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ABSTRACT

MODIFICATION OF POLYLACTIDE VIA
REACTIVE EXTRUSION

by

Denise Lynn Carlson

The branching of polylactide (PLA) by a free radical initiated reactive extrusion
process has been accomplished. The addition of between 0.066 and 0.67 % maleic
anhydride (MA) onto the PLA backbone was also performed to enhance the
interfacial adhesion in PLA blends. Reaction conditions were varied from 160° to
200°C with initiator concentrations between 0.0 and 0.5 %. Characterization was
performed using triple detection size exclusion chromatography, melt flow index,
and various thermal analysis techniques. A decrease in both molecular weight and
melt viscosity indicated that PLA without initiator had extensive thermal
degradation. The optimum range for branching, indicated by a high molecular
weight and low melt flow index polylactide, was found to be around 170°C to
180°C and 0.1 to 0.25 % initiator. Laser scanning confocal microscopy was

evaluated for potential application in assessing polymer blends.
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Chapter |

INTRODUCTION

1.1 Motivation

Polylactide (PLA) is an important biodegradable polymer which has been used in
such established applications as medical implants [Gilding (1982)], sutures [Conn
et al. (1974), Schmitt et al. (1967)], and drug delivery systems [Heller (1985)]. As
the need for biodegradable polymers in the context of designing materials for the
environment opens up new market opportunities [Narayan (1992)], polylactide
polymers are finding commercial use in single-use disposal items. However, one
of the limitations for using PLA is its processing instability. Gogolewski (1993)
has shown that the degradation of PLA already occurs at 160°C under injection
molding. Another shortcoming of PLA is its very low melt viscosity which may
limit its blow molding processibility. The free radical branching of PLA could
offer the opportunity for enhancement of physical and chemical properties and/or
improvements of processibility by increasing the molecular weight in order to
compensate for the molecular weight decrease by processing degradation and by
increasing the melt viscosity. Table 1.1 shows how various properties are affected

by the molecular weight and molecular weight distribution of a polymer.
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Table 1.1: Relationship of various polymer properties to molecular weight (MW)
and molecular weight distribution (MWD). Key: + property increases, - property
decreases, * little change. [Yau et al. (1979)].

Property Increase Narrow
MW MWD
Tensile Strength + +
Elongation + -
Yield Strength + -
Toughness + +
Brittleness + -
Hardness + -
Abrasion Resistance + +
Softening Temperature + +
Melt Viscosity + +
Adhesion - -
Chemical Resistance + +
Solubility - *

The proposed free radical process is very simple and easy to manage by reactive
extrusion in the presence of trace amounts of free radical initiators. Free radical
polymerization via reactive extrusion has been done extensively on polypropylene
and polyethylene systems leading to controlled degradation [Suwanda et al.

(1989)] and branching [Suwanda et al. (1988a)], respectively.

Combining PLA with natural materials and synthetic polymers provides ways of
cost reduction and combined properties. Unfortunately, simple PLA composites

with natural materials and polyblends have poor properties because of the lack of
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interfacial adhesion. Introducing new functional groups onto the polylactide

backbone paves the way to prepare composites, laminates, coated items, and
blends/alloys wiih improved properties and cost effectiveness. Functionalizing the
matrix polymer and the fiber/filler with highly reactive groups is perhaps the most
successful strategy leading to a variety of commercial composites and alloys made
by reactive processing. In this study, the addition of maleic anhydride (MA) to the

PLA polymer backbone has been accomplished.

The purpose of this research is to investigate the results of the free radical initiated
branching of PLA extruded at temperatures ranging from 160°C to 200°C with an
initiator concentration between (.0 and 0.5 percent. Free radical initiated
maleation of PLA was also done using 2 percent MA with similar temperature and
concentration ranges. The modified PLA samples were characterized by several
analytical methods including gel permeation chromatography (GPC), right angle
laser light scattering (RALLS), melt flow index (MFI), and thermal gravimetric
analysis (TGA). Based on the analytical results, the chemical modification may
then be characterized as chain scission, branching, crosslinking or any

combination of the three. A proposed reaction mechanism is also included.



1.2 Structure of Thesis

The basic concepts used in this work are not novel, but together they comprise a
novel way of processing polylactide including branching and maleation. The first
part of this thesis details some of the techniques which were incorporated.
Chapter 2 provides background information on polymers in general, including
molecular weight analysis which is extremely important for this research. A
literature review on polymers which have been processed by free radical
polymerization via reactive extrusion is provided as well. Previous applications
include polyethylene and polypropylene. A brief description of the maternals

which were used is located in Chapter 3.

Chapter 4 details the processing and characterization methods which were used.

Specific equipment information as well as sample preparation can also be found.

The heart of the work is contained in Chapter 5, the free radical branching of PLA,
and Chapter 6, the maleation of PLA. These chapters discuss the results of all
pertinent analytical tests. A proposed reaction mechanism is also provided. Since
polylactide resin by itself may be quite expensive for commercial use, PLA blends

were also formulated. Chapter 7 briefly describes blend theory and blending



5
methods. SEM micrographs of several blends are shown with a discussion of

these preliminary results.

Related work (Chapter 8) was done on the applications of Laser Scanning
Confocal Microscopy (LSCM) for use in polymer blend systems. Traditionally,
Scanning Electron Microscopy (SEM) is used to evaluate polymer morphology,
but sample preparation may sometimes create artifacts in the sample. However,
LSCM provides a noninvasive technique for observing polymer morphology as

sample preparation is minimum.

Chapter 9 contains all pertinent conclusions, as well as several reccommendations

for further work.



Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Terminology

2.1.1 Molecular Weights

In general, a polymer is a heterogeneous material with a wide range of molecular
weights. This molecular weight distribution can be characterized by the
polydispersity of the polymer. Polydispersity is defined as the ratio M./M,. A
wider distribution of molecular weights gives a larger polydispersity since the
contribution of each molecule to the number average molecular weight, M,, is
proportional to its mass (Equation 2.1), and its contribution to the weight average

molecular weight, M,,, is proportional to the square of its mass (Equation 2.2).

M, == 2.1

Y (T — 2.2)
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iN Mil»a) e
Y [y e — (2.3)

I
1=

where N; is the number of molecules of type i and M; is the molecular weight of
molecule type i. The viscosity average molecular weight, M,, is also given
(Equation 2.3), where “a” is a property of the polymer-solvent system with a value

typically between 0.5 and 0.8 [Sperling].

2.1.2 Chain Scission

Polymer chain degradation, or chain scission, usually occurs when chemical bonds
along the polymer backbone break. This degradation causes a reduction in the
molecular weight of the polymer which results in an increase in the melt flow
index. The molecular weight distribution becomes more random with a
polydispersity approaching two. Since polymers with a high molecular weight
have a greater number of bonds, they experience preferential chain scission.
Therefore, for broad molecular weight distributions, as the molecular weight

decreases, the molecular weight distribution narrows.



2.1.3 Branching and Crosslinking

Free radical branching of a polymer occurs when two radical centers on the
polymer backbone terminate by combination. This long chain branching process
can continue until a three-dimensional network is formed. The polymer 1s then
said to be crosslinked consisting of various levels of sol (“free” polymer) and gel

(networked polymer).

Long chain branching produces a high molecular weight polymer which has an
increased melt viscosity. It is generally undesirable to form a crosslinked polymer

via reactive extrusion as the crosslinked gel may damage the extruder.

2.1.4 Gelation

The gelation of a polymer is undesirable for processing. At the gel point various
phenomena occur: (1) the viscosity diverges to infinity, i.e. there is a transition
from a viscous liquid to an elastic solid, (2) the weight average molecular weight

diverges to infinity, and (3) an insoluble gel phase appears.

2.1.5 Grafting

The grafting of polymer chains is used to enhance the properties of polymer

blends. Grafting occurs when the polymer, peroxide (used as the free radical
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initiator), and the grafting compound are processed in an extruder. In this study,

maleic anhydride (MA) has been grafted to the polymer backbone. This process 1s
commonly referred to as maleation. The addition of MA to the polymer enhances
the compatibility and interfacial adhesion of various polymer blends. This is

discussed in some detail in Section 2.2.3, as well as Chapter 6.

2.1.6 Reactive Extrusion

Reactive extrusion refers to an extrusion process whereby the extruder is used as a
chemical reactor [Brown and Orlando (1988)]. In reactive extrusion, the extruder
may be considered a continuous flow reactor in which the absence of a solvent
medium provides an advantage over other reactive processes. Another advantage
of a reactive extruder is that several chemical process operations, such as mixing,
reacting, and shaping of a material, are combined into one piece of equipment.
Other advantages of reactive extrusion over conventional polymerization
techniques include: (1) carefully controllable residence time distributions and
temperature profiles; (2) the production of variable size batches with very short
start-up and change over times; and (3) the extruders ability to easily process high
viscosity materials [Pabedinskas et al. (1989)]. Since very viscous materials may
be reacted or produced, lower reaction temperatures may be used and a higher

degree of branching may be accomplished.
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Several types of chemical reactions may be performed by reactive extrusion

[Brown and Orlando (1989)].
Bulk polymerization reactions used to prepare high molecular weight polymer
from monomer or low molecular weight polymer.
Graft reactions resulting in a graft copolymer of a polymer and monomer feed.
Inter-chain formations of two or more polymers forming a copolymer.
Coupling reactions of a homopolymer plus a branching agent to increase the
molecular weight by chain extension or branching.
Functionalization reactions in which functional groups are introduced to the
polymer backbone.
Controlled molecular weight degradation in which high molecular weight
polymers are reduced to lower molecular weights. Three types of degradation may
occur [Rauwendaal (1986)]:

e Thermal degradation: depolymerization, random chain scission, and

unzipping of substituent groups.
e Mechanical degradation: shear and/or elongational stress.

e Chemical degradation: such as hydrolysis or oxidation.

Conventional extruders commercially available include single-screw or twin-

screw. Twin-screw extruders may be intermeshing or non-intermeshing, co-
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rotating or counter-rotating [Rauwendaal (1986)]. The extruder which was used

for this research was a co-rotating, intermeshing, twin-screw extruder.

2.2 Molecular Weight Determination
Polymer molecular weights may be determined by several experimental methods.

A brief description of some of these approaches follows.

2.2.1 End Group Analysis

The polymer is dissolved into a solvent and titrated for functional groups. This
technique is very sensitive to impurities and is only good for low molecular

weights (<5000 g/mol).

2.2.2 Colligative Properties

A number of colligative properties can be measured and a corresponding molecular
weight, in this case M,, can be calculated. A dilute polymer solution (<0.1 wt%)
is used for the following techniques: (1) boiling point elevation, (2) freezing point

depression, (3) vapor pressure lowering, and (4) osmotic pressure.
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2.2.3 Light Scattering

Light scattering is a technique used for determining the weight average molecular
weight. Light interacts with a molecule and is scattered. This scattered light is
referred to as Rayleigh scattering and has the same wavelengh of that of the
incident light beam. The information about the size and molecular weight of a
polymer is experimentally determined from the light scattering intensity which is
above that of the solvent background. This excess light intensity caused by the
polymer molecules in solution is directly related to the M,, of the polymer and the

sample concentration (C).

KC = l +2A,C (24)
R, M_P@®) °

The K term in equation 2.4 is an optical constant

27°n? (dn)2
K=2" coxf = 2.5
AN, \dc (2-3)

where n is the refractive index of the medium, 2, is the wavelength of the incident
beam, N, is Avagadro’s number, and dn/dc is the refractive index increment. The
excess Rayleigh ratio, Ry , gives the normalized scattering intensity with respect to
the scattered volume, distance, and incident intensity, I

Ry = (s Lo ) *r*/1, v (2.6)
The A, term is the second virial coefficient which will be set equal to zero for this

study. The term P(6) in equation 2.4 is the particle scattering function. P(0) is a
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function of the geometry and size of the polymer molecules with respect to the

wavelength of the incident light. For random coil polymers, P() is the following:
2
PO) = e -(1-X)] (2.7)
X..
where
8. .(mn . ’
X=§*(T*Rg*51n9/2] (28)

and R, is the radius of gyration.

2.2.4 Intrinsic Viscosity

Intrinsic viscosity measurements are done in a capillary tube with a dilute solution
and result in the viscosity average molecular weight (M,). The flow rate, and
hence the shear rate, through the capillary is dependent upon the distance from the
capillary edge. In dilute solutions, the polymer coils are expanded and thus
different shear rates are felt by the polymer resulting in an increase in frictional
drag and rotational forces on the molecule (Figure 2.1). This dynamic work

results in an increased solution viscosity.



Figure 2.1: Flow of dilute polymer solution in a capillary.

The solvent viscosity, n,, and the solution viscosity, n, are both measured in the
Ubbelhode cabillary viscometer (Figure 2.2). The flow through the capillary
controls the time for the bulb to drain. The time for the bulb to drain can be related

to the viscosity of the solution using Hagen-Poisulle’s law for laminar flow:

nr' AP dV
Q=—: =
8nL dt
Where
AP =1pg

Substituting AP into Hagen-Poisulle’s law and integrating results in

Where a becomes an apparatus constant equal to the following:

cx:’trc g*(]'dv)
8L 1
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The relative viscosity is the ratio of the solution and solvent viscosities:

Nrel = T]/T]o = t/tO
The specific viscosity is the relative viscosity minus one:
nsp = Nrel - 1

The intrinsic viscosity of a solution is defined either as

(7= ["—‘"}
C ¢c=0

or as

(7] = [ln(ﬂrcl):|
C

c=0
A plot of intrinsic viscosity versus concentration of both relationships should
result in an extrapolation to the same point at zero concentration. Also, the sum of

the slopes of the two lines is related by the Huggins equation,

nsp
c

=[n]+K[n]'c
and the Kraemer equation,

Bl o) - e

Algebraically,

k +k"=0.5
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Figure 2.2: Schematic of Ubbelhode viscometer.

Practical Considerations

To effectively use a viscometer for intrinsic viscosity measurements, several
practical considerations should be met. A water bath should be used to regulate
the solution temperature. The efflux time should be relatively long (generally >
100 seconds) to reduce timing errors and minimize kinetic energy corrections.
Small solution concentrations must be used for extrapolation to a concentration of

zero, i.e. the relative viscosity n, should be between 1.1 and 1.6.



Mark - Houwink Relationship
An empirical relationship between the intrinsic viscosity and the molecular weight
was concluded by Mark and Houwink in 1938:

[n] = KM,*

K and a are constants for a specific solvent-polymer pair at a specific temperature.

2.2.5 Gel Permeation Chromatography

In GPC, a dilute polymer solution is put through a series of columns. Larger
polymer molecules have faster elution times as the smaller molecules are able to
sample more of the capillaries in the packing of the columns. Calibration is done
with known molecular weight standards to give molecular size versus elution time.
The GPC calculates all of the molecular weight moments (M,, M,,, M,, etc.) and
also gives the peak molecular weight, i.e. the molecular weight which shows up

most often.

2.3 Free Radical Polymerization

2.3.1 General Mechanism of FRP

Free radical initiated polymerizations are one mechanism of polymer growth in

which polymerization reactions occur almost instantaneously. Several polymers
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are formed mainly by this mechanism including polyethylene, poly(vinyl

chloride), and poly(methyl acrylate) [Flory (1967)]. Free radical polymerizations

consist of three steps: initiation, propagation, and termination.

Initiation: Typically an organic peroxide is incorporated as an initiator. Upon
heating, the peroxide undergoes homolysis and decomposes to form two radical
species, which are then able to react with the monomer or polymer to form another

radical species.
ROOR —+— 2RO’
In general,
C —<> 2R}

R{ +M ——> R}

Propagation: Propagation by the free radical mechanism occurs very rapidly. The
radical species reacts with an unreactive monomer or polymer, which in turn,

becomes the active center.
[ ] k [ ]
R} +M —— R}
[ ] k ) (]

. Kon
RE+M——> R(n”)
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It is usually assumed that the reaction rate coefficients of propagation are

independent of size and therefore are equivalent.

kp1 = kp2 = koo = kj

Termination: Termination occurs by either combination in which the species add
to each other or by disproportionation where one of the species forms a double
bond.

a) by combination

. . K.
Rn + Rm ; P(n+m)

b) by disproportionation

R'+R: —* 3P +P_

2.3.2 Reactive Extrusion and FRP
Of current interest is reactive extrusion of polymers leading to either controlled
molecular weight degradation or to an increase in molecular weight. Two systems

of intense interest have been polypropylene (PP) and polyethylene (PE).

A great deal of research and experimentation has been done on controlling the
reactive degradation of PP in an extruder [Pabendinskas et al. (1989, 1994 a,b),

Fritz et al. (1986)]. The reactive extrusion of PP with a free radical initiator,
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usually an organic peroxide, has been shown to lead to chain scission and hence

molecular weight degradation [Tzoganakis et al. (1988,1989)]. This free radical
initiated degradation provides an easy path for producing necessary molecular
weights for specific applications. An increase in the initiator concentration
degrades the high molecular weight tail and narrows the molecular weight
distribution of PP [Suwanda et al. (1988 a,b), Triacca et al. (1993)]. The changes
in flow properties which result from the lower molecular weight are of much
interest. As the molecular weight and viscosity decrease, melt flow properties are

increased which improves the processibility of PP.

The degradation of PP in an extruder has been modeled by Tzoganaskis et al.
(1988) and Suwanda et al. (1988 a,b). Pabedinskas et al. (1994 a,b) have recently
tried to model this system with the explicit purpose of developing a process

control strategy.

In contrast to the free radical initiated degradation of PP, polyethylene free radical
polymerization produces a polymer with an increased molecular weight. The
reactive extrusion of linear low density polyethylene (LLDPE) and a free radical
initiator leads to a high molecular weight polymer as the initiator concentration is

increased [Suwanda et al. (1989)]. An increase of molecular weight should
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improve mechanical properties. The polymerized LLDPE showed increases in

MFI, yield strength, and yield modulus.

2.3.3 Maleation

Reactive extrusion can be used for the functionalization of many polymers. Of
specific interest over the past years has been the addition of maleic anhydride to
several polymer backbones such as PP and PE. The maleation of these polymers
has been generally done to improve the adhesion properties. Introducing new
functional groups onto the polylactide backbone paves the way to prepare
composites, laminates, coated items, and blends/alloys with improved properties
and cost effectiveness. Functionalizing the matrix polymer and the fiber/filler with
highly reactive groups is perhaps the most successful strategy leading to a variety

of commercial composites and alloys made by reactive processing.

Functional groups such as isocyanate, amine, anhydride, carboxylic acid, epoxide,
oxazoline, are often introduced during reactive extrusion with short residence time.
Combinations of hydroxyl/isocyanate [Mizuno et al. (1978)], amine/anhydride
[Lambla e.t al. (1989), Morita et al. (1987), Udding et al. (1988)], amine/epoxide,
anhydride/epoxide, amine/lactam [Akkapeddi et al. (1988)], and amine/oxazoline

[Sneller (1985)], provide practical routes for reactive processing. Such coupling
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reactions provide interfacial bondings in composites, laminates, and coated items

[Krishnan et al. (1992), Argyropoulos et al. (1991)]. In polymer blends and alloys
(immiscible) such coupling reactions provide control of phase size and strong
interfacial bonding. A variety of functional groups has been introduced onto the

surface of natural polymers [Doane et al. (1992), Glasser (1989)].

The free radical initiated reaction of MA with several polyolefins has led to very
interesting results. Branching and/or crosslinking occurs in maleated samples of
LDPE [Gaylord et al. (1982)], HDPE [Gaylord et al. (1989)], and LLDPE
[Gaylord et al. (1992)]. In an ethylene-propylene copolymer rubber (EPR), both

crosslinking and degradation occur [Gaylord (1987)].

Degradation occurs in the case of maleated PP [Gaylord et al. (1983b), Callais et
al. (1990), Hogt et al. (1988)]. The degradation is greater in the presence of MA
plus initiator, than in the presence of only initiator. Grafting of MA, as well as

melt flow, is increased with an increase of peroxide content for PP.

The free radical initiated reaction of polystyrene (PS) with various organic
peroxide initiators results in degradation and molecular weight reduction. In the
presence of MA; however, the extent of degradation is reduced [Gaylord et al.

(1983a)].
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Homopolymerization of MA may play an important role in the reactions of MA
with polyolefins. Cationic intermediates participate in the homopolymerization of
MA, but the addition of small amounts of dimethylformamide (DMF) may prevent
the reaction [Gaylord et al. (1981)]. Crosslinking which normally occurs in the
maleation of LDPE is suppressed with the addition of DMF. Furthermore, the
addition of DMF to PP-MA mixtures before reactive extrusion results in MA
grafted PP with a higher intrinsic viscosity than a mixture without DMF.
Therefore, less degradation occurs with the addition of an anti-MA

homopolymerization agent such as DMF.



Chapter 3

MATERIALS

3.1 Polylactide

The focus of this work is on the modification of polylactide. In this section, the
preparation and uses of PLA will be described in some detail. The PLA was
provided by Cargill. It has a specific gravity of 1.248. GPC results indicate that
PLA has an M, of about 122,000 and a polydispersity of 1.4 (see Table 5.1 for

complete details).

3.1.1 Commercial Preparation

Polylactides are prepared by the ring-opening polymerization of the lactide dimer
(Figure 3.1). Naturally occurring lactic acid is dehydrated to form the cyclic
diester lactide. This process is also known as internal esterification. Lactic acid is
a key biomass intermediate obtained from acetaldehyde or fermentation of hexoses
or hexose polymers such as starch or cellulose [Sperling and Carraher (1990)].
Several catalysts may be used for the ring-opening polymerization, including

tin(IV) chloride, stannous octoate, and tetraphenyltin [Van Dijk et al. (1983)].

24
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During the past decade, aluminum alkoxides have also been used [Barakat et al.

(1993)].

™
N

2n Lactic Acid HO—CH— C

OH
Catalyst
(0] o CH,
\C oS
n Lactide
‘ l +2n H,0
Cc C
H c/ So” N\
3 (o)
Catalyst
o} CH,
Polylactide c o c -}
J.

Figure 3.1: Commercial preparation of polylactide.
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3.1.2 Applications

Sutures

Polymers of lactic acid have been used commercially for absorbable sutures.
Copolymers of lactide and glycolide were synthesized as early as 1963 to produce
synthetic absorbable sutures which were an improvement over catgut sutures
[Conn et al. (1974), Schmitt et al. (1967)]. Further advances of PLA sutures
include dimensional stability and improved tensile strength [Schneider (1974,
1972), Yves (1970)]; however, processing via extrusion may cause a loss in

inherent viscosity [Schneider (1971)].

Drug Delivery Systems

Biodegradable polymers have been found to be very efficient in the controlled
release of therapeutic drugs. Lactide polymers were the first synthetic
biodegradable polymers to be used in this application [Heller (1985)]. Polylactide
has also been used as a semi-permeable biocompatible local delivery device for the

treatment of periodontal disease [Goodson (1988), Damani (1993)].

Medical Implants
Polylactide has been used to coat a sintered tricalcium phosphate implant

[Eitenmuller et al. (1986)]. The PLA coating is of a certain thickness so as to
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control the adsorption time of a therapeutically active ingredient which is

contained in the porous implant.

Biodegradable Packaging: Status

The current applications for PLA are in the medical and pharmaceutical industries
which are low volume markets able to accommodate high resin costs. However, as
the need for biodegradable packaging and biodegradable items increases it
becomes necessary to find a less costly way of producing PLA. Several companies
are currently working on the research and development of the commercial
production of PLA. Argonne National Laboratories is developing a technology for
polymerizing lactic acid produced by the fermentation of potato waste. Batelle
and Golden Technologies are in a joint venture for developing PLA technology for
packaging applications. Cargill and Ecochem are producing lactic acid from corn
and cheese whey, followed by the ring-opening polymerization to high molecular

weight PLA.
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3.2 Lupersol 101

Lupersol 101 (L101) is a difunctional di-tertiary alkyl peroxide. The free radicals
generated from dialkyl peroxide decomposition are initiators in bulk and
suspension vinyl polymerizations. L101 was chosen as the initiator for several
reasons. A low half life has been reported by the manufacturer as 1 minute at
180°C and 13 seconds at 200C which may result in more or complete
decomposition of the peroxide at the operating temperatures and residence times.
L101 is also recognized by the FDA as a food additive (Code of Regulations; Title

21 “Food and Drugs” part 170 under “Food Additives”).

CH, CH, CH, CH,
| | | |
CH,—T—o—o C— CH,—CH— C —0 — 0 —C— CH,
| |

CH, CH, CH, CH,

Figure 3.2: Lupersol 101 [2,5-dimethyl-2,5-di-(t-butylperoxide)]
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3.3 Maleic Anhydride

Maleic anhydride (MA), shown in Figure 3.3, was purchased from Aldrich
Chemical Company. Maleic anhydride is a toxic chemical considered as corrosive
and as a sensitizer. Care must be taken in handling to avoid breathing in the dust
particles of MA as well as the fumes from extrusion. Also, MA may be absorbed
through the skin so gloves must be worn. MA has a melting point between 54 C
and 56'C and a boiling temperature of around 200'C, which is the maximum

temperature at which any of the experiments were run.

Figure 3.3: Maleic anhydride (MA), [C;H»05]

Maleic anhydride can be used as a coupling agent providing bonds both to a filler
containing hydroxyl groups (esterification) and to the polymer matrix (through

peroxide addition) [Dalvag et al. (1985)].



Chapter 4

PROCESSING AND CHARACTERIZATION

4.1 Processing

4.1.1 Reactive Extrusion

The thrust of this work is the free radical branching of PLA via reactive extrusion.
Therefore, extrusion is the most important step of all the experiments. It is thus
necessary to describe in some detail the reactive extruder and extrusion

experiments.

The extruder used was a Baker-Perkins co-rotating intermeshing twin screw
extruder. Figure 4.1 shows a schematic of the extruder. The diameter of each
screw is 3 cm, the length is 42 cm. There are two feed ports on the barrel, two
barrel valves, and a venting port. The material was fed at the first feed port while
the other feed port and venting port were kept closed. Each screw has two sets of
six mixing paddles and a Camel back discharge screw at the end. The die which
was used had two 3 mm in diameter holes. The temperature was measured at three
points on the barrel, at one point on the die, and at four points inside the barrel

(melt temperature), defining the conditions in zone 1, zone 2, zone 3, and the die

30
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(zone 4). The barrel could be cooled by adjusting the flow rate of the cooling

water supply which was manually controlled by four valves.

The extruder shafts are composed of slip-on screws, kneading paddles and orifice
plug segments. The configuration of these elements was as depicted on Figure 4.2.
The transversely neighboring paddles are always kept at 90 degrees to eacﬁ other,
while the axially kneading paddles can take on a number of orientations depending
on the amount of forwarding action desired in each mixing zone. The amount of
cross-sectional area available for axial flow is controlled by the barrel valves and
orifice plugs. The barrel valves are triangular shaped vanes positioned over the

orifice plugs which are discs with a diameter close to that of the barrel.

4.1.2 Extrusion Conditions

PLA and Lupersol 101 (L101) (also maleic anhydride, if maleation was desired)
were mixed in zip-lock plastic bags before extrusion on the Baker Perkins co-
rotating intermeshing twin-screw extruder. The extruder was purged (cleaned)
with polyethylene before and after each run. When the PE coming out of the die
was clear, it was assumed the no other material was in the extruder. The material
was run directly after the purging with PE. Samples of 350 - 400 grams of PLA
~ were used for purging and sample collection. Screw speed was set at 100 rpm

with a constant feed rate of 5 percent. In the beginning of the extrusion, the
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extrudate is a mixture of PE and the material, so the mixture was discarded and

sample was not collected until the material appeared to be pure PLA (change in
color from white/clear to light brown or tan). This usually occurred after 150 -
200 grams of material was collected. ~ Approximately 100 - 150 grams of the
material was collected for further testing. Collection of the material was stopped
when the load of the extruder, which remained fairly constant throughout the
reaction, started to decrease. Although there was still some material left in the
extruder, it had been subjected to a longer residence time and would not have the

same properties as the collected material.

Tables 4.1 and 4.2 show the temperature settings for the free-radical branching of
PLA and the maleation of PLA, respectively. The temperatures in the first zone
are kept lower as the materials need to be moved ahead without melting in this
zone. In the case of maleation, a lower temperature setting at the feeding zone
(compared to branching only) was necessary to prevent PLA co-aggregation in the
hopper. The melt temperatures in zones 1 and 3 ran lower than the set points for
all of the materials; 'however, thg melt temperature in zone 2 always ran higher

than the set point. Tables 4.1 and 4.2 show these discrepancies.
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Table 4.1: Temperature settings for free radical branching.

Temperature ( C)

Tem;zerature Temperature| Zone | Zone 2 Zone 3 Die
(O nge
160 Set 180 155 160 160
Melt 145 165 156 186
170 Set 180 163 185 160
Melt 145 174 173 162
180 Set 180 170 190 160
Melt 152 186 181 166
190 Set 180 185 200 160
Melt 149 197 192 167
200 Set 200 190 210 155
Melt 158 202 199 177
Table 4.2: Temperature settings for maleation.
Temperature ( C)
Temperature| Temperature| ~ Zone 1 Zone 2 Zone 3 Die
= | Twpe | | | |
180 Set 170 170 190 160
Melt 148 184 180 162
200 Set 170 190 210 155
Melt 146 201 199 175




4.2 Characterization

4.2.1 TriSEC Analysis

Molecular weights and molecular weight distributions were determined using a
TrSEC (triple detector size exclusion chromatograph) operating in THF at 25°C.
The samples were dissolved in degassed THF and then filtered with a 0.45 micron
filter before injection to remove undissolved contaminants which may block the
system. The TriSEC system consists of: (1) Viscotek model 600 RALLS (right
angle laser light scattering) detector, (2) differential viscometer/refractometer, and
(3) size exclusion chromatograph. A random coil configuration for the polymer
was assumed. The total injection volume was 242 pl with a flow rate of 1

mL/min.

Figure 4.3 is a schematic of the TriSEC detector flow loop which is a closed loop
operating system. Pure solvent is continuously passed through the apparatus. The
solvent is degassed and then pumped into the GPC column oven. The solvent is
first heated in the oven before it goes through the GPC columns. When a sample
is run, it is injected into the oven, heated to the specified temperature, and then
allowed to enter the GPC column. Once the solution has exited the column, it
goes to the RALLS detector and then onto the parallel configuration of the
differential viscometer/refractometer. If a sample is being run, the solution is

collected in a waste container; otherwise, the pure solvent is recycled.
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RALLS: Light scattering theory is discussed in some detail in section 2.2.3. A

scattering angle of 90)° and an incident wavelength of 670) nm was used
Differential viscometer/refractometer: A Viscotek 200 model was used.
SEC: Two (2) Plgel bimodal mixed bed columns were used. A universal

calibration was done with polystyrene standards.

Analysis

At least 3 injections of each sample were done. Each injection resulted in a
different refractive index (n). The refractive indices for each sample were
averaged and a new sample concentration was back calculated. Molecular weight
analysis was then done. The computer software uses an iterative algorithm to

correlate all three detector values.

4.2.2 Intrinsic Viscosity

Intrinsic viscosity measurements were done in a Ubbelhode viscometer (see
Chapter 2, Figure 2.2 for a detailed diagram) kept in a water bath at 30'C . The
PLA samples were dissolved in THF then filtered with a 120 mesh stainless steel
filter (to remove large contamination). These polymer solutions were compared to
pure THF (see section 2.2.5 for a detailed description of the basic experimental

concepts). A minimum of 4 timings were taken and then averaged for the final
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result. This test was done to validate the viscometry results obtained from the

TriSEC detector.

4.2.3 Melt Flow Index
A Ray-Ran melt flow indexer was used to characterize melt viscosity. Material
was first pelletized before analysis. ASTM standard test D-1238 was used at the

conditions of 190°C and a 2.16 kg load.

4.2.4 Differential Scanning Calorimetery

The glass transition temperature, T, of PLA and modified PLA samples was
studied using a DuPont 910 differential scanning calorimeter. T was taken at the
midpoint of the step transition. Analysis was done at 10°C/min up to 200°C under

nitrogen atmosphere.

4.2.5 Thermogravimetric Analysis

A thermogravimetric analyzer (DuPént TGA module 951 and Hi-Res TGA 2950)
was used to measure the change in weight of the sample due to decomposition.
Analysis was done at 20°C/min to about 20% volatilization. High resolution was
done so that when the sample begins to rapidly degrade the heating time slows

down, allowing for a more accurate measurement.
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4.2.6 Dynamic Mechanical Analysis

A Carver laboratory press was used to prepare the samples by a cycle of heating at
140°C for 5 minutes, pressing at 12000 Ibs for 2 minutes, and cooling under
pressure to room temperature. Samples were molded into 3™ squares, (0.125" thick,
which were further cut into ().5” strips using a high-speed wet saw. A DuPont 983

dynamic mechanical analyzer was used to measure the loss and storage moduli.

Dynamic mechanical analysis was done on several samples which were processed
the same way so a comparison could be made. Material was pelletized before
compression molding to ensure a more even distribution. The compression
molding cycle consisted of a 5 minute heating period, where the sample was
allowed to melt before pressurization; a two minute heated pressurized segment at
a force of 12000 lb.; and a pressurized cooling segment in which the sample was
allowed to cool to room temperature before removal. The mold used was a 3” x 3”
x 0.125” square sheet of steel which had overflow grooves to ensure even
thickness and sample density. The samples were then cut into 0.5 x 3 pieces
using a water cooled saw. PLA may degrade at the high temperatures generated
by the friction of the saw and undergo hydrolysis with the water especially at the
elevated temperature. Since DMA is done on the bulk properties and these

phenomena occur only at the cutting edges, these degradation effects have been
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neglected. A comparison of PLA to the modified PLA samples may still be

accomplished as all samples have undergone the same preliminary processing.

Polymers such as PLA are viscoelastic materials having characteristics of both
viscous liquids and elastic solids. A viscous liquid under stress will dissipate
energy but not store it, while an elastic solid has the capacity to store mechanical
energy but can not dissipate it [Murayama (1978)]. When a polymer undergoes
deformation, part of the energy is stored as potential energy and part is dissipated
as heat which shows as mechanical damping. The storage modulus G’ is related to
the storage of energy as potential energy and its release in periodic deformation.
The loss modulus G” is associated with the dissipation of energy as heat when the
material is deformed. The damping peak or internal friction is defined as
tan 6 = G”/G’

In DMA, the commonly used frequency range is from 102 Hz to 10° Hz
[Murayama (1978)]. A frequency of 1 Hz was chosen for these experiments. An
amplitude of 0.5 mm was chosen after lower amplitudes of 0.3 and 0.4 mm proved

to be insufficient.

4.2.7 Titration
The extent of maleation for samples grafted with maleic anhydride can be

determined by titration. Since the initial percent of maleic anhydride reacted is
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quite low, 2 percent, it can be assumed that the actual percent grafted onto the

PLA backbone is very small. A direct titration of these samples would probably
be inaccurate as a small discrepancy such as a contaminant could result in a large
error; therefore, a back titration of the sample is necessary. A back titration
consists of adding a known excess of base and then titrating the base with acid.
The base reacts with both the maleated sample and the acid. The amount of

anhydride attached to the PLA backbone can then be determined.

In general, visual titration can be used to determine the indicator end point or
potentiometric titration can be done to determine the equivalence point of the
sample. A potentiometric titration has been done using an Orion 960
Autochemistry System (Figure 4.4). The autotitrator does a potentiometric analysis
and measures the volume of HCl added along with the corresponding mV and pH
readings. A first derivative analysis is used to determine the equivalence point of

the sample.

The following is the titration method which was used. It is a modified version of
Johnson and Funk’s (1955) method: (1) remove unreacted maleic anhydride (MA)
by drying in a vacuum oven at 130°C for 24 hours; (2) dissolve ~ 1 gram of sample
(containing a maximum of 2% MA) in 20 ml of THF-MeOH (5:1); (3) after 1 hour

or when samples are completely dissolved, add 2.0 ml of morpholine solution



(0.05 N in MeOH); (4) let mixture react for 1) minutes; (5) titrate samples with
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0.01 N HCI using the autotitrator.
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Figure 4.4: Orion 96() Autochemistry system.
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The HCI solution was titrated against a known NaOH standard. The morpholine

solution was then titrated against the HCl to get a blank reading. The
potentiometric titration procedure developed by Siggia and Hanna (1951) uses an
excess of aniline instead of morpholine, but they react very similarly as they are
both secondary amines. Also, ethylene glycol - isopropyl alcohol (1:1) is used as

the solvent for the amine, replacing MeOH.

The calculation for determining the percent anhydride (i.e. the percent of grafted

MA) is as follows:

98.06g / mol _
WSamplc

% anhydride =(V_, *N__ -V, *N,)* 100

V = volume in liters
N = normality (mol/equivalent)

W = weight in grams

4.2.8 Scanning Electron Microscopy

Image Formation: A scanning electron microscope (SEM) is used to observe the
surface morphology of a sample. JEOL JSM-35C and JEOL JSM-6400 SEM were
both used in this study. The normal SEM image is formed when secondary electrons
are given out by the atoms of the sample as a result of inelastic scattering by an

electron beam (Figure 4.5). An Everhart-Thornley detector is used to detect the
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electrons. The production of secondary electrons is very sensitive to the changes

in topography of the sample. Because secondary electrons are detected from only
the top layer of a sample, the projecting areas of the sample seemingly give out a
large number of these electrons and thus appear brighter. In areas where these
electrons can not escape, such as crevices, fewer secondary electrons are detected
and thus these areas appear darker in the final image. A resolution of 4 to 6 nm is

possible with this technique.

Sample Preparation: The samples for SEM are typically 2 to 4 mm in size.
Samples from solution cast films are just cut into small pieces. Larger samples
from extrusion or mixing in the Haake mixer are prepared by fracturing at room

temperature. All samples were mounted on aluminum stubs and gold coated with

a sputter coater.
Objective Lens
Final Aperture
| N Y S— |
Electron Beam

Beam-Sample
Interaction
Volume

Figure 4.5: SEM image formation.
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4.2.9 Extraction

An extraction experiment was done on samples which were highly branched and
appeared to be cross-linked. ASTM standard D2765-90 for crosslinked ethylene
plastics was modified for use with PLA samples. Approximately 0.3 grams of
branched/crosslinked PLA was placed in a metal pouch made of 120 mesh
stainless steel. The pouch was then placed in 200 ml of methylene chloride for 24
hours. The sol content of the material would be able to exit the pouch, while any
crosslinked fraction would remain trapped inside. Results of this extraction
experiment show that no macromolecular crosslink exists; however, the possibility

of microgeleation can not be neglected.

4.2.10 Moisture Analysis

Moisture analysis was done using an O’Haus MB200 moisture analyzer. PLA is
very sensitive to water which will cause it to degrade (accelerated degradation in
the extruder). The experiment was run at 105°C for 15 minutes. It was
determined that the starting PLA contained less than 0.3% moisture (weight basis).
The PLA which was used for processing is vacuum dried at 50°C for at least 5
hours prior to extrusion resulting in 0.1% moisture. Moisture analysis done with
up to 2 days of drying also result in 0.1% moisture. This small amount of

moisture; however, may still cause thermohydrolysis in the extrusion process.



Chapter 5

FREE RADICAL BRANCHING OF PLA

This chapter is divided into two sections. The first section is comprised of a
detailed discussion of the experimental results pertaining to the free radical
branching via reactive extrusion of PLA. The second section details a proposed

reaction mechanism for the branching.

5.1 Discussion of Results

5.1.1 Effect of Extrusion Temperature

A trade-off exists between having an extrusion temperature low enough to reduce
thermal degradation, but high enough to ensure that all of the initiator has reacted.
Temperatures between 160 C and 200°C were evaluated. In the absence of
initiator, drastic degradation is readily apparent even at 160°C as shown by the
decrease of the number average molecular weight, M,, of PLA from 121,600 to
88,800 (entries 1 and 2 in Table 5.1, also Figure 5.1) as well as the increase in
MFI from 12.76 to 123.3 g/10 min. These results are comparable with
observations reported by Gogolewski (1993) who found that the injection molding
of polylactides at temperatures between 130°C and 215°C resulted in a peak

molecular weight decrease greater than 50%. Furthermore, these results are also
47
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comparable to those reported by Jamshida (1988) who examined the thermal

degradation of P(1)LA using DSC.

Increasing the temperature from 160 C to 190 C does not sharply modify M,
(compare entries 2, 6, 9, and 12 in Table 5.1) which is maintained between 76,000
and 89,000, nor does it affect the weight average intrinsic viscosity, [V,,. Based
on these results, it is apparent that the extrusion process has a strong debilitating
effect on the integrity of PLA as shown by the decrease in M, and intrinsic
viscosity, as well as the increase in MFI. In order to inhibit this behavior, we have

branched PLA by a free-radical process.

5.1.2 Effect of Initiator Concentration

At 160°C: The addition of only 0.05% L101 was able to improve the extrusion
properties of PLA by increasing M, from 88,800 to 125,500 and decreasing the
MFI from > 50 g/10 minto 5.39 g/10 min (entries 2 and 3 in Table 5.1). Further
addition of L101 (i.e., from 0.05 up to 0.26); however, provided no additional

property improvements (entries 2-5 in Table 5.1, also Figure 5.2).

At 170°C and 180°C: Increasing the initiator content leads to an increase in M,

M,cak, and the MP load % (screw torque); as well as a decrease in the MFI (entries

6-8 and 9-11 in Table 5.1, also Figures 5.3 and 5.4). Molecular weight
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distributions are kept between 1.3 and 1.5 with the exception of the highly

branched 170°/0.5 sample. At 170C and 0.1% L101, the extruded PLA is
characterized by properties similar to the initial, not extruded PLA (entries 1 and 7
in Table 5.1). For example, compare the intrinsic viscosity for PLA at 1.04 with
that of the 170°/0.1 sample at 1.08. The molecular weight values are very good in
comparison with the mean values reported by Gogolewski after injection molding

(M, << 100,000).

As previously stated, an initiator concentration of 0.5% at 170°C (entry 8 in Table
5.1) leads to highly branched PLA as can be seen in the high MP load %, the
elastomeric properties exhibited upon extrusion, and the high molecular weight
polydispersity of 550. Also, the sample was quite difficult to filter for SEC
analysis: several filters had to be used for the dilute sample solution. An
extraction experiment has been done showing no large scale cross-linking;
however, microgel may be present along with the branching. A more detailed

description of highly branched samples will be discussed in Section 5.1.6.

At 190°C: An increase in the initiator concentration results in an increase in Mo
and M, (entries 12-14 in Table 5.1). Branching effectively occurs as shown by the
increase in both M, and MP load %, as well as a decrease in MFI. The highly

branched, possibly microgel, state observed with 0.5% LI01 (entry 14 in Table
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5.1) is proof of the fact that branching is still occurring at this high temperature,

even though chain scissions are generally more prevalent at high temperatures and

high initiator concentrations.

200 C: At 200 C branching is counter-balanced by chain scission leading to an
approximately constant M,.,x and M,, in addition to a constant MFI between 10

and 13 g/10 min (entries 15-17 in Table 5.1).

Based on the above observations, it clearly appears that between 170 C and 190 C
branching occurs as evidenced by increases in M., M,, and extruder torque.
Branching is also shown by an exponential decrease in MFI with initiator
concentration (Figure 5.5). At temperatures T >190°C, in addition to branching,
chain scissions by free radical processes appear probable along with other
transesterification reactions (intra- and inter- molecular) leading to a decrease in
molecular weight. Comparisons between undried and dried PLA in MFI
experiments show that some initiator traces are still present inside the PLA sample
and can further react at 190°C during the MFI test which may lead to new
branching. In any case, the traces of peroxide always favor a decrease of MFI

which is one of the objectives of this research.
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Table 5.1: Free radical branching of PLA: MP load %, melt viscosity, and
TriSEC analysis. (Standard deviations for TriSEC data are located in
Appendix A.1)

ID PLA MP | MFI (g/10 min)' TriSEC
# samples | load%

T | wt% undried | dried® | Mpea M, [MM,]| IV,

(olLwot] _
1 PLA - 12.8 = 134500 | 121,600 141 | 104"
2 (160 0.00 | 59-63 | >50 - [ 91,900 | 88,800 [ 1.30 | 0.82
3 |160] 005 | 58-60 | 5.4 93 [137,900 125,800 4.63 | 1.33
4 [160] 0.14 | 54-56 | 4.9 7.8 [132,100 [ 124,600 [ 1.81 | 1.14
5 1160] 026 | 50-52 [ 4.1 6.4 |139,500 [ 130,400 | 2.54 | 1.17
6 [170] 0.00 | 64-68 | >50 - | 91,300 | 76,200 [ 1.50 | 0.84
7 |170] 0.10 | 69-73 | 17.2 - [126,000( 125300 1.31 | 1.08
8 [170] 0.50 | 78-85 - - | 180,800 [ 133,900 | 550° | 1.53°
9 [180] 0.00 | 59-61 | 319 [ 392 | 85900 | 81,000 | 1.30 | 0.83
10 {180 ] 0.10 | 70-72 | 139 | 15.8 | 108,500 [ 104,700 | 1.33 | 0.98
11[180] 025 7274 | 7.0 12.0 {130,900 | 129,000 [ 1.48 | 1.01
12 [ 190 [ 0.00 | 52-56 | >50 - | 88,500 | 82,900 | 1.30 | 0.79
13190 0.10 | 66-69 | 19.7 - | 115800] 114,500 1.33 | 1.02
14 [ 190 | 0.50 | 71-75 - - [162,300] 153,600 | 520° | 1.72
15 {200 [ 0.00 | 49-51 | 13.1 | 55.6 | 102,900 102,600 1.21 [ 0.92
16 [ 200 | 0.10 | 56-58 | 104 | 29.6 | 112,000 105,500 1.30 | 1.11
17200 0.25 | 59-61 | 10.7 | 17.3 [ 117,600 | 114,000 [ 1.41 | 0.97

1 ASTM standard (D1238) at 190°C with 2.16 kg load

2 Samples vacuum dried overnight at 130°C (removal of residual peroxide)

3 Sample not extruded

4 Ubbelhode viscometry experiments result in IV = 1.16 for PLA and IV = 1.46
for 170°/0.5 (Table A-2 in the Appendix)

5 Sample highly branched
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5.1.3 Thermogravimetric Analysis

TGA measures the change in weight of a sample due to volatilization, reaction, or
absorption from the gas phase [Rauwendaal (1986)]. An increase in the
decomposition temperature results in a more thermally stable product. At an
initiator content of 0.1%, an increase in the extrusion temperature results in an
increase in the decomposition temperature and a more thermally stable polymer as
compared to unextruded, unreacted PLA which degrades more readily (entries 1,
5,8, 10, 13 in Table 5.1, also Figure 5.6). Jamshida (1988) has proposed thermal
degradation by a back-biting mechanism starting from the end groups of the PLA
chain. At 0.1% L101, PLA is branched leading to a decrease of the total number
of end groups; therefore, the probability of thermally degrading side reactions

occurring by this mechanism might be reduced.

At an initiator content of 0.5%; however, the higher extrusion temperature has a
somewhat lower decomposition temperature, indicating that the product at 170'C
is more thermally stable than that at 190°C (entries 6 and 11 in Table 5.2; also
Figure 5.7). An explanation of this may be as follows: a higher temperature tends
to produce a lower gel content [Hamielec et al. (1990)] so the lower temperature is
more cross-linked and may be more difficult to degrade. In addition to the fact
that higher temperatures tend to produce less cross-linked materials resulting in

more end groups available for degradation, higher temperatures seem to be more
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favorable to chain scissions by free radical processes or intramolecular

transesterification leading to the formation of oligomers. Oligomers have been
shown to promote the degradation and also the thermal instability of PLA

[Jamshida et al. (1988)].

Products extruded at 160 C show little change in decomposition temperature at an
increasing initiator content (entries 2-4 in Table 5.2). The decomposition
temperatures are lower than that of pure, unextruded PLA (entry 1 in Table 5.2)
which is characterized by longer chains. Once again, the extrusion at 160 C

causes degradation with a sharp decrease in M, as reported by Gogolewski (1993).

Table 5.2: Decomposition temperatures from thermogravimetric analysis.

l ID # | Temperature (C) | wt% L101 | Onset Value (C) | Max. Value ( i
1 Pure PLA - 3200 321.2
2 160 0.05 319.4 320.5
3 160 0.14 319.1 320.1
4 160 0.26 318.8 319.7
5 170 0.1 323.8 325.1
6 170 0.5 322.1 323.3
7 180 0.0 315.4 316.5°
8 180 0.1 322.0 323.2
9 180 0.25 324.3 325.5
10 190 0.1 323.9 325.2
11 190 0.5 321.1 322.3
12 200 0.0 326.4 328.0
13 200 0.1 326.5 328.0
14 200 0.25 319.5 320.5

1 Maximum rate of decomposition
2 Temperature still declining
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At 180 C, when increasing the initiator concentration from 0.0 to 0.25% L101, the

thermal stability increases which indicates that branching also increases (entries 7-
9 in Table 5.2). With no initiator present, the sample extruded at 180 C is not as
stable as unmodified PLA indicating that degradation has probably occurred
(compare entries 1 and 7 in Table 5.2). This could be a result of hydrolysis, i.e.

more hydroxyl groups are present resulting in easier degradation.

At temperatures of 170 C and 190 C, samples with an initiator concentration of
0.5% (entries 6 and 11 in Table 5.2) are less thermally stable than those with an
initiator concentration of 0.1% (entries 5 and 10 in Table 5.2); however, both are
more stable than unextruded PLA. At so high of initiator concentration one can
assume, next to the proposed microgel formation of PLA, that a large amount of
chain scissions occur resulting in the formation of short chains which are less
stable. Figure 5.8 shows the TGA for the PLA system extruded at 170°C. A plot

for the 190 C system is very similar.

Figure 5.9 (entries 1 and 12-14 in Table 5.2) clearly confirms the results obtained
in Table 5.1 at a extrusion temperature of 200C, i.e. even if there is some
branching which occurs, there are also chain scissions which become extremely

important as the L101 content is increased. For example, the stability of PLA
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extruded at 200 C in the presence of 0.25%L 101 is even worse than that of pure,

unextruded PLA.

5.1.4 Differential Scanning Calorimetry

The reactive extrusion of PLA with L101 did not affect the glass transition
temperature, T, which was maintained in the range of 58'C to 62C for all
samples, reacted and unreacted (Table 5.3, also Figure 5.10). A crystalline region
was noted at about 117 C to 123'C for all samples. These results were somewhat
surprising as a change in the T; was expected. When the molecular weight
increases, the density of the end groups decreases which leads to a decrease in the
free volume, and hence, an increase in the T should result. In general, branching
normally decreases the T, as the free volume is increased, while crosslinking

increases the T, as the number of end groups is decreased.

Table 5.3: DSC results: 10 C/min to 200'C

Temperature ( C) %L 101 T (C) endothermic
transition ( C

Pure PLA - 59.2 122.6

170 0.1 59.1 121.6'

180 0.1 58.6 121.3

190 0.1 58.6 121.1

200 0.1 58.0 120.9

160 0.0 62.2 117.7

170 0.5 62.0 117.4

1 A third transition was apparent at 114°C.
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5.1.5 Dynamical Mechanical Analysis

DMA confirmed the results found by DSC: no noticeable change in T was
apparent. At the glass transition temperature, T the storage modulus, G’, shows a
rapid decrease (Figure 5.11), while the loss modulus, G”, and the tan delta (ratio
of loss modulus to storage modulus) exhibit maximums (Figures 5.12 and 5.13
respectively). Table 5.4 shows the average T results given by DMA. PLA 110 s
pure PLA which has been compression molded at 110°C, while PLA 140 has been
molded at 140 C. The Tg associated with G’ is generally accepted as the value

which is reported for polymeric materials.

Table 5.4: Tg averages for dynamic mechanical analysis.

Temperature (C) | %L101 G G” tan &
PLA 110 - 61.78 69.98 75.36
PLA 140 - 61.46 69.38 75.1

190 0.1 60.88 68.25 74.71
200 0.1 61.32 69.06 74.82
170 0.5 59.92 69.71 75.36
190 0.5 59.83 68.23 74.62
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5.1.6 Highly Branched Samples

This section is specifically devoted to the 170°C and 190°C samples with 0.5%
initiator concentration. Besides having a large weight average molecular weight
and a high polydispersity, the highly branched samples have other outstanding
characteristics. The weight average radius of gyration (Rg,) for all the other
samples was between 14 and 20 nm (see TriSEC data in Table A-1 of the
Appendix), but the Rg, for 170°/0.5 and 190°/0.5 were 649 nm and 936 nm,

respectively.

As previously stated in Section 5.1.2, these highly branched samples were more
difficult to filter in comparison with the other samples. A material balance was
done indicating that approximately 20% of the 170°/0.5 sample and about 10% of
the 190°/0.5 sample were entrained in the 0.45 micron GPC filter. This material is

either microgel, contaminants, or both.

The Mark-Houwink parameter ‘a” is a polymer confirmation parameter (see
Section 2.2.4). For random coil molecules, ‘a” usually has a value between 0.5 for
a poor solvent and 0.8 for a good solvent. Typical ‘a” values for the PLA
polymers which were not highly branched were between 0.64 and 0.77 (Table A-1
in the Appendix). For polymers containing long chain branching, the ‘a” value

can fall below 0.5, depending on the degree of branching [Viscotek (1992)]. The
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values for 170°/0.5 and 190°/0.5 are 0.47 and 0.46, respectively, further

confirming that these polymers may have long chain branching.

Figure 5.14 is a Mark-Houwink plot of the 170°C series. A linear Mark-Houwink
(M-H) plot 1s generally found in linear standards. For a given polymer, samples
which have the highest slope and intercept on a M-H plot represent the least
branched structures. As seen in Figure 5.14, the 170°/0.5 sample is considerably
lower than the other samples indicating a highly branched structure. The 170°/0.5
molecular weight is also greater than that of the other samples as the log (M.W.)
line extends farther than that for the other samples. A M-H plot of the 190°C
series showed similar results. A comparison of PLA and 170°/0.1 in Figure 5.14
shows that the M-H plot for both samples is similar in agreement with an earlier

statement that these samples are almost equivalent.

The percent of polymer with a molecular weight above 1,000,000 Daltons was also
determined. Pure PLA and all other samples which were not thought to be highly
branched had less than 1% of their total molecular weight above 1,000,000.
170°/0.5 has 11.14% and 190°/0.5 has 8.31% above 1,000,000 indicating long
chain formation. Table 5.5 summarizes these findings in comparison with

unextruded PLA.
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Table 5.5: Highly branched sample comparison to unextruded PLA.

Sample Rg, (nm) “a” % above 1,000,000
PLA 17.85 0.72 <1

170°/0.5 649 0.47 11.14

190°/0.5 936 0.46 8.31

Figure 5.15 shows a comparison of the light scattering chromatographs of pure
PLA and of the 190°/0.5 sample. Clearly obvious is the bimodal peak in the
190°/0.5 sample which indicates that there is a considerable amount of high
molecular weight polymer present in the sample in comparison to pure PLA in
which there is no such peak. This phenomenon was seen in both the 170°/0.5 and

the 190°/0.5 cases.
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190°/0.5 (bottom).



75
5.1.7 Film Results

An initial study of PLA film extrusion was done at in this investigation. A small
single screw film extruder with an 18" 3/4” barrel was used to extrude samples of
pure PLA and PLA with initiator. As this was a preliminary study to evaluate the
feasibility of film extrusion, only an extrusion temperature of 170°C was used.
Three different compositions were extruded: (1) pure PLA, (2) PLA and 0.1%
L101, (3) PLA and 0.5 L101. With 0.5 % free radical initiator, the resulting

product was highly branched and did not extrude to a usable film.

Table 5.6 shows the film properties of PLA and PLA with 0.1% L101. Tensile
tests for strength, elongation and tensile modulus were conducted on a UTS
machine SFM-20 using ASTM D882 for thin films. Table A-3 in the Appendix

lists the operating conditions as well as the data for all experimental runs.

Table 5.6: Tensile results for PLA film.

Property PLA PLA with 0.1% L101
T —————————
Film thickness 0.005 0.003
Maximum psi 2980 +/- 190 2680 +/- 130

% elongation at break 3.6 +/-1.3 4.1+/-2.0
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5.2 Proposed Reaction Mechanism

The formation of a free radical is the first step in the following proposed reaction
mechanism. Figure 5.16 shows the decomposition of L101 which may generate
several free radicals. The beta scission is a secondary reaction which may occur.

Once the free radical initiator is formed, branching may take place.

Figure 5.17 details the proposed reaction mechanism. First, hydrogen radical
abstraction of the PLA polymer chain must take place. Radical coupling of these
newly formed reactive polymer backbones may then occur resulting in the
formation of a branched species. Chain scission of the polymer backbone may
also occur resulting in the formation of a radical species which may also combine

with another radical species to result in a branched polymer.
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Figure 5.16: Peroxide decomposition.
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Even if chain scissions could be promoted by free radical processes as proposed in

Figure 5.17, they can also be promoted by intramolecular transesterification
[McNeill (1985)] (also called backbiting) and thermohydrolysis. Figure 5.18
shows both back-biting and thermohydrolysis reactions and the products which

they may produce.

Back-biting

o
o .
| |
N —c—o
» ) \
- \ /
Cyclic Oligomers
Thermohydrolysis
o o
0—c¢c — + HO —— . -~ - OH + c- -

Figure 5.18: Chain scission reactions.
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When chain scission occurs, oligomers are formed and there is an increase in the

hydroxyl and carboxylic end groups, both of which are favorable to promote
thermal decomposition [Jamshidi (1988)]. This is in agreement with the TGA
results discussed in Section 5.1.3. When branching occurs, the thermal stability is

increased because there is a decrease in both end group and oligomer formation.

In conclusion, there are two competing factors in the free radical extrusion of
PLA: (1) branching, which favors large molecular weights, and (2) chain scission
or hydrolysis, which favors small molecular weights. In this section, a proposed
mechanism has been provided for both of these options. Actual characterization of

the true mechanisms would be difficult, if not impossible.



Chapter 6

MALEATION OF PLA

6.1 Discussion of Results

The grafting of maleic anhydride to the polylactide backbone was done in an
attempt to produce functional groups which would improve the interfacial
adhesion of polylactide polymer blends (see Chapter 7). A concentration of 2

percent maleic anhydride was used for all experiments.

6.1.1 Effect of Extrusion Temperature

Based on the free radical branching results given in Chapter 5, the extrusion
temperature was not expected to play a large role in the maleation of PLA. Two
temperatures were selected (180°C and 200°C) for this study with an initiator
concentration ranging from 0 to 0.5% L101. Figure 6.1 shows that for the same
initiator concentration, there is little or no difference in the grafting content of MA

at the temperatures which were used.
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6.1.2 Effect of Initiator Concentration

At 180°C: With no peroxide, the addition of 2% MA has virtually no effect on the
extruded PLA. M, and M, are approximately the same as the PLA which has
been extruded only (compare entry 1 in Table 6.1 with entry 9 in Table 5.1). The
addition of 0.1% L101 slightly increases both M, and M,.,.. Further addition of
L101, 0.25 and 0.5 %, has a slight negative effect on the molecular weight of the
samples (see entries 2-4 in Table 6.1). This decrease in molecular weight may be
due to the competition between branching (which increases as initiator
concentration increases and also increases molecular weight) and grafting of MA
(which also increases as initiator concentration increases, but results in little or no

molecular weight change).

Figure 6.1 shows that an increase in free radical initiator results in an increase in
the percent of maleic anhydride which is grafted (% maleation). Only small
amounts of anhydride grafted to a polymer backbone are needed to improve the
interfacial adhesion in a polymer blend system. Figure 6.2 is the TnSEC evolution
which shows that the changes which occur in the shift of the molecular weights are
very subtle and that the molecular weight distribution (the width of the peaks)

remains fairly constant.
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At 200°: Results similar to the 180°C series are seen at 200°C. The sample with

0.1% L101 has slightly higher M, and M., while the samples with 0.25% and
0.5% L101 are slightly lower (see entries 5-7 in Table 6.1). Figure 6.3 is the
analogous TriSEC evolution which also shows (1) subtle shift in molecular

weights, and (2) a fairly constant molecular weight distribution.

General Comments

Table 6.1 also shows the reduction of MP load % at increasing amounts of
peroxide. The presence of maleic anhydride appears to cause the chain scission of
PLA. A melt flow analysis was done at both temperatures (see Figure 6.4 and
Table 6.1) indicating that the addition of increasing quantities of initiator result in
higher melt flow indexes (i.e., lower melt viscosity). The observation of increased
melt viscosity in the presence of peroxide alone and of reduced melt viscosity in
the presence of both peroxide and maleic anhydride is not what is found in the
modification of polyolefins. For example, in the modification of polyethylene, the
addition of peroxide causes branching and gelation, the presence of maleic
anhydride promotes further branching and gelation [Hogt (1988)]; and in the
modification of polypropylene, the addition of peroxide cause scission of PP, the
presence of maleic anhydride causes further scission of PP chain [Callais et al.

(1990)].
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Results of the TriSEC analysis further show that the addition of peroxide and MA

does increase the chain scission of PLA. Table 6.1 also shows that the weight
average intrinsic viscosity, [V, of the maleated samples is between 0.73 and 0.95;
whereas, the IV, for pure PLA is 1.04 (much higher). A further indication of
reduced chain size, probably by chain scission, is the decrease in the radius of
gyration for the maleated samples (Rg between 13.6 and 15.4 nm) relative to the

pure PLA sample (Rg = 17.85 nm) (see Table A.4 in the Appendix).
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6.1.3 Thermogravimetric Analysis

As stated in Section 5.1.3, an increase in the decomposition temperature results in
a more thermally stable product. The maleated samples have decomposition
temperatures which range from 2-7°C below that of PLA (see Table 6.2). This is
to be expected as the maleated samples, in general, are of lower molecular weight.
An exception to this is the 180°/0.1 sample which has a slightly higher
decomposition temperature. This is explained by the fact that the 180°/0.1 sample

is of a higher molecular weight than the other samples.

Table 6.2: Maleated decomposition temperatures from thermogravimetric

analysis.
ID# | Temperature (C) | wt% L101 | Onset Value (C) | Max. Value ( C)
1] 1.0 | oo | 317 | 364 |
2 180 0.1 3173 3225
3 180 0.25 313.8 318.3
4 180 0.5 309.2 314.6
5 200 0.1 314.9 319.0
6 200 0.25 314.5 319.1
7 200 0.5 309.2 3149
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6.2 Proposed Reaction Mechanism

The formation of a radical is the first step in the maleation of polylactide. The
radical formation is the same is it was for the branching of PLA (see Figure 5.16).
Once the radical is formed, hydrogen abstraction can occur producing a
polylactide which may react with the maleic anhydride radical. The resulting
polymer radical may then combine with another radical (MA, peroxide, or polymer

radicals or hydrogen) to complete the reaction (see Figure 6.5).

The homopolymerization of maleic anhydride is considered by many to be another
significant reaction when grafting MA onto polymer backbones [Gaylord et al.
(1983b, 1989)]. Recently; however, Russell (1995) discussed a thermodynamic
argument based on the ceiling temperature of poly(maleic anhydride) in which the
formation and grafting of poly(maleic anhydride) during maleation in the melt (at
temperatures greater than 160°C) would not occur. In the maleation of PLA, the
high shear stress in the extrusion process may inhibit the homopolymerization of
MA. In any case, the homopolymerization of MA without grafting is assumed to

be unlikely for the conditions which were used.

Another possible reaction is beta scission of the polylactide backbone by the free
radical leading to an ene-formation which may react with MA (see Figure 5.17,

chain scission). A similar process was proposed by De Roover et al. (1995) for
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the maleation of PP; however, their experimental observations showed that very

severe conditions were needed to favor the ene-reaction with MA including: (1)
very low PP molecular mass, (2) very high concentration of MA, (3) high
temperature and pressure, and (4) long reaction times. FTIR analysis did not
support their (De Roover et al.) theory that an ene-reaction with MA brought about
by beta scission occurred. For the maleation of PLA, only 2 % MA is added to the
reaction (low concentration) and the reaction time is under 2 minutes; therefore,
the possibility of an ene-reaction of PLA has been ruled out. The ketone formed
by the beta scission of PLA (which corresponds to the ene-formation of PP) would

be structurally unfavorable for the grafting of maleic anhydride.



93
ROOR —— 2 RO

o CH,
RO + —+c¢c —0—c -} EE—
H
o CH,
] |
| l (1) +
fc—o0—c 4 ROH
o CH,
c-c I !
(1) + c c T * —fc—o0o—c—}
o o 0 !
c—-cC
Ay
c c
o o )
Recombination
He, ROe, MA-
o CH,
| |
—fc—o0—c—}
X |
c—-cC
7 \ X =H, RO, MA
c c
o o )

Figure 6.5: Proposed mechanism for the maleation of PLA.
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As in the case for the branching of PLA, chain scission of the polylactide chain

may also occur (see Figure 5.17 (chain scission)) with the resulting radical
becoming available for reaction with MA. Similarly, thermohydrolysis and back-
biting may still happen (see Figure 5.18) leading to further degradation of the

polylactide chain.

Again, the above reaction is a proposed mechanism for the grafting of maleic
anhydride onto the polylactide polymer backbone. Gaylord and others have been
working on the maleation mechanism (with PP and PE) for several years now with
no explicit results. Actual characterization of the true mechanism for PLA

maleation would be difficult, requiring a much more in depth study.



Chapter 7

POLYLACTIDE BLENDS

A polymer blend consisting of two or more polymeric materials can be tailored to
industrial needs. Polymer blends have several advantages over polymers including
cost and time for development (7-10 years for a new polymer, 2-4 years for a new
blend) [Meier (1991)]. Combining polylactide with natural materials and synthetic
polymers provides a way of cost reduction and combined polymer properties. The
objective of this part of the study is to find miscible or compatible blends of PLA

with other polymers.

7.1 Blend Theory

7.1.1 Miscibility

Polymer blends may be miscible, partially miscible, or immiscible. When a
mixture of polymers forms a single thermodynamically compatible phase, a
miscible blend is formed. A single glass transition temperature is indicative of a
miscible or partially miscible blend. Electron microscopy of a miscible blend will
show polymer homogeneity. Miscible blends also exhibit combined physical

properties. Films of miscible blends are generally transparent.
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Immiscible blends are characterized by high interfacial tension and poor adhesion

between phases. Macrophase separation generally occurs resulting in poor

material properties such as tensile strength and elongation.

Whether or not two polymers are miscible depends on the free energy of mixing,
AG,

AGn = AH, - T AS,,
where AH,, is the enthalpy of mixing, T is the temperature, and AS,, is the entropy
of mixing. For the polymer blend to be miscible, AG,, must be negative. The

entropy and enthalpy of mixing are defined by Flory-Huggins as the following

[Meier (1991)]:
ASa _ by 8
VR v;ln¢| 172|n¢2
AHM - ZIZ
Sz =g 4, 22

\ %
where V is the volume, R is the gas constant, ¢; is the volume fraction of polymer

i, Vi;and v are the molar volumes, and y is the interaction parameter.

For high molecular weight polymers, the entropy of mixing is very small so the
free energy of mixing is determined by the enthalpy of mixing which is positive

for most systems. Specific interactions such as acid-base and hydrogen bonding
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can occur which enables AH,, to be negative and hence the polymer blends will be

miscible.

7.1.2 Compatibility

Polymer blends are considered compatible if a desired or beneficial result occurs
when the polymers are mixed. Compatible blends are not necessarily miscible.
Compatibilized blends are immiscible blends which have been altered by methods
such as surface modification, grafting, or the addition of a compatibilizing agent.
This modification lowers the interfacial tension and increases the adhesion
between the polymers resulting in a product which has specific properties desired
by industry. The modification of polylactide with maleic anhydride was

performed to improve the adhesion of PLA to various polymers and fillers.

7.2 Materials

7.2.1 Cellulose Acetate and its Derivatives

Cellulose acetate (CA), cellulose acetate propionate (CAP), and cellulose acetate
butyrate (CAB) were chosen because of reports from literature on the miscibility
of polyesters with CA, CAP, and CAB. These materials were provided by

Eastman Kodak.
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7.2.2 Polypropylene

Polypropylene was selected because of its similarity to PLA in its methyl group.

PP has a density of about 0.85 g/cm’ and a T of -17°C.

CH, o CH,
|

| |
— CH;— cH); ¢ —o— CH)

PP PLA

Figure 7.1: Comparison of PP and PLA.

7.2.3 Poly(vinyl acetate)

PVA was selected because of its structural similarity to PLA, its good theoretical
background for miscibility, and its potential application in drug delivery systems.
The high molecular weight PVA was provided by the Aldrich Chemical Company..

It has a density of 1.191 g/cm’.

H H
+l—l4
. e
ot

b

Figure 7.2: Poly(vinyl acetate)
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7.2.4 Ethylene Vinyl Acetate (EVAC) Copolymers

These random copolymers were selected for the same reasons as PVA (listed

above). The EVAC copolymers were provided by DuPont under the trade name of

ELVAX. Table 7.1 lists the vinyl acetate content of the EVAC copolymers which

were used along with some distinguishing characteristics.

Table 7.1: ELVAX properties.

ELVAX | % vinyl acetate | principle use/characteristic

150 33 adhesion to nonporous surfaces, used in solvent
applied coating and hot melt adhesion

350 25 high MW, high melt viscosity, used for maximum

' toughness and greater specific adhesion

450 18 low melt viscosity, improves hardness and grease
resistance

650 12 high MW, high melt viscosity, used for high temp.

performance
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7.3 Equipment and Procedures

7.3.1 Solution Casting
Solution casting provides a fairly easy and rapid way of determining polymer
blend miscibility. As stated earlier, a miscible blend will, in general, be

transparent with no evidence of phase separation.

Approximately 1 gram of polymer (combined total weight of the sample) is
dissolved into 20 ml of solvent,‘ in this case methylene chloride. This solution is
stirred for about 48 hours before it is transferred into a glass petri dish. The
solvent is allowed to evaporate under the hood. The film which is formed is then
dried under a vacuum to ensure that all of the solvent has evaporated. The film

can then be evaluated for miscibility.

7.3.2 Haake Mixer

A Haake mixer was used instead of an extruder, or solution cast films, for some of
the blends. The mixer is a batch process which uses less material than an extruder,
but provides a more homogenous material (i.e., part of the material did not have to
be discarded due to possible erroneous conditions) which can be evaluated. The
Haake mixer has a volume of 300 cc and was operated at 80% capacity to ensure

thorough mixing.
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7.4 Discussion of Results

7.4.1 Blends of PLA with CA, CAP, CAB

CA, CAP, and CAB are commercial polymers which are strong, tough, and have
good moisture permeation properties. However, processibililty is a common
problem for these materials. Plasticizers are usually added to these resins to

improve processibility, but in a polylactide blend, the PLA may act as a plasticizer.

Since CA has a very high processing temperature (> 240°C), it was eliminated as a
possible blend material with PLA. CAP and CAB can be extruded at a
temperature of 210°C. Initial studies were done with blends of 70% CAP and
30% PLA. Transparent extrudate was observed for this composition at a
processing temperature of 230°C. However, SEM studies show that two phases
are present, i.e., CAP and PLA are not miscible. This phenomenon can be seen in
Figure 7.3. Solution casting of PLA with CAP/CAB in THF and methylene
chloride did not result in transparent films. The 70/30 blend was also run in the
Haake mixer at a set temperature of 210°C for 30 minutes. The actual recorded
temperature was ~ 220°C. This increase in temperature may be due to the shear
forces in the mixer. The resulting resin was not transparent. Further analysis via
SEM also revealed two phases. The transparent extrudate obtained from extrusion

is presumably due to PLA degradation.
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Figure 7.3: SEM micrograph of 70% CAP and 30% PLA showing immiscibility.

7.4.2 Blend of PLA with PP
A blend of 70% PP with 30% PLA was attempted in the Haake mixer at 190°C for

20 minutes. The blend showed no miscibility.

7.4.3 Blends of PLA with PVA

Solution casting was conducted for a range of PLA/PVA compositions. The
resulting films were transparent. Initial SEM results show compatibility and
possible miscibility at some compositions. These films are not very stable under

the electron beam, so care must be taken to avoid charging. The 70% PLA/30%
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PVA blend appeared to be miscible, i.e. two distinct phases are not apparent, by

SEM.

The 40% PVA/ 60% PLA blend; however, was immiscible as two phases were
present when viewed by SEM. Small circles of PVA were apparent in the
polylactide polymer matrix. DSC studies show a reduced glass transition
temperature (Tg) of the blends; however, the Tgs for both PLA and PVA are very
close (58°C and 42°C, respectively) so it is difficult to tell if there is really only
one Tg which would indicate miscibility or if there are two Tgs which would be

indicative of immiscibility. Table 7.2 shows the Tgs as given by DSC.

Table 7.2: Glass transition temperatures for PLA/PVA blends.

Sample Ts (°C)
Pure PLA 57.8
Pure PVA 42.0

70% PLA, 30% PVA 47.2

60% PLA, 40% PVA 46.3
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7.4.4 Blends of PLA with EVAC Copolymers

Blends of 70% PLA with 30% ELVAX 150 and 350 were dissolved in CH,Cl, and
then cast. The resulting films were not transparent; however, they appeared to be
exceptionally strong. SEM analysis revealed two phases; however, the

compatibility between PLA and ELVAX 350 was very good.

7.4.5 Blends of PLA with Starch

This set of experiments was done to compare the interfacial adhesion properties
between starch and (1) PLA, (2) PLA with Lupersol 101, and (3) PLA, Lupersol
101, and maleic anhydride. Figure 7.4 is an SEM micrograph of a 60% PLA/40%
starch blend showing poor interfacial adhesion. Figure 7.5 is of a 30% starch/70%
PLA blend with 0.5% L101 (PLA wt. basis). This micrograph shows some

interfacial adhesion, but separation of the blend is readily apparent.

The addition of MA provides end groups which should improve the interfacial
adhesion. Figure 7.6 is an SEM micrograph of a 30% starch/70% maleated PLA
blend. The maleated PLA consists of PLA, 2% MA, and 0.5% L101. The

interfacial adhesion seen here is very good.

It is thus concluded that the addition of even a small amount of maleic anhydride

onto the polylactide backbone will improve the interfacial adhesion of polylactide
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blends. These blends may be incorporated into single-use biodegradable

disposable items in the future.

Figure 7.4: SEM micrograph of 60% PLA and 40% starch blend showing poor
interfacial adhesion.



Figure 7.5: SEM micrograph of 30% starch and 70% PLA blend with 0.5% L101
showing partial interfacial adhesion.

Figure 7.6: SEM micrograph of 30% starch an
interfacial adhesion.

70% maleated PLA showing good



Chapter 8

RELATED WORK

Preliminary work was done to evaluate the potential of Laser Scanning Confocal
Microscopy (LSCM) in studying polymer blend systems. Traditionally, Scanning
Electron Microscopy (SEM) has been done to study the morphology of a polymer.
The application of LSCM to polymer systems is a fairly novel approach, but it is
one which should be considered as LSCM provides a non-invasive technique to
study a polymer blend system. In this investigation, two polymer systems were
studied: (1) a starch matrix with a protein filler, and (2) an extruded modified
starch matrix with a talc filler. A Zeiss 10 LSCM located at the Laser Scanning

Microscope Laboratory at Michigan State University was used.

8.1 LSCM Background

Laser Scanning Confocal Microscopy is a technique which originated with Young and
Roberts (1951) and Minsky (1957) in the form of a confocal scanning optical
microscope (CSOM). A working CSOM with a laser as its light source was developed

in 1969 by Davidovits and Egger. In the past twenty years the LSCM has been

107
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improved upon by numerous researchers. The equipment has been commercially

available since the late 1980°s.

The LSCM has been used mainly for biological science. The LSCM can be used to
image both surface and subsurface features of lucid samples without the need to
section them. For biological and medicinal applications this allows the subsurface
viewing of living samples. In an optical microscope, images which are out of focus
(possibly due to the difference in specimen thickness) appear blurry and distort the
true image. In the LSCM; however, images which are not in focus disappear as the
lenses are set up in such a way so that only the image at the specified laser depth is

observed. This results in sharper image edges and more image contrast.

The laser confocal microscope or laser scanning confocal microscope is named for its
constituents. Laser refers to the light source used to illuminate the sample. Most
LSCM'’s also have conventional light sources such as a tungsten and/or a mercury
lamp. Scanning means that only one point is illuminated at a time: the sample must
be scanned and the image constructed pixel by pixel. Confocal means that the

objective lens of the microscope is used twice, to illuminate the sample and to image it

[Kino et al (1989)).



109
Several viewing modes are available on the LSCM: transmission, reflection, and

fluorescence. The transmission mode, used for translucent samples, detects the laser
after it has passed through the sample; however, this mode is not confocal. In both the
reflection and fluorescence modes, the laser goes to a specified depth into the sample
and then is bounced back up into the detection device. A fluoroprobe or a naturally
fluorescing material is required in the fluorescent mode. The fluoroprobe is used as a

signal for different polymer constituents in blend systems.

The Laser Scanning Confocal Microscope works by scanning a sample via a laser
point by point. The laser beam hits the beam splitter which causes a wide beam to
pass through the objective lens where it narrows and samples the specimen. The beam
is then deflected off of the specimen and heads towards the detector. However, the
beam must first pass through a pinhole before it is detected. The pinhole succeeds in
blocking out wide-spread beams which would result in unfocused images in a
conventional optical microscope. Figure 8.1 shows how a focused image is produced.
Figure 8.1 also shows the path of the out-of-focus light Once detected, the image is

stored, point-by-point and shown on a high resolution computer screen.

As mentioned early, LSCM has had its use in mainly biological applications. LSCM
has also been used in the metrology of various structures including line-widths on

integrated-circuit wafers [Lindow et al (1985), Zapf et al (1986)}, diameters of fibers
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[Mechels et al], and particle sizing in metallography, geology, and biology. Laser

scanning confocal microscopy is very advantageous for metrology because the
scanning stage can be accurately calibrated by using laser inferometry if a scanning
stage is used. The image is electronically produced and is visible on a computer
screen. The distance between two points on a sample can be readily determined just

by selecting the points and pushing a button.

The laser scanning confocal microscope is now being used by material scientists,
polymer chemists and chemical engineers because of its ease in use and its imaging
capabilities to study polymer and polymer blend morphologies. LSCM provides a
non-invasive viewing technique in which little or no sample preparation is necessary to
obtain valuable information. The image can viewed directly on a computer screen and
can be electronically filtered for sharper detail. The LSCM has improved resolution
capabilities over conventional viewing mechanisms (i.e., wide field microscope) and is
capable of a transverse (X-Y) resolution of about 0.1 micron. Longitudinal (Z-axis)

resolution is also improved as the confocal scope eliminates any unfocused light.

Like any technique, the LSCM does have some limitations. Depth into the specimen is
limited by the intensity of the reflected light or fluorescence signal, which to a greater
or lesser degree is sample dependent. One other disadvantage of the LSCM is that in

its laser mode, some specimens can be destroyed by the intense laser light. This may
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occur with any laser application, however, no problems were detected with our

samples.

8.2 Starch Matrix with Protein Filler

Methods and Materials

The focus of this investigation is on the morphology of polymer blends, specifically
starch and zein (a comn protein). To illustrate the capability of LSCM to distinguish
between starch and protein phases, we impregnated a potato (continuous starch matrix)
with the zein protein. To distinguish the zein from the starch matrix, the zein was first
treated with 1000 ppm of fluorescein isothiocyanate (FITC), a protein-specific dye
commonly used in fluorescence applications. This stained zein was used in only the
LSCM applications; for SEM, unstained zein was used. The isothiocyanate of this
fluoroprobe reacts with the amines of the proteins and becomes a protein "tag". The
zein was then dissolved and allowed to diffuse through the starch matrix. The exact
densification method is covered under a confidentiality agreement with Grand Met,
and therefore can not be disclosed. After 3 hours, the sample was dried. A BCA
protein assay was also done to quantify the amount of protein impregnation. The
results of this analysis showed that there was approximately 2 mg of zein protein per

gram of starch.
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Scanning Electron Microscopy

SEM analysis was initially done; however, it was impossible to distinguish the zein
protein. SEM sample preparation requires a vigorous drying method in various grades
of ethanol which might redissolve the protein. This drying method may also have the
ability to alter the structure of the starch matrix. Figure 8.2 is an SEM micrograph of

the potato, showing the cell walls and starch granules.

Figure 8.2: SEM micrograph of potato showing cell wall and starch granules.
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Laser Scanning Confocal Microscopy

LSCM was then done on the densified samples. A double-edged razor blade was used
to cut a cross-section of the sample approximately 6 mm square. This cross-section
was then viewed with the LSCM in all three modes: transmission, reflection, and
fluorescence. An argon-ion laser was used (wavelength 488 nm) to fluoresce the
tagged protein. Figure 8.3 shows a fluorescent image of the starch matrix impregnated
with protein. The bright areas are the fluorescing protein while the darker areas
constitute the starch. There is a dense border of protein along the outer edge of the
matrix. If no protein were present, the fluorescent image with the laser which was
used (488 nm) would appear completely black. Figure 8.4 shows another part of the
matrix which has a fracture. As expected, the concentration of the protein along the
fracture appears to be much greater than that elsewhere in the matrix, as the protein

was able to permeate the matrix in this area faster and easier.

Since the protein border gave such a strong fluorescent signal, it was necessary to trim
away the border to see if it was masking the true internal signal. The sample was
trimmed down to about 3 mm square and then observed under the LSCM. A
transmitted image of the specimen showed that it was still intact; however, the protein
and the starch were indistinguishable. Figure 8.5 is a fluorescent image of the same
specimen. Large clumps of protein can be identified throughout the matrix; therefore,

it is apparent that protein diffusion has indeed occurred.
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8.3 Extruded Modified Starch with Talc Filler

As LSCM provided good results for the starch/protein system, it was also initially
tried on the extruded modified starch/talc system. This system is currently
classified under a confidentiality agreement between Michigan Biotechnology
Institute and Japan Corn Starch; hence, specific components and/or compositions

may not be given.

Laser Scanning Confocal Microscopy

A series of samples were viewed via LSCM to check for specific fluorescence.
The objective was to find one component of the sample which would fluoresce
exclusively in a controllable manner. No distinction could be made between the
talc and the modified starch in the transmitted mode. Two types of talc were
tested: (1) MSU talc which fluoresced, and (2) Van talc which did not fluoresce.
The plasticizer (T comp) which is used to aid in the extrusion process, did not
fluoresce. Modified starch (powder form) did not fluoresce. To simulate the
extrusion process, some of the modified starch was compression molded at
temperatures from 160 to 190° C. Modified starch which had been compression
molded fluoresced for the most part, but some areas did not fluoresce (those which
may not have melted entirely). Modified starch with T comp in the form of an
injection molded bar fluoresced strongly covering the spectrum from red to green.

Theoretically, all of the starch in this sample has been melted to a phase which
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fluoresces. If this is indeed the case, the parts which do not fluoresce are either

air, plasticizer, or contaminants; however, there currently is not a way to make a
positive identification. In samples containing talc, the non-fluorescent parts could
be talc (unless MSU talc is used which does fluoresce), air, plasticizer, or
contamination. Because the fluorescence is so strong, there is no way to be sure
that the signal which is viewed truly originated from a specific spot on the sample;
i.e., secondary fluorescence may be occurring which means that the fluorescing
modified starch signal may be "bouncing" off of the talc which would then appear
to fluoresce and may be erroneously mistaken for modified starch. Therefore, at
the present time, the use of LSCM has been ruled out in the characterization of

modified starch samples.

Scanning Electron Microscopy:

A method of X-ray analysis may be used to detect the silicon (Si) and magnesium
(Mg) components of talc. X-rays from these elements may be mapped to a
corresponding surface. Figure 8.6 shows the Si and Mg peaks obtained from a
modified starch/talc polymer blend. Figure 8.7 is an SEM micrograph showing the
morphology of the starch/talc blend. A dot-mapping of the strongest peak (Si)
shows a good dispersion of talc (see Figure 8.8). This analysis was done at an
accelerating voltage of 20KV which corresponds to a depth penetration in the

sample of about 10 microns.
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Figure 8.7: SEM micrograph showing the surface of the modified starch with talc
blend.

28KV XlB@V @862 ia@.au CE094

Figure 8.8: SEM dot map of the X-ray analysis for silicon.



Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

Branching

The free radical branching of polylactide via reactive extrusion is a novel concept
which has been applied in the past to polyolefins such as polypropylene and
polyethylene, but it has never been applied to polylactides. The branching of PLA
by reactive extrusion provides an in-situ method of improving the processibility of
PLA which could then be used in blow molding and injection molding

applications.

The results of this investigation indicate that polylactide branching is favored at
temperatures around 170°-180°C with an initiator concentration of about 0.1 - 0.25
%. Highly branched systems, which may include microgelation, are favored at
initiator concentrations of 0.5% at about the same temperature range. Chain
scission is favored at higher temperatures (T >190°'C). Without the presence of

initiator, PLA undergoes rapid degradation which may be attributed to chain
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scission due to thermohydrolysis and back-biting. This degradation may hinder

the applicability of PLA to blow molding and injection molding processes.

The goal of this research has been met. The molecular weight of
extruded/processed PLA has been increased with results that are comparable to
unextruded, unprocessed PLA. The melt flow index is also increased, i.e., an
increase in the melt viscosity is observed which may improve the blow molding

processibility of PLA.

Maleation

The successful branching of PLA encouraged us to study the maleation of PLA by
reactive extrusion processes involving free radicals. Such maleated PLA is of
prime interest in order to promote good interfacial adhesion between inorganic
fillers and PLA resins. Back-titration analysis of the maleated PLA showed that
between 0.066 and 0.672 % maleic anhydride was grafted to the polylactide
backbone. Increasing the amount of peroxide initiator led to an increase in the
grafting of MA; whereas, extrusion temperature had little effect on the maleation

reaction as was expected from the branching study.
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Polylactide Blends

Polymer blends are increasingly important from an industrial standpoint as they
allow for the tailoring of resin properties. An attempt was made to blend PLA
with several different substances including: (1) cellulose acetate derivatives, (2)
polypropylene, (3) poly(vinyl alcohol) and ethylene vinyl alcohol copolymers
(EVAC), and (4) starch. The PLA and starch blend proved to be most interesting.
The interfacial adhesion between the extruded starch and PLA blend was poor;
however, the addition of maleic anhydride, which grafts onto the PLA backbone,

resulted in good interfacial adhesion between the substances.

Related Work

Laser scanning confocal microscopy is a non-invasive tool which can be used to study
polymer blend morphology. LSCM is especially useful for biopolymers and their
blends as many of the readily available fluoroprobes are designed for biological
applications. LSCM can be beneficial in the identification of some of the
characteristics in polymer blends including distribution and/or adhesion of the
constituents and flow patterns without introducing artifacts usually associated with
sample preparation. The LSCM which was done showed how a protein filler could be
distinguished from a starch matrix. Characterization of an extruded modified starch
matrix with a talc filler was also attempted by LSCM. Theoretically, all of the starch

in this sample has been melted to a phase which fluoresces. If this is indeed the
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case, the parts which do not fluoresce are either air, plasticizer, or contaminants;

however, there currently is not a way to make a positive identification. Therefore,

LSCM was not a viable option in the extruded starch/talc blend.

Scanning electron microscopy is another important fundamental tool in studying
polymer blend systems. Not only were we able to evaluate the morphology of several
polymer blends using SEM, we were also able to use X-ray analysis, in conjunction

with dot mapping, to view the dispersion of talc in an extruded modified starch matrix.

9.2 Recommendations

Branching

A patent application which covers the branching and maleation of polylactide via
reactive extrusion is currently in progress. Two papers (Carlson, D.L., P. DuBois,
R. Narayan, L. Nie, "Free Radical Branching of Polylactide by Reactive
Extrusion” and "Maleation of Polylactide by Reactive Extrusion") are to be

submitted to Polymer pending review of the patent application.

The following recommendations are made for further research on the modification
of polylactide via reactive extrusion. Optimization of the extrusion conditions,

temperature and % initiator, should be done to maximize the processibility of
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PLA. To aid in controlling the reaction, the maximum amount of initiator which

can be added before the occurrence of crosslinking should also be determined.

Various maleic anhydride concentrations should be tried in the grafting of MA to
PLA. The PLA samples should be injection molded so that tensile strength and
other mechanical testing can be done. Of specific interest might be polymer blend

samples which compare the interfacial adhesion as related to strength.

Film Extrusion
A preliminary study on the feasibility of PLA film extrusion was conducted.
Further work needs to be done in evaluating the temperature and initiator

concentrations which will yield an optimum product.

Starch / Talc System

X-ray analysis via scanning electron microscopy could prove to be a useful tool in
evaluating the dispersion of talc filler in a starch matrix. However, lower
accelerating voltages may need to be employed in the SEM so that depth
penetration into the sample is minimized. A higher magnification also may need
to be used to exploit the resolution of the instrument and utilize the size of the talc

particles (about 6 microns).
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LSCM

The LSCM has the capability of distinguishing several constituents of a polymer
blend. To accomplish this, different fluoroprobes, which signal at different
frequencies, must be used for each component. Using different lasers, one has the
ability to single out each constituent. These images may then be overlaid to get the
complete picture of the blend system. The LSCM may be a useful tool in evaluating
polymer blend systems as discussed previously in the Conclusions. Avenues for

utilizing LSCM in other polymer blend systems should be addressed.



APPENDIX - RAW DATA
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Table A.2: Ubbelhode viscometry experiments.
t =time nrel = relative viscosity

to = initial time nsp = specific viscosity
¢ = concentration

Pure PLA
concentration
g/dL time (sec.) nrel =t/to nsp =nrel -1 In(nrel)/c nsp/c
0.5001 85.17 1.617 617 961 1.234
0.25 68.05 1.292 292 1.026 1.169
0.1 59.16 1.123 123 1.164 1.234
0.05 55.66 1.057 057 1.108 1.139
0.025 54.19 1.029 .029 1.146 1.162
extrapolation to zero using linear regression 1.156 1.164
170/0.5
concentration
g/dL time (sec.) nrel =t/to nsp=nrel -1 In(nrel)/c nsp/c
0.5011 9391 1.783 .783 1.154 1.563
0.2505 71.16 1.351 351 1.202 1.402
0.1002 59.84 1.136 136 1.276 1.361
0.0501 56.63 1.075 .075 1.449 1.503
0.025 54.73 1.039 .039 1.539 1.569

extrapolation to zero using linear regression 1.459 1.463
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Table A.3: Polylactide film results.

Conditions used:

10" gage length 1.0 in/min rate of grip separation
1.25" sample width 0.1 in/in*min initial strain rate
0.1 Ib preload

pure pla at 170C (340F) sample thickness: .005"
tensile
sample # max lbs max psi break Ibs break psi_break % break region modulus (psi)
pla.200 17.43 2789 16.6 2656 4.87 grip 174 .4
pla.201 17.05 2729 17 2721 2.67 center 149.7
pla.202 19.87 3180 19.72 3155 2.44 grip 184.5
pla.203 18.28 2925 18.22 2915 2.55 center 168.4
pla.204 18.77 3004 17.66 2826 3.24 grip 185
pla.205 17.56 2810 15.42 2467 4.63 center 169.2
pla.206 20.18 3229 18.75 3000 5.81 grip 1753
~ pla.207 19.65 3145 19.65 3144 2.52 center 187.6
Average 18.60  2976.38 17.88  2860.50 3.59 174.26
stand.dev 1.21 193.13 1.51 241.08 1.32 12.32
% dev. 6.49 6.49 8.43 8.43 36.71 7.07
pla at 170C (340F) with 0.1%L101 sample thickness: .003"
) tensile
sample # max Ibs max psi break Ibs break psi _break % break region _modulus (psi)
pla01.100 9.68 2581 9.393 2505 4.21 center 136
pla01.101 9.619 2565 8.496 2266 3.52 grip (top) 147.5
pla01.102 10.17 2713 9.698 2586 2.94 grip (top) 1513
pla01.103 9.43 2515 6.226 1660 3.46  grip (bottom) 157.5
pla01.104 10.99 2931 10.19 2718 435 center 163.8
pla01.105 10.14 2703 10.14 2703 1223 grip (top) 152.9
pla01.106 10.08 2687 9.833 2622 3.22 center 130.9
pla01.107 10.03 2676 4.504 1201 8.89 center 139.1
Average 10.02  2671.38 8.56 2282.63 410 147.38
stand.dev 0.48 127.81 2.09 558.16 2.05 11.26
% dev. 478 4.78 24 .45 24 45 49.94 7.64
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Table A.5: Titration results of maleated samples.

Titrating against 0.004 M NaOH

Normality of morpholine 0.05238
Normality of HCI 0.007179
Temperature sample moles of grams
ID # °C) %L101 wt (g) mL HCl anhydride anhydride % anhydride*

1 180 0.5 1.07 4628  7.154E-05 0.007 0.6556
2 180 0.5 1.077 4.65 7.138E-05 0.007 0.6499
3 180 0 1.021 13.63 6.91E-06 0.0007 0.0664
4 180 0.25 0914 7792  4.882E-05 0.0048 0.5238
5 180 0.25 0.868 9.341 3.77E-05 0.0037 0.4259
6 180 0.1 1.01 11.173  2.455E-05 0.0024 0.2383
7 180 0.1 0.9 11.836 1.979E-05 0.0019 0.2156
8 200 0.1 0.996 10651 2.83E-05  0.0028 0.2786
9 200 0.1 1.051 10.387 3.019E-05 0.003 0.2817
10 200 0.25 0.796 9421  3.713E-05 0.0036 0.4574
11 200 0.25 0.849 8.927 4.067E-05 0.004 0.4698
12 200 0.5 1.004 5445  6.567E-05 0.0064 0.6414
13 200 0.5 1.13 3.314  8.097E-05 0.0079 0.7026

* weight percent of sample which is anhydride, i.e., that has maleic anhydride functional group
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