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ABSTRACT 
 

THE COMPARISON OF COMMON ITEM SELECTION METHODS IN VERTICAL 

SCALING UNDER MULTIDIMENSIONAL ITEM RESPONSE THEORY  

 

By 

 

Yang Lu 

 

 

The characteristics of common items are always considered as an important factor affecting 

the quality of scale linking between tests. Although many studies have focused on the common 

item selection via the Unidimensional Item Response Theory (UIRT) models, seldom did 

researchers investigate the selection in the vertical scaling under the framework of 

Multidimensional Item Response Theory (MIRT). This study examines different common item 

selection methods when the correlation among proficiencies varies at different levels and when 

the content structures in tests are either identical or different. With respect to the recoveries of 

the probability matrix, item parameters and effect sizes, the results show that (1) full content 

coverage in the common item set is important, no matter whether the content structures are 

identical or not, (2) high correlation among proficiencies could partly compensate for the adverse 

effect caused by the common items not covering all content domains, and (3) the common item 

set covering all content domains with medium difficulty items yields better linking results and 

common items with high item-total-test correlation also perform well when the content structures 

are identical for both tests. 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my beloved husband: Yu Fang 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGMENTS 

 

 
I would like to express my sincere gratitude to Dr. Mark Reckase, who is my academic 

advisor and chairperson of my dissertation committee. I am fortunate to have the privilege to be 

his student. I want to thank him for his excellent guidance and patience in my dissertation and 

research work. I also want to thank Dr. Sharon Senk, one of my committee members, for 

strengthening my background in math education field and giving me a warm hug when I felt 

frustrated in working on the project. Thanks also go to other members in my committee, Dr. 

Richard Houang and Dr. Sharif Shakrani, for their valuable insights and assistance on my 

dissertation research.  

I would like express my appreciation to Dr. Maria Teresa Tatto for providing me with 

assistantship opportunities to work in the TEDS-M project for most of my graduate study. 

Through this experience, I have developed a deep understanding in measurement theory and 

improved my teamwork skills.  

In addition, I want to thank the Measurement and Quantitative Methods program and the 

College of Education at the Michigan State University for providing me with an excellent 

atmosphere for my graduate study.  

Finally, I owe my deepest appreciation to my husband, Yu Fang, for his continuous love, 

support and patience, and to my parents for their constant love and support in all aspects. 

 
  



v 

 

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................................ vii 

 

LIST OF FIGURES ....................................................................................................................... ix 
 

CHAPTER 1 ....................................................................................................................................1 
INTRODUCTION ...........................................................................................................................1 

1.1 Introduction to Vertical Scaling .............................................................................................2 
1.2 Construct Shift and Dimensionality in Vertical Scaling ........................................................3 
1.3 UIRT and MIRT ....................................................................................................................5 

1.3.1 UIRT model ....................................................................................................................5 
1.3.2 MIRT model ....................................................................................................................6 

1.3.3 Indeterminacies in MIRT ................................................................................................9 

1.3.4 Full information factor analysis in MIRT .....................................................................10 
 

CHAPTER 2 ..................................................................................................................................14 
LINKING AND COMMON ITEM SELECTION ........................................................................14 

2.1 Linking Designs ...................................................................................................................14 

2.2 Linking Methods ..................................................................................................................16 
2.2.1 Linking methods in UIRT .............................................................................................16 
2.2.2 Linking methods in MIRT ............................................................................................18 

2.2.3 Linking through separate and concurrent calibrations ..................................................20 
2.3 Research on Common Items in Equating ............................................................................22 

2.4 Research on Common Items in Vertical Scaling .................................................................24 

2.5 Research Objectives and Questions .....................................................................................24 

 

CHAPTER 3 ..................................................................................................................................27 

DESIGNS AND METHODS .........................................................................................................27 
3.1 Parameter Simulation ...........................................................................................................27 
3.2 Parameter Estimation and Vertical Scaling .........................................................................31 

3.3 Evaluation Criteria ...............................................................................................................32 
 

CHAPTER 4 ..................................................................................................................................36 
PART I: SAME CONSTRUCTS ...................................................................................................36 

4.1 Parameters and Designs .......................................................................................................36 
4.1.1 Unique items .................................................................................................................36 
4.1.2 Common items ..............................................................................................................36 

4.1.3 Person parameters .........................................................................................................41 
4.2 Estimation ............................................................................................................................41 

4.3 Results ..................................................................................................................................43 
4.3.1 Recovery of probability matrix .....................................................................................43 
4.3.2 Recovery of a-parameters .............................................................................................49 
4.3.3 Recovery of d-parameters .............................................................................................55 
4.3.4 Recovery of effect sizes ................................................................................................60 

 



vi 

 

CHAPTER 5 ..................................................................................................................................63 

PART II: DIFFERENT CONSTRUCTS .......................................................................................63 
5.1 Parameters and Designs .......................................................................................................63 

5.1.1 Unique items .................................................................................................................63 

5.1.2 Common items ..............................................................................................................66 
5.1.3 Person parameters .........................................................................................................67 

5.2 Estimation ............................................................................................................................69 
5.3 Results ..................................................................................................................................70 

5.3.1 Recovery of probability matrix .....................................................................................70 

5.3.2 Recovery of a-parameters .............................................................................................72 
5.3.3 Recovery of d-parameters .............................................................................................79 
5.3.4 Recovery of effect sizes ................................................................................................83 

 

CHAPTER 6 ..................................................................................................................................88 
SUMMARY, LIMITATION AND FUTURE RESEARCH .........................................................88 

6.1 Conclusions and Discussions ...............................................................................................88 
6.2 Limitations and Future Research .........................................................................................96 

 

APPENDIX ..................................................................................................................................100 
 

REFERENCES ............................................................................................................................105 
 

  



vii 

 

LIST OF TABLES 

Table 3.1. Layout of Person by Item Response Matrix ................................................................ 30 

 

Table 4.1. Unique Item Parameters and Statistics for Lower Grade in Part I............................... 37 
 

Table 4.2. Unique Item Parameters and Statistics for Upper Grade in Part I ............................... 38 
 

Table 4.3. Number of Items for Different Content and Difficulty Categories in Item Pool of Part I

....................................................................................................................................................... 39 
 

Table 4.4. Statistics of Common Items for Different Selection Methods in Part I ....................... 41 

 

Table 4.5. Correlation for the Recovery of Probability Matrix in Part I ...................................... 44 
 

Table 4.6. Bias for the Recovery of Probability Matrix in Part I .................................................. 46 

 

Table 4.7. RMSE for the Recovery of Probability Matrix in Part I .............................................. 48 

 

Table 4.8. Correlation for the Recovery of a-parameters in Part I ............................................... 50 
 

Table 4.9. Bias for the Recovery of a-parameters in Part I .......................................................... 52 
 

Table 4.10. RMSE for the Recovery of a-parameters in Part I ..................................................... 53 
 

Table 4.11. Correlation for the Recovery of d-parameters in Part I ............................................. 56 
 

Table 4.12. Bias for the Recovery of d-parameters in Part I ........................................................ 57 
 

Table 4.13. RMSE for the Recovery of d-parameters in Part I ..................................................... 59 

 

Table 4.14. Recovery of Effect Sizes for Proficiencies in Part I .................................................. 61 

 

Table 5.1. Allocation of Unique Items in Different Content Domains and Grades in Part II ...... 63 
 

Table 5.2. Unique Item Parameters and Statistics for Lower Grade in Part II ............................. 64 
 

Table 5.3. Unique Item Parameters and Statistics for Upper Grade in Part II .............................. 65 
 

Table 5.4. Number of Items for Different Content and Difficulty Categories in Item Pool of Part 

II .................................................................................................................................................... 66 
 

Table 5.5. Statistics of Common Items for Different Selection Methods in Part II ..................... 67 
 



viii 

 

Table 5.6. Mean Vectors for Proficiency Distributions of Lower and Upper Grade Examinees in 

Part II ............................................................................................................................................ 68 
 

Table 5.7. Variance-Covariance Matrix for Proficiency Distribution of Lower Grade Examinees 

in Part II ........................................................................................................................................ 69 
 

Table 5.8. Variance-Covariance Matrix for Proficiency Distribution of Upper Grade Examinees 

in Part II ........................................................................................................................................ 69 
 

Table 5.9. Correlation for the Recovery of Probability Matrix in Part II ..................................... 70 
 

Table 5.10. Bias for the Recovery of Probability Matrix in Part II .............................................. 71 
 

Table 5.11. RMSE for the Recovery of Probability Matrix in Part II .......................................... 71 
 

Table 5.12. Correlation for the Recovery of a-parameters in Part II ............................................ 73 
 

Table 5.13. Bias for the Recovery of a-parameters in Part II ....................................................... 74 
 

Table 5.14. RMSE for the Recovery of a-parameters in Part II ................................................... 77 

 

Table 5.15. Correlation for the Recovery of d-parameters in Part II ............................................ 80 

 

Table 5.16. Bias for the Recovery of d-parameters in Part II ....................................................... 80 
 

Table 5.17. RMSE for the Recovery of d-parameters in Part II ................................................... 80 

 

Table 5.18. Recovery of Effect Sizes for Proficiencies in Part II ................................................. 84 

  



ix 

 

LIST OF FIGURES 

Figure 1.1. Representation of Item Vectors in a Two-Dimensional Space .................................... 9 
 

Figure 4.1. Correlation for the Recovery of Probability Matrix in Part I ..................................... 45 
 

Figure 4.2. Bias for the Recovery of Probability Matrix in Part I ................................................ 47 
 

Figure 4.3. Bias for the Recovery of Probability Matrix for Method 1 at Zero Proficiency 

Correlation Level in Part I ............................................................................................................ 47 
 

Figure 4.4. RMSE for the Recovery of Probability Matrix in Part I ............................................ 49 

 

Figure 4.5. Correlation for the Recovery of 1a -parameters in Part I ............................................ 51 

 

Figure 4.6. Correlation for the Recovery of 2a -parameters in Part I ........................................... 51 

 

Figure 4.7. Bias for the Recovery of 1a -parameters for Method 1 at Zero Proficiency Correlation 

Level in Part I................................................................................................................................ 52 
 

Figure 4.8. RMSE for the Recovery of 1a -parameters in Part I ................................................... 54 

 

Figure 4.9. RMSE for the Recovery of 2a -parameters in Part I .................................................. 54 

 

Figure 4.10. Correlation for the Recovery of d-parameters in Part I ............................................ 56 

 

Figure 4.11. Bias for the Recovery of d-parameters in Part I ....................................................... 57 

 

Figure 4.12. Bias for the Recovery of d-parameters for Method 1 at Zero Proficiency Correlation 

Level in Part I................................................................................................................................ 58 

 

Figure 4.13. RMSE for the Recovery of d-parameters in Part I ................................................... 59 
 

Figure 4.14. Recovery of Effect Size for the Proficiency on Dimension 1 in Part I .................... 62 
 

Figure 4.15. Recovery of Effect Size for the Proficiency on Dimension 2 in Part I .................... 62 

 

Figure 5.1. RMSE for the Recovery of Probability Matrix in Part II ........................................... 72 
 

Figure 5.2. Bias for the Recovery of 1a -parameters in Part II ..................................................... 74 

 

Figure 5.3. Bias for the Recovery of 2a -parameters in Part II ..................................................... 75 

 



x 

 

Figure 5.4. Bias for the Recovery of 3a -parameters in Part II ..................................................... 75 

 

Figure 5.5. Bias for the Recovery of 3a -parameters for Method 2 at Zero Proficiency Correlation 

Level in Part II .............................................................................................................................. 76 
 

Figure 5.6. RMSE for the Recovery of 1a -parameters in Part II .................................................. 78 

 

Figure 5.7. RMSE for the Recovery of 2a -parameters in Part II ................................................. 78 

 

Figure 5.8. RMSE for the Recovery of 3a -parameters in Part II ................................................. 79 

 

Figure 5.9. Bias of the Recovery of d-parameters for Method 1 at Zero Proficiency Correlation 

Level in Part II .............................................................................................................................. 81 
 

Figure 5.10. Correlation for the Recovery of d-parameters in Part II ........................................... 81 

 

Figure 5.11. Bias for the Recovery of d-parameters in Part II ...................................................... 82 

 

Figure 5.12. RMSE for the Recovery of d-parameters in Part II .................................................. 82 
 

Figure 5.13. Comparison of Effect Size for the Proficiency on Dimension 1 in Part II ............... 85 
 

Figure 5.14. Comparison of Effect Size for the Proficiency on Dimension 2 in Part II ............... 85 
 

Figure 5.15. Comparison of Effect Size for the Proficiency on Dimension 3 in Part II ............... 86 
 

Figure 5.16. Recovery of Effect Size for the Proficiency on Dimension 1 in Part II ................... 86 

 

Figure 5.17. Recovery of Effect Size for the Proficiency on Dimension 2 in Part II ................... 87 

 

Figure 5.18. Recovery of Effect Size for the Proficiency on Dimension 3 in Part II ................... 87 
 

  



1 

 

CHAPTER 1 

INTRODUCTION 

Standardized tests have been more and more important and widely applied in performance 

assessment. They are used to provide fair, reliable and objective information on examinees‟ 

abilities or skills that the tests are developed to measure. When educational achievement is 

assessed, it is important to estimate and track the extent to which examinees grow over time or 

over the course of their schooling. 

One method to evaluate examinees‟ progress is to use a single set of test questions or 

equivalent forms for all the assessments across time. But this method could be problematic, since 

the shift in content and the challenge of materials may be too huge to be appropriate for all grade 

levels. For example, a test containing many items from higher grade levels could be too difficult 

or too advanced with brand new topics for the students at the early grade levels, so as to make 

them feel overwhelmed by the test. On the other hand, a test may also be too easy and lead to 

carelessness, inattention or creative but wrong thinking when items from lower grade levels are 

administered to the students in upper grades (Kolen & Brennan, 2004, p. 372). 

The above problems could be avoided by administering the tests of different levels to students 

from different grades and using vertical scaling method to link these tests. Practically, vertical 

scaling is widely used in standardized tests. For example, for No Child Left Behind (NCLB), 

vertical scales are established to meet the requirement of evaluating the progress of children in 

attaining English proficiency as they grow from one year to the next. Vertical scales are also 

commonly used in several elementary test batteries, such as the Iowa Tests of Basic Skills (ITBS) 

(Hoover, Dunbar, & Frisbie, 2003) and the Cognitive Abilities Test (CogAT) (Lohnman & 
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Hagen, 2002). According to Harris (2007), the scores from tests in some testing systems, such as 

those from the EXPLORE, PLAN and ACT tests in the Educational Planning and Assessment 

System (EPAS), are also put on one vertical scale, and it is clearly stated that the target 

populations for these tests are students at different grade levels. 

1.1 Introduction to Vertical Scaling 

The primary reason to construct vertical scales is to “develop a conceptual definition of 

growth, especially for test areas that are closely related to the school curriculum” (Kolen & 

Brennan, 2004, p. 376). Among all tests, the mathematics achievement test is one of those 

covering several content areas that are closely related to the school curriculum. Some content 

domains are taught with different difficulty levels in different grades while others are not. As the 

grade level increases, curriculum contents become more advanced and new contents are added as 

well; consequently, test items become more difficult and items measuring new constructs are 

also included in the test.  

With the increase of the depth or amount of the contents that students have been taught, it is 

natural to ask how much students gain in knowledge according to test scores from different tests 

administered in different years. How could these changes be measured by the scores from time to 

time? Could the scores from different grades be compared directly? Did the students grow as 

much in one content area as in another one? 

Vertical scaling is one of the commonly used methods to answer these questions. There are 

many definitions for vertical scaling. According to Kolen and Brennan (2004) and Holland 

(2007), different from equating, vertical scaling tries to place tests with different difficulty but 

measuring similar constructs on the same scale. Kolen (2006) indicated that “vertical scaling 

procedures are used to relate scores on these multiple test levels to a developmental score scale 
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that can be used to assess student growth over a range of educational levels”. More specifically, 

vertical scaling focuses on the linking between tests with similar reliability and measuring 

similar construct, but with different difficulty and administered to different populations of 

examinees (Holland, 2007). 

1.2 Construct Shift and Dimensionality in Vertical Scaling 

There are many issues when the vertical scaling procedure is applied, one of which is the way 

to define the overlap of content structure across grades. Harris (2007) indicated that the 

relationship between the test content and the nature of growth plays a major role on the resulting 

score scales. It is generally easy to compare gains when the constructs measured by tests are 

fairly similar from year to year. In this situation, the linking of score scales can give sufficient 

and meaningful results. However, since the curriculum and instructions often change from grade 

to grade in practice, test designers need to modify the test content specifications to match the 

targets of instructions in order to accurately assess achievements at different grades. 

Normally, the skills and knowledge included in instructions are not very simple. For example, 

the mathematics test could cover different content areas, such as number, algebra, arithmetic and 

geometry. Furthermore, a variety of skills, such as problem solving, logical thinking and reading 

and understanding are often required to solve some mathematics problems as well. The higher 

the grade level is, the more complex the covered contents and required skills in the test are. 

This multidimensionality issue was addressed by Yen (1986), who pointed out that it is one of 

the major factors that are likely to affect the vertical scales. Several studies questioned the 

appropriateness of using only a single vertical scale to track students‟ growth from year to year 

since the instruction and curriculum change across years. Yen and Burket (1997) found that 

scales always vary by subjects and subtests within the subject. Martineau (2004, 2006) also 
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showed the significant effect of construct shift when a single vertical scale was used in the value 

added model.  

Li (2006) made a further study to capture the cross-grade content shift based on the MIRT, 

and found that the two constructs (vocabulary and problem solving) were overlapping and 

measured by both Grade 6 and Grade 7 Michigan Educational Assessment Program (MEAP) 

tests, while an additional construct (abstracting concept) was only measured by the Grade 7 test. 

Note that the tests in MEAP actually measure the students‟ learning of previous academic year. 

Patz and Yao (2007) also indicated that using the unidimensional IRT model is implausible when 

vertical scales are developed across grades. Specifically, they noticed that the construct measured 

by the seventh-grade mathematics achievement test was different from that by the fourth-grade 

test. They also pointed out that failure to account for the complexity of the large differences in 

test content and examinee skills could be an important reason that concurrent calibration using 

the unidimensional IRT model did not perform well in practical settings. What is more, some 

other studies (Braun, 2005; Doran & Cohen, 2005; Reckase & Li, 2007; Reckase & Martineau, 

2004; Schmidt, Houang, & McKnight, 2005) also addressed the issues of content shift and the 

inappropriateness of using one single scale to track students‟ growth. 

On the other hand, many studies discussed the effect of violation of the unidimensionality 

assumption in vertical scaling (e.g., Camilli, Wang, & Fesq, 1995; Dorans & Kingston, 1985; 

Turhan, Tong, & Um, 2007; Yao & Mao, 2004). More specifically, using simulated test scores 

across grade levels, Yao and Mao (2004) found that the score distribution estimated under one-, 

two- or three-dimensional models did not differ significantly; however, they did not show how 

stable the actual dimensional structures of cross-grade tests were. Turhan et al. (2007) simulated 

data with the MIRT model and tested different ways of selecting common items in vertical 
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scaling after the simulated data were calibrated with the commonly used unidimensional IRT 

model. They concluded that vertical scaling was robust to the types of slight violation of the 

unidimensionality assumption investigated in their paper, given the goodness of the content 

coverage by common items.  

Because of these two factors, namely, the modification of content area and curriculum across 

grades and the multidimensionality in the tests, a single scale score for the tests often becomes 

less comparable across grades. These factors can influence the interpretation and alignment of 

vertical scales; hence, it is important to check the content shift and dimensionality for the 

constructs measured in the tests and select appropriate vertical scaling methods to make the 

scores more comparable. Since the MIRT model identifies the multidimensional content 

structure in the test and estimates all dimensions simultaneously, it is a promising method for 

vertical scaling among the tests measuring shifted and/or multiple constructs. 

1.3 UIRT and MIRT  

1.3.1 UIRT model 

Birnbaum (1968) developed a three-parameter logistic unidimensional IRT model, which 

assumes that only one latent trait is necessary to account for variations in person-item responses 

and is widely used in test construction and equating. The formula for this model is 

))(7.1exp(1

1
),,,|1(

ibjia

ic
icjicibiaijuP







  ,           (1.1) 

where ),,,|1( jicibiaijuP   is the probability of person j correctly answering item i, given 

that the person‟s ability level is j , and icibia ,,
 
represent item discrimination, difficulty and 

guessing parameters, respectively.  
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1.3.2 MIRT model 

Multidimensional abilities/traits are often required to get correct responses for items within 

one test, or even a correct response for one item (Reckase, 1985). Hence, theoretically, it is more 

appropriate to use the multidimensional IRT model instead of the unidimensional IRT model for 

the calibration and estimation of the aforementioned multidimensional data. Since “a set of test 

items can be sensitive to several traits, or a group of examinees might vary in several latent traits” 

(Li & Lissitz, 2000), the person-item interaction and parameter estimation can be quite complex 

in MIRT. 

According to Reckase (1997a), MIRT is useful to (1) understand the proficiency structure 

needed to respond to test items, (2) describe the differential item functioning (DIF), and (3) 

choose items to fit the unidimensional IRT model. There are two types of MIRT models, namely, 

the compensatory MIRT model and the noncompensatory MIRT model. The main difference 

between these two models lies in the relationship among the multiple proficiencies that 

determine the probability of person-item responses. The compensatory model follows the logic 

of factor analysis in that the probability of a correct response is related to a linear combination of 

several proficiencies; therefore, proficiencies are additive so that high proficiency on one 

dimension can „make up‟ the low proficiencies on other dimensions. The three-parameter 

compensatory MIRT model (Reckase, 1985, 1997b) is 

))'(7.1exp(1

1
),,,|1(

id

ic
icicidijuP






jθia
jθia  ,           (1.2) 

where ),,,|1( ji θa iiij cduP   is the probability of a correct response for person j on item i, iju  

is the response for person j on item i (1 if correct and 0 otherwise), ia  is an m-element vector 

that specifies the discrimination power of item i on the m dimensions, id  is a scalar parameter 
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that is related to the difficulty of item i, ic  is a guessing parameter for item i, and jθ  is the 

person j‟s proficiency vector in an m-dimensional space.  

On the other hand, Sympson (1978) proposed a noncompensatory MIRT model, 









m

k ikjkik

i
iiij

ba

c
ccuP

1
))(7.1exp(1

1
),,,|1(


jii θba  , (1.3) 

where ika , ikb  and jk  are the item discrimination, item difficulty and person proficiency on 

the kth dimension, and ic  is the item guessing parameter. He argued that an increase in one 

proficiency could improve the overall probability of getting an item correct, but only to some 

extent. The probability of a correct response cannot exceed that defined by the dimension where 

the proficiency does not have a positive infinity value, even when all other proficiencies increase 

to positive infinity.  

The compensatory and noncompensatory MIRT models are quite different, from either the 

mathematical formula or the assumption on how people use their skills and knowledge to answer 

items. However, Spray, Davey, Reckase, Ackerman and Carlson (1990) identified item 

parameters for the two models that can give similar classical item statistics, and found that when 

the correlation between proficiencies increases, the detectable difference between models 

decreases. Therefore, they concluded that the difference between these two models could be 

considered practically unimportant. 

In practice, due to the comparative simplicity and easy estimation procedure, the 

compensatory model is the one commonly used in the MIRT calibration, scaling and equating. 

Thus, the compensatory MIRT model is used in this study, and for simplicity, no guessing 

parameter is assumed for items. 
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According to Reckase (1985), MDISC was developed to capture the discrimination power of 

an item in MIRT and its formula is given by 

                     

2/1

1

2 )(



m

k
iki aMDISC  ,                                            (1.4) 

where iMDISC  denotes the item i‟s multidimensional discrimination and 
ik

a  is the 

discrimination parameter of item i on the kth dimension. Also, the multidimensional difficulty of 

an item, MDIFF, is defined as 

                     i

ii
i

MDISC

dd
MDIFF 

ii aa '
 .                          (1.5) 

These two characteristics of an item can be represented graphically by an item vector in the 

multidimensional θ –space. In order to describe the most discriminating direction of an item in 

that space, Reckase (1985) proposed the direction cosine for the item vector as 

                     i

ik
ik

MDISC

a
cos  ,                                                  (1.6) 

where ik  is the angle between the vector of item i and the kth coordinate axis in an m-

dimensional space.  

Figure 1.1 shows these characteristics of item vectors using arrowed lines in a two-

dimensional space. The length of the arrowed line represents MDISC, the distance from the 

origin to the base of the arrowed line is MDIFF, and the direction of the arrowed line is defined 

using angles from the direction cosines. 
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Figure 1.1. Representation of Item Vectors in a Two-Dimensional Space 

 

1.3.3 Indeterminacies in MIRT 

According to Reckase (1997a), the compensatory MIRT model could be considered as a 

special case of nonlinear factor analysis. More specifically, this model can be regarded as a 

combination of the factor analysis model and the unidimensional IRT model; therefore, it suffers 

from the indeterminacies inherent in either model, such as the orientation of coordinate axes 

relative to persons‟ locations, the units of measurement and the location of origin of the 

coordinate system. These three indeterminacies are named as rotational indeterminacy, unit 

indeterminacy and origin indeterminacy, which are often discussed in MIRT research (Hirsch, 

1989; Li & Lissitz, 2000; Min, 2003; Oshima, Davey, & Lee, 2000; Reckase, 2007; Reckase & 

Martineau, 2004). 
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Suppose ),,(,)',,(,)',,( 1 J1N1 θθΘdaaA   Ndd  is one solution set for the MIRT 

calibration, where N is the total number of items and J is the total number of persons. There are 

always infinite sets of *Θd*A* ,,  as defined in Equation 1.7, which satisfy the MIRT invariance 

property as shown in Equation 1.8. 

'1
M1ΘTΘ*    , ATA*   , ATMdd*   ,                            (1.7) 

'')()'(' 1
d1AΘ1ATMdM1ΘTAT1*d*Θ*A    ,       (1.8) 

where T is a rotation matrix, M is a transformation vector and 1 is an N-element vector of 1s. 

Note that the rotational indeterminacy and unit indeterminacy are combined together as the T 

matrix in the above formulas.  

Generally, for easy computation, the MIRT software packages provide one solution for the 

MIRT calibration by setting the constraints on the person proficiencies, or more strictly speaking, 

the coordinates of person locations in an m-dimensional space, as 1m0θ )(E  and 

mmIθ )cov( , although this zero correlation among proficiencies is implausible in practice. 

Besides these constraints, the software may also use the Varimax method to change the relative 

positions between item vectors and coordinate axes for a better interpretation of item 

characteristics.  

1.3.4 Full information factor analysis in MIRT 

TESTFACT is one of the software packages for MIRT calibration (Bock, Gibbons, Schilling, 

Muraki, Wilson, & Wood, 2003). In this package, full information factor analysis is used for the 

item and person parameter estimation, and this method uses all the information available in the 

matrix of dichotomously scored responses. Another software package, NOHARM (Fraser, 1988), 
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uses the aggregated information, which is the product-moment matrix, for the MIRT parameter 

estimation. 

Based on the local independence assumption that the examinee‟s responses to test items are 

statistically independent conditional on the examinee‟s ability, the probability for person j with 

the proficiency value jθ  to get a certain response pattern is 

                







N

i

iju
ij

iju

ij PPP

1

1
)1(),,|( jj θdAu  ,                       (1.9) 

where N is the total number of items in the test, ju
 
is the response vector of size N for person j, 

iju  is the response for person j on item i , and ijP
 
is defined by the aforementioned 

compensatory MIRT model. Hence, by incorporating the prior assumption on the distribution of 

person proficiencies, the marginal probability for person j‟s response pattern is 

                  
θθθdAudAu jj dgPP )(),,|(),|(   ,                           (1.10) 

where )(θg is the pre-assumed distribution of person proficiencies. 

With the similar local independence assumption among persons‟ response strings in the MIRT, 

the joint probability for the person-by-item data matrix can be obtained by multiplying the 

probability of each person‟s response string across persons. Thus the marginal likelihood 

function for all persons on all items is 

                   





J

j

PL

1

),|(),|( dAudAU j  .                                       (1.11) 

Then the TESTFACT software package sets the constraint as 1m0θ )(E
 
and mmIθ )cov( , 

and applies the Expectation-Maximization (EM) algorithm to maximize this marginal likelihood 

function (Bock, Gibbons, & Muraki, 1988). 
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The initial values of slopes for the EM algorithm are calculated from the factor loadings, 

which result from the principal factor analysis on the tetrachoric correlation matrix among item 

responses. Then they are rotated orthogonally with the Varimax criterion to serve as starting 

values if the Varimax or Promax rotation option exists in the TESTFACT command syntax. 

There is concern that the starting values for slopes may be negative for any dimension due to the 

rotational indeterminacy in factor analysis.  

With these starting values, the item parameter estimates can be obtained after the EM cycle 

converges, which generally means that the change in parameter estimates between adjacent 

cycles is less than some predefined value. Then these estimates are regarded as fixed parameters 

and person proficiency estimates are calculated under the Bayesian framework by incorporating 

prior information on its distribution. There might be many or all negative a-parameter estimates 

on certain dimensions in the calibration result, which is most likely due to the defaults used in 

TESTFACT for the MIRT calibration. It is reasonable and legitimate to change the sign of all 

estimates on these dimensions for a better interpretation. For the scoring option in the 

TESTFACT software package, both MAP (Maximum A Posteriori) and EAP (Expected A 

Posteriori) scores can be requested, and only the latter is used in this study. The reason to use the 

EAP score is that compared with MAP and MLE (Maximum Likelihood Estimate) scores, the 

EAP score is not only more stable and easy to compute without any iterative procedure, but also 

has “smaller mean square error over the population for which the distribution of ability is 

specified by the prior” (Bock & Mislevy, 1982). According to Muraki and Engelhard (1985), the 

EAP score is calculated with the posterior distribution of person proficiency by 

                                                 )|(
~

jjj uθθ E  
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and                                           ,)()|()( 
θ

jj θθθuu dgPh  

where )|( θu jP  is the probability function defined in Equation 1.9,
 

(.)g  is the prior distribution 

of person proficiencies, (.)h  is the marginal probability for the response string ju , and )|( juθP  

is the posterior distribution, which is the conditional density for θ  given the response vector ju . 
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CHAPTER 2 

LINKING AND COMMON ITEM SELECTION 

2.1 Linking Designs 

Vertical scaling is well known to be very important in tracking students‟ growth over time. 

The purpose for vertical scale construction is to develop a common score scale across grades. 

When the vertical scale is to be constructed, numerous decisions need to be made, one of which 

is the design for data collection (Yen & Burket, 1997). Since the scaling design greatly 

determines the quality of the collected data, no matter how properly the measurement model, the 

calibration or linking method is used, if the data collection design is not appropriate, the resulting 

vertical scales will not be correctly constructed among multiple grades (Kolen & Brennan, 2004). 

As is well known in the educational measurement field, horizontal equating is used to adjust 

the difference in difficulty among forms that are built to be similar in difficulty and content 

(Kolen & Brennan, 2004), while vertical scaling aims to link scales among forms that are built to 

be different in difficulty and to be administered to students of different levels. Different from 

those in horizontal equating, the test forms used in vertical scaling, which are most likely 

administered to adjacent grade levels, are not parallel or equivalent. Therefore, an equating of 

forms is not requested in the vertical scaling procedure; instead, the test linkage is more crucial 

and the strength of the link would affect the validity of the inferences based on such linkages 

(Patz & Yao, 2007). 

According to Kolen and Brennan (2004), there are several ways to design the linkage for the 

tests from different grade levels. For example, in the equivalent groups design, through spiraling 
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of test forms, examinees are randomly chosen to be administered the test designed for their own 

grade or for the adjacent lower grade. 

In the test scaling design, the scaling test consists of items covering the contents across all 

grade levels. Since off-grade items may be too easy or too difficult for students in different 

grades, special instructions are needed to advise students to do their best. This design is not often 

used in practical settings, because it requires the construction of a complicated scaling test with 

appropriate length and the content areas covered by the scaling test may be too broad to be 

appropriate for all students in different grades.  

The common item design is different from the above two designs and has its own 

characteristics. This design identifies the overlapping structure of the tests between adjacent 

grades. In addition to the appropriately designed items for the test at each grade, a set of common 

items, also called anchor items, are included in the tests of both grades in order to link the scale 

from one grade level to the next. These common items could provide basic statistical inferences 

for linking tests with similar construct and reliability so that scaled scores from both tests are 

comparable without the assumption of group equivalence. 

Although this common item design is not difficult to implement, there are many practical 

issues that need to be considered when this design is used in vertical scaling, especially under the 

MIRT framework. For example, there is no general rule on the number of common items needed 

for an adequate vertical scaling. Also, the characteristics of items have not been clarified when 

these items are selected as common items for vertical scaling. Although there are some rules for 

the above questions in horizontal equating, the relationship between the common items and the 

tests to be linked has not been fully examined yet in vertical scaling, let alone under the MIRT 

framework. 
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2.2 Linking Methods 

For the linking under the common item design, item parameters estimated from different test 

forms can be put onto the same scale with either separate calibration or concurrent calibration. 

When the concurrent calibration is used, item responses for all grade levels are formatted for a 

single computer run, with missing item responses coded as “not presented”. For the separate 

calibration, numerous research studies have been conducted in both UIRT and MIRT fields. 

2.2.1 Linking methods in UIRT 

In the unidimensional IRT model, the probability of a correct answer mainly depends on the 

linear combination of item discrimination parameter, item difficulty parameter and person 

proficiency parameter in the exponent of the model. When the UIRT model holds, given the 

probability of a correct response, a proper linear transformation of the proficiency scale can 

result in a consistent transformation of item parameter scale. That is to say, if the proficiency is 

linearly transformed from Y scale to X scale, which is BA YX   , item parameters can then 

be transformed as following so that the model can produce exactly the same fitted probabilities. 

          A

a
a Y

X   , BAbb YX  , and YX cc   .                           (2.1) 

Note that guessing parameters are independent from the scale transformation. 

The above is called the unit and origin indeterminacies in the UIRT model. Due to these 

indeterminacies, the software packages for the UIRT calibration often provide item and person 

parameter estimates based on the constraints that 0)( E  and 1)var(  . 

Therefore, if two forms under the common item design are separately calibrated, a linear 

transformation is needed to put the two sets of estimates onto the same scale using the 

assumption that the common items in both forms have the same item parameters, so as to capture 
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the proficiency difference between groups. In practice, this is often done by putting item 

parameters estimated from the new form on the scale of the old form or base form. 

Generally speaking, there are four methods for the scale transformation in UIRT: the 

mean/mean method and mean/sigma method that belong to the moments methods, and the 

Haebara method and Stocking-Lord method that belong to the characteristic curve methods. 

In the mean/mean method (Loyd & Hoover, 1980), the A and B parameters for the scale 

transformation are computed as  

             
)(

)(

Xa

Ya
A 






  and )()( YbAXbB


   .                           (2.2) 

On the other hand, in the mean/sigma method (Marco, 1977), the A parameter is estimated via 

the standard deviations of difficulty in both forms by 

             )(
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  and )()( YbAXbB


   .                           (2.3) 

The mean/mean and mean/sigma methods described above do not consider all item parameters 

simultaneously (Kolen & Brennan, 2004). Haebara (1980) and Stocking and Lord (1983) 

avoided it by using the item or test characteristic curves to estimate the transformation. 

The Haebara method considered the difference between the item characteristic curves of 

common items, and for examinees of a particular proficiency level j , the sum of the squared 

difference between the curves of each item is expressed as 

        
2]),,;(),,;([)(  

i

YiYi
Yi

jijXiXiXijijj cBbA
A

a
pcbapHdiff




  .   (2.4) 

Then this method finds A and B by minimizing the summation across all proficiency levels as  

                            
j

jHdiffHcrit )(  .                                            (2.5) 
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Comparatively, the Stocking-Lord method minimizes the sum of the squared differences between 

the two test characteristic curves across all proficiency levels as 

     

   

j i i
YicBYibA

A

Yia
jijpXicXibXiajijpSLcrit 2)],,;(),,;([




  . (2.6) 

2.2.2 Linking methods in MIRT 

Several researchers (Li & Lissitz, 2000; Min, 2003; Oshima et al., 2000; Reckase, 2007; 

Reckase & Martineau, 2004) proposed the scaling methods based on separate multidimensional 

IRT calibrations. Oshima et al. (2000) developed several methods, which are extensions from the 

unidimensional IRT linking methods (e.g. the Haebara method and the Stocking-Lord method), 

to obtain (1) the rotation matrix to simultaneously adjust the orientation of coordinate axes and 

the variances of proficiencies, and (2) the translation vector to adjust the means of proficiencies. 

The scaling procedure in Li and Lissitz (2000) was carried out through an orthogonal Procrustes 

rotation matrix and a central dilation constant obtained by minimizing the sum of squared errors 

between the estimated item discrimination matrix from the base form and the transformed one 

from the alternate form, and a translation vector obtained by the least squares method of 

minimizing differences between the difficulty estimates from the base form and the transformed 

ones from the alternate form. Min (2003) improved this procedure by using a dilation matrix in 

lieu of the central dilation constant to take different unit scales for different dimensions into 

account. Later, Reckase and Martineau (2004) proposed an oblique Procrustes rotation method to 

match the discrimination estimates of common items, which are obtained from separate 

calibrations on linking tests. 
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With the MIRT indeterminacy formula in Equation 1.7, the oblique Procrustes rotation 

method is shown below in details. First, the transformation between discrimination estimates of 

common items from the alternate form to the base form is obtained by 

                                b
'
aa

'
a AAAAT

1)(   ,                                       (2.7) 

where T is the m by m rotation matrix, aA  is the n by m matrix of discrimination estimates for 

the alternative form, and bA  is the matrix of the same size for the base form that is the target for 

the transformation. Then bA


, the a-parameter estimates from alternate form on the metric of 

base form, is  

                                
TAA ab 


 .                                                         (2.8) 

Transformation of the d-parameter estimates from the alternate form to the metric of the base 

form is obtained by 

                                
1)()'('  b

'
bbab AAAddM


 ,                          (2.9) 

where bd  is the n-element vector of d-parameter estimates from the base form, and ad  is the 

vector of the same size for the alternate form. Then the d-parameter estimates of the alternate 

form on the base form metric is  

                                  
TMAdd aab 


 .                                              (2.10) 

Accordingly, the θ  estimates from the alternate form on the base form metric is  

                                  
MθTθ a

1
b  

 .                                               (2.11) 

Most studies of MIRT linking methods focused on separate calibrations. One of the few 

examples for the concurrent calibration for the MIRT linking could be found in Reckase and Li 
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(2007), where they discussed the issue of using concurrent calibration to link the tests from 

adjacent grades.  

2.2.3 Linking through separate and concurrent calibrations 

Numerous studies discussed and compared the linking results by using separate and 

concurrent calibrations. The findings for which method performs better are mixed. The study of 

Kim and Cohen (1998) compared separate and concurrent linking methods in three ways 

(separate calibration with the characteristic curve linking, concurrent calibration with the 

marginal maximum a posteriori estimation, and concurrent calibration with the marginal 

maximum likelihood estimation) using the simulated unidimensional data. They found that the 

three methods could yield similar results when the number of common items was large; however, 

when the number of common items was small, they noticed that the separate calibration could 

provide more accurate results. Contrary to that, some other studies found that concurrent 

calibration could produce more stable linking results even when the number of common items 

was not large. For example, in the study by Hanson and Béguin (2002), concurrent calibration 

was found to result in lower errors than separate calibration by using the BILOG-MG software 

package when the groups were non-equivalent. One possible reason given by them was that the 

parameter estimates for the common items are based on larger samples. But they also reported 

the effect of different software packages when comparing concurrent and separate calibrations. 

When the MULTILOG software package was used, the concurrent estimation also performed 

well, except when the two groups had a mean difference of one standard deviation. 

Furthermore, Kolen and Brennan (2004, p. 391) pointed out that concurrent estimation might 

be more preferable, since it is less time consuming and is supposed to generate more stable 

results given the IRT model holds. However, they also indicated that in practice the separate 
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estimation might be more popular. The reason was that the two sets of item parameters estimated 

from different tests could be compared to check their behaviors and identify potential problems 

under the common item design. More importantly, according to them, the violation of 

unidimensionality assumption could cause problems in the concurrent calibration for vertical 

scaling, since this approach assumes a single proficiency estimated across all grades. Béguin, 

Hanson and Glas (2000) also examined the accuracy of equating with separate and concurrent 

calibration using the unidimensional IRT model when the data were actually generated with a 

two-dimensional model. It was found that under the equivalent groups design, the separate 

calibration performs consistently better than the concurrent calibration. In the non-equivalent 

groups design, both methods gave unsatisfactory results when their results were compared to 

those from a correctly specified two-dimensional model; however, when the proficiency 

correlation was high, the separate calibration still performed better than the concurrent 

calibration. Therefore, separate calibration seemed to show comparative robustness to the 

violation of unidimensionality and this may be due to the fact that the parameter estimation was 

carried out for only one grade level at each computer run. This finding was confirmed by many 

studies (e.g., Hoskens, Lewis, & Patz, 2003; Karkee, Lewis, Hoskens, Yao, & Haug, 2003; Kim 

& Cohen, 1998). However, according to the studies by Hanson and Béguin (2002), Patz and Yao 

(2007) and Yao and Mao (2004), there is some evidence that given the model is correctly 

specified, the concurrent calibration method might produce more stable results. 

There are also several discussions which argued that concurrent calibration should be 

conducted with the software packages that allow the multiple group estimation, such as the 

BILOG-MG. However, when the MIRT model is assumed, currently, there is no efficient 

software package for the MIRT calibration for multiple groups. On the other hand, according to 
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Simon (2008), in the MIRT linking, concurrent calibration, which was conducted without 

additional parameters for multiple groups, generally performs better than the linking methods 

with separate calibration even when the mean difference between proficiencies of two groups 

was 0.5 standard deviation and the correlation among proficiency dimensions was high. 

According to the results of above research, the concurrent calibration method should be used 

for the multidimensional IRT estimation in this study so that the MIRT estimates from different 

tests are automatically aligned to the same coordinate system. 

2.3 Research on Common Items in Equating 

With the common item non-equivalent groups design, there are numerous research studies on 

the effect of different common items on the equating results. Some studies (Haertel, 2004; 

Michaelides & Haertel, 2004) investigated the behavior of linking items on the test equating 

results and found that the error caused by the selection of common items has been overlooked in 

the error calculation process. Some other studies (Raju, Edwards, & Osberg, 1983; Wingersky & 

Lord, 1984) investigated the minimum adequate number of common items and suggested that as 

few as five or six carefully chosen items could serve as satisfactory anchors in IRT equating 

when the item parameters of both tests are estimated in one single analysis. However, the rule of 

thumb for the minimum number of common items was given by Angoff (1984, p. 107), who 

suggested that 20 items or 20% of the total number of items in the test are more appropriate for 

linking. 

More importantly, in order to reflect group differences accurately, the set of common items 

should be proportionally representative of the total test in content and statistical characteristics 

(Kolen & Brennan, 2004, p. 19; Petersen, Kolen, & Hoover, 1989, p. 246). This is a commonly 

accepted rule for the equating in either research or operational work. Sinharay and Holland 
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(2006a) reexamined discussions about the correlation between common items and the total test in 

equating. Based on the previous studies, they asserted that the miditest, which consists of 

medium difficulty items, has higher reliability and also higher correlation with the total test than 

the commonly used minitest. Since it is long believed that higher anchor-test-to-total-test 

correlation could lead to better equating (Angoff, 1971, p. 577; Petersen et al., 1989, p. 246), 

Sinharay and Holland (2006b) doubted the necessity of selecting common items to form a mini-

version of the total test and pointed out that the anchor test with a spread of item difficulties less 

than that of a total test seems to perform as well as or even better than a minitest. In that study, 

they also discussed the issue of composing an anchor test with different spread of difficulties 

using the data simulated from multidimensional IRT model. They found that the content 

representativeness of anchor items is very crucial in the equating but there seems to be no 

practically significant difference in the equating performances using either minitest or miditest as 

the anchor test. Note that all the equatings in their study were conducted using the classical 

methods, although the data were simulated with the IRT models. 

Nevertheless, all the above research focused on the principles and suggestions on common 

item selection in horizontal equating. Different from that in equating, tests in vertical scaling 

cannot be designed as parallel forms, since items with different difficulty levels should be 

selected to be consistent with the curriculum and instructions for different grades; therefore, 

vertical scaling can only be called linking instead of equating, which requires more restricted 

conditions on the characteristics of equated tests. Additionally, the validity of inferences is 

highly influenced by the strength of the linkage, which is determined by the characteristics of 

common items under the common item design. 
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2.4 Research on Common Items in Vertical Scaling 

Several studies have also been conducted on the common item selection in vertical scaling. 

Two simulation studies (Jiao & Wang, 2006; Wang, Jiao, Young, & Jin, 2006) explored the 

effects of the linking items when they come from different sources: using only below-grade 

items, using only above-grade items, or using both below-grade and above-grade items. They 

showed inconsistent recovered growth patterns and variability of scale scores when different off-

grade items were used for vertical linking in a common person design. 

Jiao and Wang (2007) tested the effect of anchor items with respect to the source of linking 

items, target test difficulty and the percentage of linking items relative to the total test. They 

found that separate calibration method using both below-grade and above-grade items for linking 

would lead to the best recovery. In addition, they concluded that more linking items could yield 

less mean bias in proficiency estimation and higher classification accuracy. The simulation study 

by Turhan et al. (2007) tested the effect of anchor items on vertical scaling according to the item 

difficulty level, the proficiency distribution and the dimensionality of the constructs. They 

concluded that with appropriate content coverage, any item from upper or lower grade tests 

could be selected as an anchor item, and slight violations of the unidimensionality assumption 

did not distort the vertical scale, given the good content coverage by the anchor items. However, 

from their design, anchor items were only selected according to the difficulty and grade level 

instead of different content domains; therefore, it was insufficient to draw the conclusion on the 

effect of content coverage by anchor items, which was not examined in their study. 

2.5 Research Objectives and Questions 

Most of the above studies were based on the results from the unidimensional IRT calibration, 

even for the data simulated from a MIRT model. As is well known, the unidimensional IRT 
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model assumes that only one latent trait is necessary to account for variations in examinees‟ 

response strings (Lord, 1980); however, in practical settings, multiple abilities/traits are often 

required to get correct responses in standardized tests. Since the MIRT model is specially 

designed for the multidimensional data, it is very important to choose appropriate common items 

for vertical scaling under the framework of multidimensional IRT instead of the misspecified 

unidimensional IRT. 

Based on the previous studies on the common item selection methods, although some criteria 

were set up to select common items via unidimensional IRT, hardly could I find any guidelines 

in the MIRT vertical scaling literature. Nor did any research evaluate different common item 

selection methods when constructs measured by the tests from different grades are not identical. 

Therefore, it is very important to further examine these issues and this study aims to answer the 

following three research questions. 

First, in Part I, a design is used to evaluate different ways to select common items for vertical 

scaling in MIRT when both lower and upper grade tests measure the same constructs. In this part, 

items in the tests of both grades are manipulated to mainly differ in difficulty. Common items 

used for linking can be selected according to different content coverage and item difficulty level 

from the MIRT framework. In addition to these MIRT methods, one classical correlation method 

is also applied to select common items to examine their influence on the scale linking. 

Second, in Part II, a design is used to evaluate different ways to select common items for 

vertical scaling in MIRT when the upper grade test measures more constructs than the lower 

grade test. This part is designed to evaluate whether it is useful to include in the anchor test items 

that measure the constructs only in the upper grade test, or it is sufficient to include items which 

measure the constructs in both tests. More specifically, this design is to test the effectiveness of 
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using items measuring common constructs to replace those measuring the unique constructs in 

the anchor test, especially when the proficiency correlation between these constructs is high. 

Third, in both Part I and Part II, designs are also used to evaluate the effect of different 

proficiency correlation levels on the linking results. One special interest is to examine whether 

the correlation between the construct only measured by the upper grade test and the construct 

measured by both tests has any impact on the linking strength in the Part II design. 

Different ways of selecting common items are evaluated and compared by checking the 

accuracy of item and person parameter recovery. Since parameters are not available in real data, 

a simulation study is used to answer the aforementioned research questions. Results of this study 

can provide practitioners with guidance on which common item selection method should be used 

in vertical scaling under the MIRT framework. 
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CHAPTER 3 

DESIGNS AND METHODS 

 This chapter first describes the design and data generation method for the two parts that deal 

with different content structures. Then the MIRT calibration and the evaluation criteria for 

parameter recovery are discussed in details.  

3.1 Parameter Simulation 

In order to make parameters more realistic, efforts were made to match the generating 

parameters to those estimated from the real data with respect to the distribution, structure and 

complexity. The parameters in this study were either from those in the study by Reckase and Li 

(2007) or generated from the estimated distributions from that study, and some adjustments were 

also made to these parameters to match the research interest of this study. The parameters used in 

their study were revised from the research result of Li (2006), who analyzed the data of the 2005 

mathematics tests from the Michigan Educational Assessment Program (MEAP) (2005) in 

details. For the content structure defined in that study, the Grade 6 test is considered to measure 

two constructs named as „Problem solving‟ and „Arithmetic‟, while besides these two constructs, 

the Grade 7 test measures one more construct „Algebra‟. Note that these constructs were 

determined from item clustering rather than the content specifications for the test. 

All items were generated to be approximate simple structure items (Roussos, Stout , & 

Marden, 1998) so that they have high discrimination values on one dimension and low values on 

all other dimensions. These approximate simple structure items were used for simplicity and 

clarification in that the correlation between item responses is assumed to be only determined by 

person proficiencies, instead of the correlated composite effects caused by items (Fang, 2008). 
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The idea of item cluster, which was first proposed by Miller and Hirsch (1992), was also used 

for the generation of item discrimination parameters. The item cluster is defined as a set of items 

whose vectors roughly point to the same direction in the multidimensional space. All items 

within the same cluster are supposed to measure the same proficiency that can be put onto one 

continuum scale. Roussos et al. (1998) gave an example of using item clusters to define the 

dimensionality based on the inter-cluster proximity matrices. According to Reckase (2009, p. 

221), for all items within one cluster, the angle between each pair of item vectors should be small. 

As is well known, the angle between any two item vectors in a multidimensional space can be 

computed through the following formula: 
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2,1 arccos)cos'arccos(cos i2i1 αα  ,  (3.1) 

where 2,1 ii  is the angle between vectors for items 1i  and 2i , i1α  and i2α  are the vectors of 

direction angles for item 1i  and 2i , and kia 1  and kia 2  are the kth dimensional discrimination 

parameters for item 1i  and 2i , respectively. The angle between item vectors can range from 0  

to 90 . An angle of 0  means that the two item vectors point in exactly the same direction and 

the underlying proficiencies measured by these two items are perfectly correlated, while an angle 

of 90  indicates that there is no correlation between the two underlying proficiencies.  

The multidimensional discrimination parameter was simulated from a lognormal distribution 

and )log(MDISC  had a mean of 0 and a standard deviation of 0.2. The simulation of within-

cluster angles followed the idea of approximate simple structure, where item vectors measuring a 

certain dimension randomly fall within 15  around that dimensional axis. Therefore, the angle 
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on the dominating dimension, , was simulated to follow a uniform distribution with the range 

between 0  and 15 . In a two-dimensional situation, the angle on the other dimension was then 

calculated by 90 ; however, in a three-dimensional situation, the angle for a second 

dimension was simulated from a uniform distribution with the range between 90  and 90 , 

and the third angle was obtained by the mathematical fact that the sum of the squared cosines of 

all angle degrees should be equal to one. 

The MDIFF was simulated according to the normal distributions with a mean of -0.2 for the 

lower grade, a mean of 0 for the upper grade, and standard deviations of 0.75 for both grades. 

Since the mean of these simulated MDIFFs may not be close to the proposed mean due to the 

small sample, the MDIFFs of all unique items were adjusted according to the difference between 

the proposed and sample means, and this was done for each dimension and for each grade. 

Finally, id  was computed by − ii MDISCMDIFF *  as in Equation 1.5.  

This study was divided into two parts that address different research questions. In Part I, both 

lower and upper grade tests measure the same two constructs, while in Part II, besides the same 

two constructs measured by both tests, one more construct is measured by the upper grade test. 

In each part, 3000 person and 40 unique item parameters were simulated for each grade. The 

same unique item parameters were employed for the simulation for each part, while the person 

proficiency parameters were manipulated to vary according to different correlation levels. 

Additionally, one item pool with 100 items was created according to the generation distribution 

of these unique items, and 10 common items were selected from the pool according to different 

criteria, such as content coverage, item difficulty and classical point-biserial correlation. All the 

parameters were generated using Matlab (The MathWorks., 2008). 
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With the item and person parameters, the probability matrix was computed using the MIRT 

model in Equation 1.2 by assuming the guessing parameters to be 0. Then the dichotomous 

response matrix was created by comparing the true probability matrix with a matrix where 

elements were randomly simulated from a standard uniform distribution. In this study, in order to 

make the results more comparable, the full response matrix was generated for each replication. 

This full response matrix is a matrix of 6000 examinees by 180 items. The first 100 columns in 

the matrix include responses on all items in the item pool and for all examinees, while the 

remaining 80 columns contain responses on unique items for examinees from either lower or 

upper grade and each of the two sets of 40 unique items was answered only by 3000 examinees 

in the corresponding grade. Since unique items designed for lower grade were not administered 

to upper grade examinees and vice versa for lower grade examinees, those responses were 

missing by design and coded as not presented in the response matrix.  

Based on this full response matrix, the response matrix for analysis on different common item 

selection method was created by combining responses to the 10 common items selected from the 

item pool and responses to all the unique items. The layout for this response matrix is shown in 

Table 3.1. Therefore, for each replication, the difference among the data matrices for different 

item selection methods only lies in the responses to different sets of common items.  

Table 3.1. Layout of Person by Item Response Matrix 

 
Item 

Person  
Common Items  

(10) 

Lower grade items 

(40) 

Upper grade items 

(40) 

Lower grade examinees 

(3000) 

lower grade item 

responses 

lower grade item 

responses 
not presented 

Upper grade examinees 

(3000) 

upper grade item 

responses 
not presented 

upper grade item 

responses 
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3.2 Parameter Estimation and Vertical Scaling 

In this study, concurrent calibration with common items as links was used for scaling so that 

the item estimates for tests in both grades were automatically put on the same coordinate system. 

The MIRT calibration on the response matrix was conducted via the TESTFACT software 

package. As mentioned in Section 1.3.4, the TESTFACT software estimates item parameters by 

applying the EM algorithm to maximize the constructed marginal maximum likelihood, where 

person proficiency parameters are integrated out via some pre-assumed proficiency distribution. 

These item estimates are then regarded as fixed parameters for the proficiency estimation. The 

convergence criterion of the EM algorithm was set to a maximum of 200 cycles and the precision 

of 0.005, and the options of nine quadrature points and EAP scoring method were specified in 

the TESTFACT syntax for the proficiency estimation. 

For the concurrent calibration in TESTFACT, item and person parameter estimates were 

supposed to be ready for further analysis; however, one small error was found for the person 

parameter estimation in this software package when the concurrent calibration was used under 

the common item design. It seemed that person proficiencies for the second group were 

incorrectly estimated by using the item estimates from the first group; therefore, instead of one 

computer run to obtain both item and person estimates simultaneously, person proficiencies were 

separately estimated for each grade using additional computer runs by fixing the related item (10 

common items + 40 unique items) estimates as parameters. 

Due to the aforementioned three indeterminacies in the MIRT model (Li & Lissitz, 2000), 

TESTFACT provides one solution of item and person parameter estimates using some 

convenient constraints. These estimates are subject to rotational, unit and origin transformations; 

however, the core part dθa'  should be invariant to the transformation to ensure the invariance 
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property of the MIRT model, which means that the probabilities of item responses remain 

unchanged through the transformation (Reckase, 2009, p. 235).  

3.3 Evaluation Criteria 

In order to reduce the impact of different common items on the evaluation, these common 

items were not included in the calculation of evaluation indices, although they were used to link 

the scales across the two grades and estimate person proficiencies for each grade. In this study, 

three indices, including Pearson‟s correlation, bias and Root Mean Squared Error (RMSE), were 

employed to evaluate the parameter recovery. Among these indices, correlation explains the 

linear trend between the estimated and true parameters, bias represents the average of the 

differences between estimated and true parameters across replications and RMSE refers to the 

square root of the sum of squares of those differences. In this study, high correlation, zero bias 

and low RMSE indicate a good recovery of parameters. The formulas of bias and RMSE for 

parameter   are shown in Equations 3.2 and 3.3: 

                           R
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 ,                                           (3.2) 
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 ,                                      (3.3) 

where r̂ is the estimate for 
 
in the rth replication, and R is the total number of replications. 

The linking performance of different item selection methods was evaluated with four 

parameter recovery criteria, including the probability matrix recovery, the item a-parameter 

recovery, the item d-parameter recovery and the effect size recovery. Although the estimated and 

true probability matrices can be compared directly for different item selection methods, the 

recoveries related to item and person parameters can only be evaluated after the estimates from 
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the TESTFACT software are put onto the same coordinate system as the parameters. In the study 

by Reckase and Li (2007), before the evaluation on the parameter recovery, the item 

discrimination estimates were rotated to a simple structure through the oblique Procrustes 

rotation method described in Section 2.2.2 to match the content dimensions measured by these 

items. The target matrix in their study was defined as the 0/1 matrix with 1s for the measured 

dimension and 0s elsewhere; rather, in this study, the true discrimination parameter matrix was 

used as the target to solve the rotational and unit indeterminacies as in Simon (2008), and the d 

estimates were then adjusted accordingly by matching with the d-parameters. Finally, the 

evaluation on the effect size recovery was conducted after the person parameter estimates were 

transformed based on the transformations of item estimates. The computation details for each 

evaluation criteria are described as follows: 

1. The recovery of probability matrix. The estimated probability matrix for correct responses 

was computed using the item and person parameter estimates. Meanwhile, the true probability 

matrix could also be obtained with the parameters for the simulation. The correlation was 

calculated between the two vectors based on the vectorization of the true and estimated 

probability matrices for each replication and then averaged across all replications; however, the 

bias and RMSE were computed for each entry in the probability matrix, and then averaged across 

items and examinees. 

2. The recovery of item a-parameters. With the oblique Procrustes rotation method, the item 

estimates from the TESTFACT software were first transformed to match the generating 

parameters and then compared with the parameters. The correlation for the recovery on each 

dimension was calculated between the estimated and true a-parameters for each replication and 
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then averaged across replications; however, the bias and RMSE were computed for each a-

parameter and then averaged across items for each dimension. 

3. The recovery of item d-parameters. The d estimate is affected not only by the rotation and 

unit indeterminacies but also by the origin indeterminacy. Reckase (2009, p. 242) mentioned that 

“the change in d-parameter is the addition of a term that is the shift in origin weighted by the a-

parameter corresponding to the coordinate axis.” Hence, it is the cumulative effect from the 

change of the coordinate system that results in the change of the d-parameters. After the d 

estimates from the TESTFACT software were transformed, the correlation was calculated 

between the adjusted estimates and the true d-parameters for each replication and then averaged 

across replications; however, the bias and RMSE were computed for each item and then 

averaged across items. 

4. The recovery of effect sizes. The use of effect size, which is of great interest to policy 

makers, shows how sensitive each common item selection method is to detect the differences in 

achievements across the two grades. In this study, the effect size was computed by dividing the 

difference in means of proficiencies for examinees in different grades by the pooled standard 

deviation of proficiencies for these examinees, based on the true parameters as well as those 

transformed estimates. The formula is shown as following: 
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where k  is the mean of proficiencies on the kth dimension and ks  is the standard deviation of 

proficiencies on the same dimension. Since the effect size is an aggregated statistics, the three 
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indices for parameter recovery are not appropriate for the evaluation; instead, the magnitudes of 

the estimated and true effect sizes were used for the comparison. Therefore, for each dimension, 

the estimated effect size was calculated for each replication and then averaged across replications 

for the comparison with the true effect size. 
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CHAPTER 4 

PART I: SAME CONSTRUCTS 

4.1 Parameters and Designs 

In this part, both lower and upper grade tests are assumed to measure the same two constructs. 

There are 40 unique items in the test of each grade; besides, in both tests, there are 10 common 

items that are selected according to nine different methods. For different grades, person 

proficiencies are simulated from the multivariate normal distributions with different mean 

vectors but the same variance-covariance matrix. 

4.1.1 Unique items 

For each grade, 20 unique items measure the first construct and the other 20 unique items 

measure the second one. The cluster number, item parameters, multidimensional difficulty, 

multidimensional discrimination and direction angles of unique items for tests in both grades are 

listed in Tables 4.1 and 4.2. Items in Cluster 1 with large loadings on 1a  mainly measure the 

proficiency on Dimension 1, while those in Cluster 2 measure the proficiency on Dimension 2. 

The means of MDISCs for different grade levels are quite similar; however, the mean and 

standard deviation of MDIFFs are -0.2 and 0.83 for the lower grade, while they are 0 and 0.63 

for the upper grade. Therefore, the mean of MDIFFs for unique items is smaller for the lower 

grade than for the upper grade. 

4.1.2 Common items 

After unique items for each grade level were simulated, an item pool with 100 items was 

generated with half of the items simulated using the generation distribution of unique items for 

each grade level. Items in this pool were then divided into several categories according to the 
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Table 4.1. Unique Item Parameters and Statistics for Lower Grade in Part I 

Cluster 1a  2a  d  MDIFF    MDISC  1  2  

1 1.02 0.07 1.00 -0.97 1.02 4 86 

1 1.07 0.25 0.65 -0.59 1.10 13 77 

1 0.83 0.03 0.52 -0.63 0.83 2 88 

1 0.97 0.08 -0.27 0.28 0.98 5 85 

1 0.89 0.20 -1.22 1.34 0.91 13 77 

1 0.90 0.06 -0.47 0.52 0.90 4 86 

1 1.37 0.26 0.39 -0.28 1.39 11 79 

1 1.18 0.09 -0.38 0.32 1.18 5 85 

1 1.12 0.14 0.35 -0.30 1.13 7 83 

1 1.08 0.23 2.00 -1.81 1.10 12 78 

1 1.04 0.23 0.23 -0.22 1.06 13 77 

1 1.27 0.23 0.60 -0.46 1.29 10 80 

1 1.13 0.14 0.38 -0.33 1.14 7 83 

1 1.04 0.21 0.38 -0.35 1.06 12 78 

1 0.96 0.08 -1.94 2.03 0.96 5 85 

1 1.27 0.31 1.68 -1.28 1.31 14 76 

1 1.13 0.06 1.34 -1.19 1.13 3 87 

1 1.08 0.09 1.04 -0.96 1.09 5 85 

1 0.75 0.13 -0.71 0.94 0.76 10 80 

1 1.00 0.08 0.04 -0.04 1.00 4 86 

2 0.12 1.26 -0.76 0.60 1.27 85 5 

2 0.17 0.78 -0.39 0.49 0.80 78 12 

2 0.09 0.93 1.39 -1.48 0.94 84 6 

2 0.24 0.90 0.25 -0.27 0.93 75 15 

2 0.13 0.97 0.60 -0.62 0.98 82 8 

2 0.14 0.88 0.41 -0.46 0.89 81 9 

2 0.00 0.80 0.38 -0.47 0.80 90 0 

2 0.19 0.98 0.36 -0.36 1.00 79 11 

2 0.16 1.09 0.82 -0.75 1.10 82 8 

2 0.22 1.01 0.85 -0.82 1.03 78 12 

2 0.19 0.81 0.19 -0.23 0.83 77 13 

2 0.11 0.83 -1.10 1.31 0.84 82 8 

2 0.13 1.00 0.23 -0.22 1.01 82 8 

2 0.12 0.86 0.47 -0.54 0.87 82 8 

2 0.26 1.21 0.17 -0.14 1.23 78 12 

2 0.02 0.88 1.49 -1.69 0.88 89 1 

2 0.12 1.07 -1.29 1.21 1.07 84 6 

2 0.14 0.90 -0.08 0.09 0.91 81 9 

2 0.02 0.67 0.15 -0.22 0.67 88 2 

2 0.23 0.98 -0.60 0.60 1.01 77 13 

Mean 0.60 0.55 0.23 -0.20 1.01     

Std 0.48 0.42 0.84 0.83 0.16     
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Table 4.2. Unique Item Parameters and Statistics for Upper Grade in Part I 

Cluster 1a  2a  d  MDIFF    MDISC  1  2  

1 1.46 0.31 -0.91 0.61 1.49 12 78 

1 1.01 0.22 0.11 -0.11 1.04 12 78 

1 0.68 0.13 -0.03 0.04 0.69 11 79 

1 0.80 0.05 -0.58 0.72 0.80 4 86 

1 0.55 0.12 -0.10 0.17 0.56 12 78 

1 1.07 0.28 0.54 -0.49 1.11 15 75 

1 1.08 0.15 -0.04 0.04 1.09 8 82 

1 1.25 0.02 -2.22 1.78 1.25 1 89 

1 1.08 0.20 0.72 -0.65 1.10 10 80 

1 0.60 0.11 -0.08 0.13 0.61 10 80 

1 1.35 0.19 -0.90 0.66 1.36 8 82 

1 0.94 0.24 -0.01 0.01 0.97 14 76 

1 1.19 0.16 -0.77 0.64 1.21 8 82 

1 1.12 0.16 0.60 -0.53 1.13 8 82 

1 0.80 0.02 0.47 -0.58 0.80 2 88 

1 1.18 0.29 0.36 -0.29 1.22 14 76 

1 1.03 0.25 0.00 0.00 1.06 14 76 

1 1.05 0.15 0.58 -0.55 1.06 8 82 

1 0.91 0.19 0.58 -0.63 0.93 12 78 

1 1.19 0.28 1.18 -0.96 1.23 13 77 

2 0.19 0.80 -0.33 0.41 0.82 76 14 

2 0.07 0.96 1.52 -1.59 0.96 86 4 

2 0.16 0.98 1.50 -1.52 0.99 81 9 

2 0.25 1.03 -0.62 0.59 1.06 76 14 

2 0.21 0.86 0.38 -0.43 0.89 76 14 

2 0.07 1.03 -0.63 0.61 1.03 86 4 

2 0.24 0.90 0.03 -0.03 0.93 75 15 

2 0.11 0.92 -0.11 0.12 0.92 83 7 

2 0.15 0.73 -0.39 0.53 0.74 79 11 

2 0.22 1.22 0.74 -0.60 1.23 80 10 

2 0.09 0.79 0.01 -0.01 0.79 83 7 

2 0.10 0.93 -0.26 0.27 0.93 84 6 

2 0.27 1.22 -0.20 0.16 1.25 77 13 

2 0.12 0.90 -0.72 0.79 0.91 83 7 

2 0.16 0.89 -0.12 0.13 0.90 80 10 

2 0.10 1.04 0.23 -0.22 1.04 85 5 

2 0.21 1.18 -0.05 0.05 1.20 80 10 

2 0.07 0.84 -0.46 0.55 0.84 85 5 

2 0.20 1.31 -0.35 0.26 1.33 81 9 

2 0.16 0.92 0.06 -0.06 0.93 80 10 

Mean 0.59 0.57 -0.01 0.00 1.01     

Std 0.47 0.42 0.69 0.63 0.21     

  



39 

 

two content dimensions and three difficulty levels. The numbers of items for different 

combinations of these two factors are shown in Table 4.3. 

Table 4.3. Number of Items for Different Content and Difficulty Categories in Item Pool of Part I 

  Low Medium High All 

Dimension 1 15 20 15 50 

Dimension 2 15 20 15 50 

 

Ten common items for tests in both grades were selected from the item pool according to the 

MIRT methods and the classical correlation method. The details for each method are shown 

below. 

(1) The MIRT methods consist of eight methods according to different combinations of 

content and difficulty coverage. 

 Content coverage. Common items are selected (a) only from items in Cluster 1, or (b) 

evenly from items in Cluster 1 and Cluster 2 to achieve full content coverage. 

 Difficulty coverage. Items in the pool are grouped into the low, medium and high 

difficulty levels. Common items are selected from (a) only the low level, (b) only the 

medium level, (c) only the high level, or (d) all three levels. Note that the item 

difficulty is confounded with the grade level, because most likely, difficult items come 

from the upper grade and easy items from the lower grade. 

(2)  The classical method selects 10 items with high item-total-test correlation in both lower 

and upper grade tests.  

In Methods 1-4 where partial content coverage is achieved, 10 common items were selected 

from items in Cluster 1 according to different difficulty coverage. For Methods 1-3, a simple 

random sample of items was selected from the low, medium and high difficulty levels, 

respectively. For Method 4 with full difficulty coverage, three low, four medium and three high 
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difficulty items were randomly chosen from the corresponding categories, according to their 

proportions in the item pool.  

In Methods 5-8, five items were chosen from each of the two item clusters to achieve the full 

content coverage. Common items in Methods 5-7 were selected from each of the three difficulty 

categories, respectively. Note that the common item set in Method 6 can be regarded as a 

miditest with full content coverage. For Method 8, the set of common items covers all three 

difficulty levels and two content domains, and can be considered as a mini-version of the whole 

test.  

Method 9 is a post-hoc method with common items selected based on the analysis on some 

generated response matrices. Correlations between the scores of items in the item pool and the 

total score for unique items in each grade test were calculated and ranked from high to low. 

These correlations were computed for two samples of response matrix at each proficiency 

correlation level. Ten items with high item-total-test correlation in tests of both lower and upper 

grades were selected as common items for this method.  

The statistics for different common item sets are listed in Table 4.4. The means of MDIFF 

values range from -1.05 to 0.92. The average MDIFF values for common items in Methods 2, 4, 

6 and 8 are all close to 0. This is reasonable since items in these methods are either from medium 

difficulty level with a small spread of difficulty values or from all three difficulty levels with a 

large spread. From the perspective of MIRT, common items in the classical correlation method 

seemed to be selected from the medium difficulty level but with an unbalanced coverage for the 

two content domains. This also indicated that items from the medium difficulty level are more 

highly correlated with the total test than other items. 
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Table 4.4. Statistics of Common Items for Different Selection Methods in Part I 

Selection Method 

MDIFF 

Mean 

MDIFF 

Std 

# of 

items in 

Dim 1 

# of 

items in 

Dim 2 

MDIFF 

Mean in 

Dim 1 

MDIFF 

Mean in 

Dim 2 

(1) 1D, Low  -0.95 0.30 10 0 -0.95 NA 

(2) 1D, Medium  0.00 0.30 10 0 0.00 NA 

(3) 1D, High  0.61 0.23 10 0 0.61 NA 

(4) 1D, All 0.10 0.89 10 0 0.10 NA 

(5) 2D, Low -1.05 0.44 5 5 -1.05 -1.05 

(6) 2D, Medium -0.09 0.18 5 5 -0.09 -0.09 

(7) 2D, High 0.92 0.47 5 5 0.90 0.95 

(8) 2D, All -0.16 0.87 5 5 -0.37 0.05 

(9) Classical  -0.26 0.30 2 8 -0.42 -0.22 

 

4.1.3 Person parameters 

For different grades, person proficiency parameters were simulated according to the 

multivariate normal distributions with different mean vectors but the same variance-covariance 

matrix. According to the analyses on MEAP mathematics test by Li (2006), the increases on 

mathematical skills from the lower grade to the adjacent upper grade were about 0.2 standard 

deviation units. Therefore, the mean vector of normal distribution for the person proficiency 

generation was set to be (-0.2, -0.2) for the lower grade and (0, 0) for the upper grade. The 

variances of person proficiencies on both dimensions were set to one; however, the correlation 

between proficiencies was manipulated to vary from 0, 0.4, 0.6 to 0.8 for both grades. Responses 

were simulated for 3000 examinees and 40 unique items in each grade, while those for the 

common items were simulated for all 6000 examinees in both grades.  

4.2 Estimation 

In order to reduce sampling errors, 30 response matrices were simulated based on the same 

probability matrix for each proficiency correlation level and the MIRT calibration was conducted 
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on the data matrix for the selected common items and all unique items. This resulted in a total of 

1080 computer runs (4 proficiency correlation levels x 30 replications x 9 item selection 

methods). It took about 20 minutes for each calibration with the TESTFACT software package. 

Dimensionality of the simulated data was checked with the MIRT calibration using one more 

dimension. The results showed that the item discrimination estimates on the extra dimension 

were very small, while the estimates were large on at least one of the other dimensions. This 

justified the use of the two-dimensional solution. 

Due to the rotational indeterminacy, the TESTFACT software may not orient the axes of the 

coordinate system for the parameter estimates in a proper direction as those for the generating 

parameters. One common problem is that the a-parameter estimates on different dimensions may 

be switched or the estimates from some dimension may be negated, with respect to the 

generating parameters. However, some additional TESTFACT runs confirmed that the 

proficiency estimates do not change, no matter whether the a-parameter estimates on any 

dimension are negated or not. This phenomenon was also observed in the study by Fang (2008) 

and explained in the TESTFACT help file, which says that “it may therefore happen that 

negative scores are associated with above average percent responses and vice versa for below 

average responses. TESTFACT software attempts to reverse the signs in such a way that scores 

above zero are usually assigned with above average achievement.” 

These item and person parameter estimates were rotated to match the generating parameters 

before the evaluation. Thus, the order of these estimates does not lead to any problem; however, 

it is problematic if proficiency estimates are not correctly paired with item estimates. Therefore, 

the signs of item and person parameter estimates may need to be corrected to make these 

estimates a valid pair as one solution for the MIRT calibration. 
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In order to correct the sign of item discrimination estimates, the mean of these estimates was 

computed for each dimension. Based on the assumption that item discrimination parameters 

should be positive in the MIRT model, if the mean of the estimates from the TESTFACT 

software was negative on any dimension, the negated estimates were regarded as the correct item 

discrimination estimates on that dimension; otherwise, these estimates were kept the same. 

Although the proficiency estimates seemed to be automatically corrected in the TESTFACT 

software, a double check was still conducted to examine the signs of these proficiency estimates 

separately for each grade. First, the percentage of correct responses was obtained for each 

examinee. Then, examinees with the highest and lowest percentages were picked and their 

proficiency estimates were examined. It was expected that all proficiency values should be 

positive for the examinee with the highest percentage value and negative for the examinee with 

the lowest percentage. If both criteria failed for the proficiency estimates on any dimension, it 

was very likely that the estimates provided by the TESTFACT software were incorrect and all 

proficiency estimates on that dimension should be negated to be paired with the item 

discrimination estimates on that dimension. If one of the two criteria failed, that replication 

would be picked for further checking. From the checking results, no proficiency estimates were 

found to have the sign problem; therefore, the TESTFACT software package seems to align the 

proficiency estimates in a correct direction as the percentage of correct responses predicts when 

both proficiencies contribute significantly to the percentage. 

4.3 Results 

4.3.1 Recovery of probability matrix 

The probability matrix of correct responses is obtained by applying item and person 

parameters in the MIRT model as shown in Equation 1.2. Since the value of dθa'  is not 
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affected by the MIRT indeterminacies, so is the case with the probabilities of correct responses. 

The recovery of probability matrix, which is indicated by the similarity between the estimated 

and true probability matrices, is evaluated via the correlation, bias and RMSE indices. 

For each replication, the correlation was computed using all corresponding elements in the 

estimated and true probability matrices. The correlation values averaged across replications for 

different conditions are listed in Table 4.5. All correlation values are above 0.96, which indicates 

that the ordering of estimated probabilities is very similar to that of true ones. As the proficiency 

correlation increases, the correlation between the estimated and true probabilities also increases. 

Among all nine selection methods, Method 9 gives the highest correlation values for all four 

proficiency correlation levels and the correlation values for Method 6 are the second highest. 

Figure 4.1 gives the plot between the proficiency correlation level and the correlation for the 

probability matrix recovery for each item selection method. It is easy to observe that the points 

representing Methods 9 (classical correlation) and 6 (full content coverage with medium 

difficulty items) are above all the other points. On the other hand, the points representing 

Methods 1 (partial content coverage with low difficulty items) and 3 (partial content coverage 

with high difficulty items) are at the bottom. 

Table 4.5. Correlation for the Recovery of Probability Matrix in Part I  

 

p0 p0.4 p0.6 p0.8 

(1) 1D, Low  0.9651 0.9681 0.9700 0.9732 

(2) 1D, Medium  0.9664 0.9691 0.9710 0.9741 

(3) 1D, High  0.9650 0.9680 0.9700 0.9733 

(4) 1D, All 0.9660 0.9689 0.9707 0.9738 

(5) 2D, Low 0.9665 0.9694 0.9712 0.9741 

(6) 2D, Medium 0.9675 0.9701 0.9719 0.9749 

(7) 2D, High 0.9656 0.9685 0.9705 0.9735 

(8) 2D, All 0.9664 0.9693 0.9711 0.9741 

(9) Classical  0.9687 0.9712 0.9729 0.9757 
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Figure 4.1. Correlation for the Recovery of Probability Matrix in Part I 

  

Table 4.6 provides the result of bias for the recovery of probability matrix and Figure 4.2 

shows the plot between the proficiency correlation level and the bias for the probability matrix 

recovery for each item selection method. Note that the bias values in the table were averaged 

across all items and examinees. One observation is that the selection methods with low difficulty 

items always yield positive values for bias and those with high difficulty items give negative 

values, while other MIRT methods give comparatively small absolute values. It is interesting to 

observe that Methods 2 and 4 also give good results, which seems to indicate that the bias is not 

influenced by the content coverage. All the absolute values of bias are less than 0.001, which 

tends to suggest that no bias exists in the probability estimation; however, the values in the table 

are not sufficient for this judgment, since parameters at different value levels may have different 
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degrees of bias in the estimates and the bias values with different signs can be cancelled out 

when averaged across items and examinees.  

Figure 4.3 shows the plot between the probability parameters and their estimation bias for 

Method 1 under the condition of zero proficiency correlation. As can be observed from the figure, 

the probabilities of large values tend to be underestimated and those of small values tend to be 

overestimated. The underestimation and overestimation of parameters seem to be less severe for 

the probabilities of medium values. A further analysis showed that the underestimation is mostly 

on the probabilities for difficult items answered by examinees with extremely high proficiency 

on the dimension, which is dominantly measured by each of these items. This is because the 

estimated proficiencies yielded from the EAP scoring method tend to be smaller than the true 

proficiencies with large values and this makes the estimated probabilities much smaller than the 

true probabilities for these difficult items. The overestimation can be explained in a similar way. 

The plots for all other methods and conditions are similar to this one. 

Table 4.6. Bias for the Recovery of Probability Matrix in Part I 

          p0          p0.4          p0.6         p0.8 

(1) 1D, Low  0.0005 0.0001 0.0006 0.0002 

(2) 1D, Medium  0.0001 -0.0004 0.0001 -0.0001 

(3) 1D, High  -0.0001 -0.0006 -0.0001 -0.0002 

(4) 1D, All 0.0001 -0.0004 0.0002 0.0000 

(5) 2D, Low 0.0008 0.0004 0.0008 0.0003 

(6) 2D, Medium 0.0002 -0.0002 0.0003 0.0000 

(7) 2D, High -0.0003 -0.0007 -0.0002 -0.0002 

(8) 2D, All 0.0002 -0.0002 0.0002 0.0000 

(9) Classical  0.0004 0.0000 0.0004 0.0001 

 



47 

 

 

Figure 4.2. Bias for the Recovery of Probability Matrix in Part I 
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The RMSE values listed in Table 4.7 also give information on the recovery of the probability 

matrix for correct responses. There is a clear pattern that as the correlation between proficiencies 

increases, the value of RMSE consistently decreases for all selection methods. For the MIRT 

methods selecting items from the same difficulty level, the full content coverage is more 

important than the partial content coverage. Also, for the same content coverage, the method of 

including medium difficulty items is the best among the four methods based on different 

difficulty levels. In particular, Methods 1 and 3 give comparatively larger RMSE values while 

Methods 6 and 9 provide smaller RMSE values for all four proficiency correlation levels. This 

can also be observed from Figure 4.4, which gives the plot between the proficiency correlation 

level and the RMSE value for the probability matrix recovery for each common item selection 

method. 

In conclusion, the higher the correlation between proficiencies is, the better the estimated 

probabilities could match the true values. The classical correlation method gives the highest 

correlation and lowest RMSE for the recovery of probability matrix and the method of full 

content coverage with medium difficulty items is the second best. 

Table 4.7. RMSE for the Recovery of Probability Matrix in Part I  

  p0 p0.4 p0.6 p0.8 

(1) 1D, Low  0.0752 0.0727 0.0707 0.0668 

(2) 1D, Medium  0.0737 0.0714 0.0694 0.0656 

(3) 1D, High  0.0753 0.0727 0.0707 0.0667 

(4) 1D, All 0.0742 0.0718 0.0699 0.0661 

(5) 2D, Low 0.0738 0.0713 0.0693 0.0657 

(6) 2D, Medium 0.0726 0.0704 0.0685 0.0648 

(7) 2D, High 0.0748 0.0723 0.0702 0.0665 

(8) 2D, All 0.0739 0.0715 0.0695 0.0657 

(9) Classical  0.0711 0.0689 0.0671 0.0635 
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Figure 4.4. RMSE for the Recovery of Probability Matrix in Part I 
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Table 4.8 shows the average correlations between the rotated estimates and true parameters. 

The result shows that as the correlation between proficiencies increases, the correlation between 

the estimated and true a-parameters decreases slightly but consistently. Compared with all other 

selection methods, Methods 6, 8 and 9 could give a little higher correlation values for the 

recovery on both dimensions and for all four proficiency correlation levels. 

Figures 4.5 and 4.6 also plot the correlation for the recovery of a-parameters on each 

dimension. It is clear that when the correlation between proficiencies is small, the differences 

among methods are also small. However, with the increase of the correlation between 

proficiencies, the difference between the a-parameters and their rotated estimates tends to 

become larger for the recovery on any dimension. 

Table 4.9 shows the bias for the recovery of a-parameters. The value of bias is negative for 

each dimension and for each item selection method, which indicates that the estimates for a-

parameters are most likely negatively biased. Also, it seems that the magnitude of bias is larger 

for the lowest and highest proficiency correlation levels than for the two middle correlation 

levels. Figure 4.7 shows the plot between the bias values and 1a -parameters for Method 1 under 

the zero proficiency correlation condition. Points in each of the two clusters represent items that  

Table 4.8. Correlation for the Recovery of a-parameters in Part I 

  Dimension 1 Dimension 2 

  p0 p0.4 p0.6 p0.8 p0 p0.4 p0.6 p0.8 

(1) 1D, Low  0.9944 0.9942 0.9912 0.9841 0.9949 0.9939 0.9917 0.9847 

(2) 1D, Medium  0.9947 0.9944 0.9925 0.9867 0.9950 0.9940 0.9919 0.9852 

(3) 1D, High  0.9946 0.9940 0.9928 0.9868 0.9948 0.9940 0.9917 0.9844 

(4) 1D, All 0.9947 0.9942 0.9928 0.9867 0.9949 0.9940 0.9919 0.9850 

(5) 2D, Low 0.9944 0.9943 0.9920 0.9861 0.9948 0.9939 0.9920 0.9857 

(6) 2D, Medium 0.9947 0.9944 0.9927 0.9871 0.9950 0.9940 0.9920 0.9858 

(7) 2D, High 0.9946 0.9940 0.9928 0.9867 0.9948 0.9936 0.9918 0.9846 

(8) 2D, All 0.9947 0.9944 0.9926 0.9867 0.9951 0.9940 0.9920 0.9856 

(9) Classical  0.9946 0.9942 0.9927 0.9870 0.9950 0.9940 0.9920 0.9861 
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Figure 4.5. Correlation for the Recovery of 1a -parameters in Part I 

 

 

Figure 4.6. Correlation for the Recovery of 2a -parameters in Part I 
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Table 4.9. Bias for the Recovery of a-parameters in Part I 

  Dimension 1 Dimension 2 

  p0 p0.4 p0.6 p0.8 p0 p0.4 p0.6 p0.8 

(1) 1D, Low  -0.0016 -0.0004 -0.0012 -0.0014 -0.0011 -0.0007 -0.0003 -0.0012 

(2) 1D, Medium  -0.0013 -0.0003 -0.0007 -0.0006 -0.0010 -0.0007 -0.0005 -0.0015 

(3) 1D, High  -0.0014 -0.0005 -0.0006 -0.0005 -0.0011 -0.0008 -0.0006 -0.0015 

(4) 1D, All -0.0013 -0.0003 -0.0007 -0.0006 -0.0011 -0.0007 -0.0005 -0.0015 

(5) 2D, Low -0.0016 -0.0006 -0.0010 -0.0010 -0.0013 -0.0008 -0.0006 -0.0017 

(6) 2D, Medium -0.0013 -0.0004 -0.0004 -0.0006 -0.0011 -0.0006 -0.0005 -0.0013 

(7) 2D, High -0.0012 -0.0007 -0.0005 -0.0006 -0.0011 -0.0008 -0.0005 -0.0015 

(8) 2D, All -0.0013 -0.0005 -0.0006 -0.0007 -0.0011 -0.0007 -0.0004 -0.0013 

(9) Classical  -0.0014 -0.0006 -0.0005 -0.0007 -0.0012 -0.0005 -0.0006 -0.0015 

 

Figure 4.7. Bias for the Recovery of 1a -parameters for Method 1 at Zero Proficiency Correlation 

Level in Part I 
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The RMSE values for the a-parameter recovery are listed in Table 4.10. According to the 

table, the value of RMSE increases as the proficiency correlation increases. Since “the observed 

correlations among the item scores will be accounted for solely by the a-parameters (when the 

proficiency correlation is forced to zero, for example, in the TESTFACT software)” (Reckase, 

1997b, p. 275), it seems that as the proficiency correlation increases, it becomes more difficult to 

separate the effect of proficiency correlation from the estimation of a-parameters even with the 

Procrustes rotation method to match generating parameters. It can be observed that Method 1 

(partial content coverage with low difficulty items) gives the largest RMSE values, while 

Methods 6, 8 and 9 generally provide comparatively lower RMSE values for the recovery of a-

parameters on any dimension than all other methods. Figures 4.8 and 4.9 show the plots of 

RMSE for the a-parameter recovery for each item selection method and for each dimension. 

In a word, as the proficiency correlation increases, the correlation between the rotated 

estimates and parameters decreases and the deviation increases for the recovery of a-parameters 

on both dimensions. Comparatively, Methods 6, 8 and 9 give slightly higher correlation and 

lower RMSE than other methods. A little negative bias was found in the estimation of a-

parameters of large values. 

Table 4.10. RMSE for the Recovery of a-parameters in Part I 

  Dimension 1 Dimension 2 

  p0 p0.4 p0.6 p0.8 p0 p0.4 p0.6 p0.8 

(1) 1D, Low  0.0445 0.0468 0.0585 0.0793 0.0400 0.0438 0.0515 0.0708 

(2) 1D, Medium  0.0436 0.0461 0.0535 0.0727 0.0398 0.0434 0.0510 0.0696 

(3) 1D, High  0.0437 0.0479 0.0524 0.0725 0.0405 0.0435 0.0515 0.0714 

(4) 1D, All 0.0432 0.0470 0.0526 0.0730 0.0401 0.0435 0.0510 0.0701 

(5) 2D, Low 0.0440 0.0461 0.0552 0.0741 0.0402 0.0439 0.0503 0.0682 

(6) 2D, Medium 0.0427 0.0455 0.0525 0.0719 0.0397 0.0437 0.0504 0.0681 

(7) 2D, High 0.0426 0.0472 0.0524 0.0731 0.0404 0.0449 0.0510 0.0710 

(8) 2D, All 0.0428 0.0458 0.0530 0.0729 0.0394 0.0438 0.0505 0.0686 

(9) Classical  0.0428 0.0463 0.0525 0.0717 0.0398 0.0438 0.0505 0.0672 
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Figure 4.8. RMSE for the Recovery of 1a -parameters in Part I 

 

 

Figure 4.9. RMSE for the Recovery of 2a -parameters in Part I 
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4.3.3 Recovery of d-parameters 

The person proficiency parameters were separately simulated from different multivariate 

normal distributions for the two grades. More specifically, the mean vector of the normal 

distribution is (-0.2, -0.2) for the lower grade and (0, 0) for the upper grade. However, the item 

estimates from the TESTFACT software were obtained by assuming that person proficiency 

coordinates follow a standard multivariate normal distribution with a zero mean vector, in order 

to facilitate the calibration and solve the indeterminacies in the MIRT model. Thus, it was 

expected that the item MDIFF estimates would be inflated by around 0.1, which would also 

directly lead to a negative bias for the d estimates from the TESTFACT software. The effect 

incurred by the inconsistency between proficiency distributions assumed for the generation and 

the estimation was minimized by matching the raw estimates with generating parameters via the 

aforementioned oblique Procrustes rotation method.  

The correlation values between the adjusted estimates and the true values of d-parameters are 

listed in Table 4.11. From the table, all correlation values are close to one. Also, as the 

correlation between proficiencies increases, the correlation between the estimated and true d-

parameters also increases, although sometimes an opposite pattern may occur between the 

correlation levels of 0.4 and 0.6. The correlation values for Method 6 are the largest among all 

the methods; besides, the values for Methods 8 and 9 also seem to be slightly larger than those 

for other methods. 

Figure 4.10 shows the plot between the proficiency correlation level and the correlation value 

for the recovery of d-parameters for each item selection method. The points representing 

Methods 6, 8 and 9 are above all other points, while the points for the methods with partial 

content coverage are at the bottom. However, the difference between these values becomes 

smaller as the proficiency correlation increases. 
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Table 4.11. Correlation for the Recovery of d-parameters in Part I 

  p0 P0.4 p0.6 p0.8 

(1) 1D, Low  0.9938 0.9965 0.9962 0.9981 

(2) 1D, Medium  0.9944 0.9966 0.9971 0.9983 

(3) 1D, High  0.9943 0.9965 0.9967 0.9982 

(4) 1D, All 0.9938 0.9964 0.9966 0.9983 

(5) 2D, Low 0.9965 0.9979 0.9976 0.9983 

(6) 2D, Medium 0.9976 0.9983 0.9981 0.9986 

(7) 2D, High 0.9963 0.9975 0.9973 0.9985 

(8) 2D, All 0.9971 0.9980 0.9978 0.9985 

(9) Classical  0.9970 0.9983 0.9981 0.9986 

 

 

Figure 4.10. Correlation for the Recovery of d-parameters in Part I 
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values, Figure 4.12 shows the plot between the bias and d-parameters for Method 1 under the 

zero proficiency correlation condition. From the figure, the d-parameters of large values tend to 

be underestimated and those of small values tend to be overestimated. The plots for all other 

methods and conditions are similar to this one. 

Table 4.12. Bias for the Recovery of d-parameters in Part I 

        p0        p0.4        p0.6        p0.8 

(1) 1D, Low  -0.0014 -0.0003 -0.0012 -0.0004 

(2) 1D, Medium  -0.0009 -0.0001 -0.0005 -0.0001 

(3) 1D, High  -0.0007 0.0002 -0.0003 0.0001 

(4) 1D, All -0.0009 -0.0001 -0.0006 0.0000 

(5) 2D, Low -0.0010 -0.0002 -0.0007 -0.0004 

(6) 2D, Medium 0.0000 0.0003 0.0000 0.0001 

(7) 2D, High 0.0004 0.0007 0.0003 0.0002 

(8) 2D, All -0.0002 0.0002 -0.0002 0.0000 

(9) Classical  -0.0003 0.0004 -0.0001 0.0002 

 

 

Figure 4.11. Bias for the Recovery of d-parameters in Part I 
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Figure 4.12. Bias for the Recovery of d-parameters for Method 1 at Zero Proficiency Correlation 

Level in Part I 
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The RMSE values for Methods 6, 8 and 9 are smaller, which indicates that these methods can 

give a better match between the estimated and true d-parameters. For all proficiency correlation 

levels, the methods with full content coverage yield lower RMSE than those with partial content 

coverage. However, the difference becomes smaller when the correlation between proficiencies 

increases. 

Table 4.13. RMSE for the Recovery of d-parameters in Part I 

 

p0 p0.4 p0.6 p0.8 

(1) 1D, Low  0.0826 0.0647 0.0680 0.0490 

(2) 1D, Medium  0.0770 0.0627 0.0596 0.0453 

(3) 1D, High  0.0786 0.0643 0.0630 0.0468 

(4) 1D, All 0.0806 0.0648 0.0637 0.0462 

(5) 2D, Low 0.0635 0.0524 0.0562 0.0463 

(6) 2D, Medium 0.0540 0.0468 0.0496 0.0415 

(7) 2D, High 0.0661 0.0564 0.0587 0.0440 

(8) 2D, All 0.0590 0.0505 0.0528 0.0428 

(9) Classical  0.0568 0.0461 0.0484 0.0406 

 

 

Figure 4.13. RMSE for the Recovery of d-parameters in Part I 
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4.3.4 Recovery of effect sizes 

The person proficiency was estimated with the EAP scoring method that incorporates the 

prior distribution into the estimation. The observed covariance matrix for estimated proficiencies 

on different dimensions was compared with the true matrix. It was found that the variances were 

underestimated and the correlations were overestimated. This may be due to the EAP scoring 

method, which yields estimates biased towards the prior mean. 

Table 4.14 shows the true effect sizes as well as the means and standard deviations of 

estimated effect sizes on both dimensions for all methods and for all proficiency correlation 

levels. From the table, the effect size is underestimated for any dimension and for any method. 

For Methods 1-4 with partial content coverage, when the proficiency correlation is low, the 

effect size estimates on Dimension 1 are slightly better than all other methods, while those on 

Dimension 2 are highly negatively biased. However, both the advantage on Dimension 1 and 

disadvantage on Dimension 2 tend to diminish as the proficiency correlation increases. 

Compared with these methods, Methods 5-8 provide slightly worse estimates on Dimension 1 

but much better ones on Dimension 2. Also, Method 9 gives the best results on Dimension 2, 

which may be due to the fact that eight out of ten common items in this method are from Cluster 

2. Therefore, one conclusion is that the effect size recovery on each dimension largely depends 

on the number of common items measuring that dimension.  

For the same content coverage, the method with medium difficulty items yields the best 

results, followed by the method with items from all difficulty levels. However, as the correlation 

between proficiencies increases, the difference between the estimated effect sizes from all 

selection methods decreases. Generally speaking, in consideration of a good recovery on both 

dimensions, Methods 6 and 9 perform the best among all methods. 
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The standard deviations are quite small, especially for Methods 1-4 and when the proficiency 

correlation is very low. This indicates that the estimates of effect sizes are fairly stable across 

replications and the difference across methods is substantial in consideration of random errors. 

Figures 4.14 and 4.15 show the recovery of effect sizes for diferent methods. From both 

figures, when the proficiency correlation is 0.8, the points representing the estimates from 

different methods are all clustered together. One explanation is that the proficiency estimation on 

one dimension can „borrow‟ information from other dimensions in the MIRT calibration and 

more information can be „borrowed‟ when the correlation between them is high. However, from 

Figure 4.15 for the effect size recovery on Dimension 2, when the proficiency correlation is low, 

the points representing methods with partial content coverage are much lower than those for 

other methods. 

Table 4.14. Recovery of Effect Sizes for Proficiencies in Part I 

  Dimension 1 Dimension 2 

  p0 p0.4 p0.6 p0.8 p0 p0.4 p0.6 p0.8 

TRUE 0.2315 0.1474 0.1788 0.1936 0.1891 0.1616 0.1841 0.1954 

(1) 1D, Low  0.1940 0.1226 0.1384 0.1679 -0.0022 0.0294 0.0649 0.1428 

Std 0.0131 0.0092 0.0104 0.0120 0.0044 0.0028 0.0083 0.0101 

(2) 1D, Medium  0.2165 0.1264 0.1586 0.1781 -0.0030 0.0306 0.0801 0.1516 

Std 0.0109 0.0097 0.0098 0.0112 0.0041 0.0047 0.0074 0.0098 

(3) 1D, High  0.2017 0.1155 0.1439 0.1684 0.0027 0.0305 0.0736 0.1441 

Std 0.0110 0.0085 0.0090 0.0124 0.0044 0.0039 0.0070 0.0103 

(4) 1D, All 0.2087 0.1236 0.1487 0.1753 -0.0112 0.0243 0.0692 0.1477 

Std 0.0136 0.0069 0.0088 0.0106 0.0029 0.0031 0.0056 0.0091 

(5) 2D, Low 0.1501 0.1097 0.1305 0.1619 0.1348 0.1072 0.1322 0.1632 

Std 0.0114 0.0129 0.0108 0.0102 0.0124 0.0121 0.0118 0.0093 

(6) 2D, Medium 0.1757 0.1176 0.1452 0.1758 0.1490 0.1272 0.1490 0.1772 

Std 0.0113 0.0106 0.0106 0.0104 0.0109 0.0104 0.0122 0.0121 

(7) 2D, High 0.1471 0.0870 0.1181 0.1645 0.1159 0.0971 0.1200 0.1634 

Std 0.0129 0.0107 0.0147 0.0095 0.0139 0.0122 0.0136 0.0125 

(8) 2D, All 0.1632 0.1068 0.1380 0.1734 0.1395 0.1175 0.1367 0.1696 

Std 0.0115 0.0126 0.0114 0.0124 0.0161 0.0114 0.0108 0.0101 

(9) Classical  0.1400 0.1048 0.1374 0.1760 0.1854 0.1478 0.1691 0.1877 

Std 0.0137 0.0084 0.0091 0.0107 0.0100 0.0078 0.0112 0.0094 
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Figure 4.14. Recovery of Effect Size for the Proficiency on Dimension 1 in Part I 

 

Figure 4.15. Recovery of Effect Size for the Proficiency on Dimension 2 in Part I  
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CHAPTER 5 

PART II: DIFFERENT CONSTRUCTS 

5.1 Parameters and Designs 

In this part, two constructs are measured in the lower grade test; besides these two, one more 

construct is measured in the upper grade test. There are 40 unique items in the test of each grade. 

Additionally, 10 common items in both tests are selected according to four different methods. 

For different grades, person proficiencies are simulated from the multivariate normal 

distributions with different mean vectors and variance-covariance matrices. 

5.1.1 Unique items  

The numbers of unique items in different content domains were chosen to be the same as that 

in the study by Reckase and Li (2007). With the context from that study, the allocation of unique 

items in the test of each grade is shown in Table 5.1. Note that there are no algebra items in the 

lower grade test and the numbers of unique items in different content domains are not balanced. 

Table 5.1. Allocation of Unique Items in Different Content Domains and Grades in Part II 

Grade Arithmetic Problem Solving Algebra 

Lower Grade 17 23 0 

Upper Grade 11 18 11 

 

The cluster number, item parameters, multidimensional difficulty, multidimensional 

discrimination and direction angles of unique items for tests in both grades are listed in Tables 

5.2 and 5.3. The means of MDISCs are quite similar for different grade levels; however, the 

mean and standard deviation of MDIFFs are -0.2 and 0.78 for the lower grade, while they are 0 

and .67 for the upper grade. As can be observed, the 3a -parameters are always of small values  
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Table 5.2. Unique Item Parameters and Statistics for Lower Grade in Part II 

Cluster 1a  2a  3a  d  MDIFF  MDISC  1  2  3  

1 0.88 0.01 0.02 0.51 -0.58 0.88 2 89 89 

1 0.94 0.01 0.04 -0.20 0.21 0.94 3 90 87 

1 0.91 0.03 0.20 0.58 -0.63 0.93 12 88 78 

1 0.89 0.03 0.22 -0.04 0.05 0.92 14 88 76 

1 0.91 0.01 0.04 0.95 -1.05 0.91 2 90 88 

1 0.77 0.03 0.13 0.21 -0.26 0.78 10 88 80 

1 1.08 0.06 0.09 -0.55 0.51 1.09 6 87 85 

1 1.08 0.04 0.05 -1.12 1.03 1.08 3 88 87 

1 1.09 0.15 0.22 -0.59 0.53 1.12 14 82 79 

1 0.97 0.00 0.01 0.84 -0.87 0.97 1 90 89 

1 1.20 0.01 0.18 0.95 -0.78 1.21 8 89 82 

1 0.90 0.10 0.18 -0.99 1.07 0.92 13 84 79 

1 1.06 0.14 0.11 -0.02 0.02 1.07 10 82 84 

1 1.35 0.03 0.02 1.00 -0.74 1.35 1 89 89 

1 0.92 0.17 0.12 0.73 -0.77 0.94 13 79 83 

1 1.03 0.01 0.25 0.17 -0.16 1.06 14 89 76 

1 1.38 0.00 0.00 1.33 -0.97 1.38 0 90 90 

2 0.10 0.94 0.14 0.88 -0.91 0.96 84 10 82 

2 0.17 0.99 0.18 -1.13 1.11 1.02 81 14 80 

2 0.02 1.20 0.03 0.56 -0.47 1.20 89 2 88 

2 0.01 0.79 0.20 1.38 -1.68 0.82 90 14 76 

2 0.07 1.43 0.12 -1.62 1.13 1.43 87 6 85 

2 0.02 0.68 0.10 0.58 -0.85 0.69 88 8 82 

2 0.01 0.87 0.13 -0.53 0.60 0.88 89 9 81 

2 0.01 0.98 0.24 -0.39 0.39 1.01 90 14 76 

2 0.11 0.98 0.07 -0.97 0.98 0.99 83 8 86 

2 0.06 1.25 0.18 0.60 -0.47 1.26 87 9 82 

2 0.18 1.16 0.10 0.78 -0.66 1.18 81 10 85 

2 0.14 1.13 0.05 1.17 -1.02 1.14 83 8 87 

2 0.02 0.79 0.06 -0.59 0.75 0.79 89 4 86 

2 0.09 0.69 0.16 0.80 -1.13 0.71 83 15 77 

2 0.11 0.89 0.11 0.73 -0.81 0.90 83 10 83 

2 0.15 0.86 0.03 0.17 -0.19 0.87 80 10 88 

2 0.00 0.89 0.13 0.53 -0.58 0.90 90 8 82 

2 0.06 0.93 0.12 0.91 -0.97 0.94 86 8 83 

2 0.01 1.47 0.01 0.37 -0.25 1.47 90 0 90 

2 0.10 1.01 0.03 -0.81 0.80 1.01 84 6 89 

2 0.02 1.20 0.04 1.52 -1.26 1.20 89 2 88 

2 0.00 0.83 0.02 -0.23 0.28 0.83 90 1 89 

2 0.00 1.38 0.02 -0.89 0.64 1.38 90 1 89 

Mean 0.47 0.61 0.10 0.19 -0.20 1.03       

Std 0.49 0.51 0.07 0.81 0.78 0.20       

  



65 

 

Table 5.3. Unique Item Parameters and Statistics for Upper Grade in Part II 

Cluster 1a  2a  3a  d  MDIFF  MDISC  1  2  3  

1 1.08 0.04 0.16 -0.23 0.21 1.09 9 88 81 

1 1.00 0.19 0.19 -0.14 0.14 1.03 15 79 80 

1 0.67 0.01 0.04 -0.69 1.02 0.67 3 89 87 

1 0.81 0.10 0.18 0.10 -0.12 0.84 14 83 78 

1 0.94 0.06 0.21 0.86 -0.89 0.96 13 86 78 

1 0.97 0.07 0.04 0.88 -0.90 0.98 5 86 88 

1 0.67 0.05 0.04 -0.15 0.22 0.67 5 86 87 

1 0.97 0.03 0.09 -0.50 0.52 0.97 5 88 85 

1 0.87 0.04 0.02 0.31 -0.36 0.87 3 87 89 

1 1.04 0.08 0.08 -0.09 0.09 1.04 6 85 86 

1 0.93 0.11 0.03 -0.07 0.07 0.94 7 83 88 

2 0.02 0.77 0.15 -0.48 0.61 0.79 88 11 79 

2 0.07 0.97 0.14 0.09 -0.09 0.98 86 9 81 

2 0.05 1.16 0.18 -0.48 0.41 1.18 87 9 81 

2 0.01 0.89 0.15 -1.09 1.21 0.90 89 10 80 

2 0.00 1.18 0.01 -0.27 0.23 1.18 90 0 90 

2 0.08 0.83 0.04 -0.26 0.31 0.83 85 6 87 

2 0.07 0.78 0.05 0.45 -0.57 0.78 85 6 86 

2 0.00 1.18 0.17 0.73 -0.61 1.19 90 8 82 

2 0.03 1.11 0.15 -0.59 0.53 1.13 88 8 82 

2 0.10 1.19 0.12 0.68 -0.57 1.20 85 7 84 

2 0.05 1.09 0.28 0.78 -0.70 1.12 87 15 75 

2 0.00 1.14 0.14 -0.99 0.86 1.15 90 7 83 

2 0.01 1.16 0.03 -0.75 0.65 1.16 89 1 89 

2 0.11 0.87 0.16 -0.32 0.36 0.89 83 13 79 

2 0.00 0.95 0.17 0.62 -0.64 0.97 90 10 80 

2 0.13 1.19 0.07 1.18 -0.99 1.20 84 7 87 

2 0.03 0.76 0.05 0.64 -0.84 0.76 88 5 86 

2 0.05 0.94 0.13 0.16 -0.17 0.95 87 9 82 

3 0.05 0.04 1.19 -0.62 0.52 1.19 87 88 3 

3 0.06 0.22 0.91 -0.65 0.69 0.94 86 76 14 

3 0.27 0.09 1.09 0.03 -0.03 1.12 76 86 15 

3 0.08 0.06 1.52 0.70 -0.46 1.53 87 88 3 

3 0.12 0.02 0.95 0.02 -0.02 0.96 83 89 7 

3 0.03 0.14 1.02 -0.99 0.96 1.03 88 82 8 

3 0.15 0.04 1.02 -0.08 0.08 1.03 82 88 9 

3 0.02 0.01 0.71 0.72 -1.01 0.71 88 89 2 

3 0.06 0.03 0.79 1.31 -1.65 0.79 86 88 5 

3 0.09 0.16 0.92 0.21 -0.23 0.94 85 80 11 

3 0.08 0.10 0.76 -0.89 1.15 0.77 84 82 9 

Mean 0.29 0.50 0.35 0.00 0.00 0.99       

Std 0.39 0.48 0.42 0.63 0.67 0.18       
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for the lower grade, which indicates that this content domain is not designed to be measured by 

unique items of the test in this grade. 

5.1.2 Common items  

An item pool with 100 items was generated in a similar way as the unique items for both 

grade levels. Items in this pool were divided into several categories according to three content 

domains and three difficulty levels as shown in Table 5.4. 

Table 5.4. Number of Items for Different Content and Difficulty Categories in Item Pool of Part 

II 

  Low Medium High All 

Dimension 1 14 14 14 42 

Dimension 2 14 14 14 42 

Dimension 3 5 6 5 16 

 

Ten common items were selected according to the MIRT methods and the classical 

correlation method. The details for each method are shown below. 

(1) The MIRT methods consist of three methods with different numbers of items selected 

from the three content domains in order to achieve different degrees of content coverage. 

For simplicity, common items in these MIRT methods are only selected from medium 

difficulty items, in view of the results in Part I.  

 Method 1: Common items are selected from all content domains. The numbers of 

items from the three item clusters are four, four and three, respectively. Note that the 

third content domain is only taught in the upper grade.  

 Method 2: Common items are only selected from the first two content domains that 

are measured by unique items in both tests. Six items are selected from Cluster 1 and 

four from Cluster 2. Given that the proficiency on Dimension 1 is manipulated to have 
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a higher correlation with that on Dimension 3, more items are selected from Cluster 1 

to replace the items in Cluster 3 that are missing from the common item set. 

 Method 3: Common items are only selected from the first two content domains, with 

four items from Cluster 1 and six from Cluster 2 according to their proportions in the 

unique items. In order to make results more comparable, Methods 2 and 3 share the 

same eight common items with four from each cluster. 

 (2) Method 4, the classical correlation method, chooses common items based on the high 

item-total-test correlation. The detailed procedure is the same as in Part I.  

The statistics for different common item sets are listed in Table 5.5. For each method, the 

mean of MDIFF values is close to zero and the standard deviation is small. From the perspective 

of MIRT, common items in the classical correlation method appeared to be also selected from 

the medium difficulty level but with an extremely unbalanced coverage for the three content 

domains. Almost all the common items in this method were selected from Cluster 2, which is 

reasonable in that the number of unique items from this cluster is the largest in both tests. 

Table 5.5. Statistics of Common Items for Different Selection Methods in Part II 

Selection 

Method 

MDIFF 

Mean 

MDIFF 

Std 

# of items in 

Dim 1  

# of items in 

Dim 2  

# of items in 

Dim 3  

(1) 3D -0.11 0.25 4 3 3 

(2) 2D, Correlation -0.07 0.24 6 4 0 

(3) 2D, Proportion  -0.01 0.18 4 6 0 

(4) Classical  -0.14 0.29 1 9 0 

 

5.1.3 Person parameters 

For different grades, the person proficiency parameters were simulated according to the 

multivariate normal distributions with different mean vectors and variance-covariance matrices. 
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The mean vectors for person proficiency distribution in each grade are shown in Table 5.6. The 

variance was set to one for all the proficiencies except for that on Dimension 3 for the lower 

grade examinees. That proficiency was set to have a much lower mean and smaller variation 

since examinees in the lower grade were not supposed to have knowledge in this content domain. 

Note that although the mean differences between examinee proficiencies of the two grades were 

set to 0.2 in Part I, they were set to 0.7 for the first two dimensions in this part, following the 

study by Reckase and Li (2007). Also, the correlation matrices for both grades were manipulated 

to be roughly the same as those in that study.  

The variance-covariance matrices for person proficiency distributions in both grades are 

shown in Tables 5.7 and 5.8. In the lower grade, the correlation between proficiencies on the first 

two dimensions was 0.7; however, no correlation was assumed between proficiencies on the 

third and any of the first two dimensions. For the upper grade, the correlations between 

proficiencies on the second and the other two dimensions were fixed at 0.24 and 0.32 

respectively. However, the correlation between proficiencies on the first and third dimensions 

was manipulated to vary from 0, 0.4, 0.6 to 0.8, in order to check the effect of different 

correlation levels on the linking results. There was concern that when the correlation was zero, 

according to the logic of Method 2, more items were supposed to be selected from Cluster 2 

instead of Cluster 1. Nevertheless, for simplicity and consistency, this method always selected 

more items from Cluster 1 for all correlation levels. 

Table 5.6. Mean Vectors for Proficiency Distributions of Lower and Upper Grade Examinees in 

Part II 

Grade Arithmetic Problem Solving Algebra 

Lower Grade -0.5 -0.7 -1.5 

Upper Grade 0.2 0 0 
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Table 5.7. Variance-Covariance Matrix for Proficiency Distribution of Lower Grade Examinees 

in Part II 

 Arithmetic    Problem Solving  Algebra 

Arithmetic 1   

Problem solving 0.7                1  

Algebra 0                0 0.25 

 

Table 5.8. Variance-Covariance Matrix for Proficiency Distribution of Upper Grade Examinees 

in Part II 

 Arithmetic Problem Solving  Algebra 

Arithmetic 1   

Problem solving 0.24 1  

Algebra 0.6 0.32 1 

 

5.2 Estimation 

Fifty replications of response matrix were simulated for each proficiency correlation level and 

the MIRT calibration for each selection method was conducted on the data matrix for the 

selected common items and all unique items. This resulted in a total of 800 computer runs (4 

proficiency correlation levels x 50 replications x 4 item selection methods). The MIRT 

calibration took more than one hour for each TESTFACT run. 

The data layout and TESTFACT syntax in this part are similar to those in Part I, except that a 

three-dimensional instead of two-dimensional solution was requested for the MIRT calibration. 

As in Part I, item a-parameter estimates from the TESTFACT software were corrected by 

forcing the mean on each dimension to be positive. However, one problem was found in the sign 

correction on Dimension 3. It may happen that both positive and negative item discrimination 

estimates on that dimension have large absolute values, which may be partly due to the low 

proficiency on that dimension for examinees in the lower grade. Therefore, it was difficult to 

identify which set of item discrimination estimates, negated or non-negated, was „correct‟. 
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Furthermore, because of the weak relationship between the percentage of correct responses and 

the proficiency estimate on Dimension 3, it was also hard to rely on the TESTFACT software or 

apply the previous checking method for the sign correction to proficiency estimates on that 

dimension. The solution to the sign indeterminacies in both item and person estimates was to try 

all four sign combinations for the proficiencies on Dimension 3, which is to keep it unchanged or 

changed for either grade, in an attempt to make the item and person estimates a valid pair for the 

MIRT calibration. Combined with the item estimates, the „correct‟ signs for person proficiency 

estimates were selected as the combination that gave the largest correlation value for the 

recovery of probability matrix and these adjusted estimates were used for further analysis. 

5.3 Results 

5.3.1 Recovery of probability matrix 

The average correlation values between corresponding elements in the estimated and true 

probability matrices are listed in Table 5.9. As the proficiency correlation increases, so does the 

correlation between the true and estimated probabilities for any item selection method. Although 

Method 3 could give comparatively higher values and Method 4 provides lower values, the 

differences are very small. 

Table 5.9. Correlation for the Recovery of Probability Matrix in Part II 

  p0 p0.4 p0.6 p0.8 

(1) 3D 0.9641 0.9651 0.9654 0.9664 

(2) 2D, Correlation 0.9639 0.9649 0.9652 0.9664 

(3) 2D, Proportion  0.9641 0.9651 0.9655 0.9669 

(4) Classical  0.9635 0.9646 0.9651 0.9664 

 

Tables 5.10 and 5.11 give the bias and RMSE values for the recovery of probability matrix. 

All methods yield slightly negative biased estimates. With a further examination on the plot for 
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bias at different parameter values, it was found that, as observed in Part I, the probabilities of 

large values tend to be underestimated and those of small values tend to be overestimated. 

However, there are much more points representing the negative bias for the true probabilities 

with large values than points representing the positive bias for probabilities with small values, 

and the points representing negative bias are mostly for lower grade examinees. This is 

reasonable because the means of proficiencies of lower grade examinees are much lower than the 

mean of multidimensional difficulties for lower grade items and it was already explained in Part 

I that difficult items are more likely to lead to negative bias for the proficiencies with large 

values. Also, as the proficiency correlation increases, the RMSE value decreases for all methods. 

Therefore, it seems to be a general conclusion that as the proficiency correlation increases, the fit 

between the estimated and true probability matrices becomes better. Furthermore, Methods 3 and 

4 give the lower RMSE values for the recovery of probability matrix than the other two methods. 

These could also be observed in Figure 5.1, which shows the plot between the proficiency 

correlation level and the RMSE value for each selection method. 

Table 5.10. Bias for the Recovery of Probability Matrix in Part II 

  p0 p0.4 p0.6 p0.8 

(1) 3D -0.0015 -0.0009 -0.0011 -0.0008 

(2) 2D, Correlation -0.0011 -0.0009 -0.0013 -0.0012 

(3) 2D, Proportion  -0.0011 -0.0010 -0.0011 -0.0010 

(4) Classical  -0.0009 -0.0007 -0.0011 -0.0009 

 

Table 5.11. RMSE for the Recovery of Probability Matrix in Part II 

  p0 p0.4 p0.6 p0.8 

(1) 3D 0.0763 0.0755 0.0751 0.0740 

(2) 2D, Correlation 0.0762 0.0754 0.0751 0.0738 

(3) 2D, Proportion  0.0759 0.0751 0.0747 0.0732 

(4) Classical  0.0760 0.0751 0.0747 0.0733 
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Figure 5.1. RMSE for the Recovery of Probability Matrix in Part II 
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perform as well as the other three methods under almost all conditions, which may be due to the 

extremely unbalanced proportion of common items from different content domains. 

Table 5.12. Correlation for the Recovery of a-parameters in Part II 

    
(1) 3D 

(2) 2D, 

Correlation 

(3) 2D, 

Proportion 
(4) Classical  

Dimension 1 

p0  0.9759 0.9758 0.9789 0.9732 

p0.4  0.9719 0.9783 0.9815 0.9357 

p0.6  0.9727 0.9851 0.9606 0.9323 

p0.8  0.9547 0.9673 0.9462 0.9185 

Dimension 2 

p0  0.9856 0.9856 0.9865 0.9734 

p0.4  0.9839 0.9803 0.9781 0.9699 

p0.6  0.9847 0.9702 0.9846 0.9747 

p0.8  0.9813 0.9735 0.9811 0.9676 

Dimension 3 

p0  0.9695 0.9211 0.9239 0.9222 

p0.4  0.9669 0.9420 0.9386 0.8990 

p0.6  0.9619 0.8873 0.8992 0.8909 

p0.8  0.9442 0.8556 0.8766 0.8712 

 

Table 5.13 shows the bias values for the recovery of a-parameters. It seems that, in the 

classical correlation method, the estimates on Dimension 1 are positively biased and those on 

other dimensions are negatively biased. Also, the estimates on Dimension 3 are negatively biased 

for all methods. Figures 5.2-5.4 plot the bias values for the recovery of a-parameters on each 

dimension. For all plots, the points representing Method 4 deviate far away from the horizontal 

zero-line. In addition, the points for Methods 1-3 are very close to each other and to the zero-line 

for the first two dimensions; however, for the third dimension, it is clear that only the points 

representing Method 1 are close to the zero-line. 
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Table 5.13. Bias for the Recovery of a-parameters in Part II 

    
(1) 3D 

(2) 2D, 

Correlation 

(3) 2D, 

Proportion 
(4) Classical  

Dimension 1 

p0   0.0005  0.0013 0.0030 0.0075 

p0.4  -0.0016 -0.0010 0.0002 0.0086 

p0.6  -0.0019 0.0003 0.0024 0.0056 

p0.8  -0.0042 -0.0013 0.0002 0.0019 

Dimension 2 

p0  -0.0021 -0.0019 -0.0028 -0.0091 

p0.4  -0.0011 -0.0004 -0.0014 -0.0071 

p0.6  -0.0005  0.0001 -0.0011 -0.0047 

p0.8  -0.0005 -0.0009 -0.0017 -0.0049 

Dimension 3 

p0  -0.0035 -0.0119 -0.0111 -0.0129 

p0.4  -0.0017 -0.0046 -0.0049 -0.0110 

p0.6  -0.0019 -0.0054 -0.0067 -0.0078 

p0.8  -0.0006 -0.0035 -0.0039 -0.0035 

 

 

Figure 5.2. Bias for the Recovery of 1a -parameters in Part II 
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Figure 5.3. Bias for the Recovery of 2a -parameters in Part II 

 

 

Figure 5.4. Bias for the Recovery of 3a -parameters in Part II 
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In order to evaluate the bias for the parameters of different values, the plot between the bias 

and a-parameters was examined on each dimension and for each method. In the classical method, 

1a -parameters of small values tend to be slightly overestimated but there is no clear pattern for 

those of large values. For the remaining a-parameters, no clear pattern is found for the bias for 

those of small values, but a-parameters of large values tend to be underestimated. In addition, for 

3a -parameters, the underestimation tends to become worse but the magnitude of bias is smaller 

in Method 1 than in other methods. Figure 5.5 shows one example of those plots, which gives the 

bias of 3a -parameters in Method 2 under the zero proficiency correlation condition. Note that 

the points in the right cluster represent the items dominantly measuring the third dimension. 

 

Figure 5.5. Bias for the Recovery of 3a -parameters for Method 2 at Zero Proficiency Correlation 
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 Table 5.14 gives the RMSE values for the recovery of a-parameters. As the proficiency 

correlation increases, the estimates tend to deviate further from the true values for all dimensions 

and for all methods. Method 1, which provides full content coverage, performs a little better on 

Dimension 2 and gives much lower RMSE values on Dimension 3. Therefore, it confirms again 

that the a-parameter estimates on Dimension 3 are closer to the true values only by including 

items from that dimension in the common item set. The classical correlation method yields high 

RMSE values and does not perform as well as the other three methods, which is not very 

surprising in view of the extremely unbalanced number of common items for each content 

domain. These results, which are also shown in Figures 5.6-5.8, indicate that the recovery for the 

a-parameters on a certain dimension mostly depends on the number of common items measuring 

that dimension.  

Table 5.14. RMSE for the Recovery of a-parameters in Part II 

    
(1) 3D 

(2) 2D, 

Correlation 

(3) 2D, 

Proportion 
(4) Classical  

Dimension 1 

p0  0.0925 0.0935 0.0882 0.0924 

p0.4  0.0980 0.0875 0.0817 0.1386 

p0.6  0.0967 0.0727 0.1140 0.1451 

p0.8  0.1255 0.1073 0.1344 0.1613 

Dimension 2 

p0  0.0770 0.0769 0.0752 0.0998 

p0.4  0.0798 0.0904 0.0932 0.1052 

p0.6  0.0803 0.1141 0.0808 0.0980 

p0.8  0.0883 0.1064 0.0888 0.1071 

Dimension 3 

p0  0.0731 0.1134 0.1101 0.1108 

p0.4  0.0785 0.0980 0.1020 0.1279 

p0.6  0.0842 0.1390 0.1323 0.1337 

p0.8  0.1016 0.1573 0.1435 0.1445 
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Figure 5.6. RMSE for the Recovery of 1a -parameters in Part II 

 

 

Figure 5.7. RMSE for the Recovery of 2a -parameters in Part II 
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Figure 5.8. RMSE for the Recovery of 3a -parameters in Part II 
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have a little advantage over the other two methods, especially when the proficiency correlation is 

low. Figure 5.9 gives the plot between the bias values and d-parameters for Method 1 at the zero 

proficiency correlation level, and the plots for all other methods and conditions are similar to this 
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one. Different from that in Part I, there is no clear pattern for the bias at different values of d-

parameters, but the magnitude of negative bias tends to be slightly larger than that of positive 

bias. Figures 5.10-5.12 provide the plots of correlation, bias and RMSE for the recovery of d-

parameters.  

Table 5.15. Correlation for the Recovery of d-parameters in Part II  

  p0 p0.4 p0.6 p0.8 

(1) 3D 0.9873 0.9874 0.9895 0.9904 

(2) 2D, Correlation 0.9846 0.9871 0.9875 0.9872 

(3) 2D, Proportion  0.9892 0.9901 0.9902 0.9902 

(4) Classical  0.9891 0.9893 0.9893 0.9885 

 

Table 5.16. Bias for the Recovery of d-parameters in Part II 

  p0 p0.4 p0.6 p0.8 

(1) 3D -0.0034 -0.0015 -0.0026 -0.0023 

(2) 2D, Correlation -0.0015 -0.0022 -0.0033 -0.0037 

(3) 2D, Proportion  -0.0044 -0.0029 -0.0042 -0.0043 

(4) Classical  -0.0007 -0.0006 -0.0021 -0.0023 

 

Table 5.17. RMSE for the Recovery of d-parameters in Part II  

  p0 p0.4 p0.6 p0.8 

(1) 3D 0.1032 0.1046 0.0949 0.0904 

(2) 2D, Correlation 0.1148 0.0999 0.0984 0.1001 

(3) 2D, Proportion  0.0900 0.0868 0.0847 0.0860 

(4) Classical  0.0904 0.0894 0.0899 0.0945 
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Figure 5.9. Bias of the Recovery of d-parameters for Method 1 at Zero Proficiency Correlation 

Level in Part II 

 

 

Figure 5.10. Correlation for the Recovery of d-parameters in Part II 
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Figure 5.11. Bias for the Recovery of d-parameters in Part II 

 

 

Figure 5.12. RMSE for the Recovery of d-parameters in Part II 
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5.3.4 Recovery of effect sizes 

The variances of estimated proficiencies on different dimensions were underestimated and the 

correlations were overestimated, which is similar as in Part I. Table 5.18 shows the true effect 

sizes as well as the means and standard deviations of estimated effect sizes on the three 

dimensions for all methods and for all proficiency correlation levels. The first observation is that 

the estimated effect sizes from Method 4 deviate far away from the true values across all 

proficiency correlation levels and for all dimensions. The reason may be that almost all common 

items in this method are from the second content domain.  

For Dimension 1, it seems that no method gives a consistent good recovery and the estimates 

given by Method 1 are closer to the true values only when the proficiency correlation is low. For 

Dimension 2, Method 3 gives the best recovery among all methods; however, for Dimension 3, 

Method 1 performs substantially better than the other methods although the estimates still 

deviate from the true values. Therefore, it can be concluded that without common items 

dominantly measuring a certain dimension, the effect size on that dimension is highly 

underestimated. However, as the proficiency correlation increases, the underestimation tends to 

be less severe, especially for Methods 2 and 3.  

The values of standard deviations are quite small, which indicates that estimated effect sizes 

are fairly stable across replications. In order to show how substantial the difference is between 

different methods, Figures 5.13-5.15 provide the 95% confidence intervals of effect size for the 

comparison of Methods 1 and 4 across four proficiency correlation levels and for all three 

dimensions. From the plots, all the confidence intervals are quite narrow and there is no 

overlapping of the confidence intervals for the two methods. Figures 5.16-5.18 provide the plots 

for the recovery of effect sizes for the three dimensions, respectively. 
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Table 5.18. Recovery of Effect Sizes for Proficiencies in Part II 

    TRUE 
(1) 3D 

(2) 2 D, 

Correlation 

(3) 2 D, 

Proportion 

(4) 

Classical  

Dimension 1 

p0  0.7122 0.7057 0.8005 0.7974 0.6116 

Std 

 

0.0187 0.0147 0.0133 0.0130 

p0.4  0.7283 0.7551 0.8028 0.7995 0.6218 

Std 

 

0.0167 0.0123 0.0135 0.0143 

p0.6  0.6556 0.7309 0.7351 0.7310 0.5619 

Std 

 

0.0339 0.0117 0.0131 0.0146 

p0.8  0.7147 0.8263 0.7893 0.7878 0.6085 

Std 

 

0.0327 0.0136 0.0140 0.0226 

Dimension 2 

p0  0.7198 0.6494 0.6531 0.7184 0.7812 

Std 

 

0.0190 0.0177 0.0156 0.0130 

p0.4  0.7377 0.6193 0.6493 0.7140 0.7853 

Std 

 

0.0179 0.0149 0.0135 0.0115 

p0.6  0.6550 0.5996 0.5895 0.6490 0.7177 

Std 

 

0.0308 0.0142 0.0118 0.0093 

p0.8  0.7058 0.6547 0.6232 0.6853 0.7599 

Std 

 

0.0204 0.0162 0.0131 0.0089 

Dimension 3 

p0  1.8427 1.1923 0.3271 0.3956 0.4095 

Std 

 

0.0240 0.0217 0.0207 0.0157 

p0.4  1.9016 1.2743 0.6102 0.6357 0.5087 

Std 

 

0.0175 0.0140 0.0171 0.0165 

p0.6  1.8838 1.2346 0.6161 0.6325 0.4939 

Std 

 

0.0184 0.0156 0.0156 0.0379 

p0.8  1.9483 1.2384 0.7135 0.7262 0.5355 

Std 

 

0.0182 0.0161 0.0165 0.0922 
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Figure 5.13. Comparison of Effect Size for the Proficiency on Dimension 1 in Part II 

 

Figure 5.14. Comparison of Effect Size for the Proficiency on Dimension 2 in Part II 
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Figure 5.15. Comparison of Effect Size for the Proficiency on Dimension 3 in Part II 

 

Figure 5.16. Recovery of Effect Size for the Proficiency on Dimension 1 in Part II 
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Figure 5.17. Recovery of Effect Size for the Proficiency on Dimension 2 in Part II 

 

Figure 5.18. Recovery of Effect Size for the Proficiency on Dimension 3 in Part II  
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CHAPTER 6 

SUMMARY, LIMITATION AND FUTURE RESEARCH 

In this chapter, results and conclusions from the simulation studies are summarized and 

practical implications are discussed. In addition, limitations and suggestions for future research 

are provided. 

6.1 Conclusions and Discussions 

Part I focused on the two-dimensional constructs with balanced item design and data were 

simulated based on proficiencies on the same constructs in both upper and lower grades. In this 

part, anchor items were selected according to the combination of different content coverage 

(partial or full content coverage) and difficulty coverage (low difficulty level, medium difficulty 

level, high difficulty level, or all three difficulty levels). In addition, items with high item-total-

test correlations were selected as common items under the classical method. Meanwhile, 

proficiency correlation level was manipulated to vary from low to high to evaluate its effect on 

the linking results for each item selection method. The comparisons among different methods 

were made with respect to the recovery of the probability matrix, item parameters and effect 

sizes.  

The results show that with the increase of the correlation between proficiencies, the 

probability matrix recovery becomes better. In particular, the correlation between the estimated 

and true probabilities increases and the RMSE decreases. This was also observed in the study by 

Fang and Lu (2010). They pointed out that the RMSE for the probability matrix recovery 

decreases as the proficiency correlation increases when one unidimensional IRT or MIRT 

calibration is conducted on the data matrix simulated from a two-dimensional MIRT model. 
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Therefore, for the MIRT calibration on the complete data matrix, when the proficiency 

correlation is high, it can be assumed that the proficiency estimation on different dimensions can 

borrow information from each other. Thus, it is reasonable that a better estimation on 

proficiencies can yield a better recovery of the probability matrix. 

However, this is not the case with the a-parameter recovery. As the proficiency correlation 

increases, the correlation between a-parameters and estimates decreases and their deviation 

increases. The reason may be that it becomes more difficult to separate the effect of the 

proficiency correlation from the a-parameter estimates in an attempt to solve the rotational 

indeterminacy in MIRT.  

The recovery of d-parameters becomes better as the proficiency correlation increases. This 

may be due to the fact that the estimates become less affected by differences among dimensions 

when the data structure approaches unidimensionality.  

Generally speaking, the recovery of effect sizes is not much influenced by the magnitude of 

the proficiency correlation, although it seems to be slightly better as the proficiency correlation 

increases. One exception is when all common items or most common items dominantly measure 

one dimension. In this case, the effect size recovery on other dimensions becomes substantially 

better as the proficiency correlation increases, which is reasonable since the proficiency 

parameters on different dimensions are more interrelated. 

It is obvious that different common item selection methods do give different linking results as 

expected. Among all methods, three of them are of special interest: Method 6 (full content 

coverage with items from medium difficulty level), Method 8 (full content coverage with items 

from all difficulty levels) and Method 9 (items with high item-total-test correlation). The first 

one is originated from the idea of miditest proposed by Sinharay and Holland (2006b), the 
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second one continues to be the golden rule and favorite of practitioners, and the third one traces 

back to the in-depth reason for the better equating although it is applied under the framework of 

multidimensional constructs in this study. 

The results show that the classical correlation method gives the best probability recovery. 

Among all MIRT methods, with the same difficulty coverage, the method achieving full content 

coverage could give better results than the method achieving partial content coverage. Also, the 

method selecting medium difficulty items is the best among those selecting items from different 

difficulty levels under the same content coverage condition. Thus, it is not surprising that 

Method 6 performs much better than all other MIRT methods. 

The a-parameter recovery varies in different selection methods. Methods 6 and 8 perform 

better in the linking as expected. Surprisingly, Method 9 also works better over most methods, 

although the numbers of common items from different content domains are unbalanced. 

For the d-parameters, Methods 6 and 9 could give pretty good results for the recovery, 

followed by Method 8. The methods selecting common items from one content domain do not 

work as well as those selecting items from both content domains, especially when the 

proficiency correlation is low. But as the proficiency correlation increases, the difference in the 

d-parameter recovery for these two types of methods becomes smaller. 

All effect sizes are underestimated, which may be due to the EAP scoring method for the 

proficiency estimation. The number of common items from each content domain plays an 

important role in the effect size recovery. For Methods 1 to 4 where common items come from 

the first content domain, the effect size on Dimension 2 is highly underestimated. Similar results 

could also be observed in the classical correlation method, which selects more items from the 

second content domain than the first one. This method could give a pretty good effect size 
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recovery on Dimension 2 but not on Dimension 1. Therefore, besides the full content coverage, 

attention should also be paid to the proportion of common items in each content domain. 

All in all, this part confirmed the advantage of miditest in the context of vertical scaling, 

which extended the conclusion by Sinharay and Holland (2006b) that the common item set with 

medium difficulty items could work better than the minitest in the equating. This is worthy of 

further attention by practitioners, although the minitest continues to be widely used in practical 

settings. Furthermore, the linking results also proved the importance of content coverage when 

multiple proficiencies are measured within one test. Therefore, the conclusion for Part I is that in 

vertical scaling under the MIRT framework, when the same constructs are measured in both tests, 

the common item set achieving full content coverage with medium difficulty items perform 

slightly better than the minitest that covers all content domains with a similar spread of item 

difficulties as the total test. And these two methods are substantially better than the other item 

selection methods using MIRT.  

All common items selected via the classical correlation method are actually medium difficulty 

items, which is consistent with the idea that medium difficulty items tend to have higher item-

total-test correlations than other items. This method gives good recovery for all parameters 

except for the effect size on Dimension 1. Since the effect size is much influenced by the 

proportion of common items in each content domain, given a fixed number of common items 

that can be used for linking, it is expected that the results would be better if this method selects 

appropriate number of items from each content domain to achieve proportional 

representativeness. Therefore, the classical correlation method seems surprisingly promising in 

the linking of multiple constructs. But there is concern that this method can only be used with 
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careful design, since the correlation should be known in advance and the multidimensionality 

really limits the rationale and use of the item-total-test correlation.  

Part II focused on the three-dimensional constructs with unbalanced item design. The purpose 

was to evaluate the common item selection methods when the measured constructs are not 

identical in both grades; in particular, the upper grade test measures more constructs than the 

lower grade test. In this part, “algebra” was not supposed to be taught in the lower grade; 

therefore, the proficiency distribution on that construct for lower grade examinees was assumed 

to have a low mean and small standard deviation. 

With the conclusion from Part I that medium difficulty items perform comparatively better 

than other items in the linking, this part focused more on the content coverage and the proportion 

of common items from each content domain. As in Part I, comparisons among different item 

selection methods were made using the criteria on the recovery of probability matrix, item 

parameters and effect sizes. 

The conclusion on the effect of proficiency correlation for the recovery of different 

parameters is consistent with that in Part I. As the proficiency correlation increases, the recovery 

of probability matrix and d-parameters becomes better, the recovery of a-parameters becomes 

worse, and the effect size recovery does not change too much except on Dimension 3 when no 

common items are selected to link that dimension.  

The performance of different methods varied if different criteria were used for comparison. 

The content coverage is not as important as expected for the probability matrix recovery; 

however, it is very crucial for the recovery of a-parameters and effect sizes, which are also 

influenced by the proportions of common items selected from different content domains. 
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Nevertheless, the disadvantage of not covering all content domains could be partly compensated 

for by the high correlations between proficiencies.  

Method 3, which is to select common items according to proportions of unique items in the 

two common content domains, seems to yield better results in most recoveries, except for those 

on Dimension 3. On the other hand, Method 1, which is to select items for full content coverage, 

is a better choice if item a-parameters and effect sizes are expected to be reasonably estimated 

for all dimensions. The classical correlation method does not work well in this part. This may be 

due to the unbalanced item design and the complicated content structure, which lead to the 

extremely unbalanced numbers of common items from different content domains. However, this 

classical correlation method is worth further analysis if it can be adjusted to achieve the 

aforementioned proportional representativeness. 

The results of this part reconfirm the importance of content coverage, even when the content 

domain only exists in one grade. Items measuring other highly-correlated proficiencies cannot 

replace the items from that domain in the common item set. However, it should be noted that 

including items from all content domains does not ensure a better recovery of probability matrix.  

As is well known, vertical scaling with the common item design is currently implemented in 

many state testing programs, such as California English Language Development Test (CELDT), 

Colorado Student Assessment Program (CSAP), Connecticut Mastery Test (CMT), Delaware 

Student Testing Program (DSTP), Mississippi Curriculum Test (MCT), North Carolina End-of-

Grade Tests (NCEOG) and Texas English Language Proficiency Assessment System (TELPAS) 

(Reckase, 2010). Since the scale scores are not comparable across different state testing 

programs, the common core standards and common assessments are of special interest to 

practitioners, policy makers and researchers. With the Race to the Top program to motivate 
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reforms in state and local district K-12 education, two consortia, including Partnership for 

Assessment of Readiness for College and Careers (PARCC) and SMARTER Balanced 

Assessment Consortium (SBAC), also show great interest in vertical scales for assessing students‟ 

achievement and growth. 

However, it is the unidimensional IRT models, either the Rasch model or the 3 PL model, that 

are commonly adopted in state testing programs. Theoretically, these two unidimensional IRT 

models can be arguably used and serve as a good approximation to the multidimensional IRT 

models only when all items in the test measure roughly the same composite of multiple 

proficiencies (Reckase, Ackerman & Carlson, 1988), or all the proficiencies are highly correlated 

in consideration of a correlation of 0.7 or more as commonly seen in practice. The high 

correlation among multiple proficiencies not only explains the reason that mathematical skills 

can be finely divided into geometry, algebra and etc. or they can be attributed to one general 

mathematical ability, but also raises heated debates on when to report subscores or one general 

score from the perspective of psychometrics.  

Due to the complex constructs measured in tests and the changes in the curriculum and policy 

requirements with the change of grade levels, if the constructs measured by different tests in 

different grade levels are not identical, the interpretation of one single scale score obtained from 

those tests may not be the same. Therefore, the MIRT model seems to be more appropriate under 

the situations of multidimensionality and content shift, but there are four main concerns when the 

MIRT model is practically used in vertical scaling.  

First, even with the expert judgment and the dimensionality analysis, it is still difficult to 

define the constructs measured by different tests across grades. This is even worse in view of the 

high correlation among proficiencies.  
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Second, from the results of this study, in order to link the scales for all content areas, off-

grade items need to be administered to students even if the content area is not covered by that 

grade. The importance of the off-grade content in tests is confirmed by Lazer, Mazzeo, Twing, 

Way, Camara, & Sweeney (2010), who assumed that “this out-of-grade content will mirror the 

instruction the student has received regardless of his or her grade level or age”. Although 

students may be reluctant to answer items that are never taught in class, it is difficult to evaluate 

students‟ gains after learning activities if we have no ideas about their pre-knowledge on that 

content. It is a trade off; unfortunately, the NCLB has prohibited this off-grade testing. 

Third, the rotational indeterminacy is a big problem in MIRT vertical scaling. The Varimax 

and Promax methods are commonly used to constrain items to follow the simple structure by 

assuming that each item only dominantly measures one proficiency. However, this 

indeterminacy problem becomes complicated with the existence of mixed structure items and the 

different correlation structures of proficiencies for students in different grades; therefore, more 

research studies are needed to better construct the coordinate system for the interpretation of 

parameter estimates in the MIRT vertical scaling.  

Finally, the MIRT calibration is extremely computationally extensive no matter whether the 

EM algorithm or Markov Chain Monte Carlo (MCMC) algorithm is used, and the computation 

time increases rapidly with the increase of the number of dimensions for the MIRT model. This 

may not be acceptable for most testing programs since test results need to be delivered within a 

short period of time. But as the computer becomes more and more powerful, this may not be a 

problem. 

All in all, the MIRT model is more appropriate to account for the multidimensionality in 

vertical scales; however, there is still a long way to go to implement this model in practice. 
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6.2 Limitations and Future Research 

The above conclusions should be interpreted in light of the limitations inherent in this 

simulation study. Also, future research needed to make the conclusions more solid and 

generalizable is discussed below. 

First, items in this study were simulated to be approximate simple structure items, which 

results in a rough alignment of proficiency dimension and content domain. Therefore, sometimes 

these two terms are used interchangeably in this study. But in practice, multiple proficiencies are 

often needed to get an item correct (Reckase, 1985). Future studies could be conducted to 

examine whether mixed structure items can be used in lieu of simple structure items that measure 

different proficiencies to achieve the full content coverage.  

 Second, in order to compare the recovery results from different selection methods, item 

parameter estimates need to be rotated and adjusted to be put on the same coordinate system as 

the generating parameters. In this study, the target matrix of rotation was defined as the 

generating parameters, while the study by Reckase and Li (2007) adopted a target matrix with 1s 

as indicators of measured dimensions and 0s elsewhere. Some trials of matching 0/1 matrices 

were conducted as well and the results were compared with those from matching with generating 

parameters. It was found that the difference was quite subtle.  

Third, since probability values range from 0 to 1, the nonparametric Spearman‟s rank order 

correlation coefficient may be a better choice than the Pearson's correlation coefficient that 

requires the assumption of normal distribution for variables. The probability recovery using this 

rank order correlation coefficient was compared with that using Pearson‟s correlation coefficient 

and the results were quite similar. 
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Fourth, although multi-group analysis may be deemed as more appropriate for the concurrent 

calibration in this study, this option is not available in the TESTFACT software. For the multi-

group calibration under the unidimensional IRT, most software packages set the default 

constraints only on the distribution of reference group, and treat the means and variances of 

distributions for other groups as unknown parameters. However, it can be imagined that in MIRT, 

if the elements in variance-covariance matrices are regarded as unknown parameters for other 

groups, the MIRT calibration would become much more complicated and time-consuming. 

Future research can verify whether the above conclusions still hold when the efficient software 

package is available for the MIRT multi-group calibration.  

Fifth, concurrent calibration is used to align scales across different grade levels in this study. 

However, vertical scales can also be created by applying an orthogonal or oblique Procrustes 

rotation method to match the common item parameters estimated from separate calibrations on 

the two tests. This can be another topic for further studies and some thought should be given to 

the dimensionality issue when the constructs measured by the two tests are not identical. 

Sixth, the performance of the classical correlation method is surprisingly good in Part I. 

However, the feasibility of this method is a little questionable since the item-total-test correlation 

values, which depend on the population of examinees, could not be known in advance. Although 

the results from field tests might be used for reference, they should be used with caution since 

the sample for the field test may not be representative of the population. Also, the performance 

of this method becomes worse when more distinctive proficiencies are measured in the test, 

which makes the unidimensionality assumption more vulnerable. 

Finally, because the MIRT calibration in the TESTFACT software is time-consuming, the 

number of replications in this study is somewhat small compared with other studies. In the future, 
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more replications could be conducted when the computation time shortens. In addition, in order 

to make the conclusions more generalizable, further studies can focus on the data with more 

dimensions, since the number of constructs measured by the test is often more than two in 

practical settings.  
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APPENDIX 

% code for the evaluation of Part II results in MATLAB 

 

function evaluation_final 

 load item2.dat; 

A=item2(:,1:3); 

d=item2(:,4); 

  

ns=3000; 

np=4; 

ndim=3; 

ni=40; 

nj=4; 

nr=50; 

  

result.d=zeros([2*ni,np,nj,nr]); 

result.A=zeros([2*ni,ndim,np,nj,nr]); 

result.theta=zeros([2*ns,ndim,np,nj,nr]); 

  

result.PBias=zeros([np,nj]); 

result.PRmse=zeros([np,nj]); 

result.PCorr=zeros([np,nj]); 

result.ABias=zeros([ndim,np,nj]); 

result.ARmse=zeros([ndim,np,nj]); 

result.ACorr=zeros([ndim,np,nj]); 

result.dBias=zeros([np,nj]); 

result.dRmse=zeros([np,nj]); 

result.dCorr=zeros([np,nj]); 

result.ES=zeros([ndim,np,nj]); 

  

ES=zeros([ndim,np]); 

ESTemp=zeros(ndim,nr); 

thetaT=zeros([ns,ndim]); 

thetaTemp=zeros([2*ns,ndim]);  

numT=zeros([1,ns]); 

PBiasTemp=zeros([2*ns,ni,nr]); 

PRmseTemp=zeros([2*ns,ni,nr]); 

PCorrTemp=zeros([1,nr]); 

ABiasTemp=zeros([2*ni,ndim,nr]); 

ARmseTemp=zeros([2*ni,ndim,nr]); 

ACorrTemp=zeros([ndim,nr]); 

dBiasTemp=zeros([2*ni,nr]); 

dRmseTemp=zeros([2*ni,nr]); 

dCorrTemp=zeros([1,nr]); 
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% person correlation i, method j, replication r  

for i=1:np 

    theta=load (['person2', num2str(i),'.dat']); 

    P=pfunction(theta,A,d);     

    ES(:,i)=ESfunc(theta(3001:end,:), theta(1:3000,:)); 

  

    for j=1:nj 

        for r=1:nr 

            fname=['d2_p',num2str(i),'_r',num2str(r),'_m',num2str(j)]; 

            fid=fopen([fname,'.PAR'], 'r'); 

            C=textscan(fid,'%*d %*s %*d %9.6f %9.6f %9.6f %9.6f','headerlines',11); 

            fclose(fid); 

            result.d(:,i,j,r)=C{1}; 

            result.A(:,:,i,j,r)=[C{2:4}]; 

     

            fid=fopen([fname,'_s1.FSC'],'r'); 

                for t=1:ns 

                temp=str2num(fgetl(fid)); 

                numT(t)=temp(3); 

                thetaT(t,:)=str2num(fgetl(fid)); 

                fgetl(fid); 

                end 

            result.theta(1:3000,:,i,j,r)=thetaT; 

            fclose(fid); 

                 

            fid=fopen([fname,'_s2.FSC'],'r'); 

                for t=1:3*ns 

                    fgetl(fid); 

                end 

                for t=1:ns 

                temp=str2num(fgetl(fid)); 

                numT(t)=temp(3); 

                thetaT(t,:)=str2num(fgetl(fid)); 

                fgetl(fid); 

                end 

            result.theta(3001:end,:,i,j,r)=thetaT; 

            fclose(fid); 

                            

% correction for item discrimination by forcing the mean of item discrimination estimates to 

be positive  

        if mean(result.A(:,1,i,j,r))<0 result.A(:,1,i,j,r)=(-1)*result.A(:,1,i,j,r); end 

        if mean(result.A(:,2,i,j,r))<0 result.A(:,2,i,j,r)=(-1)*result.A(:,2,i,j,r); end 

        if mean(result.A(:,3,i,j,r))<0 result.A(:,3,i,j,r)=(-1)*result.A(:,3,i,j,r); end 

 

% correction for person proficiency estimates by choosing the pair which gives the highest 

correlation for the recovery of probability matrix 
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         PTemp1=pfunction(result.theta(:,:,i,j,r), result.A(:,:,i,j,r),result.d(:,i,j,r)); 

         PTemp2=pfunction([result.theta(:,1:2,i,j,r),[(-1)*result.theta(1:3000,3,i,j,r); 

  result.theta(3001:6000,3,i,j,r)]], result.A(:,:,i,j,r),result.d(:,i,j,r)); 

         PTemp3=pfunction([result.theta(:,1:2,i,j,r),[result.theta(1:3000,3,i,j,r);(-1)* 

  result.theta(3001:6000,3,i,j,r)]], result.A(:,:,i,j,r),result.d(:,i,j,r)); 

 PTemp4=pfunction([result.theta(:,1:2,i,j,r),(-1)*result.theta(:,3,i,j,r)], 

 result.A(:,:,i,j,r),result.d(:,i,j,r)); 

         PCorrTemp1=corr(reshape(PTemp1,[],1),reshape(P,[],1)); 

         PCorrTemp2=corr(reshape(PTemp2,[],1),reshape(P,[],1)); 

         PCorrTemp3=corr(reshape(PTemp3,[],1),reshape(P,[],1)); 

         PCorrTemp4=corr(reshape(PTemp4,[],1),reshape(P,[],1)); 

         

 PTemp=PTemp1; 

 [PCorrTemp_value,ind]=max([PCorrTemp1,PCorrTemp2,PCorrTemp3, 

 PCorrTemp4]); 

        if ind==2 result.theta(1:3000,3,i,j,r)=(-1)*result.theta(1:3000,3,i,j,r); 

        PTemp=PTemp2; 

elseif ind==3 result.theta(3001:6000,3,i,j,r)=(-1)*result.theta(3001:6000,3,i,j,r); 

PTemp=PTemp3; 

        elseif ind==4 result.theta(:,3,i,j,r)=(-1)*result.theta(:,3,i,j,r);PTemp=PTemp4; 

        end 

                 

% oblique Procrustes rotation to match with generating parameters 

        T=inv(result.A(:,:,i,j,r)'*result.A(:,:,i,j,r))*result.A(:,:,i,j,r)'*A; 

        ATemp=result.A(:,:,i,j,r)*T; 

        m=((d-result.d(:,i,j,r))'*ATemp*inv(ATemp'*ATemp))'; 

        dTemp=result.d(:,i,j,r)+ATemp*m; 

        thetaTemp=(inv(T)*result.theta(:,:,i,j,r)'-m*ones(1,size(result.theta(:,:,i,j,r),1)))'; 

         

        [PBiasTemp(:,:,r),PRmseTemp(:,:,r)]=criteria(PTemp, P); 

        [ABiasTemp(:,:,r),ARmseTemp(:,:,r)]=criteria(ATemp,A); 

        [dBiasTemp(:,r),dRmseTemp(:,r)]=criteria(dTemp, d); 

  

        PCorrTemp(r)=PCorrTemp_value; 

        ACorrTemp(:,r)=[corr(ATemp(:,1),A(:,1)),corr(ATemp(:,2),A(:,2)), 

        corr(ATemp(:,3),A(:,3))]; 

        dCorrTemp(r)=corr(dTemp, d); 

  

        ESTemp(:,r)=ESfunc(thetaTemp(3001:end,:),thetaTemp(1:3000,:)); 

        end 

         

    result.PBias(i,j)=mean(mean(mean(PBiasTemp,3),1),2); 

    result.PRmse(i,j)=mean(mean(sqrt(mean(PRmseTemp,3)),1),2); 

    result.PCorr(i,j)=mean(PCorrTemp); 

  

    result.ABias(:,i,j)=mean(mean(ABiasTemp,3),1); 
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    result.ARmse(:,i,j)=mean(sqrt(mean(ARmseTemp,3)),1); 

    result.ACorr(:,i,j)=mean(ACorrTemp,2); 

  

    result.dBias(i,j)=mean(mean(dBiasTemp,2),1); 

    result.dRmse(i,j)=mean(sqrt(mean(dRmseTemp,2)),1); 

    result.dCorr(i,j)=mean(dCorrTemp); 

  

    result.ES(:,i,j)=mean(ESTemp,2); 

    end 

end 

  

result.PCorr 

result.PBias 

result.PRmse 

result.ACorr 

result.ABias 

result.ARmse 

result.dCorr 

result.dBias 

result.dRmse 

ES 

result.ES 

  

% function for probability calculation under 2PL compensatory MIRT 

function P=pfunction(theta, A, d) 

ns=0.5*size(theta,1); 

ni=0.5*size(A,1); 

P1=1./(1+exp(-1.7*(theta(1:ns,:)*A(1:ni,:)'+ones(ns,1)*d(1:ni)'))); 

P2=1./(1+exp(-1.7*(theta(ns+1:end,:)*A(ni+1:end,:)'+ones(ns,1)*d(ni+1:end)'))); 

P=[P1;P2]; 

  

% function related to bias and RMSE calculation 

function [diff,diff2]=criteria(estimate, true) 

diff=estimate-true; 

diff2=(estimate-true).^2; 

  

% function for effect size calculation 

function ESvalue=ESfunc(theta1, theta2) 

ESvalue=(mean(theta1)-mean(theta2))./sqrt((var(theta1)+var(theta2))*.5); 
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