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ABSTRACT

EXTENDING THE PARTIAL CREDIT AND RATING SCALE MODELS USING
THE HIERARCHICAL MULTIVARIATE GENERALIZED LINEAR MODEL

By
Jonathan R. Manalo

In this dissertation, the Rating Scale and Partial Credit Models of Item Response
Theory (IRT) are extended using a hierarchical multivariate generalized linear model
(HMGLM). Specifically, previous extensions of IRT using hierarchical linear modeling
(HLM) are discussed by highlighting their weaknesses and how by applying the
HMGLM their weaknesses may be avoided. The HMGLM is also defined, in particular,
as an extension of the Rating Scale and Partial Credit Models. A small simulation study is
described to illustrate the accuracy of the parameter recovery for these models.
Additionally, modeling extensions of the Rating Scale and Partial Credit Models are
made by applying the HMGLM. Computational examples are provided to illustrate the

application of these models.
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Chapter 1. Introduction
1-1. Motivation of the study

In recent years, educational researchers have combined the theory and methods of
Hierarchical Linear Modeling (HLM; Goldstein, 2003; Raudenbush & Bryk, 2002;
Snijders & Bosker, 1999) and Item Response Theory (IRT; Lord, 1980). For example,
Kamata (1998, 2001), Maier (2000, 2001), Fox and Glas (1998), and Adams and Wilson
(1996) used the HLM framework to define IRT models for dichotomously scored items.
As they illustrate, one advantage of unifying HLM and IRT methods is that postulating
IRT models becomes increasingly flexible. For example, traditional IRT models (e.g., 1-
parameter model; Lord 1980) may be formulated to include covariates (Cheong &
Raudenbush, 2000; Fox, In press, a; Kamata, 1998, 2001).

Another advantage of unifying IRT and HLM is that the IRT parameters and their
standard errors may be estimated more precisely (Maier, 2000, 2001, 2002; Mislevy,
1987). That is, by applying the HLM framework, a Level-1 model is defined in which the
item parameters in an IRT model are fixed and nested within a Level-2 model. The
Level-2 model defines the person parameters as being randomly varying. By considering
the nested relationship—an item level nested within a person level, the variation of the
responses within persons and between persons is taken into consideration, and estimation
methods may obtain better precision.

Unfortunately, with these advantages, a few disadvantages follow. For instance,
although the aforementioned IRT models were suitable for items that were scored
dichotomously, they were not suitable for items that were scored using partial credit (i.e.,

polytomous items). To compensate for this limitation, Adams and colleagues (Adams &



Wilson, 1996; Adams et al., 1997), Maier (2000, 2002), Patz and colleagues (Patz, 1996
as cited by Patz, Junker, and Johnson, 1999; Patz, Junker, and Johnson, 1999; Patz,
Junker, Johnson, & Mariano, 2002), Donoghue and Hombo (2003), Rijmen, Tuerlinckx,
De Boek, and Kuppens (2003), and Tuerlinckx and Wang (2004) developed IRT models
using a hierarchical framework for polytomous items. However, these models were
limited in at least one of two ways.

The first limitation was that it did not allow for modeling of predictor variables to
help explain the variation in the item and person parameters (e.g., Donoghue & Hombo,
2003; Patz, 1996 as cited by Patz, Junker, and Johnson, 1999; Patz, Junker, and Johnson,
1999; Patz, Junker, Johnson, & Mariano, 2002). As mentioned above, it may be
important to control for the influences of predictor variables in a psychometric testing
environment (Cheong & Raudenbush, 2000; Fox, In press, a; Kamata, 1998, 2001).
Although Adams et al.’s model may include predictor variables for the person parameter,
to date, their model may not include predictors of item behaviors. In addition, although
Maier’s model (2000, 2002) may be extended to include predictor variables (e.g., Fox, In
press, a), the ease at which this may be accomplished may be arguable. If a researcher
believes that person covariates and predictors of item behaviors should be controlled for,
then a more flexible model is not only desired but should be employed.

The other limitation was that the correlation between categories of a polytomous
item may not be sufficiently accounted for in the model (e.g., Adams et al., 1997;
Donoghue & Hombo, 2003; Maier, 2000, 2002; Patz, 1996 as cited by Patz, Junker, and
Johnson, 1999; Patz, Junker, and Johnson, 1999; Patz, Junker, Johnson, & Mariano,

2002). That is, the aforementioned model treats the item response as being sampled from



a univariate distribution. However, in some cases, the categories of an item merely
represent nominal variables; that is, the categories are simply labels. For example, an
item with the categories ‘negative’, ‘neutral’, and ‘positive’, may be considered as three
separate dichotomous, indicator variables labeled ‘negative feeling’, ‘neutral feeling’, and
‘positive feeling’, each with the possibilities ‘yes’ or ‘no’. Viewed this way, each
category represents a variable, and the response itself is a vector of Os and a 1, and should
be treated as if being sampled from a multivariate distribution (Fahrmeir & Tutz, 2001).

Below, a general framework is proposed that uses HLM to model various IRT
models. This is accomplished by applying a multivariate generalized linear modeling
framework within HLM. The model and framework is relatively new and is commonly
seen in the statistical literature under the heading of ‘Multivariate Generalized Linear
Mixed Model’ (MGLMM,; e.g., Fahrmeir & Tutz, 2001; Gueorguieva, 2001; Hartzel,
Agresti, & Caffo, 2001). Here, to be consistent with the majority of the educational
literature, rather than describing the model as being ‘mixed’, the model is described as
‘hierarchical’ and label it a Hierarchical Multivariate Generalized Linear Model
(HMGLM).

Additionally, although Tuerlinckx and Wang (2004) recently illustrated the
application of the MGLMM to IRT models and although it can be shown that the models
they define are similar to those that are defined here (in particular those in Chapter 3), the
focus of this dissertation, unlike the aforementioned studies, is to expand IRT models

using a particular framework—the hierarchical framework set forth by Goldstein (2003),

Raudenbush and Bryk (2002), and Snijders and Bosker (1999): HLM. And, unlike

Tuerlinckx and Wang (2004), HLM is used to expand IRT models by conceptualizing the



units that are measured (e.g., persons and items) as being nested within one another (see
Chapter 2). Furthermore, this provides a more ‘natural’ way for conceptualizing
hierarchical polytomous IRT models. Therefore, by using the HLM framework to apply
the HMGLM to IRT, readers may better see the hierarchical relationships that exist in
educational testing data.

However, the purpose of applying the HMGLM to IRT and HLM is not
necessarily to develop an alternative framework for modeling and estimating IRT models
per se, rather, the purpose of applying the HMGLM is to develop a framework in which
the IRT models may be extended in various ways, such as adding person covariates and
predictors of item behaviors. Specifically, the advantages of using the framework
provided by the HMGLM are that (1) both of the aforementioned limitations are avoided,
i.e., polytomous IRT models may be extended to include person covariates and predictors
of item behaviors, and the correlation between categories of a polytomous item may be
accounted for; (2) models using the HMGLM may currently be estimated using existing
software (e.g., SAS, 2001; STATA, 2000); (3) IRT and HLM are unified using a
common notation; (4) score functions and information matrices (which may be used for
parameter estimation) are well-known under the HMGLM (e.g., see Fahrmeir & Tutz,
2001); and (5) a broad class of IRT models within the HLM framework may be estimated
using a common method (e.g., maximum likelihood).

This paper consists of seven chapters. In Chapter 1, the motivation for unifying
HLM and IRT are discussed, and two limitations with the current IRT models within the
HLM framework already are identified. In addition, Chapter 1 describes four approaches

for unifying HLM and polytomous IRT models, as well as the limitations associated with



each approach. Chapter 2 provides a detailed description of a new approach for unifying
HLM and polytomous IRT models. This new approach applies a hierarchical multivariate
generalized linear model. In addition, Chapter 2 presents a re-formulation of two
polytomous IRT models, the Rating Scale Model (Andrich, 1978) and the Partial Credit
Model (Masters, 1982), using the hierarchical multivariate generalized linear model.
Chapter 3 provides a simulation study for the parameter recovery of these models, as well
as an example analysis for illustrating the use and interpretation of the models. Chapter 4
simulates and illustrates the application of the hierarchical multivariate generalized linear
model in which the Rating Scale Model is extended to include person covariates. Chapter
5 simulates and illustrates the application of the hierarchical multivariate generalized
linear model in which the Rating Scale Model is extended to include a group level as a
measure of DIF. Chapter 6 simulates and illustrates the application of the hierarchical
multivariate generalized linear model in which the Rating Scale Model is extended to
include item covariates to explain DIF. Finally, Chapter 7 discusses the general
contributions of the hierarchical multivariate generalized linear model, both

methodologically and substantively, to the fields of HLM, IRT, and educational research.

1-2. Overview of Previous Hierarchical IRT Models for Polytomous Items

As Kamata (2001) points out, the unification of IRT and HLM occurred several
years ago across three separate fields: psychometrics (e.g., Adams et al., 1997), non-
linear mixed-effects modeling methods (e.g., Hedeker & Gibbons, 1993, as cited by
Kamata, 2001), and random-effect Bayesian modeling (e.g., Spiegelhalter, Thomas, Best,

& Gilks, 1996, as cited by Kamata, 2001). Since each field essentially conducted their



work independently of one another, each pursued the unification using different
perspectives. Kamata (1998, 2001) continued this tradition by using a generalized linear
modeling approach in HLM. Below, each perspective is discussed in relation to IRT
models for polytomous items.

However, before this endeavor is pursued, one first briefly describes two
traditional, non-hierarchical IRT models for polytomous items: Masters’ (1982) Partial
Credit Model (PCM) and a special case of the PCM, the Rating Scale Model (Andrich,
1978). By doing so, the reader may recognize the transition that is made from modeling
non-hierarchically to modeling hierarchically, and the reader may notice the similarities
and differences between the current hierarchical IRT models for polytomous items.
Furthermore, these models and each perspective are discussed below using a common
example within a typical testing condition to illustrate how the concepts of IRT transfer

over to HLM.

1-2-1. Traditional, Non-Hierarchical Partial Credit and Rating Scale Models

Masters’ (1982) Partial Credit Model (PCM) defines the probability 7;; that

person k will respond to category i of item j as

exp IZ(O,‘ —5,-]-)

ik =% : (1.1)

z expz (Bk —5ij)

i=0 i=0




where 6, is the location of person k on the underlying latent trait continuum; and 5,-j is

the location of a particular category i (i =0,1,...,#,...I) for itemj on the underlying

latent trait continuum.
The PCM may be re-expressed in terms of logits; that is, as a model that describes
the log-odds of the probability that person & will select category i rather than category

i—1 for item j

”..
log| —2— |=6; - 5. (12)
i1, jk

Although 6; and 51)’ may take on several different interpretations depending on

the testing environment (for example, in achievement testing &; is commonly referred to

as proficiency), here a personality testing environment is assumed, and one continues
with the example given in Section 1-1 in which each item contains three categories,
‘negative’, ‘neutral’, and ‘positive’. The personality test attempts to measure the latent
trait ‘honesty’ of each particular applicant. This is achieved by asking various types of
honesty questions, in which the applicant responds by selecting one of the three
categories, which represents his/her feelings toward the question. Hence, in our example,

6 is the honesty of applicant k; and J;; is the ‘attractiveness’ of a particular category i,

or feeling i, rather than i —1 for each question ;.
Thus, in a testing environment, the PCM suggests that the probability that a
person will select a particular category of a particular item depends not only on the

person’s location on the underlying latent trait continuum (in this case, honesty), but also



it depends on the item’s category location on the underlying latent trait continuum (in this
case, the attractiveness of each feeling for each item).

Notice that the traditional model does not consider the hierarchical relationship
that exists between persons and items. To help illustrate this idea, it may be better to
think of persons as being schools and items as being students. Using this example, it is
easier to see that a set of students is nested within a particular school. Furthermore, if the
same test was given to the students across the different schools, it seems reasonable to
expect that student performance on the test would be more homogenous within a
particular school, and, generally speaking, the performance of a school may be more
heterogeneous than another school (e.g., school in a higher SES location may perform
differently than a school in a lower SES location).

Thus, referring back to our original honesty example, it seems reasonable to argue
that items are nested within persons. Hence, it seems reasonable that a particular person's
set of responses will be more homogeneous than when compared to a set of responses for
another person. Furthermore, it seems reasonable that overall a person’s responses are
heterogeneous when compared to another person’s responses. Therefore, the traditional
RSM and PCM do not consider the variation of the responses within persons and between

persons. Hence, in HLM terms, 6, and 5,-1- do not vary across the person or item level

and are considered fixed parameters. In other words, there is no Level-1 model for the
items that is defined within a Level-2 model for the persons.

Continuing then, Andrich’s (1978) Rating Scale Model (RSM), may be
considered a special case of the PCM (as mentioned above). To obtain the RSM, the

PCM is first re-expressed to model the overall location of each item on the underlying



latent trait continuum and the response threshold of selecting category i rather than i -1
(instead of modeling the item’s category location on the underlying latent trait continuum

as before), one obtains

’z'..
log| —2%— |=6, -5, -7, (13)
i1, jk

where 6; is given above; but now &;; is decomposed into two components, i.e.,

1
6 =6 i+ T where J; is the overall attractiveness of item j (& j= %Zléy ); and 7;; is
i=

the response threshold of being attracted to category i rather than i —1, and are deviations

from the overall attractiveness of item j (& )i ).

However, if the category thresholds are constrained to be equal across items, i.€.,

7;; =7; , then RSM may be considered a special case of the PCM

”..
log ik =6 —51-—1',-, (1.4)
Zi-1, jk

where J; is defined above; and 7; is the threshold of being attracted to category i rather

than i -1 for all items.

Thus, in our example, the RSM suggests that the probability that a person will be
attracted to select a particular feeling for a particular item depends not only on the
person’s honesty, but also the overall attractiveness of the item and the threshold of being
attracted to feeling i rather than i —1. Again, notice now that the thresholds do not vary
for each item,; rather, the thresholds are common across items.

Additionally, notice like the PCM, the RSM does not consider the variation of the

responses within persons and between persons. Hence for the traditional PCM and RSM,



the hierarchical nature is ignored, and all parameters are considered fixed parameters.
That is, in HLM terms, there is no Level-1 model for the items that is defined within a
Level-2 model for the persons.

(As an aside, note the PCM and RSM are also appropriate for modeling
dichotomous items, in which the dichotomous response is treated as being two categories
(i.e., the 1-parameter model). Lastly, similar relationships hold for the hierarchical analog

of the RSM.)

1-2-2. Random Coefficients in a Multinomial Model Approach

One approach for modeling IRT models in HLM was spearheaded by Adams and
Wilson (1996) and Adams et al. (1997). In their approach, they applied a multinomial
model that incorporated random coefficients for the modeling of the person’s location on
the underlying continuum. Specifically, the Level-1 model for their aptly named

Multidimensional Random Coefficient Multinomial Model (MRCMM) is defined as

]
Tk ) (1.5)

where Tijk is defined above; b;-j is a vector of scores for the vector of multiple
dimensions (Gk) for person k; and a;-j is a design vector for the set of item parameters
(§).ie, &; and 7;. Notice that the item parameters () may be considered fixed.

The Level-2 model specifies the random distribution of 8 , which may linearly

depend on predictor variables (e.g., SES, gender, etc.)

0, =x;B+¢y, (1.6)
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where x; is a vector for the covariate scores; P is matrix for the fixed regression
coefficients for the covariates; and &, ~ N (O, crg )

If the model is constrained to be unidimensional (Adams & Wilson, 1996), and

constraints are placed on the item parameters (&), then Adams et al. (1997) have shown

this model to be a hierarchical generalization of the PCM (e.g., see Rijmen et al. (2003))
and RSM (as well as a generalization for the 1-parameter model, c.f., Lord, 1980; Adams
& Wilson, 1996). Additionally, Adams and colleagues (Wang, Wilson, & Adams, 1998)
showed that the MRCMM is a generalization of the models proposed by Andersen (1985)
and Embretson (1991), in which covariates were used to measure change (in the person

parameter 6, ).

Continuing our example then, the MRCMM suggests that the probability that an
applicant will be attracted to select a particular feeling for a particular item depends not
only on the applicant’s honesty, but also the overall attractiveness of the item and the
threshold of being attracted to feeling i rather than i —1. Additionally, if the researcher
has reason to believe that the applicant’s honesty may be influenced by other variables,
such as his or her criminal history or the number of occasions he or she has taken the test,
then these covariates may be controlled for as well (Equation (1.6)).

Furthermore, unlike the traditional PCM and RSM, the random coefficients in a
multinomial model considers the variation of the responses within persons and between
persons. This is seen in the Level-1 and -2 models (Equations (1.5) and (1.6)) when the

item parameters (J; and 7;) are treated as fixed effects and are nested within the random

effect of persons (6 ).
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Unfortunately, as mentioned above, currently the MRCMM is limited in that the
software for estimating the parameters (i.e., ConQuest, 1998), may only estimate models
that contain predictor variables at the person level model, and the MRCMM may not be
applied when modeling predictor variables for the item parameters; nor may they be
applied when controlling for the correlated relationships of the multivariate response

vectors.

1-2-3. Bayesian Modeling of Random-Effects Approach

Another approach for modeling polytomous IRT models in HLM was proposed
by Maier (2000, 2002) and Fox (In press, b). In the approach, Bayesian procedures are
applied to the modeling of the random effects of the PCM, which may be represented as a
Means-as-Outcomes model in the HLM framework (Maier, 2000, 2002; Raudenbush &

Bryk, 2002). Specifically, in logit form, Maier’s model is given by

log k|- Niik
1
Tk ) (1.7)

where 7, and &;; is the PCM parameterization of &; and 7;; and Gy is the ability of
person i for response set 7. Note 5,-1- is treated as a fixed parameter, and is interpreted as a

location of a particular category i for item j on the underlying latent trait continuum.
The Level-1 and -2 models specify the hierarchical nature of 8, . Specifically,
the Level-1 model states

9,* =Q) +Ey, (18)
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where ¢, is the random error associated with the random intercept «; of person & for
responsesetr, £4 ~ N (O, 0'3)

The Level-2 model defines ¢ . It is given as
ay =Wiy+vor» (1.9)

where W = (1, Wiks--sWp_1k ) is a matrix containing the p predictor variables;

Y= ( Y05715--+>¥ p-1 ) is a matrix containing the fixed regression coefficients for the p

predictor variables; and vy, is the random error associated with the fixed regression
coefficients y for personk, vy, ~ N (0, 0'3 ) .

Referring back to the example, the Bayesian modeling of random-effects
approach models applicant behavior similarly to the random coefficients in a multinomial
model approach, so the concepts will not be repeated here. However, one of the primary
differences between the two approaches (and the traditional RSM) is that the Bayesian
approach specifically models the variation of the responses within persons in the Level-1

model (i.e., &4 in Equation (1.8)), and it specifically models the variation of the
responses between persons in the Level-2 model (i.e., v, in Equation (1.9)).

Unfortunately, the Bayesian modeling of random-effects approach does not
adequately account for the correlated relationships of the multivariate response vectors.
Additionally, the estimation of parameters using a fully Bayesian approach requires
specification of a prior distribution. However, as models become more complex (which is
the case as one includes predictor variables), an inappropriate choice for the prior

distribution may lead to an improper posterior distribution, which may not be detected by
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MCMC methods. Also, some researchers may not accept the fully Bayesian perspective

and may believe in applying other theoretical perspectives, e.g., a frequentist perspective.

1-2-4. Rater Effects Approach

A third approach, a rater effects approach, was developed by Patz and colleagues
(Patz, 1996 as cited by Patz, Junker, and Johnson, 1999; Patz, Junker, and Johnson, 1999;
Patz, Junker, Johnson, & Mariano, 2002). It is fairly different from the previous
approaches in that it applies a generalizability framework within an HLM framework to
obtain a ‘rater effect’. Specifically, the approach is given by the Hierarchical Rater Model
(HRM), which is essentially a 3-Level model in which the ratings of a rater are nested
within item responses, which in turn is nested within a person’s location on the
underlying continuum.

Specifically, at Level-1 (which Patz and colleagues describe as the first stage
model), the model is defined by

]og[—zr'l‘-—} = logit[P(Cjk =§|9k » X jkem € {4’4—1})]

7i-1, jk
= Mk (1.10)
6 =6 ~1¢ s

where ¢ Jk is an ideal, unobserved, latent trait rating variable that describes person k’s

performance on item j, which follows (any IRT model, but in this case) the PCM (where

&;j is decomposed into two components, i.e., §;; =6 j+7;;,such that §; is the overall

ija

1
attractiveness of item j (& j= %Zé’y ); and Tij is the response threshold of being
i=1

attracted to category i/ rather than i/ —1, and are deviations from the overall attractiveness
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ofitem; (5;)); and X j, is the signal detection model (see, e.g., Table 1) for rater m

who rates person & on item j, which follows the Level-2 model described below. Note

7, ; now describes the threshold of the ideal, latent rating ¢ for item j, rather than the

observed rating i. Also, note that & )i and 7, j are considered fixed effects.
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Table 1. The Signal Detection Model for the Rating Probabilities ( PZim )

0 1 1
0 Poom Poim S Poim
4 1 Piom Pi1im e Plim
1 Plom Plim Plim

Note. prim is the probability that rater m rates the observed rating i given the
ideal rating ¢ .

The Level-2 model (which Patz and colleagues described as the second stage

model) describes the relationship between one or more raters’ rating i and the ideal rating

category ¢ ji (4’ =0,1,...,7 ) . The model is a discrete signal detection problem using a

matrix of rating probabilities p.;, = P(rater m rates i I;’ ik ) , as seen in Table 1. Although

the density of ps;,, for each row in Table 1 make take any form, Patz and colleagues

used a normal density (see Patz, Junker, and Johnson (1999) for the parameterization of
the normal density).

Finally, the Level-3 model (which follows from the HLM framework) defines 6,
as a random effect that is distributed as N ( H, 0'92 )

To better understand the rater effects approach, the personality testing example is

referred to again. Recall in this example, that we have an applicant whom is responding
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to an honesty exam, in which each item asks the applicant to select one of three
categories, negative, neutral, or positive. However, instead of the applicant selecting the
categories, for the rater effects approach, the applicant is asked to provide a response to
the open-ended question. And, for this response, a rater (or multiple raters) is asked to
rate the applicant’s response for each item as being in one of the aforementioned
categories. Thus, the rater effects approach suggests that the probability that an applicant
will fall into a particular category of feeling for a particular item depends not only on the
applicant’s honesty, but also the overall attractiveness of the item, and the threshold that a
rater assigns a particular feeling i rather than i —1 for each question .

Additionally, unlike the previous approaches, the rater effects approach models
the variation of the responses within persons and between persons by applying a
generalizability approach. Specifically, this approach attempts to measure the nested
effect of the rater’s ratings on the person’s item responses (see, €.g., the Level-2 model
depicted in Table 1). Additionally, as mentioned above, this effect is nested within the
Level-3 model, the person level model, which models the variation of the responses

between persons as random effects (6 ).

Unfortunately, although the rater effects approach effectively estimates the rater
effect for simulated data (e.g., Donoghue & Hombo, 2003; Patz, Junker, and Johnson,
1999; Patz, Junker, Johnson, & Mariano, 2002), the approach does not consider the
modeling of predictor variables for persons and items, and the approach does not
adequately account for the correlated relationships of the multivariate response vectors.
Additionally, researchers report that, when compared to non-hierarchical rater effects

models, the precision of estimates afforded by the HLM framework was not observed
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when applying the model to real data. Also, researchers complained that the estimation of

the parameters was relatively “labor and time intensive” (Barr & Raju, 2003, p.41).

1-2-5. A Hierarchical, Univariate General Linear Model Approach

The last approach discussed here for modeling polytomous IRT models in HLM
essentially extends the work of Kamata (1998, 2001), which proposed using a
hierarchical, univariate generalized linear model (GLM) to parameterize an IRT model
for dichotomous items (i.e., the 1-parameter model, Lord, 1980). To illustrate the
approach, the models are first defined using the notation typically applied in hierarchical
GLM. Then, the parameters are described in terms of how the model relates to the
traditional IRT parameters.

The hierarchical, univariate GLM approach is defined by applying a multinomial
model using a baseline-category logit link function (Raudenbush & Bryk, 2002). The
reason for doing so is to illustrate the equivalence between the adjacent-category link
function and the baseline-category link function, which is used in the popular text by
Raudenbush and Bryk (2002) and briefly noted by Rijmen et al. (2003).

Specifically, the Level-1 model uses a regression-type formulation, and is defined

by

(1.11)
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where 7 is the probability that the observed response of person  on item j falls in

category i; 7y is the probability that the observed response of person k on item  falls in

the “baseline’ category /; X is the qth dummy variable for person &, with values 1
when ¢ = j, and 0 when g # j for item j; and, for person k, [ is the regression
coefficient of category i for item j. Thus, for the Level-1 model, the category level model,
the regression coefficient of category i for item j ( ﬂq,-jk ) measures the overall effect (i.e.,

mean effect) of category i for item j, which one may notice is assumed to be fixed for
each category of each item (i.e., there are no random effects added to the Level-1 model).
To model how the category effects behave across items, the Level-2 model, the

item level model, is defined. Specifically, for the PCM, the Level-2 model may be

defined as
-1
Baojk = Yq0k + 2. Vijk Mk
i=0
-1
ﬂquk =7q0jk Z(:)}’lg‘kwly'k (1.12)
-1
By 1-1,jk = 7q0jk + 2 Nijk Wik
i=0

where, for person &, 7,0 ;; is mean effect of item j across categories i; yy; is the effect

of item ; on a particular category #; and wy;;; is a dummy variable with values 1 if i'=i

for the j t item answered by person &, and 0 otherwise.
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In contrast, for the RSM, it is assumed that the effect of item j on a particular

category i is equal for all items; hence, the constraint that yy; = 711, =... = Y1k =ik

is made, and the Level-2 model for the RSM becomes

I-1

Byijk =7q0jk * 2. ik Wik » (1.13)
i=0

where 7,4 is defined above; y; is the effect of item j on a particular category i, which
is common across the j items; and wy;; is a dummy variable with values 1 if i’ =i for the

J % item answered by person &, and 0 otherwise.

Continuing with the RSM (where analogous definitions apply to the PCM), the
Level-3 model, the person level model, models how the aforementioned effects behave at

the person level. Specifically, the Level-3 model is defined as
Yq0jk = 4q0jo * YUgjk (1.14)
Nik = Aio (1.15)
where 4, ;o is the mean effect of persons on item j; ugj is the unique, random effect of

person k (i.e., ug is the deviation of person & from the fixed, category intercept

(/'qu 70 ) ); and 4y;q is the mean change in lqo j0 for a particular category i, for all
persons.

However, in a testing environment, it is assumed that the unique effect (uq,-k ) of

person k does not vary across the categories of an item j. Hence, the effects are

constrained to be equal for each category i of each item j, i.e.,
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Ugik =Ugik =--- =UQJk =Ug, Up ~ N(O, 0'3). And, the Level-3 model for y,¢
becomes
}/quk =/{qoj0+uk, (116)

where y,¢ 4 and A4 o are defined above; and u; is the random effect of person £.

Thus, for the person level model, the mean effect of category i for item j (lqo jo)

varies for each item, but is fixed for each person k. And, the unique effect of person k

(44 ) on the mean effect of category i for item j is constant for each Ag0 jo - Lastly, the

effect of the item on a particular category i (,11,-0) , varies for each category i, but is fixed

for each person & (and constant across the j items).

However, the baseline category parameterization implies that the regression
coefficient of category i for item j is the mean effect of category i for the j % item from
the baseline category 7, i.e.,

Baiik = Bk — Byijx (1.17)

But, rather than a baseline category parameterization (such as that discussed by
Raudenbush and Bryk, 2002), popular polytomous IRT models apply an adjacent-
category parameterization (i.e., Agresti, 1996, 2002; Andrich, 1978; Hartzel et al., 2001;
Masters, 1982; Wright & Masters, 1982), e.g., see the RSM in Equation (1.4). Therefore,
the correct effect of interest is not the effect of category i for the j ! item from the

baseline category 7 (Equation (1.17)); rather, the correct effect is the effect of category i

for the jﬂ‘ item from the adjacent category i — 1
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ﬂqijk = /}qijk - Bq,i—l,jk : (1.18)

*

This implies that to obtain the adjacent-category effect (lq,-jo) from the baseline-

category parameterizations, one must do the following:

* ~ ~
Baijk = Paijk = Pq,in, jk
= (Basik = Bagie )~ (Bg.i1, = B ) (1.19)
= ﬂqijk - ﬂq,i—l,jk .
Taking the equations above, this suggests the following. The mean effect of
category i from the adjacent category i — 1 (lqo 70 ) , in the HLM framework, is analogous

to (the negative of) the location of a particular category i for item j on the underlying

latent trait continuum ( 9 ) , in the IRT framework. Additionally, the effect of the item
on a particular category i (/11 ,-0) , in the HLM framework, is analogous to (the negative
of) the threshold of a particular category i (—r,- ) , in the IRT framework. Lastly, the
location of person k on the underlying latent trait continuum (6} ), in the IRT framework,

is analogous to the unique effect of person k (u ). In short, the parameters for the

traditional RSM are equivalent to the parameters in the hierarchical GLM in the

following manner:
6i=-240j0 (1.20)
7, ==A0 (1.21)
O =uy. (1.22)
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Therefore, in the personality testing example, the hierarchical GLM approach is
very similar to the random coefficients in a multinomial model approach in that the
probability that an applicant will be attracted to a particular feeling for a particular item
depends not only on the applicant’s honesty, but also the attractiveness that an applicant
will select a particular feeling i rather than i —1 for each question j. However, rather than
modeling the parameters directly like the random coefficients approach, the hierarchical
GLM approach models effects—that is, the overall attractiveness of an item as well as the
effect of the item on a particular category (i.e., the Level-2 model; Equations (1.12) or
(1.13)), while the honesty of an applicant is modeled using a unique effect that is treated
as random at the Level-3 model (Equation (1.16)).

Furthermore, like the random coefficients approach, the hierarchical GLM
approach can model person covariates; however, unlike the random coefficients
approach, the hierarchical GLM approach can also model predictors of item behaviors.
Since modeling person covariates and predictors of item behaviors are very similar for
the hierarchical, univariate GLM approach and the hierarchical, multivariate GLM
(which is the main focus of the paper), this discussion is left for Chapters 4, 5, and 6.

One limitation of the hierarchical univariate GLM approach is that the approach
does not adequately account for the correlated relationships of the multivariate response

vectors.
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Chapter 2. A Hierarchical Multivariate Generalized Linear Modeling Framework for
IRT
2-1. The Hierarchical Multivariate Generalized Linear Model

As stated earlier, the purpose of this paper is to develop a framework for
modeling IRT models in HLM such that traditional IRT models may be extended in
various manners. This framework will not only attempt to develop models that avoid the
limitations of the previous models (i.e., polytomous IRT models may be extended to
include person and item-specific covariates, and the correlation between categories of a
polytomous item may be accounted for), but the model is also advantageous to apply
because, as mentioned above, (1) models using HMGLM may currently be estimated
using existing software (e.g., SAS, 2001; STATA, 2000); (2) IRT and HLM are unified
using a common notation; (3) score functions and information matrices (which may be
used for parameter estimation) are well-known under the HMGLM (e.g., see Fahrmeir &
Tutz, 2001); and (4) a broad class of IRT models within the HLM framework may be
estimated using a common method (e.g., maximum likelihood).

Using the notation typically applied in hierarchical GLM, the hierarchical models
for the HMGLM, which has its roots in the multivariate framework provided by Fahrmeir
and Tutz (2001), Gueorguieva (2001), and Hartzel et al. (2001), are defined. As
mentioned previously the models defined here in Chapter 2 may resemble those defined
recently by Tuerlinckx and Wang (2004); however, one reiterates that, unlike the
aforementioned authors, the models below are defined by explicitly modeling the nested
levels. Specifically, the Level-1 model defines the category level. The Level-2 model

defines the item level. And, the Level-3 model defines the person level. Finally, the
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combined model is defined. After the presentation of these models, the Rating Scale
Model (RSM; Andrich, 1978) and Partial Credit Model (PCM; Masters, 1982) are
defined within the HMGLM. For each of these definitions, to help ease the presentation,
one continues with the previous honesty exam example, and one illustrates how the

concepts behind each of the IRT models transfers over to the HMGLM.

2-1-1. The Level-1 Model for the HMGLM

As mentioned above, the Level-1 model for the HMGLM defines the Level-1
units, the categories of the items. To define the Level-1 model for the HMGLM, the
categorical responses i (i=0, 1,2, ..., ) of person k(k=1,2,3, ..., K) toitemj (=1, 2,

3, ..., J) are re-expressed as a dummy-coded, multivariate response vector

i =(Fik» Po P T ) @.1)
where
ik =M1k Y21k Y11k )
Yok =(}’12k’}’22k:---’}’12k ), (2.2)
I =1 Yaskos Vi) »
and

1 if response to item j equals i
Yijk ={ (2.3)

0 otherwise.
Note that if the multivariate response vector y ;; is a vector of 0’s, then category 0 was

chosen by person £ for item ;. Here, category 0 was chosen to be the reference category to

be consistent with polytomous IRT models; however, other reference categories can be
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utilized without loss of generality. Additionally, notice the multivariate response vectors
are one of the primary differences between multivariate hierarchical GLM and univariate

hierarchical GLM.

Another primary difference is that it is assumed that the y;; are conditionally

independent given the multivariate (not univariate) random effect u ik - 1f the sum of the

I
conditionally independent observations y;; for y; istaken, i.e., yj =Z Yijk » then it
i=1

is also assumed that y ; are multinomially distributed with parameters
Tk = (Iz'ljk,ﬂ'zjk ,...,n,jK) (Hartzel, Agresti, & Caffo, 2001).

Thus, the conditional distribution f ( Yk i ) is a member of the multivariate
exponential family with multivariate means g4, 6y, t5y5---» 4y - That is,

i =E(y | ) =h(my)
ok =E(yy |up)=h(my)
i = E(y3y |u3) = h(1my) (2.4)

ka =E(ypuy)=h(nx),

where h(q ik ) is a vector of inverse link functions

by (i)
hZ("jk), @.5)

hy ('Ijk)
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where 7 is a vector of functions that describe the linear relationship of the fixed and

random parameters.
To obtain the desired form of a polytomous IRT model, the vector of inverse link

functions are defined using the adjacent-category link function (Agresti, 1996, 2002)

h(m;¢)

i'
exp[ijk]
_ - _ i=0
hi(”jk)—/‘jk=”ijk‘ 1 7 )
Mijk
0

D exp| Y,
=0 \i=

(2.6)

which is the probability 7z;; of person k selecting category i (i =0,1,...,7,...I) of item j,

0
where 77 j; =0; hence, exp[z Nijk J = exp(r;ojk ) =1.
i=0
Re-expressing the link function as the log-odds of person % responding to category

i rather than category i — 1 for item j, the Level-1 model for the HMGLM is obtained:
( i \
exp[ Z Mijk ]
i=0
1 i’

. 2. exp| D ik

log| — 2% _ | =1og| =0 __\i=0
i1, jk il
exp Z i1, jk

i=0

I i-1
Z CXP[ 2 Ti-1, jk ]

\ i=0 i=0
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)

=log
(Z"'-LJkJ
(2.7)
=log e’q)('b_]k +771jk +. "+T}i—],jk +nljk)
C"P('bjk +1hjk +...+77i_ij)

=('Iojk Fhjk t--F o),k +'7ijk)—(’70jk +hjk +- -+, jk)
=Thjk -

Specifically, the Level-1 model for the HMGLM defines the log-odds of the

probability that person k will select category i rather than category i —1 for itemj as

category effects
log ik s (2.8)
[”t—l, Jk ) Z j

where ﬂ( i) | is the mean category effect if person & selects category i of item j; and x ik is

a dummy variable with values 1 if person k answers item j, and 0 otherwise.

Thus, like the Level-1 model for the univariate, hierarchical GLM approach, the

mean category effect ( ,65.2) non-randomly varies across each category i of each item j

for each person k. Furthermore, the mean category effect ( ﬂj.?) is influenced by the

effect of the particular item in which the categories are nested. The Level-2 model

describes these effects.
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2-1-2. The Level-2 Model for the HMGLM

Since the Level-1 model described the category effects for an item only if it has
been answered by person k, then like the Level-1 model, the Level-2 model is defined in
terms of the answered item as well. Specifically, the Level-2 model, the item-level model

for the HMGLM, is generally defined as

B =10+ XA e 2.9)
i=1

where, for person &, 7 i is the mean effect of item j across categories i; 71(2‘ is the

effect of item j on a particular category i; and wy j; is a dummy variable with values 1 if

i'=i forthe j  jtem answered by person k, and 0 otherwise. Recall 7 ;; = 0. Thus, for

identifiability, 1( 2 =0

Thus, like the Level-2 model for the univariate, hierarchical GLM approach, the

Level-2 model defines how the category effects ( ,B( )) behave when they are nested

within the item-level model. Specifically, the category effects vary non-randomly and

depend upon the mean effect of the item across the categories ( Y0k ) and the effect of

the item on each category (71( j)‘ )

2-1-3. The Level-3 Model for the HMGLM
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The person-level model for the HMGLM, the Level-3 model, defines how the
item effects behave when nested within persons. Specifically, the Level-3 model is

defined as

Y0k =200 + 4k (2.10)
7ok = A @1y
where, for the j  jtem that is answered by person k, 4 o is the mean effect of persons

onitem j; u jk s the random effect of person k on the mean effect of item j; and 21(;) is

the mean change in the 4 ;o for a particular category of item j, for all persons.

However in IRT, we assume that the person effects are constant across items.

Thus, the following constraint is made
Ul =Upg =...=Ujp =uy,
and the Level-3 model for the mean item effect becomes
Y0jk =400 +Uk> (2.12)
where 4 ;o is defined above; and u; is the random effect of person k across items.
Thus, like the Level-3 model for the univariate, hierarchical GLM approach, the

Level-3 model defines the mean effect of the item ( 70 jk ) as depending upon the mean

effect of the item across all persons (/10 0 ) , and depending upon the unique effect of a

particular person k (uk ) Additionally, the Level-3 model defines the effect of the item

on a specific category ( 71(;1 ) as being fixed for each person k (11(%) .
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2-1-4. The Combined Model for the HMGLM
To obtain the combined model for the HMGLM, the models for Levels 1, 2, and 3

are combined

7 J
log[ ik ] ZI:AOJO+Z}1]0wUk+uk}ij 2.13)

Ti-1,jk ) j=1

To obtain the matrix representation of the combined model, the following

matrices are defined:

ﬂ=(ﬂ1,52,---,ﬂ,/)', (2.14)
where
1 2 I
('1010 s "1(,311(,3) @.15)
Hence 7, defines the following linear relationships

i = LB+ Wyuy
Mok = ZLyB+ W uy
Tk = L3k B+ Wi u (2.16)
M =ZpB+Wpu,
where B is defined above and is a ( px 1) -dimensional matrix for the unknown
parameters (p) of the fixed effects; Z;;,Z;5,Z;3,...,Z;; are (Ix p)-dimensional design

matrices for the fixed effects; u;, are ( px1)-dimensional matrices for the unknown

parameters (p) of the random effects; and Wiz, Woy, Wyy,..., Wy, are (Ix p)-

dimensional design matrices for the random effects.
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Lastly, the random effect # is assumed to be independent and identically

distributed with density g (#), which is not restricted to any form. Here the density

g (u) is chosen to analogously follow traditional IRT assumptions and previous

formulations of hierarchical IRT models (e.g., Kamata, 1998, 2001; Lord, 1980;
Miyazaki, 2000)
u~MVN(0,Z). (2.17)
(Note the dummy variable x j; in the above discussion represents the situation

where all persons respond to all items, i.e., the data are balanced. If the data are

unbalanced, then x ; may take on a similar coding scheme as that provided in Equation

(1.11) for the hierarchical, univariate GLM approach. That is, x jk becomes xg; , and

gk >
represents the qth dummy variable for person k, with values 1 when g = j, and 0 when

q # j foritem}.)

2-2. A New Model 1: The Hierarchical Multivariate Generalized Linear-Partial
Credit Model (HMGL-PCM)

To illustrate the relationship between the HMGLM and traditional IRT
parameters, the PCM is defined within the HMGLM. Since the PCM is defined within the
hierarchical framework of the HMGLM, the model can essentially be thought of as a new
model. This new model is named the Hierarchical Multivariate Generalized Linear-
Partial Credit Model (HMGL-PCM). For the HMGL-PCM, the reader should notice the

application of the HLM framework (i.e., the definition of model levels), which is not used
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by Tuerlinckx and Wang (2004) and provides a more natural way for conceptualizing the
hierarchical PCM.

The Level-1 model (the category level) for the HMGL-PCM is defined as

.. J .
108(iJ =2 ﬂf-?xjk : (2.18)

Ti-1,jk ) j=1
where all terms are defined above.

The Level-2 model (the item level) is defined as
. I .
ﬂﬁ? =70,k +Z}'1(}),M ko (2.19)
i=l1

where all terms are defined above.

Here, to see the relationship between the HMGL-PCM and traditional PCM, one
refers back to the honesty example. Recall, that in this example, an applicant is
responding to several polytomous honesty items by selecting a particular category, which
represents his/her feelings toward the item. Hence, for the HMGL-PCM, the probability

that an applicant is attracted to a particular feeling for a particular answered item depends

upon the overall attractiveness of the item ( Y0 jk ) , and how the attractiveness of the item

influences a particular feeling (78% ) . Additionally, notice that the attractiveness of a

feeling for an item is nested within that item, as modeled from Level-1 to Level-2.

Continuing with the HMGL-PCM, the Level-3 model (the person level) is defined

Yojk =40 0 + Uk (2.20)

7ok =H5b @21)
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where all terms are defined above.

The combined model for the HMGL-PCM is defined as

" J I . .
log( Tijk ]= 3 {ﬂo jo+ AN 4y } ” (222)

Ti-ljk ) j=1 i=1

which reduces to the following for a particular category i of an item j
ﬂ'.. .
log{—”k—} =Jpjo+ AI(J% +uy. (2.23)

Here we can clearly see how the category effects function as the categories are
nested within items, which in turn are nested within persons. Specifically, the probability

that an applicant is attracted to a particular feeling for a particular answered item not only

depends upon the overall attractiveness of the item ( Y0 jk ) , but also how the

attractiveness of the item influences a particular feeling ( 71(;) ) . In addition, as the Level-

3 model shows (Equations (2.20) - (2.21)), the overall attractiveness of the item (Ao jo)

and the influence of an item on a particular feeling (21(]%) is fixed across persons.

Furthermore, as is commonly assumed in IRT, the unique effect (uk) of an applicant
randomly varies across the different applicants (but remains fixed across items and across
feelings).

In short, the parameters of the HMGL-PCM are related to the parameters of the

traditional PCM in the following manner:

5;=~4oj0, (2.24)
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7= -,11(]’.2). (2.25)
and

6’k =Uy . (226)

2-3. A New Model 2: The Hierarchical Multivariate Generalized Linear-Rating
Scale Model (HMGL-RSM)

Now the RSM is defined within the HMGLM, and this new model is named the
Hierarchical Multivariate Generalized Linear-Rating Scale Model (HMGL-RSM). Recall
from Section 1-2-1, that the RSM is simply a special case of the PCM. Hence, the model
definitions of the HMGL-RSM follow very closely to the HMGL-PCM. Again, the reader
should notice the application of the HLM framework (i.e., the definition of model levels),
which is not used by Tuerlinckx and Wang (2004) and provides a more natural way for
conceptualizing the hierarchical RSM.

The Level-1 model (the category level) is
where all terms are defined above.

The Level-2 model (the item level) is obtained by constraining the effect of an

item on a particular category to be equal for all items (i.e., 71( l)( = }'1(2),( =..= }'1(2( = 71(_'2)

I . .
B = o+ AL, (2.28)

i=1
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where yq j is defined above; 71(’,‘) is the effect of the item on a particular category,

which again is equal for all items; and wf'lz is a dummy variable with values 1 if i’ =i for

the j ® jtem answered by person k, and 0 otherwise.

The Level-3 model (the person level model) is
Yojk =40 jo + ¥ (2.29)
A0 =20, (2.30)
where 4 ;o and u; are defined above; and }.1('0) is the mean change in the 4y ; fora

particular category i, for all persons.
In our example, the parameters of the HMGL- RSM may be interpreted

accordingly. The probability that an applicant is attracted to a particular feeling for a

particular answered item depends upon the overall attractiveness of the item (70 jk ) , and

the common influence of the attractiveness of the items on a particular feeling ( 71(',?) .

Additionally, the overall attractiveness of the item and the influence of the items on a
particular feeling is fixed across persons ( 4, jo and ].l(,i) , respectively). Lastly, the unique

effect of an applicant on the item randomly varies across the different applicants (uk ) .

The combined model for the HMGL-RSM is defined as

.. J I N (e
1og[l] -3 {zo o+ A Ly :|a o 231)
i=1

Ti-1jk ) j=1

which reduces to the following for a particular category i of an item j
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log[i] = J0j0+ A +uy (2.32)

i1, jk
In short, the parameters of the HMGL-RSM are related to the parameters of the

traditional RSM in the following manner:

5, =)0 (2.33)
7 ==A. (2.34)

and
6, =uy. (2.35)

2-4. Assumptions
Like non-hierarchical, univariate GLM, there are distributional and structural

assumptions of the HMGLM that need to be satisfied for the model to hold<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>