^{++}$

(80)
$$(A.C.)_{22}^{+2} + UO_{2}^{++} \longrightarrow \text{products}$$

Here the rate is given by

(81)
$$R'' = \frac{k_2 2 K_b K_1 [U^{+4}] [H_2 Tar]}{[H^{+}]^2}$$

where the group of constants, $k_{22}K_hK_1$, is identical with k_2 of the equation (71)

A path also can be envisioned in which tartaric acid dissociates completely to form the tartrate ion

(83)
$$HTar^- \longleftrightarrow Tar^= + H^+$$

with an equilibrium constant K_2 for reaction (83). The tartrate subsequently reacts with U^{+4} in a rate determining step

(84)
$$U^{+4} + Tar^{=} \longrightarrow (A.C.)_{23}^{+2}$$

with a rate constant k_{23} , followed by a rapid reaction with ${\rm UO_2}^{++}$ to give products

(85)
$$(A.C.)_{23}^{+2} + UO_{2}^{++} \longrightarrow products$$

For this series of steps the rate would be given by

(86)
$$R'' = k_{23} [U^{+4}][Tar^{-}]$$

which on inclusion of the two equilibria (78) and (83) gives for the rate expression

(87)
$$R'' = \frac{k_{23}K_{1}K_{2}[U^{+4}][H_{2}Tar]}{[H^{+}]^{2}}$$

The third term could consist of the following sequence of reactions: First would be the formation of a uranium(IV) - tartaric acid (H_2 Tar) complex

(88)
$$U^{+4} + H_2 Tar \iff (U \cdot H_2 Tar)^{+4}$$

with an equilibrium constant K_{31} , followed by a rate determining step which forms the activated complex

(89)
$$(U \cdot H_2 Tar)^{+4} + UO_2^{++} + 2H_2 O \iff (A.C.)_{31}^{+4} + 2H^+$$

which has a rate constant k_{31} for the forward reaction. The activated complex formed then rapidly breaks down into products

(90)
$$(A.C.)_{31}^{+4} \longrightarrow \text{products}$$

The rate for this mechanism is given by

(91)
$$R''' = \frac{k_{31}[(U \cdot H_2 Tar)^{+4}][UO_2^{++}]}{[H^+]^2}$$

If the equilibrium (88) is included, the expression becomes

(92)
$$R''' = \frac{k_{31}K_{31}[U^{+4}][H_2Tar][UO_2^{++}]}{[H^{+}]^2}$$

Alternatively the third term could be formulated by the consideration of the equilibria shown in equations (12) and (78) followed by the reaction

(93)
$$UOH^{+3} + HTar^{-} < \longrightarrow [(UOH) \cdot (HTar)]^{+2}$$

with an equilibrium constant K_{32} . This step would be followed by reaction with ${\rm UO_2}^{++}$ in a rate determining step

(94)
$$[(UOH) \cdot (HTar)]^{+2} + UO_2^{++} \longrightarrow (A.C.)_{32}^{+4}$$

with a rate constant k_{32} to give the activated complex which would rapidly break up into products.

The overall rate law given by this sequence of reactions would be

(95)
$$R''' = \frac{k_{32}K_{32}K_{h}K_{1}[U^{+4}][H_{2}Tar][UO_{2}^{++}]}{[H^{+}]^{2}}$$

Here again a third path which involves the tartrate anion is possible. An equilibrium forming an uranium (IV) - tartrate complex

$$(96) U^{+4} + Tar^{=} \iff [U \cdot Tar]^{+2}$$

with an equilibrium constant K_{33} can occur. This complex reacts with UO_2^{++} in a rate determining step

(97)
$$[U \cdot Tar]^{+2} + UO_2^{++} \longrightarrow (A.C.)_{33}^{+4}$$

with a rate constant k_{33} . This activated complex then breaks down to form products. Incorporating the preliminary steps gives as a rate expression for this path

(98)
$$R^{\text{IM}} = \frac{k_{33}K_{1}K_{2}K_{33}[U^{+4}][H_{2}Tar][UO_{2}^{++}]}{[H^{+}]^{2}}$$

The overall rate is then given by the sum of the rate for the uncatalyzed path (F) and the rates calculated from the mechanism chosen for the two separate paths which involve tartaric acid

(99)
$$R = F + R'' + R'''$$

The three alternative mechanisms presented for each path are kinetically indistinguishable and thus it is difficult to choose one over the others.

There is some qualitative evidence that the first mechanism for both paths is favored from the data on dependence of the rate on ionic strength. The Bronsted equation 68

(100)
$$\log k = G + 1.018 z_A z_B I^{1/2}$$

with G a constant, $z_{\rm A}$ and $z_{\rm B}$ the ionic charges of the species forming the activated complex, and I the ionic strength, predicts the rate constant, k, will increase with increasing ionic strength, if the species A and B combining to form the activated complex have a charge of the same sign. Although each rate constant postulated was not determined at different ionic strengths, the increase of the overall rate of exchange with increasing ionic strength as shown in Table VIII does suggest a positive primary salt effect. However, at the high ionic strengths employed, it is also doubtful that (100) applies.

There is an objection to the first mechanism presented for both steps involving tartaric acid. Rather than a slow, rate determining step followed by fast breakup into products, the mechanism must account for the inverse hydrogen ion dependence by use of an equilibrium in the rate determining step for formation of the activated complex. For the reverse of this step to occur requires a termolecular step. Since no

prior equilibria occur, this reverse step must be of some importance since a low rate is observed. Such a reaction in solution is not too likely.

The mechanism involving the tartrate anion is less likely than one involving only bitartrate because of the strongly acidic solutions used. While only a small amount of bitartrate may be present, there will be even less tartrate since formation of the bitartrate must occur first. The small quantities of these reactive species could lead to the overall slowness of the rate. Even so, a path involving tartrate could still be kinetically important.

The mechanism involving a hydrolysis step seems most likely. Although the equilibria shown in equations (12) and (78) are suppressed to some extent by the acidity of the solutions, the other steps leading to the activated complexes occur readily.

The calculated rates of exchange fit well with the observed rates in all but a few cases. It should be noted that the three values which fit the least closely are for the three points where the data was obtained near the limit of the experimental range. These are the points obtained with high tartaric acid concentration, high uranium (IV) concentration, and low hydrogen ion concentration. In all experiments where attempts were made to extend the range studied, some precipitation occurred. There is, then, the possibility that the solutions at these conditions were not truly stable but were slowly transforming to some other metastable condition prior to precipitation.

Because the rate law did not fit the experimental rate exactly, for the experiment where the hydrogen ion concentration was the lowest,

an attempt was made to calculate the rate using estimated hydrogen ion activities since the activity coefficient for perchloric acid could vary even though the ionic strength is kept constant. Activity coefficients for perchloric acid in sodium perchlorate were estimated using Harned's rule⁶⁸which states the logarithm of the activity coefficient of one electrolyte in a mixture of constant total molality is directly proportional to the molality of the other component. This estimation was made using Guggenheim's treatment,⁶⁹ and variations in activity coefficients were seen to be small. It was found that rate constants calculated using those "activities" fit no better than those determined from concentrations. It is probable that the calculated "activities" are no better a measure of the actual activities than are the concentrations.

In addition to the mechanism proposed one might expect a path involving $\mathrm{UO_2}^+$ as an intermediate species. In the absence of light this is not likely, since sclutions having a moderate concentration of $\mathrm{UO_2}^+$ are only obtained near pH 2.0-2.5. The rate constant, k_3 , for disproportionation of $\mathrm{UO_2}^+$ has been measured by Kern and Orleman⁷⁰ at $^{a_1}H = 1.0$ and I = 0.14

(101)
$$2UO_2^+ + 4H^+ \stackrel{k_3}{\underset{k_4}{\longleftarrow}} U^{+4} + UO_2^{++} + 2H_2O$$

 k_3 was found to be 7.3 x 10^3 1 mole⁻¹ min⁻¹ indicating little UO_2^+ would be found.

The tremendous effect of light on the system is difficult to explain. Rona observed no effect due to light and one would expect the same result in perchlorate solutions. At the present one can only explain this observation in terms of a more favored path involving $\mathrm{UO_2}^+$ even though acid conditions are used. When solutions containing tartaric

acid are irradiated the rate is even higher, indicating that some activated species containing ${\rm UO_2}^{++}$ and tartaric acid may be formed which greatly accelerates the reaction. Uranium(VI) is known to be photochemically active in the presence of many organic acids.⁷¹

SUMMARY

The effect of several organic acids on the exchange reaction between uranium(IV) and uranium(VI) in aqueous perchloric acid was studied. The catalytic effect of these acids was found to increase in the order malonic acid < maleic acid< malic acid << tartaric acid.

More detailed studies of the reaction in the presence of tartaric acid revealed that the order of the reaction is 1.3 with respect to uranium (IV) and 0.47 with respect to uranium(VI). The exchange is 0.90 order with respect to tartaric acid and hydrogen ion has an order of -2.9.

The predominant uranium species in solution are ${\rm U}^{+4}$ and ${\rm UO_2}^{++}$. The following three paths for exchange

$$U^{+4} + H_2O \iff UOH^{+3} + H^+$$
 (fast)

$$UOH^{+3} + UO_2^{+2} \iff Y^{+3} + 2H^+$$
 (fast)

$$Y^{+3}$$
 + UOH⁺³ \rightleftharpoons Z^{+6} (rate-determining)

and

$$U^{+4} + H_2O \iff UOH^{+3} + H^+$$
 (fast)

$$UOH^{+3} + HTar^{-} \longrightarrow (A.C.)_{22}^{+2}$$
 (rate-determining)

$$(A.C.)_{22}^{+2} + UO_2^{++} \longrightarrow products$$
 (fast)

and

$$U^{+4} + H_{2}O \iff UOH^{+3} + H^{+} \qquad \text{(fast)}$$

$$H_{2}\text{Tar} \iff H\text{Tar}^{-} + H^{+} \qquad \text{(fast)}$$

$$UOH^{+3} + H\text{Tar}^{-} \iff [(UOH) \cdot (H\text{Tar})]^{+2} \qquad \text{(fast)}$$

$$[(UOH) \cdot (H\text{Tar})]^{+2} + UO_{2}^{++} \implies (A.C.)_{32}^{+4} \qquad \text{(rate-determining)}$$

$$(A.C.)_{32}^{+4} \implies \text{products} \qquad \text{(fast)}$$

combine to give an expression for the overall rate

$$R = \frac{5.7 \times 10^{-4} [U^{+4}]^{2} [UO_{2}^{++}]}{[H^{+}]^{4}} + \frac{7.3 \times 10^{-5} [U^{+4}] [H_{2} Tar]}{[H^{+}]^{2}}$$

$$+ \frac{1.2 \times 10^{-3} [U^{+4}] [H_{2} Tar] [UO_{2}^{++}]}{[H^{+}]^{2}}$$

Rates calculated using this expression agree well with rates obtained experimentally.

The rate of the reaction increased with increasing ionic strength and was markedly accelerated by temperature increases. Irradiation with an ultraviolet lamp caused a very large increase in the rate of the reaction.

LITERATURE CITED

- 1. Shaffer, P. A., J. Am. Chem. Soc., 55, 2169(1933).
- 2. Shaffer, P. A., J. Phys. Chem., 40, 1021(1936).
- 3. Michaelis, L., Trans. Electrochem. Soc., 71, 107(1937).
- 4. Halpern, J., Can. J. Chem., 37, 148(1959).
- 5. Halpern, J., Quart. Rev. (London), 15, 207(1961).
- 6. Taube, H., Can. J. Chem., 37, 129(1959).
- Taube, H., in H. J. Emeleus and A. G. Sharpe, Advances in Inorganic Chemistry and Radiochemistry, New York, Academic Press, (1960), Vol. I.
- 8. Wahl, A. C., Z. Electrochem., 64, 90(1960).
- Taube, H., R. K. Murmann and F. J. Posey, J. Am. Chem. Soc., <u>79</u>, 262(1957).
- Ogard, A. E., and H. Taube, J. Am. Chem. Soc., 80, 1084(1958).
- 11. Taube, H., J. Am. Chem. Soc., 77, 4481(1955).
- Dodson, R. W., and N. Davidson, J. Phys. Chem., <u>56</u>, 866(1952).
- 13. Hudis, J., and R. W. Dodson , J. Am. Chem. Soc., 78, 911(1956).
- Stranks, D. R., in J. Lewis and R. G. Wilkins, Modern Coordination Chemistry, New York, Interscience Publishers, Inc., (1960), Chap. 2.
- 15. Libby, W. F., J. Phys. Chem., 56, 863(1952).
- 16. Libby, W. F., J. Chem. Phys., 38, 420(1963).
- 17. Marcus, R. A., J. Chem. Phys., 24, 966(1956).
- 18. Marcus, R. A., J. Chem. Phys., 26, 867(1957).
- 19. Hush, N. S., Trans. Faraday Soc., 57, 557 (1961).
- Marcus, R. J., B. J. Zwolinski, and H. Eyring, J. Phys. Chem., <u>58</u>, 432(1954).
- 21. Laidler, K. J., Can. J. Chem., 37, 138(1959).

- 22. Sacher, E., and K. J. Laidler, Trans. Faraday Soc., 59, 396(1963).
- 23. Newton, T. W., and S. W. Rabideau, J. Phys. Chem., 63, 365(1959).
- 24. Glasstone, S., K. J. Laidler and H. Eyring, The Theory of Rate Processes, New York, McGraw-Hill Book Co., Inc., (1941), pp. 195-199.
- 25. Betts, R. H., Can. J. Research, 26B, 702(1948).
- 26. Rona, E. R., J. Am. Chem. Soc., 72, 4339(1950).
- 27. King, E. L., MDDC-813(1947).
- 28. Masters, B. J. and L. L. Schwartz, J. Am. Chem. Soc., 83, 2620(1961).
- 29. Heal, H. G., Nature, 157, 225(1946).
- 30. Kraus, K. A. and F. Nelson, J. Am. Chem. Soc., 72, 3901(1950).
- 31. Nelson, F. and K. A. Kraus, J. Am. Chem. Soc., 73, 2157(1951).
- 32. Frost, A. A., and R. G. Pearson, Kinetics and Mechanisms, New York, John Wiley and Sons, Inc., (1962), pp. 192-193.
- 33. Prestwood, R., and A. C. Wahl, J. Am. Chem. Soc., 71, 3137(1949).
- 34. Benson, S. W., The Foundations of Chemical Kinetics, New York, Mc Graw-Hill Book Co., (1960), pp. 66-73.
- 35. Love, C. M., unpublished results.
- 36. Friedlander, G. and J. W. Kennedy, Nuclear and Radiochemistry, New York, John Wiley and Sons, Inc., (1955), pp. 132-134.
- 37. Meyer, R. J. and E. Pietsch, Gmelin's Handbuch der Anorganischen Chemie, Berlin, Verlag Chemie, G.M.B.H., (1936), p. 136.
- 38. Arhland, S., and R. Larsson, Acta. Chem. Scand., $\underline{8}$, 137(1954).
- 39. Quinn, L. P., PhD Thesis, Michigan State University, (1961).
- 40. Meyer, F. R., and G. T. Ronge, Angew. Chem., 52, 637(1939).
- 41. Stone, H. W. and C. Beeson, Ind. Chem., Anal. Ed., 8, 188(1936).
- 42. Gordon G. and H. Taube, J. Inorg. Nuclear Chem., 16, 272(1961).
- 43. Lange, N. A., Handbook of Chemistry, Handbook Publishers, Inc., Sandusky, Ohio, (1952).
- 44. Kolthoff, I. M. and E. B. Sandell, Textbook of Quantitative Inorganic Analysis, The Macmillan Company, New York, (1952), p. 521.

- 45. Leininger, E. and K. G. Stone, Elementary Quantitative Analysis, Michigan State College Press, East Lansing, Michigan, (1950), p. 109.
- 46. Willard, H. H. and P. Young, J. Am. Chem. Soc., <u>55</u>, 3260(1933).
- 47. See reference 44, p. 580.
- 48. Young, P., Anal. Chem., 24, 152(1952).
- 49. Katz, J. J. and G. T. Seaborg, The Chemistry of Actinide Elements, Methuen and Company, Ltd., London (1957), p. 176.
- 50. See reference 44, pp. 569-570.
- 51. Lundell, G. E. F. and H. B. Knowles, J. Am. Chem. Soc., 47, 2637 (1925).
- 52. See reference 36, p. 258.
- 53. See reference 36, p. 316.
- 54. See reference 49, pp. 173-174.
- 55. McKay, H. A. C., Nature, 148, 997(1938).
- 56. Duffield, R. B. and M. Calvin, J. Am. Chem. Soc., 68, 557(1946).
- 57. Daniels, F., C.D. Cornwell, J. W. Williams, P. Bender, and R. A. Alberty, Experimental Physical Chemistry, New York, McGraw-Hill Book Co., Inc., (1962), p. 413.
- 58. Youden, W. J., Statistical Methods for Chemists, New York, John Wiley and Sons, Inc., (1951), pp. 42-43.
- 59. Klanberg, F., J. P. Hunt, and H. W. Dodgen, Inorg. Chem., 2, 139(1963).
- 60. Crandall, H. W., J. Chem. Phys., <u>17</u>, 602(1949).
- 61. Hearne, J. A. and A. G. White, J. Chem. Soc., 1957, p. 2168.
- 62. Hietanen, S., and L. G. Sillen, Acta. Chem. Scand., <u>13</u>, 1828(1959).
- 63. Baes, C. F., Jr., and N. J. Meyer, Inorg. Chem., $\underline{1}$, 780(1962).
- 64. Hietanen, S., Acta. Chem. Scand., <u>10</u>, 1531(1956).
- 65. Hearne, J. A. and A. G. White, J. Chem. Soc., 1957, p. 2081.
- 66. Comyns, A. E., Chem. Rev., 60, 115(1960).
- 67. Moore, W. J., Physical Chemistry, Englwood Cliffs, N. J., Prentice-Hall, Inc., (1962), pp. 368-373.

- 68. Robinson, R. A. and R. H. Stokes, Electrolyte Solutions, London, Butterworths Scientific Publications, (1955), pp. 427-428.
- 69. Harned, H. S. and B. S. Owen, The Physical Chemistry of Electrolytic Solutions, New York, Reinhold Publishing Corporation, (1958), pp. 602-607.
- 70. Kern, D. M. H. and E. F. Orlemann, J. Am. Chem. Soc., 71, 2102(1949).
- 71. Heckler, G. E., A. E. Taylor, C. Jensen, D. Percival, R. Jensen, and P. Fung, J. Phys. Chem., <u>67</u>, 1(1963).

APPENDIX A

PREPARATION OF EXCHANGE SOLUTIONS USING A pH METER

When work was first begun on the system, attempts were made to duplicate the work of Rona. 26 Because hydrolysis was important at these conditions, the pH of the solutions was determined as the stock solutions were mixed.

pH measurements were carried out with a Beckman Model G pH Meter using a glass electrode and a calomel reference electrode. Since erratic readings were obtained using a standard calomel reference electrode with a saturated potassium chloride electrolyte in the perchlorate solutions due to precipitation of potassium perchlorate at the fiber junction, a saturated sodium chloride solution was substituted as the electrolyte. It was also noted that there is an error in the hydrogen ion concentration of the solution calculated from the pH measurements made at high ionic strength. The pH's of a series of solutions of known hydrogen ion concentration at I = 2.00 were measured to be 0.39 pH units lower than the true pH. This correction factor was added to all measurements made.

All solutions for this series of runs were combined in a 150 ml beaker in which was fitted the electrodes for the pH meter and a glass tip drawn to a small opening through which passed a stream of nitrogen.

Uranyl perchlorate and sodium perchlorate were first added to the beaker. The pH of this solution was checked. The uranium(IV) was next added while the nitrogen flow continued. The pH was measured and recorded. The pH reading was corrected and the hydrogen ion concentration determined. The number of moles of hydrogen ion needed to give the required acidity was then calculated and the proper amount of stock

solution added. The solution was next diluted to the desired volume and the tartaric acid added. Upon completion of this final step the solution was poured into a darkened flask.

The chief disadvantages of this method are that solutions with a pH lower than 0.4 cannot be directly measured and the system is subject to error because of the great changes in hydrogen ion concentration it undergoes after the pH measurement is recorded. Once experiments were begun at $1.00~\underline{\text{M}}$ in hydrogen ion this method was abandoned for the one described in the body of the thesis.

APPENDIX B

COMPUTER PROGRAM

G

STOP END C SUBROUTINE FOR REFINING DATA

1CRSPA ACTNET, ENFACT, F, F100, FINVAL, SLOPE, A, THALF, RATE, U, UO2, 2ACID, ORG, TEMP, C, D, SA, SB, SR DIMENSION TIME (25), ABSORB (25), COUNTS (25,3), BKGND (3), BKGRAT (3), 1COURAT(3,25), CORAT(3,25), CRSPA(25), FINVAL(25), C(3,25), D(3,25) PRINT 21 21 FORMAT(1H0,40HVALUES OF CORRECTED SPECIFIC ACTIVITY READ 22, (TIME(I), ABSORB(I), COUNTS(I,1), COUNTS(I,2), $1COUNTS(I \cdot 3) \cdot I = 1 \cdot N)$

COMMON N.T.S.TIME.ABSORB.COUNTS.BKGND.BKGRAT.CORAT.CAVRAT.CONC.

22 FORMAT(F8.0.3X.F6.3.3X.3(F8.0.3X)) DO 25 I=1.N SUM=0. DO 23 J=1.3 COURAT(I,J)=COUNTS(I,J)/S CORAT([,J)=COURAT([,J)-BKGRAT(J) 23 SUM=SUM+CORAT(I+J)

SUBROUTINE REFINE

```
CAVRAT=SUM/3.
    CONC=ABSORB(1) #2052.
    SPECAC=CAVRAT/CONC
    CRSPA(I)=SPECAC-0.623
    PRINT 24. CRSPA(I)
 24 FORMAT(1H2,11X,E12.6)
 25 CONTINUE
    M = N
    ENFACT=CRSPA(M)-CRSPA(1)
    PRINT 200 + ENFACT + N
200 FORMAT(1H0.7HENFACT=. E10.4.5X.2HN=. 12 )
 26 FORMAT(1H0,13HLOG(100-100F),5X,13HELAPSED TIME )
    PRINT 26
    K=N-1
    DO 28 1=2.K
    ACTNET=CRSPA(1)-CRSPA(1)
    F=ACTNFT/ENFACT
    F100=100.00-100.00*F
    FINVAL(I)=LOGF(F100)
    PRINT 27. FINVAL(I).TIME(I)
 27 FORMAT(1H2,E12,6,6X,E12,6)
 28 CONTINUE
    RETURN
    END
    LEAST SQUARES SUBROUTINE
    SUBROUTINE SLSTSQ
    COMMON N,T,S,X,ABSORB,COUNTS,BKGND,BKGRAT,CORAT,CAVRAT,CONC,
   1 CRSPA, ACTNET, ENFACT, F, F100, Y, B, A, THALF, RATE, U, U02,
   2ACID.ORG.TEMP.C.D.SA.SB.SR
    DIMENSION X(25), ABSORB(25), COUNTS(25,3), BKGND(3), BKGRAT(3),
   1 COURAT (3,25), CORAT (3,25), CRSPA (25), Y (25), C (3,25), D (3,25)
    SUMX=0.
    SUMY=0.
    SUMW=0.
    SUMU=0.
    SUMZ=0.
    K=N-1
    DO 31 I=2.K
    SUMX=SUMX+X(I)
    SUMY=SUMY+Y(I)
    SUMW=SUMW+X(I)*Y(I)
    SUMU=SUMU+Y(I)**2
 31 SUMZ=SUMZ+X(I)**2
    FK=N-2
    B=(FK*SUMW-SUMX*SUMY)/(FK*SUMZ-SUMX**2)
    A=(SUMY*SUMZ-SUMW*SUMX)/(FK*SUMZ-SUMX**2)
    PRINT 32. B. A
 32 FORMAT(1H0.6HSLOPE=. E12.6. 5X. 10HINTERCEPT=. E12.6 )
```

L=N-2

```
FRACT=((((SUMW)-(SUMX*SUMY/L))**2)/((SUMZ)-(SUMX**2/L)))
   E=(SUMU)-(SUMY**2/L)-(FRACT)
   V=E/M
   SB2=(L*V)/((L*SUMZ)-(SUMX**2))
   SB=SQRTF(SB2)
   SA2=(V*SUMZ)/((L*SUMZ)-(SUMX**2))
   SA=SQRTF(SA2)
   PRINT 33, SB
33 FORMAT(1H0+23HSTD DEVIATION OF SLOPE=+ E14+8 )
34 FORMAT(1H0.27HSTD DEVIATION OF INTERCEPT=. E14.8 )
   PRINT 34, SA
   PRINT 35
35 FORMAT(1H0.50HDIFFERENCE BETWEEN CALCULATED AND EXPERIMENTAL Y
   DO 37 I=2.K
   C(1 \cdot I) = ABSF(Y(I) - (B*X(I) + A))
   PRINT 36.C(1.1)
36 FORMAT (1H2,12X, E14.8)
37 CONTINUE
   DEV=SQRTF(V)
   D3=3.0*DEV
   PRINT 38. DEV. D3
38 FORMAT(1H0,4HDEV=, E14.8, 4X, 3HD3=, E14.8)
   RETURN
   END
                               443.
                                       362.
  14
        15.
               5.
                      306.
.025
            .0274
                       1.00
                                    .13
                                              24.96
                                  4074.
                                              3456.
           .465
                      4127.
 433.
           .467
                      4575.
                                  4362.
                                              4384.
1222.
           .460
                      4965.
                                  4955.
                                              4788.
                                              5856 •
1956.
           .455
                      5748.
                                  5634 •
3247.
           .447
                      5612.
                                  5563
                                              5324 •
4218.
           .457
                      6838.
                                  7003.
                                              6596 •
4891.
           •433
                      6411.
                                  6137.
                                              6111.
5608.
           •435
                      7167.
                                  7513.
                                              7373.
6969.
           .450
                      5886.
                                  6497.
                                              6287.
                                  7462.
7657.
           • 455
                      7418.
                                              7677.
8217.
           • 450
                      8420.
                                  8146.
                                              8228.
                                  8498.
9132.
           .457
                      8586.
                                              8676.
                                              8655.
9820.
           •438
                      8315.
                                  8364.
```

15042 •

14878.

27

.315

15046.

STO DEVIATION IN RATE = .45452064E-07

D3= . ID895411F 00

RATF= .3818545-06

DEV= .36318038E-01

THALF= .237295F 05

APPENDIX C

ORIGINAL KINETIC DATA

Table X. Study of the effect of variations in hydrogen ion concentrations on the rate of exchange in the absence of organic acids.

	S	1n(100-100F)	t(min.)
E-73 0.0250 M U(IV) 0.0274 M U(VI) 0.110 M H ⁺ 0.000 M Tartaric acid I = 2.00 T = 25.0°C R = 2.89 ± 0.40 x 10 ⁻⁵ moles 1 ⁻¹ min ⁻¹	-0.016 0.224 0.195 0.215 0.456 0.595 0.460 0.530 0.694 0.727 0.928 1.685	4.453 4.473 4.459 4.280 4.160 4.277 4.218 4.064 4.031 3.796	0 27 52 75 101 130 172 201 230 258 295 &
F-21			
0.0250 M U(IV) 0.0274 M U(VI) 0.141 M H ⁺ 0.000 M Tartaric acid I = 2.00 T = 25.0°C R = 1.83 ± 0.14 x 10 ⁻⁵ moles 1 ⁻¹ min ⁻¹	0.118 0.956 1.457 2.227 2.439 2.579 3.699 4.156 4.261 4.327 4.135 4.705	4.403 4.260 3.989 3.900 3.836 3.088 2.482 2.269 2.108 2.520	0 165 280 420 579 748 1311 1432 1589 1663 1758
F-23 0.0250 \underline{M} U(IV) 0.0274 \underline{M} U(VI) 0.282 \underline{M} H ⁺ 0.000 \underline{M} Tartaric acid I = 2.00 T = 25.0°C R = 1.25 ± 0.05 x 10 ⁻⁶ moles 1 ⁻¹ min ⁻¹	0.146 0.214 0.649 0.787 1.068 1.403 1.708 1.880 1.858 2.183 2.361 2.281 2.622 2.964 4.611	4.590 4.486 4.450 4.374 4.275 4.175 4.114 4.122 3.996 3.920 3.955 3.797 3.608	0 247 1259 1997 2562 3468 4180 4908 5677 6374 7049 7859 8576 10045

Table XI. Study of the effect of various organic acids on the rate of exchange.

	S	1n (100-100F)	t(min.)
F-39	**	·	
0.0250 <u>M</u> U(IV)	0.005		0
0.0274 M U(VI)	0.079 0.122	4.588 4.578	679 1426
-	0.152	4.572	1943
о.562 <u>м</u> н ⁺	0.300 0.279	4.537 4.542	4364 5083
0.0131 \underline{M} maleic acid	0.378	4.519	5813
I = 2.00	0.388 0.605	4.516 4.468	6576 10734
T = 25.0°C	0.740	4.427	18635
$R = 1.32 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	1.110 1.228	4.325	27408
R = 1.32 x 10 moles 1 min	1.493	4.290 4.2 0 6	32274 39645
	1.873	4.073	47553
	4.535		
F-43 0.0250 M U (IV)	0.079		0
0.0274 <u>M</u> U (VI)	0.201	4.577	998
$0.562 \overline{M} H^T$ $0.0131 \overline{M} malic acid$	0.345 0.841	4.543 4.416	4510 15426
$\frac{\text{I}}{\text{I}} = 2.00$	1.009	4.410	20776
$T = 25.0^{\circ}C$	1.145	4.330	28585
$R = 1.22 \pm 0.07 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	1.440 4.506	4.238 	36884 o
F-44			
0.0250 M U(IV) 0.0274 M U(VI)	0.085 0.122	 4 . 593	0
0.562 M H	0.122	4.501	999 4503
0.0131 , $\overline{\underline{M}}$ malonic acid	0.786	4 .33 5	15429
I = 2.00 T = 25.0°C	0.8 6 5 1.172	4.300 4.148	21523 29063
	1.559	3.917	37402
$R = 2.23 \pm 0.19 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	3.048		
F-46 0.0250 M U (IV)	0.092		\circ
0.0250 M U(VI)	0.163	4.590	0 1055
1.76 M̄ H ⁺	0.091	4.605	43 62
0.0262 $\overline{\underline{M}}$ maleic acid I = 2.00	0.144 0.149	4.594 4.593	14546 19672
$T = 25.0^{\circ}C$	0.176	4.588	27253
$R = 6.2 \pm 2.9 \times 10^{-9} \text{ moles } 1^{-1} \text{min}^{-1}$	0.213	4.580	35547 oo
K = 0.2 ± 2.9 X 10 moles 1 min	4.930		w

Table XI (Cont.)

	S	ln (100-100F)	t(min.)
F-47	_		
0.0250 M U(IV)	0.139		0
0.0247 M U(VI)	0.142	4.604	1060
1.76 $\overline{\text{M}}$ H ⁺ 0.0262 $\overline{\text{M}}$ malic acid	0.091	4.619	4378
$\frac{0.0202 \text{ M}}{I = 2.00}$	0.227 0.269	4.579 4.567	14574 19731
$T = 25.0^{\circ}C$	0.165	4.598	27265
·	0.214	4.583	35610
$R = 1.01 \pm 0.78 \times 10^{-8} \text{ moles } 1^{-1} \text{min}^{-1}$	3.608		00
F-48			
0.0250 <u>M</u> U(IV)	0.104		0
0.0274 M U(VI)	0.172	4.590	1057
1.76 M H ⁺	0.182	4.588	4381
$0.0262 \ \overline{\underline{M}}$ malonic acid	0.203	4.584	14581
I = 2.00 T = 25.0°C	0.198	4.585	19741
1 = 25.0°C	0.131 0.211	4.599 4.582	27433 35636
$R = 5.2 \pm 3.1 \times 10^{-10} \text{ moles } 1^{-1} \text{min}^{-1}$	4.698	4.502	00 .
F-49			
0.0250 M U(IV)	0.140		0
0.0274 M U(VI)	0.171	4.598	1061
1.76 <u>M</u> H ⁺	0.184	4.596	4 3 95
0.0262 $\overline{\underline{\mathtt{M}}}$ tartaric acid	0.250	4.582	14583
I = 2.00	0.261	4.579	19750
$T = 25.0^{\circ}C$	0.159	4.601	27448
$R = 8.7 \pm 5.6 \times 10^{-9} \text{ moles } 1^{-1} \text{min}^{-1}$	0.332	4.564	35658 o
	4.877		
F-51 O.0250 M U (IV)	0.097		0
0.0274 M U(VI)	0.143	4.594	2743
1.76 M H ⁺	0.192	4.583	11526
0.130 $\overline{\underline{\mathtt{M}}}$ maleic acid	0.150	4 . 59 3	17410
I = 2.00	0.248	4.569	24887
$T = 25.0^{\circ}C$	0.371	4 .53 9	331 87
$R = 2.24 \pm 0.70 \times 10^{-8} \text{ moles } 1^{-1} \text{min}^{-1}$	4.369		00
F-52 O.0250 M U(IV)	0.078		0
0.0230 H 0(1V) 0.0274 M U(VI)	0.333	4.552	27 3 5
1.76 M H*	0.359	4.546	11374
0.130 \overline{M} malic acid	0.484	4.518	17416
I = 2.00	0.616	4.489	24883
$T = 25.0^{\circ}C$	0.637	4.484	33382
$R = 3.32 \pm 0.57 \times 10^{-8} \text{ moles } 1^{-1} \text{min}^{-1}$	4.965		00

Table XI (Cont.)

	S	1n(100-100F)	t(min.)
F-53			
0.0250 \underline{M} U(IV) 0.0274 $\overline{\underline{M}}$ U(VI) 1.76 $\overline{\underline{M}}$ H+ 0.130 $\underline{\overline{M}}$ malonic acid I = 2.00 T = 25.0°C R = 8.46 ± 4.4 x 10 ⁻⁹ molex 1 ⁻¹ min ⁻¹	0.077 0.129 0.124 0.165 0.130 0.244 5.140	4.595 4.596 4.588 4.595 4.572	0 2759 11371 17413 24909 33387 0
F-54			
0.0250 \underline{M} U(IV) 0.0274 $\underline{\overline{M}}$ U(VI) 1.76 $\underline{\overline{M}}$ H ⁺ 0.130 $\underline{\overline{M}}$ tartaric acid I = 2.00 T = 25.0°C R = 1.29 ± 0.19 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.322 0.517 0.784 0.861 1.138 1.590 4.477	 4.557 4.487 4.466 4.387 4.241	0 2450 11076 17105 24600 33083 0
F-69			
0.0250 M U(IV) 0.0274 M U(VI) 0.708 M H ⁺ 0.013 M tartaric acid I = 2.00 T = 25.0°C R = 2.02 ± 0.24 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	-0.012 0.089 0.083 0.078 0.179 0.149 0.277 0.281 0.224 0.331 0.231 0.215 0.459 0.680 0.711 4.469	4.582 4.584 4.585 4.562 4.569 4.537 4.551 4.526 4.553 4.499 4.438 4.439	0 130 577 869 1169 1565 2208 2453 2703 3692 4290 5516 6801 8246 9621

Table XII. Study of the effect of variations in U(IV) on the rate of exchange.

	S	1n(100-100F)	t(min.)
G-19			
0.0400 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 6.68 ± 1.0 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.079 0.278 0.228 0.418 0.167 0.374 0.228 0.494 0.605 0.579 0.702 0.664 0.747 2.763	4.528 4.548 4.470 4.572 4.489 4.548 4.437 4.387 4.399 4.319	0 282 599 1377 1837 2094 2491 3195 4159 4564 4931 5590 6006 0
G-27			
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 3.82 ± 0.45 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.166 0.278 0.390 0.581 0.549 0.804 0.749 0.996 0.698 0.961 1.140 1.182 1.229 3.976	4.575 4.544 4.490 4.499 4.422 4.439 4.359 4.455 4.371 4.310 4.295 4.278	0 433 1222 1956 3247 4218 4891 5608 6969 7657 8217 9132 9821 0

Table XII (Cont.).

	S	1n(100-100F)	t(min.)
G-33			-
0.0120 \underline{M} U(IV) 0.0274 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.130 \underline{M} tartaric acid I = 2.00 T = 25.0°C R = 1.51 ± 0.10 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.457 0.898 0.957 1.159 1.425 1.635 2.013 2.254 2.496 2.638 2.940 2.928 11.113	4.568 4.563 4.557 4.537 4.510 4.488 4.447 4.420 4.393 4.376 4.340 4.341	0 565 983 1311 2072 2861 4347 5140 6553 7911 11543 12665 13566
G-67			
0.0178 \underline{M} U(IV) 0.0274 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.130 $\overline{\underline{M}}$ tartaric acid I = 2.00 T = 25.0°C R = 2.13 ± 0.20 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.266 0.886 1.329 1.451 1.382 2.052 2.038 2.088 2.592 2.375 2.806 8.828	4.530 4.473 4.456 4.466 4.371 4.373 4.366 4.288 4.322 4.253	0 1211 2869 4271 5857 7804 8865 9929 11392 12987 14333

I			
•			
•			
:			

Table XIII. Study of the effect of variations in U(VI) on the rate of exchange.

	S	1n(100-100F)	t (min.)
G-23			
0.0250 M U(IV) 0.0750 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 5.93 ± 0.38 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.282 0.281 0.374 0.467 0.722 0.669 0.709 0.716 0.868 1.019 1.039 1.096 1.209 5.347	4.605 4.587 4.568 4.514 4.526 4.517 4.516 4.482 4.448 4.443 4.443	0 249 538 1308 1836 2051 2566 3203 4217 4622 4989 5648 6064 0
G-25			
0.0250 \underline{M} U(IV) 0.150 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.130 \underline{M} tartaric acid I = 2.00 T = 25.0°C R = 8.79 ± 0.67 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.608 0.392 0.315 0.475 0.556 0.404 0.634 0.727 0.853 0.778 0.876 0.877 1.129 1.379 1.525 6.048	4.644 4.658 4.630 4.615 4.642 4.600 4.583 4.559 4.555 4.555 4.554 4.504 4.452 4.451	0 59 249 341 538 658 1308 1436 1836 2051 2566 3203 4291 4573 4951 0

Table XIII (Cont.)

	S	1n(100-100F)	t(min.)
G-47 0.0250 \underline{M} U(IV) 0.0500 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.130 \underline{M} tartaric acid I = 2.00 T = 25.0°C R = 2.69 \pm 0.27 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.780 1.143 1.463 1.427 1.706 1.926 1.732 2.323 2.302 2.435 2.376 2.633 2.600 10.390	4.567 4.531 4.536 4.504 4.478 4.501 4.430 4.433 4.416 4.424 4.391 4.395	0 756 1576 2294 2501 2996 3536 5714 6846 8005 9317 10038 10692
G-57 0.0250 M U(IV) 0.0400 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 4.07 ± 0.17 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.422 0.847 1.212 1.681 1.804 1.926 2.424 2.652 2.873 3.097 3.161 8.908	4.554 4.507 4.444 4.427 4.410 4.336 4.300 4.264 4.226 4.215	0 1223 2616 4331 5680 7262 9205 10270 11345 12797 14395
G-59 0.0250 \underline{M} U(IV) 0.100 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.130 \underline{M} tartaric acid I = 2.00 T = 25.0°C R = 5.90 ± 0.50 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.894 0.980 1.697 1.978 2.220 2.849 3.917 3.712 3.680 4.430 5.227 11.936	4.597 4.530 4.502 4.477 4.412 4.410 4.285 4.310 4.314 4.219 4.107	0 1000 2374 4043 5433 7033 8972 10034 11097 12555 14158 15499

Table XIV. Study of the effect of variations in tartaric acid concentrations on the rate of exchange.

	S	ln (100-100F)	t(min.)
F-74			
0.0250 \underline{M} U(IV) 0.0274 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.0650 \underline{M} tartaric acid $\underline{I} = 2.00$ $\underline{T} = 25.0^{\circ}C$ $R = 2.60 \pm 0.13 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	0.069 0.168 0.154 0.369 0.287 0.291 0.288 0.376 0.622 0.773 1.308 1.511 4.673	 4.583 4.587 4.538 4.556 4.556 4.556 4.477 4.439 4.292 4.229	0 204 - 770 1320 1785 2369 3164 3907 5322 8533 13921 18891
F-75			***************************************
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.0130 M tartaric acid I = 2.00 T = 25.0°C R = 5.46 ± 0.68 x 10 ⁻⁸ moles 1 ⁻¹ min ⁻¹	0.096 0.161 0.160 0.184 0.174 0.098 0.252 0.215 0.232 0.250 0.491 0.489 5.135	4.592 4.592 4.588 4.590 4.605 4.574 4.581 4.578 4.574 4.524	0 204 792 1370 1806 2390 3185 3928 5343 8554 13942 18912

Table XIV (Cont.)

	S	1n (100-100F)	t(min.)
G-2			
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 4.88 ± 0.41 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.203 0.167 0.277 0.316 0.747 0.936 1.277 1.798 1.857 2.048 1.909 1.957 2.290 4.481	4.614 4.588 4.578 4.469 4.417 4.316 4.139 4.116 4.041 4.096 4.077 3.936	0 166 648 920 1545 3876 6480 8729 10242 12287 14063 15934 17283
G-3			
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.260 M tartaric acid I = 2.00 T = 25.0°C R = 8.62 ± 0.48 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.229 0.329 0.485 0.591 1.168 1.358 2.191 2.677 2.628 3.002 2.933 3.148 3.510 4.825	4.583 4.548 4.523 4.376 4.323 4.048 3.844 3.867 3.680 3.717 3.597 3.354	0 166 648 920 1545 3876 6480 8729 10242 12287 14063 15934 17283

Table XIV (Cont.)

	S	1n (100-100F)	t(min.)
G-39 O.0250 M U(IV) O.0274 M U(VI) 1.00 M H ⁺ O.0750 M tartaric acid I = 2.00 T = 25.0°C R = 1.86 ± 0.12 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.094 0.300 0.470 0.610 0.620 0.764 1.034 1.189 1.352 1.704 7.792	 4.578 4.555 4.536 4.534 4.514 4.475 4.452 4.427 4.371	0 574 1043 1316 2044 2808 5716 7671 10765 13449
G-41 0.0250 \underline{M} U(IV) 0.0274 $\overline{\underline{M}}$ U(VI) 1.00 $\overline{\underline{M}}$ H+ 0.0130 $\overline{\underline{M}}$ tartaric acid I = 2.00 T = 25.0°C R = 3.64 ± 1.3 x 10 ⁻⁸ moles 1 ⁻¹ min ⁻¹	0.198 0.164 0.180 0.348 0.326 8.225	 4.609 4.607 4.586 4.589	0 761 3550 6917 9642 0
G-43 O.0250 M U(IV) O.0274 \overline{M} U(VI) 1.00 \overline{M} H ⁺ O.130 \overline{M} tartaric acid I = 2.00 T = 25.0°C R = 3.82 ± 0.34 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.744 0.727 1.570 1.990 2.278 2.382 8.055	4.607 4.485 4.418 4.370 4.351	0 761 3550 6917 8165 9269 0
$0.0250 \ \underline{M} \ U(IV)$ $0.0274 \ \underline{M} \ U(VI)$ $1.00 \ \underline{M} \ H^{+}$ $0.260 \ \underline{M} \ \text{tartaric acid}$ $I = 2.00$ $T = 25.0^{\circ}C$ $R = 4.44 \pm 1.24 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	1.270 1.861 2.294 2.383 2.416 3.158 3.523 2.236 3.301 3.995 3.886 8.515	4.462 4.276 4.133	0 756 1576 2294 2925 3536 5714 7296 8064 8597 9441

Table XV. Study of the effect of variation of hydrogen ion concentration on the rate of exchange in the presence of tartaric acid.

	S	1n(100-100F)	t(min.)
G-35			
0.0250 M U(IV) 0.0274 M U(VI) 0.800 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 8.22 ± 0.43 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.235 0.759 1.008 1.042 1.428 1.711 1.713 2.193 2.600 2.491 2.238 3.044 3.382 3.465 3.555 5.649	4.503 4.451 4.444 4.356 4.287 4.286 4.156 4.031 4.066 4.143 3.874 3.735 3.698 3.656	0 565 983 1311 2072 2861 4347 5140 6553 7129 7911 10096 11528 12369 14279
G -3 7			
0.0250 M U(IV) 0.0274 M U(VI) 1.25 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 2.19 ± 0.15 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.277 0.489 0.732 0.754 0.910 1.059 1.421 1.606 1.761 2.138 8.265	4.578 4.546 4.543 4.522 4.502 4.450 4.423 4.400 4.340	0 574 1043 1316 2044 2808 5716 7671 10765 13449

Table XV (Cont.)

	S	1n (100-100F)	t(min.)
G-61			
0.0250 M U(IV) 0.0274 M U(VI) 0.900 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 4.94 ± 0.31 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.386 0.814 1.109 1.778 1.674 1.920 2.126 2.453 2.566 2.668 3.270 3.331 6.922	4.537 4.488 4.366 4.386 4.338 4.296 4.225 4.199 4.176 4.023 4.006	0 1086 2460 4129 5519 7119 8338 9400 10463 11921 13511 14582
G-65			
0.0250 <u>M</u> U(IV) 0.0274 <u>M</u> U(VI) 1.12 <u>M</u> H ⁺ 0.130 <u>M</u> tartaric acid I = 2.00 T = 25.0°C R = 2.84 ± 0.24 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.263 0.565 0.890 1.122 1.089 1.607 1.558 1.550 2.021 1.999 2.192 6.891	4.558 4.506 4.466 4.472 4.378 4.388 4.389 4.297 4.301 4.261	0 1211 2869 4271 5857 7084 8865 9929 11392 12987 14333

Table XVI. Study of the effect of varying ionic strength on the rate of exchange.

	S	1n (100-100F)	t(min.)
G-29			
0.0250 <u>M</u> U (IV)	0.211		0
0.0274 M U (VI)	0.264 0.263	4.591 4.591	431 1222
1.00 M H ⁺	0.404 0.389	4.553 4.558	1956 3 247
-	0.565	4.507	4218
0.130 \underline{M} tartaric acid	0.497 0.692	4.527 4.471	489 1 5608
I = 1.33	0.602	4.497	6969
$T = 25.0^{\circ}C$	0.713 0.827	4.464 4.429	7 6 57 8217
$R = 2.87 \pm 0.26 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	0.967	4.385	9132
	0.967 4.036	4.385 	9820 o o
G-49	4.000		
0.0250 M U (IV)	0.544		0
_	0.840	4.566	763
0.0274 M Ú (VI) 1.∞ M H+	1.339 1.628	4.495 4.452	2324 3555
0.130 $\overline{\underline{M}}$ tartaric acid	1.521	4.469	6290
$I = 1.67$ $T = 25.0^{\circ}C$	2.192 2.417	4.362	8144
$R = 3.19 \pm 0.58 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	8.192	4.324 	9397 o
G-51			
0.0250 <u>M</u> U (IV)	0.404		0
0.0274 M U (VI) 1.∞ M H +	0.534 0.917	4.588 4.5 3 8	763 2324
0.130 M tartaric acid	1.108	4.512	3555
I = 1.33	1.386	4.472	6290
$T = 25.0^{\circ}C$	1.908 1.884	4.394 4.398	8144 9 3 97
$R = 2.94 \pm 0.27 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	8.305		Œ

Table XVII. Study of the effect of variation of temperature on the exchange reaction.

	S	ln (100-100F)	t(min.)
H-1			
0.0250 <u>m</u> U(IV) 0.0274 <u>m</u> U(VI)	0.549 1.091 1.659	 4.523 4.428	0 258 1073
1.∞ <u>M</u> H ⁺	2.313 2.578 2.723	4.307 4.254 4.223	1474 18 3 5 25 1 0
0.130 M tartaric acid	3.677 4. 3 22	3.994 3.804	3140 40 3 8
I = 2.00 T = 39.8°C	4.409 5.044 5.377	3.775 3.5 3 6 3.383	4618 5480 6007
$R = 2.58 \pm 0.11 \times 10^{-6} \text{ moles } 1^{-1} \text{min}^{-1}$	7.394		00
0.0250 <u>M</u> U (IV)	0.850	 4.584	0 258
0.0750 <u>M</u> U(VI)	2.291	4.436 4.370	1073 1474
1.∞ <u>M</u> H ⁺	3.369 4.174	4.228 4.161	18 3 5 25 1 0
0.130 M tartaric acid	4.593	4.088 3.755	3145 4038
I = 2.00 T = 39.8°C	7.233 7.790 8.364	3.439 3.225 2.942	4618 5480 6007
$R = 5.31 \pm 0.36 \times 10^{-6} \text{ moles } 1^{-1} \text{min}^{-1}$	10.121		o
H-7			
0.0250 <u>M</u> U (IV)	0.493 0.6 3 6	 4.584	0 245
0.0274 <u>M</u> U (VI)	1.117 1.510	4.509 4.443	1056 1463
1.25 <u>M</u> H ⁺	1.943 2.394	4.365 4.277	1814 2498
0.130 M tartaric acid I = 2.00 T = 39.8°C	2.423 2.520 3.741	4.271 4.251 3.956	3130 4601 5466
$R = 1.35 \pm 1.5 \times 10^{-6} \text{ moles } 1^{-1} \text{min}^{-1}$	3.700 7.292	3.967 	6010 o

Table XVII (Cont.)

	S	1n(100-100F)	t(min.)
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.0650 M tartaric acid I = 2.00 T = 39.8°C R = 1.02 ± 0.20 × 10 ⁻⁶ moles 1 ⁻¹ min ⁻¹	0.264 0.508 0.937 1.015 1.327 1.735 1.874 3.026 1.517 2.895 3.053 7.328	4.570 4.505 4.193 4.142 4.372 4.346 4.109 4.110 4.139 4.103	0 245 1056 1463 1814 2498 3130 4025 4601 5466 6010
0.0120 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 39.8°C R = 1.36 ± 0.05 x 10 ⁻⁶ moles 1 ⁻¹ min ⁻¹	0.795 1.695 1.999 2.390 3.284 3.674 5.033 5.039 5.490 5.741 8.379	4. 179 4. 132 1. 369 4. 207 4. 128 3. 787 3. 785 3. 640 3. 549	0 391 738 1433 1923 2949 4401 4877 5692 6183
H-13			
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 32.0°C R = 8.37 ± 1.2 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.250 0.350 1.207 1.232 1.395 1.487 1.8147 1.790 2.098 2.026 2.478 2.032 6.042	4.588 4.424 4.419 4.385 4.365 4.283 4.296 4.221 4.239 4.120 4.237	0 290 1073 1419 1747 2458 2836 3162 3947 4490 5385 5988

Table XVII (Cont.)

	S	1n (100-100F)	t(min.)
H-14			
0.0250 M U(IV)	0.441		0
-	0.619	4.588	290
0.0750 <u>M</u> U (VI)	1.503	4.497	1073
	1.350	4.514	1419
1.∞ <u>M</u> H ⁺	0.923	4.558	1747
0 120 M toutouis onid	2.028	4.439	2458
0.130 \underline{M} tartaric acid	1.994 2.751	4.443	2836 3162
I = 2.00	2.864	4.353 4.339	3162 3947
$T = 32.00^{\circ}C$	3.064	4.314	4490
	3.358	4.275	5477
$R = 1.19 \pm 0.13 \times 10^{-6} \text{ moles } 1^{-1} \text{min}^{-1}$	10.816		30
H-15		***	
0.0250 M U (IV)	0.347		0
0.0250 <u>H</u> 0(1V)	0.525	4.582	290
0.0274 M U (VI)	0.935	4.525	1084
0.02/4 11 0(11)	0.904	4.529	1438
1.250 M H ⁺	0.989	4.517	1755
<u> </u>	1.059	4.507	2483
0.130 M tartaric acid	1.090	4.503	2853
	1.258	4.478	3162
I = 2.00	1.462	4.447	3863
$T = 32.00^{\circ}C$	1.623	4.422	4401
9 -1	1.630	4.421	5405
$R = 3.81 \pm 0.32 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	1.660	4.416	5885
	7.972		00
H-16			
0.0250 M U(IV)	0.196		0
-	0.265	4.594	290
0.0274 <u>M</u> U(VI)	0.652	4.530	1084
	0.713	4.520	1438
1.∞ <u>M</u> H ⁺	0.541	4.549	1755
	0.831	4.499	2483
0.0650 M tartaric acid	0.754	4.512	2853
T 0.00	0.841	4.497	3162
I = 2.00	0.922	4.483	3546
$T = 32.00^{\circ}C$	1.092	4.452	4401
$R = 2.20 \pm 0.71 = 10^{-7} = 10^{-1} = 1^{-1} = 1^{-1}$	0.872	4.492	5405
$R = 2.30 \pm 0.54 \times 10^{-7} \text{ moles } 1^{-1} \text{min}^{-1}$	0.940	4.479	5885 oo
	6.493		

Table XVII (Cont.)

	S	1n (100–100F)	t(min.)
H-17			
0.0120 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 32.00°C R = 3.26 ± 0.35 x 10 ⁻⁷ moles 1 ⁻¹ min ⁻¹	0.428 0.887 1.526 1.598 1.526 1.831 1.972 2.238 2.520 2.428 2.522 2.653 9.290	4.552 4.473 4.464 4.473 4.433 4.414 4.377 4.336 4.349 4.330	0 289 1093 1455 1761 2529 2868 3167 3928 4455 5297 5900
H-18			
0.0250 \underline{M} U(IV) 0.0750 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.130 \underline{M} tartatic acid $\underline{I} = 2.00$ $\underline{T} = 39.8^{\circ}C$ $R = 4.24 \pm 0.23 \times 10^{-6} \text{ moles } 1^{-1}\text{min}^{-1}$	0.663 1.032 1.606 1.418 1.810 2.173 2.410 3.054 3.284 4.514 4.004 5.025 4.991 5.566 8.034	4.554 4.468 4.497 4.436 4.376 4.335 4.213 4.166 3.866 4.001 3.709 3.721 3.511	0 217 392 595 724 1199 1383 1647 2022 2753 3179 3665 4229 4675

Table XVII (Cont.)

	S	1n(100-100F)	t(min.)
Н-20			
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 39.8°C R = 1.78 ± 0.11 x 10 ⁻⁶ moles 1 ⁻¹ min ⁻¹	0.322 0.562 0.727 0.770 0.792 1.118 0.938 1.376 1.278 1.844 1.848 2.269 2.414 2.258 4.695	4.549 4.508 4.497 4.491 4.404 4.453 4.329 4.358 4.177 4.176 4.016 3.954 4.021	0 217 392 595 724 1199 1383 1647 2022 2753 3179 3665 4229 4675

100

Table XVIII. Study of the effect of irradiation on the exchange reaction.

	S	ln(100-100F)	t(min.)
H-21			
0.0250 \underline{M} U(IV) 0.0274 \underline{M} U(VI) 1.00 \underline{M} H ⁺ 0.00 \underline{M} tartaric acid I = 2.00 T = 25.0°C R = 1.21 ± 0.08 x 10 ⁻⁵ moles 1 ⁻¹ min ⁻¹	0.100 0.010 0.110 0.059 0.097 0.004 0.130 0.152 0.254 0.191 0.277 0.240 0.539 0.714 1.34 1.77 1.75 4.11	4.627 4.603 4.615 4.606 4.629 4.598 4.592 4.566 4.582 4.560 4.570 4.489 4.439 4.068 4.075	0 5 10 16 22 28 34 42 51 59 67 74 143 196 317 496 706
Н-22			
0.0250 M U(IV) 0.0274 M U(VI) 1.00 M H ⁺ 0.130 M tartaric acid I = 2.00 T = 25.0°C R = 9.16 ± 0.77 x 10 ⁻⁵ moles 1 ⁻¹ min ⁻¹	0.178 0.453 0.672 0.528 1.14 1.24 1.44 1.61 2.05 2.30 2.37 2.10 2.31 2.17 3.18 2.99 3.09 3.10 4.21	4.534 4.474 4.514 4.332 4.301 4.230 4.167 3.979 3.860 3.852 3.958 3.852 3.958 3.852 3.926 3.237 3.409 3.318	0 6 10 16 22 29 39 50 60 72 84 98 112 129 142 154 168 181

CHEMISTRY LIBRARY

BLC 1 1 63-

