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ABSTRACT

AN EVOLUTIONARY COMPUTATIONAL APPROACH TO

CONFIGURING PORTABLE EMBEDDED SYSTEM ARCHITECTURES

By

James Northern, Ill

Portable embedded systems (e.g., medical equipment, cellular

phones, pagers, and video game consoles) are being driven by consumer

demands to be thermally efficient (produce less heat), perform faster, and

have longer battery life. To design such a system, various hardware units

(e.g., level one (L1) and level two (L2) caches, functional units, registers)

are selected based on a set of specifications for a particular application.

Currently, chip architects are using software tools to manually explore

different configurations, so that tradeoffs for consumption, performance,

and chip size may be understood.

However, when evaluating multiple design parameters simultaneously,

the exploration space expands, design time increases, and human errors

become a concern. Genetic algorithms, which are effective in rapid global

search of large and poorly understood spaces, have been modified for

multiple objectives and applied to guide this process to an improved

solution.

This dissertation presents a framework for an evolutionary approach to

configuring an “ideal” embedded processor based on power consumption

and performance. In addition, a database of simulation results that gives a



more comprehensive evaluation of tradeoffs between power and

performance, and of the inter-dependence between parameter

configurations is presented. Appropriate search techniques to reduce

exploration space and decrease time-to-market are also discussed.
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INTRODUCTION

Embedded systems are application-specific (single task) computer

systems built into larger devices. In today’s world, embedded systems are

everywhere - homes, offices, cars, factories, hospitals, airplanes, and

consumer electronics. An embedded system differs from a general-

purpose computer in that it has one fixed application and cannot be

changed by the outside environment. However, an embedded system is

reactive to internal changes. These types of systems often run in real-time

and are designed to meet requirements of low cost and low power

consumption, and are usually small in size. In addition, consumer

demands have driven embedded systems to be thermally efficient,

perform faster, and have longer battery life. Challenging design issues

arise, such as multi-objective design goals, configurability (customization),

and time-to-market.

This dissertation presents a framework for an evolutionary

computational approach to configuring an “ideal” embedded processor

based on power consumption and performance. In addition, a database of

simulation results that gives a more comprehensive evaluation of tradeoffs

between power and performance, and of inter-dependence between

parameter configurations (i.e., L1 to L2 cache size, memory bandwidth,

instruction window size, datapath width) is presented.



CHAPTER 1

Embedded System Architectures

New portable embedded systems require a high level of performance

to meet their hard and/or soft real-time deadlines, where hard real-time is

an absolute deterministic response to an event. Examples of embedded

systems in the consumer market are digital cameras, video cameras,

video game consoles, and medical equipment (e.g., glucose monitor,

heart rate monitor). As the complexity and importance of these

applications increase, the type of architectures that support them will lead

to higher power consumption than traditional portable devices. Thus,

limited power-supply capability of current battery technology is forcing

designers to explore a combination of high-performance and low-power

architectures.

The solution for attaining these new goals is to customize the

processor for a particular application. Designers are evaluating three

fundamental approaches: RISC le, hard cores, and configurable

semiconductor intellectual property (IP) cores. Table 1.1 summarizes the

three fundamental approaches.



Table 1.1. Fundamental approaches to designing embedded

system architectures.

 

 

 

Approach Description

RISC le Off-the-shelf, stand alone parts that are

selected from component data books.

Hard cores Pre-defined macro layout blocks that can

be integrated into application specific le.
 

 
Configurable semiconductor

lPs

 
Fully programmable processors that can

be customized and build by multiple

contract semiconductor fabricators.
 

 

The advantages of using RISC le are their ease of purchase

(commodity) and tailored appeal to a specific kind of market. Examples of

RISC le include Intel’s Pentium XScale, IBM’s PowerPC, MIPS VR5000,

Philips TriMedia TM-1300. Disadvantages of these processors are low

integration, poor system performance, and high power requirement. An

example of performance and power for selected RISC ICS is shown in

Table 1.2.

Table 1.2. Performance and power specifications for RISC le.

 

 

 

 

   

RISC le Performance Power

Intel’s XScale 1 GHz 1.5 W

IBM’s PowerPC 7SOCX 400 MHz 4.0 W

MIPS VR5000 250 MHz 5.0 W

TriMedia’s TM1300 166 MHz 2.7 W
I
 

Hard cores are more flexible than RISC le because they are pre-

defined macro Iayout blocks that can be integrated into embedded

 

 



processors. They can be provided and serviced by any application-

specific design house. Disadvantages of hard cores include that they are

process-specific, that their non-configurable captive lP demands premium

price in the market, and that they require additional hardware when

integrated into systems-on-a-chip (SoC).

Configurable semiconductor IP cores are more flexible than hard cores

because they are not process dependent. They provide foundry-

independence for multiple manufacturing sources. The disadvantages of

configurable semiconductor lPs are their availability of processor options,

configurability of hardware and instruction set architecture (ISA),

optimization of software compiler, and integration in an SoC as lack of

architectural models of all execution units and peripherals makes it difficult

to model paths through the system. In the present work, the configurability

of hardware, optimization for power and performance, and ease-of-design

(i.e., low design complexity for reduced design time and fast time-to-

market) for a configurable semiconductor lP are explored.

1.1 Configurable Semiconductor lP Systems

Configurable semiconductor lP systems are fully programmable

processors that can be customized and constructed by multiple contract

semiconductor fabricators. These embedded processors are becoming an

attractive alternative to RISC 10s and hard cores for the following main

reasons: design time and time-to-market are much shorter than that for

hardwired custom implementations; time can be reduced if the processor

is simulated and explored in software; and the ability to change part of the



functionality of any system is crucial in determining the design time. The

cost of design and implementation of a programmable processor is lower

compared to hardwired implementation. The cost of silicon processing

increases in foundries with every new generation of technology [1].

Enabling technologies for programmable processors are becoming mature

and competitive. Compilers and design tools are improving at an

increasingly rapid rate [2,3] and more attention is being given to improving

these tools [4,5]. Programmable processors are now able to provide

power versus performance tradeoffs [6,7,8,9,10].

1.1.1 Design Methodology

Many design flows and methods have been proposed in the past,

where different steps in design methodology and their consequences on

design decisions have been studied. Figure 1.1 shows the different steps

involved in the design of a configurable embedded IP system [11]. The

five main stages (abstraction levels) in this design methodology are

algorithm specification, system-level design, array-level instruction,

technology integration, and physical system architecture design [12]. The

algorithm specification level is where the type of ISA is chosen. The

system-level design stage maps the actual task (C program) to the ISA

through a GNU gcc compiler at the array-level instruction stage, the

processor configuration is explored at the technology integration stage,

and the circuit design takes place. The physical architecture system level

determines the final layout of the embedded system. The present work

addresses the array-level instruction stage where the processor



configuration is explored and optimized. In the methodology to be

described a genetic algorithm is successfully applied to accomplish this

goal.

 

Algorithm Specification

1

System-level Design, Data-Type Refinement

(Task and data level mapping)

1

Array-level Instruction, Processor Configuration

Data Transfer and Storage Exploration

   

 

  
 

 

  
 

  

Technology Integration

   

 
 

Physical System Architecture

  
 

Figure 1.1. System design flow for an embedded system imple-

mentation.

1.1.2 Target Architecture

The target architecture consists of basic components in configurable

semiconductor lPs. Figure 1.2 shows as an example a general abstraction

of the current state-of-the-art multi-media embedded processor [13,14].

The key components typically observed in these architectures are

described in Table 1.3.
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Figure 1.2. Target architecture model for programmable super-

scalar RlSCNLlW processor with memory hierarchy.

Table 1.3. Basic components of an embedded processor and its

key features.

 

Component Description
 

Functional units (FU) Multiple units for integer and floating-point

operations using arithmetic logic unit and

multiplier.
 

Instruction fetch queue Size and issue width constitute a superscalar

[15] or a very long instruction word (VLlW)

[13,14] processor or a multi-threaded

multiprocessor type of core [16].
 

Instruction window Register update unit for the integer and

floating-point instructions. Uses a reorder

buffer to automatically rename registers.
 

Cache One or more levels of cache memories are

present, at least one of which resides on chip.
 

 
Centralized bus A centralized bus is selected with one or two

data buses, depending on data—dominated

multimedia applications [12]. 
 

 



The architecture of embedded programmable processors has features

that are parameterizable. Examples include the functional unit, which can

vary in datapath size and bitwidths, cache size and organization; the

memory unit, which may vary in the number and size of register files; and

the interconnections within the processor data paths [17]. The framework

for a configurable processor is a compiler coupled to a machine simulator,

with parameterizable features tunable by the designer. Interdependence

between two parameters has been investigated [18], however, exploration

and optimization of all of these parameters have not been addressed.

1.2 Problem Statement

Many embedded processor studies focus on issues related to cache

size and organization, and their relationship to energy and power

consumption. Although points of diminishing returns exist, decreasing the

size generally decreases power consumption. However, the focus of

research has shifted to the inter-relationships of other major parameters

and their tradeoffs when optimizing for multiple objectives, namely power

and performance.

A common difficulty when optimizing for multiple objectives is the

conflict between objectives when maximizing or minimizing over a given

set of solutions. For example, decreasing cache size reduces power

consumption, but also decreases performance. If the cache is too small,

cache misses may mask the effects of other processor parameters, such

as branch mispredictions, because of parameter interdependency.



Conversely, increasing the number of functional units may increase

performance, but also will increase power consumption. While searching

the design space for an “ideal” embedded processor configuration,

optimizing for two or more criteria can lead to “non-ideal” solutions.

Hence, for portable, high-performance embedded implementations, much

more advanced techniques, which are efficient in ease-of—design and

multi-objective decision-making, need to be explored.

In the context of embedded architecture and organization, the

following goals are outlined:

1. Finely tuned performance to meet application requirements:

Some embedded designs require high performance for

multimedia and communication algorithm processing.

2. Small size: Highly integrated circuits need to be optimized for

small size and low system cost.

3. Energy and power efficiency: The embedded processor must

operate at a very low MIPS per watt rating to meet requirements

for portable applications. For example, a processor’s power

budget may be a maximum of 1W, but it must still be able to

drive the processing for an intense algorithm like speech

recognition or data compression. 3

4. Ease-of-design: Low design complexity will result in reduced

design time and fast time-to-market. Design complexity must be

kept to a minimum to speed the time-to-market for a system

level product. However, when evaluating multiple design

parameters simultaneously, the exploration space expands

(e.g., four options per parameter with 16 parameters to a set



solution, give 4,294,967,296 possible solutions), thus increasing

design time.

1.3 Main Contributions

The main contributions of this work are the following:

1.

2.

A methodology for exploring embedded system architectures

[Chapter 5]: Issues related to processor architectures and

organization, are addressed using an evolutionary approach for

configurable processors. An application of a simple genetic

algorithm in the exploration of a configurable processor design

is used in the process. With this methodology we are able to

improve power and performance (i.e., find solution better than

original) of embedded processors for practical applications

given a large set of parameters [19].

A sensitivity analysis for embedded system optimization

[Chapter 5]: Based on experimentation with practical

applications, we have determined a heuristic for training the

genetic algorithm to better represent the configuration problem.

The less sensitive parameter value (size, number, etc.) is

replaced with their best value from a previous GA run, and used

as a constant in future evaluations [19]. Therefore, this step

reduces the configured design space and refines the

exploration criteria.

10



3. Multi-objective analysis for configuring embedded system

architectures [Chapter 6]: An efficient multi-objective genetic

algorithm [20] that generates a set of alternative solutions and

indicates the best power/performance tradeoff is developed.

These alternative solutions are expressed as non-dominated

points (i.e., a solution is dominant over another only if it has

superior performance in all criteria).

1.4 Structure of Dissertation

The remainder of this dissertation is organized as follows. First,

Chapter 2 provides the necessary background material related to this

work. An overview of superscalar out-of—order processor simulators is

presented. Emphasis is placed on the estimation of power consumption

and performance rather than on out-of-order procedures. Also, a

methodology for exploring embedded system architectures is presented.

Chapter 3 presents the taxonomy of different search and optimization

algorithms. Examples of each method are given and trade-offs between

the techniques are reviewed. Based on our research, genetic algorithms

(GAs) offer greater flexibility for a larger search space. An explanation of

how GAs are used in the configuration methodology is also presented.

Chapter 4 presents the concepts of the GA search and optimization

technique. Standard GA concepts such as solution (chromosome)

representation, fitness function, reproduction operators, selection criteria,

and stopping criteria are discussed. Other techniques for expanding the

11



use of GAs to non-standard problems are also presented.

Chapter 5 presents a methodology for improving power consumption

of a computer simulated configurable processor. The functional

parameters and the estimation of power consumption are incorporated

into a genetic framework. This chapter addresses the use of genetic

algorithms and the criteria needed to establish a good search (i.e.,

population size, random populations, and stopping criteria).

Chapter 6 describes the techniques developed in this work, such as

incorporating the parameters into a genetic framework, the sensitivity

analysis, and multi-objective decision-making. The encoding and

decoding of the parameters are very important in performing an efficient

search. The sensitivity analysis involves a technique for training the

genetic algorithm to better represent the design search space. A

sensitivity analysis of each parameter is performed and the less sensitive

values for parameters are substituted for a constant value to reduce

exploration time for validation runs. The problems faced with multi-

objective decision-making, and the corresponding solutions for power and

performance are also discussed. A method is presented for providing a

Pareto-optimal front for optimal solutions of two objectives. Experimental

results as well as issues related to automation of this technique are

presented.

Finally, Chapter 7 presents the main contributions of this thesis and

provides directions for future work.

12



CHAPTER 2

Overview of Simulation Tools

Computer-aided design simulators are used to help in the design of

new electronic circuits and devices such as systems-on-a-chip, embedded

systems, intellectual property cores. These types of circuits are designed

from specifications given at very high levels of abstraction in order to

shorten the time-to-market of new products. However, modern processors

have become incredibly complex and increasingly hard to evaluate.

Architectural simulators have become the solution for evaluating these

processors early in the design cycle. An architectural simulator is a tool

that reproduces the behavior of a computing device, as illustrated in

 

 

 

Figure 2.1.

_ System

System Devrce Outputs

___q, Simulator
Inputs - System

Metrics  
 

Figure 2.1. High-level view of architectural simulator.

In addition to simulating processors, architectural simulators have

advanced to evaluation of multiple designs. The evaluation focuses on the

discovery of performance tradeoffs and “ideal” solutions (i.e., better

operating configurations within the limited time frame). These tools have

been enhanced by the use of search techniques (e.g., simulated

13



annealing, integer linear programming, and genetic algorithms) to aid

designers in finding optimal solutions. The work discussed in this chapter

provides the background for the simulation and search of optimal designs

of portable embedded processors.

2.1 Taxonomy of Simulation Tools

Simulation tools have become an attractive solution to chip architects

because more development can be done with software, which allows for

greater flexibility and faster leverage in the design cycle. The following

benefits are derived from software-based development:

1. Permits more design space exploration.

2. Facilitates validation before commitment to hardware.

3. Level of abstraction (e.g., RTL, compiler, assembly language,

VHDL, etc.) can be suited for a specific design task.

4. System instrumentation can be increased and/or improved.

To better understand simulation tools and how they work, an example

of the taxonomy is shown in Figure 2.2.

14
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Figure 2.2. Taxonomy of architecture simulators.

The functional simulator implements the instruction set architecture

and is concerned with the correctness of the simulation, which is what

programmers actually see. It simulates the direct execution of the task.

The performance (timing) simulator implements the micro-architecture and

models the system internals. This simulator is more concerned with

access time and the functions that are not apparent to the programmer

such as cache hits and misses.

A functional simulator may be implemented in either an execution- or

trace-based manner. Trace-driven simulation reads a “trace” of

instructions saved from the previous execution whereas execution-based

simulation “runs” the program and generates a stream dynamically.

Execution-driven simulation has many advantages, but is more difficult to

implement. Instead of implementing direct execution, where an

instrumented program runs on a host, an interpreter can be built to

accurately simulate execution down to the level of mis-speculated paths.

15



Performance simulators are based on instruction schedulers or cycle

timers. Constraint-based instruction schedulers schedule instructions

based on resource availability. Instructions are processed one at a time, in

order. They are usually simpler to implement and/or modify, and are

generally less detailed. During each cycle, cycle-timer simulators track the

micro-architecture state and many instructions in various stages at any

time. The simulator state is the same as the micro-architecture state. This

type of simulator is good for detailed micro-architecture simulation.

In this thesis, the emphasis will be placed on the SimpleScalar [21]

toolset because it is currently a widely accepted tool among researchers.

The SimpleScalar toolset uses a combined functional and performance

simulator, where instructions are execution-driven and the simulator is

synchronized with the micro-architecture state.

2.2 SimpleScalar Toolset Overview

SimpleScalar [21] provides a toolbox of simulation components (a

branch predictor module, a cache module, and a statistics-gathering

module) as well as several simulators built from these components. Each

simulator interprets executables compiled by 900 version 2.6.3 for a virtual

instruction set (PISA) that most closely resembles MIPS IV [22]. A

graphical overview of the toolset is shown in Figure 2.3. Benchmarks

written in FORTRAN are converted to C using Bell Lab's f20 converter.

Both benchmarks written in C and those converted from FORTRAN are

compiled using the SimpleScalar version of 900, which generates

SimpleScalar assembly code. The SimpleScalar assembler and loader,

16



along with the necessary libraries, produce SimpleScalar executables that

can then be fed directly into one of the provided simulators. SimpleScalar

optimizes performance and flexibility by reducing design time and

maximizing design exploration. In addition, it provides portability for big or

little endian machines and varied detailed for different levels of
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Figure 2.3. Graphical view of SimpleScalar.

17



2.2.1 Out-of-order Processor Simulator

The most complicated and detailed simulator in the SimpleScalar

toolset is sim-outorder which supports out-of-order issue and execution

instructions. The pipeline for sim-outorder is handled in five stages: fetch,

dispatch, issue, wirteback, and commit.

Sim-outorder simulates a unified active list, issue queue, and rename

register file (register update unit). The register update unit (RUU) handles

register synchronization and communication. Entries are allocated at

dispatch and deallocated at commit. Using an RUU eliminates artifacts

arising from interactions between active list size and issue queue size,

and reduces the number of architecture variables to be examined.

The processor’s memory system employs a load store queue (LSQ).

The LSQ handles memory synchronization and communication. Stored

values are placed in the queue if the store is speculative. Loads are

dispatched to the memory system only when addresses are known not to

conflict. Loads may be satisfied either by the memory system or by an

earlier stored value residing in the queue, if their addresses match.

Speculative loads may generate cache misses, but a speculative

translation look-aside buffer (TLB) misses may stall the pipeline until the

branch condition is known.

The five-stage pipeline is illustrated in Figure 2.4. The pipeline is

actually traversed backwards, so that inter-stage latch synchronization

can be handled correctly with only one pass through each stage.
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Figure 2.4. Sim-outorder five-stage pipeline.

The fetch stage models the machine fetch bandwidth and takes the

following inputs: program counter, predictor state, and misprediction from

branch execution units. During each clock cycle, this stage fetches the

instructions from one instruction cache line and block until l-cache or I-

TLB are resolved. After fetching the instructions, it places them in the

dispatch queue (IFQ), and probes the line predictor to obtain the correct

cache line to access in the next cycle.

The dispatch stage models the processor decode, rename, RUU/LSQ

allocation bandwith and architected machine state for execution. During

each clock cycle, instructions are decoded and executed, where early

detection of branch mispredictions is permitted. If a branch misprediction

occurs, stat copy-on-write of architected state to speculative buffers is

done. Finally, instructions are entered into the RUU and LSQ, rename

table, and machine state.

The issue stage is split into two sub-stages: scheduler and execute

sub-stage. The scheduler unit models instruction wake-up, selection, and

issue. It separates schedule, track register and memory dependencies.

The scheduler uses inputs from the RUU and LSQ. During each cycle, the
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scheduler locates instructions with all register inputs ready and loads with

all memory inputs ready. The issue function then updates the RUU and

LSQ and the functional unit state. The execute sub-stage models the

functional units and data cache. lt accepts as inputs the instructions ready

to execute, as issued by the scheduler, and the states of the functional

unit and data cache. Each cycle, the execute stage takes the ready

instructions, which are supported by issue bandwidth, finds a free

functional unit and access port, and reserves the unit for entire issue

latency. Finally, the writeback events are scheduled using the operation

latency of the functional unit. The execute sub-stage updates the

functional unit, data cache state, and writeback events.

The writeback stage models writeback bandwidth and the wake-up

ready instructions, detects mispredictions, and initiates misprediction

recovery. The function uses completed instructions as indicated by the

event queue and RUU/LSQ state for wake-up walks. The event queue is

updated during each cycle. When it finds a completed instruction, it walks

the dependence chain of the instruction outputs to mark instructions that

are dependent on the completed instruction. If a dependent instruction is

waiting for that completion, the routine marks the instruction as ready. The

writeback stage also detects branch mispredictions. When a misprediction

occurs, it rolls the state back to the checkpoint, discarding the erroneously

issued instructions.

The commit stage handles the instructions from the writeback stage

that are ready to commit. This function does in-order committing of

instructions, updating of the data caches (or memory) with stored values,

and TLB miss handling. The routine retires instructions at the head of the

RUU that are ready to commit until the head instruction is the one that is
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not ready. When an instruction is committed, its result is placed in a

register file and the RUU/LSQ resources devoted to that instruction are

reclaimed.

2.2.2 Simulator Command Options

Sim-outorder is a detailed superscalar simulator that runs slower than

most of the other simulators in SimpleScalar. Sim-outorder provides the

user with a host of command-line options for the processor core (Table

2.1), memory hierarchy (Table 2.2), and branch predictor (Table 2.5).

Subsequent tables for the memory and branch configuration are shown in

Tables 2.3 and 2.6.

Table 2.1. Command-line options for the processor core.

 

 

 

Line Option Description

-fetch:iquize <size> Sets the fetch width to be <size>. Must be a

power of 2, and the default is 4.

-fetch:speed <ratio> Sets the ratio of the front-end speed relative to

the execution core (allowing <ratio> times as

many instructions to be fetch as decoded per

cycle).

-fetch:mplat <cycles> Sets the branch misprediction latency. The

default is 3.

-decode:width <insts> Sets the decode width to be <insts>, which

must be a power of two. The default is 4.

 

 

 

 

 

 

-issue:width <insts> Sets the maximum issue width in a given

cycle. Must be a power of two. The default is

4.

-issue:inorder Forces the simulator to use in-order issue.

The default is False.

-issue:wrongpath Allows instructions to issue after a

misspeculation. The default is True.

-ruu:size <insts> Sets the capacity of the RUU (in instructions).  The default is 16.
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Table 2.1. Command-line option for the processor core (cont.).

 

-lsq:size <insts> Sets the capacity of the load/store queue (in

instructions). The default is 8.
 

-res:ialu <num> Specifies number of integer ALUs. The default

is 4.
 

-res:imult <num> Specifies number of integer

multipliers/dividers. The default is 1.
 

-res:memports <num> Specifies number of L1 cache ports. The

default is 2.
 

-res:fpalu <num> Specifies number of floating point ALUs. The

default is 4.
 

 -res:fpmult <num> Specifies number of floating point

multipliers/dividers. The default is 1. 
 

Table 2.2. Command-line option for memory hierarchy.

 

Line Option Description
 

-cache:dl1 <confi > Configures a level-one data cache.
 

-cache:dl2 <contlg> Configures a level-two data cache.
 

-cache:il1 <conpfig> Configures a level-one instruction cache.
 

-cache:il2 <confiq> Configures a level-two instruction cache.
 

-tlb:dtllb <config> Configures the data TLB.
 

-tlb:itlb <config> Configures the instruction TLB.
 

-flush <boolean> Flush all caches on a system call;

(<boolean>=0[1]true|TRUE|false|FALSE).
 

-icompress Remap SimpleScalar’s 64-bit instructions to a

32-bit equivalent in the simulation (i.e., model a

machine with 4-word instructions).
 

-pcstat <stat> Generate a text-based profile.
 

 

 

 

 

-cache:dl1lat Specify the hit latency of the L1 data cache. The

<cycles> default is 1 cycle.

-cache:dl2lat Specify the hit latency of the L2 data cache. The

<cycles> default is 6 cycles.

-cache:il1lat Specify the hit latency of the L1 instruction

<cycles> cache. The default is 1 cycle.

-cache:il2lat Specify the hit latency of the L2 instruction

<cycles> cache. The default is 6 cycles.

-mem:lat <15t> Specify the main memory access latency (first,

<next> rest). The defaults are 18 cycles and 2 cycles.
 

-mem:width < bytes> Specify width of memory bus in bytes. The

default is 8 bytes.
  -tlb:lat <cycles>  Specify latency (in cycles) to service a TLB miss.

The default is 30 cycles.
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The cache configuration involves the name, number of sets, block

size, associativity, and replacement policy. The meaning for each of these

fields is listed in Table 2.3. The cache configuration (<confg>) is

formatted as follows:

<name>:<nsets>:<bsize>:<assoc>:<repl>.

Table 2.3. Cache configuration fields.

 

 

 

 

 

 

  

Field Name Description

<name> Cache name, must be unique

<nsets> Number of sets in the cache

<bsize> Block sizejfor TLBs, use the page size)

<assoc> Associativity of the cache (power of two)

<rep|> Replacement policy (l|f|r), where l=LRU, f=FlFO,

r=random rpplac.  
 

The cache size is the product of <nsets>, <bsize>, and <assoc>. To

have a unified level two cache in the memory hierarchy, the instruction

cache has to be pointed to the name of the data cache in the

corresponding level. The defaults used are listed in Table 2.4.

Table 2.4. Default cache configuration.

 

 

 

 

 

 

 

Name Configuration Size

L1 data cache dl1:256:32:1:l 8 KB

L1 instruction cache il1:256:32:1:l 8 KB

L2 unified cache ul2:1024:64:4:l 256 KB

Instruction TLB ltlb:16:4096:4:| 64 entries

Data TLB dtlb:32:4096:4:l 128 entries  
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Choosing the following flag with one of the six subsequent arguments

specifies the type of branch prediction (i.e., -bpred <type>). The default

mode is a bimodal predictor with 2048 entries.

Table 2.5. Specifying the branch predictor.

 

 

 

 

 

 

   

Type Description

nottaken Always predict not taken.

Taken Always predict taken.

Perfect Perfect predictor.

Bimod Bimodal predictor, using a branch target buffer (BTB) with

2-bit counters.

2lev 2-level adaptive predictor.

comb Combinedpredictor (bimodal and 2-level adaptive).
 

Table 2.6. Predictor-specific command-line options.

 

 

 

 

 

 

Line Option Description

-bred:bimod <size> Set the bimodal predictor table size to be

<size> entries.

-bpred:2lev <cont1q> Specify the 2-level adaptive medictor.

-bpred:comb <size> Set the meta-table size of the combined

predictor at <size> entries. The default is

1024.

-bpred:ras <size> Set the return stack size to <size>. The

default is 8.

-bpred:btb <sets> <assoc> Configure the BTB to have <sets> sets

and an associativity of <assoc>. The

defaults are 512 sets and an associativity

of 4.
 

 
-bpred:spec_update <stage> Allows speculative updates of the branch

predictor in the decode or writeback

stages (<stage>=[lD|WB]). The default is

non-speculative updates in the commit

stage. 
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The SimpleScalar out-of-order issue simulator offers flexibility to create

and test different configurations. The values a user can specify and the

tests for performance tradeoffs are infinite. Simulation time of sim-

outorder is dependent upon a particular task or application (e.g., less than

1 sec, without application). In the following section, processor

performance and comparison techniques are discussed.

2.2.3 Processor Performance Estimation

In comparing design alternatives, where the user is interested in

reducing response time, the chip architect will often relate the

performance of two different processors. The response time is the time

between the start and completion of an event. Increasing performance

implies decreasing execution time. To avoid confusion between increasing

and decreasing, we will use the terms “improve performance” or “improve

execution time”. Execution time can be defined as elapsed time to

complete a task. For a processor, CPU time refers to the time the CPU is

computing a task or group of tasks, not including l/O or other processes.

Most computers define speed or performance using a clock running at

a constant rate. The discrete time events of a clock running at a constant

rate are called clock cycles. Chip architects refer to the time of a clock

period by its duration (e.g., 2 ns) or by its rate (e.g., 500 MHz). CPU time

for a program or task can then be expressed two ways:
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CPU time = CPU clock cycles for a task * Clock cycle time (2.1)

or

CPU time = CPU clock cycles for a task -:- clock rate. (2.2)

In addition to the number of clock cycles needed to execute a task, a

count can be taken of the number of instructions executed — the

instruction path length or instruction count (lC). If the number of clock

cycles and the instruction count are known, the average number of clock

cycles per instruction (CPI) can be calculated as

CPI = CPU clock cycles for a task -:- IC. (2.3)

Therefore CPU execution time is the product of the number of

instructions executed, clock cycles per instruction and clock cycle time.

Since we are making comparisons of different configurations within the

same hardware technology and compiler, the only needed metric for

performance is CPI, which is dependent on hardware organization and the

instruction set architecture. The performance gain (speedup) that can be

obtained by improving some portion of a processor can be calculated

using Amdahl’s Law [89]. Speedup is the ratio of execution time for the

entire task (without using the enhancement) to the execution time for

entire task (using the enhancement) and is given by

Speedupnew conf = CPlorlginal T CPlnew conf- (24)
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SimpleScalar produces calculated results for CPI, IPC and IC along with

other processor statistics. From this

performance parameters can be made.

2.2.4 Validation of Out-of-order Simulator

information, comparison of

There have been four approaches to validating the results produced by

sim-outorder. micro-benchmark validation, correlation with independent

simulators, regression correlation, and code inspection. The SimpleScalar

group has run a number of small programs (micro-benchmarks) to test

various parts of the machine simulator [23]. For example they compared

SimpleScalar ARM model to Intel’s StrongARM SA-11XX processors and

were within 4% of the real hardware performance. Table 2.7 shows the

results of their comparison.

Table 2.7. Validation of performance (CPI) measures via

benchmark testing [23].

 

 

 

 

 

 

  
    

Benchmark SimpleScalar SA-1110 % Difference

cache_hit 1.02 1.01 0.9

cache_miss 33.87 33.70 0.5

br_taken 1.04 1.02 1.9

br_nottaken 1.97 1.91 3.1

bzip2.10 3.20 3.10 3.2

cc1 —O cc1in.i 2.84 2.90 2.1

fft.arm shortpcm I 1.45 1.44 0.1
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Correlation with multi-scalar simulators, which were developed

independently over the SimpleScalar framework, has been done for

performance estimation using standard benchmarks [23]. The results

were within 5% of the sim-outorder simulator. They also compared sim-

outorder to other published results. However, this was less productive

since sim-outorder is more detailed than many other dynamically

scheduled processor simulators. Regression correlation was done

between release versions one and two of sim-outorder. Any deviations

were tracked down and fixed. Code inspections were run by researchers

at University of Wisconsin-Madison and other schools [23]. This

procedure has uncovered occasional performance bugs, which has

increased the confidence of the SimpleScalar group that the code

correctly models a reasonably detailed micro-architecture.

2.3 Wattch Power Simulator Overview

Wattch is an architectural simulation tool built for analyzing and

optimizing processor power dissipation [10]. Prior work on architecture-

Ievel techniques for power optimization has mainly focused on caches

[24,25,26,27]. Historically, two factors led to this focus. For embedded

processors, a large portion of their power consumption is budgeted to

caches, in some cases up to 40% [28]. Also, since caches are regular

structures (i.e., bitline, wordline, sense amplifier, precharge) they are

somewhat easier to model and quantify for power studies.

Some work on architectural-level power reduction has been addressed

for other areas of the processor [29,30,31]. One of the major
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shortcomings that was noticed by Brooks et. al. [30] in the area of

architectural-level power reduction is the lack of a high-level,

parameterizable, simulator framework that can accurately quantify power

savings [10]. The point of their work was not to compete with lower-level

tools but rather to expose the basics of power modeling at a higher level

to computer architects and compiler writers. Brooks et. al. accomplished

this goal by quantifying power consumption of all major units of the

processor and integrating these power estimates into a high-level

simulator (e.g., SimpleScalar).

Figure 2.5 shows three possible ways Wattch can be used. The

leftmost scenario applies to cases where the user is interested in

comparing several design configurations that are achievable simply by

varying parameters for hardware structures. The middle usage scenario is

for software structures involved in compiler development, where a single

hardware configuration is used and different compiler programs are

simulated and compared. The rightmost scenario highlights Wattch’s

modularity, where additional hardware modules can be added to the

simulator. For our purposes, we chose the first scenario for micro-

architectural tradeoffs and exploration. In the following section, the power

modeling methodology is described.
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2.3.1 Power Modeling Methodolgy

The basis for the power modeling tool is parameterized power models

of common structures present in modern embedded processors. The

main units that are modeled fall into four categories:

Array Structures: Data and instruction caches, cache tag arrays,

all register files, register alias table, branch predictors, and large

portions of the instruction window and LSQ.

Fully Associative Content-addressable Memories (CAM):

Instruction window/reorder buffer wakeup logic, load/store order

checks, and TLB’s.

Combination Logic and Wires: Functional units, instruction

window selection logic, dependency check logic, and result

buses.

Clocking: Clock buffers, clock wires, and capacitive loads.

Each model estimates capacitance based on the circuit and transistor

sizing. In CMOS microprocessors, dynamic power consumption is the

main source of power consumption and is defined as

Pd = aCVDDZf (2.6)

where C is the load capacitance, VDD is supply voltage and f is the clock

frequency. The activity factor, a, is a fraction between 0 and 1 indicating

how often, on average clock ticks lead to switching activity. The supply

voltage, clock frequency, and load capacitance are derived from 0.35u
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technology process parameters used from Palacharla, Jouppi, and Smith

[32]. The activity factor is based on the execution of benchmark programs.

For circuits that pre-charge and discharge on every cycle (i.e., double-

ended array bitlines), a = 1 is used. For other sub-circuits, such as single-

ended array bitlines, the activity factors are estimated from the benchmark

programs using the architectural simulator. For circuits where the internal

nodes are unable to estimate switching activity (e.g., decoder and

encoder), an assumption of 0.5 for random switching is used. Table 2.8

summarizes capacitance formulas used in the power analysis

methodology [30].

Table 2.8. Capacitance formulas used in power analysis method-

ology [32].

 

Node Capacitance Ecwation

Regfile Wordline Capacitance Cdm(WordlineDriver) +

Cgate(CellAccess) * NumBitlines +

Cmeta. * WordlineLength

Regflle Bitline Capacitance Cd,«(PreCharge) + Cdm(CellAccess)

* NumWordlines + Cmeta. *

BLLength

CAM Tagline Capacitance Cgate(CompareEn) * NumberTags 4-

Cdm(CompareDriver) + Cmm. *

TLLenpth

CAM Matchline Capacitance 2 * Cdm(CompareEn) * TagSize +

CdidMatchPreCharge) +

Cdm(MatchOR) "I” Cmetal * MLLength

ResultBus Capacitance 0.5 * Cmeta. * NumALU * ALUHeight

+ 0.5 * Cmeta. * RegfileHeight
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2.3.2 Array Structures

The array structure power model is parameterized based on the

number of rows (entries), columns (width of each entry), and the number

of read/write ports. These parameters affect the size and number of

decoders, the number of wordlines, and the number of bitlines. The

wordline driver and bitline discharge form the bulk of the power

consumption in an array structure.

Modeling the power consumption of the wordlines and bitlines requires

estimating the total capacitance on both of these lines. The capacitance of

the wordlines includes three main components: diffusion capacitance of

the wordline driver, the product of the gate capacitance of the cell access

transistor and the number of bitlines, and the capacitance of the

wordlines’ metal wire. The capacitance of the bitline is modeled similarly,

where the total capacitance is equal to the diffusion capacitance of the

pre-charge transistor, the product of the diffusion capacitance of the cell

access transistor and the number of wordlines, and the metal capacitance

of the bitline. These capacitance models provide the option of use for

single-ended or double-ended bitlines. It is assumed that register file array

structures use single-ended bitlines and that cache array structures use

double-ended bitlines.

Multiple ports on the array structure have been taken into account for

power consumption in three ways. First, additional ports require an

additional transistor connection which will add more capacitance on the

wordlines. Second, each additional port requires up to two additional

bitlines (each bit and its complement), both of which must pre-

charge/evaluate on every cycle. Finally, as each core cell becomes larger
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it will lead to longer word- and bitlines, thus incurring additional wire

capacflance.

In the power model, certain transistors are automatically sized based

on the model parameters to achieve reasonable delays. For example, the

wordline driver is scaled based on the amount of capacitance on the

wordlines. Longer wordlines require more capacitance to carry a signal.

For other transistors, the sizing is based on the work from Palacharla at.

al. [32] and Wilton et. al. [38].

2.3.3 Content-addressable Memory Structures

The analysis of Content-addressable Memory (CAM) structures is very

similar to that of array structures. However, instead of modeling bitlines

and wordlines, taglines and matchlines are modeled. The number of rows

(number of tags), columns (number of bits per tag to match) and ports on

the CAM are taken into account.

The key sizing parameters in the CAM are: the issue/commit width of

the matchline (number of match or taglines in each core cell); the

instruction window size (CAM’s overall height); and the physical register

tag size which equals log; of instruction window size (CAM’s width). The

CAM’s overall height is each core (RAM) cell multiplied by the instruction

window size. The CAM’s overall width is the number of bits in the physical

register tag, which share a common wide-OR for the final match that

signals when the instruction is ready to issue. The wordlines are used to

write new tag values into the CAM structure.
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2.3.4 Complex Logic Blocks

The complex logic blocks are modeled by the following structures:

instruction selection logic (instruction window), dependency check logic

(register renaming unit), result buses, and the functional units. The

selection logic and dependency check logic is based on the circuit

structures modeled in Palacharla ef. al. [32] and Bishop et. al. [33]. The

power consumption of the result buses are modeled by estimating the

length of the result buses using the same assumptions about functional

unit height made by Palacharla et. al.

Previous work of Borah et. al. [34] and Zimmerman et. al. [35] has

investigated the power consumption of various functional units. Their

results regarding the power numbers are scaled for process and

frequency in order to estimate the power consumption of the functional

units.

2.3.5 Clocking Network

The clocking network of a high performance microprocessor can be

the most significant source of power consumption [30]. Three sources of

clock power consumption are considered: global clock metal lines, global

clock buffers, and clock loading. The global clock metal lines are modeled

as a modified H-tree network in which the global clock signal is routed to

all portions of the chip using equivalent length metal wires and buffers in

order to reduce clock skew. This method is similar to that used for the

Alpha 21264 [36]. The global clock buffers are large transistors that are
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used to drive the clock signals throughout the processor at a faster rate.

The size and number of transistors are estimated similar to the methods

of Fair at. al. [36] and Bowhill et. al. [37]. Explicit and implicit clock loading

is considered. Explicit clock loads are the values of the gate capacitances

of pre-charge transistors and other nodes that are directly connected to

the clock within the units that are modeled. Implicit clock loads include the

load on the clock network due to pipeline registers.

The models described are implemented as a C program using the

Cacti tool [38] as a starting point. A summary of the major hardware

structures and the correlation for the type of model used is given in Table

2.9.

Table 2.9. Common processor hardware structures and the model

used by Wattch.

 

Hardware Structure Model Type
 

Instruction Cache Cache Array (2x bitlines)
 

Wakeup Logic CAM
 

Issue Selection Logic Complex Combinational
 

Instruction Window Array/CAM
 

Branch Predictor Cache Array (2x bitlines)
 

Register File Array (1x bitlines)
 

Translation Lookaside Buffer Array/CAM
 

Load/Store Queue Array/CAM
 

Data Cache Cache Array (2x bitlines)
 

Integer Functional Units Complex Combinational
 

FP Functional Units Complex Combinational
 

Global Clock  Clock
  

2.3.6 Validation of Wattch Simulator

Brooks et. al. [10] presents details on the power models and simulator

36

 



infrastructure required to perform architectural-level power analysis. They

verified the power models against industry circuits and found their results

to be within 10% for low-level capacitance estimates, and within 10-13%

on average for architectural models of tradeoffs between different

structures. Baseline configuration models and the configuration of industry

processors are shown in Table 2.10.

Table 2.10. Configuration for base and industry models.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Parameter Base Alpha Pentium MIPS

INT Instruction Window Size 20 16

FP Instruction Window Size 15 16

MEM Instruction Window Size 16

UOP Instruction Window Size 64 20

INT Physical Register Size 2x80 64

FP Physical Register Size 72 64

UOP Physical Registers Size 32 40

Memory Order Queue Size 8 32 20 8

Number of Inst. Fetched per Cycle 4 4 3 4

Number of Inst. Decoded per Cycle 4 4 6 4

Number of Inst. Issued per Cycle 4 6 3 4

Number of Inst. Committed per Cycle 4 4 3 4

Number of Integer Funct. Units 5 4 4 3

Number FP Funct. Units 3 2 1 3

L1 Dcache Size 64 K 64 K 8 K 8 K

L1 Dcache Associativity 2-way 2-way 2-way 2-way

L1 lcache Size 64 K 64 K 8 K 8 K

L1 lcache Associativity 2-way 2-way 2-way 2-way

DTLB Size (fully assoc.) 128 128 64 64

ITLB Size (fully assoc.) 128 128 32 64

Local History Table 1024x10 1024x10 NA NA

Local Predict 1024x2 1024x3 512x4 512x2

Global History Register 10 12 NA NA

Global Predict 4096x2 4096x2 NA NA

Choice Predict 4096x2 4096x2 NA NA

Feature Size 0.35 um 0.35 um 0.35 um 0.35 um

Vdd 3.3 V 2.2 V 3.3 V 3.3 V

[MHz [ 600 600 200 200
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Comparisons between modeled and reported power breakdowns of

Pentium Pro and Alpha 21264 are shown In Tables 2.11 and 2.12.

Table 2.11. Comparison between modeled and reported total

percentage of power breakdowns for the Pentium Pro [30].

 

 

 

 

 

 

 

 

 

 

     

Hardware Structure Model Intel Data % Difference

Instruction Fetch 21.00% 22.20% 5.41%

Register Alias Table 4.90% 6.30% 22.22%

Reservation Stations 8.90% 7.90% 12.66%

Reorder Buffer 11.90% 11.10% 7.21%

Integer Exec. Unit 14.60% 14.30% 2.10%

Data Cache Unit 11.50% 11.10% 3.60%

lMemory Order Buffer 4.70% 6.30% 25.40%

Floating Point Exec. Unit 8.00% 7.90% 1.27%

Global Clock 10.50% 7.90% 32.91%

Branch Target Buffer 3.80% 4.70% 19.15%
 

Table 2.12. Comparison between modeled and reported total

percentage of power breakdowns for the Alpha 21264 [30].

 

 

 

 

 

 

 

     

Hardware Structure Model Alpha % Difference

21264

Caches 15.30% 16.10% 5.23%

Out-of—order Issue Logic 20.60% 19.30% 6.31%

Memory Management Unit 11.70% 8.60% 26.50%

Floating Point Exec. Unit 11.00% 10.80% 1.82%

Integer Exec. Unit 11.00% 10.80% 1.82%

Total Clock Power 30.40% 34.40% 13.16%
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The limitations of the models of Brooks et. al. [30] are that they do not

necessarily model all of the miscellaneous logic present in real

processors. The models are scaled and not the actual numbers for

process parameters. Also, all of the parameter specifications are not given

for each individual processor, which sometimes makes exact correlation

to ideal processors difficult.
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CHAPTER 3

Overview of Search Algorithms

Search methods are used in many different areas including scientific

computing applications and, in our case specifically, for design

automation. The objective of a search algorithm is to systematically

examine states to find the optimum. The search produces a path from

start state to goal state. The output of a search is a unique solution to the

problem which represents the best solution among those evaluated.

Mathematically, the state space can be represented as a graph G,

which may be defined as a pair (V, E), where V is a set of vertices and E,

the edges, is a set of unordered pairs of elements from V [39]. The

elements of V are denoted v,- and the elements of E are denoted e,-,-, to

represent unordered pairs of vertices {v,-, v,-}. Equivalently, the graph can

be thought of as the search space; the vertices are states and the edges

are connections between states. In the search space, each state is

defined as a set of parameters which are evaluated by the objective

function f(x), where the evaluation of the function is achieved through

computer computation.

Search algorithms may be roughly classified into three groups: global,

global-local, and adaptive [40]. Global search heuristics include random

search and mode-seeking methods. Global-local search heuristics include

hill-climbing and clustering methods. Adaptive search techniques include

single working point methods (e.g., simulated annealing) and converging

set methods (e.g., evolutionary computation). The following sections

provide a general description of each class of search algorithms.
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3.1 Global Search Methods

A global search method is a procedure for constructing a sequence

{xk} of points in X that converges to a point at which the global minimum or

maximum of some function f is attained or approximated. Global search

methods include random search and integer linear programming

algorithms. In a random search, points are sampled uniformly in a given

search space and the best point found is given as an estimate of the

global optimum. This method is seldom used on its own because of its

poor efficiency. However, it has become the basis of more sophisticated

search algorithms that have a higher probability of converging [41].

The integer linear programming (ILP) method is based on the linear

program problem expressed as

minimize {ch: Ax = b, x 2 o, x e 2"}, (3.2)

where x is the vector of variables to be solved for, A is a matrix of

constants, c and b are vectors of constants, and Z" is the set of n-

dimensional integer vectors. The expression ch is called the objective

function and the equations Ax = b are the constraints. A relaxed form

uses the equation Ax s b, where b is an upper bound for Ax. Most

combinatorial and logical restrictions can be modeled through the use of

binary variables. The branch and bound technique is an example of a

model that uses binary variables.
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3.1.1 Branch and Bound Method

The branch and bound technique is an enumeration tree of continuous

linear programs [42]. At the root of this tree is the problem expressed in

equation 3.2 with the requirement that of n-dimensional integer vectors

the set is removed. The solution, x, to this root problem will not have all

integer components. Some non-integer solution component x1 is chosen

and I] is defined to be the integer part of X), I; = Lx,-_|, which infers two sub-

problems. The left-child problem has the additional constraint x,- s I},

whereas in the right-child problem x12 I,- + 1. The branching process can

be carried out recursively, where each of the two new problems will

produce two more problems that will branch on one of the non-integer

components of their solution. Therefore, the enumeration tree is binary.

Examples of the branch and bound technique and its application to design

automation problems are described in the following paragraphs.

In [43], Hwang used the branch and bound technique where all lower

bound options for energy consumption are explored. For each node, an

upper and lower bound of energy was calculated. The most promising

node for a particular level is the one with minimum energy for that level

(lower bound). Each node is annotated with the energy of two partitions

containing the finite state machine with datapath states in each partition.

The lower bound and upper bound for the energy of each node is

calculated, and then the upper bound value is pruned based on lower

bound inequalities. Over a set of experiments, an average of 49.2%

energy reduction was achieved using the branch and bound technique.

This method was compared to simulated annealing, a stochastic

algorithm. The performance of the branch and bound technique was
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slower, but more effective on average by 5% over the simulated annealing

method.

lshihara and Yasuura [44] used ILP to optimize the static voltage

scheduling problem for dynamically variable voltage processors. They

defined the problem as follows: for a given task,- and mode,, find x,-,- which

minimizes energy E and satisfies the time constraint T. The purpose is to

clarify the relation between the variety of variable voltages and their effect

on energy reduction. The results showed that if the number of variable

voltages is increased, the energy consumption is reduced. Another

experiment showed that selecting suitable voltages for applications leads

to drastic energy reduction even if the number of variable voltages is very

small. Both experiments by lshihara and Yasurra used ILP to optimize for

the best combination of variable voltage processors per task based on

power consumed.

3.2 Global-Local Search Methods

Global-local search methods are used for estimating the global

minimum by finding local minima. The search algorithm is an iterative

improvement approach that minimizes the fitness function between sets,

examples of such algorithms include the hill-climbing and greedy method.

Global-local search algorithms consider only the immediate gain to be

made by moving a node.

Certain problems can evolve when using these methods, such as

distinguishing between nodes with equal gain and escaping local optima.

However, iterative improvement is nearly a universal approach, either as
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a post-processing refinement to other methods or as a method in itself for

global search optimization. In the following sections, examples are

presented for these types of methods.

3.2.1 Kernighan-Lin and Fidducia-Mattheyses Method

The Kernighan-Lin (KL) algorithm or min-cut method was designed to

improve two-way partitions [45]. This method usually starts with some

feasible solution that is iteratively perturbed into another feasible solution,

only adopting the perturbation if it improves the cost function. For

example in netlist partitioning, the cost function is typically the number of

nets per cut and a given move has a gain corresponding to the decrease

in cut nets that result from the move. The algorithm generates a

sequence of exchanging moves until every module has been moved

exactly once, and then adopts the move with the highest total gain. The

algorithm terminates when a pass results in zero gain. Since the

introduction of the KL method, the algorithm has been improved so that it

requires less computation and obtains better results [46,47,48]. Figure 3.1

shows the process flow of the Kernighan - Lin and Fiduccia - Mattheyses

(KL-FM) method.
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Figure 3.1. Flowchart for KL-FM partitioning algorithm.

Fiduccia and Mattheyses modified the KL algorithm so that it could

produce results faster and more efficiently [46]. The key difference

between the KL and FM algorithms is that Fiduccia and Mattheyses use a

more complicated data structure that allows a single pass through the

outer loop to be performed in time proportional to the number of edges in

the graph [49]. This difference allows the FM method to achieve a
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significant reduction in runtime with little loss in solution quality. The time

complexity of the KL algorithm is O(nzlog(n)). while that of FM is 0(a),

where n and e are the number of nodes and edges of G, respectively.

3.2.2 Ratio Cut Method

Wei and Cheng proposed the ratio cut method [50], which is a metric

used to locate natural clusters in the circuit and also force the partitions to

be of equal sizes. The ratio cost metric for a two-way partition is defined

as the sum of weights of the edges cut, divided by the sizes of the two

partitions [50]. The size of the partition is equal to the number of nodes

within that partition. The method consists of three major phases:

initialization, iterative shifting, and group swapping. The ratio cut algorithm

partitions a network into small, highly connected groups. These groups

form a reduced network. Finally, the FM algorithm is used to improve the

reduced network.

3.3 Adaptive Search Method

Adaptive methods are stochastic algorithms that involve probabilistic

behavior that is subject to some form of knowledge base. They offer the

flexibility of moving in and out of a local minimum. Adaptive search

techniques include single working point methods (e.g., simulated

annealing) and converging set methods (e.g., evolutionary computation).

There are two widely used algorithms in this class: simulated annealing
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and evolutionary computation including genetic algorithms, genetic

programming, and evolutionary algorithms. The simulated annealing

algorithm takes an existing solution and then makes successive changes

in a series of random moves. Each move is accepted or rejected based

on an energy function calculated for each trial configuration. Evolutionary

computation simulates the biological process of evolution, where a

population of randomly generated candidates evolves toward better

solutions by applying operators that are modeled after the natural

biological selection process. Many application areas, technical and non-

technical, use these algorithms to produce near-optimal solutions. These

methods are described in the following section.

3.3.1 Simulated Annealing

Annealing refers to the process used to form glass, iron, etc, into

some new shape, by allowing them to cool very gradually from high heat.

The goal of the process is to reach the lowest energy state, by moving

from higher energy states to lower ones if the cooling process is

sufficiently slow, naturally settling in some local minimum. Simulated

annealing is a global optimization method that searches between different

local optima (maximum and minimum). Starting from an initial point, the

algorithm takes a step and the objective function is evaluated. Any

downhill step is accepted and the process repeats from this new point. An

uphill step may also be conditionally accepted. This uphill decision is

evaluated by the Metropolis criteria [51] given as
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p = exp (again/temperature). (3.3)

As the optimization process proceeds, the length of the steps decline and

the algorithm closes in on the search space final solution. The metropolis

criteria uses the initial user defined parameters, gain and temperature, to

determine the probability of accepting a value of the objective function

that is higher. Unlike evolutionary methods in which all parameters are

dynamically assigned by the algorithm, the performance of the SA

algorithm depends on user defined parameters. This method was

originally proposed as a means of finding the equilibrium configuration of

a collection of atoms at a given temperature [51]. A flowchart of this

algorithm is shown in Figure 3.3.
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Figure 3.2. Flowchart of the simulated annealing algorithm.

Pincus first noted the relationship between this algorithm and

mathematical minimization [52], but Kirkpatrick et al. [53] proposed it as

the basis of an optimization technique for combinatorial problems [53].

Simulated annealing has a major advantage over group migration

methods as it has the ability to avoid becoming trapped in local minima.
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Sun and Sechen developed a loosely coupled, parallel simulated

annealing algorithm for standard cell placement [54]. The simulated

annealing algorithm runs on a standard network of low-cost workstations

and yields results similar to the serial version of the algorithm but in much

less time. Their parallel algorithm permitted only a small amount of inter-

processor communication and used a dynamic region generation

scheme. They demonstrated that simulated annealing could be run in

parallel, where there was communication between simulations.

Sato’s Simulated Quenching (SQ) method is based on simulated

annealing and employs the “divide and conquer” technique to give better

quality partitions [55]. SQ also has a faster computation time than

simulated annealing. SQ was demonstrated as a placement tool that uses

partitioning methods such as clustering. Sato’s algorithm is based on

sorting inside subgroups, where subgroups are generated by cut-lines

placed with a constant pitch [55]. The pitch value is decreased step by

step from a sufficiently large value to a small value. The pitch value is

analogous to the temperature value in simulated annealing.

Two aspects of the simulated annealing process are areas of active

research. The first is the number of random configurations and the

second is the number of Monte Carlo steps needed at each temperature.

If the temperature is decreased too slowly, computation time is wasted.

However, if the cooling is too rapid, the search may be trapped in a non-

optimal region of search space.
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3.3.2 Evolutionary Computing

Evolutionary computing (EC) is based on observation and computer

simulation of natural processes in the real world, with the main inspiration

stemming from Dawvin’s “Theory of Evolution” [56]. EC applies these

ideas to complex optimization problems and machine learning. The

principles of evolution imply that, when organisms are produced, traits

found in parents are passed on to their offspring. Variations (mutations),

occuring naturally in all species, produce new traits. A process called

natural selection tends to favor individuals best adapted to the

environment. Over long periods of time, variations can accumulate and

produce new species. In natural selection, the fittest survive the longest

and produce more offspring. Characteristics encoded in genes are

transmitted to offspring and tend to propagate into new generations. In

sexual reproduction, the chromosomes of offspring are a mixture of those

belonging to the parents.

The search space is a set of all possible encodings of solutions. One

measure of the complexity of the problem is the size of the search space.

Crossover and mutation implement a pseudo-random walk through the

search space. A walk is random because crossover and mutation are

non-deterministic. A walk is directed in the sense that the algorithm aims

to maximize the quality of solutions using a fitness function. The search

process consists of a local and a global search. The local search is

looking for solutions near existing solutions in the search space, with

crossover as the main operator. The global search looks for solutions with

mutation as the main operator for the global search. Figure 3.3 outlines

the procedure for a simple evolutionary algorithm.

51



     

  

 

Generate

Random

Population

 

Calculate Gain

for each config.

   

I

Breed Population

  

 

   

  

Calculate New Gain

for each config.

   

     

    

Gain End

Criteria  

End Population

Figure 3.3. Flowchart of a simple genetic algorithm.

Research in the field of evolutionary computing (EC) has been

pursued in the areas of structures undergoing optimization or evolution,

reproduction strategy. and genetic operators. Five groups of algorithms
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have evolved from evolutionary computing: evolutionary programming,

evolutionary strategies, classifier systems, genetic algorithms, and genetic

programming. Each algorithm differs in how the problem is approached.

However, they use the same evolutionary idea. From this group of

evolutionary techniques, we chose genetic algorithms as the focus of our

study for reasons explained in the next section. Examples of how genetic

algorithms are used for semiconductor technologies are provided below.

Fei and Jha used a genetic algorithm in addition to a simulated

annealing algorithm to optimize a global system schedule based on

system price, power consumption, area constraint violation and real-time

constraint violation [57]. A GA-SA was used twice in the methodology, first

to allocate cores into an 80C and second to assign tasks to the cores.

The output of the multi-level genetic algorithm is a distributed system of

SoCs. The trade-off between system price and power consumption was

that, as the price increased, the amount of power dissipated decreased.

Martin and Knight used genetic algorithms to optimize simultaneous

scheduling and assignment [58]. The GA searches for the best

combination of architecture and schedule to minimize the desired function

while satisfying the given constraints. Two fields represent each operation.

The first field indicates which architecture to use and the second field

indicates the time slot in which the operation is scheduled. Transistor

count, average power, and peak power were calculated. Peak power

optimization achieved a reduction of 47% to 66%, and 70% reduction was

achieved by mixing operators of different voltages and combining low

power with high speed [58].
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3.4 Comparison of Search Methods

A comparison of methods must be based on empirical rather than

theoretical evaluation. For example, we can apply a probabilistic method

M to a problem P, in a mapping from (M,P) -—> (E,m,q), where E is the

effort applied and q is the probability that some minimum In is reached. If

two methods are applied where the same minimum is achieved then

(M1?) -—> (51.01.91)

(M2,P) —') (EzrmiQZ)'

For this problem, if less effort is required for the first method (E < E2)

and the probability is greater that some minimum is reached (q1 > qz),

then the first method is better than the second method. However, if the

same amount of effort is required for the first method (E1 = E2) but M has

a lower probability that some minimum is reached (q1 < qz), then the

second method may be better than the first. In the second case, neither

algorithm dominates the other because of a change in probability.

Because the results may vary depending on P and the levels of E and q, a

conclusive decision about the superiority of one method over another

requires excessive computations. Furthermore, if m also varies, and one

method obtains a better solution, with much smaller probability and the

same effort, than only by experimentation may superiority be challenged.

For example, Bright [59] chose two techniques gradient search (hill-

climbing) and simulated annealing, which are widely used to solve VLSI

design problems, to compare to GAs. Bright’s designs created by gradient
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search were improved by 30% using a GA tool that optimizes for power

and area. It was discovered that the best design from the GA tool required

an initial design with higher power consumption than the initial design for

the gradient search. By using the gradient search method, such designs

were prevented from surviving during the process, hence localizing the

search space. As for comparing the GA and simulated annealing

techniques, both methods produced design results within the same order-

of-magnitude in optimizing for power consumption. However, the GA

provided flexibility for evaluating a set of solutions for convergence to an

optimal solution, rather than depending on single solutions.
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CHAPTER 4

Overview of Genetic Algorithms

Genetic algorithms (GA) are a part of evolutionary computing and are

especially useful for manipulating large amounts of data. Genetic

algorithms are inspired by Darwin's theory of evolution. Rechenberg [60]

first introduced the idea of evolutionary computing in 1973, and Holland

[61] extended the idea of evolutionary programming in 1975 by

developing GAs. GAs encode a potential solution to a specific problem

on a simple chromosome-like data structure and apply crossover and

mutation operators to these structures to preserve critical information [62].

A genetic algorithm in the case of design automation, randomly selects

a population of designs. Each potential design solution is then evaluated

for “fitness”, which is a measure of relative merit with respect to a defined

criterion. The design solutions are combined using crossover probabilities

(e.g., from a population of 50, solutions are paired to make a new

population of 50). Next, characteristics of a solution are randomly

mutated. This new design solution has characteristics of each parent.

Usually, the “best fit” characteristics of the design tend to be passed on to

the next generation. As a result, each generation of the design builds on

the successes of past generations to approach a desired solution. Genetic

algorithms are usually applied to spaces that are too large to be

exhaustively explored.

56



4.1 Defining Genetic Algorithm Criteria

Certain areas such as solution representation, fitness function,

reproduction operators, and selection criteria must be addressed when

defining the criteria for a genetic algorithm. There are many variations to

the traditional GA operators and components described in this section, all

of which are aimed at improving the efficiency and success of the GA [71].

This chapter serves as an introduction to the fundamental concepts of

GAs.

4.1.1 Solution Representation

In order to implement the processor configuration problem using a GA,

candidate solutions must be encoded into a chromosome-like structure

suitable for manipulation. Traditionally, solutions have been represented

by binary-strings [61]. The individual elements within the chromosome,

such as each 1 or 0, are known as genes. Subsequent research has

developed complex representations such as alphabet-strings [63] and

decision trees [64]. The important aspect is that the representation

encodes the properties of the solution such that they can be fully explored

by the GA.

The choice of chromosome representation is very important if the GA

is to be fully exploited. If an unsuitable choice of chromosome

representation is used, it could place an unnecessary computational strain

on the GA, requiring complex manipulation and decoding for quality

evaluation. This affects the performance of the GA in searching the
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solution space. An unsuitable representation may also prevent the GA

from determining an optimal solution, with the chromosome unable to

represent all possible solutions or not allow certain operations.

4.1.2 Fitness Function

A fitness value for each solution of the population is evaluated rather

than derived from previous information. The fitness is a means of

determining the relative quality of each solution. The quality of a

chromosome is dependent upon the decoding process and the calculation

of its relevant parameters. The fitness is a direct measure of how well the

parameters of the encoded solution satisfies the objective function, where

the objective function is the goal or desired state of the optimization

process.

4.1.3 Reproduction Operators

The reproduction step of the GA selects individuals from the current

generation to produce offspring that will enter the next generation. The

production of offspring involves the modification and combination of the

genes of solutions in the current generation. This is the building block of

the search space, as the next generation will consist of a different set of

chromosomes comprised from sub-blocks of the previous generation. The

chromosomes are modified through the application of genetic operators.

The two most common genetic operators are mutation and crossover.
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Mutation operates on a single chromosome to modify its

characteristics through random manipulation of its genes. An example of

the mutation process is illustrated in Figure 4.1 for a binary-string

chromosome.

1 0 1 O 1 1 0 random mutation of a bit

101 0110 from0to1

Figure 4.1. Example of a mutation operation.

Mutation is a random feature in the genetic process. For example, for

each digit in an individual, a random number R is generated between 0

and 1. If R is smaller than a preset mutation probability, that digit is

replaced by its complement, thus generating a mutation.

This example illustrates the random change of the value of a gene

within the chromosome. The mutation has produced a new chromosome

with characteristics that differ from the parent chromosome. Mutation is

primarily used to introduce diversity into the population and encourage the

GA to explore new areas of the solution space.

Crossover operates on two chromosomes, combining their genetic

material to produce offspring (child) chromosomes. For example, the

simplest form of crossover (one-point crossover) proceeds as follows.

First, the entire population is paired at random to give N/2 sets of potential

parents. Second, pairs of solutions are chosen to crossover with

probability PC. If the generated random number R (between 0 and 1) is

smaller than the preset crossover probability, then two new solutions are
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created by exchanging all the bits following a randomly selected locus on

the strings. Figure 4.2 illustrates the example, where crossover after

position 5 is proposed between solutions.

Parent Child

Chromosomes Chromosomes

Chromosome110100110 10100111

Chromosome211010111 11010110

Figure 4.2. Example of a crossover operation.

A slightly more complex operator, first proposed in Cavicchio [65], is a

two point crossover in which two crossover points are randomly selected

and the substrings between and including those positions are exchanged.

Strings may also be treated as continuous rings. For example in Figure

4.3, if crossover between points 6 and 2 is proposed for strings, then

digits from 6 to 8 are switched first, and digits 1 and 2 are switched last.

Or vice versa, if crossover is between points 2 and 6, the offspring are

from points 1 and 2 switching first, then points 6 through 8 are switched

last.

Parent Child

Chromosomes Chromosomes

Chromosome110100110 11100111

Chromosome211010111 10010110
    

Figure 4.3. Example of two-point crossover.
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Many other crossover methods exist, including multiple point, masked

selection, order-based, splicing of complete tree-subsets [6366.67.68.69].

However, it has been shown that as more substrings are swapped,

performance is degraded. Although it is essential to introduce some

changes in order to make progress, too many alterations make the

probability of destroying the good features of a solution unacceptably

high. An effective GA search requires a balance between exploitation of

good features in existing solutions and exploration or combination of

introducing new features.

Crossover and mutation are usually applied in a GA with probabilities

tailored to suit a specific problem. Crossover applied without an

associated mutation operator may prevent exploration of certain regions

of the solution space. If only crossover is used, it can only combine

information that is already present in the chromosome, which may lead to

a single gene having the same value in all chromosomes. Without a

mutation operation that gene would never be changed, consequently

blocking off a region of the solution space from the search [59].

4.1.4 Selection Schemes

The selection procedure is a key component of the search process.

The evolutionary theory of natural selection is based on the idea of

‘survival of the fittest”, where individuals that are more successful within

their environment have a greater chance of reproducing and propagating

their characteristics to the next generation [56]. Within the context of a

GA, the procedure dictates that individuals that are more successful in

meeting the specified objective will have a higher probability of being
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chosen for reproduction. Thus, better solutions are found by building on

the current best solutions. This guides the search procedure to those

areas within the search space that contain the best solutions.

Since the initial development of GAs, many techniques have been

developed that aim to improve and build on this standard idea

[62.70.71.72]. However, the basic principle behind all of these techniques

is the probabilistic selection of individuals based on their quality. The

Fitness Proportionate Selection (FPS) method is the most commonly used

probabilistic selection technique [59].

The FPS method was introduced by Holland based on his analysis of

the “2-armed-bandit problem” [63,73]. FPS allocates to each individual a

fixed probability of being selected, based upon its fitness relative to the

total fitness of all individuals within the generation. For example, let I) be

the fitness value of individual i and let faverage be the average population

fitness, where

faverage = (1 /N)(Sum(1,N)f,-).

The probability of an individual being selected is

p.- = fi/ (Sum(1.N)f,-).

pi = (1 [M * (fi/ faverage)-

FPS can be implemented with the “roulette wheel algorithm”. A wheel

is constructed with markers corresponding to fitness values. For each

fitness value f,~, the size of the marker (i.e., the proportion of the wheel’s
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circumference) associated with f,, is given by p.. Thus, when the wheel is

spun, the probability of landing on f, is p,. There are two main ways of

simulating the roulette wheel algorithm: vector and cumulative

distribution.

Vector representation begins with a vector v of M elements from {1,

N} that is constructed so that each subsequent i in {1, N} has M‘p,-

entries in v. A random index from {1, M} is selected and individual v(n

is selected. For example, if f1=f2=10, f3=15 and f4=25, then with M=12,

v=(1,1,2,2.3,3,3,4,4,4,4,4). lf i=6, then individual v(6)=3 is selected.

Cumulative distribution representation is where a random real-valued

number r in {0,(Sum(1,N)ij)} is chosen and individual i, such that Sum(1,i-

1)ij- s r > Sum(1,i)fj. Note that by convention Sum(1,0)f,- = 0. Cumulative

distribution is effective, but relatively inefficient. Vector representation is

efficient, but its effectiveness depends on M, (i.e., the value of M

determines the quantization of the p,-’s and thus the accuracy depends on

M).

The overall problem with FPS is that individuals with above-average

fitness tend to have more than one copy in the mating pool, while

individuals with below-average fitness tend not to be copied into the next

generation. This leads to premature convergence and stagnation. Both

problems can be solved using a fitness scaling technique which is

described in Section 4.2. However, the advantage of the FPS roulette

wheel method is that all solutions have some chance of being selected.
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4.1.5 Stopping Criteria

The GA is used to determine the “best” or “ideal” solution to a given

problem, which is the global optimum point in the solution space. While a

GA cannot be guaranteed to find the global optimum, if implemented

correctly it will find a “good” or satisfying solution in a reasonable amount

of time. In this case the stopping criterion is specified in terms of the

number of generations or solution evaluations. The actual number of

generations is usually set very high to increase the likelihood that the GA

has settled on a satisfying point in the solution space.

Assessing the convergence of the population is another technique

used to determine whether a GA has reached a stopping point. For

example, in analyzing every solution in the population, if 95% of the

genes in each chromosome are identical in all solutions, then the GA is

considered to have converged and the search is terminated [72].

4.2 Non-standard Genetic Algorithms

The previous section introduced the concept of a traditional GA,

comprised of standard GA components, which were proposed by Holland

(1972) and his successors. Many researchers using GAs to solve

complex, real-world engineering problems have proposed that, if GAs are

to achieve their full potential in engineering design, it is necessary to

specifically design the GA to suit the problem [70,72,74]. Their work leads

to the development of non-standard GAs, implemented in a standard

genetic framework. The non-standard GA exploits the use of non-standard
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chromosome representation (e.g., non-binary chromosome, alphabet

strings, tree representation. etc), adaptive operator rates, and non-

standard genetic operators. Non-standard genetic operators incorporate

problem-specific techniques to modify the chromosome according to

standard design rules. Incorporation of these rules has been shown to

improve the efficiency and results of the GA-based search technique.

The framework for our non-standard GA is based on the Genetic

Algorithm Optimized for Portability and Parallelism System (GALOPPS)

3.2.4, developed by Goodman [75]. GALOPPS is a distant descendant of

SGA-C, v1.1, with modifications by Earickson, which was based on SGA-

C, by Smith, which was based on SGA (in Pascal), and copyrighted by

Goldberg in 1986 [75]. GALOPPS is a flexible, generic genetic algorithm

that is based on Goldberg’s Simple Genetic Algorithm (SGA). GALOPPS

extends the SGA by including several different methods for generating

solutions via genetic processing. In the following section we describe

some of the techniques used in GALOPPS 3.2.4.

4.2.1 Representation of Non-binary Chromosomes

In GALOPPS 3.2.4, the chromosomes may represent different

alphabet sizes (cardinalities) for different fields. They can be handled

automatically when crossover is applied at field boundaries. Mutations can

occur anywhere within the chromosome never to produce non-permissible

values. An alphabet refers to a field instead of a bit and each alphabet

may have different lengths, meaning different values for a particular

parameter (e.g., cache associativity = {1,2,4,8}). GALOPPS automatically
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decodes the chromosome properly, remaps variable-length fields under

an inversion operation. It transforms migrants into the correct inversion

pattern (and field boundaries) for the receiving subpopulation.

4.2.2 Scaling of Fitness Function

Fitness scaling offers a way to alleviate premature convergence and

stagnation. GALOPPS includes three scaling methods: window scaling,

linear scaling, and sigma truncation. For window scaling, fitness values

are scaled by either subtraction or division so that the worst value is close

to 0 and the best value is close to a certain value, typically 2. Problems

arise when the original maximum is very extreme (super-fit) or when the

original minimum is very extreme (super-unfit).

Linear scaling is where the fitness fis replaced by a scaled fitness 1" =

a*f + b, where a and b are chosen so that the scaled average is the same

as the raw average. The maximum scaled fitness is the number of

expected copies desired for the best individual multiplied by the raw

average fitness. One problem with linear scaling is that the scaled fitness

function may take on negative values if there are a few bad individuals

with fitness much lower than the average fitness and fitness close to the

maximum fitness. One solution is to arbitrarily assign the value 0 to all

negative fitness values. Another solution is to use sigma truncation.

With sigma truncation, the fitness is replaced by the scaled fitness

f, = f" (faverage ‘ C*Sigma)
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where sigma is the population standard deviation, 0 is a reasonable

multiple of sigma (usually 1 s c S 3). Negative results are arbitrarily set to

0. Sigma truncation removes the problem of scaling to values. Truncated

fitness values may also be scaled if desired.

4.2.3 Stochastic Universal Sampling

Stochastic Universal Sampling (SUS) is a selection technique

introduced by Baker [76]. Baker shows that SUS has minimum spread

and zero bias. Bias is an expression for the absolute difference between

the expected and the actual number of individuals. Spread is the set of

possible numbers of individuals that can be selected by a given sampling

strategy. Minimum spread is defined as the smallest spread that allows

zero bias. Baker effectively minimizes the genetic drift caused by

selection. SUS can be visualized as a “wheel of fortune” with n arrows

instead of one, with equal angle distance to each other, n being the

number of individuals in the population.

Non-standard genetic operators incorporate problem-specific

techniques to modify the chromosomes according to standard design

rules. Incorporation of these rules has been shown to improve the

efficiency and results of the GA-based search technique. The framework

for our non-standard GA, GALOPPS, extends the simple genetic

algorithm by including several different methods for generating solutions

via genetic processing.
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CHAPTER 5

Embedded Processor Configuration Methodology

Many embedded processor studies currently focus on issues related to

cache size and organization, their relationship to energy and power

consumption, and datapath width and their effect on performance.

Although points of diminishing return exist, such as decreasing the size of

one parameter. However, the focus of research has shifted to

simultaneously evaluating multiple parameters and their tradeoffs when

optimizing for multiple objectives, namely power and performance.

A common difficulty with optimizing for multiple objectives is the

conflict between objectives when maximizing or minimizing over a given

set of solutions. For example, decreasing cache size reduces power

consumption, but also decreases performance. If the cache is too small,

cache misses may mask the effects of other processor parameters such

as branch mispredictions due to parameter interdependency. Conversely,

increasing the number of functional units may increase performance. but

also will increase power consumption. While searching the design space

for an “ideal” embedded processor configuration, optimizing for two or

more criteria can lead to “non-ideal” solutions. An “ideal” embedded

processor is defined as one with low power consumption and high

performance. Hence, for portable, high-performance embedded

implementations, much more advanced techniques, which are efficient in

ease-of-design and multi-objective decision-making, need to be

developed.
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From a system level, using a programmable embedded processor can

improve designer productivity and intellectual property reuse. A key to the

success of these platforms is that they are heavily parameterized, so that

designers can configure the platforms to the particular application, where

power. performance, and chip area are improved [78]. The configure-and-

execute paradigm proposed by Vahid and Givargis [78] for embedded

processors has actually existed for many years in microcontroller-based

system design [78]. A microcontroller is an earlier form of embedded

processor that has a core processor and peripheral devices (e.g.,

memory, timers and UARTs) on chip and pre-integrated. Similar to an

embedded processor, a microcontroller may be applied to different

classes of devices (e.g., televisions, automobiles, personal digital

assistants, computerized robots), each class having different peripherals.

The parameterizable components of embedded programmable

processors include the functional unit, which can vary in datapath size and

bitvvidth, cache size and organization; the memory unit, which may vary in

number and size of register files; and the interconnections within the

processor data paths [17]. Three steps are used to optimize embedded

system designs based on components that are parametizable: application,

parameter optimization, and new silicon generation. The approach is

outlined in Figure 5.1.
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Figure 5.1. Flowchart of parameterized system design.

Application development begins with an available “reference design”

[77]. This reference design is implemented on a configurable prototype

processor, which is the virtual instruction set architecture. Application

development involves the mapping of the task to the virtual instruction set

architecture. After application development, parameters are optimized for

that particular application based on power, performance, and size

optimization heuristics.
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Parameters may include:

. bus size, address, and data encoding techniques;

0 cache size, associativity, block size/line size, and write-back

techniques;

. datapath parameters relating to specific peripheral cores, like

buffer sizes;

0 resolutions, compression level.

Once the parameters have been optimized, a new chip design is

generated based on the optimized architecture. This is an “ideal” chip,

which is correct on the first pass because of extensive, previously

performed, in-circuit emulation.

Givargis and Vahid [78] used a Pareto-optimal approach to tune for the

specified type of architecture with respect to power and performance. All

configurations are evaluated for power and performance, then sorted in

decreasing order of execution time. An enumerative method of traveling

through the search space is used to eliminate all designs that result in

power consumption above the derived minimum. The problem can

become impractical if the configuration space expands. GAs deal with a

converging set of possible solutions for multi-dimensional problems, which

leads to a set of “good” individuals in a single run of the algorithm.

5.1 Defining Genetic Algorithm Criteria

The target architecture consists of a processor core, L1 cache, and L2

cache, as illustrated in Figure 5.2. The parameters explored during the
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configuration process include the issue rate, reorder buffer size, number

of floating point ALUs, number of floating point multipliers, number of

integer ALUs, number of integer multipliers, load-store queue size, first-

level and second-level cache size, block size, associativity, and bus size.

The mapping of the genome is shown in Figure 5.3. The italicized blocks

represent the specified parameters varied by the GA, and the non-

italicized blocks represent the level of hierarchy in the embedded

 
 

 

 

processor.
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Core - CPU f L2 Memory

L1 Cache
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Figure 5.2. Target architecture for embedded system design.
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Figure 5.3. Genome structure for GA.

For the purpose of this study, the set of experiments include the 16

different parameters, shown in Figure 5.3, with at least four options per

parameter, given in Table 5.1. Exhaustively searching the entire design

space for an optimum using an enumerative process would require

4,294,967,296 different configurations, which could take years to

complete. On the other hand, if different parameter sets were randomly

selected, the impact of each characteristic could have a dynamic effect on

power consumption (e.g., cache size and rate of instructions

implemented). Therefore, an efficient method of search is needed to

optimize the parameter set for a particular objective.
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Table 5.1. Characteristic values for each parameter.

Name Values

L1 number of sets 1 128, , 512, 1

sets

sets

L1 size

size 1 . 3. 1

block size , 16,

L1 associativity 1 {1, 2, 4,

L1 associativity 1 1, 2, 4.

associativity {1. 2, 4, , 16}

“a: Width size from L1 to L2 111.; {32, , 128,

' number ALU(s) 1, 2, 3,

T: integer MULT(s) T 1.2, 3,

Am: point ALU(s) ALL, {1. 2, 3,

111111: of point MUL s) 111111 {1, 2, 3,

:size instruction queue {4,8,1 ,

rel rate implemented TE .8.1 . 
In conjunction with the variable parameters, there is a set of fixed

parameters. Each fixed parameter is listed in a configuration file, as

shown in Figure 5.4, and retrieved during the simulation process.
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-max:inst

-fastfwd

-fetch:mplat

-fetch:speed

-bpred

-bpred:bimod

-bpred:21ev

-bpred:comb

-bpred:ras

-bpred:btb

-decode:width

-issue:inorder

—issue:wrongpath

-commit:width

-ruu:size

-lsq:size

-cache:dlllat

-cache:d121at

-cache:illlat

-cache:il2

il2lat

flush

icompress

-cache:

-cache:

-cache:

-mem:lat

-tlb:itlb

-tlb:dtlb

-tlb:lat

maximum number of inst's to execute

number of insts skipped before timing starts

extra branch mis-prediction latency

speed of front-end of machine relative to

execution core

bimod # branch predictor type

{nottakenltakenlperfectlbimodIZlevlcomb}

2048 # bimodal predictor config (<table size>)

1 1024 8 O # 2-level predictor config (<llsize>

<125ize> <hist_size> <xor>)

1024 # combining predictor config

(<meta_table_size>)

8 # return address stack size

stack)

512 4 # BTB config (<num_sets> <associativity>)

4 # instruction decode B/W (insts/cycle)

false # run pipeline with in-order issue

true # issue instructions down wrong execution

paths

4 # instruction commit B/W (insts/cycle)

l6 # register update unit (RUU) size

8 # load/store queue (LSQ) size

1 # 11 data cache hit latency (in cycles)

6 # 12 data cache hit latency (in cycles)

1 # ll instruction cache hit latency (in cycles)

d12 # 12 instruction cache config, i.e.,

{<config>|d12lnone}

6 # 12 instruction cache hit latency

false # flush caches on system calls

false # convert 64-bit inst addresses to 32-bit

inst equivalents

18 2 # memory access latency (<first_chunk>

<inter_chunk>)

itlb:16:4096:4:l # instruction TLB config,

{<config>|none}

dtlb:32:4096:4:l # data TLB config,

{<config>|none}

30 # inst/data TLB miss latency (in cycles)

l
—
‘
U
J
O
O

#
#
4
#
#

(O for no return

(in cycles)

i.e.,

ieee'

 

Figure 5.4. Fixed parameter values during GA search.

Based on these parameterized characteristics and a particular embedded

application, the search for an “ideal” configuration of an embedded

processor is NP-complete [91].
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5.1.1 Single-Objective Fitness Function

The single-objective fitness assessment is based on an estimate of

power consumed for each configuration. Power models of common

structures present in the embedded processor are used to estimate power

consumed. Maximum power is calculated for the entire processor by

summing power consumed in all datapaths, when all logic is used. Three

conditional clocking schemes are used to estimate average power

consumed. The conditional clocking (CC) scheme turns off devices that

are not used in a particular cycle. CC1 considers a circuit to be 100% on if

it is accessed and 0% if not. CC2 scales the power linearly with usage of

the circuit. CC3 assumes linearly scaled power depending on usage when

accessed, and a minimum of 10% of base power when the structure is not

accessed. In the fitness function, the estimate from the third clocking

scheme (CC3) is used. The fitness function is trained by the GA to

optimize for the maximum. Since minimum power is desired, the inverse

of the power consumed is the determining function for the fitness of a

configuration. After the GA has reached its termination criteria, the best

fitness solution for each generation is copied to an external file and

converted back to actual power estimates.

5.1.2 Encoding and Decoding Algorithm

A look-up table is used for encoding and decoding parameter values.

In GALOPPS, a one-dimensional array of possible values (codes) for
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each parameter is defined as O, 1, 2, 3, etc. The size of the one-

dimensional array is the field size set for each parameter. For example,

field_sizes[i], where O _<_ i < number of fields, is equal to the number of

different codes possible in the ith field (i.e., codes will vary from 0 to

fie|d_sizes[i] — 1). These codes are represented in binary format (i.e.,

0000, 0001, 0010, n), as shown in Figure 5.5. The chromosome

length is 50 bits for the 16 fields. The fields only contain legal values for

reproduction operation and selection.

 

S|L1[codes] e {128, 256, 512, 1K, 2K, 4K, 8K, 16K, 32K}

field_size[i] e {0,1,2,3,4,5,6,7,8}

 , binary_field[n] e {0000,0001,0010,0011,0100,0101,0110,0111,1000}   

Figure 5.5. Translation of chromosome to integer array.

5.1.3 Reproduction Operators

The two most common genetic operators are mutation and crossover.

Mutation operates on a single chromosome to modify its characteristics

through random manipulation of its genes. Crossover operates on two

chromosomes, combining their genetic material to produce offspring

(child) chromosomes. Mutation is good for global searches and crossover

is good for local searches.
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Mutation is done on a per-field basis, in the same way as for a binary

representation where a bit, is a field. When a field is to be mutated, its

value is changed uniformly at random to a different legal value. For our

experiments the mutation rate was set to 0.014 per field (1.4%). The

number of fields helped to determine the mutation rate. The goal was to

achieve a 20% change in the population. Equation 5.1 illustrates how the

mutation rate was determined:

Pm = 1_ ( a(1/fields)) (5.1)

Pm=1-mewm)

Pm = 0.01378

where or is the percentage of chromosomes not mutated and fields is the

number of non-binary fields per chromosome.

One point crossover for non-binary representation is performed only at

the boundaries between fields. This restriction prevents generation of any

illegal codes and preserves the fields as the basic elements of building

blocks. The crossover probability controls how often the crossover

operator is applied. The higher the crossover rate, the more quickly new

candidate solutions are introduced into the population. If the crossover

probability is too high, highly fit individuals are discarded faster than

selection can produce improvements. On the other hand, if the crossover

rate is too low, the search might stagnate for lack of exploration. For our

experiments we chose the crossover rate to be 30%.
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5.1.4 Selection Criteria

SUS, introduced by Baker in 1987, is a random selection technique

with zero bias and minimum spread [76]. It is visualized as a pie chart,

with lines of equal distance from each other, where n sections is the

number of individuals in the population. The spinning wheel is placed on

top of a pie chart that represents the percentage fitness value of each

solution. The wheel is spun and the winners or selected individuals are

those that have a line or pointer that stop in their space. In this process,

an individual’s selection probability is based solely on the initial spin and

the magnitude of its expected value.

In order to increase the selection probability of “less fit” individuals,

their fitness can be scaled within GALOPPS. Scaling of fitness values is

implemented by assessing a scale factor. For example, if the scale factor

is 1.5, and a set of fitness values is {0.5, 0.2, 0.1, 0.2}, with a mean of

0.25, the mean is subtracted from the fitness value. Then each new

fitness value is divided by 2, which is derived from the ratio of the mean to

the scaling factor, then added to the new fitness value for a final fitness

{0.375, 0.225, 0.175, 0.225}. Fitness scaling offers a way to alleviate

premature convergence.

5.2 Evolutionary Search Criteria

GAs can be applied effectively to configurable embedded processors

in an effort to search for a desired optimum. In order to gain a better

understanding of how the GA can search the design space effectively, a
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series of experiments were performed to validate the search criteria (i.e.,

population size, number of trials, diversity of population) for the GA. The

experiments used estimated values with a non-specified targeted

workload for power consumption per configuration, using the design

space of the 16 configurable parameters. A single-point crossover rate of

30% and mutation rate of 1.4% were used for the reproduction operators.

The selection scheme for new chromosomes was SUS using linear

scaling of fitness values. The experiments were performed for various

population sizes, initial random populations and stopping criteria. The first

experiment tested population sizes varying, from 50 to 100 with the

stopping criterion of 50 generations. The second experiment tested

various initial random populations and their final converging set of

solutions. The third experiment tested number of trials (evaluations)

versus population Size for convergence of solution. This section illustrates

the tradeoffs for an effective evolutionary search of an optimal

configurable processor design.

5.2.1 Population Size

Population size can have an effect on testing time and the converging

set of solutions. An experiment was conducted to determine whether a

smaller population size can achieve similar results to a larger population

size. The population was incremented by 10 from 50 to 100 to analyze the

change in power consumption over a given population size. A population

size of 70 yielded the best result with a minimal power consumption of

39.97 watts (Figure 5.6). A summary of population size effects and a list of

the best configurations are provided in Table 5.2 and Table 5.3.
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The population of 50 had a faster converging rate and also terminated

the GA process before other population sizes. If the termination criteria or

number of generations were extended, then the population size of 50 may

have a higher probability of finding a better solution.

Table 5.2. Analysis of population experiment.

 

[Size of Population 50 60 70 80 90 100

'Number of Trials 2017 2384 2801 3233 3609 3999

% Change in Power 21.31 21.58 24.60 18.30 18.76 23.21

 

 

        
 

Table 5.2 shows a comparison among population sizes. The range of

power consumed from the initial configuration to the best final

configuration varied from 18% to 25%. The population size of 70 had a

greater diversity of fitness from its original configuration to its best

configuration. If the number of trials were expanded for the population of

50, the diversity would also be greater. Also, from Table 5.2, it is noted

that a population of 100 took twice as many trials as a population of 50.

The third experiment will address the issue of convergence and number of

trials needed in a GA run.

Table 5.3 shows the final configurations for each population size. From

this table, a relationship can be established for some of the parameters,

such as commonalities or inconsistencies.
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Table 5.3. “Best” configuration of a GA run for each population

 

 

 

 

 

  
 

 

 

   
 

  
 

 

 

 

    

size.

Parameter pop_50 Pop_60 pop_70 pop_80 pop_90 pop_100

Sou 128 128 128 128 128 128

BDU 16 8 8 8 16 8

Ana 2 1 1 2 1 1

Sm 128 128 256 128 256 128

BIL1 16 1 32 1 8 64 16 32

AlL1 2 T 1 1 1 1 1

SULZ 1024 4096 1024 2048 2048 1024

Bug 8 32 8 8 16 8

AUL2 1 1 1 1 4 4

BWU 1.2 64 32 1 256 64 32 32

NMULT 2 T 2 4 3 4

FPALU 1 1 1 1 1 1 1

FPMULT 2 I 3 1 4 4

05.25 32 8 1 32 " 32 32 4

IRATE 4 4 1 4 4 4 4

Power (watts) 41 05531409634139.9699 42.099 41.9374 40.4216 1    
 

In the different GA runs, with a termination criterion of 50 generations,

the final configurations were not all the same. The configuration with the

lowest power consumption was created from a population size of 70. The

optimal configuration for maximum power after several generations of

different population sizes converged to smaller numbers for specified

parameters. The important reason for running this test was to determine

which population size would generate the best solution within a short

period of time. However, with only one random initial population, the

search exploration space is limited, thus not giving a true representation

of the solution search space.
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5.2.2 Random Initial Populations

In GALOPPS, a random seed can be set to initiate a certain population

in the design space. Each randomly seeded population can represent

different areas of the search space. By using different random seeds, a

confidence level of search quality can be satisfied. The following

experiment launches five random initially seeded populations with varying

sizes (50, 60, 70, 80, 90, 100). Figure 5.7 illustrates the best fitness for

each random seeded population.
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One misconception some researchers have is that one run (i.e., GA

exploration from start population to end population) is good enough to

establish a reasonable solution. In this experiment, after running the GA

for each randomly seeded population, each population displayed varying

fitness results. If only a single GA run was explored, the search space

could be limited to a particular area.

On average, the population size of 50 had the lowest fitness for power,

as shown in Table 5.4.

Table 5.4. Fitness of each random seeded population.

 

 

 

 

 

 

 

        

[Population 50 60 70 so 90 100

1 44.73 51.57 44.88 44.45 41.83 40.26

2 45.56 43.76 47.70 42.64 48.57 43.21

3 42.64 42.98 42.02 46.80 44.37 47.12

4 43.96 41.80 46.08 40.41 40.67 49.79

'5 41.58 44.17 43.25 45.10 45.01 42.82

Average 43.69 44.85 44.79 43.88 44.09 44.64

% Difference 0.00% 2.66% 2.50% 0.43% 0.91% 2.16% 
 

The percent difference for the best average fitness was within a 3%

margin. Initial randomly seeded populations randomly select starting

populations to generate a formal structure of the design search space.

This is similar to selecting a point from a two-dimensional graph in the

design search space. The point represents a unique solution. By randomly

sampling five or more initial populations, there is a probability of selecting

a unique solution from one or all quadrants. A closeness of optimum can

be estimated using randomly seeded populations.
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5.2.3 Termination Criteria

The GA is used to find the “best" or “ideal” solution, which if

implemented correctly, will find a “good” or satisfactory solution in a

reasonable amount of time. Assessing the convergence of the population

is another technique used to determine whether a GA has reached a

stopping point. For example, the third experiment examines the size of a

population versus the number of trials to determine whether a smaller

population would converge faster than a larger population when optimizing

for power consumption of a configurable processor.

In the previous experiment, a population size of 50 had a lower “best”

fitness average, which serves as the smaller population size. To choose

the larger population size, a series of GA runs were done for population

sizes of 100, 200, and 400. With a population size of 400 and a stopping

criterion of 50 generations, there were a total of 9243 evaluations. The

minimum amount of power computed was 44.75 watts, for 5 initial random

populations in 13 hours. Since computation time is an important factor,

the large population size was set at 400. In order to compare the two

population sizes, 50 and 400, the termination criterion for the population

size of 50 was set to 400 generations, which would generate at least 9000

trials. The best fitness for each generation is shown in Figure 5.8.
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A population size of 50 generated convergence with half as many trials

as the population of 400, as shown in Tables 5.5 and 5.6. In Table 5.5,

each random seed population is listed with its best fitness for its initial

population, converging value for power consumption, percent difference,

and number of trials. The number of trials represents the evaluations

needed to attain a calculated power consumed. The converging value for

all randomly seeded populations was 39.37 watts. The configurations,

however, continued to fluctuate until the end of the maximum number of

generations. Also noted from Table 5.5 is the percent difference, where

the highest percentage generated a faster convergence.

Table 5.5. Population size of 50 for 400 generations.

 

 

 

 

 
 

      

[Random Seed 1 2 3 4 5 Avera e

[fiererence Power 70.15 55.92 66.63 62.04 45.97 60.14

Ending Power 39.37 39.37 39.37 39.37 39.37 39.37

°/o Difference 78.17 42.03 69.23 57.56 16.76 52.75

Number ofTrials 3010 5920 4402 6889 4513 4947   

In Table 5.6, the number of trials is the maximum number of

evaluations per GA run. None of the ending power consumption values

were similar, and the percent difference between reference power and

ending power were smaller in comparison to the population size of 50. For

the larger population to converge, the maximum number of generations

would need to be extended, thus increasing the amount of computation

time. For the larger population to reach the minimum convergence of a

population of 50, more trials are also needed. In addition, changing the
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mutation rate can generate more diversity in the population, thus

increasing the rate of convergence.

Table 5.6. Population size of 400 for 50 generations.

 

 

 

 

  

[Random Seed 1 2 3 4 5 Average!

Reference Power 46.97 55.14 51.27 47.38 45.97 49.35

[Ending Power 43.17 44.77 44.76 44.48 42.75 43.98

% Difference 8.81 23.16 14.55 6.54 7.53 12.19

[NumberofTrials 9222 9188 9243 9161 9234 9210      
 

These experiments showed that with a smaller population size, an

estimated optimum can be reached at a faster rate. Also, random initial

populations can inform the user of probable convergence. The

experiments conducted serve as the basis for understanding the genetic

search technique, and will be used as a foundation for further evaluation

and testing of a configurable embedded processor.
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CHAPTER 6

Multi-Objective Search Optimization

The optimization process presented in Chapter 5 attempts to optimize

for a single objective, the estimated power consumption of an embedded

processor, for a particular application. However, practical embedded

processor design involves the simultaneous optimization of a number of

objectives such as power, speed, area, cost, etc.

Within the framework of a GA, multiple parameters are integrated into

the optimization process, where all objectives are simultaneously

optimized. In other words, no single objective is concentrated on at the

expense of others. The simultaneous optimization of all objectives will

produce a single solution. One technique for implementing multiple

objective optimization is the use of a weighted fitness function [79,80]

given as

Total_Fitness = or*f(x1) + B*f(x2) + + c*f(x,,). (6.1)

Equation 6.1 demonstrates that a typical implementation of a weighted

function is the sum of all the individual fitness values for each of the

functions, from 1 to n different objectives. The variables a, B, and so on,

are used to weight the individual contribution of each parameter to the

overall fitness. The use of a weighted fitness function combines the

discrete fitness values for each function into a scalar fitness value. The

scalar fitness value is used to assess the overall quality of the solution.
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One of the main problems with such a technique is the assignment of

the weighted objectives. These weighted objectives significantly affect the

performance of the system in determining the globally Optimal result [81].

The weights effectively place a priority on the optimization of a particular

objective in relation to the optimization of other objectives. Thus,

assigning the correct priority to the multiple objective functions is required

to enable the optimization process to produce a globally searched

optimum solution.

In practical engineering problems, prioritization of multiple objectives is

a complex and difficult process. Such problems are often characterized by

a number of competing objectives where improvements in one objective

overshadow the cost of degrading the other objectives. Furthermore, the

tradeoffs between competing objectives are often non-linear. For

example, consider the bi-objective problem of designing an embedded

processor for minimum power and maximum performance. The two

objectives are in competition with each other, as many low power design

techniques use smaller cache sizes to decrease power. In a practical

design process, the embedded processor may be targeted for a certain

rate of speed. An increase in cache size may result in a large increase in

cost and decrease in fitness, whereas small increases will have little effect

on cost and overall fitness. Therefore, the effect on performance is

dependent upon the actual fitness value. A single weight to assign a

specific priority to the performance objective would not accurately reflect

the total fitness for all solutions.

If the non-linear nature of the objectives can be overcome, there is still

the problem of assigning a relative priority to each function for all cases,

(e.g., is performance more important than power, and if so, how much
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more?). The example illustrates the difficulty of combining distinct

parameters into a single fitness evaluation to generate a single globally

optimal solution. An alternative to a weighted fitness function is to use the

GA to explore the solution space and present a range of alternative non-

dominated solutions (NDS) that are each optimal for a single function

[81,82]. This removes the need to prioritize parameters during the

optimization process. The experienced designer can then analyze the

alternative solutions to select the solution that best satisfies the specified

requirements.

During the optimization process, the GA evaluates many alternative

solutions, which can be useful information when presenting the chosen

solution. This information can be used to illustrate tradeoffs between

different parameters in the optimization problem. The tradeoff between

competing objectives is usually presented as a Pareto-optimal front also

known as Pareto-surface, Pareto-points, and Pareto-optimal set [63]. The

use of Pareto-points collected throughout the GA optimization process

has been previously shown to be beneficial to the low power design

process [58.83.84].

6.1 Pareto-Optimal Front

A Pareto-optimal front is a set of NOS, where each point on the

Pareto-surface has no better values for those objectives. Figure 6.1

shows an example of a Pareto-optimal front for a two-dimensional

problem.
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The chart illustrates a typical engineering design example where two

competing objectives (Parameter X and Y) must be minimized. Each

solution is illustrated on the chart as a square. The NDS points, shaded

squares, are known as Pareto-optimal. The Pareto-optimal front is a curve

joining the set of Pareto-points. These points mark the boundary between

the range of feasible and non-feasible solutions, illustrating the trade-off

between each function.

The set of NOS does not present an obvious single optimum solution.

Selection of the best solution is left to the design architect, dependent

upon the priority placed on each objective. One of the main advantages of

the Pareto-chart is that it shows the effect of varying the importance of a

function, as opposed to presenting the architect with a single point

solution. For example, the chart may show that a small variation in X,

previously set as a constraint, may allow such a large reduction in Y as to

make the design feasible. The Pareto-chart also allows the designer to

use expert knowledge of the problem to select an optimum solution.

The range of alternative solutions may be more useful than a single

point for the next stage of the design and implementation process. The

presentation of design alternatives within a CAD simulation tool is

regarded as essential by most designers [85]. The presentation of a set of

optimal solutions enables the designer to gain a greater understanding of

the low power solution space and the power characteristics of the problem

to be optimized.
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6.2 Pareto-Optimal Front Generation in GALOPPS

A Pareto-point is defined as that which has no lower value in both the

X and Y axes for performance and power. The identification of Pareto-

points is split into a two stage process, where all designs with the lowest Y

value for every generated X value and vice versa are first identified. A

weighted value is assigned and the data for X and Y are identified. Then,

the next stage steps through the set of generated points, and sorts for

NDS in ascending X values. This process is illustrated in Figure 6.2.
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Executing both stages produces a set of N08, the power-performance

Pareto-optimal front. After each generation is created the power and

performance of each design is analyzed to create a list of points (i.e.,

power and performance estimation explored during the simulation

process). After the GA has determined the lowest power solution and

lowest performance (CPI) solution, stage 2 is executed to determine

which of these points are Pareto-optimal.

6.3 Power and Performance Trade-off for Benchmark Designs

This section illustrates the power and performance trade-offs, through

the use of Pareto-optimal analysis, for benchmark designs. The Pareto-

charts were generated using the techniques described in Section 6.2.

Each Pareto-chart is presented in a separate section for that design. In

each chart a solid line denotes the Pareto-optimal front. The Pareto-

surface is presented as a straight line instead of a curve joining the

Pareto-points. The solutions represent discrete points in the search

space, where if the point were joined by a curve, it may imply that there is

a range of solutions between two points when no feasible solution exist

between those points.

Each chart illustrates the unique points in the solution space examined

while searching for an optimum solution for that design. Each ‘X’ denotes

a unique power-performance point for a design. It should be noted that

each power-performance point does not necessarily correspond to a

single design configuration. A number of designs can have the same

power-performance value, as illustrated in Figure 6.3. Therefore, the
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number of ‘X’ points in the graph may not be representative of the total

number of designs analyzed throughout the search process.
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6.4 Test Configurations and Benchmarks

In this section, a comparison of published maximum power numbers

for three processors is presented. These three processors are from MIPS,

Wattch, and a study done at the University of Pennsylvania [10,86]. The

configuration for the MIPS processor is taken from the R10000

specifications [10]. The Wattch configuration is a baseline specification for

the SimpleScalar processor [10]. The study done at the University of

Pennsylvania demonstrated different tradeoffs between configurations for

improved IPC [86]. The baseline configuration is used to represent

academic standards.
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Table 6.1. Test configurations for power-performance tradeoffs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

R10000 UPENN Wattch

fetchziquize 8 4 4

* etch:mplat 1 3 3

‘fetchzspeed 1 1 1

Bpred Bimod bimod Bimod

bpred:bimod 2048 128 2048

bpred:2lev 1:1024:8:0 2:1024:6:0 ‘ 1:1024:8:0

bpred:comb 1024 1024 1024

bpredzras 8 8 8

bpredzbtb 512 4 256 4 512 4

decodezwidth 4 4 4

issue:width 4 4 4

issuezinorder FALSE TRUE FALSE

commltzwidth 4 4 4

Ruuzsize 64 64 16

qusize 16 16 8

cache:dl1 dl1:512:32:2:l dl1:512:32:2:f dl1:128:32:4:l

cachezdlllat 1 1 1

cachezdlz UI2:16384:64:2:| ul2:2048:64:4:l ul2:1024:64:4:l

cache:dl2lat 8 1 6

cachezill il1:512:32:2:l il1:512:32:2:f il1:512:32:1:l

cachezilllat 1 1 1

cachezil2 dl2 dl2 dl2

cacheziIZIat 8 6 6

memzlat 40 2 32 1 18 2

memzwidth 16 8 8

lbzitlb itlb:16:4096:4:l itlb:1:4096:16:l Itlb:16:4096:4:l

le:dtlb dtlb:16:4096:4:| dtlb:1:4096:32:| dtlb:32:4096:4:|

lezlat 30 20 30

Reszialu 2 2 4

Reszimult 1 1 1

Reszmemport 2 1 2

Res:fpalu 2 1 4

Res:fpmult 1 1 1
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The experiments used estimated values with a targeted workload

(test-math.c and 126.gcc) for power consumption and cycles per

instruction (CPI) per configuration. Three objective fitness functions,

(power, performance, 50/50 weighted mix) were used to guide the GA

during the search process. Five initial randomly seeded populations were

submitted to the GA for diverse exploration of the search space. The

population size for each run was 50, with termination set at a maximum of

50 generations. A single-point crossover rate of 30%, and mutation rate of

1.4% was used for reproduction operators. The selection scheme for new

chromosomes was SUS using linear scaling of fitness values.

To illustrate the effectiveness of the GA and the algorithms presented,

the performance of the prototype version of the GA embedded

configuration simulation tool is demonstrated with a set of benchmark

example designs. The two benchmarks chosen for this application are

test-math.c and 126.gcc (001), where cc1 is part of an industry standard

benchmark suite. The test-math.c program illustrates the use of

trigonometric functions and tests these functions to verify validity of

calculations. The 001 benchmark is a GNU C compiler. As discussed

previously in Chapter 4, the C program is translated and mapped to a

virtual instruction set architecture, then applied to a specified configuration

of parameters to simulate the actual processor. The benchmark designs

presented are used both to illustrate the effectiveness of the simulation

tool and to investigate improvements and additions to the overall toolset.

Tables 6.2 and 6.3 lists the results obtained for the example processor

configurations and the configurations derived using multi-objective GA

optimization.

103



Table 6.2. Comparison results from Math Benchmark.

 

 

 

 

      

Percent GA R10000 PENN Wattch Multi-

Difference of Optimization Object

Initial GA config. GA

Power -125 16.32 42.07 37.28 21.99

CPI 12.56 -28.69 -100.23 -43.14 1.72

Total -112.44 -12.36 -58.16 -5.85 23.72
 

Table 6.3. Comparison results from GNU C Compiler Benchmark.

 

 

 

 

      

Percent GA R10000 PENN Wattch Multi—

Difference of Optimization Object

Initial GA config. GA

Power 34.71 14.19 43.94 30.09 49.17

CPI 9.99 -26.69 -112.16 -14.67 0.42

Total 44.69 -12.50 -68.23 15.42 49.59
 

 

 

Tables 6.2 and 6.3 shows the results obtained from the test

configurations and the configurations derived in our methodology. Since

performance is the leading objective for these examples, the original

configuration is taken from the best solution in the first run of the GA, for

performance optimization. The results are expressed as a percentage of

the original designs’ power consumption and CPI performance. The

percentage illustrates the improvement in power consumption and

performance derived through the multi-objective GA optimization tool. The

following sections discuss the results obtained with each of the

benchmark designs.
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6.4.1 Math Benchmark

The test-math.c benchmark illustrates the use of trigonometric

functions and tests these functions to verify validity of calculations from

the simulated processor. The industry example, MIPS R10K simulated

processor showed an improvement of 16.32% in power consumption, but

a 28.69% decline in CPI performance in comparison to the original

configuration. In comparison with the other specified processor

configurations, the R10K trades power consumption for higher

performance. The Wattch example showed an improvement of 37.28% in

power consumption, but a 43.14% decline in CPI performance. The

Wattch example considers both power and performance for an overall

better processor. The configuration used in a study from the University of

Pennsylvania showed lower performance and more power consumption in

comparison to the other examples.

The results from the GA runs, with a population size of 50, generated a

processor configuration with a better CPI performance and, in a separate

run, with less power consumption, as shown in Table 6.4 and 6.5. Table

6.4 lists the results from a GA run that optimized for CPI performance.

There were four initial randomly seeded populations. The maximum CPI

for the best configured processor in the initial run was 0.72. It took 1173

trials, 20 computational hours, to reach a minimum of 0.63 CPI. Random

seeded population #4 had the largest percent difference from original best

configuration to final best configuration, and the percent difference

between final best configuration were within 3%.
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Table 6.4. GA results for CPI performance optimization.

 

 

 

 

 

 

   

Seed 1 Seed 2 Seed 3 Seed 4

rig. CPI 0.72 0.67 0.66 0.72

End CPI 0.65 0.64 0.65 0.63

# Trials 1155 1147 1163 1173

% Diff Orig. 11.20% 4.89% 0.54% 14.36%

°/o Diff Best 1.83% 0.31% 2.90% 0.00%    
 

Table 6.5 lists the results from a GA run that optimized for power

consumption. There were five initial randomly seeded populations. The

maximum power calculated for the best configured processor in the initial

run was 6.89 watts. The minimum power consumed for a configured

processor was 3.84 watts, with 69.87% difference from the original best

configuration. In this GA run, there is 10% difference from the lowest to

highest power consumed for a final processor configuration. This

difference is somewhat higher than expected and, with more trials, the

difference can possibly be reduced thus closely approaching an estimated

optimal configuration for all seeded populations.
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Table 6.5. GA results for power consumption optimization.

 

 

 

 

 

 

      

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Orig. Power 6.89 4.82 6.49 6.28 4.80

End Power 4.25 3.90 3.82 3.84 3.84

# Trials 1140 1149 1143 1149 1155

% Diff Orig. 62.13% 23.57% 69.87% 63.40% 25.06%

°/o Diff Best 10.15°/o 2.12°/o 0.00°/o 0.67°/o 0.58°/o
 

However, for each GA run the other objective suffered. With

performance being the main objective in the case of the math benchmark,

the calculated power consumed showed a decline of 125% in comparison

to the original best configuration. The multi-objective weighted Pareto-

chart illustrated a better tradeoff of power-performance in comparison with

other processor configurations, as shown in Table 6.2. The actual Pareto-

chart for all of the combined GA runs is shown in Figure 6.4.
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6.4.2 GNU C Benchmark

The 126.gcc benchmark illustrates the compilation of GNU C compiler.

This benchmark belongs to a set of tests produced by the Standard

Performance Evaluation Corporation (SPEC) [87]. These tests were

developed to provide comparable measures of performance for compute-

intensive workloads on different computer systems. The industry example,

MIPS R10K processor showed an improvement of 14.19% in power

consumption, but a 26.69% decline in CPI performance in comparison to

the original configuration. In comparison with the other specified

processor configurations, the R10K trades power consumption for higher

performance. The Wattch example showed an improvement of 30.09% in

power consumption, but a 14.67% decline in CPI performance. The

Wattch example considers both power and performance for an overall

better processor. Again, the configuration used in a study from the

University of Pennsylvania showed lower performance and more power

consumption in comparison to the other examples.

The results from the GA runs, with a population size of 50 generated a

processor configuration with a better CPI performance and in a separate

run with less power consumption, as shown in Table 6.6 and 6.7. Table

6.6 lists the results from a GA run that optimized for CPI performance.

There were four initial randomly seeded populations. The maximum CPI

for the best configured processor in the initial run was 0.76. It took 1121

trials, 20 computational hours, to reach a minimum of 0.68 CPI. Random

seeded population #4 had the largest percent difference from original best

configuration to final best configuration, and the percent difference

between final best configuration were less than 0.5%.
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Table 6.6. GA results for CPI performance optimization.

 

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
 

 

 

Orig. CPI 0.69 0.74 0.71 0.76 0.70

rEnd CPI 0.68 0.68 0.68 0.68 0.68

Trials 1148 1153 1121 1141 1143
 

°/o Diff Orig. 1.06% 7.69% 3.36% 11.06% 3.03%

% Diff Best 0.00% 0.29% 0.00% 0.03% 0.00%

 

       
 

Table 6.7 lists the results from a GA run that optimized for power

consumption. There were five initial randomly seeded populations. The

maximum power calculated for the best configured processor in the initial

run was 8.30 watts. The minimum power consumed for a configured

processor was 3.82 watts, with 64.37% difference from the original best

configuration. In this GA run, there is 7% difference from the lowest to

highest power consumed for a final processor configuration. This

difference is somewhat higher than expected and, with more trials, the

difference can possibly be reduced thus closely approaching an estimated

optimal configuration for all seeded populations.
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Table 6.7. GA results for power consumption optimization.

 

 

 

 

 

 

      

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Orig. Power 8.30 4.82 7.73 6.28 4.80

rEnd Power 3.88 3.88 4.12 3.82 3.92

# Trials 1120 1155 1158 1143 1185

0/o Diff Orig. 113.97% 24.37% 87.68% 64.37% 22.41%

% Diff Best 1.52% 1.40% 7.28% 0.00% 2.61%
 

However, for each GA run the other objective suffered. With

performance being the main objective in the case of the GNU C compiler

benchmark, both were improved, with performance 10% and the

calculated power consumed was 30% better than the original best

configuration. Using the multi-objective search, we were able to select a

configuration with improved power consumption of 49.17%, sacrificing

performance with a gain of 1%. The total in power-performance savings

was ~50% compared to single-objective optimization total of ~45%, as

shown in Table 6.3. The actual Pareto-chart for all of the combined GA

runs is shown in Figure 6.5.
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Optimization problems inherently involve optimizing objectives subject

to various specifications and constraints. In a single objective problem, the

goal is to find the “best” solution that maximizes or minimizes the

objective, while in a multi-objective optimization problem the goal is to

arrive at a set of Pareto-optimal designs. The useful feature of Pareto-

optimal designs is that they are diverse, where they provide a wide choice

for the decision-maker. Classical optimization methods are in general not

efficient for multi-objective problems as they often lead to a single solution

instead of a set of final solutions. Multiple runs of the same method

cannot guarantee a different point on the Pareto-front each time and

some methods cannot handle problems with multiple optimal solutions.

Evolutionary methods maintain a set of solutions as a population during its

course of search and thus can result naturally in a set of Pareto-optimal

solutions in a single run. From the research presented, a widely differing

set of Pareto-optimal solutions can be generated using weighted strategy

within the evolutionary algorithm, therefore enlarging the population of

designs to provide a wide choice for the designer.

6.5 Sensitivity Analysis of Parameters

Sensitivity analysis attempts to understand the uncertainties of various

input parameters used in the optimization of power and performance.

Sensitivity refers to a model’s response to parameter changes. Pruning is

the procedure where inputs are removed based on their contribution or

sensitivity during the search. A sensitivity analysis method was used to

determine the relative contribution of each parameter and then eliminated
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or replaced non-significant parameter values with the best value obtained

from the search. In this case, the best value is the value at the end of a

GA run for a particular parameter.

For example, each solution includes 16 changeable parameters in the

configuration of an embedded processor, with a minimum of four options

per parameter, we would be able to obtain 416 z 8.15 X 109 configurations.

If two parameters were taken away and made constant, the search space

reduces to 2.68 X 108, thus the search is refined and more concentration

can be placed on other parameters. Each parameter is evaluated for

sensitivity by counting the number of mutations of the “best fit” individual

in a given run, and least sensitive parameters are replaced by constant

values.

The same setup of experiments was used in the new GA model. The

experiment used estimated values with a targeted workload of test-math.c

for power consumption and cycles per instruction (CPI) per configuration.

Three objective fitness functions, (power, performance, 50/50 weighted

mix) were used to guide the GA during the search process. Five initial

random seeded populations were submitted to the GA for diverse

exploration of search space. The population size for each run was 50, with

termination set at a maximum of 50 generations. A single-point crossover

rate of 30%, and mutation rate of 1.4% was used for reproduction

operators. The selection scheme for new chromosomes was SUS using

linear scaling of fitness values. From the sensitivity analysis, certain

parameters that were determined to be less sensitive (e.g., data cache

size, integer and floating point ALUs) used final values from the original

GA run in the new GA model, and were not included in the exploration of

the search space.
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For example, Figure 6.6 illustrates a normalized view of parameter

sensitivity. Three different GA runs were plotted: performance, power, and

a 50/50 weighted mix of performance-power. For performance, NMULT,

the number of integer multiplier units hasthe lowest switching activity

during the GA run. The next lowest parameters are NALU and FPALU.

For the new model, the final values for those parameters are selected

from the configuration with best performance and are used as constants.

115



 

I
P
e
r
f
o
r
m
a
n
c
e

I
P
o
w
e
r

D
5
0
/
5
0
M
i
x

  
 

 
 

 
 

 

116

 Fi
g
u
r
e
6
.
6
.
P
a
r
a
m
e
t
e
r

s
e
n
s
i
t
i
v
i
t
y
o
f
G
A

f
o
r
p
e
r
f
o
r
m
a
n
c
e
,
p
o
w
e
r
,
a
n
d
w
e
i
g
h
t
e
d

m
i
x
.



Once a new GA model is generated for each objective, the models are

then tested and compared to the original run to see if there is any change

in final fitness evaluations or variation in parameter sensitivity. From these

experiments, the new model produced similar results to the original set of

experiments. The next step is to further reduce the design space by

reapplying the sensitivity analysis. The continuation and evaluation of the

sensitivity algorithm is an interesting topic for further research and this

idea is expanded on in Chapter 7.
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CHAPTER 7

Conclusions and Scope of Future Work

This chapter details the main conclusions of the research presented in

this thesis. Section 7.1 highlights the primary contributions of this work to

the fields of portable embedded system architecture design. Section 7.2

gives an overview of the developed system. Section 7.3 discusses the

results obtained in the context of power-performance design implications.

Section 7.4 presents a summary of the conclusions derived from this

work. Finally, Section 7.5 discusses future directions and developments

for work initiated in this thesis.

7.1 Contributions

The primary, original contribution of this thesis is the development of a

novel power-performance design tool based around a core GA search and

optimization technique. The tool targets the implementation of portable

embedded applications. The summary of power and performance

estimation techniques at high levels of the design process, Chapter 2, was

used to illustrate that targeting two objectives offers greater benefits than

just a single objective. Thus, the developed tool targets power and

performance reduction at the architectural configuration level.

System level optimization required the development of a non-standard

chromosome representation for the GA. The chromosome does not use

standard binary or alphabet chromosome representation, but incorporates
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the features of a configurable processor. The flexible nature of the

chromosome ensures that it can represent a wide range of solutions of

varying size and complexity, both initial designs and those generated

throughout the search and exploration process. The ability of the GA to

provide trade-off information to the design engineer was also presented,

illustrating the advantages of using a GA for high-level design and

architecture trade-off exploration.

7.2 System Implementation

The design tool was implemented in the C programming language,

where the software was developed and tested using a Unix workstation

running under the Solaris operating system. The design tool is comprised

of the SimpleScalar performance simulator developed by Burger et. al. at

the University of Wisconsin [21], Wattch power simulator developed at

Princeton by Brooks et. al. [10], and GALOPPS developed at Michigan

State University by Goodman et. al [75]. Additional files developed for

simulation and GA evaluation include the application file, application input

file, reading, stripping, and data sorting.

7.3 Discussion

The comparative analysis of original and optimized designs was

performed with the use of high-level power and performance estimation

strategies. The comparison of simulators is a complex problem, and
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typically inaccurate due to the large number of parameters. SimpleScalar

provides a toolbox of simulation components as well as several

simulators. Each simulator interprets executables compiled by gcc version

2.6.3 for a virtual instruction set. SimpleScalar optimizes performance and

flexibility by reducing design time and maximizing design exploration. The

most complicated and detailed simulator used in the SimpleScalar toolset

is sim-outorder, which supports out-of-order execution, with a five-stage

pipeline. SimpleScalar outputs CPI, IPC and instruction count, along with

other processor statistics. Wattch is an architecture simulation tool built

for analyzing and optimizing processor power consumption. Brooks et. al.

quantified power consumption of all major units of the processor and

parameterized them. Northern et. al. integrated these parameters into the

GA, where they were able to perform comparative evaluations between

different solutions during the search process [19]. Chapter 5 illustrated the

prototype version of the simulation system on two benchmarks. The

results illustrate that the system level tool was able to reduce power and

increase performance.

GA research has provided a source of techniques that can be used to

improve the efficiency of a search and the results obtained. Unfortunately,

no guiding metric is available to select techniques for any particular

application. Therefore Chapter 5 investigates techniques with the aim of

improving GA performance for this application.

In Chapter 6, a technique was presented to exploit the multi-solution

nature of the GA search mechanism to provide trade-off information to the

system designer. The information, presented in the form of Pareto-charts,

illustrates the highest performance solutions across the power range. This

enables the designer to select the solution that best meets the
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implementation on the minimization of a single parameter. In addition, the

Pareto-charts are useful in examining the nature of the solution space

illustrating the large effect that performance increases can have on power

consumption. This tool is the first system-level perforrnance-power

optimization tool to present weighted Pareto trade-off information as part

of the optimization process, exploiting the inherent characteristics of the

GA search technique.

7.4 Conclusions

The main contributions of this work are the following:

1. Methodology for exploring embedded system architectures

[Chapter 5]: Issues related to processor architecture and

organization, are addressed in an evolutionary approach for

programming processors. An application of a simple genetic

algorithm in the exploration of a configurable processor is used

in the process. With this methodology we are able to optimize

embedded processors for practical applications to a much

larger extent [19].

2. Multi-objective analysis for configuring embedded system

architectures [Chapter 6]: An efficient multi-objective genetic

algorithm that generates a set of alternative solutions and

indicates the best power/performance tradeoff was developed.

These alternative solutions are expressed as non-dominated
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points (i.e., a solution is dominant over another only if it has

superior performance in all criteria).

3. Sensitivity analysis for embedded system optimization [Chapter

6]: Based on experimentation with practical applications, we

have determined a heuristic for training the genetic algorithm to

better represent the configuration problem. The genetic

algorithm replaces the less sensitive parameter feature with

their average [88].

7.5 Future Work

On the technology side, the problems of accurate and fast high-level

power estimation have been discussed. Further refinements to the power

analysis module, such as the consideration of capacitance

characterization for a particular device technology could improve the

accuracy of the analysis.

The application of standard genetic operators, during the search

process, could result in some invalid designs with incorrect functionality.

Rather than implement these corrupt designs, which increases

computation time and reduce the efficiency of the search technique,

problem-specific architecture techniques should be incorporated into the

GA. This would enable the GA to search the design space more

effectively.

The current system employs a sensitivity algorithm that reduces the

design space by pruning non-significant parameters. This algorithm can
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further be improved by analyzing the linkage between parameters and

their effect on the evaluation values.

The Pareto-chart uses the data produced during the GA search and

optimization process. This could be further refined by incorporating Multi-

Objective GA (MOGA) techniques such as niching and fitness sharing

[90]. Such techniques can improve the ability of the GA to fully explore the

range of available trade-offs.

The GA has been compared with other search techniques that target

optimization of combinational problems. There are many other techniques

such as Tabu Seatch, ILP, simulated annealing, hill-climbing, etc. The

development of combined techniques with the GA as the core search

algorithm could provide a set of routines for the implementation of

alternative search and optimization techniques.

Finally, in terms of evaluation of the tool, the actual fabrication of the

devices designed with the methodology developed in this thesis will

enable practical examination of the power reductions and the associated

implications for power, performance, and functionality.
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