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ABSTRACT

By

Nagendra S. Singh

For the optimal utilization of resources in a wireless network, applications need

to adapt their output rates to suite the current traffic and mobility conditions in

the network. In a wired network, like the Internet, this can be achieved by using an

end-to—end feedback protocol like TCP. In a wireless network, due to issues related to

unfairness, a framework for network-based feedback generation becomes attractive.

This thesis presents a framework, Network Feedback for Application Self

Adaptation (NEFASA), to generate network feedback for adaptive applications in

wireless networks. NEFASA can be split into two major components — the compo-

nent used to generate the adaptive feedback and the component used to propagate

the feedback. NEFASA uses congestion detection to start the feedback generation

process and uses the AODV protocol to actually propagate the feedback to adap—

tive applications. To implement the feedback propagation, significant additions are

done to the AODV protocol in the form of additional packet types and functionality.

NEFASA delivers only negative feedback to applications.

NEFASA is characterized and analyzed by simulations using the Network

Simulator (us). For simple scenarios involving one or two flows, the performance

of NEFASA is compared against manually found optimal values. Fairness problems

inherent in an end-to-end mechanism, like TCP, is demonstrated and compared with

a network feedback mechanism like NEFASA.



Copyright by

Nagendra S. Singh

2004



To My Parents

For Letting Me Pursue My Dreams

So Far Away From Home

iv



ACKNOWLEDGMENTS

I would like to thank Dr. Subir Biswas, the advisor of this thesis, for giving me

a lot of freedom and flexibility throughout this work. His guidance helped me come

up with a lot of ideas and finish this thesis in a timely manner. I would also like to

thank the other members of the committee, Dr. Matt Mutka, Dr. Hayder Radha,

and Dr. Jonathan Shapiro for their time and advise. I would especially like to thank

Dr. Shapiro for giving me an account on his multi-processor Linux machine. I would

also like to thank the CSE department for supporting my graduate studies at the

Michigan State University.

Many thanks to Rohit, Jayanthi, and Raymond for all the discussions and help

during the thesis. I would also like to thank my friends, Kantha and Meena, for

helping me manage the grueling final days of the thesis. Last but not the least,

I would like to thank all the contributors of all the free tools — ns, Linux, MEX,

Gnuplot and CVS — that were used in writing and researching this thesis. Needless

to say, having these tools made it a lot easier to complete this work.



Table of Contents

List of Tables viii

List of Algorithms ix

List of Figures x

1 Introduction 1

1.1 Design Goals ............................... 2

1.2 NEFASA ................................... 2

1.2.1 Orthogonality ........................... 4

1.2.2 Cross-Layer Interaction ...................... 4

1.3 Fairness .................................. 5

1.4 Organization of the Thesis ........................ 5

2 Background 7

2.1 The Wireless Protocol Stack ....................... 7

2.2 Network Layer ............................... 9

2.2.1 Route Set Up ........................... 9

2.2.2 Route Maintenance ........................ 11

2.2.3 Sequence Numbers ........................ 11

3 Related Work 15

3.1 Stateless Schemes in Wired Networks .................. 16

3.2 Stateless Schemes in Wireless Networks ................. 17

3.2.1 Stateless Wireless Ad hoc Networks (SWAN) ......... 17

3.2.2 Quality-Modified AODV (QMAODV) .............. 22

3.3 State Based Schemes in Wireless Networks ............... 25

3.4 Summary ................................. 3O

4 Congestion in Wireless Networks 31

4.1 Contention and Route Capacity ..................... 31

4.2 Congestion Identification ......................... 34

4.3 Region of Congestion ........................... 36

5 Network Feedback for Application Self Adaptation (NEFASA) 39

5.1 Overview of the Three Components ................... 40

5.1.1 Feedback Generation ....................... 42

5.1.2 Feedback Propagation ...................... 43

5.1.3 Application Adaptation ..................... 44

5.2 Feedback Generation ........................... 44

vi



5.3

5.2.1 Optimality .............................

5.2.2 Source of Feedback ........................

Feedback Propagation ..........................

5.3.1 Precursors List ..........................

5.3.2 Precursor Trees ..........................

5.3.3 RCHANGE Messages .......................

5.3.4 Rate Based Pruning .......................

5.4 Application Behavior ...........................

6 Performance

6.1 Linear Networks ..............................

6.1.1 Multiple Flows in Arbitrary Mesh Networks ..........

6.2 Performance Comparison with TCP ...................

6.2.1 Hop-Unfairness in TCP ......................

6.2.2 Hop-unfairness in Arbitrary Mesh Networks ..........

6.2.3 Throughput Comparison .....................

6.3 Conclusions ................................

7 Parameter Tuning

7.1 Congestion Triggering Sensitivity ....................

7.2 Effects on Throughput and Packet Delivery Percentage (PDP) . . . .

7.3 Congestion Detection Sensitivity .....................

7.4 Application Behavior ...........................

7.5 Stability ..................................

7.6 Conclusions ................................

8 Conclusion and Future Work

8.1 Conclusion .................................

8.2 Future Work ................................

Appendices

A Modifications to as

B Abbreviations and Acronyms

Bibliography

vii

44

47

47

50

54

55

61

63

66

66

71

73

74

75

77

77

81

81

84

85

88

91

94

95

95

96

97

98

99

101



2.1

2.2

5.1

5.2

5.3

List of Tables

Fields in a Routing Table Entry ..................... 11

Terms used in Algorithm 2 ........................ 12

Precursors List for the network in Figure 5.6 .............. 53

Fields in a Routing Table Entry ..... i................ 56

Terms used in Algorithm 7 ........................ 56

viii



H
E
D
O
O
N
Q
C
fi
r
fi
-
O
O
M

10

List of Algorithms

Generating a RERR message ....................... 12

Forwarding an RERR message ...................... 12

High Level RED Algorithm .............. . .......... 17

Admission Control of Real-Time traffic in SWAN ............ 20

Rate Control of Best Effort TIaffic in SWAN .............. 21

Generating a RCHANGE message .................... 57

Forwarding an RCHANGE message ................... 59

Initialization Performed by an Application in NEFASA ......... 65

Negative Adaptations by an Application in NEFASA in Response to

Route Change (RCHANGE) ....................... 65

Positive Adaptations by an Application in NEFASA .......... 65



2.1

3.1

3.2

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

List of Figures

Flow of Packets in a Protocol Stack ...................

Swan Software Components .......................

INSIGNIA Reservation Setup and QoS Reporting ...........

Pipe Analogy for Optimum Throughput ................

Influence of Contention on Route Capacity ...............

Max Capacity of Single and Two Flow Scenarios ............

Identifying Congestion using Queue Lengths ..............

The Three Main Components of NEFASA ...............

Optimality of Feedback Generation ...................

Optimality of NEFASA Mechanism ...................

Feedback Generated from Different Nodes ...............

Tracing Back All the Sources of a Route ................

Wireless Network with Two Routes ...................

Precursor Trees ..............................

Pruning of RCHANGE Messages Based on Rates ...........

Linear Topology Network with a Single Flow ..............

The First Configuration of the Two Flow Scenario ...........

The Second Configuration of the Two Flow Scenario .........

The Third Configuration of the Two Flow Scenario ..........

The Fourth Configuration of the Two Flow Scenario ..........

Comparison Against Optimum in Single and Two Flow Scenarios

The Arbitrary Mesh Topology Used in Performance Comparison of

NEFASA ..................................

19

28

32

33

35

38

41

46

48

49

50

51

52

62

67

68

68

69

69

70

72



6.8 The Effect of Increasing the Load Levels Beyond NEFASA Levels

6.9 Hop-Unfairness in TCP ..........................

6.10 Hop-Unfairness in Arbitrary Mesh Topologies .............

6.11 Comparison of NEFASA Against TCP in Single and Two Flow Sce-

narios in Linear Networks ........................

6.12 Comparison of NEFASA Against TCP in Arbitrary Mesh Scenario

7.1 The Effect of Having No Disable Period .................

7.2 The Effect of Introducing Disable Period ................

7.3 Decrease in Variation due to Disable Period ..............

7.4 Side Effects of Disable Period ......................

7.5 Effects of Threshold ............................

7.6 Number of RCHANGE Messages and Increment Interval .......

7.7 Effects of Increment Interval .......................

7.8 All Applications are Greedy .......................

7.9 Stability Analysis in NEFASA Network .................

xi

73

75

76

82

83

87

89

90

92

93



Chapter 1

Introduction

With increasing deployment of 802.11 wireless networks, and the current prolif-

eration of mobile devices, supporting multimedia applications could further fuel the

demand and growth of such networks. Supporting such applications is challenging

because of limited resources — bandwidth, power, computing resources etc. — available

in such networks. With advances in multimedia coding techniques, such as scalable

video coding ([1][2]), deployment of such applications is indeed possible. Adaptive

multimedia coding techniques require feedback about the quality-of—service that the

network can provide; such a feedback can be used to gracefully increase or decrease

the quality of output produced by applications using these coding techniques. End-

to-end feedback mechanisms working at the transport or application layer, have their

limitations because of their inability to quickly detect changes due to mobility. They

also suffer from issues related to fairness, wherein flows with smaller number of hops

are favored and receive a higher throughput when compared to flows with bigger

number of hops. It is in this context that a network based feedback for adaptive

multimedia applications becomes a necessity.



1.1 Design Goals

The goal of this work is to design a state-less adaptive network feedback mecha-

nism. State—based reservation schemes are attractive, if the session time and the route

used by the session stays the same over a long period of time. But with mobility and

fast changing channel conditions in wireless networks, route changes become frequent

and the overhead related to resource reservation and maintenance becomes high. For

such dynamic networks, a state—less feedback system is a natural option to explore.

To maintain the state-less nature of the system, no flow-specific information

which has to be initialized when the flows are being set-up, or removed when the flow

is being dismantled, should be maintained .

In the absence of multimedia adaptation, the degradation in the quality of output

at the destination for even small variations in the quality-of—service provided by the

network is severe. For such applications, a reservation based scheme which guarantees

a certain performance can be necessary. On the other hand, an adaptive multimedia

application can adapt its output as a response to varying quality-of—service from the

network. It does this by changing the amount and type of data inserted, which

gracefully degrades the quality of video received at the destination. For such an

application, any form of guarantee is not necessary and it is sufficient if the network

can provide the best—effort service. Hence no service guarantees are provided by the

system presented in this work.

1.2 NEFASA

This work describes the Network Feedback for Application Self Adaptation

(NEFASA) network feedback mechanism. It achieves the above goals by means of

three important components, the component to produce the feedback, the component

to propagate the feedback and the adaptive applications that receive the feedback.



As feedback generation and propagation mechanism is the primary focus of this work,

the effect of mobility on feedback generation and propagation is not considered.

In NEFASA, the applications are provided only negative feedback, i.e., only

when the events in the network cause disruptions in the quality of received output

the network informs the applications. The applications in turn, respond by decreasing

their output rates. The implicit assumption here is that the applications are well-

behaved, and NEFASA does not enforce this behavior in any way. Applications use

their discretion to increment their output rates, and this is generally achieved by

increasing the output rate only when negative feedback has not been received for a

predetermined duration of time.

NEFASA produces feedback by identifying the conditions and events in the net—

work which can be of interest to an adaptive application. Mobility is not the only

event that could be of interest to applications. Because of constraints in bandwidth,

any new flow that starts in the network can cause significant changes in bandwidth

availability. As such changes are not addressed by the routing protocol — for ex., by

re-routing the flow — it becomes necessary to have system to provide such services to

interested applications.

Once the feedback has been produced, a mechanism is required to propagate the

feedback to the interested applications. The feedback propagation happens in a state-

less manner. No flow-specific information is maintained by the system to transport

the feedback to the applications. The feedback that is delivered by the network, does

not contain any information which tells the application about the conditions in the

network. Hence, the application cannot decide the amount by which it should reduce

its rate by looking at the feedback message. If the decrease in output rate is not

sufficient, NEFASA will inform the same application or different one, such that over

a long run the quality at which the input is produced is the quality at which it is

delivered.



1.2. 1 Orthogonality

All the major entities that are involved in NEFASA — feedback generation, feed-

back propagation and the application — are functionally orthogonal. This is achieved

by not carrying any information in the feedback message which relates to the method

in which the feedback is generated and propagated. This is a significant feature in

NEFASA, because, if the feedback message carried specific information which could be

used by the application, the application design would have to depend on the network

design, i.e., any changes in network design would necessitate changes in the applica-

tions. The same applies on the feedback generation mechanism too. As the feedback

generation method need not place any information in the generated feedback, any

changes in the feedback generation method will not effect the feedback propagation

or application behavior. Hence developments and research in application behavior,

feedback propagation and feedback generation can go on simultaneously and trans-

parently.

1.2.2 Cross-Layer Interaction

The feedback generation in NEFASA happens in the link layer, whereas the

feedback propagation happens in the network layer. When the generated feedback

reaches the network layer of the final destination, the network layer interacts with

the transport or application layer to provide the feedback. Hence in NEFASA, there

is cross-layer interaction between various layers of the protocol stack. This form of

interaction between layers, which can be beneficial for applications, is not found in

end-to-end feedback mechanism like Transmission Control Protocol (TCP).

Cross-layer interaction, makes a lot of information, related local network condi-

tions, available to a network feedback mechanism like NEFASA. Information like —

mobility — cannot be inferred by an end-to-end mechanism like TCP. To make use

of all the local information, is one of the important goals of the NEFASA feedback



mechanism.

1.3 Fairness

Apart from adaptive applications, NEFASA can be a useful mechanism for non-

multimedia applications, like File Transfer Protocol (FTP) or Hypertext Transfer

Protocol (HTTP). Such applications predominantly use an end-to—end feedback

mechanism, like TCP, which was researched and developed for wired networks. TCP

in wireless networks, suffers from the hop-unfairness problem, i.e., flows with small

hops tend to be favored over flows with large hops. Because of this unfairness prob-

lem, flows with small number hops tend to have better throughput than flows with

larger hops. NEFASA, on the other hand, is more fair and flows have throughput

performance which is independent of the number hops. Hence a transport proto-

col which provides TCP-like service in NEFASA system, will have better fairness

characteristics.

1.4 Organization of the Thesis

Chapter 2 provides the background material related to Ad-hoc On Demand Dis—

tance Vector (AODV). It elaborates on several important aspects of AODV ,which

is used by NEFASA for feedback propagation.

Chapter 3 does a literature review which explores existing research on congestion

control and application adaptation in both wired and wireless networks.

Chapter 4 discusses and characterizes congestion in wireless network. It brings

out the impact of congestion on route capacity and the methods which could be used

to track congestion in wireless network.

Chapter 5 describes the NEFASA framework. All the three components of

NEFASA — the component used to generate the feedback, the component used to



propagate the feedback and the application behavior — are discussed in detail.

Chapter 6 compares the performance of NEFASA against optimal conditions

of simple scenarios — with one or two flows -— which could manually found. It also

describes the fairness problem in end-to—end mechanism like TCP and compares the

performance of NEFASA with TCP.

Chapter 7 describes the NEFASA feedback generation and propagation mecha-

nism. It characterizes the system by discussing the impact of the various “knobs”

which influence the behavior of the system.

Chapter 8 summarizes the main contributions of this work and discusses the

future work.



Chapter 2

Background

In this chapter, distributed wireless routing protocols are briefly discussed. An

overview of various components present in a wireless protocol stack is then followed

by a discussion of the AODV protocol.

2.1 The Wireless Protocol Stack

Software and hardware in a wireless node can be split into six layers[3],

viz.,application, transport, network, link, Medium Access Control (MAC) and physi-

cal layers. These protocol layers can be imagined to be stacked on top of each other,

with the application layer at the top and the physical layer at the bottomFigure 2.1.

The physical layer is responsible for the transmission and reception of packets on the

wireless medium. The link layer is responsible for many services. It provides address

mapping services (for example: mapping network addresses to MAC addresses and

vice versa) and buffering services for packets received from higher protocol layers. The

link layer buffer, which provides the buffering services, is interchangeably referred to

as link layer queue or the Interface Queue (IFQ). In a wirelass network like 802.11,

the MAC layer is responsible for managing access to the shared medium. The network

layer sets up and maintains routes between nodes in the network. The transport layer
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Figure 2.1: Flow of Packets in a Protocol Stack

provides different kinds of services to the applications. It provide a highly reliable

service by assuring in—order and loss-less delivery of packets (for example: TCP[4]).

As a reliable service may not be required by all applications, a transport service may

only provide very basic services like multiplexing and demultiplexing of packets at

the source and destination (for example: User Datagram Protocol (UDP)[5]).

Figure 2.1 gives the flow of packets through the protocol layers. The application

generated packets are processed by the transport layer. After the transport layer

processes the packets, it passes them on to the network layer. The network layer

figures out the next hop of the packet by looking into the routing table. The network

layer receives packet from two sources. It can get packets from the transport layer

or through the physical layer. It processes both the streams in the same way. If the

packets belong to the applications, it passes those packets to the transport protocol.

Otherwise it forwards the packets to the next hop towards its destination. Packets

 



from the network layer pass through the link layer before getting transmitted on the

physical layer. The link layer buffers the packet till the MAC layer is ready to receive

it. If the buffer is full the packet is dropped. These drops are called buffer drops or

IFQ[6] drops. The MAC layer tries to gain access to the shared physical medium.

In the process it could either fail to get access to the channel or the packet could be

lost during transmission due to errors. In either case the packet is dropped. If the

MAC layer is successful in gaining access to the channel, it passes the packet to the

physical layer for transmission.

2.2 Network Layer

The network layer is responsible for setting up and maintaining end-to-end routes.

It maintains the information about the routes — in every node - in a database called

the routing table. All the nodes in the network participate as defined by a protocol,

called the routing protocol, to set up their routing tables.

In this section, the Ad—hoc On Demand Distance Vector (AODV) routing proto-

col is described. AODV is a popular routing protocol in distributed wireless networks.

Routes in AODV are set up on-demand, i.e., they are setup only when needed by the

applications. This is as opposed to a pro-active strategr of route set up, where routes

may be set up before they are needed by the applications.

2.2.1 Route Set Up

Routes are set up by AODV when source nodes have data for a destination,

which doesn’t yet have a route. A route is set up by using a request-reply protocol;

the request packets are called Route Request (RREQ) packets and the reply packets

are called Route Reply (RREP) packets.

In AODV, RREQ propagation in broadcast based; every node that receives the

f
a
;

 



RREQ packet rebroadcasts it, if it cannot generate a reply. Because of this, once

a RREQ is generated, all the nodes in the network will receive it at-least once. It

is possible that a node receives the RREQ packet multiple times. To assist the

intermediate nodes to identify multiple receptions of the same RREQ packet, the

node originating the RREQ packet places a unique number, called the Route Request

Identifier (RREQID), in the RREQ packet.

When an intermediate node receives a RREQ packet for the first time, it creates

the reverse route in the routing table for the source of the RREQ packet. When the

node receives the same RREQ packet again, it may be because of multiple routes

from the source of the RREQ to itself. If the path taken by the current RREQ packet

is shorter than the path taken by the previous RREQ packets, the node updates

the reverse path from the current RREQ packet. In order to compare the distance

traveled by RREQ packets, a hop count field is maintained in the RREQ packet. It is

initialized to zero by the originating node, and every node which receives the RREQ

packet increments it by one before rebroadcasting it again on the MAC layer.

Because of the broadcast nature of RREQ, all possible routes from the source

to every node in the network — including the destination of RREQ packet — is found.

This will lead to the generation of many RREP messages for one RREQ message. A

hop count field, similar to the one present in the RREQ packets, is maintained in the

RREP packets. The source will use the hop count field in the RREP packet to find

and use the shortest route to the destination.

When the RREQ packet reaches its final destination, a reply is generated by

the destination by sending a RREP message. The RREP packet travels back to the

source of the RREQ packet by taking the reverse path.

10



 

Field Explanation

rt routing table entry in the node

dst(rt) The node for which rt gives the route

nezthop(rt) The next hop that is used to reach dst(rt)

dst_seqno(rt) The sequence number of dst(rt) as maintained in rt

precur(rt) The list of precursors for the route rt

 

 

     

Table 2.1: Fields in a Routing Table Entry

2.2.2 Route Maintenance

Mobility or contention for the medium, may break the wireless link between two

nodes When a link is broken, all routes which use that link Should be dismantled.

The dismantling process is started when a node tries to send a packet over the MAC

and fails after many retries. The node then forms a Route Error (RERR) packet,

which is then propagated upstream along all the routes which which have their next-

hop to be the neighbor which failed to receive the packet. At the end of the RERR

propagation, the RERR message is delivered to all the upstream sources which use

the broken link.

The RERR propagation mechanism uses the precursor list, which is maintained

for every route in the routing table. The precursor list of a route, is the subset of

all neighboring nodes which use it to forward packets to the routes destination. The

precursor list is built during the route request and route reply generation process.

The algorithm used by a node to generate an RERR message is given in Algorithm

1. Table 2.1 explains various terms used in Algorithm 1.

When a node receives an RERR message, it follows Algorithm 2. Table 2.2

describes the various terms used in this algorithm.

2.2.3 Sequence Numbers

To ensure loop free routes, AODV employs the concept of sequence numbers.

Every route in the network is associated with a number, called the sequence number.

11

 



 

 

forall routes, rt, that are present in the routing table and are usable do

if nexthop(rt) is the unreachable neighbor then

add dst(rt) to the RERR message

increment dst_seqn0(rt) by one

add dst_seqn0(rt) to the RERR message

mark the route as unusable

end

end

broadcast the RERR message in the MAC

 

Algorithm 1: Generating a RERR message

 

 

 

  

Field Explanation

X RERR message

src(X) source of the RERR message, X

unreachabledsts{X) List of destinations that are reported to be

unreachable by X

seqnos(X) List of sequence numbers of the unreachable destinations

present in X

dst-co,unt(X) Number of unreachable destinations reported

in X

rerrseqno (X, Y) Sequence Number of the unreachable destination,

Y, which is listed in X   
 

Table 2.2: Terms used in Algorithm 2

 

 

for all usable r0utes,rt, and X is the RERR message that has been received do

if dst(rt) is listed in unreachabledsts(X) and dst-seqno(rt) S

rerrseqno(X,dst(RT)) and nexthop(rt) = src(rerr) and precur(rt) is not

empty then

dst_seqno(rt) +— rerrseqno(X,dst(rt))

add dst(rt) to the NEW_RERR message

add dst-seqno(rt) to the NEW_RERR message

mark the route as unusable

clear the precursor list of the route

end

Broadcast the NEW_RERR if new destinations have been added

end

_~

Algorithm 2: Forwarding an RERR message
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The destination of a route, i.e., the node at which the route terminates assigns the

route its sequence number. As the nodes assign sequence numbers independently —

the nodes do not co—ordinate between themselves to assign sequence numbers that are

unique throughout the network — many routes may have the same sequence number.

To uniquely identify routes, the pair consisting of the destination, and the sequence

number of the route has to be used. The primary motivation of using sequence

numbers, is to compare the “freshness” of two routes; the route with higher sequence

number is fresher than the route with a lower sequence number. Whenever a node

discovers a “fresher” route, it discards the older route and starts using the fresh one.

Even though the destination of the route assigns the sequence number, all the nodes

in the network participate in maintaining them.

2.2.3.1 Sequence Numbers and Route Set Up

When a node originates RREQ packets, it places its sequence number in the

RREQ packet after incrementing it by one. This ensures that all the reverse routes ——

RREQ packets may set up reverse route to its originating node — have the “freshest”

sequence number.

When a node originates RREQ packets, it also places the last known sequence

number of the destination in the RREQ packet. This is used by an intermediate node

- a node which is not the destination of the RREQ packet — to generate a reply. If

the intermediate node has a route to the destination of the RREQ packet, and it is

“fresher” than the route that is requested — as found out by comparing the sequence

number of the route in the routing table and the sequence number of the destination

carried by the RREQ packet — a reply is generated. If the route maintained by the

intermediate route is not fresh, a reply is not generated.

When a RREQ packet reaches its final destination, the destination updates its

own sequence number to be one more that the largest of the sequence number re-

13



quested in the RREQ message or the sequence number maintained by itself. This

updated sequence number is also used in the generated RREP message; This ensures

that this route is the “freshest” in the network.
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Chapter 3

Related Work

This chapter provides a literature review related to application self-adaptation

in wireless networks. To provide adaptive feedback to applications, various kinds of

design approaches could be taken. They can be broadly classified into two types,

viz., state based schemes and stateless scheme. In a state based scheme every node

in the network will keep information about every flow that passes through it. The

information kept could be about the resources reserved for that flow in the node.

Only information about locally reserved resources is kept in the node and no global

information is maintained. A signaling system is then designed to set up and up-

date the flow information in every node. Two such schemes from the literature are

discussed in this chapter.

In a stateless scheme, no reservation information is maintained in any of the

nodes. Nodes collect local information about network conditions, such as bandwidth

available or congestion conditions. This information is then processed and transported

to the sources of the affected flows. Different schemes could be designed which differ

in the kind of information that is collected at the nodes and the way in which the

information is disseminated and used. This chapter discusses two such systems for

wireless networks and a system which is employed in the wired domain.
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3.1 Stateless Schemes in Wired Networks

The Random Early Detection (RED) gateways [7] use queue length as a metric to

detect and avoid congestion. A very high level algorithm for RED gateways is given

in Algorithm 3. Whenever a packet enters the queue, a metric which depends on the

queue length is first calculated. Two thresholds -— minthandmaxt;I — are enforced on

the metric. If the metric is below the lower threshold, minth, then no action is taken.

If the metric is above the higher threshold, maxth, then the packet is dropped. If the

metric is between the two thresholds, then the packet is dropped with a probability of

pa, which again depends on the metric. The probability of dropping packets increases

as the occupancy of the buffer increases.

Applications can use dynamic rate control to improve the overall throughput,

with the help of transport protocols like TCP. These applications use packet drops

to get the required feedback about network conditions and regulate the application

data rate. Packet drops in wired networks, is predominantly due to buffer overflows.

By the time the applications take corrective action by decreasing the data rate, a lot of

packets may be dropped which may affect a lot of applications. Hence, the basic thrust

of the RED algorithm is to detect congestion early, so that applications which use

TCP or TCP-like protocol benefit from it. To meet this goal, RED starts dropping

packets randomly before the buffer becomes completely full. Dropping packets, in

itself, may not prevent buffer overflows or decrease congestion; but applications get

the implicit feedback early and hence many applications will not be penalized for

buffer overflows.

Dropping packets need not be the only mechanism to provide feedback to applica-

tions. An explicit feedback can be generated from the Random Early Detection (RED)

queue, which will expand the range of applications which can benefit from RED. To

generate an explicit feedback, a RED queue may mark a bit field, called the Explicit

Congestion Notification (ECN)[8], in the packet to be dropped. Instead of drop-

16

 



ping the packet, it is forwarded to its destination. When the marked packet reaches

the destination, it can invoke any application specific feedback mechanism to deliver

information back to the source.

 

for each packet arrival do

calculate the metric. The metric is a function of the queue length.

if mint}, 5 metric < max”, then

calculate the probability pa. pa is a function of metric

with probability pa, drop the arriving packet

else if max”, 3 metric then

drop the arriving packet

end

end  
 

Algorithm 3: High Level RED Algorithm

The RED scheme is similar to the method used by NEFASA to detect conges-

tion. In NEFASA, unlike RED which has two thresholds, only one threshold is used.

Once this threshold is crossed, NEFASA does not drop or mark packets, but it sends

feedback messages to the applications.

3.2 Stateless Schemes in Wireless Networks

3.2.1 Stateless Wireless Ad hoc Networks (SWAN)

Stateless Wireless Ad hoc Networks (SWAN)[9] is a non-reservation based ap-

proach to provide service differentiation in wireless network. Two types of services

are offered and differentiated by a SWAN network, real-time and best-effort. SWAN

builds a system to provide soft—real time service to real-time applications.

To make real—time services in an ad hoc network feasible, admission control of

real-time UDP traffic is performed. The end-to—end bandwidth is estimated -— the

source does this — by sending a probe request to the destination of the flow. If sufficient

bandwidth is available, the real-time UDP traffic is admitted into the system.
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Once a real-time traffic is admitted, SWAN uses local bandwidth measurement

and an ECN based mechanism to provide feedback to real-time applications. This

is done to regulate real-time traffic during excessive traffic conditions and mobility.

SWAN does not guarantee that a fixed bandwidth will be provided throughout the

session of a flow. SWAN only informs the applications during congestion and mobility.

The application then tries to re—establish a session, as if it were starting all over

again. If it successfully re—establishes a session, no permanent service disruption is

experienced. If it cannot, the application either shuts down or manages with the

available bandwidth. Hence the service provided by SWAN is termed soft real-time.

Real-time service is regulated, so that bandwidth consumed by real-time services

does not cross a threshold. This ensures that the delays experienced by packets in

a flow stays constant over a period of time. Best—effort traffic, on the other hand,

is bandwidth regulated locally so that excessive best-effort traffic does not disrupt

real-time services.

The SWAN has four (see Figure 3.1) major software components. An admission

controller, as the name suggests, is responsible for admission control of real-time UDP

applications. The shaper determines the rate at which best-effort traffic is pumped

into the network by the node. Only best-effort traffic should pass through a shaper.

This is ensured by a classifier which separates out real-time packets and sends them

directly to the MAC. The rate controller is responsible for the calculation of the

output rate of the shaper based on the delay measurements by the MAC. The MAC

is responsible for measuring packet transmission delays and the bandwidth utilized

for real-time traffic.

3.2.1.1 Admission Control in SWAN

Every wireless network could have a threshold (Rthmh) rate [10] at which delays

would be excessively high. SWAN tries to keep the bandwidth utilization of real—time
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and best-effort traffic below this level. In-spite of admission control, there may be

variations in the amount of local bandwidth consumed by a flow during its life time.

These variations may cross the threshold (Rthresh). This may not be disruptive for

best-effort traffic. But real-time applications will notice such variations. To minimize

the effect of such variations, real-time traffic is admitted only if the current total

utilization of bandwidth by all real-time traffic (R7,) is below the admission threshold

(Rama). The admission threshold, Radmit, is below (Rthmh). The difference between

Radmit and Rthrcsh is used for best-effort traffic.

 

receive probing request

extract the bottleneck bandwidth from the probing request (Rbn)

calculate the bandwidth utilized by existing real-time flows that pass through

the node (R4,)

Ravailable “'- Radmit — th

if Ravailable < Rbn then

place Ravailable in probing request

else

do not change the bottleneck field in the probing request

end

Algorithm 4: Admission Control of Real-Time traffic in SWAN

   
To implement the above policy, every node in the network, before it starts a real-

time application, sends out a probing request toward the destination. The probing

request packet contains the bottleneck bandwidth field. Every node in the network,

upon receiving a probing request executes the admission control algorithm (see Al-

gorithm 4) and forwards the probing request. The destination upon receiving the

probing request sends it back to the source as a response. When the source receives

the request, it starts the application. So in effect, the bandwidth consumption at the

bottleneck node is figured out and if its less than Radmit the request is successful.
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3.2.1.2 Rate Control of Best Effort Traffic

SWAN uses a simple Additive Increase Multiplicative Decrease (AIMD) algo-

rithm (see Algorithm 5) for the rate control of best-effort traffic. The algorithm is

run every T secs. Depending on the MAC delay experienced by the packets transmit-

ted after the previous execution of the algorithm[11], the shaping rate of the algorithm

is either increased additively or decreased multiplicatively. There may be instances

where the shaping rate is significantly greater than the actual rate of best-effort traffic.

In this case, the shaping rate is decreased to match the actual rate.

 

n <— number of packets which have a MAC delay > the threshold delay

(dthreshsecs) ;

if n > 0 then

//Multiplicatively Decrease the Shaping Rate 3

s <——s* (1—r/100);

else

//Additively Increase the Shaping Rate 3

s +— s + c ;

end

//decrease 3, if s is > actual rate (a) by g%

if (s -— a) > a. * g/IOO then

s «—a* (1+g/100);

end    
Algorithm 5: Rate Control of Best Effort Traffic in SWAN

3.2.1.3 Regulation of Real-Time Traffic

All nodes in the network monitor the utilization of bandwidth by real-time traf-

fic. If the bandwidth utilization of real-time traffic crosses the threshold -Rth,.esh—

the nodes start marking real-time packet that they forward. The destination upon

receiving the marked packets sends regulate messages to the source. The source then

tries to re—establish the session by sending out probing request messages as previously

discussed. If nodes mark all forwarded packets during the time of congestion, sessions

may not be re—established correctly. To prevent this, two approaches can be taken.
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One approach is for the source node to wait for a random amount of time before

trying to re—establish a session. This will prevent simultaneous establishment of mul-

tiple sessions. The other approach is to mark packets from only a subset of real-time

flows. Information about the subset of real-time flows being marked is maintained

in the intermediate node. The subset may be recomputed periodically. Note that,

maintaining information about a subset of real-time flows does not necessarily mean

that per-flow information has to be maintained in the node.

SWAN does not provide adaptation services to the applications. It tries to pro-

vide services which enable an application to access the amount of bandwidth available

in the network. If the applications find the bandwidth to be sufficiently available, they

start the flow according to the available bandwidth. If more bandwidth becomes avail-

able to the network at a later time, or even if there is more bandwidth is available

when the flow is started, the application is not informed and it continues to work at

the data rates at which it started.

In NEFASA, all applications start at their native data rates, and then depending

on the feedback from the network, they adapt their quality of output. Hence NEFASA

provides adaptation services to the applications. NEFASA, on the other hand, does

not provide any kind of service differentiation between real-time and best-effort traflic,

which is provided by SWAN. Though such services can be built into NEFASA, the

current implementation does not support such services.

3.2.2 Quality-Modified AODV (QMAODV)

QMAODV[12] [13] relies on measuring the available bandwidth on a wireless link

and using AODV to develop a distributed algorithm to provide network feedback to

adaptive applications. For a multi-hop network, due to unique contention experienced

by a flow existing between a (source,destination) pair, total link bandwidth available

to an intermediate node may not be completely available for a flow that exists be-
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tween the (source,destination) pair. Hence instead of making measurements for total

bandwidth available locally, a node makes measurements for bandwidth available for

each (source, destination) pair that it supports (see Equation 3.1).

For an 802.11 network, throughput for a packet is measured as Equation 3.2.

Let us say that u is the fraction of time for which the wireless link is utilized at a

node. Let us say that this node is an intermediate node for a flow between nodes

(A,B). If Throughputpacket is the throughput of a packet belonging to the flow (A,B)

as measured by Equation 3.2, then the bandwidth available for a flow between (A,B)

is given by Equation 3.3.

 

Throughput(source,destination) = Throughput of a packet (Throughputpacket) E

to a flow between (source,destination) (3.1)

S
Throughputpacke, = (3.2)

tq + (t3 + too + taverhead) * R + Zf=1 B,-

S = Number of bits transmitted

tq = MAC queuing time

t, 2 Transmission time for S bits

too = collision avoidance time

twerhead 2 control overhead Time.

e.g. RTS, CTS , propagation delay etc.

R = Number of necessary transmissions

B, = Backoff time for rt), retransmission
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ThroughPUtAvailable = (1 —U) * Throughp‘fi’packet (33)

u = FTaction of the time for which link is utilized

0 = tars + tCTs + tHDR + {waitACK +

ttransmissionoverhead (3-4)

tRTS = Transmission time for RTS

tors 2 Transmission time for CTS

tHDR 2 Transmission time for the MAC header

twat/40K 2 Wait time for the arrival of the acknowledgment

ttmnsmissMwerhmd 2 Time spent for SIFS, DIFS and extra propagation times

In order to make the measurements got from Equation 3.2 more reliable, instead

of calculating the throughput on a per-packet basis, it is calculated as an average of

a packet window. The window size is typically kept at around 16 or 32. To make

the measurements from Equation 3.2 independent of packet size, a constant value c is

subtracted from each throughput sample collected. The constant is given by Equation

3.4.

Once the available throughput is calculated, the AODV RREP based mecha-

nism is used to to propagate the available bandwidth back to the source. The RREP

mechanism is modified and is called “event triggered RREP”. During the route setup

phase, when the RREP message is begin sent back to the source, every intermedi-

ate node reports its available bandwidth. Using this information, bandwidth of the

bottleneck link is figured out. In order to detect changes in the available bandwidth,

the “event triggered RREP” is triggered by a node, automatically, when the avail-

able bandwidth changes by more than RELAYFACTOR (which is expressed as a

percentage) of the previously reported available bandwidth. The node sends this
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“event triggered” RREP upstream, just like the RREP messages of AODV. The only

difference being, to propagate the “event triggered” RREP upstream, the permissi-

ble bandwidth in the RREP message should be more than RELAY_FACTOR of the

previously reported available bandwidth by the forwarding node.

The QMAODVrelies on bandwidth measurement to provide feedback to appli-

cations. The bandwidth measurements done in the MAC layer, are not exact mea-

surements but only indirect inferences based on observable quantities like collision

avoidance time and back-off time. These measurements get approximated further,

with the subtraction of the constant 0 (Equation 3.4) from the throughput measure-

ments. Bandwidth measurements can be accomplished in higher layers, but these are

more approximate than the measurements in the MAC layer.

Furthermore, in routing protocols like AODV, bandwidth availability may vary

Significantly when routes are being set up. This variance in bandwidth availability is

not taken into consideration in QMAODV.

3.3 State Based Schemes in Wireless Networks

To give feedback to adaptive applications, a flow and reservation based approach

can be taken. Every node in the network will keep information about every flow that

passes through it. The information kept could be about the resources reserved for the

flow in the node. A signaling system could then be designed to set up and update

the flow information in every node. Two such systems, Adaptive Reservation and

Pre—allocation Protocol (ASAP)[14] and INSIGNIA[15], are discussed in this section.

In ASAP, flows are classified into two types, QoS flows and best-effort flows. Two

types of reservations can be made by a node for a QoS flow, soft reservation and hard

reservation. When bandwidth is soft reserved it can also be used for best-effort flows.

But when bandwidth is hard reserved, it can only be used for QoS flows. Two types
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of messages, which flow in two phases and in opposing directions, are used to manage

the two types of reservations. In the first phase, signaling messages flow downstream

from the source to the destination and a soft reservation is made. These are the SR

messages. The HR messages which flow in the second phase, travel in the opposite

direction and convert the soft reservations to hard reservations. These messages have

a field, SetB W, which indicate the amount of soft reservation to be converted to

hard reservations. Reservations are setup by the first transaction (SR from source to

destination and HR from destination to source) of these messages. Reservations are

maintained by periodically inserting SR messages into the flow. If a HR message is

received in response to a SR message, the source adapts its output according to the

reservations made. If a HR message is not received, then it maintains its previous

output quality. Reservations can be released by either sending a HR message with

the SetBW field set to zero or allowing the reservations to time-out.

INSIGNIA[15] also supports two types of flows, best-effort and real-time flows.

Real-time flows carry data from adaptive applications and can further be classified

into two types, base-layer(BL) and enhancement-layer(EL). An adaptive application

can pump both BL and EL data. Bandwidth can be requested in two levels, the

minimum bandwidth level called MIN and maximum bandwidth level called MAX.

If a MAX request is made and it is approved by the network, then both BL and EL

traffic are given priority and travel as real-time traffic. If a MAX request is made,

but only a MIN level is granted by the network, no EL traffic is given priority and

is demoted to best-effort traffic by the network. If a MAX request is made and the

network cannot even grant a MIN level, then both BL and EL traffic are demoted to

best-effort. In this case it is up-to the application to give up transmission or continue

with the level of service available. MIN level requests are treated similarly. AS the

request itself is at the MIN level, both BL and EL traflic receive best-effort service.

INSIGNIA uses an in-band signaling protocol to setup and maintain reservations.
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The INSIGNIA control information is piggybacked into data packets and separate

INSIGNIA control packets are exchanged between the source and destination. Also,

INSIGNIA plays no role in route setup phase and routes are setup independently by

routing protocols.

The source, requests for a reservation by placing five pieces of information in the

control portion (for ex: IP options in an IPv6 packet) of the data packet. They are

Reservation mode, service type, payload indicator, bandwidth indicator and band-

width request. The reservation mode says whether the packet is requesting for a

reservation or using a previously made reservation. The service type specifies the

flow type, viz. best-effort or real-time, for which the reservation is being made. If

packet carries real-time data then the payload indicator specifies if its BL or EL traf-

fic. If a request is being made, then the bandwidth indicator field specifies whether

MIN level or MAX level bandwidth is being requested. The bandwidth field itself

specifies the amount of bandwidth to be reserved.

When the first few data packets are exchanged between the source and destina-

tion, the reservations are setup as illustrated by figure 3.2(a). The source node Ms

requests for reservation by placing REQ in the reservation mode field. The values

RT and MAX specify that a MAX level reservation is being requested for real-time

traffic. First few nodes (M1) are able to make the requested reservations. But when

the packet arrives at the bottleneck node (M2), MAX level bandwidth reservations

are not made; but MIN level reservations are successful. The bottleneck node, now

forwards the packet as REQ/RT/MIN to indicate to the downstream nodes that one

or more upstream nodes can support only MIN level reservations. When the packet

reaches the destination, it can deduce the type of reservations made at the intermedi-

ate nodes by looking at the packet. It then sends a QoS report to the source 3.2(b).

The QoS report may take a route which is different than the one taken by the data

packets as shown in 3.2(b).
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The reservations made at the intermediate nodes is maintained by periodically

refreshing them. When packets are forwarded by a node, it automatically refreshes the

reservation information for the flow to which the packet belonged. Hence a separate

refresh related Signaling need not be designed. This is called the soft-state approach

to state management. As long as the information is used it is not discarded. Once

state information is unused beyond a specific time interval, called the soft-state timer

interval, it is discarded. In case of INSIGNIA, if a packet is not forwarded during

a soft—state timer interval, the reservation information is discarded. This happens

when a node moves away from a route and is not in radio contact with other nodes of

the route.. The node that moves away discards its information after soft-state timer

interval as it won’t receive any packets for that flow. Soft—state timer interval may

also be used to discard excess reservations made in the nodes that was made during

the flow setup phase.

During the life-time of a flow, any of the nodes may scale up or scale down the

current reservation. Let the current reservation be for MAX bandwidth level and

let us say node M1 degrades the flow to MIN level of bandwidth. The first packet

that is forwarded using this level, will have its bandwidth indicator set to MIN. The

bandwidth field will specify the bandwidth that was reserved at this level. When this

is received by downstream nodes, they too degrade the reservation for the flow to MIN

level. Finally when the destination received the first data packet at the MIN level,

it informs the source in the next QoS report. The source, then may take different

actions which include continuing with EL traffic as it may not mind the degradation

of the flow, dropping all the EL traffic or stopping the flow itself. This depends on

the instructions that the user has supplied to the application.

In wireless networks, apart from bandwidth constraints, energy and processing

power is also an issue. To provide a reservation based scheme, finding a mapping

algorithm which can set aside processing power and energy to meet specific bandwidth
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reservations may be difficult. Also, due to dynamic nature of ad hoc networks, a

reservation based scheme may have significant overhead associated with maintaining

reservation information in networks. Hence such a system does not scale well, when

the number of nodes and mobility is high.

3.4 Summary

In this chapter, different schemes designed to provide adaptive feedback to appli-

cations in wireless and wired networks were considered. To improve the scalability of

the system and to simplify the system design, a reservation based scheme for provid-

ing adaptive network feedback may not be suitable for wireless networks. In wireless

routing protocols like AODV, due to the broadcast nature of route set up, bandwidth

available at a node may Show sudden, temporary dips. A bandwidth measurement

scheme in the MAC or higher layer, can be inaccurate and it may not be able to detect

such sudden dips. A more reliable method of detecting the actual bandwidth available

to applications should be used is designing a network based feedback scheme.
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Chapter 4

Congestion in Wireless Networks

The capacity of routes in a network is influenced by congestion conditions; as

congestion develops in a region, it decreases the capacity of all routes that pass

through that region. As congestion starts to develop in the network, corrective action

should be taken by throttling all the adaptive applications. A lot of different metrics,

like MAC delays, MAC drops, or route changes can be used to identify congestion.

In this chapter, one such metric, occupancy levels of the buffers in the link layer, is

used characterize and locate congestion in a wireless network. This is then used in

NEFASA, to provide adaptive feedback to applications.

4.1 Contention and Route Capacity

A route can be made up of one or more intermediate nodes. The maximum

effective capacity of a route, depends on the capacity of each intermediate node, which

in turn is determined by various factors like topology, traffic patterns, transmission

speeds and transmission technologies. As the capacity of every intermediate node

varies, the maximum effective capacity of a route is equal to the capacity of the

intermediate node with the smallest available capacity. This is analogous to a pipe

which is not uniform (Figure 4.1). Some regions of the pipe have higher thickness
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Figure 4.1: Pipe Analogy for Optimum Throughput

than others, but the maximum flow that the pipe can support is determined by the

narrowest region of the pipe.

In a wireless network — where all the nodes share the same MAC and physical

layer properties - the available capacity of a node is directly proportional to the

amount of contention it experiences; higher the contention, lower the capacity. As

the node with minimum capacity determines the maximum effective capacity of the

route, contention determines the maximum effective capacity of the route.

To demonstrate the effects of contention on route capacity, consider a wireless

network with a single flow (Figure 4.2(a)). It has eight equidistant (inter-node dis-

tance is 245MTS) nodes, which are arranged linearly. All the nodes in the network

share the same MAC and physical layer properties. Only one flow — from source

node No to destination node N7 — exists in the network. A ns simulation — with the

application packet size of 512 bytes, carrier-sense range of 550MTS, and receive range

of 250MTS — is conducted by increasing the load on the network and observing the

PDP achieved by the network. If maximum effective capacity of a route is defined

as, the maximum input load at which the PDP at the destination stays above 99%,

132Kbps (Figure 4.3(a)) is the maximum effective capacity for this route.

To see the effects of flow interaction in a linear, single flow network, let’s add

another flow on top of the existing flow (Figure 4.2(b)). The second flow starts

at node N8 and ends at node N14. The two flows share the common node N5. An

experiment, similar to the one with the single flow, is performed by increasing the
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input load on the network. The input load is increased by varying the rates of both

the flows. If the maximum load (also optimum load) of a network is defined as, the

load experienced by the network when all routes are operating at their maximum

effective capacity, it can be seen that (Figure 4.3(b)) 136Kbps is the optimum load

for this network. Of the 136Kbps, the flow between N0 and N7 contributes a load of

88Kbps. Because of the increased contention at N5, the maximum effective capacity

of this route is significantly less than than a similar flow in the single flow scenario. In

the single flow scenario, the maximum effective capacity was 132Kbps. Hence it can

be seen that with increasing contention the maximum effective capacity of a route

decreases.

4.2 Congestion Identification

Once the input load exceeds the maximum effective capacity of a route, it man-

ifests as a congestion in the network. The goal of NEFASA mechanism is to identify

regions of congestion which develop in the network, and act upon them by providing

adaptive feedback to applications. The challenge in developing in such an mecha-

nism, is to reliably identify congestion by observing different parameters in the net-

work. Care should be taken such that the mechanism work in networks with different

topologies and traffic conditions and is not fine-tuned to specific types of networks.

One of the reliable measures of congestion is the occupancy levels of the buffers

in the link layer. As the congestion in the network increases, the occupancy levels

should increase. To observe this effect of congestion, in the single flow scenario, the

effective load on the network is gradually increased from a level which is below the

maximum loading conditions (found in Section 4.1) to loads above it. Once the input

load crosses the optimum levels, N0, N1, N2 and N3 start to see a significant increase

in the average queue length (Figure 4.4(a)). This indicates that average queue length
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can be used as an indicator of congestion. To check the validity of this, a similar

experiment is performed in the two flow network. Nodes N2, N3, N4 and N5 see an

increase in queue length once the loading conditions are above the maximum effective

capacity of the route. This demonstrates that queue length can be a reliable measure

of congestion in the network.

4.3 Region of Congestion

In the single and two flow scenarios, the region of congestion can be different. In

the single flow scenario, as there is no cross-traffic and the topolog of the network is

uniform, the network cannot cause congestion. Hence the source can increase its rate

till it crosses the limits imposed by the MAC and physical layer. Once these limits

are crossed, the region in the vicinity of the source is expected to observe congestion.

This is supported by the queue length data collected from the single flow scenario, as

only nodes N0, N1, N2 and N3 see increases in queue length, and other downstream

nodes hardly see any increase. Also N2 sees the maximum amount of congestion,

because it has to contend with four nodes. Two of these four nodes — No and N1 —

are before N2 and other two nodes — N3 and N4 — are after N2 in the flow 1. As No

and N1 contend with only two and three nodes respectively, the amount of contention

experienced by N2 is higher than that of No and N1, and it sees more congestion.

As N2 drops packets when it is congested, nodes downstream to N2 do not see any

congestion.

In the two flows scenario, as the common node cannot treat both the flows as

two independent flows, the common node is expected to be the bottleneck. But in

wireless networks, because of the interference in the wireless channel, nodes which are

a few hops before the common node can experience congestion. Hence, because of the

 

1This is for a linear network with inter-node distance of 245MTS, application packet size of 512

bytes, carrier-sense range of 550MTS and receive range of 250MTS
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increased activity at the common node, N5, nodes in its vicinity see an increase in

queue length. The queue length data collected from the two flows scenario supports

this, as nodes — N2, N3, N4 — upstream to the common node see an increase in queue

length with an increase in input loads. This also shows that the region of congestion

has moved from the vicinity of the source to the vicinity of the common node in the

two flows scenario.

The experiment with the two flows scenario Shows that, congestion in the network

can be near the source, or it can be away from it (due to cross-traffic). TCP and other

end-to—end mechanisms, cannot detect such congestion because network end-to—end

delays and packet drops may fail to detect their existence and if they do, they might

fail to quantify the magnitude. Such information can be used in an network-based

feedback architecture and queue length is not only used to detect congestion but also

to accurately identify its region.
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Chapter 5

Network Feedback for Application

Self Adaptation (NEFASA)

This chapter discusses Network Feedback for Application Self Adaptation

(NEFASA) —— the framework used to generate and deliver adaptive feedback to ap-

plications in a wireless network. NEFASA framework is comprised of three major

components — the component used to generate the feedback, the component used to

propagate the feedback and the adaptive applications. In NEFASA, congestion is used

to generate the feedback for adaptive applications; queue length of the buffer queues

are used for this purpose. To deliver the generated feedback, the feedback propaga-

tion is implemented in the network layer with the help of the routing protocol. For

wireless ad—hoc networks, AODV is a popular and well-researched network protocol.

NEFASA uses AODV to deliver the generated feedback to the adaptive applications.

No major changes to AODV are done, and the existing mechanism used to generate

and deliver RERR messages is re-used in NEFASA. As one of the important goals of

NEFASA is to have a stateless feedback generation and propagation process, no state

information is maintained within AODV during any part of the process. In Chapter 2,

AODV was discussed in detail and this chapter discusses only the extensions related
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to the feedback propagation process. In addition, the default application behavior

used in all future simulations is described at the end of this chapter.

5.1 Overview of the Three Components

Feedback protocols can be designed in various protocol layers. If applications

have their own special needs, they can implement a specialized feedback protocol in

the application layer. If many applications benefit from a specific type of protocol,

the feedback mechanism can be implemented in the transport layer. An example of

this is TCP, which is used in applications like FTP, HTTP and TELNET. Feedback

protocols in the application and transport layers are quite common in wired networks,

like the Internet. Network based feedback is not common and if used, it is designed

to work with application and transport protocols[8].

One of the important issues in designing feedback protocols in the network layer

is its scalability. A feedback protocol in the network layer, should scale well irrespec-

tive of the number of applications running on the network, and“ the amount of data

that is exchanged between the applications. An important factor which determines

scalability is the amount of feedback data produced and distributed in the network.

As the feedback data is an overhead and decreases the amount of actual data that

can be exchanged in the network, it is necessary that it is only a small fraction of the

total amount of data that is exchanged in the network.

In order to achieve these goals, NEFASA is divided into three components (Figure

5.1). These are

1. Feedback Generation.

This component is responsible for identifying congestion and starting the feed-

back propagation process when congestion is identified.

2. Feedback Propagation.
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This component is responsible for propagating the feedback messages.

3. Adaptive Applications.

The adaptive applications respond to the generated feedback by responding in

ways defined by NEFASA.

5. 1.1 Feedback Generation

In NEFASA, feedback generation is accomplished in the link layer (Figure 5.1),

by identifying regions of congestion in the network. As described in Chapter 4, queue

length of the link layer queues can be used to identify regions of congestion in a

wireless network. To produce adaptive feedback, a threshold is placed on the queue

length1 and every time a packet enters the queue and the queue length is above the

threshold, feedback is generated by the link layer queues.

Scalability is an important issue in the design of feedback protocols. The amount

of feedback generated and its timing should be such that it controls congestion and

does not aid congestion. The feedback generation mechanism plays an important

role is deciding the scalability of a system. In Section 5.2 this is discussed in further

detail, and it is shown that the queue length based feedback generation mechanism

does control congestion and the system operates near optimal levels.

In order to aid the feedback propagation process, the single link layer queue is

divided into many queues; a different queue is maintained for every neighbor of the

node. A threshold is placed on every queue and if the threshold is crossed a feedback

message is generated. Depending on the neighbor for which the feedback is generated,

the propagation mechanism can use different methods to deliver the feedback to the

applications.

One of the important design goals of NEFASA, is to produce a stateless mech-

anism of producing and distributing feedback messages. As the link layer queues do

 

lQueue length is measured in units of packets and not bytes
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not maintain any state information related to the flows that pass through the node,

the feedback generation method is stateless.

In NEFASA, the feedback generation method does not place any information

in the feedback message. This increases the modularity of the whole system, as the

feedback propagation method can be used with any method of generating feedback

messages. This also de—couples applications from network design, as the applications

now need not be modified every-time the network design changes.

5.1.2 Feedback Propagation

The component used to propagate feedback messages, is triggered by the compo-

nent used to generate feedback messages (Figure 5.1). Once triggered, the feedback

propagation component creates the feedback message and takes the responsibility of

propagating it in the network. The feedback propagation happens in the network

layer with the help of the network layer protocol. The basic idea is to identify all

the sources that use the route for which the feedback is generated; This is done by

using the precursors list maintained by AODV. Once the feedback propagation ends,

all the sources responsible for the congestion along the route would have received the

feedback. In AODV, NEFASA achieves this goal by using a mechanism similar to the

one used to propagate RERR messages.

Many sources may be simultaneously using a route to a destination, and each of

them may have different data rates. If the feedback is provided to all the applications,

it may lead to under-utilization of network resources due to excessive throttling. To

prevent this, a rate based mechanism is used to select a subset of high output rate

applications. Once the feedback propagation ends, only the nodes which belong to

this subset will receive the feedback.
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5.1.3 Application Adaptation

Once the feedback propagation ends, the applications are informed by the feed-

back propagation component using the NEFASA application interface (Figure 5.1).

In NEFASA, only negative feedback is generated by the network. If the applications

do not receive any feedback from the network, they can assume that their current

output rates are sustainable and do not lead to congestion in the network. Once

the applications receive negative feedback, they take corrective action by throttling

their output rates. If this does not remove the congestion, the network continues

to provide feedback till the applications throttle their output rates to a level which

does not cause congestion. The implicit assumption here is that applications are well

behaved, i.e., they reduce their output rate when they receive feedback.

5.2 Feedback Generation

In order to generate feedback from the congestion information, a threshold is

placed on the queue length. Every time a packet enters the queue and the queue

length crosses the threshold, a feedback message is generated and propagated to the

applications. The threshold used on queue length has an influence on application

and network behavior. Also, generating feedback for every packet which crosses the

threshold may lead to sub—optimal application behavior. These aspects of the feedback

generation are characterized along with the feedback propagation method in Chapter

7 .

5.2.1 Optimality

One of the important goals of any application feedback mechanism, is to ensure

that the network operates in the region of optimal throughput. The mechanism used

to trigger the feedback generation plays an important role in achieving this goal. If
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the triggering mechanism is too conservative, feedback may be generated long after

congestion develops in the network. Because of less feedback from the network, and

as a consequence, less throttling from the applications the load on the network may

be above optimal levels. The PDP for such a network will be low as the network

cannot deliver all the packets that it may receive.

If the triggering mechanism is too sensitive, more triggers than necessary may be

generated and propagated. This will lead to excessive throttling of the applications

and in some cases may aid congestion instead of alleviating it. The PDP for such a

network will be high, but the network throughput will be below the optimal level.

Hence it is necessary that the triggering mechanism is tuned well and is generic, so

that it works in networks of different topologies and traffic patterns.

In simple scenarios, where the number of flows is less, the optimum loading

conditions on the network can be manually found by trial and error. Once this

optimum load is found, the effect of operating the network above and below optimum

levels can be found out. Consider the single and two flows scenarios present in Figure

5.2. As there are at-most two flows, the optimal loading conditions on the network

can be manually found out. A ns simulation is performed to find out the performance

of NEFASA and the optimal loading conditions on these networks. The ns simulation

uses application packet size of 512 bytes, carrier-sense range of 550 MTS and receive

range of 250MTS. The inter-node distance is 245MTS.

Figure 5.3(a) compares the performance of NEFASA mechanism against the opti-

mum throughput, for the single and two flow scenarios. NEFASA mechanism operates

within 80% of the optimum levels. The PDP achieved by the NEFASA is comparable

to the PDP achieved in the optimal case (Figure 5.3(b)). This shows that the feed-

back generation method is able to contain the congestion and does not aggravate the

congestion by producing excessive feedback.

Figure 5.3 has two loads, high load and low load, which respectively are above
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and below the optimum loading conditions. For low load, the PDP is high but the

network is below the optimum load conditions. For high load, the network is above

the optimum loading conditions, but the PDP is low. This demonstrates the effects

of a conservative and very sensitive feedback mechanism.

5.2.2 Source of Feedback

It is important that feedback be generated only from the congested nodes, and

there are no false alarms. In order to verify this, the threshold based feedback gener-

ation, and the propagation mechanism which ”will be described in the later sections,

are used in the Single and two flow networks (Figure 5.2). Figure 5.4(a) shows the

number of feedback messages generated from each node for the single flow network.

Figure 5.4(b) has similar information, for the same flow, in the two flow network.

For the single flow network, as the congestion is near the source, the feedback must

be generated from nodes which are at the beginning of the flow. For the two flow

network, the feedback must be generated from the vicinity of the common node, N5,

as this is the region of congestion. This is indeed the case as seen from Figure 5.4.

5.3 Feedback Propagation

The basic idea used in the propagation of feedback messages, is to deliver the

feedback message to all the sources which use a congested route. A route gives the

next-hop which is to be taken to reach a destination; this helps in forwarding packets

from the source to the destination. But with additional help from the routing protocol,

not only can packets move in the forward direction of a route, the packets can also

flow in the reverse direction and trace their way back to all the sources which use the

route. This is not used for data packets, but it may be of use for implementing some

functions of the routing protocol.
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Figure 5.3: Optimality of NEFASA Mechanism
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Figure 5.5: Tracing Back All the Sources of a Route

For example, consider the wireless network in Figure 5.5. It has two routes — one

to destination N8, which is in solid lines, and the other to destination N13, which is in

dotted lines. If N7 wants to trace back the routes to reach all the sources which pump

data to N8, it can do so by sending packets along the direction which is marked in

arrows in Figure 5.5. In a routing protocol like AODV, the mechanism to accomplish

this (in the form of precursors list), is already in place and it used in NEFASA to

propagate the feedback messages.

5.3. 1 Precursors List

In AODV, every node in the network maintains a list of precursors for every

route that passes through it. The precursors list is set-up during the route set-up

phase, when the request and reply messages are exchanged. The routing table has

an entry for every route that it maintains. The precursors list can be found in every

entry of the routing table.
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Figure 5.6: Wireless Network with Two Routes

The precursors list for a node maintaining a route, is the subset of its neighbors

which use itself as the next-hop to forward packets to the destination of the route.

Consider the network in 5.6. It has three flows in it; they are from N1 to N7, N2 to

N3 and N9 to N7. As there are only two destinations, there are only two routes in

the entire network — one to N7 which is in solid lines and the second to N3 which is

in dotted lines. Table 5.1 gives the list of precursors maintained by all the nodes in

the network.

1. As nodes N1 and N9 send data to destination N7, they maintain a single route

to the destination N7. For the destination node N7, they do not receive any

packets from their neighbors; hence their precursors list for N7 is empty. As

nodes N1 and N9 do not generate or forward packets to node N8, they do not

have a routing table entry for N8.

2. Node N3 is similar to nodes N1 and N9, but it only maintains a route to des-

tination N8. The precursors list for this route is empty because, none of its
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Figure 5.7: Precursor Trees
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l Node Precursors for Destination N7 Precursors for Destination N8

N1 (ll N/A

N2 {N1} N/A

N3 N/A (2)

N4 N/A {N3}

N5 {N2} {N4}

N6 {N51 N9} {N5}

N7 N/A N/A

N3 N/A N/A

N9 0 N/A       

Table 5.1: Precursors List for the network in Figure 5.6

neighbors forward packets to N8, through it.

. Node N2 maintains a route to the destination N7, as it forwards packets received

from node N1. Hence the precursors list for destination node N7, as maintained

by N2, has N1 as its only element. As node N2 does not maintain a route to

N8, there is no precursors list for node N8.

. Node N4 is similar to node N2, and it maintains N3 as its precursor for desti—

nation N8.

. Node N5 receives packets for both destinations N7 and N8; hence it maintains

a route for both the destinations. As only N2 forwards packets to destination

N7 through N5, only N2 is in the precursors list for destination N7. Similarly,

N5 only maintains N4 in its list of precursors for N8.

. Node N6 maintains routes to both destinations N7 and N3. Its precursors list

is Similar to N5, with N9 added to the precursors list for destination N8.

. As N7 and N8 do not communicate with any other nodes in the network, they

do not maintain any routes in their routing tables. Hence they do not maintain

any precursors list.
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5.3.2 Precursor Trees

The intention behind maintaining the precursors list is to trace back the route

from an intermediate node, to all the upstream (w.r.t the direction of the route)

sources which use the route. For example, in the network shown in Figure 5.6, if

the route to destination node N7 is traced back from the intermediate node N5,

the precursors list comes handy. In the routing table maintained by N5, the only

precursor for destination N7 is N2; and in the routing table of N2, the only precursor

for destination N7 is N1. Hence from N5, the route can be traced back as, N5-N2-N1.

All precursor lists need not have a single neighbor as their precursor. If there are

multiple nodes in the precursor list, it leads to a tree-like structure when the route

is traced back. In the routing table for N6, for the destination N-,-, there are two

precursors, N9 and N5. When the route is traced back, a tree-like structure as shown

in Figure 5.7(a) is formed.

A precursor tree only gives information about upstream (w.r.t the direction of

the route) sources and intermediate nodes. There may be many more sources which

can be reached from the precursors list of the downstream nodes. The following

properties can be inferred about a precursor tree.

1. The precursor tree can be uniquely identified by the intermediate node from

which the tracing is started, and the destination nodes for which the tracing is

done.

2. The root of the tree, is the intermediate node from which the tracing is started.

3. All the leaves are the upstream source nodes. The source nodes have at—least

one application which sends data to the destination node of the precursor tree.

4. All the leaves are upstream sources, but it is not necessary that they are the only

upstream sources. The non-leaf nodes, including the root, can have applications

which send data to the destination node of the precursor tree.
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5. Precursor trees can be drawn for multiple destinations. As the number of des-

tinations increase, the number of nodes in tree increases. Figure 5.7(b) shows

the precursor tree for two destinations, N7 and N3.

In AODV, the precursor tree is used by the RERR propagation mechanism to

dismantle an existing route. If N7 becomes unreachable due to mobility, N6 will

discover this when it fails to deliver a packet. It will then start the RERR propagation

mechanism to dismantle all the routes which use N7 as the next-hop. As there are

two routes which N6 hosts, and only one of them — the route to destination N7 -— uses

N, as the next hop, N6 starts the dismantling process by sending the RERR message

along the precursors of this route. As N5 is the only precursor along this route, after

it receives the RERR message from N6, it takes over the responsibility of completing

the RERR propagation. It sends the RERR message to N2, which is in its precursors

list for destination N7. When the RERR propagation mechanism terminates, it would

have reached all the nodes in the precursor tree for the intermediate node N6 and

destination N7, and the route would have been dismantled.

5.3.3 RCHANGE Messages

In NEFASA, whenever a node identifies itself as a congested node - using the

threshold based mechanism described in the previous chapter or some other mecha-

nism — it triggers the generation and propagation of a feedback message called Route

Change (RCHANGE). The propagation of RCHANGE is very similar to that of the

RERR messages, which was described in detail in Section 2.2.2; however, the intention

here is not to dismantle the route, but to inform all the sources about the congestion

in an intermediate node. When the nodes get the RCHANGE message, they take

corrective action by throttling their data rates.

Similar to the RERR propagation algorithm, RCHANGE is propagated with the

help of two different algorithms; the generation (Algorithm 6) and the forwarding
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Field Explanation

rt routing table entry in the node

dst(rt) The node for which rt gives the route

nexthop(rt) The next hop that is used to reach dst(rt)

dst.seqno(rt) The sequence number of dst(rt) as maintained in rt

precur(rt) The list of precursors for the route rt

 

      

Table 5.2: Fields in a Routing Table Entry

 

 

Field Explanation

rch RCHANGE message

src(rch) source of the RCHANGE message, rch

rchange-dsts(rch) List of destinations for which the RCHANGE

message, rch, is generated

seqn0s(rch) List of sequence numbers of the destinations

present in rch

dst_count(rch) Number of destinations reported in rch

intended_precursor(rch) The neighbor which is supposed

to process rch

rchange_seqn0(dst,rch) Sequence Number of the destination,

dst, which is listed in rch      
Table 5.3: Terms used in Algorithm 7

algorithm (Algorithm 7). The generation algorithm is triggered when the congestion

detection algorithm, as described in Chapter 4, detects a congestion. In the case of

NEFASA, the congestion detection algorithm runs in the link layer. The information

that is gathered in the link layer, triggers the network layer to start the feedback

generation and propagation process. This is an example of cross—layer interaction

that can be found in NEFASA.

5.3.3.1 Generating RCHANGE Messages

The algorithm to generate the RCHANGE message is very similar to the RERR

generation process; the only difference being, the source may run an algorithm to

select a subset of precursors to which it sends the RCHANGE message. In contrast,

the RERR generation protocol sends the RERR message to all the precursors. The
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//The different terms used in this algorithm are explained in

//Table 5.2 and Table 5.3

//Collect all the precursors in set.of.precursors

forall routes, rt, that are present in the routing table and are usable do

if precur(rt) is not empty then

set-of.precursors +— set.of_precursors U precur(rt)

end

end

//Prune the set of precursors using the selectsubset algorithm

subset_of_precursors 7— selectsubset(set.of-precursors)

if subset_of_precursors is not empty then

//Form a new RCHANGE message for each selected precursor and

broadcast it

foreach precursor, i, in the set subset.of_precursors do

write i to intended_precursor(new.rchange)

write the destinations, which the precursor i tries to reach and are

listed in recd.rchange, to the new-rchange message

write the sequence numbers of the destinations found in the previous

step the new_rchange

set dst_count field in the new_rchange message

broadcast the new_rchange message in the MAC

end

else

Stop further processing and return from the function

end

 

Algorithm 6: Generating a RCHANGE message
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motivation for doing this, and the various algorithms that can be used to select the

subset of precursors will be discussed in the later sections.

The RCHANGE message contains the following fields. The intended_precursor,

contains an address which is used by the neighbors which receive the RCHANGE

message; the neighbors process the RCHANGE only if their address is present in

this field. The RCHANGE message, also has a list to identify the destinations for

which the RCHANGE is triggered. This list is called rchange_dsts and the number of

elements in this list is present in dst_c0unt(rch). The sequence numbers corresponding

to the destinations listed in rchange-dsts is present in the field dst_seqnos.

The RCHANGE generation process consists of three steps. In the first step, the

set of routes for which the RCHANGE has to be generated is identified. In NEFASA,

it is generated along all the routes.

Once the routes are figured out, in the next step, the precursors to which the

RCHANGE has to be sent is decided. The RCHANGE generation algorithm starts

out by collecting the precursors of all the routes. Once all the precursors are known,

an algorithm to prune the precursors is executed. Once the pruning of the precursors

is completed, a subset of precursors to which RCHANGE has to be sent would have

been selected.

In the third and final step, the RCHANGE message itself is formed by placing

all the information discussed previously. One RCHANGE message is formed for each

selected precursor. The precursor’s address is placed in the field intended_precursor.

All the destinations which the precursor (for which the RCHANGE is being gener-

ated) tries to reach and are listed in the received RCHANGE, are placed in the field

rchange-dsts. Other fields in the RCHANGE message are filled out similarly. Once

this is done, the RCHANGE message is broad-casted on the MAC.
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//The different terms used in this algorithm are explained in

//Table 5.2 and Table 5.3

if this node is in the intended_precursors_list(rechchange) then

for all routes, rt, that are present in the routing table and are usable do

if dst(rt) is listed in recd_rchange and dst_seqn0(rt) S

rchange_seqn0(dst,recd_rchange) and nexthop(rt) = src(rchange) and

select{precur{rt)) is not empty then

set-of-precursors <-— set-of_precursors U precur(rt)

end

end

//Prune the set of precursors using the selectsubset algorithm

subset_of_precursors +— selectsubset(set-of.precursors)

if subset-of_precursors is not empty then

//Form a new RCHANGE message for each selected precursor and

broadcast it

foreach precursor, i, in the set subset-of_precursors do

write i to intended-precursor(new.rchange)

write the destinations, which the precursor i tries to reach and are

listed in recd-rchange, to the new-rchange message

write the sequence numbers of the destinations found in the previous

step the new_rchange

set dst_count field in the new_rchange message

broadcast the new_rchange message in the MAC

end

else

Stop further processing and return from the function

end

end

 

Algorithm 7: Forwarding an RCHANGE message
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5.3.3.2 Forwarding RCHANGE Messages

As the RCHANGE message is broadcasted in the MAC layer, neighbors which

are not in the precursors list may get the RCHANGE message. When a neighbor

receives the broadcasted RCHANGE message, it first looks in the intended- precursor

field before processing the message; only if its address is present there, the node

processes the RCHANGE message.

The node receiving the RCHANGE message follows the same three steps — iden-

tify the routes, select the precursors, form the RCHANGE message — that was used

in the generation process. The only difference is in the first step, when it looks for

the routes along which the RCHANGE message has to be propagated. Instead of

generating the RCHANGE message for all the routes, it looks at the list of all the

destinations that are present in the received RCHANGE. If for any of these destina-

tions it uses the source of the RCHANGE message as the next-hop, it uses the routes

of only these destinations to propagate the RCHANGE message. It then follows the

precursor selection step as described for the RCHANGE generation phase. It then

completes the RCHANGE propagation by forming a new RCHANGE message and

broadcasting it on the MAC.

The feedback propagation ends when the pruning of the precursors leads to an

empty list. Before the RCHANGE propagation terminates, it would have visited a

lot of nodes which could have sources causing the congestion. When the node receiv-

ing the RCHANGE message runs the algorithm to select the subset of precursors,

and finds its own address in the subset that is selected, the RCHANGE message is

delivered to all the applications which use the destinations present in the RCHANGE

message. This is another example of cross-layer feedback which is generally not found

in transport and application layer feedback protocols.

The RCHANGE message itself does not have any information which can be used

by the application. The only intention of the RCHANGE message is to alert the
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applications about an impending congestion, and request them to take corrective ac-

tion. Because the RCHANGE message does not carry any information that is specific

to the mechanism which triggered the feedback generation process, in NEFASA the

feedback generation and triggering are strongly de—coupled. The RCHANGE method

of propagating feedback can be used equally well with any method of triggering the

feedback generation process (for example, MAC delays, MAC drops etc.).

One of the important goals of the NEFASA mechanism, is to have a stateless

mechanism of generating and propagating feedback messages. During the feedback

generation and propagation phase, only information available from the AODV pro-

tocol is used. As AODV does not maintain any information specific to flows, the

RCHANGE algorithm is completely stateless and distributed.

5.3.4 Rate Based Pruning

If the RCHANGE messages are propagated like RERR messages, all the upstream

sources will receive the feedback from the network. This will lead to aggressive throt-

tling of many applications, and in some cases it may be unfair to applications with

small output rates. Consider the scenario presented in Figure 5.8(a), where source

nodes N1, N3 and N9, have rates of two, one and nine units respectively. Because of

the high loads in the neighborhood of N6, when N, sends a RCHANGE message, it

will reach the sources N1,N3 and N9 and throttle all of them. Throttling N1 and N3

may not be necessary as the congestion is being caused by N9.

With this in mind, a rate based RCHANGE propagation method is used to prune

the precursor tree and throttle only those applications with high output rates. To

implement the rate based pruning policy, every node in the network estimates the

rate at which each of its neighbor’s sends data to itself. The rate estimation can be

based on a simple scheme, which calculates the number of packets — if the size of all

the packets in the network are the same — that are received from the neighbor within
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a specific interval. A history based rate estimator can be implemented, which takes

into consideration the rates of the previous intervals when calculating the rate of the

current interval. The rate estimator is best implemented in the network layer, as only

AODV uses these estimates. Two different cases of rate calculations for the network

in Figure 5.6 is shown in Figure 5.8.

Once every node in the network has an estimate for each of its neighbors, the

rate data can be used to prune the precursor tree during the RCHANGE propagation.

Pruning is done by every node when it receives or generates an RCHANGE message.

Every node in the network will use the rate data to select only a few precursors with

the highest rates. The RCHANGE message is then sent to only these precursors.

One of the policies that can be used to prune the RCHANGE messages is to select

the precursor with the highest rate. Consider the scenario presented in Figure 5.8(a);

if N6 triggers the RCHANGE message, N9 will receive the feedback immediately and

no other node will receive the RCHANGE message. This will be more fair to small

rate applications — like N1 and N3 — which are not the real cause of the congestion.

Selecting the precursor with the highest rate does not necessarily lead to selecting

the node — among—st only the upstream sources — with the highest rate. Consider the

scenario presented in Figure 5.8(b). If N; triggers the RCHANGE, N5 will receive

the RCHANGE message first, as it is the precursor with the highest rate. N5 then

forwards the RCHANGE message and this will eventually throttle N3, when the

propagation of the RCHANGE message ends. Hence N3, which has a lower output

rate than N9 gets the RCHANGE message.

5.4 Application Behavior

In order to characterize and understand the RCHANGE propagation and thresh-

old based feedback triggering mechanism, a simple, greedy application behavior is
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defined and used.

All applications start (Algorithm 8) with a very small output rate which would

not cause congestion. When congestion conditions develop in the the network, only

negative feedback is given to the applications. Hence it is left to the discretion of

the applications to increase their data rate. The default application behavior defined

for NEFASA, increments its rate every Nsecs, which is called the increment interval.

The applications can do so with the help of a timer which is set to go off once every

Nsecs. Applications can choose any appropriate value for the increment interval; the

NEFASA framework does not impose any constraints on it and only characterizes the

performance that could be expected with different values of increment interval.

AS an RCHANGE message indicates congestion in the network, the applications

should not wait before reducing their data rate. Hence when a RCHANGE message is

received (Algorithm 9) , the applications immediately reduce their output rates. The

application may receive multiple RCHANGE messages within a short interval. This

happens when the reduction in the data rate is not sufficient to reduce the congestion

in the network. Hence an application decreases its data rate every time it receives

an RCHANGE, even if they arrive within a short interval of time. The applications

also keep track of the number of RCHANGE messages that have been received in an

increment interval.

At the end of an increment interval (Algorithm 10) , the applications increase

their output rate, only if they have not received any RCHANGE messages during that

interval. If an RCHANGE message has been received during the increment interval,

the application does not increment its data rate and waits for the congestion in the

network subside before incrementing its output rate. It does so only at the next

increment interval during which it does not receive any RCHANGE messages.
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Start a timer to go off every Nsecs

Set the initial rate of the application

  
Algorithm 8: Initialization Performed by an Application in NEFASA

 

 

 

Decrease the data rate (The magnitude of decrease can be application specific)

RchangeCount <— RchangeCount + 1

  
Algorithm 9: Negative Adaptations by an Application in NEFASA in Response

to RCHANGE

 

 

if RCHANGECount is zero then

Increase the data rate (The magnitude of increase can be application

specific)

else

Do not Increase the data rate

RchangeCount +- 0

end   
Algorithm 10: Positive Adaptations by an Application in NEFASA
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Chapter 6

Performance

In this chapter the performance of the NEFASA framework is studied. These

comparisons are done in scenarios with varying complexities; starting from Simple

scenarios like a linear topology network with one or two flows, and in complex sce-

narios where multiple flows are present in an arbitrary mesh topology. For all the

simulations in this chapter, optimum values of the various parameters of the NEFASA

framework - disable period of two seconds, threshold of 2% and application increment

interval of ten seconds, as discussed in Chapter 7 — are used.

6.1 Linear Networks

If the number of flows in a network is small, the optimal loading conditions on

the network and the throughput of the individual flows can be manually found out.

This is done by trial and error, by performing many simulations. The rate of all

flows is held constant in each simulation. The load on the network is progressively

increased with each experiment, till the maximum loading conditions on the network

is reached. The throughput of the individual connections at this point gives the

maximum throughput for these connections.

In a wireless network, even under low—load conditions there may be losses due to
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Figure 6.1: Linear Topology Network with a Single Flow

contention. Hence even under optimum loading conditions, losses in the network can

be expected.

Once the optimum loading on a network is found out, the NEFASA feedback

mechanism is used for the same flows and the throughput and PDP are found out.

In order to find out the optimum loading conditions on a network, two scenarios

are considered; one with a single flow and the other with two flows. The single flow

scenario uses the topology in Figure 6.1; No acts as the source and N7 acts as the

destination. The two flow scenario is tried in four different topologies as shown in

Figure 6.2 (in page 68) to Figure 6.5 (in page 69). In all the four topologies, the first

flow is from No to N7 and the second flow is from N3 to N14. Hence we have five

different configurations — linear, two flows-1, two flows-2, two flows-3 and two flows-4

—- corresponding to the topologies in Figure 6.1 and Figure 6.2 (in page 68) to Figure

6.5 (in page 69).

Figure 6.6 shows the throughput and PDP achieved in the optimum loading

conditions and the NEFASA mechanism. It can be seen that the performance of

NEFASA is comparable to optimal loading conditions in the linear and two flows

scenario. In the two flows scenario, the throughput (Figure 6.6(a)) levels are within
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Figure 6.3: The Second Configuration of the Two Flow Scenario
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90% of the optimum and in the single flow case the performance is within 80% of the

optimum. The PDP (Figure 6.6(b)) achieved by NEFASA is also comparable to that

of the optimum loading conditions and is above 97%.

In the Single flow case, performance of the NEFASA is comparatively less because

of the aggressive throttling done by the flow source. As the threshold is just 2% of

the queue size (queue size is fifty packets), i.e., just one, the source is not able to

increase its throughput to the optimum levels. At the same time, its interesting to

see that the source can achieve such high throughput values for such a low threshold.

6.1.1 Multiple Flows in Arbitrary Mesh Networks

In complex scenarios which have multiple flows in an arbitrary mesh network,

manually finding out the optimal loading conditions may not be possible. In order to

check the performance of the NEFASA mechanism in complex scenarios, the effect of

increasing the load on the network beyond the levels achieved by NEFASA is found

out. So if NEFASA mechanism achieves a load of X in a scenario, the effect of

increasing the load on the system by a small percentage of X is found out. When

the load on the system is increased by a small percentage, the NEFASA mechanism

is not used and the rates of all the flows is held constant throughout the simulation,

such that the overall loading conditions on the network accurately reaches the desired

percentage levels.

To perform the simulation on multiple flows, an arbitrary mesh topology having

36 nodes (shown in Figure 6.7) is used. Four configurations of traffic loads are used;

they are 5 flows, 10 flows, 15 flows and 20 flows. The ns simulation for all the four

configurations use application packet Size of 512 bytes, feedback triggering threshold

of 2%, disable period of two seconds and application increment interval of ten seconds.

Let the loading conditions achieved by NEFASA in any one of the four configu-

rations — 5 flows, 10 flows, 15 flows and 20 flows - be X. When the load on the system
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Figure 6.7: The Arbitrary Mesh Topology Used in Performance Comparison of

NEFASA
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Figure 6.8: The Effect of Increasing the Load Levels Beyond NEFASA Levels

is increased by a small percentage of X, 20%, 40% and 60%, such that the load on

the system becomes 1.2 times, 1.4 times and 1.6 times of X respectively, it can be

seen that (Figure 6.8) the PDP of the system falls; higher the increase greater is the

fall in PDP. This shows that the loading conditions achieved by NEFASA is near the

optimum.

6.2 Performance Comparison with TCP

TCP is an end-to—end system of feedback generation and propagation; the peer

of the transport layer protocol at the destination takes the responsibility of providing

the source with the required feedback. In the following sections, the performance of

NEFASA is compared against TCP.
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6.2.1 Hop-Unfairness in TCP

802.11 wireless ad-hoc networks have an inherent bias for flows with smaller

number of hops[16]. Consider a single hop flow, i.e., the source and the destination

are in radio contact over the wireless link. Let the capacity of the wireless network

be C. Let X be the throughput reached by this single hop flow, when it pumps data

into the network such that it consumes all the available capacity (C). Now consider a

two-hop flow. If it wants to pump data at the rate of X units, the effective load on the

network is 2X units because of the additional transmission by the single intermediate

node. Because the capacity of the network remains the same at C, the two hop flow

may not reach a throughput of 2X and it will be less than X. Generalizing this, a

smaller hop flow can find it easier to achieve a higher throughput than a flow with

bigger number of hops.

To verify this, consider a set of experiments which try to analyze the effect of

hop count on the throughput achieved. A single TCP flow, but with different number

of hops is used in each experiment. There are no other flows in the network other

than the TCP flow, and the only nodes in the network are the ones that participate

in the single TCP flow. The nodes are all equidistant and are 200MTS apart; this

is similar to the single flow scenario present in Figure 6.1, but in each experiment a

flow with different number of nodes is used. A similar set of experiments is perform

with the NEFASA system, but the TCP flows are replaced with applications which

conform to the application behavior described in Section 5.4.

As shown in Figure 6.9, a TCP flow with a single hop gets a very high throughput,

and this drastically reduces as the number of hops increase. NEFASA on the other

hand, achieves much better fairness when compared to TCP. This can be attributed

to the aggressive throttling that is done by NEFASA at the source. Because of tight

constraints on the threshold, the source is not as greedy as TCP when it tries to

increase it output. This shows that TCP aggravates the hop-unfairness problem in
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multi-hop networks.

6.2.2 Hop-unfairness in Arbitrary Mesh Networks

Unfaimess in itself may not be an issue, if it does not effect other flows in

the network. In a multi—flow scenario, if there are flows with varying number of

hops, better performance of small-hop flows comes at the cost of other big-hop flows.

Consider a single-hop flow in a multi-hop wireless network. Not only does a the

single-hop flow get a relatively higher throughput, it also manages to disrupt all the

flows within its carrier-sense range. A smaller hop flow (especially the ones which

have less than six hops) can achieve Significantly better throughput than bigger hop

flows. At these very high throughput levels they can manage to suffocate all the big

hop flows which pass through not only their receive range but also their carrier-sense

range. This is because, the Request To Send (RTS) packets of bigger hop flows has to
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Figure 6.10: Hop-Unfairness in Arbitrary Mesh Topologies

be sent without errors, within a very small interval when the smaller hop flow is not

trying to transmit the data [16]. This interval gets very small when there are flows

with very small hops (less than 4) in the network. Hence the probability that a big

hop flow succeeds in sending out an RTS packet becomes less and the big hop flows

suffer.

Consider the arbitrary mesh wireless network, Figure 6.7 in page 72 with a di-

mension of 1300MTS X 1300MTS. The carrier-sense range of the nodes is 550MTS.

The network has 15 TCP flows, and the performance of these flows for hop-unfairness

is analyzed. A similar experiment in the NEFASA system is conducted, but with the

TCP flows replaced with flows which confirm to the application behavior in Section

5.4.

As can be seen from Figure 6.10, TCP still exhibits hop-unfairness as flows with

two or three hops perform better in terms of average throughput; NEFASA system
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on the other hand is more fair. Hence a network based feedback mechanism can

be beneficial in a wireless ad-hoc network, as it can achieve better fairness among

applications.

6.2.3 Throughput Comparison

In order to compare the throughput performance of NEFASA with TCP, consider

the five different configurations - linear, two flows-1, two flows-2, two flows-3 and two

flows-4 — described in Section 6.1. Instead of running flows which conform to the

NEFASA feedback mechanism, TCP flows are used. In all the five configurations the

hop count of all the flows is constant, i.e., six. As can be seen from Figure 6.11, when

the hop counts do not matter, NEFASA performs better than TCP. In an arbitrary

mesh topology, which has flows with very small hops, TCP has a better throughput

performance when compared to NEFASA. But when the flows have bigger hops,

NEFASA has a throughput performance comparable to TCP. This is can be seen in

an arbitrary mesh topology (Figure 6.7 in page 72) where all the flows have at-least

four hops. The performance of NEFASA is compared against TCP for four different —

5 flows, 10 flows, 15 flows, 2O flows — loading conditions. As shown in Figure 6.12, at

comparable PDP, the throughput of NEFASA system is within 90% of TCP and in

some cases better. In case of devices with energy constraints, the higher PDP levels

achieved by NEFASA can be of a significant advantage.

6.3 Conclusions

1. The performance of NEFASA, as measured by the overall throughput achieved

by the network, is comparable to manually found optimum loading conditions.

2. TCP exhibits hop—unfairness where flows with smaller hops not only manage

to get higher throughput, but also affect flows with bigger hops within their
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Figure 6.11: Comparison of NEFASA Against TCP in Single and Two Flow Scenarios
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carrier-sense range.

. Throughput performance of NEFASA is better to that of TCP when the hop

count of all the flows is same. In networks which have flows with a hop count

of at-least four, the performance of NEFASA, as measured by throughput is

comparable to that of TCP
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Chapter 7

Parameter Tuning

In the previous two chapters, the NEFASA framework and its performance were

discussed. In this chapter, NEFASA system is studied in further detail and the

various parameters which effect the performance of the NEFASA and their impact on

the system is discussed.

7.1 Congestion Triggering Sensitivity

To understand the NEFASA mechanism, consider an arbitrary mesh topology

with thirty-six nodes in Figure 6.7 (in page 72). There are five flows in it, and the

default application behavior described in Section 5.4 is used for these flows. A ns

simulation is performed with all the components of NEFASA incorporated into it.

A threshold of 2% is used for generating the feedback messages and the application

increment interval is set to 10secs. Figure 7.1 gives the adaptation curve for one of

the five flows in the network

The adaptation curve in Figure 7.1 shows wild oscillations, and at different points

of time in the simulation the application rate touches the minimum. These are not

due to the network, as it is still lightly loaded. Upon further observing Figure 7.1, it

can be seen that most of the crests in the adaptation curve are preceded by peaks,
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Figure 7.1: The Effect of Having No Disable Period

i.e., there are steep falls in the curve. As the application responds immediately to an

RCHANGE message, the steep falls are due to a sequence of consecutive RCHANGE

messages that are received by the application.

The root of this problem can be traced to the manner in which the RCHANGE

messages are triggered. An RCHANGE message is triggered every time a packet en-

ters the queue and the queue length is above the threshold. If the threshold was five,

and the current queue length was five, every consecutive packet arrival (assuming

there are no packets exiting the queue during this time) causes a RCHANGE mes-

sage to be generated. This is highly likely, because, there is a time lag between the

generation time of the packet, which caused the RCHANGE message to be triggered,

and the the application response to the RCHANGE. All the packets that are gener-

ated by the application during this time lag have the potential to trigger RCHANGE

messages at the point of congestion.

82

 



 

(
I
)

O

\
l

O

1

O
)

O

1

0
1

o

l

.
-

‘
i
b

 

0
)

O

1

I
N
)

0

l

   
+ Before

-— After

() IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllllllllllIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

110 190 238 267 327 369 407 447 515 575 626 687 738 787 848 908 972

Time (in seconds)

D
a
t
a
R
a
t
e

o
f
t
h
e
A
p
p
l
i
c
a
t
i
o
n

(
i
n
K
b
p
s
)

S

r

i
t

~

.
3
.

o

l
,

      

Figure 7.2: The Effect of Introducing Disable Period

After the first time an RCHANGE message is generated, if the node which gen-

erates the RCHANGE message disables further RCHANGE generation for a short

duration of time, this problem can be alleviated. The adaptation curve of the flow

after the disable period is introduced, is shown in Figure 7.2. As can be seen from

Figure 7.2, the falls from the peaks are now much smaller and the application is stable

and has less variance.

Introducing the disable period at the intermediate node has its disadvantages. If

the disable period is too long, the node becomes insensitive to changes in the network.

This is because, if the congestion for which RCHANGE message was generated gets

cleared because of application throttling, any future congestion conditions in the

network will go undetected during the disable period. Hence the disable period should

be kept small to keep the network responsive to changes in the network.

In order to characterize the influence of disable period, the impact of using differ-
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ent disable periods on the application behavior is studied. AS the main motive behind

introducing the disable period, is to reduce the variance in the application adaptation

curve, the influence of disable period on application variance is characterized. This

is done by plotting the variance in the application adaptation curve, as measured by

the co-efficient of variation, for different disable periods. The ns simulations are per-

formed with a thirty-six node network — Figure 6.7 (in page 72) — with five flows in

it. For this simulation, a threshold of 2% is used for generating the feedback messages

and the application increment interval is set to IOSecs.

As can be seen from Figure 7.3, all the five flows benefit from the introduction of

the disable period, and Show a significant decrease in variation when the disable period

is increased from zero to two seconds. But after two seconds, there is no noticeable

upward or downward trend in the variance. Hence it can be seen that a disable period

of around two seconds is suitable for a network which uses an application increment

interval of at-least IDsecs.

7.2 Effects on Throughput and PDP

Disable Period has other effects on the application behavior. when the disable

period is increased from zero seconds to two seconds, due to less throttling by the

network, applications see an increase in average throughput (Figure 7.4(a)). After two

seconds, there is a small upward trend in the throughput (as seen at the destination);

but large values in disable period cannot be used in the network, because it would

make the nodes insensitive for a very long time.

The PDP of the applications shows a decrease (Figure 7.4(b)) once the disable

period is decreased. The applications are excessively throttled when the disable period"

is zero seconds; this decreases the load on the network below congestion levels very

quickly. Hence the packet looses suffered in the network due to congestion is very low.

84

 



 

_
'
L

O
)

 

—+—flow1

_
a

A

l

.
.
a

N

l

  _
l

O

1

 

 

c
O
-
e
f
f
i
c
i
e
n
t
o
f
v
a
r
i
a
t
i
o
n

   
0 2 4 6 8 10 12 14 16

Disable Period (in seconds)

Figure 7.3: Decrease in Variation due to Disable Period

If the disable period is high, it takes more time for the applications to bring down

their output rates to levels below congestion; this is because of less throttling by the

network. Due to this, all the packets that are generated during the disable period in

the intermediate node have a high probability of being dropped. Hence applications

see low PDP levels.

7.3 Congestion Detection Sensitivity

Threshold on link layer queues, is the key mechanism that is used to trigger the

RCHANGE propagation. In NEFASA, the link layer queues are modified such that

every neighbor has its own queue, i.e., the queues are neighbor specific. Thresholds

are uniformly placed on all the queues, and if the threshold is crossed in one of the

queues the RCHANGE mechanism is triggered.
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Having lenient thresholds makes the network more tolerant to congestion con-

ditions. Hence higher thresholds will trigger the RCHANGE propagation sometime

after the congestion begins to build. This higher tolerance to congestion will allow

the applications to increase their output rate during the congestion build-up phase.

This has the effect of increasing the overall load (Figure 7.5(a)) on the network — and

hence a higher throughput from individual applications - with increasing thresholds.

Allowing applications to increment their rates when congestion is building up has the

effect of decreasing the overall PDP (Figure 7.5(b)) of the entire network. This is

because of the packets that are lost during the congestion build up phase.

7.4 Application Behavior

An application in NEFASA (application behavior is described in Section 5.4),

expects only negative feedback from the network, and in the absence of negative

feedback it is free to increment its output rate. Because of this policy, the disable

period — the interval during which no bad news is generated — has an influence on the

increment interval of the application (see Section 5.4 for a description of increment

interval).

Lower values of increment interval means that the application is very aggressive

in pumping data into the network. This should generate a similar response from the

network, which on its part tries to aggressively throttle the applications by generating

more RCHANGE messages. For the network in Figure 6.7 (in page 72), a threshold

of 2% for generating the feedback messages, and a disable period of two seconds, the

network sees a decrease in number of RCHANGE messages with an increase in the

increment interval. This increase is more pronounced when the interval is decreased

from two to zero seconds, during which it almost sees an 100% increase in the number

of RCHANGE messages.
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An aggressive increment in data rates by the application, when it has a increment

interval below the disable period, leads to severe packet drops (Figure 7.7(a)) and

the application could see a PDP of only around 90%. When the increment interval is

above the disable period, the PDP stays healthy and is above 95%. As the application

tries to increase its rate when some of the nodes ,which previously had reported

congestion in the network, cannot generate the negative feedback the application

suffers packet losses due to the slow response from the network.

With decreasing increment period, the overall load on the network decreases

(Figure 7.7(b)) as the applications become less aggressive in pumping data into the

network.
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7.5 Stability

As the application behavior defined in NEFASA (see Section 5.4) is greedy, the

applications experience oscillations in steady state. Consider the network configu-

ration in Figure 6.7 (in page 72)), a threshold of 2% for generating the feedback

messages, a disable period of two seconds and an application increment interval of 10

secs. Because of the greedy behavior of the applications, all the five flows experience

steady state oscillations as shown in Figure 7.8.

In order to check if greedy behavior is responsible for the oscillations, the average

throughput of each of the five flows when all the five flows are greedy (Figure 7.8),

is calculated. With these average values, another simulation is conducted where the

maximum data rates of all the five flows is set to their respective calculated average

throughput values. With these settings, all the applications exhibit stability with

very little oscillations (Figure 7.9(a)).

In order to further verify this, a similar simulation is conducted by setting the

maximum output rates of only four applications; hence only one application — flow 1 in

Figure 7.9(a) -— is allowed to be greedy. When the adaptation curve of the applications

is plotted (Figure 7.9(b)), it can be seen that only the application whose maximum

rate was not set shows steady state oscillations. Also, due to less contention from

other non-greedy applications, the average throughput achieved by this application

is higher when compared to its average throughput when all applications are greedy.

Hence we can conclude that greedy application behavior is responsible for the

steady-state oscillations. As the oscillations are bounded, and they are about the

average throughput of the flows we can conclude that the NEFASA feedback propa-

gation mechanism promotes network stability.
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7.6 Conclusions

In this chapter the various parameters which influence the performance of the

NEFASA system were studied. The following conclusions can be drawn from this

study.

1. Introducing disable period into the NEFASA system leads to a decrease in vari-

ance, and hence instability, experienced by the applications. A disable period of

around two seconds is sufficient to stabilize the applications, and higher disable

periods will not increase stability of the applications and only make the network

insensitive to changes.

2. Increasing disable period will have the effect of increasing the throughput of the

applications but at the cost of decreased PDP.

3. Increasing thresholds leads to increasing the throughput of the applications but

at the cost of reduced PDP.

4. Having very short application increment intervals leads to significant increases

in throughput, but the PDP achieved at short application increment intervals

can be as small as 60%. The application increment intervals should be at-least

as big as the disable periods.

5. Because of greedy application behavior, the applications exhibit oscillations

around their average throughput. If the applications are not greedy, the system

reaches stability.
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Chapter 8

Conclusion and Future Work

8. 1 Conclusion

It is feasible to develop a network-triggered feedback mechanism for applica-

tion adaptation in wireless networks. Such a mechanism provides a fair bandwidth

allocation and does not depend on specific transport layer mechanisms.

To develop such a framework, AODV can be used for feedback propagation with

only very minor modifications to its mechanism of propagating RERR messages.

The main contributions of this work are

1. AODV-like precursor lists, can be very helpful to provide state-less feedback to

applications

2. Buffer occupancy levels in the link layer can not only indicate congestion, they

can also used to generate feedback to adaptive applications. This method of

generating feedback can drive stability in the network in the absence of greedy

application behavior.

3. TCP is bias toward flows with smaller number of hops, hence these flows have

better throughput performance when compared to flows with larger hops.
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4. Network based feedback can be used to achieve better fairness among flows with

different hop lengths.

8.2 Future Work

The following are the areas where further work could lead to interesting results

and improvements in the NEFASA system :

1. To extend the NEFASA system to take into consideration mobility in the nodes.

2. To have a TCP-like transport protocol for NEFASA and compare the fairness

characteristics of the resulting protocol against TCP.

3. To modify TCP to work with NEFASA, so that it benefits from its fairness

characteristics.

4. The filtering methods used to reduce the number of feedback messages in the

link and network layer, takes away control from the applications. This may not

suite specific types of applications which would want to do a more sophisticated

congestion and rate control. This should be explored further and the interac-

tion between feedback propagation and different application models should be

studied.

5. To further explore and characterize other — MAC delays and MAC drops —

feedback generation mechanisms to work with NEFASA

6. To improve NEFASA’S throughput performance in an arbitrary mesh topology

with multiple flows.
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Appendix A

Modifications to ns

Network Simulator (ns) version 2[6] was used for all the simulations in this work.

A lot of modifications were done to incorporate the NEFASA system into ns. Some

of them are listed here.

1. The Constant Bit Rate (CBR) application was modified to conform to the

default application behavior as described in Section 5.4.

2. RERR generation and propagation was stopped, as mobility was not considered

in the work.

3. RCHANGE generation and propagation was implemented as described in Al-

gorithm 6 and Algorithm 7.

4. Packet types for RCHANGE were created.

5. The simple priority queues used in ns was modified such that every neighbor

has its own queue.

6. The threshold based RCHANGE trigger was implemented on the neighbor-

specific queue.

7. Queue-monitors were implemented for the per-neighbor queues.
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Appendix B

Abbreviations and Acronyms

ACK Acknowledgment

AIMD Additive Increase Multiplicative Decrease

AODV Ad-hoc On Demand Distance Vector

CBR Constant Bit Rate

CTS Clear To Send

ECN Explicit Congestion Notification

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IFQ Interface Queue

IP Internet Protocol

MAC Medium Access Control

MPDU MAC protocol Data Unit

MSDU MAC Service Data Unit

NEFASA Network Feedback for Application Self Adaptation

NS Network Simulator

081 Open Standards Interconnect

PDP Packet Delivery Percentage
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PDR Packet Delivery Ratio

PPS Packets Per Second

RCHANGE Route Change

RED Random Early Detection

RERR Route Error

RREP Route Reply

RREQ Route Request

RREQID Route Request Identifier

RTS Request To Send

DIFS Distributed (Coordination Function) Interface Space

SIFS Short Inter-frame Space

SWAN Stateless Wireless Ad hoc Networks

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

ns Network Simulator
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