

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

$-$

THE EFFECT OF ACIDITY ON KEEPING QUaIITY

 OF BUTTER NITH SPECId $\operatorname{ZEFEAENCE~TO~}$ SWEET C.SEAM BUTTER
The Effeot Of Acidity On Keeping Quality Of Butter With Special Reference To Sweet ©ream Butter

Thesis

Respectfully submitted to the Faculty of Mchigan State College in partial fulfillment of the requirements for the degree of Master of Science.

By

Robert Fdward Vincent

$$
\begin{aligned}
& \text { IMEDEIS } \\
& 118 \\
& 019 \\
& 1115
\end{aligned}
$$

ACKNOMIEDGIWNTS

The author wishes to express his appreciation to O. A. Reed, Professor of Dairy Husbandry and P. S. Iucas. Associate Professor of Dairy Manufacture, for theis guidance, valuable suggestions, and criticisms in planning this work and the preparation of this thesis.

The author also wishes to express his apprecia-
tion to C. D. Ball, Assistant Professor of Chemistry, for information, generous cooperation, and criticisms on the chemical analysis of this thesis.

TABLIS OF CONTENTS

Page

Introduotion

Review of IIterature
A. Sweet cream butter 1
B. Starters 5
C. Summary of Review of Literature 7

Rxperimental Work
A. Procedure

1. Object of Experiment 9
2. Part I
(a). Preparation of Starter 10
(b). Preparation of cream for churning 11
(a). The Churning Process 12
(d). Preparation and care of samplea 18
(o). Juaging the butter 13 3. Part II
(a). Analysis of cream 15
(b). Analysis of buttermilk 15
(o). Analgsis of butter
(1). Preparation of sample 15
(2). Determination of moisture, butterfat. salt and curd. 15
(3). Determination of aminonitrogen 15page(4). Determination of totalnitrogen16
(d). Analgsis of butterfat
(1). Preparation of sample. 16
(2). Determination of Reichert Meissl Number 17
(3). Determinatin of Iodine Number 17
(4). Determination of Acid Number 17
(5). Test for oxidized Fat
(Kries Test) 18
Results and Discussion
A. Gurd Content 19
B. Amino Nitrogen 21
C. Total Nitrogen 23
D. Reichert Meissl Number 26
B. Iodine Number 30
F. Aoid Number 34
Q. Test for Oxidized Fat (Kries Test) 38
H. Scores 41
3. Summary of results on Flavor 46
4. Summary of results on Keeping Quality 47
Conclusions 48
Bibliography 51
Appendix 56

INTRODUCTION

The art of buttermaking originated in asia and Burope and from there was communicated to other parts of the world. Records from the Bible show that butter was used before 2000 B. C. (1) Butter was held in high esteem and was used for the holiest sacrifices. (2)

Buttermaking was confined in this country to the farm dairy until the middle of the nineteenth century, but about this time the factory system of buttermaking was introduced. about the time of the establishment of the early creameries many revolutionary inventions and investigations were given to the dairy world. Among these were pasteurization and the use of pure cultures for the ripening of oream and developing of desirable favors and odors in the butter.

It is quite interesting to note the existing differences that have developed between what we term quality today and that of conturies ago. In mediaeval times people thought that butter should be stored for long periods to develop all sorts of odors and tastes before it was usable. Today the market demands butter of distinguished quality.

Danish batter which is given first consideration by the critical English butter bugers is made primarily

-
-
\sim
-

-
fram sweet crean slightly ripened by the addition of a starter. With the use of starter Danish buttermakere are enabled to control and maintain a uniform flavor in their butter.

The manufacture of sweet cream butter was begun in the United Statem about forty years ago. In recent jears there has been an increased interest in the manafacture of sweet cream butter. A group of creameries in the State of Minnesota are making sweet cream batter, to which no starter is added. The cream must be sweet to the taste and the acidity not over O. 2 per cent by test. (8) The specifications used by this group are simply modifications of those drawn up by the Bureau of Dairying, United States Department of Agriculture to be followed in the manufacture of butter for the navy.

With the increased interest in sweet cream butter, the question arises as to its flavor and keeping quality as compared with that of sweet cream butter to which starter has been added. An attempt to answer this question is made in this thesis.
\square
-
\square
-
-
-

- -
-

REVIEN OF IITLRATURE

Sweet cream butter

In $1890 \mathrm{G} . \mathrm{W}$. Ourtis (4) of Texas made comparisons between sweet and sour cream butter. The sweet cream was divided equally, one-half churned immediately, while the other was allowed to become slightly acid before churning. The results showed that nearly like amounts of butter were obtained from each and that there was scarcely a noticeable difference between the two kinds of butter, the difference, if any, being in favor of the sweet cream butter and this due chiefly to the flavor.

During the same year G. E. Patrick (5) of Iowa State College repeated the experiment of Curtis. He concluded that there was ne very marked difference in the keeping quality of the two butters, what difference there was being in favor of the sweet oream product. Δs to flavor, for the first two or three months most of the scorers preferred the ripened cream butter declaring that made from sweet cream to be comparatively "flat", "insipid" or flavorless", but the longer the butters were kept, even while both were atill sweet, the less marked became the difference between them in this respect.

In 1892 Patrick (6) made nine comparative trials, by dividing by weight a quantity of sweet cream into two equal parts. Ohe of these parts was churned immediately while the
\square
other part was ripened at 60° Fe for 24 to 48 hours. The sweet cream butter suffered less deterioration by keeping five months (50 $\mathrm{F} \cdot$) than did the sour cream product. The former acquired in a measure the flavor and aroma of ripened oream butter. In 1895 Patrick (7) repeated the same experiment and the results agree perfectly with the results obtained in 1892.

In 1904 (9) Dean compared butter made from sweet oream with butter made from sweet cream to which 20 to 30 per cent starter was added. The butter made by the latter method was superior in quality to that of the sweet cream butter. He also reported that when sweet cream to which 27.5 per cent starter was added at the time of churninge better results were obtained than from ripened cream. Grag (10) of the United States Department of Agriculture in 1906 found that when butter was made froms weet crean, the product kept well while stored at - 100 to $10^{0} \mathrm{~F}$. and, when removed from storage, this butter kept well, while butter made from sour cream kept well in storage at - 10^{0} to 10° F. but deteriorated rapidly after removal from storage, giving on the whole, results which were verg unsatisfactory.

Charron and Shult (11) in 1907 foodd that when they compared sweet cream butter with ripened cream butter, the Keeping quality of the sweet cream butter was superior to the keeping quality of the ripened cream butter and that by
the sweet cream process there is no greater loss of butterfat than when churning ripened cream.

Rogers, Thompson and Keithleg (12) of the United States Department of Agriculture in 1912 found that the scores of various samples of butter stored for 40 days at $0^{\circ} \mathrm{Fr}, 150$ days at $0^{\circ} \mathrm{Fr}$, and 150 days at 200 F . respectively, ranged with two exceptions, above 90 for the butter made from cream with an acidity below 0.3 per cent, while those from cream testing higher in acidity were variable but usually scored below 90. The deterioration of the sweet cream butter at 200 F. was slight. The deterioration in the pasteurized, ripened cream butter stored at 0^{0} F., was four times as great as that in the pasteurized, sweet crean butter at the same temperature.

In 1916 R. O. Potts (13) stated that the experience of those who have stored southern creamery butter indicated that it had about the same keeping quality as other creamery butter of the sama grace or quality; and that low acidity, good quality of cream used, and good quality of butter were factors causing it to hold up better, in storage. He recommends that butter for storage be produced from pasteurized, sweet cream.

Mortensen (14) did considerable work with sweet cream butter. He divided a quantity of cream into three lots, one lot of which was cooled immediately to a temperature of $40^{\circ} \mathrm{F}$. . held for three hours or longer, and then churned sweet. A
second lot was cooled to 40° F., but from 10 to 20 per cent wtarter was added and then was held for three hours. The third lot was cooled to ripening temperature. Starter was. aded and the cream allowed to ripen until the desired acidity was reached. The butter made from ripened cream deteriorated faster than butter made either from sweet cream, or from sweet cream and starter. Where low ripening was omplojed, the ripened butter at the end of a two months cold storage period was of about the same quality as the sweet oream butter, and the sweet cream and starter butter. He stated also, that unless a creamery has a special demand for sweet crean butter, it would seem to be most advantageous to produce butter from cream ripened to a low degree of acidity. The work of White (15) is the most recent on sweet cream butter. A quantity of sweet cream was divided into three equal parts. The acidity of "A" was 0.15 per cent; "B" was standardized to 0.25 per cent; and "C" standardized to 0.31 per cent acidity, using a good lactic culture for standardizing. In this series the acidity was standardized before pasteurization. In a second series the cream was pasteurized sweet, aciditg averaging 0.15 per cent, divided in three lots, and each lot standardized to the same degree of acidity, as in the previous series, using a good lactic culture for standardizinge A third series was run in which cream was pasteurized sweet and two of the portions ripened to 0.35 and 0.45 per cent acidity, respectively, then churned.

Samples of all churning were scored when fresh, then were stored at 00 F . for eight months and rescored. The conclasions dravi from these experiments were: there appeared to be no material difference in the keeping quality of the butter due to standardizing the acidity of the cream before pasteurization as compared with standardizing after pasteurisation. Butter made from cream of 0.25 per cent acidity kept praotically as well as that made from cream of 0.15 per cent aciaity, while that from cream of 0.31 per cent acidity kept nearly as well. That from cream of 0.35 per cent acidity showed a materially lower score after storage, and that from oream of 0.45 per cent acidity a still lower score.

STATTEXS

Starters were first used in 1776 when the Mongolian Kalmacks (16) added a natural starter to sour milk intended for churning. In 1887 a description of the method of using "lande wei" as a starter for Edam cheese was published in a pamphlet by Boekel (17). This starter was th ought to exert a favorable effect on cheese defects and especially to prevent swelling or bloating. Before the development of artifical cultures buttermilk from a churning of good butter was apparently extensively used for starting the acid fermentation in cream intended for buttermaking.

The definition of a starter as given by Hunziker follows (18): "As used in the manufacture of butter bs a atarter is meant a mixed culture in milk or skim milk of lactic

acid bacteria and associated species capable of developing in milk, oream, and butter the flavor and aroma characterIstic of good butter."

The ase of pure cultures for the purpose of ripening cream was the result of work done by Storch (17). He studied organisms from sources such as buttermily butter, and ripened oream, and found that different acid poducing forme induced very different flavors and aromas. Butter made from pasteurized oream with pure culture had a very normal, olean, mild acid flavors.

The first commercial starter cultures were made about 1890 (17). Conn, (19) answering an inquiry, stated that the question as to whether lactic acid bacteria themselves produce the aroma of butter or whether in addition other bacteria are important was not settled, but he pointed out that the socalled pare cultures are not all alike and that while most are pure cultures, some are mixtures of different organisms and that one culture contained no less than ten or twelve different species mixed together.

Hammer (20) found in a number of starters, of very satisfactory quality and from different sources, that more than one organism was present. Two organisms were isolated from starter which in combination gave a volatile acidity, approximately, the volatile acidity secured from the starter, although each of these organisms alone gave a volatile acidity considerably below the volatile acidity produced by the starters.

Hammer's work (17) showed that organisms in addition to Streptococcus lacticus are necessary in a good starter. The importance of these forms is evident from their ability to produce a satisfactory starter when either one or a mixture of the two are grown in combination with Streptococcus lacticus. The names of these organisms, as proposed by Hammer, are Streptococcus citrovorus and Streptococcus paracitrovorus. The production of a desirable starter seems to require the action of Streptococcus lacticus and one of the associated organisms.

The variation between starters and pure cultures of Streptococcus lacticus, in the per cent total acidity that is volatile at various times during the ripening period, offers another method of proving that starters are not pure cultures of Streptococcus lacticus (17). It is thought that the fallure to maintain such a balance in practice is undoubtedig one of the reasons why unsatisfactory results are so frequently secured.

SURMARY OF REVIEA OF IITERATURR

Cream ripened to a high degree of acidity is no longer tolerated by manufacturers of quality butter. Results from investigations show that butter made from unripened, pasteurized, aweet oream will maintain its quality during storage to a high degree, while butter from ripened, pasteurized cream usually deteriorates materially.

As to flavor, investigators find that for the first two or three months ripened cream butter is preferred to sweet cream butter, but the longer the butter was kept, the less marked becomes the difference.

OBJECT OF THE EXPERIIENT

The object of this experiment was primarily to

determine:

1. The effect on the keeping quality of butter when starter has been added to sweet cream butter at the time of working.
2. The effect on the keeping quality of butter when starter has deen added to sweet cream just before churninge 3. The effect on the keeping qualitg of butter when sweet oream has been ripened to 0.3 per cent acidity. 4. The effect on the keeping quality of butter when sweet cream has been ripened to 0.5 per cent acidity. 5. The effect of acidity on the composition of the butterfat.
3. The effect of acidity on the nitrogen ous substance in the resulting butter.

PLAN OF EXPERILENTAL MORK

Preparation of Starter

Mother Gulture. To find which organism was best suited for use in this work a number of different cultures were obtained. These were propagated for about two months. At the end of this period it was decided that the culture furnished by Professor Hammer of the Iowa State College was best suited for the experiment.

Clean quart bottles were filled two-thirds full of skim milk, heated to $190^{\circ} \mathrm{F}$. and held for one hour at that temperature. The bottles were then cooled to $70^{\circ} \mathrm{F}$. at about 4:30 P. M. the cultures were examined and the best was transferred to the bottles of skim milk by means of spoons which had previously deen boiled in water for an hour. Enough of the culture was used so that the milk would be curdled the next morning. The cultures were allowed to ripen over night at a temperature of 720 F. As soon as the cultures were curdled they were placed in a refrigerator, the temperature of which was $40^{\circ} \mathrm{F}$. . and were held at that temperature until time for transferring the cultures in the afternoon.

The skim milk to be used for starter for the problem was heated in a glass lined starter can to a temperature of 190° F. and held for an hour at that temperature. It was then cooled to 72^{0} F. and inoculated with one per cent of the mother oulture. As soon as the skim milk was curdied and the curd sufficiently formed it was stirred and then cooled with water.

Preparation of Cream for Churning

As soon as the cream was received it was weighed and mixed in a 200 gallon ilizard vat. a test was made to determine the degree acidity of the cream. a vat test was also made on the cream to determine the butterfat content. It was then pasteurized by heating to a temperature of $145^{\circ} \mathrm{F}$. and held for 30 minutes. Regular observations of the thermometer were made so as to keep the temperature as constant as possible. The oream was cooled by water until it reached a temperature of 60° F. and ice was used to cool the cream to $40^{\circ} \mathrm{F}$. at which temperature it was held over night.

The following morning the vat of cream was agitated so that the cream was thoroughly mixed, after which it was divided into five lots, each containing 256 pounds of 40 per cent cream. The method of treating each was as follows:

Lot l. This cream was churned sweet, and a sample of butter saved from it to be used as a check.

Lot 2. This cream was churned sweet and starter was added to the butter before working at the rate of three per cent of the weight of the butteriat. The starter was mized with the salt. The salt was then added to the butter and the working process continued.

Lot 3. Starter at the rate of three per cent of the weight of the cream was added to the sweet cream just before churning.

Lot 4. The sweet cream was warmed to $70^{\circ} \mathrm{F}$. in the vat

and starter added at the rate of twents per cent of the weight of the cream. The cream was ripened to an acidity ranging from 0.3 to 0.35 per cent and then cooled to churning temperature and held for at least two hours.

Lot 5. The sweet cream was warmed to $70^{\circ} \mathrm{F}_{\alpha}$ in the vat and starter was added at the rate of twenty per cent of the weight of the cream. The cream was ripened to an acidity ranging from 0.45 to 0.52 per cent. It was then cooled to churning temperature and held for at least two hours.

The Churning Process

A Simplex churn of 125 pounds capacity was used. The churning temperature was regulated so that it would require from 50 to 60 minutes for churning. The temperature ranged from 46° F. to 56° F. The butterfat content of Lots land 2 was 40 per cent; Lot 3, 38 per cent and Lots 4 and 5,33 per cent. The churn was stopped when the butter granules varied from the size of wheat to corn kernels. The buttermilk was then drawn off and the butter allowed to drain thonoughly. The wash water was sprayed over the butter using as much water as there was buttermilk. The temperature of the water varied from two to three degreas below that of the buttermilk. The butter was washed twice in all churnines.

The amount of salt added to the butter was four per cent of the weight of the butterfat. The wet salting method was used, the salt being sprinkled over the butter. whe
butter was worked until it had a compact body and a tough, waxy texture. A-moisture test was then made and the butter worked so as to have, as near as possible, a 15.95 per cent moisture content, care being taken not to injure the body of the butter.

Preparation and Care of Samples

When the working process was completed, five one pound samples of each churning were taken and placed in pint Sealright containers. In taking the samples care was exercised to obtain as uniform a sample of the butter as possible. The samples were marked for identification and were dated. The samples were placed in cold storage at a temperature averaging 0^{0} F. during a twenty-four hour period.

Judging the Butter

The butter was scored by Professor P. S. Lucas and the writer. The butter was scored after a storage period of one day, one month, three months, and will be scored again at the end of a six months storage period.

The score was made of flavor only, 45 points being allowed as a perfect score. The other points in the score card were allowed as perfect, hence in the tables, scores are given completely.

Chemical Analysis

In addition to scoring the butter a number of chemical

tests were made to determine if there is a relationship between these tests and the keeping quality of the butter. The following analyses were made: amino-nitrogen content, total nitrogen, acid number, iodine number, Reichert Meissl number, and the Kries test.

The amino nitrogen content of butter was run to determine the change, if any, in the nitrogen ous substance of the butter after a storage period of three months. The amino nityrogen content of butter is expressed as the per cent of the total nitrogen.

In order to express the amino nitrogen in per cent of the total nitrogen, the total nitrogen content of the butter was also determined.

The acid number, iodine number, Reichert Meissl number, and the Kries test were run on the butterfat after a storage period of three months. This was done to determine whether or not the numbers had changed any from those determine when the butierfat was fresh.

The acid number is the number of cc. of $.1 \mathrm{~N} . \mathrm{Na} . \mathrm{OH}$ required to neutralize the acids in 100 grams of butterfat. The iodine number is the per cent iodine absorbed by the butterfat. The Reichert Meissl number is the number of cc. of 1 N . NaOH required to neutralize the soluble volatile acids in 5 grams of butterfat.

The Kries teat is a measure of the oxidative rancidity in fats. Because this test is only qualitative, the results of this test are determined by the intensity of the color which is obtained.
\square
allof the following tests were run in duplicate.

Analysis on Cream

As soon as the cream was received the Babcock test for determining the butterfat content of the cream was made. at the same time a Mann's acidity test was made of the cream. Analysis on Buttermilk

A Babcock test was made of the buttermilk to determine the butterfat content. Skimmilk bottles were used, and when the butterfat content was tos hiğh, milk bottles were used.

Analysis of Butter

Preparation of sample. The same of butter was completely melted by placing the closed jar in water at 100° to 110° F. It was then removed from the warm water and stirred until the butter solidified.

Deter:aination of Moisture, Butterfat, Salt and Curd

The butter was analyzed for moisture, butterfat, salt and curd by the gasoline extraction method (21), which is a slight modification of the Kohman method (22).

Deterraination of Amino Nitrogen

For the determination of the amino nitrogen in the butter the procedure suggested by Ferris (23) for the preparation of the sample was followed. A 50 gram sample was weighed

In a 250 cc . : flass stoppered bottle while the sample was of such consistency that it could de poured and yet not have any separation of the fat and curd. The bottle was next filled to the shoulder with petroleum ether. The fat was dissolved by shaking vigorously and the curd allowed to settle in a compact mass at the bottom by allowing it to stand for twenty-four hours. The ether layer containing the fat war siphoned off. To the residue was added 2.5 cc . of ten per cent acetic acid, 15 cc . of a saturated solution of picric acid, and enough distilled water to make a volume of 50 cc . The mixture was then filtered and the amino nitrogen determined by the use of the Van Slyize micro apparatus.

Determination of Total Nitrogen

The method followed in determination of total nitrogen was the Gunning method as given in liethods of analysis (24) with the modification sug̈ested by Scales and Harrison (25) for the absorption of the amonia evolved. This involved the use of four per cent boric acid solution for the absorption of the ammonia and the use of brom-phenol as an indicator when titrating with standard sulphuric acid. The sample used was a portion that one prepared for the amino nitrogen determination.

Analysis of Butterfat

Preparation of sample. About one-hiulf pound of butter was placed in a beaker and kept in water at a tenperature
not higher than 1100 F. When the butier was melted, the layer of melted fat was filtered throush a dry filter puper held in a hot water funnel at a temperature not hicher than $100^{\circ} \mathrm{F}$.

Determination of Reichert ieissl Namber

The Leffman and Beum method :as used, as aiven in Wethods of anulysis (24).

Determination of Iodine Number

The Hanus method was used as given in Lethods of Analysis (24). The sodium thiosulfate solution was standardized ajainst potassium bromate, potassium dichromate, and electrolytic copper.

Determination of acia Number

Abont a ten gram sample of the melted fat was accurately weighed. Fifty cubic centimeters of a mixture of equal parts of neutrul alsohol and benzene was tien added. The mixture was next titrited with standard sodium hydroxide using phenolphthalein indicator. The number was calculated so as to be expressed as a number of cc. of $.1 \mathrm{~N} . \mathrm{NuOH}$ in 100 grams of butterfat. Benzene was used with the alcohol decause Steele and Sward (26) found that this combination was preferable to alcohol alone in that the end point of the titration was much sharper.

Test for Oxidized Fat (Kries Test) (27 \& 28)

Ten centimeters was measured into a test tube and ten centimeters of concentrated hydrochloric acid was added and the mixture shaken for thirty seconds. Ten cubic centimeters of a freshly prepared one per cent ether solution of phloroglucinol was aded and the mixture shaken as before. The mixture was allowed to stand. 1 recognizable red or pink shade in the acid laver was regarded as a positive test and a faint orange or gellow color was regarded as a negative test.

RESUIAS ATD DINCUNiJION

Curd Content

Casein, albumin, ash and lactose are comranly, thoush incorrectly called "curd" by the buttermaker (21). The curd content of butter is determined and expressed in one or the other of two entirely different ways, which gield results in per cent curd, that differ from one another. One method is to determine the nitrojen content of butter, and by multiplying the analysis by the factor 6.38, the result is taken as per cent protein. This represents the true curd content. The other method is to determine the per cent curd by difference, that is by deducting the sum of the per cent of fat, moisture, and sult from 100. In this ease the per cent curd so obtained embraces, aside from the protein, also the traces of ash, acid, and lactose contained in butter. This is termed physioloficul curd (38). The results in Table I are expressed as physiolojicul curd. The average results show a range from 0.96 to 1.09 per cent curd in the different lots of butter. The sweet cream butter had the lowest averaze curd content while the butter made from sweet cream to which a starter was added to the butter at the time of working had the highest curd content. The average curd content of the different lots showed only a slight difference. The range is so small that no fear need be held that any method discussed herein will affect the curd content of the resulting butter.

Amino Nitrogen Determination

The Van Slyke method for the determination of amino nitrogen depends on the fact that nitrous acid reacts with free amino groups liberating nitrogen gas which is measured in a speciul burette. This method determines the amino nitrogen and also some of the free ammonia. It is found that the amount of nitrogen displaced from a protein by nitrous acid is a very small fraction of the total nitrogen but that as hydrolysis proceeds and the amino groups become free, the amonnt steadily increases.

The most common linkage by which amino acids are held together in the protein molecule is that involving their amino and carboxyl group and is called the peptid linkage. During the hydrolysis of a protein decomposition product, this linkage splits, giving rise to a carboxyl group and an amino group.

Perris (23) found that the amino nitrogen content of sweet cream butter was 1.4 per cent of the total nitrogen while butter made from neutralized sour cream had a content of 3.3 per cent of the total nitrogen.

The average results of the amino nitrogen determination showed a slight increase with the exception of lot 4 , but the increase in any case is too small to show any sionificance. The average results in terms of ascending values of the amino nitrogen and ammonia determination are lots 1, 2, 3, 5 and 4.

[^0]Nitrogen Determination

Nitrogen in butter is found in the non-fatty portion and also in the portion of the butter that contains the lecithin. The lecithin content is very small and. therefore, contains only a very small amount of nitrozen. The larger portion of the nitrogen is found in the non-fatty portion of the butter.

Richmond (31) found that the averaje nitrozen content of sweet cream butter was 0.1000 per cent while that of ripened oream butter was 0.1320 per cent. The results of nitrogen determinatin are given in Table III. The average of each lot for the nitrogen content are shown in Figure I. The average results of each lot showed that sweet cream butter has a lower nitrogen content than that of ripened oream butter. The results also show that the nitrogen content of the butter is sliohtly higher after a storage period of three months.
TABLE III. Resulte of Fitrogen Determination.

Series	Eot Mime in 1 day	1 Storeas 90 day:	Tot Time in 1 day	2 Storage 90 day:	$\begin{aligned} & \text { Iot } \\ & \text { Time in } \\ & 1 \text { day } \end{aligned}$	5 Storace 90 day:		Storage 90 day:		Storage 90 day:
	Percent	Porcent	Percent							
I.	. 0597	. 0700	. 0746	. 0831	. 0759	. 0843	. 0632	. 0709	.0619	. 0734
II.	. 0587	. 0649	. 0686	. 0698	.0825	. 0844	. 0650	. 0796	. 1015	. 1069
III.	. 0802	. 0597	. 0773	. 0676	. 0546	. 0533	. 0654	. 0672	. 0714	. 0744
IV.	. 0642	.0616	. 0705	. 0705	. 0683	. 0585	. 0726	. 0753	. 0723	. 0759
V.	. 0739	. 0676	. 0790	. 0736	. 0726	. 0666	.0846	. 0700	. 0777	. 0668
VI.	. 0696	. 0691	. 0667	. 0623	. 0577	. 0579	. 0962	. 0868	. 0830	. 0816
VII.	. 0602	. 0651	. 0788	.0821	. 0653	.0620	. 0850	.0852	. 0810	. 0826
VIII.	. 0665	. 0697	. 0672	. 0690	.0649	. 0820	. 0799	. 0765	. 0868	.0903
IX.	. 0724	. 0691	. 0805	. 0660	. 0823	. 0739	. 0986	. 1003	. 0804	. 0941
X.	. 0724	. 0763	. 0625	. 0760	. 0593	. 0712	. 0813	.0921	. 0816	. 0904
II.	. 0601	.0632	.0614	. 0715	. 0578	.0662	. 0766	.0938	. 0731	.0840
XII.	. 0671	.0896	.0835	.0852	.0720	. 0826	. 0801	.0830	. 0863	.0924
Arerage	. 0671	.0688	.0725	.0730	. 0678	. 0702	. 0790	.0817	. 0797	. 0844

								25		
	亏゙号号	B ${ }^{\text {a }}$								
	1／］	I								
	TRO：	1！		trs		＝		‥		3
								，		：
	＝	1				－		．il		
						．				
	\％									
：	！									
${ }_{5}$	$\stackrel{3}{8}$									$\stackrel{\square}{2}$
	$\stackrel{8}{8}$									
	4									
	\ldots					＊		＂		$\stackrel{3}{3}$
					8		g	＊	8.	
						por cont	tert			

Reichert Lieissl Number

Since the method used in securing the Reichert Meissl Number is only an arbitrary one, it is essential to adhere strictly to the conditions of operation as laid down, if comparative results are to de obtained, and, by so doing̈, over 80 per cent of the soluble volatile acids in butter can be secured in the distillate.

Jensen (32) states that the Reichert Meissl process gields with butterfat 85 to 88 per cent of the total butyric, 24 to 25 per cent of the caprylic, and 85 to 100 per cent of the capric acids. The amount of soluble volatile acid is likely to increase with the $a \underset{\theta}{ } \theta$ of the sample (32).

Butyric, valeric, caproic, and capric acids are the only acids present in fats that can be distilled without decomposition under ordinary pressure. These acids have comparatively high boiling points, but owing to their vapor pressure they can be readily distilled from aqueous solutions with steam and are termed "Volatile" acids (32).

The quantity of soluble volatile acids is influenced to a notable extent by the seasons of the year, the nature of the feed, the period of lactation and the idiosyncrasy of the cow (33).

The results of the Reichert Meissl determination are given in Table IV. All of the results fall within the Ordinary values obtained by other workers. The minimum and maximum range of the Reichert lieissl Number ofiven in

Fundamentials of Dairy ácience (34) are 23 and 36 respectively. dll of the simples showed a slioht decrease in soluble volatile acids at the end of a three months storaje period.

Pigure II shows the average number for each lot at the end of a one day storage period and also at the end of a three months storage period. The average of each lot gave a lower number at the end of a three months storage period than for a one day storage period. This is the reverse of what was expected since it has been found generally that the soluble volatile acids increased with the age of the sumples.

However the differences are so slight that they may be due to experimental error. It is nevertheless interesting to note the slizhtly lower values in each case after a storaje period of three months.
-
-
-
TABLS IV. Results of Reichert-Moissl Determination.

Series	LotTim in1 day	1 Storage 90 dars	IotTime inI day	2 Storage 90 days	IotTime inl day	$\begin{aligned} & \hline 3 \\ & \text { Storage } \\ & 90 \text { days } \end{aligned}$	$10 t$Time inI day	4 Storage 90 days	IOtTime inI day	5 Storage 90 days
I.	27.19	26.52	27.00	26.46	27.16	25.48	27.42	25.32	27.12	25.77
II.	26.82	26.57	26.90	26.55	26.52	26.92	26.75	26.57	26.99	26.98
III.	27.20	25.54	26.78	25.79	27.14	25.88	27.32	25.69	26.10	25.87
IV.	27.08	26.45	26.68	26.80	27.26	26.21	27.48	26.59	26.82	27.00
$\boldsymbol{*}$	27.31	26.38	27.21	26.31	27.79	26.80	27.84	26.84	27.90	26.90
VI.	26.83	25.81	26.86	26.36	26.43	26.45	26.90	26.56	27.05	26.46
VII.	27.05	26.76	26.97	26.90	26.95	26.62	26.96	26.42	26.88	26.87
VIII.	27.37	26.15	27.22	26. 59	27.09	26.81	27.59	26.85	27.67	26.52
IX.	26.93	26.63	27.18	26.35	26.98	26.40	27.50	26.89	27.06	26.84
X	27.50	26.17	27.70	27.16	27.70	26.24	27.61	26.25	27.66	26.48
II.	27.31	26.40	27.02	26.72	27.38	27.02	27.21	26.86	27.61	26.94
XII。	27.16	26.43	27.40	26.76	27.08	26.39	27.55	27.22	27.26	27.21
Arerage	27.15	26.32	27.08	26.56	27.12	26.43	27.34	26.50	27.18	26.65

Iodine Number (Hanus)

The amont of unsatuiated fatty acids in a butterfat is greatly influenced by the kind of oil or fat eiven to the cow with the food (33). Heineman (35) found that the iodine number was irrejular in the beginning, then inceased gradually to within tivo or three months of the end of lactation, with a rather sharp rise during the last few weeks. The coincident increase of the melting point is probably due, as Eckles and Shaw (35) sucióest, to a decrease in volatile acid such as butgric which has a meltin' point below that of oleic acid.

The unsaturated acids and their glycerids assimilate halogens with the formation of saturated compounds, and tils property serves as a basis Br their quantitative determinatinn. The structure of unsaturated acids, particularly the position of the douile bond in relation to the carboxyl group, influences the iodine absorption. If the double bond is located at a considerable distance from the carboxyl the results are generally normal but when relatively close together, the iodine number is likely to be below theory, although lenethening the absorption period increases the results (32).

The minimum and maximum iodine number, as iven in the "Fundamentals of Duiry $\dot{\text { cicience" }}(34)$, are 26 and 38 respectively. The results of the iodine number are given in Taible V.

The lodine numbers for the first five series are very abnorral. Precautions, such as using acetic acids which showed no reduction with dichromate, were used. The sodium
thiosulfate solution was standardized by three different metinods. The sumples of butterfat were weighed into clean, dry, iodine flasks. The reason for the abnormal numbers for the first five series is unknown. The possibility of its deing due to feed could not be determined because the source of the cream was unknown.

All of the samples showed a slight increase at the end of a three months storage period. Figure III shows the average iodine number for each lot at the end of a storage period of one duy and also after a storage of three mouthse The average of each lot gave a hisher number at the end of a three months storage period.

Acid Number

The acid number of oils and fats varies with the purity, age, amount of hydrolysis, and oxidation they have undergone, Contact with fermenting or decaging matter, such as animal tissue, casein of butter and the marc of fruits, tends to rapidlg increase the amounts of free acids due to fat splitting enzymes. aciaity in fats is not always a measure of rancidity, as hydrolysis may result from the aotion of enzymes in the presence of moisture without acoompanying oxidation, which appears necessary fro the produotion of strong smelling, acrid tasting bodies that usually characterize rancid products (32). However, in the case of butterfat the development of free acids has frequently been termed rancidity; hydiolytic rancidity according to the terminology used by Palmer (36).

The limit of error in the determination of the acid number as given by Holland (32) of the Massachusetts Experiment Ntation is 0.10 milligtam. The acid number of butterfat ${ }^{\text {n }}$ given by Palmer (36) is 0.56 milligrams of potassium hydroxide per gram of fat, or expressed in cubic centimeters of $0.1 N$ sodium hydroxide per 100 gram of butterfat, it is about 10.

The results of the acid number determination are given in Table VI. The acid number for lots 1,2 and 3 showed very little difference during a storage period of three months. Figure IV shows the average acid numbers for
each lot at the end of a one day and also a three months cold storage period. The average of lots 1,2 and 3 showed a slight lecrease after a cold storage period of three months. The acid numbers for lots 4 and 5 are very much higher than for the first three lots. Lot 5 is higher also than lot 40

The lines on the graph of the acid numbers would lead to the belief that a relationship exists between the acidity of the cream and the acid number of the butterfat. The correlation between the acidity of the cream and the acid number was $0.428+0.067$. In this case the correlation has - Value of 6.4 times the probable error. The relationship betweon the two factors is slightly significant so that the conclusion may be drawn that there is some relationship between the acidity of the cream and the acid number of the butterfat. It may be conduded from the results of these nambers that an increase in the acidity of the cream causes a slight tendency towards a higher acid number for the batterfat.

(1) Numbers expressed as number of ce of 0.1 N alkali in 100 grams of butterfat.
A

Text for Oxidized Fat (Kries Test)

The intensity of the Kries test of samples of an oxidized fat is proportional to the amount of oxjgen it has abosorbed, or, the amounts of 执 necessary for equivalent color intensities are inverselg proportional to the Volume of oxygen absorbed (27).

The intensity of the Kries test is not proportional to the oxidative rancidity or tallowiness of a fat. A rancid fat will give a Kries test but mang fats that have absorbed large quantities of oxggen show only faint traces of rancidity, or none, yet give intense Kries tests. Some evidence is found to indicate that oleic acid when autoxidized, may be the only unsaturated acid in fats that gives the Kries test (28).

Powick (8) found that the constituent of rancid fats responsible for the Kries test,is probably a derivative of eiphydrin aldehyde. It is certain that this constituent gives rise to opihydrin alehyde when the rancid fat containing it is brought into contact with the concentrated hydrochloric acid used in the Kries test.

A positive reaction in the Kries test, when the test is performed in the usual manner, is not always a reliable indication of rancidity in fats. A large number of compounds react with phloroglucin hyarochloric acid to give a red color, that with the unaided eje cannot be distinguished from the oolor obtained with rancid fats. When the test is modified In such manner that the color obtained is examined spectro-
-
-
-
,
-
ecopically, however, the modified test becomes a reliable indez of the rancid condition (37).

The results of the Kries test are given in Table VII. Δs this test is a qualitative test only, a comparison between the five lots of each series could be made. All of the tests were very slight. It is interesting to note, however, that from the results of the qualitative test, the lot scoring the highest showed no increase in the average Talue of the Kries test, while the lot that scored the lowest showed the greatest increase in the average value.

[^1]heavier than 3

heaviest color
no trace
slight trace

$$
,^{(1)}
$$

TABLIS VIII. Results of Butter Scores.

Series	$\begin{aligned} & \text { Lot } 1 \\ & \text { Time in Storage } \end{aligned}$			Iot 2Time in Storage			Iot 3Time in Storage			Lot 4			Lot 5		
	1 da.	30 da	90 da.	1 da .	30 da.	90 da .	1 da.	30 da .	90 da .	1 da.	30 da.	90 da .	$1 \mathrm{da}$.	30 de	90 da.
I.	92.	91.	91.	92.	93.	92.	93.	93.	93.	94.	91.	90.	91.5	91.	89.
II.	92.	91.5	91.	92.5	92.	92.	93.5	93.	92.	94.	92.	89.	92.	91.5	88.5
III.	91.5	90.	89.5	91.5	91.	90.	92.5	92.	90.	93.	92.5	88.5	93.	91.	88.
IV.	93.	92.	91.	92.5	91.5	92.	94.	93.	92.5	93.	91.5	88.	92.	90.	88.
∇ -	92.	92.	91.5	94.	93.	93.	94.	94.	93.	94.	92.	89.	92.	91.	88.
VI.	93.	92.	90.5	93.5	93.	92.5	94.	93.	93.	94.	93.	89.5	93.	90.	88.5
VII.	91.5	91.	91.	93.	92.	92.	94.	93.	93.	94.	91.	89.	92.5	90.	88.5
VIII.	92.5	91.	91.	92.5	93.	92.5	93.5	92.	93.	94.	89.	88.	92.5	90.	87.5
IX.	92.	91.	91.	94.	92.5	92.	93.5	93.	92.5	93.5	90.	89.	92.5	90.	88.
\mathbf{x}	92.	92.	90.	94.	93.	93.	94.	93.5	93.	93.5	92.	89.	93.	92.	88.
XI.	92.	91.	89.5	93.	93.	91.5	94.	93.	92.5	94.	92.	90.5	93.	91.	89.
XII.	92.	91.	91.	94.	92.	92.	93.	93.	93.	93.	91.5	89.5	92.	91.	89.
Average	92.13	91.21	90.66	93.04	92.42	92.04	93.58	92.96	92.54	93.66	91.46	89.08	92.42	90.71	88.33

MICHIGAN STATE COLLEGE

DISCUSSION of SCORES

Sweet Cream Butter

The average score for the sweet oream butter was the lowest of any of the lots of butter after a storage period of one day. The butter when scored was criticised as having no distinct flavor.

After a storage period of one month the sweet cream butter was placed in fourth place. The sweot cream butter acored a little lower than that of butter made from ripened cream which had been ripened fo an acidity of about 0.3 per cent but scored higher than butter made from oream which had been ripened to an acidity of about 0.5 per cent.

After a storage period of three m?nths the sweet oream butter scored hisher than either of the two different lots of ripened cream butter. The average score of the sweet oream butter at the end of a one day storage period was 92.13; at the ond of one month 91.29; and after a period of three months 90.66. The sweet cream butter had better keeping quality than that of the ripened oream butter.

> Butter Made From Sweet Cream To Which a Starter Mas Aded To The Butter At The Time Of Working

After a storage period of one day the average score of the butter to which starter was added at the time of working was third highest. after a storage period of one month and three months the starter butter scored second
highest of the different lots. The average sco re after a storage period of one day was 93.04; at the end of one month 92.42; and after a period of three months 92.04.

The flavor of this butter (lot 2) was not as well developed as that of butter to which a starter was added just before churning. The keeping quality of the above two lots of butter were the same.

Buttet Wade From Sweet Cream To Which

A Starter Was Aded Just Before Churning

Butter made from sweet cream to which a starter was added just before churning scored as high after a storage period of one day as butter made from sweet cream which had been ripened to 0.3 per cent acidity.

When the starter butter was ecored after a storage period of one month, it was given the highest score. The flavor of the starter butter was well developed.

After a storage period of three months the butter was scored again. This time it received the highest acore of ang of the other lots. When the starter butter was fresh the average score was 93.58; after a storage periol of one month 92.96; and at the end of three months 92.54.

Thes butter besides having the best flavor also showed very gad keoping quality. The atarter butter after a storage period of three months lost only 1.04 in points while the butter made from ripened cream lost 4.58 points.

For a creamery using sweet cream in making butter, these results would indicate that it is best to add starter to the cream just before churning. Using this method, the flavor of the butter would score the highest when fresh or after a storage period of three months.

> Butter Kade From Sweet Cream Which Was Ripened To An Acid̃ity of 0.3 Per Cent

The butter made from cream ripened to 0.3 per cent acidity received the highest average score of any of the other lots of butter when fresh. The difference between the ripened oream butter and the butter to which a starter was added just before churning was very slight.

After a storage period of one month the ripened cream butter again scored higher than the sweet oream putter but lower than the starter butter. After a storage period of three months the ripened cream butter scored lower than that of sweet cream butter. The average score lafter a storage period of one day was 93.66; at the end of one month 91.46; and after a period of three months 89.08.

If the butter is to be consumed soon after it is made, the cream can be ripened to an acidity of 0.3 per cent but from these results the butter should not be held any length of time.

> Butter Kade From Sweet Cream Which was Ripened To An Acidity of 0.5 Per Cent
acidity higher than that of sweet cream butter when the butter was fresh. After a storage period of one month the ripened cream butter scored the lowest of any of the lots. When the butter was ecored the flavor was criticised as being slightly off and in some cases slightly unclean. When the butter was scored after a storage period of three months it again was scored the lowest. This time the butter was criticised at the time of scoring as being slizhtly fishy.

Summary of Results on Flavor

When fresh the untreated sweet cream butter (lot 1) scored the lowest. Butter made from sweet cream to which a starter was added to the butter at the time of working (lot 2) scored higher than butter made from sweet cream which had been ripened to an acidity of 0.5 per cent (lot 5). Lot 2 soored lower than butter made from sweet cream to which a starter was added just before churning (lot 3) or butter made from sweet cream which had been ripened to an acidity of 0.5 per cent (lot 4). Lots 3 and 4 scored the highest. The flavor of lots 3 and 4 as shown by the average acore, showed very little difference. This slight difference could be sccounted for as being due to experimental error. Lot 5 scored higher than lot 1 but lower than lot 2.

After a storage period of one month lot 1 scored slightly lower than lot $\&$ but higher than lot 5 . The average
score of lot 2 was lower than lot 3 buthigher than lot 4. Lot 3 scored the highest. Lot 4 scored slightly higher than lot 1 but this slizht difference could be due to experimental error. Lot 5 scored the lowest.

After a storage period of three months lot 1 scored loner than lot 2 but higher than lot 4. Lot 2 scored lower than lot 8 but higher than lot l. Lot 3 agein scored the highest. The average score of lot 4 was lower than lot 1 but higher than lot 5. Lot 5 scored the lowest.
Summary of fesults on Keeping Quality

At the end of a storage period of one month, the difference between the average score of one day and one month for the untreated sweet cream butter (lot 1) was 0.84. Butter made from sweet cream to which a starter was added to the butter at the time of working (lot 2) and butter made from sweet cream to which a starter mas added just before churning (lot 3) showed the best keeping quality. In both lots the difference was 0.61. The difference for butter made from sweet cream which had been ripened to an acidity of 0.3 per cent (lot 4) was 2.20, and for butter made from sweet cream which had deen ripened to an acidity of 0.5 per cent (lot 5) was 1.71.

After a storage period of three months lot 2 and lot 3 again showed the best keepidg quality. The difference between the average score of one day and three months for lot 1 was 1.47; lot 2, 1.00; lot 3, 1.04; lot 4, 4.58 and lot 5, 4.09.

CONCLUSIUNS

1. The flavor of butter made from sweet cream to which a starter was added just before churning is superior to that of sweet crram batter after a storage period of one day, one month, and three months.
2. The flavor of butter made from sweet cream to which a starter was added to the butter at the time of working is superior to that of swect cream butter after a storage period of one day, one month and three months.
3. The flavor of butter made from aweet cream ripened to an acidity ranging from 0.3 to 0.35 per cent is superior to that of sweet cream butter after a storage period of one day. After a storage period of one month there is no difference in flavor of the two butters. The flavor of sweet cream butter is superior to the ripened cream butter after a storage period of three months.
4. There is no difference in flavor between sweet Cream butter and butter made from sweet oream which has been ripened to an acidity ranging from 0.45 to 0.52 per cent efter a storage period of one day. The sweet cream butter is superior in flavor to that of ripened crean butter after a storage of one and three months.
5. The flavor of butter made from sweet cream to which a starter was added just before chrrning is superior to sweet cream butter to which a starter was added to the butter at the
time of working, after a storage period of one day, one month, and three months.
6. The keeping quality of sweet cream butter to which a starter was added to the butter at the time of working is superior to that of sweet cream butter after a storage period of one and three months.
7. The keeping quality of butter made from sweet cream to which a starter was added just before churning is superior to that of sweet cream butter after a storage period of one and three months.
8. The keeping quality of sweet cream butter is superior to butter made from sweet cream ripened to an acidity ranging from 0.3 to 0.35 per cent after a storage period of one and three months.
9. The keeping quality of sweet cream butter is superior to butter made from sweet cream ripened to an acidity from 0.45 to 0.52 per cent after a storage period of one and three months.
10. The keeping quality of sweet crean butber to which a starter was added to the butter at the time of working is the same as butter made from aweet cream to which a starter was added just before charning after a storage period of one and three months.
11. The acidity of cream does not effect the Reichert Meissl number, iodine number, amino-nitrogen content, or the Kries test.
12. A relationship exists between the acidity of the
cream and the acid number of the fat. The higher the acidity is developed in cream, the higher the acid number of the fat will be.

BIBLIOGRAPHY

1. Genesis 18:8 and Proverbs 30:33.
2. Judges 5:25
3.

What is sweet cream butter?
New York Produce $\mathrm{R}_{\mathrm{evi}} \mathrm{w}, \mathrm{Vol} .57$, No. 4, (1923) page, 131.
4. Curtis, G. W.

Quality of sweet cream butter as compared with butter made from acid oream.

Texas Agricultural Experiment Station, Bul. 1l, Aug•,1890.
5. Patrick, G. E.

Keoping quality of aweet cream butter.
Iowa Experiment Station, Bul. 11, Nov., 1890.
6. Patrick, G. E.

Siwet versus sour cream butter.
Iowe Experiment itation, Bul. 18, 1892.
7. Patrick, G. E .

Sweot versus sour cream butter.
Iowa Experiment Station, Bul. 21, 1895.
8. Powick, W. C.

Compounds developed in rancid fats, with observations
on the mechanism of their formation.
Jour. of Agr. Research, Vol. 26, (1923), page 323.
9. Dean, H. H.

Sweet cream with cultures versus ripened cream.
Ontario College and Experiment Farm.
Thirtieth Annual Report 1904.
10. Gray, C. F.

The keeping qualities of bttter made under different conditions and stored at different temperatures.
U. S. D. A.; B. A. I. Bul. 84, 1916.
11. Charron, A. T., and Shult, F. I.

Sweet cream butter.
Dept. of Ag. Ottawa, Canada. Bul. 13, 1907.
12. Rogers, L. A., Thompson, S. C., and Keithley, J. B. The manufacture of butter for storage. U. S. D. A. : B. A. F. Bul. 148, 1912.
13. Potts, Roy 0.

Suggestions for the manufacture and marketing of oreamery butter in the south.
U. S. D. A. Cir. 66, 19ī6.
14. Mortensen, M_{0}

Influence of acidity on flavor and keoping quality of butter.

Iowa Exp. ふta. Bul. 207, 1922.
15. White, Hm .

Effect of aciaity content on keeping quality of butter. The Creamery Journal, Vol. 38, No. 23 (1928), page 5.
16. Heineman, P. ${ }^{\text {. }}$

Milk. (1921) page 21
17. Hammer, B. W.

Volatile acid production of Streptococcus lacticus and the organisms associated with it in starter.
Iown Bxp. Sta. Kiesearch Bul. 63, $1920 . ~_{\text {. }}$
18. Hunsiker, O. F. The Butter Industry. Second Eaition (1927), page 248.
19. Conn. H. W.

Bacteriology in buttermaking.
Storrs Agr. Exp. Sta. An. Rep., Vol. 11 (1898) page 85.
20. Hammer, B. W. and Bailey, D. B.

The volatile acid production of starters and of organisms isolated from them.

Iowa Bxp. Sta. Kiesearch Bul. 55, 1919.
21. Gregory, H. W; Lucas, P.S.; and Spitzer, Geo.
d comparison of metiods of estimating fat in butier.
Purdue Agr. Exp. Sta. Bulletin 244, 1920.
22. Kohman, E. F.

A rapid and accurate method for butter analssis suitable for factory control work.
J. of Ind. and Enf. Chem. Vol. 11 (1919) page 36.
23. Ferris, I.W.

Some determinations on the soluble nitrogen compounds of cream and batter.
J. of Dairy Soi. Vol. 6 (1923), page 323.
24. Mothod of Analysis of the association of Official

Agricultural Chemists.
Second bidion (1925), pages 260 to 293.
25. Scales, F. M. and Harrison, A. P.

Boric acid modification of the Kjeldahl method for crop and soil analysis.
J. of Ind. and Eng. Chem. Vol. 12 (1920), paye 350.
26. Steele, I. I. and Sward, GeG.

The determination of the acid number.
J. of Ind. and Engo Chem. Vol. 14, (1922), page 57.
27. Holm, G. \mathcal{E}. and Greenbank, G.R.

Test for oxidized fat.
J. of Ind. and Eng•Chem. Vol. 15, (1924), page 1051.
28. Holm. G.E. and Greenbank. G. R.

Test for oxidized fat.
J. of Ind. and Eng. Chem. Vol. 16, (1924), page 518.
29. Wathews, a. P.

Physiological Chemistry.
Second Edition (1920), pages 123 to 137.
30. Ferris, I.W.

A method for the determinati of amino nitrogen and ammonia in cream and butter.
J. of Dairy Sci., Vol. 5, (1922), page 403.
31. Richmond, H. D.

Dairy Chemistry.
Third Edition (1920), page 336.
32. Holland, E. B.: Reed, J.C. and Buckely, J. B.

Improved methods for fat analysis.
Mass• Ugr• Exp. Sta. Bul• 166, page 1915.
33. Lewkowitsch, Dr. J.

Chemical Technologg and Analysia of 0ils, Fats
and Waxem.
Pourth Eaition,(1909), pages 667 to 694.
34.

Pundamentals of Dairy Science.
American Chemical Society Monograph (1928), page 80.
35. Heineman, P. ©.

Milk (1921), page 121.
36. Palmer, L. S.

Laboratory Experiments in Dairy Chemistry. (1926), page 25.
38. Hunziker, O. F.

The Butter Industry.
First Edition (1920) page 546.

APPENDIX
fable I. Churning Records.

Charn Trumber	$\begin{aligned} & \text { Aordity } \\ & \text { of } \\ & \text { Cream } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Churra } \\ & \text { Temp. } \end{aligned}$	$\begin{gathered} \text { Fime } \\ \text { of } \\ \text { Churning } \\ \hline \end{gathered}$		Tompe of Wash Water	Revolutions Worked	$\begin{aligned} & \text { Buttorilily } \\ & \text { Test } \end{aligned}$	Overron
	Per cent	$\mathrm{OF}^{\text {F }}$	Mrinates	${ }^{0} \mathrm{~F}$	0 F		Por cent	Por cent
$\begin{aligned} & \text { Series I } \\ & \text { Lot I } \end{aligned}$. 15	50	45	54	55	50	. 8	22.
Lot 2	. 15	50	65	55	55	55	. 5	22.
Lot 3	. 17	50	55	54	55	45	. 6	24.5
Lot 4	. 30	53	20	56	55	30	1.1	22.
Lot 5	. 45	49	35	52	55	25	.75	21.1
Series II Lot 1	. 13	51	30	55	54	35	. 70	20.6
Lot 2	. 13	51	40	52	54	45	. 50	23.5
Lot 3	. 15	49	50	52	54	40	. 50	20.6
Lot 4	. 31	50	30	54	55	35	. 60	23.5
Lot 5	. 42	49	40	51	55	35	. 25	22.7

TABLE I. Chorning Records. (Cont ${ }^{\text {d }}$)

${ }_{\text {cher }}^{\text {charam }}$		$\begin{gathered} \text { Gurana } \\ \text { Tamp. } \\ \hline \text { op } \end{gathered}$				RevolutionsWorked	Buttermilk OTerrumFest	
Series I	. 13	50	55	55	${ }_{5} 5$	¢0	. 50	24.5
Lot 2	.13	49	${ }^{80}$	54	55	35	. 40	23.5
Lot 3	. 15	50	65	54	54	40	. 50	23.7
Lot 4	. 38	49	40	55	55	35	. 20	24.0
Lot 5	. 48	49	60	54	54	30	. 20	23.8
Sortes IV								
Lot 1	. 14	52	45	56	55	40	. 45	23.7
Lot 2	. 14	50	60	55	55	40	. 30	22.5
Lot 5	. 16	52	50	56	55	40	. 25	22.5
Lot 4	. 35	46	55	51	53	35	. 20	23.7
Lot 5	. 47	49	${ }^{80}$	55	53	35	.20	23.8

TABLE I. Churning Records. (Cont Pd)

$\begin{aligned} & \text { Churn } \\ & \text { Humber } \end{aligned}$	$\begin{aligned} & \text { tordity } \\ & \text { or } \\ & \text { Croam } \end{aligned}$	$\begin{aligned} & \text { Churna } \\ & \text { Temp. } \end{aligned}$	$\begin{gathered} \text { Time } \\ \text { of } \\ \text { onurning } \end{gathered}$	$\begin{gathered} \text { Temp. } \\ \text { of } \\ \text { Buttormilk } \end{gathered}$	$\begin{gathered} \text { Tempe } \\ \text { of } \\ \text { Wash Water } \end{gathered}$	$\begin{gathered} \text { Rerolutions } \\ \text { Worked } \end{gathered}$	Buttermill	Overrun
	Por cent	${ }^{\circ}$	Mhmater	OF	OF		Por cont	Por cont
Series 7 Lot 1	. 12	50	90	53	50	45	. 50	22.5
Lot 2	. 12	51	65	54	54	35	. 30	23.5
Lot 3	. 14	52	45	54	54	45	. 55	22.5
Lot 4	. 36	50	50	54	54	45	. 20	23.5
Lot 5	. 49	51	55	54	54	40	. 20	24.0
Series II								
Lot 1	. 11	52	55	57	54	40	. 50	23.3
Lot 2	. 11	50	60	56	55	45	.80	24.2
Lot 3	. 15	51	70	56	54	45	. 40	23.3
Lot 4	. 31	51	50	56	55	40	. 40	23.5
Lot 5	. 41	48	60	56	54	40	. 30	24.0

TABLE I. Chorning Becords. (Cont'd)

$\begin{aligned} & \text { Churn } \\ & \text { Humber } \end{aligned}$	$\begin{gathered} \text { Acidity } \\ \text { of } \\ \text { Cream } \end{gathered}$	$\begin{aligned} & \text { Churn } \\ & \text { Temp. } \end{aligned}$		Hemp. of Buttermilk	Temp. of Wash Water	$\begin{aligned} & \text { Revolutions } \\ & \text { Worked } \end{aligned}$	$\begin{gathered} \text { Buttermiliz } \\ \text { Test } \end{gathered}$	Overrun
	Per cent	0	Minutes	OF	OF		Per cent	Per cent
Series VII								20.1
Lot 2	. 12	52	70	56	54	45	. 30	22.1
Lot 3	. 15	50	55	56	54	45	-50	21.1
Lot 4	. 31	52	40	57	55	35	. 30	23.0
Iot 5	. 51	51	45	57	55	40	. 25	21.1
Series VIII								
Lot 1	. 14	54	60	58	53	40	. 35	22.0
Lot 2	. 14	52	65	56	54	45	. 30	24.0
Lot 3	. 15	52	70	56	54	45	. 30	23.0
Lot 4	. 32	50	40	55	54	40	. 25	22.0
Lot 5	. 32	50	40	55	54	40	. 25	22.0

TABLE I. Chorning Records. (Cont'd)

$\begin{aligned} & \text { Chourn } \\ & \text { Hamber } \end{aligned}$	$\begin{gathered} \text { Cordity } \\ \text { of } \\ \text { Cream } \end{gathered}$	$\begin{aligned} & \text { Chorn } \\ & \text { Tomp. } \end{aligned}$	Yim of Churning	Tomp. of Battermilk	$\begin{aligned} & \text { Tempe } \\ & \text { of } \\ & \text { Wash Mater } \end{aligned}$	$\begin{aligned} & \text { Revolutions } \\ & \text { Worked } \end{aligned}$	$\begin{gathered} \text { Battormill } \\ \text { Test } \end{gathered}$	Orarran
	Per cont	OF	LCmates	O_{F}	O^{2}		Por cont	Por cont
$\begin{aligned} & \text { Sories IX } \\ & \text { Lot I } \end{aligned}$. 15	52	70	56	53	40	.50	22.1
Lot 2	. 13	50	90	58	53	37	. 30	23.5
Iot 3	. 14	56	45	58	54	40	.55	23.0
Iot 4	. 51	50	50	55	54	40	. 25	21.1
Lot 5	. 51	51	50	55	54	35	. 25	22.0
Series X								
Lot 1	. 14	52	60	60	53	45	. 35	24.0
Lot 2	. 14	54	65	58	53	40	. 30	23.0
Lot 3	. 15	56	55	58	53	40	. 30	23.0
Lot 4	. 32	51	35	56	53	40	. 25	25.6
Lot 5	. 51	48	70	54	53	40	. 20	23.6

TABLR I. Chorning Records. (Cont'd)

TABLE II. Showing Fat, Moisture, Salt, and Curd Content of Butter.

$\begin{aligned} & \text { Chrurn } \\ & \text { Pumber } \end{aligned}$	Fat	Moisture	Salt	Cura	$\begin{aligned} & \text { Chury } \\ & \text { Mrumber } \end{aligned}$	Fat	Moisture	Salt	curd
Per cont Per cent Per cont Per cent					Per cent Per cent Per cent				Per cent
Serios I					Series				
Lot 1	80.73	15.70	2.49	1.08	Lot 1	80.61	15.70	2.61	1.08
Lot 2	80.40	15.50	2.39	1.71	Lot 2	80.59	15.95	2.58	1.08
Lot 3	81.10	15.50	2.36	1.04	Lot 3	80.57	15.90	2.49	1.04
Lot 4	80.80	15.70	2.45	1.07	Lot 4	80.67	15.95	2,36	1.02
Lot 5	80.68	15.90	2.38	1.04	Lot 5	80.85	15.90	2.24	1.01
Series II					Series				
Iot 1	81.10	15.60	2.30	1.00	Lot 1	81.08	15.60	2.28	1.04
Lot 2	80.48	15.90	2.40	1.22	Lot 2	80,89	15.90	2.24	. 97
Lot 5	81.01	15.99	2.03	-97	Lot 3	80.71	15.80	2.31	1.08
Lot 4	81.35	15.95	1.75	. 96	Lot 4	80.92	15.70	2.38	1.00
Lot 5	81.05	15.95	2.04	. 96	Lot 5	80.80	15.85	2.40	. 95

TABLE II. Showing Fat, Moisture, Salt, and Curd Content of Butter.

\square
\square - \square -
-

- \square

$\therefore \quad . \quad$.
!. - - .
!
-

-
\because

[^0]: (1) Figures as given are based on per cent of total nitrogen.

[^1]: (1) Relative strength of test when the five lots of each series were compared.

