


J—

200N
592220

This is to certify that the
dissertation entitled

AN EVOLUTIONARY COMPUTATIONAL APPROACH TO
CONFIGURING PORTABLE EMBEDDED SYSTEM i
ARCHITECTURES

presented by
JAMES NORTHERN, Ili i

has been accepted towards fulfillment
of the requirements for the

Doctoral degree in Electrical and Computer
Engineering

" Major Professor’s Signature

MoV, 25 2003

Date

MSU is an Affirative Action/Equal Opportunity Institution



Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

AT 20 gk

SEP 0 7 2005

6/01 ¢:/CIRC/DateDue.p65-p.15



AN EVOLUTIONARY COMPUTATIONAL APPROACH TO
CONFIGURING PORTABLE EMBEDDED SYSTEM ARCHITECTURES

By

James Northern, lli

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Electrical and Computer Engineering

2003



ABSTRACT

AN EVOLUTIONARY COMPUTATIONAL APPROACH TO
CONFIGURING PORTABLE EMBEDDED SYSTEM ARCHITECTURES

By

James Northern, Il

Portable embedded systems (e.g., medical equipment, cellular
phones, pagers, and video game consoles) are being driven by consumer
demands to be thermally efficient (produce less heat), perform faster, and
have longer battery life. To design such a system, various hardware units
(e.g., level one (L1) and level two (L2) caches, functional units, registers)
are selected based on a set of specifications for a particular application.
Currently, chip architects are using software tools to manually explore
different configurations, so that tradeoffs for consumption, performance,
and chip size may be understood.

However, when evaluating multiple design parameters simultaneously,
the exploration space expands, design time increases, and human errors
become a concern. Genetic algorithms, which are effective in rapid global
search of large and poorly understood spaces, have been modified for
multiple objectives and applied to guide this process to an improved
solution.

This dissertation presents a framework for an evolutionary approach to
configuring an “ideal” embedded processor based on power consumption

and performance. In addition, a database of simulation results that gives a



more comprehensive evaluation of tradeoffs between power and
performance, and of the inter-dependence between parameter
configurations is presented. Appropriate search techniques to reduce

exploration space and decrease time-to-market are also discussed.
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INTRODUCTION

Embedded systems are application-specific (single task) computer
systems built into larger devices. In today’s world, embedded systems are
everywhere — homes, offices, cars, factories, hospitals, airplanes, and
consumer electronics. An embedded system differs from a general-
purpose computer in that it has one fixed application and cannot be
changed by the outside environment. However, an embedded system is
reactive to internal changes. These types of systems often run in real-time
and are designed to meet requirements of low cost and low power
consumption, and are usually small in size. In addition, consumer
demands have driven embedded systems to be thermally efficient,
perform faster, and have longer battery life. Challenging design issues
arise, such as multi-objective design goals, configurability (customization),
and time-to-market.

This dissertation presents a framework for an evolutionary
computational approach to configuring an “ideal” embedded processor
based on power consumption and performance. In addition, a database of
simulation results that gives a more comprehensive evaluation of tradeoffs
between power and performance, and of inter-dependence between
parameter configurations (i.e., L1 to L2 cache size, memory bandwidth,

instruction window size, datapath width) is presented.



CHAPTER 1
Embedded System Architectures

New portable embedded systems require a high level of performance
to meet their hard and/or soft real-time deadlines, where hard real-time is
an absolute deterministic response to an event. Examples of embedded
systems in the consumer market are digital cameras, video cameras,
video game consoles, and medical equipment (e.g., glucose monitor,
heart rate monitor). As the complexity and importance of these
applications increase, the type of architectures that support them will lead
to higher power consumption than traditional portable devices. Thus,
limited power-supply capability of current battery technology is forcing
designers to explore a combination of high-performance and low-power
architectures.

The solution for attaining these new goals is to customize the
processor for a particular application. Designers are evaluating three
fundamental approaches: RISC ICs, hard cores, and configurable
semiconductor intellectual property (IP) cores. Table 1.1 summarizes the

three fundamental approaches.



Table 1.1. Fundamental approaches to designing embedded
system architectures.

Approach Description
RISC ICs Off-the-shelf, stand alone parts that are
selected from component data books.
Hard cores Pre-defined macro layout blocks that can

be integrated into application specific ICs.

Configurable semiconductor | Fully programmable processors that can
IPs be customized and build by multiple
contract semiconductor fabricators.

The advantages of using RISC ICs are their ease of purchase
(commodity) and tailored appeal to a specific kind of market. Examples of
RISC ICs include Intel's Pentium XScale, IBM's PowerPC, MIPS VR5000,
Philips TriMedia TM-1300. Disadvantages of these processors are low
integration, poor system performance, and high power requirement. An
example of performance and power for selected RISC ICs is shown in

Table 1.2.

Table 1.2. Performance and power specifications for RISC ICs.

RISC ICs Performance Power
Intel's XScale 1 GHz 1.5W
IBM’'s PowerPC 750CX 400 MHz 40W
MIPS VR5000 250 MHz 50W
TriMedia’s TM1300 & 166 MHz 27W

Hard cores are more flexible than RISC ICs because they are pre-

defined macro layout blocks that can be integrated into embedded




processors. They can be provided and serviced by any application-
specific design house. Disadvantages of hard cores include that they are
process-specific, that their non-configurable captive IP demands premium
price in the market, and that they require additional hardware when
integrated into systems-on-a-chip (SoC).

Configurable semiconductor IP cores are more flexible than hard cores
because they are not process dependent. They provide foundry-
independence for multiple manufacturing sources. The disadvantages of
configurable semiconductor IPs are their availability of processor options,
configurability of hardware and instruction set architecture (ISA),
optimization of software compiler, and integration in an SoC as lack of
architectural models of all execution units and peripherals makes it difficult
to model paths through the system. In the present work, the configurability
of hardware, optimization for power and performance, and ease-of-design
(i.e., low design complexity for reduced design time and fast time-to-

market) for a configurable semiconductor IP are explored.

1.1 Configurable Semiconductor IP Systems

Configurable semiconductor IP systems are fully programmable
processors that can be customized and constructed by multiple contract
semiconductor fabricators. These embedded processors are becoming an
attractive alternative to RISC ICs and hard cores for the following main
reasons: design time and time-to-market are much shorter than that for
hardwired custom implementations; time can be reduced if the processor

is simulated and explored in software; and the ability to change part of the



functionality of any system is crucial in determining the design time. The
cost of design and implementation of a programmable processor is lower
compared to hardwired implementation. The cost of silicon processing
increases in foundries with every new generation of technology [1].
Enabling technologies for programmable processors are becoming mature
and competitive. Compilers and design tools are improving at an
increasingly rapid rate [2,3] and more attention is being given to improving
these tools [4,5]. Programmable processors are now able to provide

power versus performance tradeoffs [6,7,8,9,10].

1.1.1 Design Methodology

Many design flows and methods have been proposed in the past,
where different steps in design methodology and their consequences on
design decisions have been studied. Figure 1.1 shows the different steps
involved in the design of a configurable embedded IP system [11]. The
five main stages (abstraction levels) in this design methodology are
algorithm specification, system-level design, array-level instruction,
technology integration, and physical system architecture design [12]. The
algorithm specification level is where the type of ISA is chosen. The
system-level design stage maps the actual task (C program) to the ISA
through a GNU gcc compiler at the array-level instruction stage, the
processor configuration is explored at the technology integration stage,
and the circuit design takes place. The physical architecture system level
determines the final layout of the embedded system. The present work

addresses the array-level instruction stage where the processor



configuration is explored and optimized. In the methodology to be
described a genetic algorithm is successfully applied to accomplish this

goal.

Algorithm Specification

I

System-level Design, Data-Type Refinement
(Task and data level mapping)

!

Array-level Instruction, Processor Configuration
Data Transfer and Storage Exploration

Technology Integration

Physical System Architecture

Figure 1.1. System design flow for an embedded system imple-
mentation.

1.1.2 Target Architecture

The target architecture consists of basic components in configurable
semiconductor IPs. Figure 1.2 shows as an example a general abstraction
of the current state-of-the-art multi-media embedded processor [13,14].
The key components typically observed in these architectures are

described in Table 1.3.
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Figure 1.2. Target architecture model for programmable super-
scalar RISC/VLIW processor with memory hierarchy.

Table 1.3. Basic components of an embedded processor and its

key features.

Component

| Description

Functional units (FU)

Multiple units for integer and floating-point
operations using arithmetic logic unit and
multiplier.

Instruction fetch queue

Size and issue width constitute a superscalar
[15] or a very long instruction word (VLIW)
[13,14] processor or a multi-threaded
multiprocessor type of core [16].

Instruction window

Register update unit for the integer and
floating-point instructions. Uses a reorder
buffer to automatically rename registers.

Cache

One or more levels of cache memories are
present, at least one of which resides on chip.

Centralized bus

A centralized bus is selected with one or two
data buses, depending on data-dominated
multimedia applications [12].




The architecture of embedded programmable processors has features
that are parameterizable. Examples include the functional unit, which can
vary in datapath size and bitwidths, cache size and organization; the
memory unit, which may vary in the number and size of register files; and
the interconnections within the processor data paths [17]. The framework
for a configurable processor is a compiler coupled to a machine simulator,
with parameterizable features tunable by the designer. Interdependence
between two parameters has been investigated [18], however, exploration

and optimization of all of these parameters have not been addressed.

1.2 Problem Statement

Many embedded processor studies focus on issues related to cache
size and organization, and their relationship to energy and power
consumption. Although points of diminishing returns exist, decreasing the
size generally decreases power consumption. However, the focus of
research has shifted to the inter-relationships of other major parameters
and their tradeoffs when optimizing for multiple objectives, namely power
and performance.

A common difficulty when optimizing for multiple objectives is the
conflict between objectives when maximizing or minimizing over a given
set of solutions. For example, decreasing cache size reduces power
consumption, but also decreases performance. If the cache is too small,
cache misses may mask the effects of other processor parameters, such

as branch mispredictions, because of parameter interdependency.



Conversely, increasing the number of functional units may increase
performance, but also will increase power consumption. While searching
the design space for an ‘ideal” embedded processor configuration,
optimizing for two or more criteria can lead to “non-ideal” solutions.
Hence, for portable, high-performance embedded implementations, much
more advanced techniques, which are efficient in ease-of-design and
multi-objective decision-making, need to be explored.

In the context of embedded architecture and organization, the

following goals are outlined:

1. Finely tuned performance to meet application requirements:
Some embedded designs require high performance for
multimedia and communication algorithm processing.

2. Small size: Highly integrated circuits need to be optimized for
small size and low system cost.

3. Energy and power efficiency: The embedded processor must
operate at a very low MIPS per watt rating to meet requirements
for portable applications. For example, a processor's power
budget may be a maximum of 1W, but it must still be able to
drive the processing for an intense algorithm like speech
recognition or data compression.

4. Ease-of-design: Low design complexity will result in reduced
design time and fast time-to-market. Design complexity must be
kept to a minimum to speed the time-to-market for a system
level product. However, when evaluating multiple design
parameters simultaneously, the exploration space expands

(e.g., four options per parameter with 16 parameters to a set



solution, give 4,294,967,296 possible solutions), thus increasing

design time.

1.3 Main Contributions

The main contributions of this work are the following:

1. A methodology for exploring embedded system architectures
[Chapter 5): Issues related to processor architectures and
organization, are addressed using an evolutionary approach for
configurable processors. An application of a simple genetic
algorithm in the exploration of a configurable processor design
is used in the process. With this methodology we are able to
improve power and performance (i.e., find solution better than
original) of embedded processors for practical applications

given a large set of parameters [19].

2. A sensitivity analysis for embedded system optimization
[Chapter 5]. Based on experimentation with practical
applications, we have determined a heuristic for training the
genetic algorithm to better represent the configuration problem.
The less sensitive parameter value (size, number, efc.) is
replaced with their best value from a previous GA run, and used
as a constant in future evaluations [19]. Therefore, this step
reduces the configured design space and refines the

exploration criteria.

10



3. Multi-objective analysis for configuring embedded system
architectures [Chapter 6]: An efficient multi-objective genetic
algorithm [20] that generates a set of alternative solutions and
indicates the best power/performance tradeoff is developed.
These alternative solutions are expressed as non-dominated
points (i.e., a solution is dominant over another only if it has

superior performance in all criteria).

1.4 Structure of Dissertation

The remainder of this dissertation is organized as follows. First,
Chapter 2 provides the necessary background material related to this
work. An overview of superscalar out-of-order processor simulators is
presented. Emphasis is placed on the estimation of power consumption
and performance rather than on out-of-order procedures. Also, a
methodology for exploring embedded system architectures is presented.

Chapter 3 presents the taxonomy of different search and optimization
algorithms. Examples of each method are given and trade-offs between
the techniques are reviewed. Based on our research, genetic algorithms
(GAs) offer greater flexibility for a larger search space. An explanation of
how GAs are used in the configuration methodology is also presented.

Chapter 4 presents the concepts of the GA search and optimization
technique. Standard GA concepts such as solution (chromosome)
representation, fitness function, reproduction operators, selection criteria,

and stopping criteria are discussed. Other techniques for expanding the

11



use of GAs to non-standard problems are also presented.

Chapter 5 presents a methodology for improving power consumption
of a computer simulated configurable processor. The functional
parameters and the estimation of power consumption are incorporated
into a genetic framework. This chapter addresses the use of genetic
algorithms and the criteria needed to establish a good search (ie.,
population size, random populations, and stopping criteria).

Chapter 6 describes the techniques developed in this work, such as
incorporating the parameters into a genetic framework, the sensitivity
analysis, and multi-objective decision-making. The encoding and
decoding of the parameters are very important in performing an efficient
search. The sensitivity analysis involves a technique for training the
genetic algorithm to better represent the design search space. A
sensitivity analysis of each parameter is performed and the less sensitive
values for parameters are substituted for a constant value to reduce
exploration time for validation runs. The problems faced with multi-
objective decision-making, and the corresponding solutions for power and
performance are also discussed. A method is presented for providing a
Pareto-optimal front for optimal solutions of two objectives. Experimental
results as well as issues related to automation of this technique are
presented.

Finally, Chapter 7 presents the main contributions of this thesis and

provides directions for future work.
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CHAPTER 2

Overview of Simulation Tools

Computer-aided design simulators are used to help in the design of
new electronic circuits and devices such as systems-on-a-chip, embedded
systems, intellectual property cores. These types of circuits are designed
from specifications given at very high levels of abstraction in order to
shorten the time-to-market of new products. However, modern processors
have become incredibly complex and increasingly hard to evaluate.
Architectural simulators have become the solution for evaluating these
processors early in the design cycle. An architectural simulator is a tool

that reproduces the behavior of a computing device, as illustrated in

Figure 2.1.
; System
System Spevl'cte Outputs
Inputs — Imulator System
| Metrics

Figure 2.1. High-level view of architectural simulator.

In addition to simulating processors, architectural simulators have
advanced to evaluation of multiple designs. The evaluation focuses on the
discovery of performance tradeoffs and ‘“ideal” solutions (i.e., better
operating configurations within the limited time frame). These tools have

been enhanced by the use of search techniques (e.g., simulated

13



annealing, integer linear programming, and genetic algorithms) to aid
designers in finding optimal solutions. The work discussed in this chapter
provides the background for the simulation and search of optimal designs

of portable embedded processors.

2.1 Taxonomy of Simulation Tools

Simulation tools have become an attractive solution to chip architects
because more development can be done with software, which allows for
greater flexibility and faster leverage in the design cycle. The following

benefits are derived from software-based development:

1. Permits more design space exploration.

2. Facilitates validation before commitment to hardware.

3. Level of abstraction (e.g., RTL, compiler, assembly language,
VHDL, etc.) can be suited for a specific design task.

4. System instrumentation can be increased and/or improved.

To better understand simulation tools and how they work, an example

of the taxonomy is shown in Figure 2.2.

14



Architecture
Simulators

[

Functional Performance
Simulator Simulator
I 1
| 1 | |
Trace-based Execution-driven Instruction Cycle Timers
Simulation Simulation Scheduled
{
[ Interpreters ] [Direct Execution

Figure 2.2. Taxonomy of architecture simulators.

The functional simulator implements the instruction set architecture
and is concerned with the correctness of the simulation, which is what
programmers actually see. It simulates the direct execution of the task.
The performance (timing) simulator implements the micro-architecture and
models the system internals. This simulator is more concerned with
access time and the functions that are not apparent to the programmer
such as cache hits and misses.

A functional simulator may be implemented in either an execution- or
trace-based manner. Trace-driven simulation reads a “trace” of
instructions saved from the previous execution whereas execution-based
simulation “runs” the program and generates a stream dynamically.
Execution-driven simulation has many advantages, but is more difficult to
implement. Instead of implementing direct execution, where an
instrumented program runs on a host, an interpreter can be built to

accurately simulate execution down to the level of mis-speculated paths.

15



Performance simulators are based on instruction schedulers or cycle
timers. Constraint-based instruction schedulers schedule instructions
based on resource availability. Instructions are processed one at a time, in
order. They are usually simpler to implement and/or modify, and are
generally less detailed. During each cycle, cycle-timer simulators track the
micro-architecture state and many instructions in various stages at any
time. The simulator state is the same as the micro-architecture state. This
type of simulator is good for detailed micro-architecture simulation.

In this thesis, the emphasis will be placed on the SimpleScalar [21]
toolset because it is currently a widely accepted tool among researchers.
The SimpleScalar toolset uses a combined functional and performance
simulator, where instructions are execution-driven and the simulator is

synchronized with the micro-architecture state.

2.2 SimpleScalar Toolset Overview

SimpleScalar [21] provides a toolbox of simulation components (a
branch predictor module, a cache module, and a statistics-gathering
module) as well as several simulators built from these components. Each
simulator interprets executables compiled by gcc version 2.6.3 for a virtual
instruction set (PISA) that most closely resembles MIPS IV [22]. A
graphical overview of the toolset is shown in Figure 2.3. Benchmarks
written in FORTRAN are converted to C using Bell Lab’s f2c converter.
Both benchmarks written in C and those converted from FORTRAN are
compiled using the SimpleScalar version of gcc, which generates

SimpleScalar assembly code. The SimpleScalar assembler and loader,

16



along with the necessary libraries, produce SimpleScalar executables that
can then be fed directly into one of the provided simulators. SimpleScalar
optimizes performance and flexibility by reducing design time and
maximizing design exploration. In addition, it provides portability for big or

little endian machines and varied detailed for different levels of

simulations.
C
FORTRAN Benchmark code
Benchmark code 1
| :
SimpleScalar
F2C GCC
Assembly code Simulator source
(e.g., sim-outorder.c)
SimpleScalar
GAS _
Host C compiler
libf77.a Objescf mej Scal Executables
; impleScalar . . RESULTS
libm.a GLD Simulators
libc.a

Precompiled SS binaries
(test, SPEC95)

Figure 2.3. Graphical view of SimpleScalar.
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2.2.1 Out-of-order Processor Simulator

The most complicated and detailed simulator in the SimpleScalar
toolset is sim-outorder which supports out-of-order issue and execution
instructions. The pipeline for sim-outorder is handled in five stages: fetch,
dispatch, issue, wirteback, and commit.

Sim-outorder simulates a unified active list, issue queue, and rename
register file (register update unit). The register update unit (RUU) handles
register synchronization and communication. Entries are allocated at
dispatch and deallocated at commit. Using an RUU eliminates artifacts
arising from interactions between active list size and issue queue size,
and reduces the number of architecture variables to be examined.

The processor's memory system employs a load store queue (LSQ).
The LSQ handles memory synchronization and communication. Stored
values are placed in the queue if the store is speculative. Loads are
dispatched to the memory system only when addresses are known not to
conflict. Loads may be satisfied either by the memory system or by an
earlier stored value residing in the queue, if their addresses match.
Speculative loads may generate cache misses, but a speculative
translation look-aside buffer (TLB) misses may stall the pipeline until the
branch condition is known.

The five-stage pipeline is illustrated in Figure 2.4. The pipeline is
actually traversed backwards, so that inter-stage latch synchronization

can be handled correctly with only one pass through each stage.

18



Scheduler Exec

Fetch Dispatch Writeback Commit

Memory

Scheduler Mem

Issue/Execute

Figure 2.4. Sim-outorder five-stage pipeline.

The fetch stage models the machine fetch bandwidth and takes the
following inputs: program counter, predictor state, and misprediction from
branch execution units. During each clock cycle, this stage fetches the
instructions from one instruction cache line and block until I-cache or I-
TLB are resolved. After fetching the instructions, it places them in the
dispatch queue (IFQ), and probes the line predictor to obtain the correct
cache line to access in the next cycle.

The dispatch stage models the processor decode, rename, RUU/LSQ
allocation bandwith and architected machine state for execution. During
each clock cycle, instructions are decoded and executed, where early
detection of branch mispredictions is permitted. If a branch misprediction
occurs, stat copy-on-write of architected state to speculative buffers is
done. Finally, instructions are entered into the RUU and LSQ, rename
table, and machine state.

The issue stage is split into two sub-stages: scheduler and execute
sub-stage. The scheduler unit models instruction wake-up, selection, and
issue. It separates schedule, track register and memory dependencies.

The scheduler uses inputs from the RUU and LSQ. During each cycle, the

19



scheduler locates instructions with all register inputs ready and loads with
all memory inputs ready. The issue function then updates the RUU and
LSQ and the functional unit state. The execute sub-stage models the
functional units and data cache. It accepts as inputs the instructions ready
to execute, as issued by the scheduler, and the states of the functional
unit and data cache. Each cycle, the execute stage takes the ready
instructions, which are supported by issue bandwidth, finds a free
functional unit and access port, and reserves the unit for entire issue
latency. Finally, the writeback events are scheduled using the operation
latency of the functional unit. The execute sub-stage updates the
functional unit, data cache state, and writeback events.

The writeback stage models writeback bandwidth and the wake-up
ready instructions, detects mispredictions, and initiates misprediction
recovery. The function uses completed instructions as indicated by the
event queue and RUU/LSQ state for wake-up walks. The event queue is
updated during each cycle. When it finds a completed instruction, it walks
the dependence chain of the instruction outputs to mark instructions that
are dependent on the completed instruction. If a dependent instruction is
waiting for that completion, the routine marks the instruction as ready. The
writeback stage also detects branch mispredictions. When a misprediction
occurs, it rolls the state back to the checkpoint, discarding the erroneously
issued instructions.

The commit stage handles the instructions from the writeback stage
that are ready to commit. This function does in-order committing of
instructions, updating of the data caches (or memory) with stored values,
and TLB miss handling. The routine retires instructions at the head of the

RUU that are ready to commit until the head instruction is the one that is
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not ready. When an instruction is committed, its result is placed in a
register file and the RUU/LSQ resources devoted to that instruction are

reclaimed.

2.2.2 Simulator Command Options

Sim-outorder is a detailed superscalar simulator that runs slower than
most of the other simulators in SimpleScalar. Sim-outorder provides the
user with a host of command-line options for the processor core (Table
2.1), memory hierarchy (Table 2.2), and branch predictor (Table 2.5).
Subsequent tables for the memory and branch configuration are shown in

Tables 2.3 and 2.6.

Table 2.1. Command-line options for the processor core.

Line Option Description

-fetch:ifgsize <size> Sets the fetch width to be <size>. Must be a
power of 2, and the default is 4.

-fetch:speed <ratio> Sets the ratio of the front-end speed relative to

the execution core (allowing <ratio> times as
many instructions to be fetch as decoded per
cycle).

-fetch:mplat <cycles> Sets the branch misprediction latency. The
default is 3.

-decode:width <insts> | Sets the decode width to be <insts>, which
must be a power of two. The default is 4.

-issue:width <insts> Sets the maximum issue width in a given
cycle. Must be a power of two. The default is
4.

-issue:inorder Forces the simulator to use in-order issue.
The default is False.

-issue:wrongpath Allows instructions to issue after a
misspeculation. The default is True.

-ruu:size <insts> Sets the capacity of the RUU (in instructions).

The default is 16.
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Table 2.1. Command-line option for the processor core (cont.).

-Isq:size <insts>

Sets the capacity of the load/store queue (in
instructions). The default is 8.

-res:ialu <num>

Specifies number of integer ALUs. The default
is 4.

-res:imult <num>

Specifies number of integer
multipliers/dividers. The default is 1.

-res:memports <num>

Specifies number of L1 cache ports. The
default is 2.

-res:fpalu <num>

Specifies number of floating point ALUs. The
default is 4.

-res:fpmult <num>

Specifies number of floating point
multipliers/dividers. The default is 1.

Table 2.2. Command-line option for memory hierarchy.

Line Option

Description

-cache:dl1 <config>

Configures a level-one data cache.

-cache:dI2 <config>

Configures a level-two data cache.

-cache:il1 <config>

Configures a level-one instruction cache.

-cache:il2 <config>

Configures a level-two instruction cache.

Configures the data TLB.

-tlb:dtlib <config>
-tib:itlb <config>

Configures the instruction TLB.

-flush <boolean>

Flush all caches on a system call;
(<boolean>=0]|1|true|TRUE|false|FALSE).

-icompress

Remap SimpleScalar's 64-bit instructions to a
32-bit equivalent in the simulation (i.e., model a
machine with 4-word instructions).

-pcstat <stat>

Generate a text-based profile.

-cache:dl1lat Specify the hit latency of the L1 data cache. The
<cycles> default is 1 cycle.

-cache:dl2lat Specify the hit latency of the L2 data cache. The
<cycles> default is 6 cycles.

-cache:il1lat Specify the hit latency of the L1 instruction
<cycles> cache. The default is 1 cycle.

-cache:il2lat Specify the hit latency of the L2 instruction
<cycles> cache. The default is 6 cycles.

-mem:lat <1°> Specify the main memory access latency (first,
<next> rest). The defaults are 18 cycles and 2 cycles.

-mem:width < bytes>

Specify width of memory bus in bytes. The
default is 8 bytes.

-tib:lat <cycles>

Specify latency (in cycles) to service a TLB miss.
The default is 30 cycles.
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The cache configuration involves the name, number of sets, block

size, associativity, and replacement policy. The meaning for each of these

fields is listed in Table 2.3. The cache configuration (<confg>) is

formatted as follows:

<name>:<nsets>:<bsize>:<assoc>:<repl>.

Table 2.3. Cache configuration fields.

Field Name | Description

<name> Cache name, must be unique

<nsets> Number of sets in the cache

<bsize> Block size (for TLBs, use the page size)

<assoc> Associativity of the cache (power of two)

<repl> Replacement policy (l|f|r), where I=LRU, f=FIFO,
r=random replac.

The cache size is the product of <nsets>, <bsize>, and <assoc>. To

have a unified level two cache in the memory hierarchy, the instruction

cache has to be pointed to the name of the data cache in the

corresponding level. The defaults used are listed in Table 2.4.

Table 2.4. Default cache configuration.

Name Configuration Size

L1 data cache dl1:256:32:1:| 8 KB

L1 instruction cache i11:256:32:1:1 8 KB

L2 unified cache ul2:1024:64:4: 256 KB
Instruction TLB Itlb:16:4096:4: 64 entries
Data TLB dtlb:32:4096:4:1 128 entries
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Choosing the following flag with one of the six subsequent arguments
specifies the type of branch prediction (i.e., -bpred <type>). The default

mode is a bimodal predictor with 2048 entries.

Table 2.5. Specifying the branch predictor.

Type Description

nottaken Always predict not taken.

Taken Always predict taken.

Perfect Perfect predictor.

Bimod Bimodal predictor, using a branch target buffer (BTB) with
2-bit counters.

2lev 2-level adaptive predictor.

comb Combined predictor (bimodal and 2-level adaptive).

Table 2.6. Predictor-specific command-line options.

Line Option Description

-bred:bimod <size> Set the bimodal predictor table size to be
<size> entries.

-bpred:2lev <config> Specify the 2-level adaptive predictor.

-bpred:comb <size> Set the meta-table size of the combined
predictor at <size> entries. The default is
1024.

-bpred:ras <size> Set the return stack size to <size>. The
default is 8.

-bpred:btb <sets> <assoc> Configure the BTB to have <sets> sets

and an associativity of <assoc>. The
defaults are 512 sets and an associativity
of 4.

-bpred:spec_update <stage> | Allows speculative updates of the branch
predictor in the decode or writeback
stages (<stage>=[ID|WB]). The default is
non-speculative updates in the commit
stage.
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The SimpleScalar out-of-order issue simulator offers flexibility to create
and test different configurations. The values a user can specify and the
tests for performance tradeoffs are infinite. Simulation time of sim-
outorder is dependent upon a particular task or application (e.g., less than
1 sec, without application). In the following section, processor

performance and comparison techniques are discussed.

2.2.3 Processor Performance Estimation

In comparing design alternatives, where the user is interested in
reducing response time, the chip architect will often relate the
performance of two different processors. The response time is the time
between the start and completion of an event. Increasing performance
implies decreasing execution time. To avoid confusion between increasing
and decreasing, we will use the terms “improve performance” or “improve
execution time”. Execution time can be defined as elapsed time to
complete a task. For a processor, CPU time refers to the time the CPU is
computing a task or group of tasks, not including I/O or other processes.

Most computers define speed or performance using a clock running at
a constant rate. The discrete time events of a clock running at a constant
rate are called clock cycles. Chip architects refer to the time of a clock
period by its duration (e.g., 2 ns) or by its rate (e.g., 500 MHz). CPU time

for a program or task can then be expressed two ways:
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CPU time = CPU clock cycles for a task * Clock cycle time (2.1)
or

CPU time = CPU clock cycles for a task + clock rate. (2.2)

In addition to the number of clock cycles needed to execute a task, a
count can be taken of the number of instructions executed - the
instruction path length or instruction count (IC). If the number of clock
cycles and the instruction count are known, the average number of clock

cycles per instruction (CPI) can be calculated as

CPI = CPU clock cycles for a task + IC. (2.3)

Therefore CPU execution time is the product of the number of
instructions executed, clock cycles per instruction and clock cycle time.
Since we are making comparisons of different configurations within the
same hardware technology and compiler, the only needed metric for
performance is CPI, which is dependent on hardware organization and the
instruction set architecture. The performance gain (speedup) that can be
obtained by improving some portion of a processor can be calculated
using Amdahl’s Law [89]. Speedup is the ratio of execution time for the
entire task (without using the enhancement) to the execution time for

entire task (using the enhancement) and is given by

Speedupnew conf = CPIoriginal + CPlyew cont- (2.4)
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SimpleScalar produces calculated results for CPI, IPC and IC along with

other processor statistics. From this

performance parameters can be made.

2.2.4 Validation of Out-of-order Simulator

information,

comparison of

There have been four approaches to validating the results produced by

sim-outorder. micro-benchmark validation, correlation with independent

simulators, regression correlation, and code inspection. The SimpleScalar

group has run a number of small programs (micro-benchmarks) to test

various parts of the machine simulator [23). For example they compared

SimpleScalar ARM model to Intel's StrongARM SA-11XX processors and

were within 4% of the real hardware performance. Table 2.7 shows the

results of their comparison.

Table 2.7. Validation of performance (CPl) measures via
benchmark testing [23].

Benchmark SimpleScalar SA-1110 % Difference
cache hit 1.02 1.01 0.9
cache miss 33.87 33.70 0.5
br taken 1.04 1.02 1.9
br nottaken 1.97 1.91 3.1
bzip2.10 3.20 3.10 3.2
cc1 -0 cclin.i 2.84 2.90 2.1
fft.arm short.pcm 145 1.44 0.1

27




Correlation with multi-scalar simulators, which were developed
independently over the SimpleScalar framework, has been done for
performance estimation using standard benchmarks [23]. The results
were within 5% of the sim-outorder simulator. They also compared sim-
outorder to other published results. However, this was less productive
since sim-outorder is more detailed than many other dynamically
scheduled processor simulators. Regression correlation was done
between release versions one and two of sim-outorder. Any deviations
were tracked down and fixed. Code inspections were run by researchers
at University of Wisconsin-Madison and other schools [23]. This
procedure has uncovered occasional performance bugs, which has
increased the confidence of the SimpleScalar group that the code

correctly models a reasonably detailed micro-architecture.

2.3 Wattch Power Simulator Overview

Wattch is an architectural simulation tool built for analyzing and
optimizing processor power dissipation [10]. Prior work on architecture-
level techniques for power optimization has mainly focused on caches
[24,25,26,27]. Historically, two factors led to this focus. For embedded
processors, a large portion of their power consumption is budgeted to
caches, in some cases up to 40% [28]). Also, since caches are regular
structures (i.e., bitline, wordline, sense amplifier, precharge) they are
somewhat easier to model and quantify for power studies.

Some work on architectural-level power reduction has been addressed

for other areas of the processor [29,30,31]. One of the major
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shortcomings that was noticed by Brooks et. al. [30] in the area of
architectural-level power reduction is the lack of a high-level,
parameterizable, simulator framework that can accurately quantify power
savings [10]. The point of their work was not to compete with lower-level
tools but rather to expose the basics of power modeling at a higher level
to computer architects and compiler writers. Brooks et. al. accomplished
this goal by quantifying power consumption of all major units of the
processor and integrating these power estimates into a high-level
simulator (e.g., SimpleScalar).

Figure 2.5 shows three possible ways Wattch can be used. The
leftmost scenario applies to cases where the user is interested in
comparing several design configurations that are achievable simply by
varying parameters for hardware structures. The middle usage scenario is
for software structures involved in compiler development, where a single
hardware configuration is used and different compiler programs are
simulated and compared. The rightmost scenario highlights Wattch's
modularity, where additional hardware modules can be added to the
simulator. For our purposes, we chose the first scenario for micro-
architectural tradeoffs and exploration. In the following section, the power

modeling methodology is described.
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2.3.1 Power Modeling Methodolgy

The basis for the power modeling tool is parameterized power models

of common structures present in modern embedded processors. The

main units that are modeled fall into four categories:

Array Structures: Data and instruction caches, cache tag arrays,
all register files, register alias table, branch predictors, and large
portions of the instruction window and LSQ.

Fully Associative Content-addressable Memories (CAM):
Instruction window/reorder buffer wakeup logic, load/store order
checks, and TLB's.

Combination Logic and Wires: Functional units, instruction
window selection logic, dependency check logic, and result
buses.

Clocking: Clock buffers, clock wires, and capacitive loads.

Each model estimates capacitance based on the circuit and transistor

sizing. In CMOS microprocessors, dynamic power consumption is the

main source of power consumption and is defined as

Py = aCVppf (2.6)

where C is the load capacitance, Vpp is supply voltage and f is the clock

frequency. The activity factor, «, is a fraction between 0 and 1 indicating

how often, on average clock ticks lead to switching activity. The supply

voltage, clock frequency, and load capacitance are derived from 0.35u
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technology process parameters used from Palacharla, Jouppi, and Smith
[32]. The activity factor is based on the execution of benchmark programs.
For circuits that pre-charge and discharge on every cycle (i.e., double-
ended array bitlines), a = 1 is used. For other sub-circuits, such as single-
ended array bitlines, the activity factors are estimated from the benchmark
programs using the architectural simulator. For circuits where the internal
nodes are unable to estimate switching activity (e.g., decoder and
encoder), an assumption of 0.5 for random switching is used. Table 2.8
summarizes capacitance formulas used in the power analysis

methodology [30].

Table 2.8. Capacitance formulas used in power analysis method-
ology [32].

Node Capacitance Equation

Regfile Wordline Capacitance Cair(WordlineDriver) +
Cqate(CellAccess) * NumBitlines +
Chetal * WordlineLength

Regfile Bitline Capacitance Cain(PreCharge) + Cq4(CellAccess)
* NumWordlines + Cpeta *
BLLength

CAM Tagline Capacitance Cgate(CompareEn) * NumberTags +
Cgir(CompareDriver) + Ceta *
TLLength

CAM Matchline Capacitance 2 * C4i(CompareEn) * TagSize +
Can(MatchPreCharge) +
Cair(MatchOR) + C petal * MLLength
ResultBus Capacitance 0.5 * Cretar * NumALU * ALUHeight
+ 0.5 * Cheta * RegfileHeight
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2.3.2 Array Structures

The array structure power model is parameterized based on the
number of rows (entries), columns (width of each entry), and the number
of read/write ports. These parameters affect the size and number of
decoders, the number of wordlines, and the number of bitlines. The
wordline driver and bitline discharge form the bulk of the power
consumption in an array structure.

Modeling the power consumption of the wordlines and bitlines requires
estimating the total capacitance on both of these lines. The capacitance of
the wordlines includes three main components: diffusion capacitance of
the wordline driver, the product of the gate capacitance of the cell access
transistor and the number of bitlines, and the capacitance of the
wordlines’ metal wire. The capacitance of the bitline is modeled similarly,
where the total capacitance is equal to the diffusion capacitance of the
pre-charge transistor, the product of the diffusion capacitance of the cell
access transistor and the number of wordlines, and the metal capacitance
of the bitline. These capacitance models provide the option of use for
single-ended or double-ended bitlines. It is assumed that register file array
structures use single-ended bitlines and that cache array structures use
double-ended bitlines.

Multiple ports on the array structure have been taken into account for
power consumption in three ways. First, additional ports require an
additional transistor connection which will add more capacitance on the
wordlines. Second, each additional port requires up to two additional
bitines (each bit and its complement), both of which must pre-

charge/evaluate on every cycle. Finally, as each core cell becomes larger
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it will lead to longer word- and bitlines, thus incurring additional wire
capacitance.

In the power model, certain transistors are automatically sized based
on the model parameters to achieve reasonable delays. For example, the
wordline driver is scaled based on the amount of capacitance on the
wordlines. Longer wordlines require more capacitance to carry a signal.
For other transistors, the sizing is based on the work from Palacharla et.

al. [32] and Wilton et. al. [38].

2.3.3 Content-addressable Memory Structures

The analysis of Content-addressable Memory (CAM) structures is very
similar to that of array structures. However, instead of modeling bitlines
and wordlines, taglines and matchlines are modeled. The number of rows
(number of tags), columns (number of bits per tag to match) and ports on
the CAM are taken into account.

The key sizing parameters in the CAM are: the issue/commit width of
the matchline (number of match or taglines in each core cell); the
instruction window size (CAM'’s overall height); and the physical register
tag size which equals log, of instruction window size (CAM'’s width). The
CAM's overall height is each core (RAM) cell multiplied by the instruction
window size. The CAM's overall width is the number of bits in the physical
register tag, which share a common wide-OR for the final match that
signals when the instruction is ready to issue. The wordlines are used to

write new tag values into the CAM structure.
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2.3.4 Complex Logic Blocks

The complex logic blocks are modeled by the following structures:
instruction selection logic (instruction window), dependency check logic
(register renaming unit), result buses, and the functional units. The
selection logic and dependency check logic is based on the circuit
structures modeled in Palacharla et. al. [32] and Bishop et. al. [33]). The
power consumption of the result buses are modeled by estimating the
length of the result buses using the same assumptions about functional
unit height made by Palacharla et. al.

Previous work of Borah et. al. [34] and Zimmerman et. al. [35] has
investigated the power consumption of various functional units. Their
results regarding the power numbers are scaled for process and
frequency in order to estimate the power consumption of the functional

units.

2.3.5 Clocking Network

The clocking network of a high performance microprocessor can be
the most significant source of power consumption [30]. Three sources of
clock power consumption are considered: global clock metal lines, global
clock buffers, and clock loading. The global clock metal lines are modeled
as a modified H-tree network in which the global clock signal is routed to
all portions of the chip using equivalent length metal wires and buffers in
order to reduce clock skew. This method is similar to that used for the

Alpha 21264 [36]. The global clock buffers are large transistors that are
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used to drive the clock signals throughout the processor at a faster rate.
The size and number of transistors are estimated similar to the methods
of Fair et. al. [36] and Bowhill et. al. [37]. Explicit and implicit clock loading
is considered. Explicit clock loads are the values of the gate capacitances
of pre-charge transistors and other nodes that are directly connected to
the clock within the units that are modeled. Implicit clock loads include the
load on the clock network due to pipeline registers.

The models described are implemented as a C program using the
Cacti tool [38] as a starting point. A summary of the major hardware
structures and the correlation for the type of model used is given in Table

2.9.

Table 2.9. Common processor hardware structures and the model
used by Wattch.

Hardware Structure

Model Type

Instruction Cache

Cache Array (2x bitlines)

Wakeup Logic

CAM

Issue Selection Logic

Complex Combinational

Instruction Window

Array/CAM

Branch Predictor

Cache Array (2x bitlines)

Register File

Array (1x bitlines)

Translation Lookaside Buffer

Array/CAM

Load/Store Queue

Array/CAM

Data Cache

Cache Array (2x bitlines)

Integer Functional Units

Complex Combinational

FP Functional Units

Complex Combinational

Global Clock

Clock

2.3.6 Validation of Wattch Simulator

Brooks et. al. [10] presents details on the power models and simulator
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infrastructure required to perform architectural-level power analysis. They

verified the power models against industry circuits and found their results

to be within 10% for low-level capacitance estimates, and within 10-13%

on average for architectural models of tradeoffs between different

structures. Baseline configuration models and the configuration of industry

processors are shown in Table 2.10.

Table 2.10. Configuration for base and industry models.

Parameter Base | Alpha |Pentium| MIPS
INT Instruction Window Size 20 16
FP Instruction Window Size 15 16
MEM Instruction Window Size 16
UOP Instruction Window Size 64 20

INT Physical Register Size 2x80 64
FP Physical Register Size 72 64
UOP Physical Registers Size 32 40

Memory Order Queue Size 8 32 20 8
Number of Inst. Fetched per Cycle 4 4 3 4
INumber of Inst. Decoded per Cycle 4 4 6 4
INumber of Inst. Issued per Cycle 4 6 3 4
Number of Inst. Committed per Cycle 4 4 3 4
Number of Integer Funct. Units 5 4 4 3
Number FP Funct. Units 3 2 1 3
L1 Dcache Size 64 K 64 K 8K 8K
L1 Dcache Associativity 2-way | 2-way | 2-way | 2-way
L1 Icache Size 64 K 64 K 8K 8K
L1 Icache Associativity 2-way | 2-way | 2-way | 2-way
DTLB Size (fully assoc.) 128 128 64 64
ITLB Size (fully assoc.) 128 128 32 64
Local History Table 1024x1011024x10] NA NA
Local Predict 1024x2 | 1024x3 | 512x4 | 512x2
Global History Register 10 12 NA NA
Global Predict 4096x2 | 4096x2 NA NA
Choice Predict 4096x2 | 4096x2 NA NA
Feature Size 0.35 um [0.35um| 0.35 um [0.35 um
Vdd 3.3V 22V 3.3V 33V
MHz | 600 600 200 200
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Comparisons between modeled and reported power breakdowns of

Pentium Pro and Alpha 21264 are shown In Tables 2.11 and 2.12.

Table 2.11. Comparison between modeled and reported total
percentage of power breakdowns for the Pentium Pro [30].

Hardware Structure Model |Intel Data| % Difference
Instruction Fetch 21.00% | 22.20% 5.41%
Register Alias Table 4.90% 6.30% 22.22%
Reservation Stations 8.90% 7.90% 12.66%
Reorder Buffer 11.90% | 11.10% 7.21%
Integer Exec. Unit 14.60% | 14.30% 2.10%
Data Cache Unit 11.50% | 11.10% 3.60%
Memory Order Buffer 4.70% 6.30% 25.40%
Floating Point Exec. Unit 8.00% 7.90% 1.27%
Global Clock 10.50% 7.90% 32.91%
Branch Target Buffer 3.80% 4.70% 19.15%

Table 2.12. Comparison between modeled and reported total
percentage of power breakdowns for the Alpha 21264 [30].

Hardware Structure Model | Alpha % Difference
21264

Caches 16.30% | 16.10% 5.23%
Out-of-order Issue Logic 20.60% | 19.30% 6.31%
Memory Management Unit 11.70% | 8.60% 26.50%
Floating Point Exec. Unit 11.00% | 10.80% 1.82%
Integer Exec. Unit 11.00% | 10.80% 1.82%
Total Clock Power 30.40% | 34.40% 13.16%
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The limitations of the models of Brooks et. al. [30] are that they do not
necessarily model all of the miscellaneous logic present in real
processors. The models are scaled and not the actual numbers for
process parameters. Also, all of the parameter specifications are not given
for each individual processor, which sometimes makes exact correlation

to ideal processors difficult.
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CHAPTER 3

Overview of Search Algorithms

Search methods are used in many different areas including scientific
computing applications and, in our case specifically, for design
automation. The objective of a search algorithm is to systematically
examine states to find the optimum. The search produces a path from
start state to goal state. The output of a search is a unique solution to the
problem which represents the best solution among those evaluated.

Mathematically, the state space can be represented as a graph G,
which may be defined as a pair (V, E), where V is a set of vertices and E,
the edges, is a set of unordered pairs of elements from V [39]. The
elements of V are denoted v; and the elements of E are denoted e;, to
represent unordered pairs of vertices {v;, v}. Equivalently, the graph can
be thought of as the search space; the vertices are states and the edges
are connections between states. In the search space, each state is
defined as a set of parameters which are evaluated by the objective
function f(x), where the evaluation of the function is achieved through
computer computation.

Search algorithms may be roughly classified into three groups: global,
global-local, and adaptive [40]. Global search heuristics include random
search and mode-seeking methods. Global-local search heuristics include
hill-climbing and clustering methods. Adaptive search techniques include
single working point methods (e.g., simulated annealing) and converging
set methods (e.g., evolutionary computation). The following sections

provide a general description of each class of search algorithms.
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3.1 Global Search Methods

A global search method is a procedure for constructing a sequence
{xi} of points in X that converges to a point at which the global minimum or
maximum of some function f is attained or approximated. Global search
methods include random search and integer linear programming
algorithms. In a random search, points are sampled uniformly in a given
search space and the best point found is given as an estimate of the
global optimum. This method is seldom used on its own because of its
poor efficiency. However, it has become the basis of more sophisticated
search algorithms that have a higher probability of converging [41].

The integer linear programming (ILP) method is based on the linear

program problem expressed as

minimize {c'x: Ax =b, x>0, x € Z'}, (3.2)

where x is the vector of variables to be solved for, A is a matrix of
constants, ¢ and b are vectors of constants, and Z” is the set of n-
dimensional integer vectors. The expression c'x is called the objective
function and the equations Ax = b are the constraints. A relaxed form
uses the equation Ax < b, where b is an upper bound for Ax. Most
combinatorial and logical restrictions can be modeled through the use of
binary variables. The branch and bound technique is an example of a

model that uses binary variables.
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3.1.1 Branch and Bound Method

The branch and bound technique is an enumeration tree of continuous
linear programs [42]. At the root of this tree is the problem expressed in
equation 3.2 with the requirement that of n-dimensional integer vectors
the set is removed. The solution, x, to this root problem will not have all
integer components. Some non-integer solution component x; is chosen
and J; is defined to be the integer part of x;, /; = |x;J, which infers two sub-
problems. The left-child problem has the additional constraint x; < I,
whereas in the right-child problem x; > /; + 1. The branching process can
be carried out recursively, where each of the two new problems will
produce two more problems that will branch on one of the non-integer
components of their solution. Therefore, the enumeration tree is binary.
Examples of the branch and bound technique and its application to design
automation problems are described in the following paragraphs.

In [43], Hwang used the branch and bound technique where all lower
bound options for energy consumption are explored. For each node, an
upper and lower bound of energy was calculated. The most promising
node for a particular level is the one with minimum energy for that level
(lower bound). Each node is annotated with the energy of two partitions
containing the finite state machine with datapath states in each partition.
The lower bound and upper bound for the energy of each node is
calculated, and then the upper bound value is pruned based on lower
bound inequalities. Over a set of experiments, an average of 49.2%
energy reduction was achieved using the branch and bound technique.
This method was compared to simulated annealing, a stochastic

algorithm. The performance of the branch and bound technique was
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slower, but more effective on average by 5% over the simulated annealing
method.

Ishihara and Yasuura [44] used ILP to optimize the static voltage
scheduling problem for dynamically variable voltage processors. They
defined the problem as follows: for a given task; and mode;, find x; which
minimizes energy E and satisfies the time constraint 7. The purpose is to
clarify the relation between the variety of variable voltages and their effect
on energy reduction. The results showed that if the number of variable
voltages is increased, the energy consumption is reduced. Another
experiment showed that selecting suitable voltages for applications leads
to drastic energy reduction even if the number of variable voltages is very
small. Both experiments by Ishihara and Yasurra used ILP to optimize for
the best combination of variable voltage processors per task based on

power consumed.

3.2 Global-Local Search Methods

Global-local search methods are used for estimating the global
minimum by finding local minima. The search algorithm is an iterative
improvement approach that minimizes the fitness function between sets,
examples of such algorithms include the hill-climbing and greedy method.
Global-local search algorithms consider only the immediate gain to be
made by moving a node.

Certain problems can evolve when using these methods, such as
distinguishing between nodes with equal gain and escaping local optima.

However, iterative improvement is nearly a universal approach, either as
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a post-processing refinement to other methods or as a method in itself for
global search optimization. In the following sections, examples are

presented for these types of methods.

3.2.1 Kernighan-Lin and Fidducia-Mattheyses Method

The Kernighan-Lin (KL) algorithm or min-cut method was designed to
improve two-way partitions [45]. This method usually starts with some
feasible solution that is iteratively perturbed into another feasible solution,
only adopting the perturbation if it improves the cost function. For
example in netlist partitioning, the cost function is typically the number of
nets per cut and a given move has a gain corresponding to the decrease
in cut nets that result from the move. The algorithm generates a
sequence of exchanging moves until every module has been moved
exactly once, and then adopts the move with the highest total gain. The
algorithm terminates when a pass results in zero gain. Since the
introduction of the KL method, the algorithm has been improved so that it
requires less computation and obtains better results [46,47,48). Figure 3.1
shows the process flow of the Kernighan - Lin and Fiduccia - Mattheyses

(KL-FM) method.
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Figure 3.1. Flowchart for KL-FM partitioning algorithm.

Fiduccia and Mattheyses modified the KL algorithm so that it could
produce results faster and more efficiently [46]. The key difference
between the KL and FM algorithms is that Fiduccia and Mattheyses use a
more complicated data structure that allows a single pass through the
outer loop to be performed in time proportional to the number of edges in

the graph [49]. This difference allows the FM method to achieve a
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significant reduction in runtime with little loss in solution quality. The time
complexity of the KL algorithm is O(n’log(n)), while that of FM is Ofe),

where n and e are the number of nodes and edges of G, respectively.

3.2.2 Ratio Cut Method

Wei and Cheng proposed the ratio cut method [50], which is a metric
used to locate natural clusters in the circuit and also force the partitions to
be of equal sizes. The ratio cost metric for a two-way partition is defined
as the sum of weights of the edges cut, divided by the sizes of the two
partitions [50]. The size of the partition is equal to the number of nodes
within that partition. The method consists of three major phases:
initialization, iterative shifting, and group swapping. The ratio cut algorithm
partitions a network into small, highly connected groups. These groups
form a reduced network. Finally, the FM algorithm is used to improve the

reduced network.

3.3 Adaptive Search Method

Adaptive methods are stochastic algorithms that involve probabilistic
behavior that is subject to some form of knowledge base. They offer the
flexibility of moving in and out of a local minimum. Adaptive search
techniques include single working point methods (e.g., simulated
annealing) and converging set methods (e.g., evolutionary computation).

There are two widely used algorithms in this class: simulated annealing
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and evolutionary computation including genetic algorithms, genetic
programming, and evolutionary algorithms. The simulated annealing
algorithm takes an existing solution and then makes successive changes
in a series of random moves. Each move is accepted or rejected based
on an energy function calculated for each trial configuration. Evolutionary
computation simulates the biological process of evolution, where a
population of randomly generated candidates evolves toward better
solutions by applying operators that are modeled after the natural
biological selection process. Many application areas, technical and non-
technical, use these algorithms to produce near-optimal solutions. These

methods are described in the following section.

3.3.1 Simulated Annealing

Annealing refers to the process used to form glass, iron, efc., into
some new shape, by allowing them to cool very gradually from high heat.
The goal of the process is to reach the lowest energy state, by moving
from higher energy states to lower ones if the cooling process is
sufficiently slow, naturally settling in some local minimum. Simulated
annealing is a global optimization method that searches between different
local optima (maximum and minimum). Starting from an initial point, the
algorithm takes a step and the objective function is evaluated. Any
downhill step is accepted and the process repeats from this new point. An
uphill step may also be conditionally accepted. This uphill decision is

evaluated by the Metropolis criteria [51] given as
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p = exp (-AQain/femperalum). (33)

As the optimization process proceeds, the length of the steps decline and
the algorithm closes in on the search space final solution. The metropolis
criteria uses the initial user defined parameters, gain and temperature, to
determine the probability of accepting a value of the objective function
that is higher. Unlike evolutionary methods in which all parameters are
dynamically assigned by the algorithm, the performance of the SA
algorithm depends on user defined parameters. This method was
originally proposed as a means of finding the equilibrium configuration of
a collection of atoms at a given temperature [51]. A flowchart of this

algorithm is shown in Figure 3.3.
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Figure 3.2. Flowchart of the simulated annealing algorithm.

Pincus first noted the relationship between this algorithm and
mathematical minimization [52], but Kirkpatrick et al. [53] proposed it as
the basis of an optimization technique for combinatorial problems [53].
Simulated annealing has a major advantage over group migration

methods as it has the ability to avoid becoming trapped in local minima.

49



Sun and Sechen developed a loosely coupled, parallel simulated
annealing algorithm for standard cell placement [54]. The simulated
annealing algorithm runs on a standard network of low-cost workstations
and yields results similar to the serial version of the algorithm but in much
less time. Their parallel algorithm permitted only a small amount of inter-
processor communication and used a dynamic region generation
scheme. They demonstrated that simulated annealing could be run in
parallel, where there was communication between simulations.

Sato’s Simulated Quenching (SQ) method is based on simulated
annealing and employs the “divide and conquer” technique to give better
quality partitions [55]. SQ also has a faster computation time than
simulated annealing. SQ was demonstrated as a placement tool that uses
partitioning methods such as clustering. Sato’s algorithm is based on
sorting inside subgroups, where subgroups are generated by cut-lines
placed with a constant pitch [65]). The pitch value is decreased step by
step from a sufficiently large value to a small value. The pitch value is
analogous to the temperature value in simulated annealing.

Two aspects of the simulated annealing process are areas of active
research. The first is the number of random configurations and the
second is the number of Monte Carlo steps needed at each temperature.
If the temperature is decreased too slowly, computation time is wasted.
However, if the cooling is too rapid, the search may be trapped in a non-

optimal region of search space.

50



3.3.2 Evolutionary Computing

Evolutionary computing (EC) is based on observation and computer
simulation of natural processes in the real world, with the main inspiration
stemming from Darwin's “Theory of Evolution” [56]. EC applies these
ideas to complex optimization problems and machine learning. The
principles of evolution imply that, when organisms are produced, traits
found in parents are passed on to their offspring. Variations (mutations),
occuring naturally in all species, produce new traits. A process called
natural selection tends to favor individuals best adapted to the
environment. Over long periods of time, variations can accumulate and
produce new species. In natural selection, the fittest survive the longest
and produce more offspring. Characteristics encoded in genes are
transmitted to offspring and tend to propagate into new generations. In
sexual reproduction, the chromosomes of offspring are a mixture of those
belonging to the parents.

The search space is a set of all possible encodings of solutions. One
measure of the complexity of the problem is the size of the search space.
Crossover and mutation implement a pseudo-random walk through the
search space. A walk is random because crossover and mutation are
non-deterministic. A walk is directed in the sense that the algorithm aims
to maximize the quality of solutions using a fitness function. The search
process consists of a local and a global search. The local search is
looking for solutions near existing solutions in the search space, with
crossover as the main operator. The global search looks for solutions with
mutation as the main operator for the global search. Figure 3.3 outlines

the procedure for a simple evolutionary algorithm.
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Figure 3.3. Flowchart of a simple genetic algorithm.

Research in the field of evolutionary computing (EC) has been
pursued in the areas of structures undergoing optimization or evolution,

reproduction strategy, and genetic operators. Five groups of algorithms
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have evolved from evolutionary computing: evolutionary programming,
evolutionary strategies, classifier systems, genetic algorithms, and genetic
programming. Each algorithm differs in how the problem is approached.
However, they use the same evolutionary idea. From this group of
evolutionary techniques, we chose genetic algorithms as the focus of our
study for reasons explained in the next section. Examples of how genetic
algorithms are used for semiconductor technologies are provided below.
Fei and Jha used a genetic algorithm in addition to a simulated
annealing algorithm to optimize a global system schedule based on
system price, power consumption, area constraint violation and real-time
constraint violation [57]. A GA-SA was used twice in the methodology, first
to allocate cores into an SoC and second to assign tasks to the cores.
The output of the multi-level genetic algorithm is a distributed system of
SoCs. The trade-off between system price and power consumption was
that, as the price increased, the amount of power dissipated decreased.
Martin and Knight used genetic algorithms to optimize simultaneous
scheduling and assignment [58]. The GA searches for the best
combination of architecture and schedule to minimize the desired function
while satisfying the given constraints. Two fields represent each operation.
The first field indicates which architecture to use and the second field
indicates the time slot in which the operation is scheduled. Transistor
count, average power, and peak power were calculated. Peak power
optimization achieved a reduction of 47% to 66%, and 70% reduction was
achieved by mixing operators of different voltages and combining low

power with high speed [58].
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3.4 Comparison of Search Methods

A comparison of methods must be based on empirical rather than
theoretical evaluation. For example, we can apply a probabilistic method
M to a problem P, in a mapping from (M,P) —» (E,m,q), where E is the
effort applied and q is the probability that some minimum m is reached. If

two methods are applied where the same minimum is achieved then

(M,P) > (E1,m,q)
(M2vP) - (EzvquZ)'

For this problem, if less effort is required for the first method (E; < E)
and the probability is greater that some minimum is reached (q: > q2),
then the first method is better than the second method. However, if the
same amount of effort is required for the first method (E4 = E2) but My has
a lower probability that some minimum is reached (q: < q2), then the
second method may be better than the first. In the second case, neither
algorithm dominates the other because of a change in probability.
Because the results may vary depending on P and the levels of E and g, a
conclusive decision about the superiority of one method over another
requires excessive computations. Furthermore, if m also varies, and one
method obtains a better solution, with much smaller probability and the
same effort, then only by experimentation may superiority be challenged.

For example, Bright [59] chose two techniques gradient search (hill-
climbing) and simulated annealing, which are widely used to solve VLSI

design problems, to compare to GAs. Bright's designs created by gradient
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search were improved by 30% using a GA tool that optimizes for power
and area. It was discovered that the best design from the GA tool required
an initial design with higher power consumption than the initial design for
the gradient search. By using the gradient search method, such designs
were prevented from surviving during the process, hence localizing the
search space. As for comparing the GA and simulated annealing
techniques, both methods produced design results within the same order-
of-magnitude in optimizing for power consumption. However, the GA
provided flexibility for evaluating a set of solutions for convergence to an

optimal solution, rather than depending on single solutions.
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CHAPTER 4

Overview of Genetic Algorithms

Genetic algorithms (GA) are a part of evolutionary computing and are
especially useful for manipulating large amounts of data. Genetic
algorithms are inspired by Darwin's theory of evolution. Rechenberg [60]
first introduced the idea of evolutionary computing in 1973, and Holland
[61] extended the idea of evolutionary programming in 1975 by
developing GAs. GAs encode a potential solution to a specific problem
on a simple chromosome-like data structure and apply crossover and
mutation operators to these structures to preserve critical information [62].

A genetic algorithm in the case of design automation, randomly selects
a population of designs. Each potential design solution is then evaluated
for “fitness”, which is a measure of relative merit with respect to a defined
criterion. The design solutions are combined using crossover probabilities
(e.g., from a population of 50, solutions are paired to make a new
population of 50). Next, characteristics of a solution are randomly
mutated. This new design solution has characteristics of each parent.
Usually, the “best fit” characteristics of the design tend to be passed on to
the next generation. As a result, each generation of the design builds on
the successes of past generations to approach a desired solution. Genetic
algorithms are usually applied to spaces that are too large to be

exhaustively explored.
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4.1 Defining Genetic Algorithm Criteria

Certain areas such as solution representation, fitness function,
reproduction operators, and selection criteria must be addressed when
defining the criteria for a genetic algorithm. There are many variations to
the traditional GA operators and components described in this section, all
of which are aimed at improving the efficiency and success of the GA [71].
This chapter serves as an introduction to the fundamental concepts of

GAs.

4.1.1 Solution Representation

In order to implement the processor configuration problem using a GA,
candidate solutions must be encoded into a chromosome-like structure
suitable for manipulation. Traditionally, solutions have been represented
by binary-strings [61]. The individual elements within the chromosome,
such as each 1 or 0, are known as genes. Subsequent research has
developed complex representations such as alphabet-strings [63] and
decision trees [64]). The important aspect is that the representation
encodes the properties of the solution such that they can be fully explored
by the GA.

The choice of chromosome representation is very important if the GA
is to be fully exploited. If an unsuitable choice of chromosome
representation is used, it could place an unnecessary computational strain
on the GA, requiring complex manipulation and decoding for quality

evaluation. This affects the performance of the GA in searching the
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solution space. An unsuitable representation may also prevent the GA
from determining an optimal solution, with the chromosome unable to

represent all possible solutions or not allow certain operations.

4.1.2 Fitness Function

A fitness value for each solution of the population is evaluated rather
than derived from previous information. The fitness is a means of
determining the relative quality of each solution. The quality of a
chromosome is dependent upon the decoding process and the calculation
of its relevant parameters. The fitness is a direct measure of how well the
parameters of the encoded solution satisfies the objective function, where
the objective function is the goal or desired state of the optimization

process.

4.1.3 Reproduction Operators

The reproduction step of the GA selects individuals from the current
generation to produce offspring that will enter the next generation. The
production of offspring involves the modification and combination of the
genes of solutions in the current generation. This is the building block of
the search space, as the next generation will consist of a different set of
chromosomes comprised from sub-blocks of the previous generation. The
chromosomes are modified through the application of genetic operators.

The two most common genetic operators are mutation and crossover.
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Mutation operates on a single chromosome to modify its
characteristics through random manipulation of its genes. An example of

the mutation process is illustrated in Figure 4.1 for a binary-string

chromosome.
10100110 random mutation of a bit
101{1/0110 from O to 1

Figure 4.1. Example of a mutation operation.

Mutation is a random feature in the genetic process. For example, for
each digit in an individual, a random number R is generated between 0
and 1. If R is smaller than a preset mutation probability, that digit is
replaced by its complement, thus generating a mutation.

This example illustrates the random change of the value of a gene
within the chromosome. The mutation has produced a new chromosome
with characteristics that differ from the parent chromosome. Mutation is
primarily used to introduce diversity into the population and encourage the
GA to explore new areas of the solution space.

Crossover operates on two chromosomes, combining their genetic
material to produce offspring (child) chromosomes. For example, the
simplest form of crossover (one-point crossover) proceeds as follows.
First, the entire population is paired at random to give N/2 sets of potential
parents. Second, pairs of solutions are chosen to crossover with

probability P.. If the generated random number R (between 0 and 1) is

smaller than the preset crossover probability, then two new solutions are
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created by exchanging all the bits following a randomly selected locus on
the strings. Figure 4.2 illustrates the example, where crossover after

position 5 is proposed between solutions.

Parent Child
Chromosomes Chromosomes
Chromosome 1 10100(110 10100111
Chromosome 2 11010111 11010110

Figure 4.2. Example of a crossover operation.

A slightly more complex operator, first proposed in Cavicchio [65), is a
two point crossover in which two crossover points are randomly selected
and the substrings between and including those positions are exchanged.
Strings may also be treated as continuous rings. For example in Figure
4.3, if crossover between points 6 and 2 is proposed for strings, then
digits from 6 to 8 are switched first, and digits 1 and 2 are switched last.
Or vice versa, if crossover is between points 2 and 6, the offspring are
from points 1 and 2 switching first, then points 6 through 8 are switched

last.

Parent Child
Chromosomes Chromosomes
Chromosome 1 10/100{110 11{100(111
Chromosome 2 11(010{111 10010(110

Figure 4.3. Example of two-point crossover.
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Many other crossover methods exist, including multiple point, masked
selection, order-based, splicing of complete tree-subsets [63,66,67,68,69].
However, it has been shown that as more substrings are swapped,
performance is degraded. Although it is essential to introduce some
changes in order to make progress, too many alterations make the
probability of destroying the good features of a solution unacceptably
high. An effective GA search requires a balance between exploitation of
good features in existing solutions and exploration or combination of
introducing new features.

Crossover and mutation are usually applied in a GA with probabilities
tailored to suit a specific problem. Crossover applied without an
associated mutation operator may prevent exploration of certain regions
of the solution space. If only crossover is used, it can only combine
information that is already present in the chromosome, which may lead to
a single gene having the same value in all chromosomes. Without a
mutation operation that gene would never be changed, consequently

blocking off a region of the solution space from the search [59].

4.1.4 Selection Schemes

The selection procedure is a key component of the search process.
The evolutionary theory of natural selection is based on the idea of
‘survival of the fittest’, where individuals that are more successful within
their environment have a greater chance of reproducing and propagating
their characteristics to the next generation [56]. Within the context of a
GA, the procedure dictates that individuals that are more successful in

meeting the specified objective will have a higher probability of being
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chosen for reproduction. Thus, better solutions are found by building on
the current best solutions. This guides the search procedure to those
areas within the search space that contain the best solutions.

Since the initial development of GAs, many techniques have been
developed that aim to improve and build on this standard idea
[62,70,71,72]. However, the basic principle behind all of these techniques
is the probabilistic selection of individuals based on their quality. The
Fitness Proportionate Selection (FPS) method is the most commonly used
probabilistic selection technique [59].

The FPS method was introduced by Holland based on his analysis of
the “2-armed-bandit problem” [63,73]). FPS allocates to each individual a
fixed probability of being selected, based upon its fitness relative to the
total fitness of all individuals within the generation. For example, let f; be
the fitness value of individual / and let f..erage be the average population

fitness, where

faverage = (1 1/ N)(Sum(1,N)f).

The probability of an individual being selected is

pi=(1 IN)* (f,/ faverage)-

FPS can be implemented with the “roulette wheel algorithm”. A wheel
is constructed with markers corresponding to fitness values. For each

fitness value f, the size of the marker (i.e., the proportion of the wheel's
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circumference) associated with f;, is given by p;. Thus, when the wheel is
spun, the probability of landing on f; is p;. There are two main ways of
simulating the roulette wheel algorithm:  vector and cumulative
distribution.

Vector representation begins with a vector v of M elements from {1, ...,
N} that is constructed so that each subsequent i in {1, ..., N} has M*p;
entries in v. A random index from {1, ..., M} is selected and individual v(r)
is selected. For example, if f;=f,=10, ;=15 and =25, then with M=12,
v=(1,1,2,2,3,3,3,444,44). If r=6, then individual v(6)=3 is selected.
Cumulative distribution representation is where a random real-valued
number rin {0,(Sum(1,N)f)} is chosen and individual /i, such that Sum(1,i
1)f; < r > Sum(1,)f,. Note that by convention Sum(1,0)f; = 0. Cumulative
distribution is effective, but relatively inefficient. Vector representation is
efficient, but its effectiveness depends on M, (i.e., the value of M
determines the quantization of the p/s and thus the accuracy depends on
M).

The overall problem with FPS is that individuals with above-average
fitness tend to have more than one copy in the mating pool, while
individuals with below-average fitness tend not to be copied into the next
generation. This leads to premature convergence and stagnation. Both
problems can be solved using a fitness scaling technique which is
described in Section 4.2. However, the advantage of the FPS roulette

wheel method is that all solutions have some chance of being selected.
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4.1.5 Stopping Criteria

The GA is used to determine the “best” or “ideal” solution to a given
problem, which is the global optimum point in the solution space. While a
GA cannot be guaranteed to find the global optimum, if implemented
correctly it will find a “good” or satisfying solution in a reasonable amount
of time. In this case the stopping criterion is specified in terms of the
number of generations or solution evaluations. The actual number of
generations is usually set very high to increase the likelihood that the GA
has settled on a satisfying point in the solution space.

Assessing the convergence of the population is another technique
used to determine whether a GA has reached a stopping point. For
example, in analyzing every solution in the population, if 95% of the
genes in each chromosome are identical in all solutions, then the GA is

considered to have converged and the search is terminated [72].

4.2 Non-standard Genetic Algorithms

The previous section introduced the concept of a traditional GA,
comprised of standard GA components, which were proposed by Holland
(1972) and his successors. Many researchers using GAs to solve
complex, real-world engineering problems have proposed that, if GAs are
to achieve their full potential in engineering design, it is necessary to
specifically design the GA to suit the problem [70,72,74]. Their work leads
to the development of non-standard GAs, implemented in a standard

genetic framework. The non-standard GA exploits the use of non-standard
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chromosome representation (e.g., non-binary chromosome, alphabet
strings, tree representation, efc.), adaptive operator rates, and non-
standard genetic operators. Non-standard genetic operators incorporate
problem-specific techniques to modify the chromosome according to
standard design rules. Incorporation of these rules has been shown to
improve the efficiency and resuits of the GA-based search technique.

The framework for our non-standard GA is based on the Genetic
Algorithm Optimized for Portability and Parallelism System (GALOPPS)
3.2.4, developed by Goodman [75]. GALOPPS is a distant descendant of
SGA-C, v1.1, with modifications by Earickson, which was based on SGA-
C, by Smith, which was based on SGA (in Pascal), and copyrighted by
Goldberg in 1986 [75]. GALOPPS is a flexible, generic genetic algorithm
that is based on Goldberg’'s Simple Genetic Algorithm (SGA). GALOPPS
extends the SGA by including several different methods for generating
solutions via genetic processing. In the following section we describe

some of the techniques used in GALOPPS 3.2.4.

4.2.1 Representation of Non-binary Chromosomes

In GALOPPS 3.2.4, the chromosomes may represent different
alphabet sizes (cardinalities) for different fields. They can be handled
automatically when crossover is applied at field boundaries. Mutations can
occur anywhere within the chromosome never to produce non-permissible
values. An alphabet refers to a field instead of a bit and each alphabet
may have different lengths, meaning different values for a particular

parameter (e.g., cache associativity = {1,2,4,8}). GALOPPS automatically
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decodes the chromosome properly, remaps variable-length fields under
an inversion operation. It transforms migrants into the correct inversion

pattern (and field boundaries) for the receiving subpopulation.

4.2.2 Scaling of Fitness Function

Fitness scaling offers a way to alleviate premature convergence and
stagnation. GALOPPS includes three scaling methods: window scaling,
linear scaling, and sigma truncation. For window scaling, fitness values
are scaled by either subtraction or division so that the worst value is close
to 0 and the best value is close to a certain value, typically 2. Problems
arise when the original maximum is very extreme (super-fit) or when the
original minimum is very extreme (super-unfit).

Linear scaling is where the fitness f is replaced by a scaled fitness £ =
a*f + b, where a and b are chosen so that the scaled average is the same
as the raw average. The maximum scaled fitness is the number of
expected copies desired for the best individual multiplied by the raw
average fitness. One problem with linear scaling is that the scaled fithess
function may take on negative values if there are a few bad individuals
with fitness much lower than the average fitness and fitness close to the
maximum fitness. One solution is to arbitrarily assign the value 0 to all
negative fitness values. Another solution is to use sigma truncation.

With sigma truncation, the fitness is replaced by the scaled fitness

f, = f- (faverage - C*Slgma)
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where sigma is the population standard deviation, ¢ is a reasonable
multiple of sigma (usually 1 < c < 3). Negative results are arbitrarily set to
0. Sigma truncation removes the problem of scaling to values. Truncated

fitness values may also be scaled if desired.

4.2.3 Stochastic Universal Sampling

Stochastic Universal Sampling (SUS) is a selection technique
introduced by Baker [76]. Baker shows that SUS has minimum spread
and zero bias. Bias is an expression for the absolute difference between
the expected and the actual number of individuals. Spread is the set of
possible numbers of individuals that can be selected by a given sampling
strategy. Minimum spread is defined as the smallest spread that allows
zero bias. Baker effectively minimizes the genetic drift caused by
selection. SUS can be visualized as a “wheel of fortune” with n arrows
instead of one, with equal angle distance to each other, n being the
number of individuals in the population.

Non-standard genetic operators incorporate problem-specific
techniques to modify the chromosomes according to standard design
rules. Incorporation of these rules has been shown to improve the
efficiency and results of the GA-based search technique. The framework
for our non-standard GA, GALOPPS, extends the simple genetic
algorithm by including several different methods for generating solutions

via genetic processing.
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CHAPTER 5
Embedded Processor Configuration Methodology

Many embedded processor studies currently focus on issues related to
cache size and organization, their relationship to energy and power
consumption, and datapath width and their effect on performance.
Although points of diminishing return exist, such as decreasing the size of
one parameter. However, the focus of research has shifted to
simultaneously evaluating multiple parameters and their tradeoffs when
optimizing for multiple objectives, namely power and performance.

A common difficulty with optimizing for multiple objectives is the
conflict between objectives when maximizing or minimizing over a given
set of solutions. For example, decreasing cache size reduces power
consumption, but also decreases performance. If the cache is too small,
cache misses may mask the effects of other processor parameters such
as branch mispredictions due to parameter interdependency. Conversely,
increasing the number of functional units may increase performance, but
also will increase power consumption. While searching the design space
for an “ideal” embedded processor configuration, optimizing for two or
more criteria can lead to “non-ideal” solutions. An “ideal” embedded
processor is defined as one with low power consumption and high
performance. Hence, for portable, high-performance embedded
implementations, much more advanced techniques, which are efficient in
ease-of-design and multi-objective decision-making, need to be

developed.
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From a system level, using a programmable embedded processor can
improve designer productivity and intellectual property reuse. A key to the
success of these platforms is that they are heavily parameterized, so that
designers can configure the platforms to the particular application, where
power, performance, and chip area are improved [78]. The configure-and-
execute paradigm proposed by Vahid and Givargis [78] for embedded
processors has actually existed for many years in microcontroller-based
system design [78]. A microcontroller is an earlier form of embedded
processor that has a core processor and peripheral devices (e.g.,
memory, timers and UARTSs) on chip and pre-integrated. Similar to an
embedded processor, a microcontroller may be applied to different
classes of devices (e.g., televisions, automobiles, personal digital
assistants, computerized robots), each class having different peripherals.

The parameterizable components of embedded programmable
processors include the functional unit, which can vary in datapath size and
bitwidth, cache size and organization; the memory unit, which may vary in
number and size of register files; and the interconnections within the
processor data paths [17]). Three steps are used to optimize embedded
system designs based on components that are parametizable: application,
parameter optimization, and new silicon generation. The approach is

outlined in Figure 5.1.
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Reference Application
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Characterizing
Simulation
Search
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i Equations
\
Parameter Optimization ———

New silicon
Generation

Figure 5.1. Flowchart of parameterized system design.

Application development begins with an available “reference design”
[77]. This reference design is implemented on a configurable prototype
processor, which is the virtual instruction set architecture. Application
development involves the mapping of the task to the virtual instruction set
architecture. After application development, parameters are optimized for
that particular application based on power, performance, and size

optimization heuristics.
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Parameters may include:
e bus size, address, and data encoding techniques;
e cache size, associativity, block size/line size, and write-back
techniques;
o datapath parameters relating to specific peripheral cores, like
buffer sizes;

e resolutions, compression level.

Once the parameters have been optimized, a new chip design is
generated based on the optimized architecture. This is an “ideal” chip,
which is correct on the first pass because of extensive, previously
performed, in-circuit emulation.

Givargis and Vahid [78] used a Pareto-optimal approach to tune for the
specified type of architecture with respect to power and performance. All
configurations are evaluated for power and performance, then sorted in
decreasing order of execution time. An enumerative method of traveling
through the search space is used to eliminate all designs that result in
power consumption above the derived minimum. The problem can
become impractical if the configuration space expands. GAs deal with a
converging set of possible solutions for multi-dimensional problems, which

leads to a set of “good” individuals in a single run of the algorithm.

5.1 Defining Genetic Algorithm Criteria

The target architecture consists of a processor core, L1 cache, and L2

cache, as illustrated in Figure 5.2. The parameters explored during the
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configuration process include the issue rate, reorder buffer size, number
of floating point ALUs, number of floating point multipliers, number of
integer ALUs, number of integer multipliers, load-store queue size, first-
level and second-level cache size, block size, associativity, and bus size.
The mapping of the genome is shown in Figure 5.3. The italicized blocks
represent the specified parameters varied by the GA, and the non-

italicized blocks represent the level of hierarchy in the embedded

processor.
Processor Main
Core - CPU L2 Memory

L1 Cache
K—) Cache K= |

Figure 5.2. Target architecture for embedded system design.
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Figure 5.3. Genome structure for GA.

For the purpose of this study, the set of experiments include the 16
different parameters, shown in Figure 5.3, with at least four options per
parameter, given in Table 5.1. Exhaustively searching the entire design
space for an optimum using an enumerative process would require
4,294, 967,296 different configurations, which could take years to
complete. On the other hand, if different parameter sets were randomly
selected, the impact of each characteristic could have a dynamic effect on
power consumption (e.g., cache size and rate of instructions
implemented). Therefore, an efficient method of search is needed to

optimize the parameter set for a particular objective.
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Table 5.1. Characteristic values for each parameter.

Name

Values

ISiL1: Instruction Cache L1 number of sets

Si1 {128, 256, 512, 1K, 2K, 4K, 8K, 16K, 32K}

So.1: Data Cache L1 number of sets

Sour {128, 256, 512, 1K, 2K, 4K, 8K, 16K, 32K}

ISyL2: Unified Cache L2 number of sets

Suz (1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K}

B,.: Instruction Cache L1 block size

B.1 {4, 8, 16, 32}

BoLs: Data Cache L1 block size

Boui {4, 8, 16, 32}

BuLz: Unified Cache L2 block size

Bu (8. 16, 32, 64}

AiL¢: Instruction Cache L1 associativity

A {1.2,4,8)

AoL1: Data Cache L1 associativity

Aot {1, 2, 4, 8)

IAuL2: Unified Cache L2 associativity

Auz {1.2, 4,8, 16}

BW, ,.2: Bus Width size from L1 to L2

BW,_12 {32, 64, 128, 256}

INA u: number of integer ALU(s)

Naw {1.2, 3,4}

NmuLt: number of integer MULT(s)

Numucr {1, 2,3, 4}

IFPaLu: number of floating point ALU(s)

FPay {1.2, 3, 4}

FPuuLr: number of floating point MULTS(s)

FPMULT (1| 2- 3- 4}

Qs ze: size of instruction queue

Qsize {4, 8, 16, 32}

lrate: rate of instructions implemented

Irate {4, 8, 16, 32}

In conjunction with the variable parameters, there is a set of fixed

parameters. Each fixed parameter is listed in a configuration file, as

shown in Figure 5.4, and retrieved during the simulation process.
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-max:inst
-fastfwd
-fetch:mplat
-fetch:speed

-bpred

bimod
2lev

-bpred:
-bpred:

-bpred:comb

-bpred:ras
-bpred:btb
-decode:width
-issue:inorder
-issue:wrongpath

-commit:width
-ruu:size
-lsq:size
-cache:dlllat
-cache:dl21lat
-cache:illlat
-cache:112

il2lat
flush
icompress

-cache:
-cache:
-cache:
-mem:lat

-tlb:itlb
-tlb:dtlb

-tlb:lat

maximum number of inst's to execute

number of insts skipped before timing starts

extra branch mis-prediction latency

speed of front-end of machine relative to
execution core

bimod # branch predictor type
{nottaken|taken|perfect|bimod|2lev|comb}

2048 # bimodal predictor config (<table size>)

1 1024 8 0 # 2-level predictor config (<llsize>
<l2size> <hist_size> <xor>)

1024 # combining predictor config
(<meta_table size>)

8 # return address stack size
stack)

512 4 # BTB config (<num_sets> <associativity>)

4 # instruction decode B/W (insts/cycle)

false # run pipeline with in-order issue

true # issue instructions down wrong execution
paths

4 # instruction commit B/W (insts/cycle)

16 # register update unit (RUU) size

8 # load/store queue (LSQ) size

1 # 11 data cache hit latency (in cycles)

6 # 12 data cache hit latency (in cycles)

1 # 11 instruction cache hit latency (in cycles)

dl2 # 12 instruction cache config, i.e.,
{<config>|dl2|none}

6 # 12 instruction cache hit latency (in cycles)

false # flush caches on system calls

false # convert 64-bit inst addresses to 32-bit
inst eqguivalents

18 2 # memory access latency (<first_chunk>
<inter_ chunk>)

itlb:16:4096:4:1 # instruction TLB config,
{<config>|none}

dtlb:32:4096:4:1 # data TLB config,
{<config>|none}

30 # inst/data TLB miss latency (in cycles)

= Wwoo
E o o

(0 for no return

i.e.,

i.e.,

Figure 5.4. Fixed parameter values during GA search.

Based on these parameterized characteristics and a particular embedded

application, the search for an “ideal” configuration of an embedded

processor is NP-complete [91].
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5.1.1 Single-Objective Fitness Function

The single-objective fitness assessment is based on an estimate of
power consumed for each configuration. Power models of common
structures present in the embedded processor are used to estimate power
consumed. Maximum power is calculated for the entire processor by
summing power consumed in all datapaths, when all logic is used. Three
conditional clocking schemes are used to estimate average power
consumed. The conditional clocking (CC) scheme turns off devices that
are not used in a particular cycle. CC1 considers a circuit to be 100% on if
it is accessed and 0% if not. CC2 scales the power linearly with usage of
the circuit. CC3 assumes linearly scaled power depending on usage when
accessed, and a minimum of 10% of base power when the structure is not
accessed. In the fitness function, the estimate from the third clocking
scheme (CC3) is used. The fitness function is trained by the GA to
optimize for the maximum. Since minimum power is desired, the inverse
of the power consumed is the determining function for the fitness of a
configuration. After the GA has reached its termination criteria, the best
fitness solution for each generation is copied to an external file and

converted back to actual power estimates.

5.1.2 Encoding and Decoding Algorithm

A look-up table is used for encoding and decoding parameter values.

In GALOPPS, a one-dimensional array of possible values (codes) for
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each parameter is defined as 0, 1, 2, 3, etc.. The size of the one-
dimensional array is the field size set for each parameter. For example,
field_sizes[i), where 0 < i < number of fields, is equal to the number of
different codes possible in the ith field (i.e., codes will vary from 0 to
field_sizes[i] — 1). These codes are represented in binary format (i.e.,
0000, 0001, 0010, ..., n), as shown in Figure 5.5. The chromosome
length is 50 bits for the 16 fields. The fields only contain legal values for

reproduction operation and selection.

SiL1[codes] € {128, 256, 512, 1K, 2K, 4K, 8K, 16K, 32K}

field_size[i] < {0,1,2,3,4,5,6,7,8}

binary_field[n] e {0000,0001,0010,0011,0100,0101,0110,0111,1000}

Figure 5.5. Translation of chromosome to integer array.

5.1.3 Reproduction Operators

The two most common genetic operators are mutation and crossover.
Mutation operates on a single chromosome to modify its characteristics
through random manipulation of its genes. Crossover operates on two
chromosomes, combining their genetic material to produce offspring
(child) chromosomes. Mutation is good for global searches and crossover

is good for local searches.
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Mutation is done on a per-field basis, in the same way as for a binary
representation where a bit, is a field. When a field is to be mutated, its
value is changed uniformly at random to a different legal value. For our
experiments the mutation rate was set to 0.014 per field (1.4%). The
number of fields helped to determine the mutation rate. The goal was to
achieve a 20% change in the population. Equation 5.1 illustrates how the

mutation rate was determined:

P, =1- ( a(1/ﬁelds)) (5.1)
Pm=1-(0.8"")
Pm =0.01378

where a is the percentage of chromosomes not mutated and fields is the
number of non-binary fields per chromosome.

One point crossover for non-binary representation is performed only at
the boundaries between fields. This restriction prevents generation of any
illegal codes and preserves the fields as the basic elements of building
blocks. The crossover probability controls how often the crossover
operator is applied. The higher the crossover rate, the more quickly new
candidate solutions are introduced into the population. If the crossover
probability is too high, highly fit individuals are discarded faster than
selection can produce improvements. On the other hand, if the crossover
rate is too low, the search might stagnate for lack of exploration. For our

experiments we chose the crossover rate to be 30%.
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5.1.4 Selection Criteria

SUS, introduced by Baker in 1987, is a random selection technique
with zero bias and minimum spread [76]. It is visualized as a pie chart,
with lines of equal distance from each other, where n sections is the
number of individuals in the population. The spinning wheel is placed on
top of a pie chart that represents the percentage fitness value of each
solution. The wheel is spun and the winners or selected individuals are
those that have a line or pointer that stop in their space. In this process,
an individual's selection probability is based solely on the initial spin and
the magnitude of its expected value.

In order to increase the selection probability of “less fit” individuals,
their fitness can be scaled within GALOPPS. Scaling of fitness values is
implemented by assessing a scale factor. For example, if the scale factor
is 1.5, and a set of fitness values is {0.5, 0.2, 0.1, 0.2}, with a mean of
0.25, the mean is subtracted from the fitness value. Then each new
fitness value is divided by 2, which is derived from the ratio of the mean to
the scaling factor, then added to the new fitness value for a final fitness
{0.375, 0.225, 0.175, 0.225}. Fitness scaling offers a way to alleviate

premature convergence.

5.2 Evolutionary Search Criteria

GAs can be applied effectively to configurable embedded processors
in an effort to search for a desired optimum. In order to gain a better

understanding of how the GA can search the design space effectively, a
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series of experiments were performed to validate the search criteria (i.e.,
population size, number of trials, diversity of population) for the GA. The
experiments used estimated values with a non-specified targeted
workload for power consumption per configuration, using the design
space of the 16 configurable parameters. A single-point crossover rate of
30% and mutation rate of 1.4% were used for the reproduction operators.
The selection scheme for new chromosomes was SUS using linear
scaling of fitness values. The experiments were performed for various
population sizes, initial random populations and stopping criteria. The first
experiment tested population sizes varying, from 50 to 100 with the
stopping criterion of 50 generations. The second experiment tested
various initial random populations and their final converging set of
solutions. The third experiment tested number of trials (evaluations)
versus population size for convergence of solution. This section illustrates
the tradeoffs for an effective evolutionary search of an optimal

configurable processor design.

5.2.1 Population Size

Population size can have an effect on testing time and the converging
set of solutions. An experiment was conducted to determine whether a
smaller population size can achieve similar results to a larger population
size. The population was incremented by 10 from 50 to 100 to analyze the
change in power consumption over a given population size. A population
size of 70 yielded the best result with a minimal power consumption of
39.97 watts (Figure 5.6). A summary of population size effects and a list of

the best configurations are provided in Table 5.2 and Table 5.3.
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The population of 50 had a faster converging rate and also terminated
the GA process before other population sizes. If the termination criteria or
number of generations were extended, then the population size of 50 may

have a higher probability of finding a better solution.

Table 5.2. Analysis of population experiment.

[Size of Population| 50 60 70 80 90 100
INumber of Trials 2017 | 2384 | 2801 | 3233 | 3609 | 3999
% Change in Power| 21.31 | 21.58 | 24.60 | 18.30 | 18.76 | 23.21

Table 5.2 shows a comparison among population sizes. The range of
power consumed from the initial configuration to the best final
configuration varied from 18% to 25%. The population size of 70 had a
greater diversity of fitness from its original configuration to its best
configuration. If the number of trials were expanded for the population of
50, the diversity would also be greater. Also, from Table 5.2, it is noted
that a population of 100 took twice as many trials as a population of 50.
The third experiment will address the issue of convergence and number of
trials needed in a GA run.

Table 5.3 shows the final configurations for each population size. From
this table, a relationship can be established for some of the parameters,

such as commonalities or inconsistencies.

82



Table 5.3. “Best” configuration of a GA run for each population

size.

Parameter pop_50/Pop_60]/pop_70|pop_80/pop_90]/pop_100
SoL1 128 128 | 128 128 128 128
Bovt 16 | 8 | 8 8 16 8
ApL1 2 jl 1 1 2 1 1
Sii 128 | 128 | 256 128 256 128
A 2 | 1 1 1 1 1
SuL2 1024 | 4096 1024 | 2048 | 2048 1024
Buz 8 32 | 8 8 16 8
Auz T 1 1 1 4 4
NaLy 11 1 1 1 1

NmuLt P2 4 3 4
FPALU 1 1 1 1 1 1
FPuwoLt 2 | 3 4 2 4
Qsize 32 8 . 32 32 32 4
Power (wafts) |41.0553,40.9634/30.9699] 42.099 |41.9374] 40.4216 |

In the different GA runs, with a termination criterion of 50 generations,

the final configurations were not all the same. The configuration with the

lowest power consumption was created from a population size of 70. The

optimal configuration for maximum power after several generations of

different population sizes converged to smaller numbers for specified

parameters. The important reason for running this test was to determine

which population size would generate the best solution within a short

period of time. However, with only one random initial population, the

search exploration space is limited, thus not giving a true representation

of the solution search space.
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5.2.2 Random Initial Populations

In GALOPPS, a random seed can be set to initiate a certain population
in the design space. Each randomly seeded population can represent
different areas of the search space. By using different random seeds, a
confidence level of search quality can be satisfied. The following
experiment launches five random initially seeded populations with varying
sizes (50, 60, 70, 80, 90, 100). Figure 5.7 illustrates the best fithess for

each random seeded population.
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One misconception some researchers have is that one run (i.e., GA
exploration from start population to end population) is good enough to
establish a reasonable solution. In this experiment, after running the GA
for each randomly seeded population, each population displayed varying
fitness results. If only a single GA run was explored, the search space
could be limited to a particular area.

On average, the population size of 50 had the lowest fitness for power,

as shown in Table 5.4.

Table 5.4. Fitness of each random seeded population.

IPopulation 50 60 70 80 90 100
1 44.73 | 51.57 | 44.88 | 44.45 | 41.83 | 40.26
2 45.56 | 43.76 | 47.70 | 42.64 | 48.57 | 43.21
3 42.64 | 42.98 | 42.02 | 46.80 | 44.37 | 47.12
4 43.96 | 41.80 | 46.08 | 40.41 | 40.67 | 49.79
5 41.58 | 44.17 | 43.25 | 45.10 | 45.01 | 42.82
Average 43.69 | 44.85 | 44.79 | 43.88 | 44.09 | 44.64
% Difference |0.00% [ 2.66% [ 2.50% [ 0.43% | 0.91% [ 2.16%

The percent difference for the best average fitness was within a 3%
margin. Initial randomly seeded populations randomly select starting
populations to generate a formal structure of the design search space.
This is similar to selecting a point from a two-dimensional graph in the
design search space. The point represents a unique solution. By randomly
sampling five or more initial populations, there is a probability of selecting
a unique solution from one or all quadrants. A closeness of optimum can

be estimated using randomly seeded populations.
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5.2.3 Termination Criteria

The GA is used to find the “best” or “ideal” solution, which if
implemented correctly, will find a “good” or satisfactory solution in a
reasonable amount of time. Assessing the convergence of the population
is another technique used to determine whether a GA has reached a
stopping point. For example, the third experiment examines the size of a
population versus the number of trials to determine whether a smaller
population would converge faster than a larger population when optimizing
for power consumption of a configurable processor.

In the previous experiment, a population size of 50 had a lower “best”
fitness average, which serves as the smaller population size. To choose
the larger population size, a series of GA runs were done for population
sizes of 100, 200, and 400. With a population size of 400 and a stopping
criterion of 50 generations, there were a total of 9243 evaluations. The
minimum amount of power computed was 44.75 watts, for 5 initial random
populations in 13 hours. Since computation time is an important factor,
the large population size was set at 400. In order to compare the two
population sizes, 50 and 400, the termination criterion for the population
size of 50 was set to 400 generations, which would generate at least 9000

trials. The best fitness for each generation is shown in Figure 5.8.
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A population size of 50 generated convergence with half as many trials
as the population of 400, as shown in Tables 5.5 and 5.6. In Table 5.5,
each random seed population is listed with its best fitness for its initial
population, converging value for power consumption, percent difference,
and number of trials. The number of trials represents the evaluations
needed to attain a calculated power consumed. The converging value for
all randomly seeded populations was 39.37 watts. The configurations,
however, continued to fluctuate until the end of the maximum number of
generations. Also noted from Table 5.5 is the percent difference, where

the highest percentage generated a faster convergence.

Table 5.5. Population size of 50 for 400 generations.

[Random Seed 1 2 3 4 5 |Average|

[Reference Power [70.15| 55.92 | 66.63 [62.04[{45.97| 60.14
IEnding Power 39.37| 39.37 | 39.37 [39.37|39.37| 39.37
% Difference 78.17| 42.03 | 69.23 [57.56|16.76| 52.75
Number of Trials | 3010 | 5920 | 4402 | 6889 {4513 | 4947

In Table 5.6, the number of trials is the maximum number of
evaluations per GA run. None of the ending power consumption values
were similar, and the percent difference between reference power and
ending power were smaller in comparison to the population size of 50. For
the larger population to converge, the maximum number of generations
would need to be extended, thus increasing the amount of computation
time. For the larger population to reach the minimum convergence of a

population of 50, more trials are also needed. In addition, changing the
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mutation rate can generate more diversity in the population, thus

increasing the rate of convergence.

Table 5.6. Population size of 400 for 50 generations.

IRandom Seed 1 2 3 4 5 |Average
IReference Power [46.97| 55.14 | 51.27 |47.38(45.97| 49.35
Ending Power 43.17| 44.77 | 44.76 |44.48(42.75| 43.98
% Difference 8.81 | 23.16 | 14.55 | 6.54 | 7.53 | 12.19
INumber of Trials | 9222 | 9188 | 9243 [ 91619234 | 9210

These experiments showed that with a smaller population size, an
estimated optimum can be reached at a faster rate. Also, random initial
populations can inform the user of probable convergence. The
experiments conducted serve as the basis for understanding the genetic
search technique, and will be used as a foundation for further evaluation

and testing of a configurable embedded processor.
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CHAPTER 6
Multi-Objective Search Optimization

The optimization process presented in Chapter 5 attempts to optimize
for a single objective, the estimated power consumption of an embedded
processor, for a particular application. However, practical embedded
processor design involves the simultaneous optimization of a number of
objectives such as power, speed, area, cost, efc.

Within the framework of a GA, multiple parameters are integrated into
the optimization process, where all objectives are simultaneously
optimized. In other words, no single objective is concentrated on at the
expense of others. The simultaneous optimization of all objectives will
produce a single solution. One technique for implementing multiple
objective optimization is the use of a weighted fitness function [79,80]

given as

Total_Fitness = a*f(x) + B*f(xz) + ... + Z*f(x,). 6.1)

Equation 6.1 demonstrates that a typical implementation of a weighted
function is the sum of all the individual fitness values for each of the
functions, from 1 to n different objectives. The variables «, B, and so on,
are used to weight the individual contribution of each parameter to the
overall fitness. The use of a weighted fitness function combines the
discrete fitness values for each function into a scalar fitness value. The

scalar fitness value is used to assess the overall quality of the solution.
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One of the main problems with such a technique is the assignment of
the weighted objectives. These weighted objectives significantly affect the
performance of the system in determining the globally optimal result [81].
The weights effectively place a priority on the optimization of a particular
objective in relation to the optimization of other objectives. Thus,
assigning the correct priority to the multiple objective functions is required
to enable the optimization process to produce a globally searched
optimum solution.

In practical engineering problems, prioritization of multiple objectives is
a complex and difficult process. Such problems are often characterized by
a number of competing objectives where improvements in one objective
overshadow the cost of degrading the other objectives. Furthermore, the
tradeoffs between competing objectives are often non-linear. For
example, consider the bi-objective problem of designing an embedded
processor for minimum power and maximum performance. The two
objectives are in competition with each other, as many low power design
techniques use smaller cache sizes to decrease power. In a practical
design process, the embedded processor may be targeted for a certain
rate of speed. An increase in cache size may result in a large increase in
cost and decrease in fithness, whereas small increases will have little effect
on cost and overall fitness. Therefore, the effect on performance is
dependent upon the actual fitness value. A single weight to assign a
specific priority to the performance objective would not accurately reflect
the total fitness for all solutions.

if the non-linear nature of the objectives can be overcome, there is still
the problem of assigning a relative priority to each function for all cases,

(e.g., is performance more important than power, and if so, how much
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more?). The example illustrates the difficulty of combining distinct
parameters into a single fithess evaluation to generate a single globally
optimal solution. An alternative to a weighted fitness function is to use the
GA to explore the solution space and present a range of alternative non-
dominated solutions (NDS) that are each optimal for a single function
[81,82]. This removes the need to prioritize parameters during the
optimization process. The experienced designer can then analyze the
alternative solutions to select the solution that best satisfies the specified
requirements.

During the optimization process, the GA evaluates many alternative
solutions, which can be useful information when presenting the chosen
solution. This information can be used to illustrate tradeoffs between
different parameters in the optimization problem. The tradeoff between
competing objectives is usually presented as a Pareto-optimal front also
known as Pareto-surface, Pareto-points, and Pareto-optimal set [63]. The
use of Pareto-points collected throughout the GA optimization process
has been previously shown to be beneficial to the low power design

process [58,83,84].

6.1 Pareto-Optimal Front

A Pareto-optimal front is a set of NDS, where each point on the

Pareto-surface has no better values for those objectives. Figure 6.1

shows an example of a Pareto-optimal front for a two-dimensional

problem.
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The chart illustrates a typical engineering design example where two
competing objectives (Parameter X and Y) must be minimized. Each
solution is illustrated on the chart as a square. The NDS points, shaded
squares, are known as Pareto-optimal. The Pareto-optimal front is a curve
joining the set of Pareto-points. These points mark the boundary between
the range of feasible and non-feasible solutions, illustrating the trade-off
between each function.

The set of NDS does not present an obvious single optimum solution.
Selection of the best solution is left to the design architect, dependent
upon the priority placed on each objective. One of the main advantages of
the Pareto-chart is that it shows the effect of varying the importance of a
function, as opposed to presenting the architect with a single point
solution. For example, the chart may show that a small variation in X,
previously set as a constraint, may allow such a large reduction in Y as to
make the design feasible. The Pareto-chart also allows the designer to
use expert knowledge of the problem to select an optimum solution.

The range of alternative solutions may be more useful than a single
point for the next stage of the design and implementation process. The
presentation of design alternatives within a CAD simulation tool is
regarded as essential by most designers [85]. The presentation of a set of
optimal solutions enables the designer to gain a greater understanding of
the low power solution space and the power characteristics of the problem

to be optimized.
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6.2 Pareto-Optimal Front Generation in GALOPPS

A Pareto-point is defined as that which has no lower value in both the
X and Y axes for performance and power. The identification of Pareto-
points is split into a two stage process, where all designs with the lowest Y
value for every generated X value and vice versa are first identified. A
weighted value is assigned and the data for X and Y are identified. Then,
the next stage steps through the set of generated points, and sorts for

NDS in ascending X values. This process is illustrated in Figure 6.2.
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Executing both stages produces a set of NDS, the power-performance
Pareto-optimal front. After each generation is created the power and
performance of each design is analyzed to create a list of points (i.e.,
power and performance estimation explored during the simulation
process). After the GA has determined the lowest power solution and
lowest performance (CPI) solution, stage 2 is executed to determine

which of these points are Pareto-optimal.

6.3 Power and Performance Trade-off for Benchmark Designs

This section illustrates the power and performance trade-offs, through
the use of Pareto-optimal analysis, for benchmark designs. The Pareto-
charts were generated using the techniques described in Section 6.2.
Each Pareto-chart is presented in a separate section for that design. In
each chart a solid line denotes the Pareto-optimal front. The Pareto-
surface is presented as a straight line instead of a curve joining the
Pareto-points. The solutions represent discrete points in the search
space, where if the point were joined by a curve, it may imply that there is
a range of solutions between two points when no feasible solution exist
between those points.

Each chart illustrates the unique points in the solution space examined
while searching for an optimum solution for that design. Each ‘X’ denotes
a unique power-performance point for a design. It should be noted that
each power-performance point does not necessarily correspond to a
single design configuration. A number of designs can have the same

power-performance value, as illustrated in Figure 6.3. Therefore, the
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number of ‘X’ points in the graph may not be representative of the total

number of designs analyzed throughout the search process.
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6.4 Test Configurations and Benchmarks

In this section, a comparison of published maximum power numbers
for three processors is presented. These three processors are from MIPS,
Wattch, and a study done at the University of Pennsylvania [10,86). The
configuration for the MIPS processor is taken from the R10000
specifications [10]. The Wattch configuration is a baseline specification for
the SimpleScalar processor [10]. The study done at the University of
Pennsylvania demonstrated different tradeoffs between configurations for
improved IPC [86]. The baseline configuration is used to represent

academic standards.
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Table 6.1. Test configurations for power-performance tradeoffs.

R10000 UPENN Wattch
fetch:ifgsize 8 4 4
etch:mplat 1 3 3
fetch:speed 1 1 1
Bpred Bimod bimod Bimod
bpred:bimod 2048 128 2048
bpred:2lev 1:1024:8:0 2:1024:6:0 1:1024:8:0
bpred:comb 1024 1024 1024
bpred:ras 8 8 8
bpred:btb 5124 256 4 5124
decode:width 4 4 4
issue:width 4 4 4
issue:inorder FALSE TRUE FALSE
commit:width 4 4 4
Ruu:size 64 64 16
Lsq:size 16 16 8
cache:dl1 di1:512:32:2:l dl1:512:32:2:f di1:128:32:4:|
cache:dl1lat 1 1 1
cache:d|2 Ul2:16384:64:2:1 | ul2:2048:64:4:1 | ul2:1024:64:4:|
cache:dl2lat 8 1 6
cache:ill i11:512:32:2:1 i11:512:32:2:f il1:512:32:1:1
cache:illlat 1 1 1
cache:il2 di2 di2 di2
cache:il2lat 8 6 6
mem:lat 40 2 321 18 2
mem:width 16 8 8
Tib:itlb itlb:16:4096:4:|1 | itlb:1:4096:16:1 | itlb:16:4096:4:I
Tib:dtlb dtlb:16:4096:4:1 | dtlb:1:4096:32:1 | dtib:32:4096:4:|
Tib:lat 30 20 30
Res:ialu 2 2 4
Res:imult 1 1 1
Res:memport 2 1 2
Res:fpalu 2 1 4
Res:fpmult 1 1 1
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The experiments used estimated values with a targeted workload
(test-math.c and 126.gcc) for power consumption and cycles per
instruction (CPIl) per configuration. Three objective fitness functions,
(power, performance, 50/50 weighted mix) were used to guide the GA
during the search process. Five initial randomly seeded populations were
submitted to the GA for diverse exploration of the search space. The
population size for each run was 50, with termination set at a maximum of
50 generations. A single-point crossover rate of 30%, and mutation rate of
1.4% was used for reproduction operators. The selection scheme for new
chromosomes was SUS using linear scaling of fitness values.

To illustrate the effectiveness of the GA and the algorithms presented,
the performance of the prototype version of the GA embedded
configuration simulation tool is demonstrated with a set of benchmark
example designs. The two benchmarks chosen for this application are
test-math.c and 126.gcc (cc1), where cc1 is part of an industry standard
benchmark suite. The test-math.c program illustrates the use of
trigonometric functions and tests these functions to verify validity of
calculations. The cc?7 benchmark is a GNU C compiler. As discussed
previously in Chapter 4, the C program is translated and mapped to a
virtual instruction set architecture, then applied to a specified configuration
of parameters to simulate the actual processor. The benchmark designs
presented are used both to illustrate the effectiveness of the simulation
tool and to investigate improvements and additions to the overall toolset.
Tables 6.2 and 6.3 lists the results obtained for the example processor
configurations and the configurations derived using multi-objective GA

optimization.
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Table 6.2. Comparison results from Math Benchmark.

Percent GA R10000( PENN | Wattch | Multi-
Difference of Optimization Object
Initial GA config. GA

Power -125 16.32 | 42.07 | 37.28 | 21.99
CPI 12.56 -28.69 [ -100.23 | -43.14| 1.72
Total -112.44 |-12.36| -58.16 | -5.85 | 23.72

Table 6.3. Comparison results from GNU C Compiler Benchmark.

Percent GA R10000| PENN | Wattch | Multi-
Difference of Optimization Object
Initial GA config. GA
Power 34.71 14.19 | 43.94 | 30.09 | 49.17
PI 9.99 -26.69 [ -112.16 | -14.67 | 0.42
Total 44.69 -12.50 | -68.23 | 15.42 | 49.59

Tables 6.2 and 6.3 shows the results obtained from the test
configurations and the configurations derived in our methodology. Since
performance is the leading objective for these examples, the original
configuration is taken from the best solution in the first run of the GA, for
performance optimization. The results are expressed as a percentage of
the original designs’ power consumption and CPI performance. The
percentage illustrates the improvement in power consumption and
performance derived through the multi-objective GA optimization tool. The
following sections discuss the results obtained with each of the

benchmark designs.
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6.4.1 Math Benchmark

The test-math.c benchmark illustrates the use of trigonometric
functions and tests these functions to verify validity of calculations from
the simulated processor. The industry example, MIPS R10K simulated
processor showed an improvement of 16.32% in power consumption, but
a 28.69% decline in CP| performance in comparison to the original
configuration. In comparison with the other specified processor
configurations, the R10K trades power consumption for higher
performance. The Wattch example showed an improvement of 37.28% in
power consumption, but a 43.14% decline in CPl performance. The
Wattch example considers both power and performance for an overall
better processor. The configuration used in a study from the University of
Pennsylvania showed lower performance and more power consumption in
comparison to the other examples.

The results from the GA runs, with a population size of 50, generated a
processor configuration with a better CPI performance and, in a separate
run, with less power consumption, as shown in Table 6.4 and 6.5. Table
6.4 lists the results from a GA run that optimized for CPI performance.
There were four initial randomly seeded populations. The maximum CPI
for the best configured processor in the initial run was 0.72. It took 1173
trials, 20 computational hours, to reach a minimum of 0.63 CPIl. Random
seeded population #4 had the largest percent difference from original best
configuration to final best configuration, and the percent difference

between final best configuration were within 3%.
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Table 6.4. GA results for CPI performance optimization.

Seed 1 Seed 2 Seed 3 Seed 4
rig. CPI 0.72 0.67 0.66 0.72
End CPI 0.65 0.64 0.65 0.63
# Trials 1155 1147 1163 1173
% Diff Oriqg. 11.20% 4.89% 0.54% 14.36%
% Diff Best 1.83% 0.31% 2.90% 0.00%

Table 6.5 lists the results from a GA run that optimized for power
consumption. There were five initial randomly seeded populations. The
maximum power calculated for the best configured processor in the initial
run was 6.89 watts. The minimum power consumed for a configured
processor was 3.84 watts, with 69.87% difference from the original best
configuration. In this GA run, there is 10% difference from the lowest to
highest power consumed for a final processor configuration. This
difference is somewhat higher than expected and, with more trials, the
difference can possibly be reduced thus closely approaching an estimated

optimal configuration for all seeded populations.
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Table 6.5. GA results for power consumption optimization.

Seed 1 | Seed 2 Seed 3 Seed 4 Seed 5
Orig. Power | 6.89 4.82 6.49 6.28 4.80
End Power 4.25 3.90 3.82 3.84 3.84
# Trials 1140 1149 1143 1149 1155
% Diff Orig. | 62.13% | 23.57% | 69.87% | 63.40% | 25.06%
% Diff Best | 10.15% | 2.12% 0.00% 0.67% 0.58%

However, for each GA run the other objective suffered. With

performance being the main objective in the case of the math benchmark,

the calculated power consumed showed a decline of 125% in comparison

to the original best configuration. The multi-objective weighted Pareto-

chart illustrated a better tradeoff of power-performance in comparison with

other processor configurations, as shown in Table 6.2. The actual Pareto-

chart for all of the combined GA runs is shown in Figure 6.4.
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6.4.2 GNU C Benchmark

The 126.gcc benchmark illustrates the compilation of GNU C compiler.
This benchmark belongs to a set of tests produced by the Standard
Performance Evaluation Corporation (SPEC) [87]. These tests were
developed to provide comparable measures of performance for compute-
intensive workloads on different computer systems. The industry example,
MIPS R10K processor showed an improvement of 14.19% in power
consumption, but a 26.69% decline in CPI performance in comparison to
the original configuration. In comparison with the other specified
processor configurations, the R10K trades power consumption for higher
performance. The Wattch example showed an improvement of 30.09% in
power consumption, but a 14.67% decline in CPl performance. The
Wattch example considers both power and performance for an overall
better processor. Again, the configuration used in a study from the
University of Pennsylvania showed lower performance and more power
consumption in comparison to the other examples.

The results from the GA runs, with a population size of 50 generated a
processor configuration with a better CPI performance and in a separate
run with less power consumption, as shown in Table 6.6 and 6.7. Table
6.6 lists the results from a GA run that optimized for CPI performance.
There were four initial randomly seeded populations. The maximum CPI
for the best configured processor in the initial run was 0.76. It took 1121
trials, 20 computational hours, to reach a minimum of 0.68 CPIl. Random
seeded population #4 had the largest percent difference from original best
configuration to final best configuration, and the percent difference

between final best configuration were less than 0.5%.
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Table 6.6. GA results for CPI performance optimization.

Seed 1 | Seed 2 Seed 3 Seed 4 Seed 5
Orig. CPI 0.69 0.74 0.71 0.76 0.70
End CPI 0.68 0.68 0.68 0.68 0.68
Trials 1148 1153 1121 1141 1143
% Diff Orig. | 1.06% | 7.69% 3.36% 11.06% | 3.03%
% Diff Best | 0.00% | 0.29% 0.00% 0.03% 0.00%

Table 6.7 lists the results from a GA run that optimized for power
consumption. There were five initial randomly seeded populations. The
maximum power calculated for the best configured processor in the initial
run was 8.30 watts. The minimum power consumed for a configured
processor was 3.82 watts, with 64.37% difference from the original best
configuration. In this GA run, there is 7% difference from the lowest to
highest power consumed for a final processor configuration. This
difference is somewhat higher than expected and, with more trials, the
difference can possibly be reduced thus closely approaching an estimated

optimal configuration for all seeded populations.
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Table 6.7. GA results for power consumption optimization.

Seed 1 | Seed 2 Seed 3 Seed 4 Seed 5
Orig. Power [ 8.30 4.82 7.73 6.28 4.80
End Power 3.88 3.88 4,12 3.82 3.92
# Trials 1120 1155 1158 1143 1185
% Diff Orig. [113.97%]| 24.37% | 87.68% | 64.37% | 22.41%
% Diff Best | 1.52% 1.40% 7.28% 0.00% 2.61%

However, for each GA run the other objective suffered. With

performance being the main objective in the case of the GNU C compiler

benchmark, both were improved, with performance 10% and the

calculated power consumed was 30% better than the original best

configuration. Using the multi-objective search, we were able to select a

configuration with improved power consumption of 49.17%, sacrificing

performance with a gain of 1%. The total in power-performance savings

was ~50% compared to single-objective optimization total of ~45%, as

shown in Table 6.3. The actual Pareto-chart for all of the combined GA

runs is shown in Figure 6.5.
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Optimization problems inherently involve optimizing objectives subject
to various specifications and constraints. In a single objective problem, the
goal is to find the “best’ solution that maximizes or minimizes the
objective, while in a multi-objective optimization problem the goal is to
arrive at a set of Pareto-optimal designs. The useful feature of Pareto-
optimal designs is that they are diverse, where they provide a wide choice
for the decision-maker. Classical optimization methods are in general not
efficient for multi-objective problems as they often lead to a single solution
instead of a set of final solutions. Multiple runs of the same method
cannot guarantee a different point on the Pareto-front each time and
some methods cannot handle problems with multiple optimal solutions.
Evolutionary methods maintain a set of solutions as a population during its
course of search and thus can result naturally in a set of Pareto-optimal
solutions in a single run. From the research presented, a widely differing
set of Pareto-optimal solutions can be generated using weighted strategy
within the evolutionary algorithm, therefore enlarging the population of

designs to provide a wide choice for the designer.

6.5 Sensitivity Analysis of Parameters

Sensitivity analysis attempts to understand the uncertainties of various
input parameters used in the optimization of power and performance.
Sensitivity refers to a model's response to parameter changes. Pruning is
the procedure where inputs are removed based on their contribution or
sensitivity during the search. A sensitivity analysis method was used to

determine the relative contribution of each parameter and then eliminated
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or replaced non-significant parameter values with the best value obtained
from the search. In this case, the best value is the value at the end of a
GA run for a particular parameter.

For example, each solution includes 16 changeable parameters in the
configuration of an embedded processor, with a minimum of four options
per parameter, we would be able to obtain 4'® = 8.15 X 10° configurations.
If two parameters were taken away and made constant, the search space
reduces to 2.68 X 10°, thus the search is refined and more concentration
can be placed on other parameters. Each parameter is evaluated for
sensitivity by counting the number of mutations of the “best fit” individual
in a given run, and least sensitive parameters are replaced by constant
values.

The same setup of experiments was used in the new GA model. The
experiment used estimated values with a targeted workload of test-math.c
for power consumption and cycles per instruction (CPI) per configuration.
Three objective fitness functions, (power, performance, 50/50 weighted
mix) were used to guide the GA during the search process. Five initial
random seeded populations were submitted to the GA for diverse
exploration of search space. The population size for each run was 50, with
termination set at a maximum of 50 generations. A single-point crossover
rate of 30%, and mutation rate of 1.4% was used for reproduction
operators. The selection scheme for new chromosomes was SUS using
linear scaling of fitness values. From the sensitivity analysis, certain
parameters that were determined to be less sensitive (e.g., data cache
size, integer and floating point ALUs) used final values from the original
GA run in the new GA model, and were not included in the exploration of

the search space.
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For example, Figure 6.6 illustrates a normalized view of parameter
sensitivity. Three different GA runs were plotted: performance, power, and
a 50/50 weighted mix of performance-power. For performance, NMULT,
the number of integer multiplier units hasthe lowest switching activity
during the GA run. The next lowest parameters are NALU and FPALU.
For the new model, the final values for those parameters are selected

from the configuration with best performance and are used as constants.
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Once a new GA model is generated for each objective, the models are
then tested and compared to the original run to see if there is any change
in final fitness evaluations or variation in parameter sensitivity. From these
experiments, the new model produced similar results to the original set of
experiments. The next step is to further reduce the design space by
reapplying the sensitivity analysis. The continuation and evaluation of the
sensitivity algorithm is an interesting topic for further research and this

idea is expanded on in Chapter 7.
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CHAPTER 7

Conclusions and Scope of Future Work

This chapter details the main conclusions of the research presented in
this thesis. Section 7.1 highlights the primary contributions of this work to
the fields of portable embedded system architecture design. Section 7.2
gives an overview of the developed system. Section 7.3 discusses the
results obtained in the context of power-performance design implications.
Section 7.4 presents a summary of the conclusions derived from this
work. Finally, Section 7.5 discusses future directions and developments

for work initiated in this thesis.

7.1 Contributions

The primary, original contribution of this thesis is the development of a
novel power-performance design tool based around a core GA search and
optimization technique. The tool targets the implementation of portable
embedded applications. The summary of power and performance
estimation techniques at high levels of the design process, Chapter 2, was
used to illustrate that targeting two objectives offers greater benefits than
just a single objective. Thus, the developed tool targets power and
performance reduction at the architectural configuration level.

System level optimization required the development of a non-standard
chromosome representation for the GA. The chromosome does not use

standard binary or alphabet chromosome representation, but incorporates
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the features of a configurable processor. The flexible nature of the
chromosome ensures that it can represent a wide range of solutions of
varying size and complexity, both initial designs and those generated
throughout the search and exploration process. The ability of the GA to
provide trade-off information to the design engineer was also presented,
illustrating the advantages of using a GA for high-level design and

architecture trade-off exploration.

7.2 System Implementation

The design tool was implemented in the C programming language,
where the software was developed and tested using a Unix workstation
running under the Solaris operating system. The design tool is comprised
of the SimpleScalar performance simulator developed by Burger et. al. at
the University of Wisconsin [21], Wattch power simulator developed at
Princeton by Brooks et. al. [10], and GALOPPS developed at Michigan
State University by Goodman et. al [75]. Additional files developed for
simulation and GA evaluation include the application file, application input

file, reading, stripping, and data sorting.

7.3 Discussion

The comparative analysis of original and optimized designs was
performed with the use of high-level power and performance estimation

strategies. The comparison of simulators is a complex problem, and
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typically inaccurate due to the large number of parameters. SimpleScalar
provides a toolbox of simulation components as well as several
simulators. Each simulator interprets executables compiled by gcc version
2.6.3 for a virtual instruction set. SimpleScalar optimizes performance and
flexibility by reducing design time and maximizing design exploration. The
most complicated and detailed simulator used in the SimpleScalar toolset
is sim-outorder, which supports out-of-order execution, with a five-stage
pipeline. SimpleScalar outputs CPI, IPC and instruction count, along with
other processor statistics. Wattch is an architecture simulation tool built
for analyzing and optimizing processor power consumption. Brooks et. al.
quantified power consumption of all major units of the processor and
parameterized them. Northern et. al. integrated these parameters into the
GA, where they were able to perform comparative evaluations between
different solutions during the search process [19]. Chapter 5 illustrated the
prototype version of the simulation system on two benchmarks. The
results illustrate that the system level tool was able to reduce power and
increase performance.

GA research has provided a source of techniques that can be used to
improve the efficiency of a search and the results obtained. Unfortunately,
no guiding metric is available to select techniques for any particular
application. Therefore Chapter 5 investigates techniques with the aim of
improving GA performance for this application.

In Chapter 6, a technique was presented to exploit the multi-solution
nature of the GA search mechanism to provide trade-off information to the
system designer. The information, presented in the form of Pareto-charts,
illustrates the highest performance solutions across the power range. This

enables the designer to select the solution that best meets the
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implementation on the minimization of a single parameter. In addition, the
Pareto-charts are useful in examining the nature of the solution space
illustrating the large effect that performance increases can have on power
consumption. This tool is the first system-level performance-power
optimization tool to present weighted Pareto trade-off information as part
of the optimization process, exploiting the inherent characteristics of the

GA search technique.

7.4 Conclusions

The main contributions of this work are the following:

1. Methodology for exploring embedded system architectures
[Chapter 5]): Issues related to processor architecture and
organization, are addressed in an evolutionary approach for
programming processors. An application of a simple genetic
algorithm in the exploration of a configurable processor is used
in the process. With this methodology we are able to optimize
embedded processors for practical applications to a much

larger extent [19].

2. Multi-objective analysis for configuring embedded system
architectures [Chapter 6): An efficient multi-objective genetic
algorithm that generates a set of alternative solutions and
indicates the best power/performance tradeoff was developed.

These alternative solutions are expressed as non-dominated
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points (i.e., a solution is dominant over another only if it has

superior performance in all criteria).

3. Sensitivity analysis for embedded system optimization [Chapter
6]: Based on experimentation with practical applications, we
have determined a heuristic for training the genetic algorithm to
better represent the configuration problem. The genetic
algorithm replaces the less sensitive parameter feature with

their average [88].

7.5 Future Work

On the technology side, the problems of accurate and fast high-level
power estimation have been discussed. Further refinements to the power
analysis module, such as the consideration of capacitance
characterization for a particular device technology could improve the
accuracy of the analysis.

The application of standard genetic operators, during the search
process, could result in some invalid designs with incorrect functionality.
Rather than implement these corrupt designs, which increases
computation time and reduce the efficiency of the search technique,
problem-specific architecture techniques should be incorporated into the
GA. This would enable the GA to search the design space more
effectively.

The current system employs a sensitivity algorithm that reduces the

design space by pruning non-significant parameters. This algorithm can
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further be improved by analyzing the linkage between parameters and
their effect on the evaluation values.

The Pareto-chart uses the data produced during the GA search and
optimization process. This could be further refined by incorporating Multi-
Objective GA (MOGA) techniques such as niching and fitness sharing
[90]. Such techniques can improve the ability of the GA to fully explore the
range of available trade-offs.

The GA has been compared with other search techniques that target
optimization of combinational problems. There are many other techniques
such as Tabu Seatch, ILP, simulated annealing, hill-climbing, etc. The
development of combined techniques with the GA as the core search
algorithm could provide a set of routines for the implementation of
alternative search and optimization techniques.

Finally, in terms of evaluation of the tool, the actual fabrication of the
devices designed with the methodology developed in this thesis will
enable practical examination of the power reductions and the associated

implications for power, performance, and functionality.
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