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ABSTRACT

MEASUREMENT INVARIANCE OF A SUMMATIVE ACHIEVEMENT ASSESSMENT
OVER TIME: IS STATUS REALLY READY FOR GROWTH?

By

Steven Guy Viger
The current study investigates the phenomenon of measurement invariance by examining the
construct stability of a summative mathematics achievement instrument over time gleaned from
an existing data set. In doing so, not only is the general question of measurement invariance of
the particular instrument addressed, but also in the context of growth studies. The onus of the
study as well as the results are presented in light of the current political context of large scale K-
12 assessment and the shifting of emphasis from status to growth. As the reader will discover,
great pressure is placed on results not necessarily intended to serve as the metric required by

policy. The results and implications are framed in both measurement and practical contexts.
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Chapter 1: Introduction

In standards based assessments, such as a State Educational Agency’s (SEA) summative
K-12 achievement test, items are indicators of content standards that as a whole, are used as a
mechanism to place students on a construct (or constructs) underlying continuum. Further, when
scores are reported they are often transformed to the desired reporting scale. While these metrics
vary widely, all are able to maintain students’ relative standing to others as well as to criterion
referenced cut-scores.

The author contends that it is extremely difficult to truly assess student growth as the
students are changing cognitively, physically, and emotionally as a function of their development
in ways that are not often measured, are difficult to measure, or in the least we have no direct
data to link to. At the same time, the instruments are often changing as the students proceed with
their schooling due to a constantly changing set of content standards and performance standards.
Consequently, the interaction of persons and items that forms the foundation of modern scaling
is modeled in the presence of often shifting sets of items and persons with naturally changing
expectations or criteria.

Taking more of a purist approach suggests looking at what can and cannot be under our
control as we seek to evaluate construct stability. It seems reasonable that as we are not able to
control the changes of the people over time we can see how they change over time by holding
constant the instrument with its intended underlying construct(s). To link back to the concept of
internal structure, by allowing time to pass and hence for the students to develop by holding the
actual instrument constant, also affords the opportunity to see how what is intended to be
measured may or may not change over time. The results of such a factorial/structure evidence

analysis can certainly inform whether or not changes in scores over time on a constant



instrument are the function of maturation and/or a change in underlying construct (possibly
represented by changes in the pattern of inter-item correlations on the instrument). Factor
analysis is one such analytical vehicle to use that will provide useful information in making such
decisions.

In the current study, there is an underlying scale purported to measure a specific intended
construct. The scale is made up of multiple items (or subscales, or multi-item parcels). In factor
analytic terms, the items serve as indicators of the trait or factor in a common factor model. The
author makes use of this scale in samples from distinct populations: the original sample and the
three samples in which later data were collected. For any such use of scale scores, there is a
critical assumption that the scale is measuring the same trait in all of the groups. If that
assumption holds, then comparisons and analyses of those scores are acceptable and yield
meaningful interpretations. But if that assumption is not true, then such comparisons and
analyses do not yield meaningful results. When constructs shift across grades, such as when
mathematics assessments move from testing arithmetic skills in third grade to testing pre-algebra
and geometry skills in later grades, the growth model results may lead to imprecise longitudinal
interpretations (Reckase 2004; Martineau 20006).

To this end, this study leverages confirmatory factor analysis techniques as well as the
literature around the concept of measurement invariance to examine the factorial stability of a
mathematics achievement test given to a sample of students one instructional year following the
intended time of testing, two years after the intended time of testing and three years after the
intended time of testing to determine to what degree measurement invariance over this cross-
section of students based on grade remains the same. To the extent that the structure holds over

time, this supports the ability to glean similarly interpreted growth data by use of a parallel form



of an assessment in a pre-test/post-test paradigm for growth. To the extent that the structure does
not hold over time, this suggests an unintended relationship of other variables to the construct
being measured if the paradigm is a simple gains (pre-test/post-test) type of approach. That is to
say, that the development and everything occurring in the passage of time that differentiates the
cross-sections of students, is also related to the achievement which would invalidate the
instrument for the intended use in a gain score approach as it no longer measures the same
construct and is not able to be scaled together in a meaningful way. Or at least, as scaled (likely
horizontally), the intended inferences would not be supported.
The current study will address the following research questions within a measurement
invariance paradigm driven by factor analytic strategies.
Research Questions
1. Related to the original Fall 2009 administration and applied across groups:
a. Does the Rasch model fit the data?
b. Do the data fit the linear confirmatory model implied by the blueprint (content
strands) for the test?
c. Does one of the models in a. and b. fit significantly better than the other
model?
2. Are the measurement models posited in Question 1 invariant to additional years of
instruction?
a. Do the measurement models (unidimensional and multidimensional) exhibit
configural invariance across groups such that both groups associate the same

subsets of items with the same constructs?



b. Do the measurement models (unidimensional and multidimensional) exhibit
metric invariance across groups, indicating that overall, the strength of the
relationships between items and their underlying constructs are the same for
both groups?

c. Do the measurement models (unidimensional and multidimensional) hold to
the property of strict invariance across groups, suggesting that factor patterns,
loadings, intercepts and residual variances are equal across groups?

d. Does the comparative fit of both the unidimensional and multidimensional
change across groups?

The next chapter will present both a review of the literature that speaks more to the
motivation for the current study as well as delving into literature around the particular method
and measurement paradigm explored. Taken as a whole, the notion of invariance or measurement
stability over time speaks directly to the validity of inferences one can support. As such, the way

in which a study such as this fits into validity arguments will be discussed.



Chapter 2: Literature and Policy Review

In this chapter, a brief introduction to validity evidence and the support of inferences will
be provided to serve as a framework from which the criticality of this study, and others like it,
can be deduced when considered in tandem with broad sweeping K-12 assessment policies. Put
differently, the concept of validity is presented first to present the context of the evaluation and is
followed by a review of policy and statutory changes brought into place which were created
independently of the research literature and in some cases independent of AERA/NCME/APA
standards. Once that context has been presented, a review of the literature pertinent to the study
of measurement invariance as well as the confirmatory factor analysis strategy used to
investigate the measurement invariance phenomenon will be provided.

A Paradigm for the Discussion of Validity Evidence

Generally speaking, validity refers to “the degree to which evidence and theory support
the interpretations of test scores entailed by the proposed uses of tests.” (Messick, 1989, 1994,
1995). In practical terms, validity can be used to describe how well one can legitimately trust the
results of a test as interpreted for a specific purpose. In the world of operational psychometrics, it
is the “specific purpose” portion of that definition that tends to vary from location to location,
assessment to assessment...proposed use to proposed use. It logically follows that validity is a
property of inferences, not instruments. As a result, validity must be established for each
intended interpretation. It is because of this philosophical framework, which the author endorses,
that it also becomes problematic to think of an instrument as valid or not. Validity is not a
property of an instrument, it is a property of the inference one makes from the data produced by
the instrument (Kane, 2006). As a result, each intended use must be supported by an

accumulation of evidence suggesting that the instrument, and scaling/scoring/reporting



mechanism, is valid for that intended use and subsequent inferences made as the result. Shepard
(1997) argues that intended effects and likely side effects are clearly within the responsibility of
the test developer. Furthermore, persistent unanticipated effects are also the responsibility of the
test developer. Moss (1998) suggests greater responsibility for the test developer and argues that
considerations of test consequences should encompass the anticipated uses of test scores. In other
words, test developers are obligated to attempt to maximize positive consequences and minimize
negative consequences. Further, test developers should consider the consequences of testing in
general rather than the immediate consequences of using scores from a specific test. For
example, Moss argues that testing is reactive with test takers and test users. The administration
of a test in a school changes the school, whether information from scores are intentionally used
or ignored. How they are used, is likely driven more by policy then by proper measurement and
psychometric considerations. As already alluded to, it is the responsibility of the test developer to
be proactive in considering the immediate intended uses but also perhaps the more forward
thinking unintended uses and/or consequences.

Policy Changes as an Influence on the Validity Argument

A November, 2005 announcement by the United States Department of Education (USED,
2005) encouraged states to propose pilot programs for growth-based accountability models for
use in the 2005-2006 and 2006—-2007 school years. Seven requirements for the pilot programs
were given, with the first three viewed largely as alignment elements and the last four considered
foundational elements. The alignment elements were as follows:
1. The accountability model must ensure that all students are proficient by 2013—14 and set
annual goals to ensure that the achievement gap is closing for all groups of students.

2. The accountability model must not set expectations for annual achievement based upon



student background and school characteristics.

3. The accountability model must hold schools accountable for student achievement in

reading/language arts and mathematics.
The foundational elements covered:

4. The accountability model must ensure that all students in the tested grades are included in
the assessment and accountability system. Schools and districts must be held accountable
for the performance of student subgroups. The accountability model includes all schools
and districts.

5. The state’s assessment system, the basis for the accountability model, must receive
approval through the NCLB (No Child Left Behind) peer review process for the 2005—
2006 school year. In addition, the full NCLB assessment system in grades 3—8 and in
high school in reading/language arts and mathematics must have been in place for two
testing cycles.

6. The accountability model and related state data system must track student progress.

7. The accountability model must include student participation rates in the state assessment
system and student achievement on an additional academic indicator.

Following review, the USED proposal review team published a document summarizing
cross-cutting issues that influenced their decisions to approve or deny states’ proposals (USED,
2006). In particular, the guidance document indicated that states shall: (a) incorporate available
years of existing achievement data, instead of relying on only two years of data; (b) align growth
timeframes with school grade configuration and district enrollment; (c) make growth projections
for all students, not just those below proficient; (d) hold schools accountable for the same

subgroups as under the status model; () not use wide confidence intervals; (f) not reset growth



targets each year and (g) not average scores between proficient and non-proficient students.
Although these issues were noted as influential in the peer review group’s decisions, not all
proposals approved through the growth model pilot peer review process met all of these
conditions (CCSSO Accountability Systems and Reporting Working Group, 2009).

Figuring out a paradigm to address all of those issues is challenging at best and each state
faces their own unique data idiosyncrasies. Approaches proposed varied from simple pre-
test/post-test designs to elaborate vertical scaling designs, student growth percentiles and other
projection methods and regression-based approaches as well as standards-based transition tables
(Castellanos and Ho, 2012). All of these have strengths and weaknesses some of which take a
toll monetarily and on the human resource side in that some require testing above and beyond the
current status measures.

The findings of the CCSSO working group also suggest that oversight over these practices is
not necessarily as tight as it could be and if this somewhat loose approach trickles down to state
agencies, who are naturally reactionary to such policy changes and initiatives, then there might
be many assumptions being made that could potentially go unchecked and lead to distortions in
interpretations of the results down the road.

There is also a parallel push to make assessments more instructionally useful and relevant so
that the content specifications that feed both the curriculum and assessment paths can be in-sync.
The consequences of test score use take on increasing importance in the current era in which
educators are attempting to leverage the information in test scores to improve student learning
(Perie, Marion & Gong, 2007). Since then, states have come to realize that the proficiency
requirements of 2013-2014 are not likely to be realized and have submitted waiver applications

to absolve themselves of those requirements but with the caveat that while the proficiency



markers might be able to be reset or relaxed, an enhanced focus on growth must take place that
gives credit to all students, not just those bordering the proficiency marker.

As aresult, it should not come as a surprise that growth modeling is a huge topic right
now in the psychometric and educational measurement literature and is occupying much of the
reworking of ESEA and waiver applications. Compared with the original uses and purposes of
test scores laid out in the NCLB of 2001, the amount of utility and information attempting to be
gleaned from a measure intended to measure proficiency is enormous.

While some may argue that anticipating the intended uses is not the sole responsibility of
the test developer (Reckase, 1998), the CCSSO working group pointed out the obvious that the
burden does trickle down to the State agencies who are the responsible party for the content of
the assessment. This is important because common growth definitions include the necessity of at
least two substantively and statistically comparable measures of status to deduce anything
meaningful from the change or difference in measures over time. Therefore, the idea of assuming
a stable construct, without actually confirming that assumption, has the potential for serious
implications if problems are present that invalidate the assumptions around the assessments and
the use of the scores.

The use of transition tables based on horizontally scaled, yet with underlying vertically
articulated performance standards, offer an alternative way to assess whether or not students are
on track towards standards based proficiency. Unfortunately, since the construct is assumed to
not be stable over time, the underlying measures are not useful in determining why a student is
no longer (or is now) proficient. The former case is likely to be the target of intervention or

instruction while the latter is useful in helping in determining ‘what works’.



A stable construct measured from indicators from a common domain can naturally lead to
a range of outcomes that are comparable. Therefore, when changes over time are noted, it is
actually feasible to drill into the measure a bit to determine where the differences occurred.
However, before going down that path it is important that the proper housekeeping has occurred
with respect to the measurements. First and foremost, we need a way of ensuring that we are
measuring the same thing, or a stable construct, over time before we make inferences over time.
This becomes an issue of measurement invariance over time.

Measurement Invariance

Mellenburgh (1989), Meredith (1993), and Meredith and Millsap (1992) provided a
statistical definition of measurement invariance (MI) in which an observed score is said to be
measurement invariant if a person’s probability of an observed score does not depend on his/her
group membership, conditional on the true score. That is, respondents from different groups, but
with the same true score, will have the same observed score. Or, given a person’s true score,
knowing a person’s group membership does not alter the person’s probability of getting a
specific observed score. (Wu, Li, and Zhumbo, 2006). As such, measurement invariance is a
rather blanket term that is used to refer to several different phenomenon. From a mechanical
standpoint, measurement invariance can refer to the invariance of factor loadings, intercepts, or
errors (Meredith, 1993). Unfortunately, in most large scale assessments the concept of invariance
is much more of an assumption than it is a quality of measurement to be empirically investigated.

As comparability and bridging studies emerge due to the shifting of assessment
modalities from paper/pencil to a digital environment and status measures and interim
assessments (purposed as learning tools and feedback mechanisms) are used in the development

of proxy measures of growth, the assumptions of invariance over subgroups becomes an
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important issue that can become an assumption rather than empirical evidence. As mentioned, a
popular methodology is to use factor analytic methods to determine whether or not structures
hold across groups. Confirmatory factor analysis is usually preferred because clearly the purpose
of an instrument is to measure something and we really should know what we wish to measure
before the administration. How we define that something is not always clear nor is the construct
and hence is not easily articulated. Psychological batteries are often developed using factor
analysis paradigms applied over multiple responses and potential indicators of an underlying
construct. The factor analytic strategies can be used for the purpose of variable reduction and
clarification to get at the most salient indicators of the hypothesized constructs.

Factor Analytic Strategies to Determining Measurement Invariance

A common paradigm to investigate measurement invariance is in the context of factor
analysis with applications of both exploratory factor analysis (EFA) and confirmatory factor
analysis (CFA) often seen in the literature. Factor analysis can inform score validity as well as to
help understand the theoretical nature of constructs (Thompson, 2009). A major use is then in the
development of the operational construct and the operational representativeness of the theoretical
constructs (Gorsuch, 1983). Taking a more exploratory approach lends itself well to helping to
understand the theoretical nature of the construct in relation to the data. Similarly, Muthen and
Muthen (2009) suggest that EFA can be used to explore the dimensionality of a measurement
instrument by determining the smallest number of interpretable factors needed to explain the

correlation matrix among a set of observed, or measured, variables.

As was previously alluded to, there are two discrete classes of factor analysis techniques,
exploratory and confirmatory approaches (Thompson, 2009). EFA approaches are from the

family of analytic techniques attributed to Spearman (1904) and are typically applied when the
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researcher has little or no a priori expectations regarding either the number or nature of the latent
variables or factors underlying a measurement instrument. Although it is typical when there is a
strong hypothesis concerning the structure of the measurement to use a CFA approach, there is
no requirement to declare that model in EFA as the analysis does not require, nor allow for, these
expectations to enter into the calculations. This is not entirely true though as some programs
require that you specify the number of factors and by specifying a given rotation method one is
allowing (or not) the underlying factors to be correlated. However, if permitted, EFA programs
will often extract as many factors as there are indicators. It is then up to the analyst to perform
rotations and seek guidance in the interpreting the factors before deciding what the model

actually demonstrated.

Of course, a major distinction is that with the CFA approach the researcher has already
declared the number of factors as well as the relationships between the observed indicators and
the underlying factors. Commonly referenced to Joreskog (1971), CFA models require that the
researcher provide specific direction with regards to the number of latent variables/factors, the
relationships of the measured variables (i.e. items) to those latent variables, and the degree to
which the latent variables are correlated. Put simply, researchers without a theory regarding the
underlying structure of an instrument cannot use CFA techniques as they have nothing to
confirm (the big ‘C’ in confirmatory factor analysis). However, it doesn’t preclude researchers
with theories from resorting to exploratory techniques should the theories not pan out as
intended. Such a practice could lead to capitalizing on chance in that all possible combinations
could potentially be worked out until the best fitting model is brought to light. These concerns
are valid in that the rotations come up with infinite solutions that account for the same

variance/covariance matrix yet can differ greatly in interpretation. As a result, one’s ability to
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interpret the construct depends not only on a strong understanding of the content (or access to
someone who has that!) but also on their point of view on the space occupied by the factor
solutions. With so many possible loading patterns, many possibilities will be seen as propitious
but nothing speaks to whether or not the model is ‘correct’ as there is no comparison in EFA.
CFA has that power in that not only is there model fit indices based on absolute criteria but also

those that are based on comparative fit.

Factor interpretation is a difficult and somewhat subjective endeavor. In the context of a
principal component analyses or orthogonally rotated factor analysis solutions, the goal is to
determine a set of factors where the loadings are strong for some indicators and near zero for the
rest, explicitly disallowing the presence of cross loadings. The strict requirement of zero cross-
loadings in CFA has come under scrutiny because this requirement often does not fit the data
well and has leads to a tendency to rely on the extensive use of model modification indices to
find a well-fitting model (Asparhouv & Muthen, 2012). Browne (2001) suggests that in such
cases, searching for a well-fitting measurement model may be better carried out by EFA in that
all of the possible models are simultaneously tested rather than those specified by the researcher
and subsequently tweaked using univariate modification indices which give projections of model
fit if variables are removed from the analysis. While it is true that an inherent weakness of
exploratory approaches is that they tend to capitalize on chance in creating factors based
sometimes on the weakest of correlations that are considered large due to sample size, really the
danger lies in putting too much faith in factors that, regardless of rotation methods, often leaves

factors difficult to interpret substantively (Thompson, 2009).

In the CFA framework proposed models may not be supported by much empirical

evidence that would back-up their selection in the first place; that is their interpretation related
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back to the original theory may be equally difficult to interpret in relations to the theoretical
model and empirical research questions. Furthermore, there is no direct index of which is the
“correct model” and in many instances one could come up with a model of good fit, perhaps
better than already published research, which is of little interpretive value and more importantly
fails to serve as content evidence within the validity argument for use of the scores as status

and/or growth measures.

With this said, carefully designed assessments often adhere to a strict assessment
blueprint which is driven heavily by grade level content standards or curriculum standards. As
such, there is a pre-determined structure to the measurement instrument that is implied by the test
design and table of specifications. When such structures are imposed on the data, confirmatory
factor analysis (CFA) is the form of the factor analytical model that is most appropriate. In
invoking this strategy, the covariation among manifest indicators is examined in order to confirm
the hypothesized underlying latent constructs, as specified in advance by the researcher and
supported substantively by the literature. CFA is a theory driven technique in which the
researcher specifies (1) the number of factors and their inter-correlation, (2) which items load on
which factor and (3) whether errors are correlated. Statistical tests can then be conducted to
determine whether the data confirm the theoretical model; thus the model is thought of as
confirmatory (Bollen, 1989). A powerful aspect of CFA, leveraged in the context of this study,
is that a researcher is able to simultaneously conduct multiple group analyses across time or
samples, in order to evaluate measurement invariance/equivalence across those groups.

Issues of MI are relevant in longitudinal research and growth studies. When a scale is
administered over repeated occasions to the same sample of people or cross sectionally, the

question of MI involves the issue of whether the scale is measuring the same construct at
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different occasions. In traditional validity studies, it is common practice to assume that as
students mature cognitively, their scores on a given instrument should increase as a function of
age. That difference in mean scores is definitely of interest, but even the finding that scores do
significantly increase as a function of age (grade level in the present study) still does not mean
that the construct is the same and is reflected the same in that underlying scale score. Any
discussion of growth based on a repeated measure or parallel forms paradigm, in the absence of a
vertical scale, should be done with caution as to not infer too much. Whatever growth, or lack of,
does occur is certainly attributable to multiple factors. Many of them lack good measurement or
data. So, approaching the validity argument from the aspect of structural or factorial validity is
another way to get at the appropriateness of the inference before it is made.

A central principle of MI is that measures across groups are considered to be on the same
scale if relationships between the indicators and the trait are the same across groups. This
statement can be translated into factor analytic terms: Given multiple items that make up a scale,
if the loadings for those items on the single underlying factor are the same across groups, then
measurement invariance is supported. When framed in these factor analytic terms, this property
is called factorial invariance, and represents one approach to the study of MI. The various
aspects of MI can be investigated using confirmatory factor analysis models. As will be seen,
these models can be supplemented with a model for structured means so as to allow for the study
of group differences in means on latent variables. That is, growth can be studies once invariance
(or the degree of invariance) can be assessed.

In the context of using CFA or EFA to evaluate the measurement qualities of an

instrument, the item level data is really the data with which we start. Therefore, it is important to
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start by specifying the data model. The data model here (Equation 1) is one in which nonzero
means on the measured and latent variables are assumed:
xX=1,+A,&+6

Equation 1

where 7, represents a vector of intercept terms for the x measured variables, Ay is the factor
loading matrix, & is the vector of latent variables and & is the vector of error of measurement
terms for the x measured variables. Further, k is defined as the vector of means on the latent
variables. The following covariance model (equation 2) can be derived from equation 1 and
expresses the population variances and covariances of the measured variables as a function of the
parameters in Ay @ and @5 which are parameters in the matrix of factor loadings, the
variance/covariance matrix of the latent variables, and the variance/covariance matrix of error
terms respectively.

Yux = Ay PA; + 05

Equation 2

The mean structure model can also be derived (equation 3) which expresses the population
means of the measured variables as a function of the vector of intercept terms, the factor loadings
and the vector of means on the latent variables.

P = Ty + Axk

Equation 3

Overall, the full model for means and covariances has five parameter matrices: Ax @ 7y, K and Os.
A model is specified by designating fixed, free, and constrained parameters in these 5 matrices.

This model can be fit to data (sample covariance matrix, S, and sample mean vector, X ) by
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obtaining estimates of the parameters such that the resulting implied population covariance
matrix and mean vector (£ and fi respectively) are as similar as possible to their sample
counterparts. In fact, a critical aspect of model fit is the degree to which the implied and
observed are one and the same. Equations 2 and 3 are easily generalizable to multiple groups.
For instance, the covariance structure is generalized to equation 4.
Zy(gc) — A}(Cg) ¢(g)/1;c(g) + @ég)

Equation 4

Similarly, the mean structure is generalized in equation 5.
u}(cg) — T}(Cg) + A}({Q)K(g)

Equation 5
Where, g represents the gth of G populations. The model is specified in terms of the parameter
matrices for each group, possibly including equality constraints on selected parameters across
groups. The model is fit to the multiple samples simultaneously and in a deliberate order as more
and more constraints are placed on the multiple group models.

The Standard Invariance Model Testing Sequence

While numerous theoretical formulations for measurement invariance have already been
posited in this text, this study concerns itself primarily with levels of invariance that tap the
psychometric properties of the measures. Little (1997) refers to these degrees of measurement
invariance as Category 1, which subsumes the common taxonomy of configural, metric and strict
invariance most frequently found in the MI literature (e.g. Horn & McArdle, 1992; Meredith,
1993).

The notion of MI usually is raised with reference to a single scale and the question of

whether it measures the same trait in different groups. This question can be studied using the
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multi-sample CFA model, usually with structured means. In the simple MI case, there would be
only one factor, and the indicators of that factor would be the scale items (or subscales, parcels,
etc.). However, the matrix representation of the models shows that the concepts and procedures
apply equally in the case of multiple implied factors (latent variables). The multi-sample CFA
model with structured means can be used to investigate MI and to test for group differences in
factor/latent variable means. This is achieved by testing a sequence of models, beginning with an
unconstrained model and progressively introducing equality constraints on parameters. In doing
so, it is preferred that the sequence be determined a priori. The following subsections discuss this
progression in detail.

Configural Invariance

Configural (Horn, McArdle and Mason, 1983), Weak (Meredith, 1993) or pattern
invariance (Millsap, 1997), is considered the lowest or weakest level of measurement invariance
that can be obtained. This type of invariance refers to the pattern of salient (non-zero) and non-
salient (zero or near zero) loadings which define the structure of a measurement instrument.
Configural invariance is supported if the specified model with zero-loadings on non-target
factors fits the data well in all groups. Put another way, configural invariance holds when the
same items load on the same factors for both groups of interest (e.g. grade 8 vs. grade 10). In
CFA literature, configural models are also used as the baseline model in comparisons of
competing model. However, this is interesting in that it could be seen as rather subjective, or
possibly over-restrictive, if 0 loadings were in fact specified in the model. This is certainly a

topic related closely to rotation technique in EFA.
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Metric Invariance

Metric (Thurstone, 1947), weak (Meredith, 1993), or factor pattern invariance (Millsap,
1995) is more restrictive than configural invariance. This level of invariance requires that the

loadings in a CFA be constrained to be equivalent in each group while permitting the factor

variances and covariances to vary across groups. In other words, A=A :AG. Given that such
statistics rarely demonstrate equality, the statement really means that the loadings in one group
are proportionately equivalent to corresponding loadings in other groups (Bontempo & Hofer,
2007). In order to make such proportionally equivalent statements, the common-factor variances
must be freely estimated in all but the first group (or whichever group is chosen as a reference).
This is because loadings standardized to the common-factor variance each differ from the
corresponding loading in another group by the same proportion. The proportion is the ratio of the
variance in each group. The presence of metric invariance can support researcher’s claims that
there are similar interpretations of the factors across groups but most would recommend a more
stringent level of invariance testing to support that the statements are equivalent.

Scalar Invariance

Scalar (SteenKamp & Baumgartner, 1998) or Strong (Meredith, 1993) invariance is more
restrictive than metric/weak invariance because it constrains factor loadings as well as intercepts

to be equal across groups. In other words, equality constraints across groups are applied to factor

: . I _ A2 _ AG 1_.2__G .
loading parameters and the intercept parameters; AN=N=N" gT=T=1" By applying
these constraints, we are saying that any observed mean differences at the item level are
accounted for by the common-factor mean. If this assumption holds, the comparison of factor

means across groups is reasonable.
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Strict Invariance

The final sets of constraints are the most restrictive and hence they are associated with
demonstrating strict invariance. By saying that groups hold to the principal of strict invariance

we are specifying equality constraints on factor loadings, intercepts and errors across groups.
AN =N =A° , T =" =1" & 0 =’ =®G. In this paradigm, all parameters except for the
latent variable level are constrained to be equal. So, the latent variable, factor, means and
covariances can be used in comparisons.

A model is said to be identified when, for a given research problem and data set,
sufficient constraints are imposed such that there is a single set of parameter estimates yielded by
the analysis (Thompson, 2004). Some mechanical processes must also take place to achieve
model identification. Specifically, your latent constructs have to be assigned a scale of
measurement. One way to accomplish this in a multiple group setting such as this is to specify
the value of the factor loading of one item per factor to unity (1.0). These items are then referred
to as marker, or reference, items. In the context of multiple group factor analysis paradigms, it is
critical that the same item be fixed to unity for all groups examined. The procedures just
mentioned should be considered as being part of the decision sequence in determining the level

of invariance between groups.

Outcome Measures: Fit Indices

Fit refers to the ability of a model to reproduce the data (i.e., usually the variance-
covariance matrix). A good-fitting model is one that is reasonably consistent with the data; a
good-fitting measurement model is required before interpreting the causal paths of the structural

model.
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It should be noted that a good-fitting model is not necessarily a valid model. Models with

arguably ridiculous results (e.g., paths that are clearly the wrong sign) and models with poor
discriminant validity or Heywood cases can be “good-fitting” models. Therefore, parameter
estimates must be carefully examined to determine if one has a reasonable model as well as a
good-fitting model. It is important to realize that one might obtain a good-fitting model, yet it is
still possible to improve the model and remove specification error. Of course, having a good-
fitting model does not prove that the model is correctly specified. Finally, it should be noted that
a model all of whose parameters are statistically significant can be from a poor fitting model.

So, does this mean all hope is lost and this is a meaningless endeavor? Absolutely not, it just
means we should be cautious with inferences and overstretching the reaches of the
generalizability of results (as usual).

The appropriateness of one fit index compared to another is not a new ‘argument’ in the
literature. Some researchers (e.g., Barrett, 2007) do not believe that fit indices add anything to
the analysis, and only the chi square should be interpreted. The primary concern driving the
x2 argument is that fit indices allow researchers to claim that a miss-specified model is not a bad
model. Hayduk, Cummings, Boadu, Pazderka-Robinson, & Boulianne (2007) argue that cutoffs
for a fit index can be misleading and subject to misuse in that they are generally rules of thumb
not driven by empirical evidence. Therefore, the author contends that they are useful but much
like the allusion to Messick’s validity paradigm, they are only useful when used as intended.

There is also the potential of “cherry picking” a fit index; computing several fit indices
and picking the one index, or indices, that best confirms the research hypothesis rather than what
is appropriate given the data and the intended inferences. Choosing not to use a commonly

referenced index (like the TLI or the RMSEA) requires justification, especially if one wishes to
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publish in high quality journals. Others, such as Kenny, Kaniskan, and McCoach (2011), have
argued that fit indices should not even be computed for small degrees of freedom models. What
is more important in those situations is to locate the source of specification error (Kenny &
McCoach, 2011). Bollen and Long (1993) is a great reference that discusses in great detail many
of the indices mentioned here. A crucial consideration discussed in choice of a fit index is the
penalty it places for complexity. The penalty can be thought of as how much a y2 needs to
change for the fit index not to change. Another crucial consideration is what the purpose is and
your main research question. Answering the question of whether or not a model fits is different
than answering which model fits better or which model fits better across groups. Here the
purposes are twofold. During the establishment of configural variance, the author must first
establish that the baselines are in fact decent fitting models. That would require an absolute
measure of fit whereas the comparative fit investigations are best addressed with indices of
relative fit.
Absolute Fit

The most common approach is to utilize the chi square distribution. For models with
about 75 to 200 cases, the y2 test is a reasonable measure of fit. However, for models with
roughly 400 or more cases, the chi square is almost always statistically significant. Chi square is
also affected by the size of the correlations in the model: the larger the correlations, the poorer
the fit. Sometimes chi square is more interpretable if it is transformed into a Z value using the

following approximation:

Z, = 2(x2) - J2@df) - 1
A problem with this fit index is that there is no universally agreed upon standard as to

what is a good and a bad fitting model. Using areas on the standard normal curve does not
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remediate the sensitivity to sample sizes. The chi square test is too liberal (i.e., too many Type 1)
errors when variables have non-normal distributions, especially distributions with kurtosis.
Moreover, with small sample sizes, there are too many Type 1 errors. Of important note is that
two very popular fit indices, TLI and RMSEA, are largely based on the y2/df concept.

The root mean square error of approximation (RMSEA) is currently the most popular
measure of model fit and it now reported in virtually all papers that use CFA or SEM and some

refer to the measure as the “Ramsey.” This absolute measure of fit is based on the non-centrality

parameter. Its computational formula is: \/ x2—df /\/ df(N — 1), where N the sample size
and df the degrees of freedom of the model. If y2 is less than df, then the RMSEA is set to zero.
The penalty for complexity is the y2 to df ratio. The measure is positively biased (i.e., tends to
be too large) and the amount of the bias depends on smallness of sample size and df, primarily
the latter.

MacCallum, Browne and Sugawara (1996) have used 0.01, 0.05, and 0.08 to indicate
excellent, good, and mediocre fit respectively. However, others have suggested 0.10 as the cutoff
for poor fitting models. These are definitions for the population. That is, a given model may
have a population value of 0.05 (which would not be known), but in the sample it might be
greater than 0.10. There is greater sampling error for small df and low N models, especially for
the former. Thus, models with small df and low N can have artificially large values of the
RMSEA. For instance, a chi square of 2.098 (a value not statistically significant), with a df of 1
and N of 70 yields an RMSEA 0f0.126. For this reason, Kenny, Kaniskan, and McCoach (2011)
argue to not even compute the RMSEA for low df models. A confidence interval can be
computed for the RMSEA. Ideally the lower value of the 90% confidence interval includes or is

very near zero (or no worse than 0.05) and the upper value is not very large, i.e., less than .08.
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The width of the confidence interval is very informative about the precision in the estimate of the
RMSEA. A value less than .08 is generally considered a good fit (Hu & Bentler, 1999).
Descriptive Fit

Incremental (sometimes called relative) fit indices are analogous to R?; a value of zero
indicates having the worst possible model and a value of one indicates having the best possible.
In that respect, the model(s) of most interest are essentially put on a continuum ranging from the
null or independence model (worst) to the ideal (a perfectly fitting model) with the theoretical
frameworks typically falling in between.

The Bentler-Bonett Index (1980) or Normed Fit Index (NFI) is credited as being one of
the very first measures of incremental fit proposed in the literature. The best model is defined as
model with a y2 of zero and the worst model by the y2 of the null model. Formulaically, the

index can be seen as:

2 2
XNull—XProposed Model

2
ANull

Traditionally, a value between .90 and .95 is considered marginal, above .95 is good, and below
.90 is considered to be a poor fitting model. A major disadvantage of this measure is that it
cannot be smaller if more parameters are added to the model. That is, there is a penalty of O for
complexity; the more parameters added to the model, the larger the index. When comparing
models with vastly different model specifications, such as this study, the NFI doesn’t perform
well and these differences would be quite misleading.

One remedy is to use the Tucker Lewis Index or Non-normed Fit Index (NNFI) which
overcomes the non-penalty problem of the Bentler-Bonett index. The Tucker-Lewis index has
such a penalty and leverages the historically preferred method of looking at the y2/df. The TLI
is computed as follows:
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%Null Model — % Proposed Model

%Null Model — 1

A weakness of the correction is that the index can rise above 1, however it is capped at 1 for
practical purposes. Interpreted just as the Bentler-Bonett index, values closer to 1 indicate
greater fit. An artifact is that for a given model, a lower y2/df (as long as it is not less than one)
implies a better fitting model. The penalty for complexity is y2/df. That is, if that ratio doesn’t
change, the TLI does not change. Also worth noting, the TLI depends on the average size of the
correlations in the data. If the average correlation between variables is not high, then the TLI
will not be very high.

Comparative Fit Indices

Akaike Information Criterion (AIC)

The AIC is a comparative measure of fit and so it is meaningful only when two different
models are estimated. Lower values indicate a better fit and so the model with the lowest AIC is
the best fitting model. There are somewhat different formulas given for the AIC in the literature,
but those differences are not really meaningful as it is the difference in AIC that really matters:
x2 + k(k - 1) - 2df, where k is the number of variables in the model and df is the degrees of
freedom of the model. Note that k(k - 1) - 2df equals the number of free parameters in the
model. The AIC makes the researcher pay a penalty of two for every parameter that is estimated.

Bayesian Information Criterion (BIC)

Whereas the AIC has a penalty of 2 for every parameter estimated, the BIC increases the

penalty as sample size increases: y2 + In(N)[k(k + 1)/2 - df], where In(N) is the natural logarithm
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of the number of cases in the sample. (If means are included in the model, then replace k(k + 1)/2
with k(k + 3)/2). As can be seen, the BIC places a VERY high value on parsimony.

The Sample-Size Adjusted BIC (SABIC)

The Sample-size adjusted BIC or SABIC like the BIC places a penalty for adding
parameters based on sample, size but not as high a penalty as the BIC. The SABIC is not given
in Amos, but is given in Mplus. Several recent simulation studies (Enders & Tofighi, 2008;
Tofighi, & Enders, 2007) have suggested that the SABIC is a useful tool in comparing models.
Its formula is: y2 +[(N + 2)/24][k(k + 1)/2 - df].

With all of the comparative fit indices, the goal is to obtain estimates as close to 0 as
possible. Essentially, when comparing two competing models, values with lower comparative fit
indices are a better way to explain the data. Especially when referencing those that
penalize/adjust for model complexity and increasing sample size.

Construct Stability, Measurement Invariance and Validity Evidence

What should be evident thus far, is depending on the theoretical viewpoint being utilized
to assess the comparability/interchangeability arguments, the methodology employed could
focus on equating, test specification matches, alignment, measurement invariance in the spirit
previously reviewed or most likely, a convoluted combination of all of the above. Regardless of
how one wishes to frame the issue, it is always a validity question as it speaks directly to the
intended inferences or uses of scores and assessments that produce those scores.

The heart of assessment is the construct and the generally conceived notion that one is

measuring what they target to measure for the intended uses and purposes. Truly that is a
massive set of assumptions that requires multiple inputs to assess. As such, there is guidance

given that isn’t meant to be exhaustive in any respect but helps to appropriately categorize many

26



of the analyses responsible psychometricians and test developers already undergo in the process
of accumulating validity evidence in a large-scale assessment. Messick (1989, 1995) identifies
five sources of evidence to support construct validity: content, response process, internal
structure, relations to other variables, and consequences. These are not different types of validity;
they are best thought of as categories of evidence that can be collected to support the construct
validity of inferences made from assessment scores. Evidence should always be sought from
several different sources to support any given interpretation, and strong evidence from one
source does not negate the need to seek evidence from other sources.

While accumulating evidence, one should specifically consider two threats to validity:
inadequate sampling of the content domain (construct underrepresentation) and factors exerting
nonrandom influence on scores (bias, or construct-irrelevant variance). I will return to the issue
of the inadequate sampling of the content domain in a later section; however the second factor is
a major source of concern in the proposed study.

Nonrandom influence on scores is especially difficult to contain and identify. In terms of
apportioning variance, a frame of reference or theoretical viewpoint must be stated clearly or else
it becomes a rather difficult task as sources of bias may be considered relevant or irrelevant in
certain uses and purposes. Depending on the intended use, to what extent does teaching a student
actually contribute construct irrelevant variance? Is the delivery of curriculum actually a non-
random influence on scores? Such questions may at first make you chuckle; when is teaching a
bad thing? However, if you think about it, the concept might not be so odd when trying to
conceptualize growth. If an instrument is intended to measure whether a student has a certain
achievement level, as measured by a standardized test designed to tap content taught up until a

certain point in time, then it could be argued that any activity after that designated point in time
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could potentially contribute construct irrelevant variance. In that context, it may also call into
question whether or not a repeated measures test-retest paradigm using a parallel form, or the
same form, of the assessment used as a measure of growth would find supportive evidence to
validate the instruments use, and the inferences made, in that context. Aside from policy
considerations surrounding the use of measures for growth, there are also assumptions regarding
instrument content that drive the appropriate measure and method of measuring and determining
growth that may or may not be considered. This issue actually returns us to the concern of
inadequate content sampling; an issue of test development and design.
Content Based Evidence

For the purpose of making decisions on a student’s status measure, whether it is via a
proficient/not-proficient or multi-level designation based on that score, the practice of creating a
table of test specifications based on content standards and creating a content weighting scheme
of what needs to be assessed is typically the beginning. Items are then written towards the table
of specifications, reviewed by content experts who are able to judge the appropriateness of the
items as well as the depth of knowledge (DOK) and to ensure there is no initial hint of potential
bias towards one or more subgroups. Items are then field tested, the best items are selected based
on a carefully balanced blend of psychometric qualities and alignment to the test blueprint and
table of specifications, and those create the foundation for an operational assessment. Following
the first operational assessment, it is common to delay for a short time the reporting of the
results. This is to allow stake holders and appropriate personnel the ability to articulate
achievement level descriptors (ALDs) which are the first step in bridging the performance on the

assessment with the holistic expectation linked to the ALDs.
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Following this, standard setting meetings take place in which cut scores are
recommended. Standard setting takes on many forms but at the heart of most commonly used
methods are those which leverage performance data on items and total scores. The
recommendations are then taking to the appropriate approving bodies for the purpose of

becoming policy. All of this is a very long and deliberate process that takes years to accomplish

and if done properly results in a strong assessment for its intended uses and purposes.

Up till this point, it is important to note that the only intended use and purpose supported
is the use as a status measure of achievement, in as much as the instrument still abides by the
predefined blueprints and tables of specifications developed during the initial scaling and used
for standard setting, where the score can be applied towards the criterion reference targets and a
performance level derived. The language contained within the ALD becomes the operational
definition of the intended inference for which validity evidence has been accumulated; and this is
a status measure only.

Factorial Evidence

Test development processes support the accumulation of content related evidence
towards the construct validity argument and suggest an internal structure (Messick 1995; Cook
and Beckman, 2006). Reliability and factor analysis data are generally considered evidence of
internal structure. That is to say, scores intended to measure a single construct should yield
homogenous results, whereas scores intended to measure multiple constructs should demonstrate
heterogenous responses in a pattern predicted by the constructs.

Just as constructs can be defined by blueprints and tables of specifications, they can also
be implicitly assumed and defined by a choice of measurement model (e.g. Rasch, 2PL, 3PL,

GPCM). These IRT-based models look precisely at that ever important person and item
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interaction that the blueprint itself does not address, nor is it purposed to address. When data are
scaled using one of the unidimensional IRT models, the assumption is that there is one
underlying construct that is measured by the collection of operational (scored) items on the
assessment. Interestingly, the specification of a Rasch model implies that the items themselves
measure the construct equally well in that the discrimination parameters are assumed to be equal.
It is important to point out that internal consistency should be seen as a necessary but not
sufficient condition for measuring homogeneity or unidimensionality in a sample of test items.
Essentially, that conception of reliability assumes that unidimensionality exists in a sample of
test items (Tavakol and Dennick, 2011; Green, Lissitz and Mulaik, 1977). And of course, the
fitting of a unidimensional IRT model further makes that presumption. Furthermore, systematic
variation in responses to specific items among subgroups who were expected to perform
similarly (i.e. DIF) suggests a flaw in internal structure, whereas confirmation of predicted
differences provides supporting evidence in this category. Dimensionality is a characteristic of
the interaction of persons and items. In the context of the proposed study, if students on the first
occasion of an assessment consistently answer a question one way and on subsequent
administrations answer another way, regardless of other responses, this will weaken (or support,
if this was expected) the validity of intended interpretations with respect to the desire to
generalize analysis. In this context, a lack of DIF can be considered an associated supporting
measure, but not necessary pre-condition, to measurement invariance. The current study does not
propose to examine DIF directly but the author introduces it here as an analogue to the
invariance issue. DIF is essentially lack of invariance at the item level which in the IRT
paradigm plays out as different item parameters but in factor analytic terms leads to lack of

equality in factor loadings or the presence of metric invariance.
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With regards to the relations to other variables, correlation with scores from another
instrument or outcome for which correlation would be expected, or lack of correlation where it
would not, supports interpretation consistent with the underlying construct. This idea can be
extended to other variables believed to account for variability where a lack of significant
relationship is one way to accumulate evidence for construct validity of inferences via the
correlation with scores or variables that theoretically should (or should not) be related to the
score of interest. Both of these ideas, support for the internal structure and relationship to other
variables, become crucial when the focus of assessment scores (i.e. the intended uses) switch to
not only support status, but also growth. Of course one should never forget that the assessment
scores should be instructionally relevant given that an obvious, yet unintended consequence, of
assessment is that curriculum decisions can become somewhat guided by the potential content of
a high-stakes assessment (Perie et al, 2007). One can only reason, rationally, that the practice of
tying assessment scores to evaluation and accountability would tend to get the attention of those
being evaluated and being held accountable. In growth modeling the correlation or relation of the
construct to the variable of time (which is confounded with instruction- type, kind, quality, etc) is
a potential threat to or enhancing piece of the validity argument; as has been discussed this is
buried in the intended (whether implicit or explicit) uses of the assessment scores. That is to say,
it’s an issue of measurement invariance over time.

In a factor analytic paradigm, we need to at least be able to assume configural invariance
such that the data collected at each point in time, decompose into the same number of factors,
with the same items associated with each factor (Meredith, 1993). If that hypothesis holds, there
is support for the assumption that participants belonging to different groups conceptualize the

constructs in the same way (Riordan & Vandenberg, 1994). It is this specific issue, whether or
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not participants in the different groups specific to this study (e.g. students exposed to differing
levels of instruction and additional years of cognitive growth) conceptualize the mathematics
achievement construct in the same way, within the confines of the measurement invariance

paradigm.
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Chapter 3: Method

This study utilizes original census data from the statewide administration of an 8" grade
mathematics assessment as well as data collected as part of a special study purposed at
determining off level testing behavior of students. The instrument under investigation is the base
form for that assessment containing the collection of item responses for all students tested under
standard conditions. It was administered initially in Fall 2009 to then 8" grade students as their
summative assessment (technically assessing 7" grade content). The same instrument was
administered to subsamples of then current 8", 9™, and 10" grade students in the Spring of 2011.
This creates four sets of student responses: the initial census sample tested “on-grade”, a sample
one grade of instruction above the intended level, a sample two grades of instruction above the
intended level and a sample three grades of instruction above the intended sample. For purposes
of the current study, the intended population will be referred to as the control condition and the
other groups as treatment groups 1-3 for 8", 9™ and 10™ grade samples respectively.
Data

During the Fall 2009 administration, 118,891 then eighth grade students sat for the
assessment in question over a two week period of October. This sample is actually considered a
census in that anyone considered to be tested under standard conditions actually received the
same standard form of content with the only difference being unique sets of field test items
embedded at the same location across the various forms. In as much as this is considered a
census, there is no attempt made to compare to a larger group. Treatments 1-3 are convenience
samples obtained by schools volunteering to take part in a study designed to investigate the
viability of off-grade testing. They were not drawn to be representative of the state 8" grade

testing population, but some degree of similarity was desired. It is important to note, that the
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current study is a re-analysis of pre-existing data sets. The data sets were provided to the
author as deidentified longitudinal student profiles already linking previous assessment
performance, demographics and data from the study of off-grade testing. While this was
desirable in that the data were completely anonymous to the researcher it also prevented many
follow up questions that would have been helpful after the analysis was complete. Some of these
issues are elaborated further in the discussion and limitations sections. of Table 1 presents the
sample characteristics in terms of gender, ethnicity, special education designation, limited
English proficiency classification and eligibility for free/reduced lunch (here used as a proxy for

economically disadvantaged) for all of the samples.
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Table 1- Sample Demographic Characteristics

Control Treatment 1 Treatment 2 Treatment 3
Fall 2008 Spring 2009 Spring 2010 Spring 2011
Group th th th th
8" Grade 8" Grade 9" Grade 10" Grade
Count Percent Count Percent Count Percent Count Percent
Total Sample 118891 100 1423 100 547 100 644 100
g Female 58645 49.3 721 50.7 276 50.5 347 53.9
=
@ Male 60246 50.7 702 49.3 271 49.5 297 46.1
1 1125 0.9 6 04 7 1.3 4 0.6
2 3025 2.5 0 0 4 0.7 6 0.9
3 21643 18.2 344 24.2 144 26.3 150 23.3
%‘ 4 5132 4.3 113 7.9 22 4 28 4.3
'«:E 5 86431 72.7 901 63.3 366 66.9 455 70.7
= 6 1395 1.2 21 1.5 4 0.7 0.2
7 80 0.1 0 0 0 0 0 0
8 60 0.1 0 0 0 0 0 0
9 0 0 38 2.7 0 0 0 0
rﬁ Non-ED 66552 56 605 42.5 282 51.6 392 60.9
2] ED 52339 44 818 57.5 265 48.4 252 39.1
o Non-LEP | 114962 96.7 1370 96.3 536 98 629 97.7
=
- LEP 3929 33 53 3.7 11 2 15 2.3
S Non-SE 106215 89.3 1326 93.2 529 96.7 615 95.5
3]
% SE 12676 10.7 97 6.8 18 33 29 4.5
Instrument

The assessment contained 51 operational multiple choice items. Michigan is a fall

testing state so the fall testing encompasses the previous year’s content expectations only. The

content standards being referred to are the Michigan Mathematics Grade Level Content

Expectations (GLCEs) in effect during the testing related to this study

(http://www.michigan.gov/documents/MathGLCE 140486 7.pdf).

The expectations are divided into strands with multiple domains within each. In practice,

the skills and content addressed in these expectations are woven together into a coherent,
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Mathematics curriculum. The domains in each mathematics strand are broader, more conceptual
groupings. In several of the strands, the “domains” are similar to the “standards” in Principles
and Standards for School Mathematics from the National Council of Teachers of Mathematics.
For this particular assessment, five strands are possible for assessment: Numbers and Operations
(N), Algebra (A), Measurement (M), Data and Probability (D), and Geometry (G). The particular
grade and content area in this particular year did not include Measurement (M) items on the test
blueprint. Therefore, only items belong to the A, D ,G or N strands appeared on the assessment
with the following item counts (out of 51) respectively: 22, 6, 9 and 14. What is clear is that the
Numbers and Operations and Algebra items are most heavily weighted in the blueprint. These
strands are mutually exclusive categories. Scores are reported at the strand level but not as a
scale score; a raw score as well the total possible are given. Scale scores are based on item
response theory scaling (specifically under the Rasch model) and represent a unidimensional
scaling of all of the operational items together to form the underlying 6. The scale score is a
linear transformation of that 8 value. Table 2 lists the breakdown of items by strand.

Table 2 — Assessment breakdown by strands (numerals are item numbers)

Strand A: 1, 2, 3,4, 11, 13, 14, 15, 16, 17, 18, 24, 27, 28, 29, 33, 34, 44, 46, 47, 48, 49
Strand D: 19, 20, 21, 22, 50, 51

Strand G: 12, 35, 36, 37, 38, 39, 40, 41, 42

Strand N: 5, 6, 7, 8, 9, 10, 23, 25, 26, 30, 31, 32, 43, 45

The blueprints underwent formal alignment procedures using the methodology developed

by Norman Webb (http://www.michigan.gov/documents/Alignment Analysis_of Grades 3-

8 Mathematics_Standards and the MEAP_165665 7.pdf). While other models exist, this is a

popular approach that state K-12 testing programs have used to satisfy the requirements for
demonstrating alignment with the state standards in the given content area. Furthermore, careful
item construction procedures are followed such that items are commissioned to individuals with
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proper credentials to serve as content experts. The items are then vetted for initial review with
state department level content leads at which point they are either accepted, denied or denied
with revision requests. Those items that survive move on to an initial review by referent groups,
commissioned by both the MDE and the development contractor, to determine: 1) is the item
reflective of the intended content standard? 2) is the item written to the appropriate level of
cognitive complexity (DOK as defined in Webb procedures in this case)? 3) Does the item
contain any language/text/symbols/images that would unfairly advantage or disadvantage any
subgroup of the intended population? 4) Is the content of the item appropriate for the grade
level? Items, at this point, can be cleared for field testing immediately, cleared for field testing
following revision, or marked as do not use (DNU). Items surviving are then field tested where a
large array of statistics are calculated for the item and the results are then taken back to
appropriate referent groups for further review to be used in combination with expert judgment to
deem if an item should then be marked for further revision and additional field testing, ready for
operational or do not use.

As alluded to in the review of the literature and policies, it typically takes 12-18 months
and a minimum of $2,000 to produce an item used in operational assessment. It is crucial for the
reader to understand that because what it does is provide a very multifaceted, and very real,
perspective that those in high-stakes assessment must take. That is, there is an enormous amount
of faith put into the test blueprint and specifications understandably given the time, money and
effort put into so many activities surrounding them. They hold the key to the validity arguments;
if the blueprint is flawed or the construct is flawed the measurement cannot be valid for the

intended inferences.
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Analysis

As mentioned previously, a big assumption of CFA is that one has a model they want to
confirm. It is not uncommon to start with an assessment blueprint as a confirmation approach
(Thompson, 2004). However, those really define the intended content of an item as it relates to a
curriculum or content standard. The interaction of a person with an item involves much more
than an intended content standard. Factor analysis data deal with the interaction of the person
with the measurement device so it may not necessarily be fruitful to consider as a solid baseline,
a model built entirely on item specifications. Therefore, I propose to use an additional baseline
model which is the Rasch model for dichotomous responses (Rasch, 1960; Wright & Stone,
1979). This was the model used to scale the original data and provide the scale scores in
question. The model consists of a single latent construct measured by the collection (51) of
operational items in the assessment, each with a unique error component.

The second model is based on the assessment blueprint and references the content strands
of Table 2. There are 4 latent variables/factors each being measured by the observed variables
referenced in that table. Each of those measured variables has a unique error component
associated with it. The 4 latent factors are assumed to be correlated.

The instrument used in this study does not utilize a partial credit model and as a result
all of items are dichotomously scored. Because of this, multiple-group CFA measurement
models with binary indicators require a different parameterization which requires modifications
to the aforementioned procedures (Joreskog & Moustaki, 2001; Millsap, R.& Yun-Tein, 2004;
Muthén, B. & Asparouhov, T., 2002). Essentially, each item on the measure is connected to its
respective construct through a latent continuous response variable. This variable is cut by m-1

threshold parameters, where m represents the number of item score categories. Analyses are
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then based on a matrix of tetrachoric correlations. The latent response variables require
additional scaling factors in order to assess group differences in the common factor mean and
variance.

To identify the model the following steps must be taken: (1) The intercept parameters
for all latent response variables must be fixed to 0 in the first group; (2) Uniqueness variances
need to be fixed to unity in the first group. As with any standard multiple-group confirmatory
factor analysis, additional constraints are necessary in order to place the common-factor mean
and variance on the same metric across groups.

The two most commonly referenced approaches for achieving this end are presented by
Millsapp and Tein (2004) as well as Muthen and Aparouhov (2002). The Millsap and Tein

approach requires that the first m-1 thresholds be constrained across all groups and a second

threshold or uniqueness (in the case of binary items, there would be no 2nd threshold) be
constrained for one reference item in each group. Similarly, the Muthen and Asparouhov
approach requires that thresholds and loadings are constrained in a reduced model and that
tests of selected items are conducted against a full model where thresholds and loadings for
these items are freed while maintaining model identification through fixing the specific-
variance to unity for the selected items. However, it is important to note that in the
documentation of these paradigms presented in the Mplus user’s guide (Muthen & Muthen,
1998-2012), an important discussion occurs where critical differences are presented that
discuss how the progression takes place in a different sequence when continuous variables are
considered versus categorical (dichotomous in this case) variables. This is for a couple of
reasons but namely the unique and somewhat simplified statistical properties of binary

variables in addition to the idea, which is true here, that many of the measurement models

39



presented based on these binary outcomes are themselves part of an IRT based solution that
leads to item characteristic curves (referred to in Muthen and Muthen as item probability
curves). As such, the constraining of thresholds and factor loadings takes place in tandem as
these parameters represent the IRT parameters of difficulty/scale location parameters and
discrimination/scaling factor parameters respectively. As a result, there are fewer steps
presented than one would typically note in an invariance study using continuous variables; the
invariance progression typically goes through four iterations where various parameters are
constrained making the multi-group models more stringent as the progression occurs.

The steps involved depend on the particular paradigm chosen and the parameterization
schema selected. It is recommended, that when underlying IRT models are assumed and when
most, if not all observed variables are categorical the weighted least squares indicator using the
©® parameterization (versus the A parameterization; Mplus default) is preferred. The key issue
is that for categorical outcomes, the measurement parameters of interest are truly the factor
loadings and the threshold parameters. When the A parameterization is considered, scale
factors are also considered and the ® parameterization adds in the ability to examine residual
variances in addition to the other parameters. Variances for continuous latent response
variables (factors) are estimated but residual variances for the observed categorical indicators
are not estimated. The parameters that are estimated and fixed can be found in Tables 3-6 for
both model 1 (Rasch) and model 2 (the blueprint based approach; table of specifications).

They are presented in sequence for measurement invariance testing.
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Table 3- Model 1, Configural Invariance

Parameter Constraints
Control Group
Loadings M1)-A(51)  Constrained to be equal within group per Rasch requirements
Thresholds t(l)-t(51) Free
Residuals 0(1)-0(51) Fixedtol
Factor means @) Fixed to 0 for factor 1
Factor variances _ (y) _______ Fixedtolforfactor1 __ _ __ _ ..
Treatment Group
Loadings MD)-A(51) Constrained to be equal within group per Rasch requirements
Thresholds t(l)-t(51)  Free
Residuals 0 (1)-0(51) Fixedtol
Factor means @) Fixed to 0 for factor 1
Factor variances (V) Fixed to 1 for factor 1

Table 4- Model 1, Metric Invariance

Parameter Constraints

Control Group

Loadings M1)-A(51) Held Equal Across Groups

Thresholds Tt (1)-t (51) Free

Residuals 0 (1)-0(51) Fixed to 1

Factor means @) Fixed to 0 for factor 1
_Factor variances ____ V) o Fixedtolforfactor1 _ __ __ ____ ____ ______.

Treatment Group

Loadings AM1)—-A(51) Held Equal Across Groups

Thresholds Tt (1)-t (51) Free

Residuals 0 (1)-0(51) Fixed to 1

Factor means @) Fixed to 0 for factor 1

Factor variances (v) Fixed to 1 for factor 1

The procedures followed for Model 2 (Blueprint based) are similar to those presented in
Tables 3 and 4. The differences come with the addition of multiple underlying factors and the
correlation among factors to be considered. Similar to Model 1, the configural and metric

invariance tests are presented in sequence.
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Table S - Model 2, Configural Invariance

Parameter Constraints

Control Group
Constrained to be equal within groups and factors, per Rasch

Loadings AM1)—-A(51) requirements
Thresholds T(1)-t(51)  Free
Residuals 0(1)-0(51) Fixedtol
Factor means @) Fixed to 0 for factor 1
Factor variances () Fixed to 1 for factor 1
Treatment Growp T -
Loadings A= A(51) rCeZ?lsiiree;r;c:Sto be equal within groups and factors, per Rasch
Thresholds T(l)-t(51)  Free
Residuals 0 (1)-0(51) Fixedtol
Factor means @) Fixed to 0 for factor 1
Factor variances () Fixed to 1 for factor 1

Table 6 - Model 2, Metric Invariance

Parameter Constraints
Control Group
Loadings M1)-A(51) Held equal across groups, within factors
Thresholds t(l)-t(51)  Free
Residuals 0 (1)-06(51) Fixedtol
Factor means @) Fixed to 0 for factor 1
_Factor variances _ (y) _______ Fixedto ! for factor1 __ . __.
Treatment Group
Loadings M1)-A(51) Held equal across groups, within factors
Thresholds t(l)-t(51)  Free
Residuals 0 (1)-06(51) Fixedtol
Factor means @) Fixed to 0 for factor 1
Factor variances (V) Fixed to 1 for factor 1

In the literature review section regarding fit indices, multiple types with differing
purposes, were presented. What is clear in the literature is that some indices are more appropriate
than others and there is a great degree of correlation evident between the indexes. The rationale
for one being better than the other, given it is an appropriate situation, is based primarily on

theoretical arguments and partially on the pride of the author. Additionally, an important
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consideration must necessarily be whether or not the analysis software and estimation paradigm
are able to produce the desired metrics. Typically, the program (which is true in the case of
MPlus) will disallow the calculation of an inappropriate index. The TLI, CFI and RMSE are used
in the current study for all of the named rationales. Those indexes are useful for determining
model fit which is only part of the research questions. As pointed out in literature reviews on the
topic of GFIs (e.g. Cheung and Rensvold, 2002), most researchers take a market basket approach
to the use of the indices as none are ‘known to be true and accurate’ and many have limitations
depending on the structure and nature of the data.

For the purpose of determining if students have in fact shown substantively significant
growth, two approaches were taken. The first makes several assumptions with the most critical
being measurement invariance of the instrument over time. That is, the students test
performance, whom had already been measured with a parallel form of the assessment during the
correct time period, was scored during the experimental period using the raw to scale score
conversion table as was used during the initial scaling of the instrument. So, there is the definite
assumption in place that the IRT parameters are invariant over time. Nevertheless, their initial
administration of the assessment as well as the follow up conducted during the treatment
administration allowed two estimates of a student’s scale score as well as an estimate of the
students’ performance level and sub-performance level. Specifically, I applied the agency’s
transition table (see Table 7) to the pre and post measurements to determine if the students in the
various treatments had at least achieved the amount of growth expected given instructions and
increased rigor of performance and content expectations. Although the use of the IRT raw to

scale score tables and the transition tables are outside of the scope of the_intended use of these

43



measures, the author believes it will provide a useful context within which to discuss the various
results.

Table 7 — Michigan MEAP Transition Table

Grade X +1 MEAP Achievement
Grade X Partially
MEAP Not Proficient Proficient Proficient Advanced
Achievement Low Mid High Low High Low Mid High Mid
Low M | | SI Sl Sl SI Sl Sl
Not -
. Mid D M | | Sl Sl SI Sl Sl
Proficient -
High D D M | | Sl SI Sl Sl
Partially Low SD D D M | | SI Sl Sl
Proficient [High SD SD D D M | | Sl Sl
Low SD SD SD D D M | | Sl
Proficient |Mid SD SD SD SD D D M | |
High SD SD SD SD SD D D M |
Advanced |Mid SD SD SD SD SD SD D D M

NOTE: SI = Significant Improvement, I = Improvement, M = Maintain, D = Decline, SD = Significant Decline

As discussed in the introduction, the current study is not meant to create a new
methodology nor is the author introducing a methodology that has never been used. The purpose
of this study is to back up a little bit and take a look at how well some basic assumptions hold up
when using a measure as a status index before we go forward into assuming that measure also is
appropriate to be used as a measure of growth. I believe the extent to which the IRT model holds
over time, in some ways, addresses the extent to which it may be appropriate to generalize these
measures to a pre-test/post-test type of situation. Similarly, the degree to which the context or
blue print based model holds over time is informative in that it speaks to the extent these

subscales hold their meaning over time.
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Chapter 4: Results

In this section, findings of the measurement invariance analyses performed on the MEAP
Grade 8 Mathematics assessments are described in detail. The overall goals of this study were to:
(1) evaluate the fit of both a single factor (Rash model) and four factor (blueprint based test
design) in the original administration data and (2) to determine the extent to which those models
are invariant to additional years of instruction. That is Measurement Invariance paradigms will
be evaluated on the focus groups of the study. To this end, the results are sequenced as follows:
(1) descriptive statistics of past performance for the groups of data referenced, (2) confirmatory
factor analysis results of proposed models and (3) measurement invariance tests for the groups in
question.
Descriptive Statistics/Previous Achievement

As all of the study participants had previously been administered a parallel and equated
form of this assessment in October of their 8" grade year, previous performance was available
and is also presented in tabular form for comparison purposes. In Tables 8 and 9, two different
ways to express prior performance are provided. In Table 8, Mean scale scores and standard
deviations are presented to give an indication of central tendency and variability differences
among the groups and compared to the original census administration of the particular form of
interest. The distribution of student scale scores (pre and post) are given in Appendix A. As can
be seen, the study conditions were more variable and were centered on different means. Follow
up paired 7-tests on mean differences (invoking the Scheffe’ procedure to control for inflated
family wise type I error) revealed that all treatments were significantly different from the

assumed census population value. Furthermore, they were significantly different from each other.
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Table 8 — Previous Performance (Mean Scale Score)

N Mean Scaled Score Scale Score SD
Census 118851 818.20 27.70
Treatment 1 1423 814.96 29.39
Treatment 2 547 824.91 33.72
Treatment 3 644 821.04 28.75

Additionally, ordinal performance levels (1 = Advanced, 2= Proficient, 3= Partially Proficient
and 4 = Proficient) are also presented along with the percent proficient (sum of percent in
performance level 1 and 2; used for accountability and reporting purposes). This metric is
interesting in how it differs from Table 8 in that here, only treatment 2 showed significant
proportional differences with the rest of the groups; there were a significantly lower proportion
of students who were proficient in this group compared to the census and the others. These
results highlight somewhat of a paradox in communicating these results. While we do have
significant mean differences, the categorical placement of these students in terms of their
pass/fail status was remarkably similar. This is the influence of the criterion referenced cut-score
placement.

Table 9 — Previous Performance (Percent Proficient)

N % PL1 % PL2 % PL3 % PL4 % Proficient
Census 118851 42.7 31.8 18.5 7.0 74.5
Treatment 1 1423 34.4 39.6 21.3 4.8 74.0
Treatment 2 547 45.9 234 21.8 9.0 69.3
Treatment 3 644 34.6 404 20.8 4.2 75.0

Confirmatory Factor Analysis of One and Four Factor Models by Sample

Prior to submitting the data to multigroup invariance testing, the fit of the two
measurement models (single factor and four factor) for each of the treatment and the control
sample were evaluated in a CFA framework. The extent to which each of the models fit was
examined using Mplus v. 7.11 (L. Muthén & B. O. Muthén, 2013). WLSMYV estimation

including a probit link and the THETA parameterization was used to estimate all models (L.
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Muthén & B. Muthén, 2013). WLSMYV provides weighted least squares parameter estimates
using a diagonal weighted matrix with standard errors and mean- and- variance adjusted chi-
squared test statistic that use a full weight matrix (B. Muthén, du Toit, & Spisic, 1997). Model fit
was evaluated with relative fit indices CFI, TLI, and RMSEA. For the CFI and TLI indices
values above .95 indicate a good fit. For the RMSEA, a value less than .06 is considered to
indicate good fit.

Table 10-Group level Model Fit (Single Factor Model)

Group N Chisquare DF  # free parameters TLI CFI RMSE

Census 118851 121565.1 1224 102 0.951 0.953 0.029
Grade 8 Study 1423 2210.484 1224 102 0.966 0.967 0.024
Grade 9 Study 547 1558.031 1224 102 0975 0.976 0.022
Grade 10 Study 644 1679.457 1224 102 0.956 0.957 0.024

For the single factor model (Table 10), all chi-square tests were significant (p<.0001), however,
due to the binary nature of the variables and the WLSMYV estimation utilized, the chi-squares are
not trustworthy as global goodness of fit indices. CFI, TLI and RMSEA indicate adequate fit of
the single factor model in all of the groups.

Table 11-Group level Model Fit (Blueprint Based/Four Factor Model)

Group N Chisquare DF  # free parameters TLI CFI RMSE

Census 118851 112980.015 1218 108 0.954 0.956 0.028
Grade 8 Study 1423 2190.486 1218 108 0.966 0.968 0.024
Grade 9 Study 547 1547.218 1218 108 0976 0.977 0.022
Grade 10 Study 644 1657.152 1218 108 0.957 0.959 0.024

The results in Table 11 for the four-factor model also suggest adequate fit across all study
groups. Of note, is the small increase (which is dependent on index) in fit gained by the
additional constraints placed on the parameters. Although both models had adequate fit, the

comparative gain was small.
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Measurement Invariance Tests of One and Four Factor Models

In the discussion of invariance test procedures in previous sections there were multiple
levels of invariance to be explored. Specifically (in order from least to most restrictive) tests for
the degree to which configural, scalar, metric and strict parameterizations of measurement
invariance assumptions hold across groups were outlined in Tables 3-6. When using maximum
likelihood estimation, all of these tests of invariance are possible. However, one of the
challenges with using binary data in a confirmatory factor analysis paradigm is that there is a
reliance on alternative estimation procedures, such as the weighted least squares procedure
invoked in MPlus. This technique requires that scale factors or residual variances be allowed to
vary across groups; the metric invariance test constrains these to be equal so there is an obvious
disconnect.

As a result, only the configural and scalar approaches are feasible within MPlus (Muthen
and Muthen, 2013). For binary variables using weighted least squares estimation and the ®
parameterization, the configural setting has factor loadings and thresholds free across groups,
residual variances fixed at one in all groups, and factor means fixed at zero in all groups. The
metric of a factor is set by freeing all factor loadings and fixing the factor variance to one, the
factor variance is fixed at one in all groups. The scalar setting has factor loadings and thresholds
constrained to be equal across groups, residual variances fixed at one in one group and free in the
other groups, and factor means fixed at zero in one group and free in the other groups. Again, the
metric of a factor is set by freeing all factor loadings within a group and fixing the factor
variance to one. Furthermore, the factor variance is fixed at one in one group and is free in the

other groups. Table 12 presents the results of the invariance studies for three different models.
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Models 1 and 2, single factor and blueprint based respectively were introduced previously in the

paper as the models of interest.

Table 12- Measurement Invariance Study Results

Paradigm Model Chisquare DF P-value TLI CFI RMSE
Configural  Single Factor/Rasch 5331.53 3672 p<.001 0.967 0.969 0.023
.. Scalar Single Factor/Rasch . 5677.13 3770 p<.001_0.964 0.964 0.024
Configural 4 Factor (blueprint) 5279.638 3654 p<.001 0.968 0.969 0.023
Scalar 4 Factor (blueprint) 5598375 3740 p<.001 0.964 0.965 0.024

As can be seen from Table 12, the results of the invariance testing revealed adequate fit
across all of the models and paradigms put forth for analysis. The fit indices are all within
acceptable limits and are similar to those found when the same models were posited within
groups before applying between group equality constraints. The results indicate that configural
invariance is supported between groups. Therefore, the specified model with zero-loadings on
non-target factors fits the data well in all groups; the same items load on the same factors for all
of the groups considered.

The findings of scalar invariance holding across the groups subsumes the assumptions of
configural invariance, the same pattern of loadings apply, but also goes a step further. Scalar
invariance suggests that the factor loadings for the factors can be considered identical across
groups. In multi-group confirmatory factor analysis terms, this suggests that the inter-item

tetrachoric correlation matrices for all groups are statistically equivalent.
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Chapter 5: Discussion

The current study was a journey with the overall goal to evaluate the degree to which
measurement invariance held across time for a high-stakes mathematics achievement instrument.
Put differently, the degree to which the measurement device would produce the same set of
composite latent measurements over time, with an assumed increase in instructional time for
each of the study conditions to determine to what degree the instrument might be sensitive to
instruction. This is important due to the increased emphasis being placed on growth measures in
K-12 accountability measures. Policy makers will need to determine if they wish to measure
growth via a measure that is static and not as sensitive (i.e. invariant) over a typical time
trajectory used in such high stakes decisions. In order to reach the conclusions brought forth so
far and in the paragraphs to follow, the author proceeded to: (a) fit the model separately in each
group; (b) fit the model in all groups allowing all parameters to be free (c) fit the model in all
groups holding factor loadings equal to test the invariance of the factor loadings and (d) fit the
model in all groups holding factor loadings and intercepts equal to test the invariance of the
intercepts. By following such a prescribed sequence I was able to address all of my research

questions which I will now step through sequentially.

Related to the original Fall 2009 administration and applied across groups:
Does the Rasch model fit the data?

According to Table 10, the single factor (parameterized to replicate the Rasch model)
measurement model appeared to fit the data well in each of the groups. With the sample sizes in
this study it wasn’t surprising to discover that the chi-square tests were all significant so

alternative model fit indexes were referenced as recommended appropriately in the literature.
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Perhaps what was surprising in this case is that the ‘best fit” wasn’t for the census population but
rather the study condition group data appeared to fit the model a bit better than the larger group.
Without first establishing that this model fit well in the groups and in the pooled groups it is
untenable to look at differences in groups let alone proceed to test the same measurement
configuration. Of course, this study looked at two models specifically and the invariance was of

interest across both. Therefore, the next research question addressed was:

Do the data fit the linear confirmatory model implied by the blueprint (content strands) for the
test?

As was the case with the single factor model, Table 11 indicates that all of the groups
showed adequate fit to the blueprint based model. Again, the poorest fit seemed to be in the
larger census population. The differences are negligible and there is not a valid test to determine
if the differences in absolute fit are different across the four non-nested groups but they did share

a common model parameterization.

Does one of the models fit significantly better than the other model?

The model fit indices in each of the groups and the pooled groups both showed
remarkable similarity across the two models. In fact, in terms of parsimony it seems that little is
gained by adding in the additional parameters needed to represent the blueprint based test design.
Therefore, it seems that while they serve as useable reporting categories in terms of grouping
items together by content specifications they do little to improve the fidelity of the measurement

as a whole. Given that the single factor model will provide a more reliable underlying construct,
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it would make more sense to go with the single factor representation as a matter of model

parsimony.

Do the aforementioned models exhibit measurement invariance across groups/study
conditions?

In this study, due to the dichotomous nature of the indicator variables and the estimation
method employed by MPlus. It was not feasible to proceed to tests for strict and metric
invariance as the IRT nature of the underlying models also do not make it possible to constrain it
in the same way. The study found support for configural and scalar invariance of both models
across the groups (see Table 12). The additional constraint of factor loading equality produced a
significant difference test with the configural model. Taken together, it appears as if this measure
is invariant across these groups in both model configurations. Therefore, the suggestion would be
that one can treat these as parallel measures and mean differences and comparisons on latent
variables will be permitted.

Implications

The developments of parallel assessments that take into account curriculum are expensive
and it is likely that many agencies will attempt to use a more cost effective test-retest strategy for
computing growth. Such a simple approach holds a lot of assumptions with the most important
being that the latent trait(s) or scores that come out of the measurement need to hold a high
degree of generalizability across time and at the least, there should be an indication that the
structure of the assessment, as intended, is logical for all of the groups being assessed. The
degree to which the configural and scalar invariance assumptions hold, either inhibits or enables

the types of generalizations one would wish to make in a gain-score paradigm.
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The results of this study seemed to indicate that is feasible to at least use this particular
instrument as a pre-test and post-test measure and that differences noted are true differences in
student ability rather than an artifact of the underlying inter-item correlations manifesting
themselves in different structures over time. In fact, what has been found with the current study
is that the tetrachoric correlation matrix, in which the correlation between the latent factors
underlying the items as expressed by the binary indicators are expressed, is consistent over time
and appears not to be sensitive to instruction or continued learning. In essence, the conclusion is
that the instruments are invariant over time and therefore, the latent factors can be compared
across groups.

Table 13 — Outcome Variable Group Differences

Scale Score

N Mean Scaled Score SD % Proficient
Grade 8 1423 814.96 29.39 65.5
Grade 9 547 824.91 33.72 76.6
Grade 10 644 821.04 28.75 79.3

Table 13 depicts the performance of the groups on the outcome measure. With the
exception of the grade 9 compared to grade 10 students on percent proficient, all other
differences are statistically significant. In addition, if the student scores were submitted to the
performance level change matrix presented in Table 10, the results would be as presented in
Figure 1. Perhaps the biggest surprise of that result set was the finding that after 3 additional
years of instruction there was still nearly 10% of 10™ grade students who’s scores have decreased
so much from when they originally sat for the assessment as incoming 8" grade students. The
finding for the 9™ grade students is similar. Is this a function of decay? Is the decay from lack of
use of the skill set? It would have been interesting to explore these students’ course taking
activity following grade 8 to determine which, if any, took a very minimal approach to furthering
themselves in the mathematical areas. While those results are troubling what is even more
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shocking is that at the end of 8" grade, the students who were only 5 months removed from their
initial assessment failed to show growth for the most part. More than 70% of these students
exhibited significant decline, decline or merely maintained their standing along the continuum.
One thing that can be confirmed, all of these 8" grade students were currently enrolled in pre-
algebra or algebra at the time of this study. That is, all were on either a standard or advanced

curriculum. No students were being instructed off grade-level.

Figure 1 - Performance Level Change by Study Condition

Percent of Students in Each Peformance Level Change Category
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Figure 1 presents some pretty dire results, especially when combined with the finding of
invariance across conditions. Supposedly, these are real differences; these declines represent a
true decline in student standing on the same underlying construct measured at their initial testing
session. However, although the MPlus results suggested invariance it seems that there are other
sources of information that suggest otherwise.

To further investigate the invariance of the instrument and its sensitivity to the inherent
differences between groups, instructional and otherwise, further analyses were conducted that

provide further exploration into the phenomenon. An interesting artifact of the approach taken

54



with Mplus on the single factor model is that the model is actually a two-parameter logistic item
response theory model. Therefore, the Mplus program, for the single factor model, suggested that
there was invariance of the two 2PL IRT model across the groups. A slightly different approach
to fitting the 2PL model to multiple groups was taken to determine if the same finding held. That
is, is their invariance to the extent that we can be comfortable we’re measuring the same thing?
To accomplish this, a multiple group run of the two parameter model was carried out using the
IRTPRO application version 2.1.1 (SSI, 2011). The original census population anchors the
parameter estimation with the other groups getting placed on the same scale via the concurrent
run. Figure 2 presents the test characteristic curves for the four groups. In the figure, group 1 is
the 8" grade; group 2 is the 9" grade; group 3 is the 10™ grade and group 4 the original census
group respectively. As can be seen, while this chart suggests similar performance for the study
conditions they also show that there is a rather dramatic difference in TCCs between the study

conditions and the original census.
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Figure 2- Multigroup IRT Test Characteristic Curves
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Test information curves for the groups are also presented, along with their reciprocal standard
error curves (see figure 3). These provide a slightly different picture in that they represent
somewhat of a combination between the ability distribution of the assessment for each of the
groups as well as their alignment to the item difficulty of the assessment. Figure 3 is based on the
notion that the census scale is the appropriate parameterization. What is suggested is that the test
information function for all of the groups is centered just below the origin of the theta scale

(approximately -.5 on the logit scale). Scaling in IRTPro is accomplished by assuming a theta
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distribution with a mean of 0 and standard deviation of 1. Therefore, the assessment is centered

just below average value; the calibration goal.

Figure 3 — Test Information Functions from Multiple Group IRT Run
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Appendix B and C presents the IRT calibration results for all 51 items for each of the groups in
two ways. Appendix B are each of the item characteristic curves by group whereas Appendix C
is a tabular presentation of item parameters by group (i.e. the data driving the charts in Appendix
B). There are several areas where there are departures from a consensus value. Cell tables
highlighted in yellow denote items departing from expectation. In this case, it seems reasonable

to assume that the item difficulty, if anything, would decrease over time as opposed to increase.

57



Chapter 6: Limitations and Future Research

The biggest limitation in this study was the volunteer nature of the sample. The
participants were purely voluntary and in fact most administrators revealed to the researcher that
they allowed teachers to self-select their classes into the study and of course no students were
required to participate and could back out at any time. Of course, with such situations motivation
of the student being assessed is always discussed and particularly a possible lack of motivation
for the student to perform well. In this case, all participants were aware that the study apparatus
was not part of the state mandated battery of assessments and therefore the level of effort might
not have been great. Additionally, this begs the question of how much extrinsic motivation the
teachers of these students might have decided to not push or impart on the students. Of course,
the lack of a random sample and random assignment limits the ability of the researcher to
generalize to a great degree. Certainly it would not make sense for the author to assert that the
measures are invariant across all grades represented in the study and across the universe of

potential students/participants.

Another limitation, and a future direction should I choose to pursue this research further,
would be to look more closely at the modification indices and other univariate tests available to
help in model refinement. In this study I posited two main models in a confirmatory
environment. | never specified they were without question the correct models as that is not the
driving force of this study. However, there are further refinements that could be made to
determine the best set of indicators (items) that collectively leads to the most invariant model
over time and instructional exposure. For instance, there are several items in Appendix A that
show great deviations across groups in terms of their IRT parameters. It could be an artifact of

the scaling technique, but those trace curves do suggest some large item level differences that are
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likely cancelled out much like differential item functioning at times leads to DIF cancellation
such that there might not be obvious bias at the test level yet it still exists at the item level.
Purifying the measurement instrument is going to be key for true invariant measures over time.
Of course, each content area should probably be expanded a bit by adding more items to the
content strands and testing those out as intact tests. I believe the type and level of inferences that
will be required of growth modeling in the future is going to well beyond the current norm and
will push validity inferences to all time levels of thin. To me, that is why it is imperative we take
a step backward before we rush forward and make too many assumptions. These are not arbitrary
test scores. They relate to student standing, they relate to school standing, district standing,
teacher standing and if you think about it to many extents the livelihood of the students going

forward as well as those whose jobs depend on evaluations based largely on assessment data.
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Appendix A

Scale Score Distributions (Pre and Post) for each of the Study Groups
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Figure 4 — Post-test Scale Score Distribution (Grade 8)
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Figure 5 — Post-test Performance Level Frequencies (Grade 8)
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Figure 6 — Pre-test Scale Score Distribution (Grade 8)

PreSSs
Grade: 08

F—

a1

Percent
]

o e W e B e B e |

] 1 | ] I | I I ] ] | ] I
721 780 770 TTS TS 79 7O7 802 BOS &13 815 8§23 528 §33 535 544 550 556 8553 572 553 028
PreSs

64




Figure 7 — Pre-test Performance Level Frequencies (Grade 8)
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Figure 8 — Post-test Scale Score Distribution (Grade 9)
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Figure 9 — Post-test Performance Level Frequencies (Grade 9)
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Figure 10 — Pre-test Scale Score Distribution (Grade 9)
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Figure 11 — Pre-test Performance Level Frequencies (Grade 9)
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Figure 12 — Post-test Scale Score Distribution (Grade 10)
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Figure 13 — Post-test Performance Level Frequencies (Grade 10)
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Figure 14 — Pre-test Scale Score Distribution (Grade 10)
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Figure 15 — Pre-test Performance Level Frequencies (Grade 10)
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Appendix B

Item Characteristic Curves by Group
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Figure 16 — Item Characteristic Curves by Group
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Figure 16 (cont'd)
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Appendix C

IRT Calibration Values by Group

77



Table 14 — IRT Calibration Values by Group

Census Census Gr8 Gr8 Gr9 Gr9 Grl0 Grl0
apar bpar apar bpar apar bpar apar bpar
ltem1 0.68 -0.14 0.59 -0.13 0.78 -0.48 0.44 -0.72
ltem?2 0.37 0.87 0.44 0.97 0.2 1.83 0.43 2.27
ltem3 1.46 -1.01 1.56 -1.18 1.73 -1.43 1.42 -1.4
ltem4 0.78 0.96 0.91 0.13 0.91 0.24 1.2 0.43
ltem5 1.55 -0.37 1.53 -0.55 1.41 -0.67 1.25 -0.81
ltem6 0.53 1.07 0.53 0.92 0.68 1.23 0.47 1.57
ltem7 1.15 -0.08 0.96 -0.17 1.15 -0.28 1.24 -0.31
ltem8 0.9 0.24 0.98 0.1 1.03 -0.39 0.8 -0.43
ltem9 0.76 0.2 0.78 0.28 0.59 0.58 0.9 0.45
ltem10 1.77 0.03 1.9 -0.27 1.51 0 1.49 0.4
ltem11 0.38 3.11 1.07 -0.88 0.99 -1 1.05 -1.01
ltem12 0.89 -0.78 1.18 0.25 0.79 0.42 0.82 0.72
ltem13 0.52 2.01 0.49 2.78 0.7 2.45 1 1.55
ltem14 1.38 -0.44 0.73 -0.24 0.64 -0.22 0.78 -0.17
ltem15 1.01 1.31 0.6 1.22 0.91 1.09 0.81 1.33
ltem16 1.2 0.12 1.77 -0.61 1.58 -0.84 2.19 -0.75
ltem17 1 0.07 1.22 0.18 1.16 0.17 1.39 0.25
ltem18 0.88 -0.31 1.93 -0.6 1.99 -1 2 -1.13
ltem19 1.47 -0.5 1.09 -0.21 1.05 -0.55 1.03 -0.82
ltem20 0.46 0.56 1.15 -0.68 1.48 -0.82 1.16 -0.96
ltem21 1.29 -0.87 1.77 -0.53 1.71 -0.5 1 0.2
ltem22 1.41 -0.73 0.49 0.7 0.69 0.44 0.41 1
ltem23 1.97 -0.46 1.63 -0.82 1.76 -0.78 2.18 -0.84
ltem24 0.69 1.18 1.79 -0.76 2.05 -0.76 1.93 -0.81
ltem25 1.97 -0.32 0.58 0.75 0.64 0.93 0.87 0.68
ltem26 2.1 -0.51 1.06 -0.12 0.79 -0.11 1.02 -0.14
ltem27 1.53 -0.74 0.56 1.48 0.7 1.2 0.81 0.88
ltem28 1.56 -1.03 2.28 -0.61 2.2 -0.45 2.35 -0.54
ltem?29 0.77 0.15 1.41 -0.05 1.46 -0.07 1.28 0.01
ltem30 1.25 -0.28 2.24 -0.47 2.13 -0.43 2.3 -0.47
ltem31 1.55 -0.95 2.51 -0.69 2.43 -0.53 2.22 -0.6
ltem32 1.78 -0.41 1.95 -0.77 2.17 -0.79 2.23 -0.76
ltem33 1.58 -0.86 2.07 -0.99 1.85 -1.02 1.95 -1.09
ltem34 1.59 -0.71 1.03 -0.01 1.15 -0.02 1.24 0.06
ltem35 1.22 -0.08 1.42 -0.4 2.1 -0.4 1.62 -0.52
ltem36 0.94 0.43 1.79 -0.92 1.94 -0.88 2.28 -0.78
ltem37 1.44 -0.7 2.01 -0.49 1.99 -0.27 2.26 -0.34
ltem38 1.62 -0.35 2.02 -0.8 1.84 -0.77 2.25 -0.76
ltem39 1.21 -0.37 1.8 -0.65 1.86 -0.54 2.12 -0.66
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Table 14 (cont’d)

Census Census Gr8 Gr8 Gr9 Gr9 Grl0 Grl0
apar bpar apar bpar apar bpar apar bpar
Item40 0.57 0.45 1.26 -0.05 1.66 -0.04 1.48 -0.07
ltem41 0.47 2.05 1.08 0.26 0.97 0.18 1.39 0.22
Item42 0.16 4.63 1.64 -0.75 1.98 -0.62 2.33 -0.65
ltem43 0.65 1.12 1.6 -0.35 2.25 -0.32 2.29 -0.36
Item44 0.99 0.84 1.32 -0.34 1.46 -0.32 1.71 -0.55
ltem45 0.83 -0.14 0.54 0.61 0.93 0.33 1 0.01
ltem46 0.85 0.13 0.53 1.79 0.7 1.15 0.7 1.31
ltem47 0.76 0.82 0.25 2.89 0.37 1.59 0.36 1.85
ltem48 0.56 0.22 0.75 0.6 0.96 0.64 0.98 0.43
ltem49 1.44 -0.32 1.17 0.55 1.14 0.47 1.15 0.69
Iltem50 0.61 0.82 2 -0.39 2.06 -0.36 1.54 -0.73
ltem51 1.14 0.08 1.36 0.9 1.3 1.04 1.2 1.07
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