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ABSTRACT
A PERIODIC LAYERED MEDIUM GREEN’S FUNCTION
By

Christopher P. Trampel

In this thesis, we derive a periodic Green's function for dipoles radiating inside a lay-
ered medium. In order to do so, we proceed as follows: first the spatial Green'’s function
for a dipole inside a layer is derived in terms of Hertz potentials. Next, it is shown that
this periodic Green'’s function can be calculated in the spectral domain provided that
the Fourier integrals do not have poles on the real axis. The derived expressions indicate
that this spectral sum is rapidly converging for most source-observation pairs. However,
they are not so for the source and observation pair lying on either the top or bottom
interfaces. To overcome this, a Kummer's transformation is proposed. We validate our
Green’s function via reduction to a canonical half-space problem. The periodic layered
medium Green'’s function is validated numerically by comparison with analytical data

for reflection and transmission from a single layer.
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CHAPTER 1 INTRODUCTION

1.1 Plasmons

Periodically structured dielectrics support waves bound to the surface of the object
upon plane wave illumination. Specifically, dielectrics with negative real permittivity
support charge density oscillations known as surface plasmons. The coupling between a
surface wave and charge density oscillation is the so-called surface plasmon polariton.

Research into nano-plasmon optics is growing into a rich research field, with far
reaching implications. Surface plasmon resonance interferometry techniques have yielded
sensors for biological media [1]. Specifically, plasmonic sensors have been applied to the
study of DNA [2]. Plasmons may also have application in quasi-planar lightwave circuits.

Plasmons have been studied extensively from a theoretical perspective. The dis-
persion relation for SPPs has been derived for a periodic array of scatterers at the
interface between two infinite media (3], and the resulting dispersion curves show strong
band gaps. Even more interesting optical properties of SPPs have been observed ex-
perimentally. Metal films perforated by periodically distributed holes exhibit stronger
transmission than that predicted by geometrical optics [4]. These transmission peaks
occur at the same frequencies as SPP modes. The mechanism of this enhanced trans-
mission has been well studied and is related to the excitation of surface plasmons on
both interfaces [5]. Coupling in this so-called surface plasmon polariton (SPP) molecule

funnels energy from one interface to the other.

1.2 Numerical modelling of plasmons

Full wave analysis is necessary for study of plasmons supported by arbitrarily shaped
geometries. However, the large negative real permittivity of metals at optical frequencies
necessitates dense discretization in order to capture the wave physics. Since the holes

occupy only 5% of the volume of a typical thin film, a sizeable region must be meshed.



We seek an integral equation scheme that will allow us to mesh only the hole region.

1.3 Periodic layered medium Green’s function

To that end, we introduce the periodic Green’s function for planarly layered media.
The layered medium Green’s function for a single arbitrarily oriented current element
is well known. The electric dyadic Green’s function for planarly layered media can
be found in Chew [6]. The layered medium Green'’s function was derived in terms of
potentials for planar media by Michalski et al. [7]. Both Chew and Michalski express
the Green’s function in the spatial domain in terms of inverse Fourier transforms. The
spatial periodic Green's function is an infinite sum over a two-dimensional lattice of
the Green’s function for a single current element. However, any lattice sum may be
computed in the spectral domain [8]. Pozar et al. derived a periodic Green'’s function
for a current element above a grounded dielectric layer via spectral techniques [9)].

In this thesis, we derive a spectral periodic Green’s function for current elements
radiating inside a layered medium. Our Green’s function differs from Pozar’s in that
our current elements reside inside a layer backed by a dielectric, while his lie on top of a
grounded dielectric slab. A new derivation of the Green's function for a current element
inside a single layer is presented. We show how a spectral periodic Green’s function
may be obtained for an arbitrary spatial lattice sum. The resulting spectral layered
medium periodic Green'’s exhibits exponential convergence for most source-observation
pairs. However, the convergence is extremely slow when both the source and observation
point lie on the same interface. We propose a technique to improve convergence for this

case based on a Kummer’s transformation [10].

1.4 Organization

The remainder of the thesis is organized as follows. Chapter 2 begins with the volume
integral formulation for EM scattering from homogeneous dielectric bodies. This chapter

includes a new derivation of the Green’s function for a current element inside a single



layer, a derivation of the spectral series periodic Green’s function for an arbitrary lattice
sum, and the Kummer’s transformation acceleration technique. A derivation of the
dispersion relationship for surface waves supported by a single dielectric layer concludes
the chapter. Chapter 3 details the analytical and numerical validation of the layered

medium Green’s function. Chapter 4 summarizes our conclusions and future work.



CHAPTER 2 PERIODIC LAYERED MEDIUM GREEN’S
FUNCTION

2.1 Motivation

We begin by discussing the geometry in Figure 2.1.  Consider a volume 2 bounded

Einc
D=¢,E D=¢E
« 0

Figure 2.1 Layered medium formulation

by a surface OS2 that is embedded in a slab of permittivity e,; either side of this slab
are dielectric regions whose permittivity is denoted by €,_; and €,4;. The permittivity
of the volume  is €. A plane wave described by {E'(r), H'(r)} is incident upon the
dielectric. At this point, one can use either a surface or a volume equivalence theorems;
while we have both working codes, we have chosen the latter presentation. Volume
equivalence theorem permits us to replace free space with background permittivity ¢,
and introduce an equivalent current density J(r) = —jw(e, — o) E(r) such that the same
fields are produced everywhere. Then using the fact that the the total field E(r) is a

superposition of the incident field and the scattered field results in the desired integral



equation :

E(r) = E'(r) - £{J(r)} (2.1)

where

L{X(r)} = {k2 + YV} /ﬂ dv'G,(r, r). X() (2.2)

jwen’

G,(r, 1) is the periodic dyadic Green’s function for a current element radiating in layered

media, and k, is the wavenumber in medium n.

2.2 Problem Definition

The starting point for the derivation of the Green's function for periodically arranged
unknowns is the layered medium Green’s function that is very well known. However, we
have derived our own based on Hertz potentials which reduces to that given in [7] with
appropriate scaling [11].

Consider a current element inside a layered medium (Figure 2.2).  The radiated

Et
e1 ’ u’l

T E3 é

Figure 2.2 A current element embedded in a single layer



electric field is given by:

Ef(r), z2>h
E(r) =S Er) + E} (r) + E; (r), 0<z<h (2.3)
E;5 (r), 2<0

The field in region 1 consists of a single up going wave. In region 2, the field has three
constituents: a principal wave which acts as if it is in an unbounded medium (E%), an
up going wave (EJ), and a down going wave (E; ). A single down going wave represents
the field in region 3.

We prefer to work with Hertz potentials as intermediate quantities. The electric field

may be recovered from the Hertzian potential thus:

E; (r) = K2rj (r) + V(V - 75 (r)) (2.4)
E; (r) = Km7 (r) + V(V - 77 (r)) (2.5)
E3(r) = K2r(r) + V(V - n}(r)) (2.6)

where n is the layer number, and k, is the wavenumber in layer n. Each component of

the Hertzian potential is expressed as an inverse transform:

1 * 4 k- ] z
Tna(T) = oD / /_ _ Wia(k)eTkPetiploz g2 (2.7)

where Wy, (k) is an unknown amplitude spectrum, p = =X + yy, k = kX + k3,
p(k) = \/kZ — (k2 + k2), and k. and k, are the transform variables with respect to z
and y. The sign before p(k) determines the direction of propagation in the z direction:
a positive sign indicates a down going wave while a negative sign indicates an up going

wave. The up going and down going waves are homogeneous solutions to the Helmholtz




equation, while the principal wave is an inhomogeneous solution to the following :

J(r)
Jwen

V2rP(r) + k2nP(r) = — (2.8)
where J(r) is the electric current. The principal wave 75(r) may be regarded as a
particular solution to the above, while 73 (r) and 7 (r) are homogeneous solutions of
the same.

Our derivation of the Green's function relies upon boundary conditions on the Hertz
potential [11]. These boundary conditions are a direct consequence of continuity of
tangential electric and magnetic field across an interface. The electric and magnetic
fields are written in terms of Hertz potentials and the continuity of electric and magnetic
fields across a boundary is imposed. A system of four equations results, one equation
for each of the four tangential components of the electric and magnetic fields. When the
components of the excitatory current J are considered independently, it is found that not
all components of the Hertz potential are necessary to represent electric and magnetic
fields that satisfy the boundary conditions. When the proper components of the Hertz
potential are conjectured for the associated component of the current, the system of four
equations imply boundary conditions on the components of the Hertz potential. The

boundary conditions for the components of the Hertzian potential are summarized as

follows [12] :
Wnﬂ(r) = N121+1,n7r(n+1)0(r)1 a=2vy,=z (29)
a n a
a”g‘;(r) = NZH,,.”‘;,—;’“), a=zy (2.10)
O, (T O (ne1):(T OT (nt1)z(T OT(n r
N3+l,n - (2.12)

€n

where o is the component of the Hertzian potential (z,y, z).



2.2.1 Tangential components

The unknowns Wi, (k), Wy, (k), W, (k), Waq (k) for the tangential components (a =
z,y) were found by applying boundary conditions 1 and 2 at interface 1-2 and 2-3. The

first boundary condition at interface 1-2 leads to:

T1a(2, Y, h) = N3 a0 (2, y, h) (2.13)

(2,9, h) = Nj{nh,(z,y, h) + 73, (2,9, h) + 13, (z, y, h)} (2.14)

Next, we substitute for the potentials in terms of inverse transforms :

: / ~ d* kW (k)e?*PeiPrh =

(2m)? J_ o
2 1 T €5 o, ik-p,,—jp2(K)h - ik-p_jp2(K)h
(2.15)

/+c<> d*k [Wia(k)e 7P (0h — N2 {e_";”‘ﬁ + Wi (K)e P20
—00 e 21 2€2p2(k) 2a

+ W, (k)2 h}]ekr = o

(2.16)

Invoking the Fourier transform theorem:

Wia(k)e ™ P1®h _ N2 (— 1 Wi (k)e 720k L W (k)e” WP} =0 (2.17)

The above represents the first of four equations in the four unknowns W,(k), W, (k),

W5, (k), Wia(k). The second boundary condition enforced at interface 1-2 yields:

877'10(13, Y, h) _ N2 67!'2(,(23, Y, h) aﬂ]n(xa Y, h) _
—F— = Ny, =

662 Oz 0z (2.18)
Nai g, Amha (@4, h) + 750 (2,9, h) + 73 (2,3, h)}




The first boundary condition applied at interface 2-3 yields :

T2a(2,Y,0) = N5T34(z,9,0) (2.19)

nb.(z,y,0) + 7 (z,y,0) + 75, (x,y,0) = N3227r30(:c, ¥,0) (2.20)

The second boundary condition enforced at interface 2-3 yields :

67r20(x y,0) N%am,(; y.0) (2.21)
0 0730 0
2 (W2, 0.0) + 7(29,0) + 7 (2,3, 0)) = N3 70020 (2.22)

The final equations (2.23) are derived in a manner completely analogous to (2.17) by
substituting for the potentials as transforms and using the Fourier transform theorem.
For brevity, we summarize the equations resulting from imposing boundary conditions

at both interfaces in matrix form:

- - - - - -

e~ ip(k)h — N2 e~7P2(0h _Nglejm(k)h 0 Wia(k) N3 V2(k)

—; (k) —j K)
e—ip1(k)h -N:?x,'szk;e ip2(k)h NEI%dm(k)h 0 Wt (k) 21p1(k) (k)

0 -1 -1 N3 | |Waal(k) Via (k)
2 (k 2 (k (k
| 0 B —EG Nh] (Wa()] | ERVE®
(2.23)

For notational simplicity we introduce:

Va2 = £ (2.24)
20( ) - 2€2p2(k) .
1
V23(k) = 2.25
2a( ) 2€2p2(k) ( )



2.2.2 Normal component

The unknowns W, (k), Wt (k), W,,(k), Ws,(k) for the normal component were found
by applying boundary conditions 1 and 3 at interface 1-2 and 2-3. The first boundary
condition enforced at interface 1-2 leads to:

‘”lz(xy Y, h) = N2217r22($, Y, h)ﬂ'lz(xv Y, h) =
(2.26)

N {m5.(2z,y,h) + 13, (z, y, h) + 7. (2, y, h)}
The third boundary condition imposed at interface 1-2 gives :

87(12(1', Y, h) _ 6%22(1, Y, h)

a7r2.1‘(z’ Y, h’) + aﬂ'?y(xy Y, h)
0z 0z

oz Oy

= (v 1) ) (@2

a'n'lz(x7 Y, h) a P + - —
az az[n2z(‘t7yv h’)+7r22(x’yah) +7T2z(‘r1y7 h)] -

0
- (N221 - 1){5:;[71'51(1',y, h) + ﬂ;z(.l'. Y, h) + n;:(xvyvh)] (228)

9 _
+ 8_y[7rgy(xv Y, h) + "TQE(Ia Y, h) + 7T2y(1', Y, h)]}

The first boundary condition enforced at interface 2-3 leads to:

71'22(.'3, Y, 0) = N§2”3:(I7 Y, O)T(.gz(xv Y, O) + W;z(‘ta Y, 0) + 71'2-;(1:, Y, 0) = N227r3z(1:7 Y, 0)
(2.29)

The third boundary condition imposed at interface 2-3 gives :

Oma.(z,y,0)  Oms.(z,y.0) _

s . — __(1\[322 _ l)(aﬂ&r(x’ya 0) + 87r3y(x, yio)

- ) (230)

10



E[W';z(z» y,0) + 73.(2,9,0) + 73, (2,y.0)] — M -
0z 5
d
~ (N3 = D{5[m(2,9,0) + 1,(2,4.0) + 73,(2,,0)] .31)

2 _
+ Eg[ﬂgy(‘r‘ y’ 0) + ﬂ.;-y(‘r’ y7 0) + 7T2y(.'L', y‘o)]}

The final equations (2.32) are derived by substituting for the potentials as transforms
and using the Fourier transform theorem. For brevity, we summarize the equations

resulting from imposing boundary conditions at both interfaces in matrix form:

[ emimon N2 emmoh  _N2eimton o | [wm)] [ 4]

—emloh  Blosption  _2ldeimoh o | | Wy (k) _|B 0.3
0 -1 -1 N2, | |Ws(k) C

|0 1 -1 n| [Wa(k)| |D]

where

o N2,Vi2(k) ]

Z [ - ZRV2(k) - (“ Ca (e, Wi (k)20 + ke, Wi (k)e P28

c = +k,W2;(k)eim<k>+kyw2y(k)em(k>+k,v2;2(k)+kyv;y2(k)}] (2.33)

V52 (k)
. i V() + LBl (6, Wi, (k) + k, Wi, (K)) ]

2.2.3 Dyadic Green’s function

After solving these two systems, the total Hertzian potential for region two may be

expressed as a superposition of three waves.

Taa(F) = Tho(F) + 74 () + w3, (r) (2.34)

11



Moa (l‘) =

1 +o00 Cjk'p . . | | |
(2m)? / &k e P00z 1 Wit (k)eRre im0 4 Wy (K)ekPeii T

2¢2p2(k)

L[ a2k it
7r2a(1') - (271')2 /_m {262[)2(1()6

+ R%l (k)R%S(k)e_Jm(k)%lc;z(k) + R%'i(k)%?(k) ejk~pe—jp2(k)z
(1 + Riy(k) Rys(k)e720h)
+ Ry, (k)e~ 7= (0V52 (k) + RS, (k) Ry (k)e (028
(1 — Ry, (k) Ryy(k)e~72p2(k)R)

(k) ejk.pejm(k)z}

where

t gy = Pm() = pa(k)
Bomn(K) = ) ¥ ()

Substituting for V,!?(k) and V;23(k):

: ” 2k ee —jp2(k)z
Toa(T) = (2n)? /:oo d k{me (k)
RS, (k) Rly(k)e—IP2(k)h
2e9pa (k) (1 — R, (k) Ry (k)72 )b
Rys(k) e —om(ire
" 21 - Rél(k)l?ég(k)e—ﬂm(k)h)}e]k e
+{ Ry, (k)e 72
2¢5p2(K) (1 — RS, (K) Rb;(k)e—72r(kh)
Ry, (k) Rhs (k)e—7272() k-p,,ip2 (k)2
Teapa() (1 — By () R () ) 1€ &)

12

(2.35)

(2.36)

(2.37)

(2.38)



T B
r
T2l = 2m) 2e2p2(K)

R (1) Ry (e 72K 792(0: 4 Ry (ke300 (2:39)
262ps(k)(1 — Ry, (k) Ry (k)er?) '
RS, (k)e?(Kleim(z 4 Rt (k) RE,(k)e 922 (K)gipa(k)z
265p2(k) (1 = Ry (k) Ry (k)e722(0R)

+

+

The above implies that the Green'’s function is :

co (R 1 +md2k e—ip2(k)|z—2'|
(R) = G2 /.w Zam®

R2l( ) ( ) —jzm(k)he_jm(k)(z"z')+R}23(k)e—jm(k)(2+2’)
26,p2(k) (1 — R, (k) Ry (k)eskr)

R, (k)e 72m(0eim9G+2) 4 RY (k) RY,(K)e 9272 eir(k)(z=2)
2eap2(k) (1 — R, (k) Ris(k)e—r272(00R)

(2.40)

+ } eik(p=p")

The normal components of the dyadic Green’s function are derived in a manner analo-
gous to that used above. The total dyadic Green'’s function can be written in the spectral

domain as :

G(k,R) = G*(k,R)I + G"(k,R) (2.41)

where G?(k,R) = e;;kfzn, R=\/(z-2')2+(y—¥')?+ (2 —2)?% and

G’(k, R) = R..(k, R)xx + k,R)yy
Ry, (k,R) 22

+ R..(k,R)Zx + R.,(k,R)zy + R..(k,R)22

(See Appendix for coefficients R,3(k,R),a = z,y,2,8 = z,y, z.)

2.3 Derivation of spectral series for general periodic Green’s

function

Electromagnetic (EM) scattering from a periodic structure can be captured via anal-
ysis of a single mother cell by employing a periodic Green’s function. Linearity of our in-

tegral equations allows us to represent the field radiated by current elements distributed

13



uniformly along the lattice as a superposition of isolated current elements distributed

over the entire lattice. Thus the periodic Green’s function is given by:

[o o] [o o]

G,(R) = Z Z G(z —2' —uD,,y —y —vD,, z — 2')e"*PrDre=i"ADy (2 43)
u=-00 V=—00

where G(R) is the dyadic layered medium Green’s function, D, and D, is the lattice

spacing in the r and y directions, and 3; and 3, are the £ and y components of the wave

vector of the incident field. In most situations, the above converges slowly in the spatial

domain. We seek an alternative form of the periodic Green's function with exponential

convergence. To that end, the previous equation may be rewritten as follows:

G,(R) = G(R) * Z Z §(z — &' —uD,,y —y' —vD,)e "P=Dre=1vADy (2 44)

U=—00 v=—00

where * denotes convolution. Next we Fourier transform with respect to both x and y

and invoke the multiplication property of the Fourier transform:

= , ad 2. - P u ,Bz: v ﬁ
Gplhs kyz=2)= > > G(k,,ky,z—z)o(kz—i-ﬂ,ky—ﬁy—ﬁ) (2.45)

—00 v=—00

where G(k;, ky,z — 2') is the Fourier transform of the Green’s function. Next, we take

the inverse Fourier Transform to restore the spatial representation G,(R) :

GR) =Y Y (271r)2 //_:dkrdky(:}(kz,ky,z—z’)-

u=-00v=—c0 (2.46)

. u b Vo By ke(e-a) ik (4-1)
O(ks D, 27r’ky D, 271')6] ¢

Finally, we invoke the sampling property of the delta function:

wm—o0 v=—so (2.47)
exp(i( e + 22)(x — 2exp (i + 20)(y - 1)

14



This spectral series periodic Green'’s function is a superposition of the Fourier transform
of the isolated Green’s function sampled at appropriate intervals. Observe that the
periodic Green’s function is computed in the spectral domain. One cautionary remark
must be made. Spectral domain summation is valid only if the Green’s function has
no poles along the real axis. Fortunately, our models for the metal contain a small loss
which raises these poles off the real axis. With these caveats the Green’s function may

be computed thus:

Z Z GP(z -2 —uD,,y -y —vD,,z — 2')exp(—juB. D: — juB,D,)

+ Z Z GR(r -2 —uD,,y -y —vD,,z — 2")exp(—juB. D: — jvB,D,)
(2.48)

where D, and D, is the lattice spacing in the z and y directions, 3, and (3, are the
r and y components of the wave vector of the incident field, and GP and G? are the
same as in (2.41). The sum over the principal wave is computed using an Ewald series
for on-plane sources and observations and a spectral series for the off-plane cases. The
phase accumulated as a result of reflections facilitates spectral domain summation of

GR(R).

oo oo

_ 1 =, 27u 2mv ,
G =2 2 S, o, ) (2.49
exp(i(e + (& ~ )exp(i( o + 5,)(y = )
T Y

where GR(k,, k,,z — 2') is the Fourier transform of G®(R).

15



2.4 Kummer’s Transformation

Next we consider the efficiency of the spectral domain periodic Green’s function.

Our goal is exponential convergence for all source-observation pairs. Let us consider

R..(k,R) term by term:

1 . : ,
- [R" n —3i2p2(k)h ,—jpa(k)(z—2")
Rzz(kw R) 2(27!')262[)2(1() [R‘zl(k)RZJ(k)e e
+ Ry (k)e P2+ 4 pr (k)emI2p2(lheipa(k)(z+2) (2.50)

ek (p—p")

+ Rgl(k) 33(k)e_j2p2(k)hejm(k)(z—21)]1 _ Rgl(k)R&(k)e'””?“""

Nipm(k) — pi(k)
Nippm(K) + pi(k)

?nl(k) =

(2.51)

The phase represented by the e 772(:+2) terms provide exponential convergence for
source-observation pairs that are well separated in the z-direction. However, the sum-
mation is inefficient for source and and observation points which lie near the same

interface. The two problem terms are:

1 . . , ejk~(p—p’)
- ~ _ Rn —i2p2(k)h jp2(k)(2+2")
Rl = gm0 R R e
(2.52)
1 , ik-(p—p')
R.(k,R) = (k)eIp2(k)(z+2) ¢ (2.53)

2(2m)2eapa(k )RS3 1 — Ry (k) Ry (k)e~s2r(ion

Consider the spectral summation of R, 2(u,v) :

Z Z R221 U, L Z Z 2(2,”. (21)2 u, v)R’gl(u)U)'

) exp(7k - (p - £'))
1 — R, (u, v)R33(u, v)exp(—j2p2(u, v)h)
(2.54)

exp(—j2pa(u, 0)h + jpa(u,v)(z + 2))

where p,(u, v) \/ k2 — (kg0 + u2 bo)? — (ko + 1}12)—’;)2, D, and D, are the lattice spacing

in the z and y directions, respectively. It is easy to see that when (k;o + uf)—’:)2 +
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(kyo + v—z,—’;)2 becomes larger than k2, p,(u,v) becomes a complex number. Choosing
the negative root results in a quantity of the form p,(u,v) = —jL where L is a positive
real number. Substituting into the phase term yields e 7P2(w)(z+2) = ¢-L(z+2') whjch
is a decaying exponential. Thus source-observation pairs that lie above the bottom
interface yield exponential convergence. While all components of the Green’s function
are adversely affected in this case, most still converge as O(J;) as u — oo. Consider the
asymptotic behavior of a typical term from the G, component evaluated at z = 2/ = 0:

1 N:??"l t

t )) = .
R ) = S eapati o) ot o) + Mol o) 20V (259

We analyze the behavior of each term sequentially. Consider :

2 v 2
Tos(u,v) = palwt) (2.56)
Pa(w) + pa(uv) ] Palmt)
p2\u, v
Now 2(5’2 — 1 as u,v — o0o. Thus T4;(u,v) — 1. Without loss of generality we set

u = v. Since py(u) - uasu — o0 :

2\/5(271')262 1+ N322 u (257)

R, (u) —

Clearly this sum converges as O(5).
The problem term is R,,(u,v) which converges as (9(%) for the on plane case. In the

interest of brevity we support this claim for R,5;(u,v) only :

1
2(2m)%eop2(u, v)

exp(—72p2(u, v)h + jpa(u, v)(z + 2'))

Rz21(U, U) =

R"Ill(uv v)-
exp(jk - (p — p'))
1 — R (u, v) R33(u, v)exp(—j2p2(u, v)h)
(2.58)

We begin with the asymptotic behavior of the reflection coefficients. To that end we

17



rewrite

ORI
R’?l (’U, ’U) = u, v (259)
N? m—é—ﬁ =+ 1
P

Observe that zz(:i’z — 1 as u,v — 00. Also, the e 72P2(%9)% term in the denominator
1\4%,

rapidly decays to 0. Thus the asymptotic behavior of R.2;(u,v) is:

2(27)2espa(u,v) N3 + 1

R.21(u,v) — e~ 12P2(uv)h jp2(u.v)(2+2") o k-(0—-p") (2.60)
Setting z + 2’ = 2h (both source and observation points lie on the first interface) and

u=v

N, — 1 eIk (p—p) N% -1 1 elk-(p—p')

R.21(u SN
..21(“) N + 12\/_(27T)2 Pz( ) }V122+12\/§(27T)2 u

(2.61)

Therefore, the sum to converges as 0(%). We accelerate the convergence by first observ-

ing that R,12(u,v) is simply a constant times the principal part of the Green'’s function.

N2 -1
Rzgl(u ’U) M;—HGP(U’U) (262)
12

We can exploit this term by term convergence towards the principal Green'’s function. In
a Kummer’s transformation, a series that can be summed quickly is added and subtracted
to a slowly converging series. Here we simply add and subtract a scaled version of the

principal Green'’s fucntion. The summation over R,;s is broken into two parts, S; and

S,.

+00 +00 400 +00
ZZRmuv EZSIUU+Z ZSzuv (2.63)
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1

51w ) = S em(a )

R;l(u’ v)e_J'2P2(u,v)hejp2(u,v)(z+zl).

ei%-(p—¢') N122 _ 1Gp (2.64)
1 — R (u, U)R{;‘g(u,v)e—ﬂm(uyv)h - N122 +1 (u,v)

NZ -1
Sa(wv) = 570 () (2.65)

Consider the summation of Sy(u,v). As u,v — 00, the first term approaches the second
and thus S)(u,v) — 0. The asymptotic behavior of the first term causes S; to converge
rapidly. The summation of S, is evaluated by the usual spectral or Ewald series and

therefore displays exponential convergence.

2.5 Surface Waves

Coupling between plasmons and surface waves is responsible for many of the inter-
esting optical properties of thin films. Investigating the dispersion relationship for these
bound waves will allow us to excite specific surface wave modes and provide further
insight into the enhanced transmission phenomenon. For dielectrics with negative real
epsilon, only the TM modes yield proper surface waves. The dispersion relationship for

TM waves may be found by setting the denominator of the R..(k, R) term to zero :

1 — R, (k) Rgy(k)e 7 #=00h = 0 (2.66)

As a check on the above, we derive an equivalent expression from first principles. We

begin our analysis be writing expressions for the field in each region.

4
Cexp(—qz — jwt + jBy), z2>h
H(y,2) = 4 {Acos(uz) + Bsin(uz)}exp(—jwt + jBy), 0<z<h (2.67)
Dexp(vz — jwt + j3By), 2<0
\
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Here, g, u, v are the spatial frequencies in region 1,2, and 3 respectively and A, B, C and

D are unknown amplitudes. Maxwell’s equations provide an expression for E, :

1 OH,(y.z
Ey(y,2) = —E-——a(f—) (2.68)

Next, the we enforce continuity of the tangential electric and magnetic fields at both

interfaces. The resulting system of equations may be written in matrix form thus :

- - oo - -

cos(uh) sin(uh) —exp(—qgh) 0| |A 0
—%sin(uh) %cos(uh) cg;exp(—qh) 0 B _ 0 (2.69)

1 0 0 -1] |C 0

0 gu; —% 0 D LO

Setting the determinant of this matrix to zero leads to the following implicit relationship

between u, v, and ¢ :

) gh )
v - %sin(uh) - 1—cos(uh) (2.70)
€9€3 €5 €1€2

We seek a relationship between the spatial frequency, 3, and temporal frequency, w. To

that end, we recognize that phase continuity requires that :

8% — ¢* = wuge, (2.71)
8% + u? = wpoe (2.72)
5% — v? = wiiges (2.73)

Eliminating u,q and v :

A //82 — wzpﬂese\/ B32—w?uperh

\/2——_62;3 \/37_2_ (2.74)
Mot = P sin(/Fhoca = 1) — Y s/ gz = )
2 1€2
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CHAPTER 3 RESULTS

Validation of the dyadic Green'’s function was accomplished via both analytical and
numerical techniques. First, we show analytically that our Green’s function reduces to
the Green'’s function for a current element radiating above a dielectric half space when
the permittivity of medium 1 is made equal to the permittivity of region 2. We analyze

each component of the dyadic Green'’s function in turn.

3.1 Analytical validation of dyadic Green’s function

3.1.1 The Gxx and Gyy components

Consider the R,,(k, R) component of the Green’s function :

Roa(k, R) = { R, (10 Ry (ke ™72 0he=m000C= 4 (e sm 0+

+ Rgl(k)e‘jQW(k)hej”’(k)(z+z')

. , . pali)(z—2" eIk (p—p")

R0 Ry e Feapa R (1 — T ) e 707)
(3.1)

Ry, (k) = P (k) = Po(k) (3.2)

~ Pm(k) + pa(k)
Let the permittivity of region 1 be made equal to the permittivity of region 2. Then

p1(k) becomes equal to po(k) and :

t _ p2(k) — pi(k) _ pi(k) — pi(k) _
B ) = ) T a(®) ~ (W) + () (33)

Substituting for R4, (k) into (3.1) :

RL, (k)e P20 (z+2) gk (0=p)

Raa(kv R) = 2(271’)262172(1()
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Adding the principal portion to the reflected part we arrive at the total tangential

component:

e—Ip2()z=2"| 4 Rég(k)e‘jm(k)("“')eﬂ“(p“")
2(2m)%eapa (k)

Gaa(k’ R) = (35)

This expression agrees with that given in the Nyquist class notes, pp. 6-21 [12].

3.1.2 The Gzx and Gzy components
Consider the R.,(k,R) component of the Green'’s function :

1
Rza(k’ R) = AOM[

Ngl -1 R)( )T ( ) —j2p2(k)h
P2(k) + N221 l( ) ° A
(N322 - ) R (k)T' (k)e—ﬂm(k)h}e—jm(k)(Z—Z')
pa(k) + Napo(k) 2772
p2(k) + N3 ipi(k)
+ N1¥2 -1 Tt (k)}e—Jm(k)(z+z’)
pa(k) + Npa(k)
pa(k) + N3;p:(k)
N322 -1 t
+ : k
pak) + Napatiey 1)
N} -1
p2(k) + N21pl(k)
N3 -
ps(k) + N 21)2(1() Tas

{

+{ R2,(K)TY, () Rby(k)e72P2 (0

(3.6)

+{ T4 (e :00h

21 (k)Tz:s(k)e—“”’(k)h}eim(k)(zﬂ’)

+ { R'za(k)Tél(k)e_ﬂm(k)h

( )R/r;( ) —J2pz(k)h}ejm(k)(z—2’)]
ij'(p_p’)

(1 = R3, (k) Rig(k)e~7209h) (1 — Ry, (k) Ris(k)e=727200k)

t _ pm(k) - pn(k)
B (k) = )+ pu(R)

_ 2pm(k)
pm(k) + pn(k)
_ Noupm(k) — pi(k)
P (k) + pi(k)
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Let the permittivity of region 1 be made equal to the permittivity of region 2. The

contrast ratio between layer 1 and 2 is :

N§=§=2=1 (3.10)
2

€1

Again, the reflection coefficient between layer 1 and 2 vanishes thus:

n 12P2(k) pi(k) _ pi(k) — Pl(k) _
i\ (k) = NLpo(k) + pi(k)  pi(k) +pi(k) 0 (3.11)

Also, the transmission coefficient between region 1 and 2 becomes unity :

2p(k)  _ 2pa(k)
pi(k) + p2(k)  2p2(k)

T (k) = =1 (3.12)

Making the appropriate substitutions into (3.6) :

1 N.’?? -1 Tt (k)
*2(27)2eaps(k) pa(k) + Npa(k) ? (3.13)

exp(—jpa(k) (2 + 2') + jk - (p = p))

R.a(k,R) = k

Adding the principal portion to the reflected part we arrive at the total Green’s function

component:
1 . ,
G.olkR)=ky————— e ip2(k)z=2|
( ) 2(277')262[)2(1() (3 14)
+ N3, = 1 T, (k)e P2 00(+2) ) gk (o)

p3(k) + N3,pa(k)

This expression agrees with that given in the Nyquist class notes, pp. 6-22 [12].
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3.1.3 The Gzz component

Consider the R..(k,R) component of the Green’s function :

1 4 ~ ,
- n n —i2p2(k)h ,—jp2(k)(z—2")
Rzz(k, R) 2(27?)262])2(1() [R’Zl (k) R’l:}(k)e €
+ R;'3(k)e_jp’(k)(‘+”) + R;}(k)e—j2m(k)hejm(k)(z+z') (3.15)

eik-(p—p')

+ R;l (k)R”zla(k)e_ﬂm(k)hejm(k)(z_z,)]1 _ Rgl(k)@3(k)€_ﬂp’(k)h

_ Niwpm(k) — pi(k)
N, pm(k) + pi(k)

mi(K)

ml

(3.16)

Let the permittivity of region 1 be made equal to the permittivity of region 2. Then

p1(k) becomes equal to py(k) and :

_ Nip(k) —pi(k) _ pi(k) — pi(k)

Bl = M@ T 109~ 9 7 pall) (617
Substituting for RT,(k) into (3.1) :
n —ip2(k)(z+2") pjk-(p—p')
R..(k,R) = F(kle ¢ (3.18)

2(2m)%eapa(k)

Adding the principal portion to the reflected part we arrive at the total tangential
component:
e (Iz=2 L Rn (k)e—ip2(K)(z+2) gik (p=p")

G..(k,R) = 2@ 2eapa () (3.19)

This expression agrees with that given in the Nyquist class notes, pp. 6-21 [12].

3.2 Numerical validation of dyadic Green’s function

We validate our dyadic Green’s function numerically using the integral equation
formulation described previously. We first generate a brick shaped mesh of height hg

and width w,. At the same time, we specify the thickness of the background slab to

24



be h; and the period D, = D, = w,. The volume equivalence principle allows us to
replace the meshed region of the background slab with free space. Thus, we are able to
analyze reflection and transmission from a slab of height h = h; — hy. We compare the
numerical solution to the analytical solution for a dielectric slab of height h. Specifically,
we consider reflection and transmission from a dielectric slab as a function of thickness,
incident angle, and wavelength. Figure 3.2 shows the transmission from two slabs of
different height as a function of wavelength. Figure 3.2 displays transmitted intensity
from a dielectric slab as a function of angle of incidence. We observe excellent agreement

between analytical and numerical values.
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Continuous slab, TE, 60 degree incidence, h = 20 nm
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Figure 3.1 (a) Transmission from 20 nm slab of ¢, = 4 as a function of
wavelength; (b) Transmission from 40 nm slab of ¢, = 4 as a
function of wavelength
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Continuous slab, TE, A = 600 nm, h =20 nm
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Figure 3.2 Transmission from 20 nm slab of ¢, = 4 as a function of angle
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CHAPTER 4 CONCLUSION

In this thesis, we derived a spectral periodic Green'’s function for current elements
radiating inside a layered medium. We introduced a volume integral equation formu-
lation for electromagnetic (EM) scattering from arbitrarily shaped dielectric bodies in
terms of unknown current J. A new derivation of the Green’s function for a current
element inside a single layer was presented. It was shown that this periodic Green'’s
function could be calculated in the spectral domain provided that the Fourier integrals
do not have poles on the real axis. A Kummer’s transformation technique was used to
improve convergence for source-observation pairs lying on either interface was discussed.
We validated our Green’s function via reduction to a canonical half-space problem. The
periodic layered medium Green’s function was validated numerically by comparison with
analytical data for reflection and transmission from a single layer.

The periodic layered medium Green’s function approach has two major computa-
tional advantages. As mentioned previously, the holes in a typical perforated metal only
occupy roughly 5% of the area of the film. The layered medium approach allows us
to mesh the hole region rather than the metal. Secondly, the periodic layered medium
Green'’s function is evaluated inside the metal region. The large negative real permit-
tivity causes the periodic layered medium Green'’s function to converge more quickly in
the metal than in free space.

Future work will doubtless focus on analysis of larger structures. While our algorithm
is much more efficient than conventional surface or volume integral equation formula-
tions, the cost still scales as O(N?). Fast methods such as the fast multipole method
(FMM) or the adaptive integral method (AIM) need to be developed for layered media.
Other interesting physics can be observed when one introduces multiple layers into the
perforated thin film geometry. Our algorithm can be easily modified to accommodate

substrate and superstrate layers.
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APPENDIX A Components of dyadic Green’s function

The tangential components (a = z,y) of the dyadic Green'’s function are given by:

Roa(k,R) = { R}, (k) Rbs(k)e™I2P2he=ip2()(z=2) 4 Bt (k)e=ipa(k)(z+2)
+ R%l(k)e‘72”2(“)"e1”?“‘)(2+2’)
eik(p—p")
2(27)2e9pa (k) (1 — RS, (k) Ry (k)e—32p2(k)h)
(A1)

+ RY, (k) RSy (k) eIk eip(k)z=2))

The normal components of the dyadic Green'’s function are given by:

1
2@ eapa(i)|

R}, (k)T (k)e72p2(kh

Rza(k, R) =k,
N3 -1
p2(k) + Nf.?xpl(k)
(Np-1)
p3(k) + N322p2(k)
2 —
+ { N21 21
p2(k) + N21P1(k)
+ N§2 —1 T (k)}e-jm(k)(z+z')
p3(k) + N&po(k) 2
2 —
+ { Ny ,21
m(k) + 1\/21p1(k)
N2 - > - ] z+2'
s By () ()T (40 01
Nj -1
p2(k) + N3pi (k)

N2 —1 B | »
ps(k) ijg;epz(k)Tzfs(k)sz’l(k)e 122(00hY gapak)(:=2))

{

R/tn (k)T2t3(k)e—j2p2(k)h}e-jm(k)(z-z')

R (K)TL, (k) RYy (k)e~72P2(0h

(A.2)
T4, (k)e 2P0k

+

+{ Ry (K)T, (k)e ™72 00h

+

eIk (p—p')

(1 — R3\(k) R (k)e222(0h) (1 — Ry, (k) Rps(k)e—22p2()h)
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where a = z,y.

1 “ | |

Rzz k,R e n k n _—j2p2(k)h _JP2(k)(z—z)
( ) 2(2)2%eqpa (k) [R5, (k) Rgse e
+ Ryye P0G+ 4 pp (K)e =722 eipa(i(s+)

j ] ’ ejk~(p..p’)
+ R"lll (k)Rgge_sz(k)heJP?(k)(Z—z )]

1 — Ry, (k)R35(k)e—72r2(k)h

(k) = Pmll) = Pn(k)
Rmn(k) - pm(k) n pn(k)
)= 2Pm(k)
Ton(®) = 200 + 2l
n (k) = N2, pm(k) — pi(k)
 NEpm(k) + pu(k)

30

(A.3)



BIBLIOGRAPHY

(1] P.I Nikitin, A.A. Beloglazov, V.E. Kochergin, M.V. Valeiko, and T.I. Ksenevich,
"Surface plasmon resonance interferometry for biological and chemical sensing,”
Sens. Actuators B-Chem., 1999, v. 54, pp. 43-50.

[2] A.A. Kruchinin and Y.G. Vlasov, ”Surface plasmon resonance monitoring by means
of polarization state measurement in reflected light as the basis of a DNA-probe
optical sensor,” Sens. Actuators B-Chem., 1996, v. 30, pp. 77-80.

[3] M. Kretschmann and A. A. Maradudin, "Band structures of two-dimensional
surface-plasmon polaritonic crystals,” Physical Review B, 2002, v. 66, pp. 245408(8).

[4] H. Ghaemi, T. Thio, and D. Grupp, ”Surface plasmons enhance optical transmission
through subwavelength holes,” Physical Review B, 1998, v. 58, pp. 6779-6782.

[5] S.A. Darmanyan and A.V. Zayats, "Light tunnelling via resonant surface plasmon
polariton states and the enhanced transmission of periodically nanostructured metal
films: an analytical study,” Physical Review B, 2003, v. 67, pp. 035424.

[6] W.C. Chew, "Waves and Fields in Inhomogenous Media,” IEEE Press, 1990.

[7] K.A. Michalski and D. Zheng, ”Electromagnetic scattering and radiation by sur-
faces of arbitrary shape in layered media,” IEEE Transactions on Antennas and
Propagation, 1990, v. 38, pp. 335-344.

(8] R. Mittra, A.F. Peterson, and S.L. Ray, ”Computational Methods for Electromag-
netics,” New York, NY, IEEE Press, 1998.

[9] D.M. Pozar and D.H. Schaubert, "Scan Blindness in Infinite Phased Arrays of
Printed Dipoles,” IEEE Transactions on Antennas and Propagation, 1984, v. 32,
pp- 602-610.

[10] M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions,” Dover,
New York, 1964.

(11] J. Bagby and D.P. Nyquist, "Dyadic Green’s Functions for Integrated Electronic
and Optical Circuits,” IEEE Transactions on Microwave Theory and Techniques,
1987, v. 35, pp. 207-210.

[12] D.P. Nyquist, Course Notes of ECE 929A, “Advanced Topics in Electromagnetics :
Planar Waveguides and Circuits,” Michigan State University, Fall 1994.

31



A




