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ABSTRACT

EXTENDING THE PARTIAL CREDIT AND RATING SCALE MODELS USING

THE HIERARCHICAL MULTIVARIATE GENERALIZED LINEAR MODEL

By

Jonathan R. Manalo

In this dissertation, the Rating Scale and Partial Credit Models of Item Response

Theory (IRT) are extended using a hierarchical multivariate generalized linear model

(HMGLM). Specifically, previous extensions of IRT using hierarchical linear modeling

(HLM) are discussed by highlighting their weaknesses and how by applying the

HMGLM their weaknesses may be avoided. The HMGLM is also defined, in particular,

as an extension of the Rating Scale and Partial Credit Models. A small simulation study is

described to illustrate the accuracy of the parameter recovery for these models.

Additionally, modeling extensions of the Rating Scale and Partial Credit Models are

made by applying the HMGLM. Computational examples are provided to illustrate the

application of these models.
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Chapter 1. Introduction

l-l. Motivation of the study

In recent years, educational researchers have combined the theory and methods of

Hierarchical Linear Modeling (HLM; Goldstein, 2003; Raudenbush & Bryk, 2002;

Snijders & Bosker, 1999) and Item Response Theory (IRT; Lord, 1980). For example,

Kamata (1998, 2001), Maier (2000, 2001), Fox and Glas (1998), and Adams and Wilson

(1996) used the HLM framework to define IRT models for dichotomously scored items.

As they illustrate, one advantage of unifying HLM and IRT methods is that postulating

IRT models becomes increasingly flexible. For example, traditional IRT models (e.g., l-

parameter model; Lord 1980) may be formulated to include covariates (Cheong &

Raudenbush, 2000; Fox, In press, a; Kamata, 1998, 2001).

Another advantage ofunifying IRT and HLM is that the [RT parameters and their

standard errors may be estimated more precisely (Maier, 2000, 2001, 2002; Mislevy,

1987). That is, by applying the HLM framework, a Level-1 model is defined in which the

item parameters in an IRT model are fixed and nested within a Level-2 model. The

Level-2 model defines the person parameters as being randomly varying. By considering

the nested relationship—an item level nested within a person level, the variation of the

responses within persons and between persons is taken into consideration, and estimation

methods may obtain better precision.

Unfortunately, with these advantages, a few disadvantages follow. For instance,

although the aforementioned IRT models were suitable for items that were scored

dichotomously, they were not suitable for items that were scored using partial credit (i.e.,

polytomous items). To compensate for this limitation, Adams and colleagues (Adams &



Wilson, 1996; Adams et al., 1997), Maier (2000, 2002), Patz and colleagues (Patz, 1996

as cited by Patz, Junker, and Johnson, 1999; Patz, Junker, and Johnson, 1999; Patz,

Junker, Johnson, & Mariano, 2002), Donoghue and Hombo (2003), Rijmen, Tuerlinckx,

De Boek, and Kuppens (2003), and Tuerlinckx and Wang (2004) developed IRT models

using a hierarchical framework for polytomous items. However, these models were

limited in at least one oftwo ways.

The first limitation was that it did not allow for modeling ofpredictor variables to

help explain the variation in the item and person parameters (e.g., Donoghue & Hombo,

2003; Patz, 1996 as cited by Patz, Junker, and Johnson, 1999; Patz, Junker, and Johnson,

1999; Patz, Junker, Johnson, & Mariano, 2002). As mentioned above, it may be

important to control for the influences ofpredictor variables in a psychometric testing

environment (Cheong & Raudenbush, 2000; Fox, In press, a; Kamata, 1998, 2001).

Although Adams et al.’s model may include predictor variables for the person parameter,

to date, their model may not include predictors of item behaviors. In addition, although

Maier’s model (2000, 2002) may be extended to include predictor variables (e.g., Fox, In

press, a), the ease at which this may be accomplished may be arguable. If a researcher

believes that person covariates and predictors of item behaviors should be controlled for,

then a more flexible model is not only desired but should be employed.

The other limitation was that the correlation between categories of a polytomous

item may not be sufficiently accounted for in the model (e.g., Adams et al., 1997;

Donoghue & Hombo, 2003; Maier, 2000, 2002; Patz, 1996 as cited by Patz, Junker, and

Johnson, 1999; Patz, Junker, and Johnson, 1999; Patz, Junker, Johnson, & Mariano,

2002). That is, the aforementioned model treats the item response as being sampled from



a univariate distribution. However, in some cases, the categories of an item merely

represent nominal variables; that is, the categories are simply labels. For example, an

item with the categories ‘negative’, ‘neutral’, and ‘positive’, may be considered as three

separate dichotomous, indicator variables labeled ‘negative feeling’, ‘neutral feeling’, and

‘positive feeling’, each with the possibilities ‘yes’ or ‘no’. Viewed this way, each

category represents a variable, and the response itself is a vector of Os and a 1, and should

be treated as ifbeing sampled fi'om a multivariate distribution (Fahrrneir & Tutz, 2001).

Below, a general framework is proposed that uses HLM to model various IRT

models. This is accomplished by applying a multivariate generalized linear modeling

framework within HLM. The model and framework is relatively new and is commonly

seen in the statistical literature under the heading of ‘Multivariate Generalized Linear

Mixed Model’ (MGLMM; e.g., Fahrmeir & Tutz, 2001; Gueorguieva, 2001; Hartzel,

Agresti, & Caffo, 2001). Here, to be consistent with the majority ofthe educational

literature, rather than describing the model as being ‘mixed’, the model is described as

‘hierarchical’ and label it a Hierarchical Multivariate Generalized Linear Model

(HMGLM).

Additionally, although Tuerlinckx and Wang (2004) recently illustrated the

application of the MGLMM to IRT models and although it can be shown that the models

they define are similar to those that are defined here (in particular those in Chapter 3), the

focus of this dissertation, unlike the aforementioned studies, is to expand IRT models

using a particular framework—the hierarchical framework set forth by Goldstein (2003),

Raudenbush and Bryk (2002), and Snijders and Bosker (1999): HLM. And, unlike

Tuerlinckx and Wang (2004), HLM is used to expand IRT models by conceptualizing the



units that are measured (e.g., persons and items) as being nested within one another (see

Chapter 2). Furthermore, this provides a more ‘natural’ way for conceptualizing

hierarchical polytomous RT models. Therefore, by using the HLM framework to apply

the HMGLM to RT, readers may better see the hierarchical relationships that exist in

educational testing data.

However, the purpose of applying the HMGLM to RT and HLM is not

necessarily to develop an alternative framework for modeling and estimating RT models

per se; rather, the purpose of applying the HMGLM is to develop a framework in which

the RT models may be extended in various ways, such as adding person covariates and

predictors ofitem behaviors. Specifically, the advantages ofusing the framework

provided by the HMGLM are that (1) both ofthe aforementioned limitations are avoided,

i.e., polytomous RT models may be extended to include person covariates and predictors

of item behaviors, and the correlation between categories of a polytomous item may be

accounted for; (2) models using the HMGLM may currently be estimated using existing

software (e.g., SAS, 2001; STATA, 2000); (3) RT and HLM are unified using a

common notation; (4) score functions and information matrices (which may be used for

parameter estimation) are well-known under the HMGLM (e.g., see Fahrmeir & Tutz,

2001); and (5) a broad class ofRT models within the HLM framework may be estimated

using a common method (e.g., maximum likelihood).

This paper consists of seven chapters. In Chapter 1, the motivation for unifying

HLM and RT are discussed, and two limitations with the current RT models within the

HLM framework already are identified. In addition, Chapter 1 describes four approaches

for unifying HLM and polytomous RT models, as well as the limitations associated with



each approach. Chapter 2 provides a detailed description of a new approach for unifying

HLM and polytomous RT models. This new approach applies a hierarchical multivariate

generalized linear model. In addition, Chapter 2 presents a re-formulation oftwo

polytomous RT models, the Rating Scale Model (Andrich, 1978) and the Partial Credit

Model (Masters, 1982), using the hierarchical multivariate generalized linear model.

Chapter 3 provides a simulation study for the parameter recovery of these models, as well

as an example analysis for illustrating the use and interpretation of the models. Chapter 4

simulates and illustrates the application of the hierarchical multivariate generalized linear

model in which the Rating Scale Model is extended to include person covariates. Chapter

5 simulates and illustrates the application of the hierarchical multivariate generalized

linear model in which the Rating Scale Model is extended to include a group level as a

measure ofDIF. Chapter 6 simulates and illustrates the application of the hierarchical

multivariate generalized linear model in which the Rating Scale Model is extended to

include item covariates to explain DIF. Finally, Chapter 7 discusses the general

contributions of the hierarchical multivariate generalized linear model, both

methodologically and substantively, to the fields ofHLM, RT, and educational research.

1-2. Overview of Previous Hierarchical IRT Models for Polytomous Items

As Kamata (2001) points out, the unification ofRT and HLM occurred several

years ago across three separate fields: psychometrics (e.g., Adams et al., 1997), non-

linear mixed-effects modeling methods (e.g., Hedeker & Gibbons, 1993, as cited by

Kamata, 2001 ), and random-effect Bayesian modeling (e.g., Spiegelhalter, Thomas, Best,

& Gilks, 1996, as cited by Kamata, 2001). Since each field essentially conducted their



work independently of one another, each pursued the unification using different

perspectives. Kamata (1998, 2001) continued this tradition by using a generalized linear

modeling approach in HLM. Below, each perspective is discussed in relation to RT

models for polytomous items.

However, before this endeavor is pursued, one first briefly describes two

traditional, non-hierarchical IRT models for polytomous items: Masters’ (1982) Partial

Credit Model (PCM) and a special case ofthe PCM, the Rating Scale Model (Andrich,

1978). By doing so, the reader may recognize the transition that is made fi'om modeling

non-hierarchically to modeling hierarchically, and the reader may notice the similarities

and differences between the current hierarchical RT models for polytomous items.

Furthermore, these models and each perspective are discussed below using a common

example within a typical testing condition to illustrate how the concepts ofRT transfer

over to HLM.

1-2-1. ILaditional. Non-Hierarchical Partial Credit and Rating Scale Models

Masters’ (1982) Partial Credit Model (PCM) defines the probability ”0k that

person k will respond to category 1' of itemj as

exp:(0k -5,-j)

”ilk: , i=0 . (1.1)
i!

zepo (9k — 6,-1- )

i=0 i=0

 



where 9k is the location ofperson It on the underlying latent trait continuum; and 6,-1- is

the location of a particular category 1' (i = 0,1,. . . ,i',. . . I ) for itemj on the underlying

latent trait continuum.

The PCM may be re-expressed in terms of logits; that is, as a model that describes

the log-odds ofthe probability that person k will select category i rather than category

i—l for itemj

 

7r”

log '1‘ =91. —5,.j. (1.2)

”1-1,jk

Although 6k and 6,-1- may take on several different interpretations depending on

the testing environment (for example, in achievement testing 0k is commonly referred to

as proficiency), here a personality testing environment is assumed, and one continues

with the example given in Section 1-1 in which each item contains three categories,

‘negative’, ‘neutral’, and ‘positive’. The personality test attempts to measure the latent

trait ‘honesty’ of each particular applicant. This is achieved by asking various types of

honesty questions, in which the applicant responds by selecting one of the three

categories, which represents his/her feelings toward the question. Hence, in our example,

6,, is the honesty of applicant Ir, and 6,-1- is the ‘attractiveness’ of a particular category 1',

or feeling 1’, rather than i—l for each questionj.

Thus, in a testing environment, the PCM suggests that the probability that a

person will select a particular category of a particular item depends not only on the

person’s location on the underlying latent trait continuum (in this case, honesty), but also



it depends on the item’s category location on the underlying latent trait continuum (in this

case, the attractiveness of each feeling for each item).

Notice that the traditional model does not consider the hierarchical relationship

that exists between persons and items. To help illustrate this idea, it may be better to

think ofpersons as being schools and items as being students. Using this example, it is

easier to see that a set of students is nested within a particular school. Furthermore, if the

same test was given to the students across the different schools, it seems reasonable to

expect that student performance on the test would be more homogenous within a

particular school, and, generally speaking, the performance of a school may be more

heterogeneous than another school (e.g., school in a higher SES location may perform

differently than a school in a lower SES location).

Thus, referring back to our original honesty example, it seems reasonable to argue

that items are nested within persons. Hence, it seems reasonable that a particular person's

set of responses will be more homogeneous than when compared to a set ofresponses for

another person. Furthermore, it seems reasonable that overall a person’s responses are

heterogeneous when compared to another person’s responses. Therefore, the traditional

RSM and PCM do not consider the variation of the responses within persons and between

persons. Hence, in HLM terms, 0k and 5,-1- do not vary across the person or item level

and are considered fixed parameters. In other words, there is no Level-l model for the

items that is defined within a Level-2 model for the persons.

Continuing then, Andrich’s (1978) Rating Scale Model (RSM), may be

considered a special case of the PCM (as mentioned above). To obtain the RSM, the

PCM is first re-expressed to model the overall location of each item on the underlying



latent trait continuum and the response threshold of selecting category i rather than i — 1

(instead ofmodeling the item’s category location on the underlying latent trait continuum

as before), one obtains

 

”n

log ’1" =91. -5j —r,-j, (1.3)

”i—1,jk

where 9k is given above; but now 5,-1- is decomposed into two components, i.e.,

I
. . . . 1 .

6,-1- =5j +73- , where 5]- 15 the overall attractrveness of 1tem_] (6}- : 72151'1' ); and rij 1s

1:

the response threshold ofbeing attracted to category i rather than i—l , and are deviations

from the overall attractiveness of itemj (61- ).

However, if the category thresholds are constrained to be equal across items, i.e.,

rij = rl- , then RSM may be considered a special case ofthe PCM

 

72'“

log ‘1" =91. —5j —z',-, (1.4)

”i-1,jk

where 61- is defined above; and r,- is the threshold ofbeing attracted to category i rather

than i —l for all items.

Thus, in our example, the RSM suggests that the probability that a person will be

attracted to select a particular feeling for a particular item depends not only on the

person’s honesty, but also the overall attractiveness of the item and the threshold ofbeing

attracted to feeling i rather than i—l. Again, notice now that the thresholds do not vary

for each item; rather, the thresholds are common across items.

Additionally, notice like the PCM, the RSM does not consider the variation of the

responses within persons and between persons. Hence for the traditional PCM and RSM,



the hierarchical nature is ignored, and all parameters are considered fixed parameters.

That is, in HLM terms, there is no Level-1 model for the items that is defined within a

Level-2 model for the persons.

(As an aside, note the PCM and RSM are also appropriate for modeling

dichotomous items, in which the dichotomous response is treated as being two categories

(i.e., the l-parameter model). Lastly, similar relationships hold for the hierarchical analog

ofthe RSM.)

1-2-2. Mom Coefficients in a Multinomial Model Approfl

One approach for modeling RT models in HLM was spearheaded by Adams and

Wilson (1996) and Adams et a1. (1997). In their approach, they applied a multinomial

model that incorporated random coefficients for the modeling ofthe person’s location on

the underlying continuum. Specifically, the Level-1 model for their aptly named

Multidimensional Random Coefficient Multinomial Model (MRCMM) is defined as

 

108 ”3k = 77“].I

”1-1.11. ’ (1.5)

where Il’y-k is defined above; b}!- is a vector of scores for the vector ofmultiple

dimensions (9k) for person It; and a}!- is a design vector for the set of item parameters

(é) , i.e., 6}- and Ti. Notice that the item parameters (g) may be considered fixed.

The Level-2 model specifies the random distribution of 9k , which may linearly

depend on predictor variables (e. g., SES, gender, etc.)

e, ”113”,, (1.6)
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where xk is a vector for the covariate scores; 5 is matrix for the fixed regression

coefficients for the covariates; and 5k ~ N (0,0,? ).

If the model is constrained to be unidimensional (Adams & Wilson, 1996), and

constraints are placed on the item parameters (1;) , then Adams et al. (1997) have shown

this model to be a hierarchical generalization of the PCM (e.g., see Rijmen et al. (2003))

and RSM (as well as a generalization for the l-parameter model, c.f., Lord, 1980; Adams

& Wilson, 1996). Additionally, Adams and colleagues (Wang, Wilson, & Adams, 1998)

showed that the NRCMM is a generalization of the models proposed by Andersen (1985)

and Embretson (1991), in which covariates were used to measure change (in the person

parameter 9k ).

Continuing our example then, the MRCMM suggests that the probability that an

applicant will be attracted to select a particular feeling for a particular item depends not

only on the applicant’s honesty, but also the overall attractiveness of the item and the

threshold ofbeing attracted to feeling i rather than i—l. Additionally, if the researcher

has reason to believe that the applicant’s honesty may be influenced by other variables,

such as his or her criminal history or the number of occasions he or she has taken the test,

then these covariates may be controlled for as well (Equation (1.6)).

Furthermore, unlike the traditional PCM and RSM, the random coefficients in a

multinomial model considers the variation of the responses within persons and between

persons. This is seen in the Level-l and -2 models (Equations (1.5) and (1.6)) when the

item parameters (51- and Ti) are treated as fixed effects and are nested within the random

effect of persons (9k ).
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Unfortunately, as mentioned above, currently the MRCMM is limited in that the

software for estimating the parameters (i.e., ConQuest, 1998), may only estimate models

that contain predictor variables at the person level model, and the MRCMM may not be

applied when modeling predictor variables for the item parameters; nor may they be

applied when controlling for the correlated relationships of the multivariate response

vectors.

1-2-3. Bayesian Modeling ofRandom-Effects Approach

Another approach for modeling polytomous RT models in HLM was proposed

by Maier (2000, 2002) and Fox (In press, b). In the approach, Bayesian procedures are

applied to the modeling ofthe random effects of the PCM, which may be represented as a

Means-as-Outcomes model in the HLM framework (Maier, 2000, 2002; Raudenbush &

Bryk, 2002). Specifically, in logit form, Maier’s model is given by

 

108 7571. = 77"].1

”1-1),. ’ (1.7)

= 0* "‘ 61" ,

where Irijk and 6,-1- is the PCM pararneterization of 51- and ti; and 19* is the ability of

person i for response set r. Note 6,-1- is treated as a fixed parameter, and is interpreted as a

location of a particular category i for itemj on the underlying latent trait continuum.

The Level-1 and -2 models specify the hierarchical nature of 6,4, . Specifically,

the Level-l model states

6,], =ak+£,*, (1.8)
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where 8,), is the random error associated with the random intercept ak of person k for

response set r, 5r]: ~ N(0,03)

The Level-2 model defines ak. It is given as

ak = W127 + VOk , (1.9)

where W]; = (1, W1k ,. . . , Wp_1,k ) is a matrix containing thep predictor variables;

7' = ( 70, 71,. . . , yp_1) is a matrix containing the fixed regression coefficients for the p

predictor variables; and VOk is the random error associated with the fixed regression

coefficients 7 for person k, VOk ~ N(0,03).

Referring back to the example, the Bayesian modeling ofrandom-effects

approach models applicant behavior similarly to the random coefficients in a multinomial

model approach, so the concepts will not be repeated here. However, one of the primary

differences between the two approaches (and the traditional RSM) is that the Bayesian

approach specifically models the variation of the responses within persons in the Level-l

model (i.e., 51k in Equation (1.8)), and it specifically models the variation of the

responses between persons in the Level-2 model (i.e., VOk in Equation (1 .9)).

Unfortunately, the Bayesian modeling of random-effects approach does not

adequately account for the correlated relationships of the multivariate response vectors.

Additionally, the estimation ofparameters using a fully Bayesian approach requires

specification of a prior distribution. However, as models become more complex (which is

the case as one includes predictor variables), an inappropriate choice for the prior

distribution may lead to an improper posterior distribution, which may not be detected by

13



MCMC methods. Also, some researchers may not accept the fully Bayesian perspective

and may believe in applying other theoretical perspectives, e. g., a frequentist perspective.

1-2-4. Rafter Effects Approzfl

A third approach, a rater effects approach, was developed by Patz and colleagues

(Patz, 1996 as cited by Patz, Junker, and Johnson, 1999; Patz, Junker, and Johnson, 1999;

Patz, Junker, Johnson, & Mariano, 2002). It is fairly different from the previous

approaches in that it applies a generalizability fiamework within an HLM framework to

obtain a ‘rater effect’. Specifically, the approach is given by the Hierarchical Rater Model

(HRM), which is essentially a 3-Level model in which the ratings of a rater are nested

within item responses, which in turn is nested within a person’s location on the

underlying continuum.

Specifically, at Level-l (which Patz and colleagues describe as the first stage

model), the model is defined by

log[—itik—] = logit[P(CJ-k = {'6’}, ,Xjkm E {QC-1”]

”i-l,jk

= 77ijk (1-10)

9k ‘51 “’41,

where Cjk is an ideal, unobserved, latent trait rating variable that describes person k’s

performance on itemj, which follows (any RT model, but in this case) the PCM (where

5,)- is decomposed into two components, i.e., 6,-1- = 51- + r such that 5]- is the overall
1:,"

l

attractiveness of itemj (6]- : i—Zdy- ); and 1,-1- is the response threshold ofbeing

i=1

attracted to category 1' rather than i— l , and are deviations from the overall attractiveness

l4



of itemj (61- )); and Xjkm is the signal detection model (see, e. g., Table 1) for rater m

who rates person k on itemj, which follows the Level-2 model described below. Note

I“ now describes the threshold of the ideal, latent rating 4' for itemj, rather than the

observed rating i. Also, note that 61- and 141- are considered fixed effects.
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Table 1. The Signal Detection Model for the Rating Probabilities ( p0,")
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Note. pan, is the probability that rater m rates the observed rating 1' given the

ideal rating 4 .

The Level-2 model (which Patz and colleagues described as the second stage

model) describes the relationship between one or more raters’ rating i and the ideal rating

category {jk (4' = 0,1,. . . , I) . The model is a discrete signal detection problem using a

matrix of rating probabilities pa," 2 P(rater m rates ilé'jk ) , as seen in Table 1. Although

the density of PG"! for each row in Table 1 make take any form, Patz and colleagues

used a normal density (see Patz, Junker, and Johnson (1999) for the pararneterization of

the normal density).

Finally, the Level-3 model (which follows from the HLM framework) defines 6k

as a random effect that is distributed as N (,u, 062 ).

To better understand the rater effects approach, the personality testing example is

referred to again. Recall in this example, that we have an applicant whom is responding

16



to an honesty exam, in which each item asks the applicant to select one of three

categories, negative, neutral, or positive. However, instead of the applicant selecting the

categories, for the rater effects approach, the applicant is asked to provide a response to

the open-ended question. And, for this response, a rater (or multiple raters) is asked to

rate the applicant’s response for each item as being in one ofthe aforementioned

categories. Thus, the rater effects approach suggests that the probability that an applicant

will fall into a particular category of feeling for a particular item depends not only on the

applicant’s honesty, but also the overall attractiveness of the item, and the threshold that a

_rat_er assigns a particular feeling 1' rather than i —l for each questionj.

Additionally, unlike the previous approaches, the rater effects approach models

the variation of the responses within persons and between persons by applying a

generalizability approach. Specifically, this approach attempts to measure the nested

effect of the rater’s ratings on the person’s item responses (see, e.g., the Level-2 model

depicted in Table 1). Additionally, as mentioned above, this effect is nested within the

Level-3 model, the person level model, which models the variation ofthe responses

between persons as random effects (6k ).

Unfortunately, although the rater effects approach effectively estimates the rater

effect for simulated data (e.g., Donoghue & Hombo, 2003; Patz, Junker, and Johnson,

1999; Patz, Junker, Johnson, & Mariano, 2002), the approach does not consider the

modeling ofpredictor variables for persons and items, and the approach does not

adequately account for the correlated relationships of the multivariate response vectors.

Additionally, researchers report that, when compared to non-hierarchical rater effects

models, the precision of estimates afforded by the HLM framework was not observed

17



when applying the model to real data. Also, researchers complained that the estimation of

the parameters was relatively “labor and time intensive” (Barr & Raju, 2003, p.41).

1-2-5. A Hieraghfirl, Univariate Genegrl Linear Model Apmoach

The last approach discussed here for modeling polytomous RT models in HLM

essentially extends the work ofKamata (1998, 2001), which proposed using a

hierarchical, univariate generalized linear model (GLM) to parameterize an RT model

for dichotomous items (i.e., the l-parameter model, Lord, 1980). To illustrate the

approach, the models are first defined using the notation typically applied in hierarchical

GLM. Then, the parameters are described in terms ofhow the model relates to the

traditional RT parameters.

The hierarchical, univariate GLM approach is defined by applying a multinomial

model using a baseline-category logit link function (Raudenbush & Bryk, 2002). The

reason for doing so is to illustrate the equivalence between the adjacent-category link

function and the baseline-category link function, which is used in the popular text by

Raudenbush and Bryk (2002) and briefly noted by Rijmen et al. (2003).

Specifically, the Level-1 model uses a regression-type formulation, and is defined

by

(1.11)
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where Irv-k is the probability that the observed response of person k on itemj falls in

category i; 7:11.], is the probability that the observed response ofperson k on itemj falls in

the ‘baseline’ category I; Xqik is the qth dummy variable for person k, with values 1

when q = j , and 0 when q at j for itemj; and, for person k, flqijk is the regression

coefficient of category i for itemj. Thus, for the Level-1 model, the category level model,

the regression coefficient ofcategory i for itemj ( flqijk ) measures the overall effect (i.e.,

mean effect) of category i for itemj, which one may notice is assumed to be fixed for

each category of each item (i.e., there are no random effects added to the Level-l model).

To model how the category effects behave across items, the Level-2 model, the

item level model, is defined. Specifically, for the PCM, the Level-2 model may be

defined as

I-1

flquk = 7q0jk + 1;)ka Wrijk

I—l

flqrjk = 7q0jk + Z 71ijkwlijk
i=0 (1.12)

[-1

.Bq,I—1,jk = 7q0jk + grlijkwlijk

1:

where, for person k, quJ-k is mean effect of itemj across categories i; 7ka is the effect

of itemj on a particular category i; and Wlijk is a dummy variable with values 1 if i' = i

for the jm item answered by person k, and 0 otherwise.
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In contrast, for the RSM, it is assumed that the effect of itemj on a particular

category i is equal for all items; hence, the constraint that 71,-”, = 711'1k = = 71m: = 71ik

is made, and the Level-2 model for the RSM becomes

[—1

flqz‘jk = 7:101]: + 2 7w. W111. , (1.13)

i=0

where 7q0jk is defined above; 711']: is the effect of itemj on a particular category i, which

is common across thej items; and wh-k is a dummy variable with values 1 if i' =i for the

jth item answered by person k, and 0 otherwise.

Continuing with the RSM (where analogous definitions apply to the PCM), the

Level-3 model, the person level model, models how the aforementioned effects behave at

the person level. Specifically, the Level-3 model is defined as

7q0jk = quo +“qjk (1-14)

7111: = 31.0 (1.15)

where ’1qu0 is the mean effect ofpersons on itemj; quk is the unique, random effect of

person k (i.e., uqik is the deviation ofperson k from the fixed, category intercept

(111010)); and 21,0 is the mean change in ’1qu0 for a particular category i, for all

persons.

However, in a testing environment, it is assumed that the unique effect (um-k) of

person k does not vary across the categories of an itemj. Hence, the effects are

constrained to be equal for each category 1' of each itemj, i.e.,
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quk = uqlk = = uQJk = uk , uk ~ N(0,03) . And, the Level-3 model for quJ-k

becomes

7q0jk =lqojo+uk, (1.16)

where quJ-k and ’1qu0 are defined above; and uk is the random effect ofperson k.

Thus, for the person level model, the mean effect of category i for itemj (,1thjo)

varies for each item, but is fixed for each person k. And, the unique effect ofperson k

(uk) on the mean effect of category i for itemj is constant for each ’1qu0- Lastly, the

effect of the item on a particular category i (Ah-O) , varies for each category i, but is fixed

for each person k (and constant across thej items).

However, the baseline category pararneterization implies that the regression

coefficient of category i for itemj is the mean effect of category i for the jth item from

the baseline category I, i.e.,

,6qu =/"3q.-,-k -fl”qzjk, (1.17)

But, rather than a baseline category pararneterization (such as that discussed by

Raudenbush and Bryk, 2002), popular polytomous RT models apply an adjacent-

category pararneterization (i.e., Agresti, 1996, 2002; Andrich, 1978; Hartzel et al., 2001;

Masters, 1982; Wright & Masters, 1982), e.g., see the RSM in Equation (1.4). Therefore,

the correct effect of interest is not the effect of category i for the j‘1‘ item from the

baseline category I (Equation (1.17)); rather, the correct effect is the effect of category 1'

for the jth item from the adjacent category i— l
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'6qu E '6qu ‘ ng,i-l,jk- (1-18)

#

This implies that to obtain the adjacent-category effect (kw-0) from the baseline-

category parameterizations, one must do the following:

'3qu 5 £qu ’ flqJ—le

= (fiqijk _‘fiquk )—(fiq,i—l,jk _fiquk) (1°19)

= flqijk -flq,.-_1,jk-

Taking the equations above, this suggests the following. The mean effect of

category i from the adjacent category i — 1 (Aqu0 ) , in the HLM framework, is analogous

to (the negative of) the location of a particular category i for itemj on the underlying

latent trait continuum (—6j ) , in the RT framework. Additionally, the effect of the item

on a particular category i (lb-0) , in the HLM framework, is analogous to (the negative

of) the threshold of a particular category i (—r,- ) , in the RT framework. Lastly, the

location ofperson k on the underlying latent trait continuum (6k ), in the RT framework,

is analogous to the unique effect ofperson k (uk ). In short, the parameters for the

traditional RSM are equivalent to the parameters in the hierarchical GLM in the

following manner:

6j=— quO (1.20)

n=-am azn

6,, = uk. (1.22)
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Therefore, in the personality testing example, the hierarchical GLM approach is

very similar to the random coefficients in a multinomial model approach in that the

probability that an applicant will be attracted to a particular feeling for a particular item

depends not only on the applicant’s honesty, but also the attractiveness that an applicant

will select a particular feeling i rather than i—l for each questionj. However, rather than

modeling the parameters directly like the random coefficients approach, the hierarchical

GLM approach models effects——that is, the overall attractiveness of an item as well as the

effect ofthe item on a particular category (i.e., the Level-2 model; Equations (1 . 12) or

(1.13)), while the honesty of an applicant is modeled using a unique effect that is treated

as random at the Level-3 model (Equation (1.16)).

Furthermore, like the random coefficients approach, the hierarchical GLM

approach can model person covariates; however, unlike the random coefficients

approach, the hierarchical GLM approach can also model predictors of item behaviors.

Since modeling person covariates and predictors of item behaviors are very similar for

the hierarchical, univariate GLM approach and the hierarchical, multivariate GLM

(which is the main focus ofthe paper), this discussion is left for Chapters 4, 5, and 6.

One limitation ofthe hierarchical univariate GLM approach is that the approach

does not adequately account for the correlated relationships of the multivariate response

vectors.
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Chapter 2. A Hierarchical Multivariate Generalized Linear Modeling Frarnework for

RT

2-1. The Hierarchical Multivariate Generalized Linear Model

As stated earlier, the purpose of this paper is to develop a framework for

modeling RT models in HLM such that traditional RT models may be extended in

various manners. This framework will not only attempt to develop models that avoid the

limitations of the previous models (i.e., polytomous RT models may be extended to

include person and item-specific covariates, and the correlation between categories of a

polytomous item may be accounted for), but the model is also advantageous to apply

because, as mentioned above, (1) models using HMGLM may currently be estimated

using existing software (e.g., SAS, 2001; STATA, 2000); (2) RT and HLM are unified

using a common notation; (3) score functions and information matrices (which may be

used for parameter estimation) are well-known under the HMGLM (e.g., see Fahrmeir &

Tutz, 2001); and (4) a broad class ofRT models within the HLM framework may be

estimated using a common method (e.g., maximum likelihood).

Using the notation typically applied in hierarchical GLM, the hierarchical models

for the HMGLM, which has its roots in the multivariate framework provided by Fahrmeir

and Tutz (2001), Gueorguieva (2001), and Hartzel et al. (2001), are defined. As

mentioned previously the models defined here in Chapter 2 may resemble those defined

recently by Tuerlinckx and Wang (2004); however, one reiterates that, unlike the

aforementioned authors, the models below are defrned by explicitly modeling the nested

levels. Specifically, the Level-l model defines the category level. The Level-2 model

defines the item level. And, the Level-3 model defines the person level. Finally, the
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combined model is defined. After the presentation of these models, the Rating Scale

Model (RSM; Andrich, 1978) and Partial Credit Model (PCM; Masters, 1982) are

defined within the HMGLM. For each of these definitions, to help ease the presentation,

one continues with the previous honesty exam example, and one illustrates how the

concepts behind each ofthe RT models transfers over to the HMGLM.

2-1-1. The Level-1 Model for the HMGLM

As mentioned above, the Level-l model for the HMGLM defines the Level-1

units, the categories of the items. To define the Level-1 model for the HMGLM, the

categorical responses i (i = 0,1, 2, ..., I) ofperson k (k =1, 2, 3, ..., K) to itemj (i =1, 2,

3, ..., J) are re-expressed as a dummy-coded, multivariate response vector

J’k =(5’ik-5’ik-J’ék-o-wi’fik)’ (21)

where

5’11: =(J’11k-y21kso-wmk )'

5’2k =(y12k’YZ2ka'wy12k), (22)

5’17: =(Y1Jk-J’2kaym )3

and

1 if response to itemj equals i

J’ijk ={ (2.3)
0 otherwise.

Note that if the multivariate response vector j’jk is a vector of 0’s, then category 0 was

chosen by person k for itemj. Here, category 0 was chosen to be the reference category to

be consistent with polytomous RT models; however, other reference categories can be
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utilized without loss of generality. Additionally, notice the multivariate response vectors

are one of the primary differences between multivariate hierarchical GLM and univariate

hierarchical GLM.

Another primary difference is that it is assumed that the J’ijk are conditionally

independent given the multivariate (not univariate) random effect ujk . If the sum of the

I

conditionally independent observations yijk for jijk is taken, i.e., yjk = Zyijk , then it

i=1

is also assumed that yjk are multinomially distributed with parameters

1:fl, =(n1jk,..2jk,...,n,J-K) (Hartzel, Agresti, & Caffo, 2001).

Thus, the conditional distribution f (yjk | ujk ) is a member ofthe multivariate

exponential family with multivariate means Ak , #2k , #3k , ..., ,qu . That is,

#11. =E(y1k IU1)="('lrk)

#21. =E(J’2k |u2)=h(fi21.)

#31. =E(y31. |u3)=h(rr3/.) (2.4)

ml. =E(.VJI. I”J)=h(”.lk)’

where [1(7)jk ) is a vector of inverse link fimctions

121(77):. )

h2('7jk), (2.5)

h] ('ljk)
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where 17jk is a vector of functions that describe the linear relationship of the fixed and

random parameters.

To obtain the desired form of a polytomous RT model, the vector of inverse link

functions are defined using the adjacent-category link function (Agresti, 1996, 2002)

”(’b‘k)

1.

exp[2 Uijk ]

 

hi (Ujk) = #jk 5 ”9'1. = 1 i=2. , (2-6)

Zexp[27hjk]

i=0 i=0

which is the probability rig-k ofperson k selecting category i (i = 0,1,...,i',...1) of itemj,

0

where 770jk =.-: 0; hence, exp[z ’h‘jk] = exp(770jk ) E 1.

i=0

Re-expressing the link firnction as the log-odds of person k responding to category

i rather than category i — 1 for itemj, the Level-l model for the HMGLM is obtained:

/ r \

6XP[2Wk J

i=0

1 i' )

... zexp 2...

log[—”k] = log 1:0 ,, 1:0 )

”i-1,jk

 

 

i-l \

exp ’Ii—1,jk

i=0 }

I {-1

z...[z.,.-.,.]
)\i=0 i=0
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€XP[Z’7.jk]
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(2.7)

-log 6x13(0011. +771jk +- - -+’7i—l,jk +7791.)

exP(’Iojk +0111. +---+77i-l,jk)

2(77017‘ “7117‘ +° ' '+’7i-1.j,k +77ijk)—(770jk +771jk +~ - -+'Ii-1,jk)

= ’lijk-

Specifically, the Level-l model for the HMGLM defines the log-odds ofthe

probability that person k will select category i rather than category i —l for itemj as

category effects

.. J .

log [—71—] = Z 1352):). . (2.8)
”i-l,jk j=1

where ,65; is the mean category effect ifperson k selects category i of itemj; and xjk is

a dummy variable with values 1 if person k answers itemj, and 0 otherwise.

Thus, like the Level-1 model for the univariate, hierarchical GLM approach, the

mean category effect (£52) non-randomly varies across each category i of each itemj

for each person k. Furthermore, the mean category effect (6;?) is influenced by the

effect of the particular item in which the categories are nested. The Level-2 model

describes these effects.
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2-1-2. The Level-2 Model for the HMGLM

Since the Level-1 model described the category effects for an item only if it has

been answered by person k, then like the Level-1 model, the Level-2 model is defined in

terms of the answered item as well. Specifically, the Level-2 model, the item-level model

for the HMGLM, is generally defined as

. I .

fl§zl=m,-.+zrl;w (29>
i =1

where, for person k, 70jk is the mean effect of itemj across categories i; 718.), is the

effect of itemj on a particular category i; and lek is a dummy variable with values 1 if

i' = i for the jth item answered by person k, and 0 otherwise. Recall 7701']. -=- 0. Thus, for

identifiability, 7190,?20

Thus, like the Level-2 model for the univariate, hierarchical GLM approach, the

Level-2 model defines how the category effects (65.2) behave when they are nested

within the item-level model. Specifically, the category effects vary non-randomly and

depend upon the mean effect of the item across the categories ( 7017:) and the effect of

the item on each category (71(1),).

2-1-3. The Level-3 Model for the HMGLM
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The person-level model for the HMGLM, the Level-3 model, defines how the

item effects behave when nested within persons. Specifically, the Level-3 model is

defined as

701']. =40jo+ujb (2-10)

719-}, = (1'2, (2.11)

where, for the j‘1‘ item that is answered by person k, 101-0 is the mean effect ofpersons

on itemj; ujk is the random effect ofperson k on the mean effect of itemj; and 218% is

the mean change in the 201-0 for a particular category of itemj, for all persons.

However in RT, we assume that the person effects are constant across items.

Thus, the following constraint is made

“1k =u2k =---=“jk =uk,

and the Level-3 model for the mean item effect becomes

70jk =Aoj0+uk, (2.12)

where 101-0 is defined above; and uk is the random effect ofperson k across items.

Thus, like the Level-3 model for the univariate, hierarchical GLM approach, the

Level-3 model defines the mean effect of the item (7011,) as depending upon the mean

effect of the item across all persons (101-0), and depending upon the unique effect of a

particular person k (uk ). Additionally, the Level-3 model defines the effect of the item

on a specific category (71(2) as being fixed for each person k (119%) .
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2-1-4. The Combined Model for the HMGLM

To obtain the combined model for the HMGLM, the models for Levels 1, 2, and 3

are combined

.. J I .

log[_£g£_]= Z[’10]0 +2119?)lek +uk}ljk. (2.13)

j=l”I _lsjk i=1

To obtain the matrix representation ofthe combined model, the following

matrices are defined:

B=(fll’BZ:---9BJ)',
(2.14)

where

1 2 1

Hence qjx defines the following linear relationships

1711. = ZrkB + eruk

712/. = ZZkB + “'2ch

’73). = Zski5 + “'3ka (2.16)

1711. = ZJkB + kauk9

where B is defined above and is a (p x 1) -dimensional matrix for the unknown

parameters (p) of the fixed effects; Zi1,Z,-2,Z,-3,. ..,ZU are (Ix p) -dimensional design

matrices for the fixed effects; uk are (p x1)-dimensional matrices for the unknown

parameters (p) ofthe random effects; and Wlk,W2k,W3k ,...,WJk are (Ix p) -

dimensional design matrices for the random effects.
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Lastly, the random effect u is assumed to be independent and identically

distributed with density g(u) , which is not restricted to any form. Here the density

g (u) is chosen to analogously follow traditional RT assumptions and previous

formulations of hierarchical RT models (e.g., Kamata, 1998, 2001; Lord, 1980;

Miyazaki, 2000)

u~MVN(0,2). (2.17)

(Note the dummy variable xJ-k in the above discussion represents the situation

where all persons respond to all items, i.e., the data are balanced. If the data are

unbalanced, then xjk may take on a similar coding scheme as that provided in Equation

(1.11) for the hierarchical, univariate GLM approach. That is, xjk becomes xqjk , and

represents the qth dummy variable for person k, with values 1 when q = j , and 0 when

q ¢j for itemj.)

2-2. A New Model 1: The Hierarchical Multivariate Generalized Linear-Partial

Credit Model (HMGL-PCM)

To illustrate the relationship between the HMGLM and traditional RT

parameters, the PCM is defined within the HMGLM. Since the PCM is defined within the

hierarchical framework ofthe HMGLM, the model can essentially be thought of as a new

model. This new model is named the Hierarchical Multivariate Generalized Linear-

Partial Credit Model (HMGL-PCM). For the HMGL-PCM, the reader should notice the

application of the HLM framework (i.e., the definition of model levels), which is not used
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by Tuerlinckx and Wang (2004) and provides a more natural way for conceptualizing the

hierarchical PCM.

The Level-1 model (the category level) for the HMGL—PCM is defined as

J i)

log[-fl—flijk——]= 2p“,Bjk)xjk, (2.18)

”i——l,jk j=1

where all terms are defined above.

The Level-2 model (the item level) is defined as

fl()=701k+Z}/ljkwlljka
(2.19)

where all terms are defined above.

Here, to see the relationship between the HMGL-PCM and traditional PCM, one

refers back to the honesty example. Recall, that in this example, an applicant is

responding to several polytomous honesty items by selecting a particular category, which

represents his/her feelings toward the item. Hence, for the HMGL-PCM, the probability

that an applicant is attracted to a particular feeling for a particular answered item depends

upon the overall attractiveness ofthe item ( 70jk ) , and how the attractiveness of the item

influences a particular feeling (71(2). Additionally, notice that the attractiveness of a

feeling for an item is nested within that item, as modeled from Level-1 to Level-2.

Continuing with the HMGL-PCM, the Level-3 model (the person level) is defined

70)]. = 4010 + uk, (2.20)

752. =28?» (2.21)
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where all terms are defined above.

The combined model for the HMGL-PCM is defined as

 

.. J 1 . .

1.,[ ]=Z[.,j,.z.,<;z,wg)..,),,, (2.2.)
7z'i-1,jk j=1 i=1

which reduces to the following for a particular category i of an itemj

log (l'Ji—] = 201.0 + 2(2) + uk. (2.23)

”i—1,jk

Here we can clearly see how the category effects fimction as the categories are

nested within items, which in turn are nested within persons. Specifically, the probability

that an applicant is attracted to a particular feeling for a particular answered item not only

depends upon the overall attractiveness ofthe item (701k ) , but also how the

attractiveness ofthe item influences a particular feeling (78.) ). In addition, as the Level-

3 model shows (Equations (2.20) - (2.21)), the overall attractiveness ofthe item (4010)

and the influence of an item on a particular feeling (11(2)) is fixed across persons.

Furthermore, as is commonly assumed in RT, the unique effect (uk) of an applicant

randomly varies across the different applicants (but remains fixed across items and across

feelings).

In short, the parameters of the l-[MGL-PCM are related to the parameters of the

traditional PCM in the following manner:

.3]. = 401-0, (2.24)
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ry- = — (1')). (2.25)

and

6k = uk . (2.26)

2-3. A New Model 2: The Hierarchical Multivariate Generalized Linear-Rating

Scale Model (HMGL-RSM)

Now the RSM is defined within the HMGLM, and this new model is named the

Hierarchical Multivariate Generalized Linear-Rating Scale Model (HMGL-RSM). Recall

from Section 1-2-1, that the RSM is simply a special case ofthe PCM. Hence, the model

definitions of the HMGL-RSM follow very closely to the HMGL-PCM. Again, the reader

should notice the application of the HLM framework (i.e., the definition ofmodel levels),

which is not used by Tuerlinckx and Wang (2004) and provides a more natural way for

conceptualizing the hierarchical RSM.

The Level-1 model (the category level) is

, (12L) _ J (i) .og m . _ Zfljkxjk, (2.27)

14,11. 1:1

where all terms are defined above.

The Level-2 model (the item level) is obtained by constraining the effect of an

(i

item on a particular category to be equal for all items (i.e., 71(1) = 712k = = 7(3) = 7(2)

. I . .

fl)” =ro,-.+. rffiwffi. (2.28)

35



where 70jk is defined above; 71(1) is the effect of the item on a particular category,

which again is equal for all items; and W102 is a dummy variable with values 1 if i' = i for

the jth item answered by person k, and 0 otherwise.

The Level-3 model (the person level model) is

70)1. = 10)0 + uk, (2.29)

71",? = 41%). (2.30)

where 201-0 and uk are defined above; and 21100) is the mean change in the 101-0 for a

particular category i, for all persons.

In our example, the parameters ofthe I-IMGL- RSM may be interpreted

accordingly. The probability that an applicant is attracted to a particular feeling for a

particular answered item depends upon the overall attractiveness of the item (7011. ) , and

the common influence of the attractiveness of the items on a particular feeling (71(2).

Additionally, the overall attractiveness of the item and the influence ofthe items on a

particular feeling is fixed across persons (201-0 and 11%) , respectively). Lastly, the unique

effect of an applicant on the item randomly varies across the different applicants (uk ).

The combined model for the HMGL-RSM is defined as

.. J l . .

10444]:z[4.o+242w1:2+.}. (m
717—ij j=1 i=1

which reduces to the following for a particular category i of an itemj
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 1og( ”'7" )= 201-0 + 2100) + uk. (2.32)

”i-l,jk

In short, the parameters of the HMGL-RSM are related to the parameters of the

traditional RSM in the following manner:

5]. = 401-0, (2.33)

q=-42. a3o

and

9,, = uk. (235)

2-4. Assumptions

Like non-hierarchical, univariate GLM, there are distributional and structural

assumptions of the HMGLM that need to be satisfied for the model to hold. As

mentioned above, the distributional assumption is that the yyk are conditionally

independent given the random effect uk (i.e., f (yjk Iuk )), and the conditional

distribution f (yjk luk) is a member of the multivariate exponential family. Here, it is

assumed to be multinomially distributed with parameters 1:jk =(7r1jk , flzjk ,. . . , 7:1“) .

The structural assumption is given by the Level 1 model; and, that is, the

expectation of f (yjk | uk) (i.e., #11.) is determined by a vector of linear predictors

(Equation (2.16)) in the form of a vector of inverse link functions, 11(7)jk ). For the

purposes here, 11(1)jk ) is chosen to be the logit form of the adjacent-categories link
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function (Equation (2.6); Agresti, 1996, 2002; Hartzel, Agresti, & Caffo, 2001). Agresti

(2002) shows this firnction to be the form of the RSM and PCM.

Regarding the hierarchical nature ofthe HMGLM, recall from above that the

random component u requires certain distributional assumptions. One ofthe advantages

of applying the HMGLM is that u is not restricted to be a specific distribution. For the

purposes here, RT parameters are being modeled, and, recall, u is equivalent to the

location ofperson k on the underlying continuum. In RT, it is customary that the

locations of all persons on the underlying continuum are assumed to be normally

distributed (e.g., Cheong & Raudenbush, 2000; Kamata, 1998, 2001; Lord, 1980;

Miyazaki, 2000). It is also customary in HLM, to model the random components as being

multivariate normally distributed (Raudenbush & Bryk, 2002). Thus, although not

necessary for the HMGLM, here previous customs were followed and u was assumed to

be multivariate normally distributed (Equation (2.17)).

Additionally in traditional RT methodology, the scale of the person and item

parameters is indeterminate (Lord, 1980). For the HMGLM, this is resolved in the

following manner. Recall that the HMGLM begins by modeling category effects of

person k on category i of itemj. This suggests that ,6)? measures the effect of the

category from the grand mean

,6)” = a0 + (:92, (2.36)

I

where do is the grand mean of the person measures; and for person k, 515,? is the

regression coefficient for category i of itemj.
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Also recall that, after several hierarchical levels are modeled, the unique effect of

person k is modeled. This suggests that the unique effect ofperson k is the residual of

person k from the grand mean ofthe person measures

:52.) = “0 + a)? + “k , (237)

where 050 and a)? are defined above; and uk is the unique effect ofperson k. In other

words, uk is the deviation ofperson k from do.

In order to resolve the indeterminacy of the scale for the HMGL-RSM and -PCM,

u is assumed to be N(0, 2) . Notice if the coefficients are assumed to be independent,

this is equivalent to saying that ,6 ~ N(0,2). Furthermore, since the coefficients are

measured effects from the grand mean, and the distribution and mean of ,6 is chosen to

be normal and zero, respectively, then this is equivalent to saying that the grand mean,

which again is centered on person measures, is zero, and the distribution is normal.

Therefore, this resolves the indeterminateness of the scale by centering on person

measures, in which the center of the normally distributed measures is zero.

Also in RT, it is assumed that, beyond the characteristics (i.e., parameters) of an

item, success on an item only depends on the person’s location on the underlying

continuum (19k = uk ). In other words, it is assumed that the test is unidimensional—

success depends on the one dimension (e.g., honesty), and not on other traits (i.e., the test

is not multidimensional) (Lord, 1980). From unidimensionality, it follows that the items

are assumed to be locally independent. That is, the conditional probability of success on

one particular item, given the person’s location on the underlying continuum, is equal to

the conditional probability of success on all other items, given the person’s location on
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the underlying continuum (Lord, 1980). By using the HMGLM, the assumption of

unidimensionality is relaxed. For example, below one presents extensions of the HMGL-

RSM in which person covariates (Chapter 4) and predictors of item behaviors for the

overall item location (Chapters 5 and 6) are modeled.

By modeling the aforementioned, this implies the definition of local independence

is slightly altered for the HMGL-RSM and -PCM. That is, the definition of local

independence is now the following: the conditional probability of success on one

particular item, given the person’s ability and the covariates, is equal to the conditional

probability of success on all other items, given the person’s ability and the covariates

(c.f., the definition of local independence above).

Note local independence is satisfied for the HMGL-RSM and -PCM because the

item locations are assumed to be fixed at the person level. In other words, if the item

locations varied randomly or non-randomly, then the conditional probability of success

on one particular item, given the person’s ability and the covariates, would go_t

necessarily equal the conditional probability of success on all other items, given the

person’s ability and the covariates. (This suggests that the HMGL-RSM and -PCM may

be used to examine violations of local independence by modeling item covariates that

examine how the item locations vary. Although this goes beyond the scope of this

dissertation, this type of analysis is similar to those presented in the following Chapters.)

2-5. Estimation

Estimation of the parameters for the HMGL-RSM and -PCM may be

accomplished using frequentist or Bayesian methods. For examples ofMonte Carlo
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methods see Fahrmeir and Tutz (2001) and Hartzel et al. (2001). For examples of

Bayesian procedures see Fahrmeir and Tutz (2001), Fox and Glas (1998), and Maier

(2000, 2002). Fortunately, if one prefers frequentist methods, then the parameters ofthe

HMGL-RSM and -PCM may be estimated by readily available popular statistical

software packages, such as SAS (using PROC NLMD(ED) and STATA (using

GLLAMM; Rabe-Hesketh, Pickles, & Skrondal, 2001). Specifically, estimates of the

parameters are obtained by maximizing an approximation to the likelihood integrated

over the random effects, where the integral approximations are obtained via adaptive

Gaussian quadrature and the optimization technique is carried out using a dual quasi-

Newton algorithm (SAS, 2001) or a modified Newton-Rapheson algorithm (Rabe-

Hesketh, Pickles, & Skrondal, 2001). Approximate standard errors of the successfully

converged parameter estimates are based on the second derivative matrix of the

likelihood function (SAS, 2001) or the delta-method (Rabe-Hesketh, Pickles, & Skrondal,

2001).

Unfortunately, popular software such as PROC NLMIXED does not estimate

multiple random effects. For example, for the models given above, only the person

parameter ((9,( ) may be considered random (uk) while the item and category parameters

(5}, 2'.) may be considered fixed (23%,10)0, 211(2)). If one wishes to treat the item

parameters as random, then one may use GLLAMM or other methods (such as MCMC or

Bayesian estimation).
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Chapter 3. Parameter Recovery and Example

3-1. Simulation Design

The following section describes the design for a simulation study. Specifically,

observations were simulated using the RSM. Next, parameter estimates ofthe RSM and

HMGL-RSM were obtained with Winsteps (1999) and SAS (2001), respectively. Finally,

A comparison between the analyses of the parameter recovery rates follows. Because of

computational constraints (i.e., see Section 7-2-3), the PCM was not simulated. However,

because ofthe similarity between the RSM and PCM, similar results would be expected

(e.g., see Section 3-3).

3-1-1. Disign

The design of the simulation is as follows. Observations were simulated using the

RSM. This model was chosen because it is commonly used when scaling polytomous

data, such as those found in questionnaire data (e.g., Dodd, 1990; Smith & Johnson,

2000; Zhu, Updyke, & Lewandowski, 1997) and achievement data (e.g., Michigan

Education Assessment Program, 2003). For the study, simulees (K = 100, 500, or 1000)

responded to polytomous items (J = 10 or 25), where each item consisted of 3 categories i

(i = 0, 1, 2). The number of simulees, items, and categories were chosen to follow typical

data from a questionnaire (e.g., Dodd, 1990; Smith & Johnson, 2000; Zhu, Updyke, &

Lewandowski, 1997) or a large-scale assessment (e.g., US. Department of Education,

1999)

Item parameters were also selected to represent parameter estimates from typical

polytomous data. Specifically, item parameters were selected from the RT scaling of a
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confidential readiness assessment. For this assessment, there were three sub-scales that

measured the personal and social development (16 items), language (12 items), and

mathematical thinking (14 items) of a child. For each item, a particular scenario was

observed with the child, and a rater would then proceed to score the child in one of three

categories, a lower, middle, and higher category, each representing the performance of

that child on that particular item. For the purposes of this dissertation, only the first 25

items were used. Table 2 displays the item parameters used in the simulation. (Note

although 1'1 and r2 appear to be extreme, these are typical values seen in educational

questionnaires because it is common in education that the middle categories, as opposed

to the extreme categories, are frequently used. For example, see Dodd (1990), Smith and

Johnson (2000), and Zhu, Updyke, and Lewandowski (1997).)

Table 2. Item Parameters Used in the Simulation

 

 

 

RSM

Simulation 5 .
1

Item

I -0.09

2 0.02

3 -0.92

4 -1.57

5 -0.81

6 -0.74

7 -0.81

8 -0.01

9 0.07

10 -0.85

l l -l .28

12 -1.02

13 -1.14

14 -1.39

15 0.54

16 -0.32
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Table 2 (cont’d)

17 -0.09

18 0.11

19 -015

20 -042

21 0

22 0.51

23 0.52

24 0.73

25 0.79

.1 -224

.2 2.24
 

Note. 6j : location

for itemj. {2'1 and 12 }

= thresholds l and 2.

To produce the simulated responses under the RSM, each simulee k was randomly

assigned a location 19k , 19 ~ N(0, 1), and each itemj was randomly assigned a set of item

parameters. IfJ= 10, then the item parameters were randomly selected to be those that

appear for the first 10 items in Table 2; otherwise, J = 25 and all items were used.

Using 6,, , (5j , and r,- , three response probabilities for each simulee by item

combination were produced, POjk (t9) , P1jk ((9) , and szk (6’). If

i' i'+l

Zli'jk (0) < Yjk S 2 39-16(9) , then simulee k was assigned a response of i' +1 for itemj;

0 0

otherwise a response of 0 was assigned. Note that i' = 0, 1; and Yjk was a single,

random number for each j x k combination, Y ~ U(0, 1) .

The simulation procedure utilized a fully crossed 3 x 2 factorial design that

simulated 6 conditions. Each administration was iterated 50 times producing 300 unique
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response data matrices. The number of iterations was chosen because Kamata (1998)

showed this to be a reasonable number for obtaining stable estimates. S-Plus (2000) was

used to generate all data.

3-1-2. An_alyis

PROC NLMIXED ofSAS (2001) was used to estimate the person and item

parameters for the HMGL-RSM, while WINSTEPS (1999) was used to estimate the

person and item parameters for the RSM. An example ofthe SAS code for the HMGL-

RSM is provided in Appendix A. (An example of the SAS code for the HMGL-PCM is

provided in Appendix B.) An example for the input data structure is provided in

Appendix C. To investigate the accuracy of the parameter estimates for the RSM and

HMGL-RSM, the root mean square error (RMSE) for ya , Z , 51- , and r,- was obtained

over the iterations for each condition. Specifically, the RMSE was obtained by

 

. 1N . 2
RMSE(w)= "NEW—w") , (3.1)

n=l

where the maximum number of n iterations was N = 50; and a) is an arbitrary parameter

representing either #9 , X , 5j , or ri.

3-2. Parameter recovery results

Below, the descriptive statistics are presented for 19 for the 50 iterations of each

condition. Recall, that 61- and ti were specified and shown in Table 2. Also, the results

for the mean and standard deviations of the parameter estimates for 50 iterations for all
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conditions are displayed and discussed. Lastly, the results of the analysis for recovering

the parameters are presented.

3-2-1. Descriptive Statistics

The results ofthe descriptive statistics for 0 and Z of 100, 500, and 1000

persons are presented in Table 3. As can be seen, the sampling distribution of #9 was

centered on or near zero with a small standard error (which decreased as persons

increased, as would be expected). Additionally, the sampling distribution of ,u): was

centered on or near one with a small standard error (which decreased as persons

increased, as would be expected). These findings suggest that the distribution of 0 was

simulated very well for all conditions.

Table 3. Mean and Standard Error of 0 and X for the Simulated 100, 500, and 1000

Persons

 

  

 

6 2

K M SE M SE

100 -0.01 (0.11) 0.98 (0.06)

500 0.01 (0.05) 1.00 (0.03)

1000 0.00 (0.03) 1.00 (0.02)
 

Note. K = Number of simulated individuals. M

= Mean. SE = Standard error.

Displayed in Tables 4 and 6, and 5 and 7 are the mean and standard deviations of

the parameter estimates for the RSM and HMGL-RSM, respectively. As can be seen for

both the RSM and HMGL-RSM, the standard deviations of the estimates are similar
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across conditions. Furthermore, the standard deviations are fairly low and decrease as the

number ofpersons increase. This suggests that WINSTEPS and PROC NLMIXED obtain

relatively consistent estimates ofthe HMGL-RSM parameters.

As for the mean ofthe estimates, in general, the estimates obtained by

WINSTEPS for the RSM appear to resemble the estimates obtained by PROC

NLMIXED for the HMGL-RSM (c.f., Table 2). Below, in Section 3-2-2, the RMSE is

examined.

Table 4. Mean and Standard Error ofthe Parameter Estimates for the RSM when J = 10

 

 

 

100 500 1000

M SE M SE M SE

51 -0.21 (0.28) -0.13 (0.13) -0.11 (0.08)

32 0.01 (0.24) -0.01 (0.10) 0.02 (0.08)

53 -O.98 (0.31) -103 (0.14) -103 (0.09)

54 -1.67 (0.28) -1.75 (0.12) -175 (0.09)

55 -0.93 (0.23) -093 (0.13) -091 (0.08)

36 -0.84 (0.23) -0.83 (0.1 1) -O.83 (0.10)

57 —0.90 (0.27) -091 (0.13) -0.88 (0.09)

38 -0.05 (0.23) -0.05 (0.12) 0.00 (0.08)

59 0.05 (0.25) 0.05 (0.13) 0.09 (0.08)

510 -094 (0.23) -094 (0.13) -0.93 (0.08)

r“, -2.53 (0.12) -2.53 (0.07) -252 (0.04)

52 2.53 (0.12) 2.53 (0.07) 2.52 (0.04)

pé 0.00 (0.01) 0.00 (0.01) 0.00 (0.00)

Zé 1.36 (0.12) 1.37 (0.05) 1.36 (0.03)
 

Note. (100, 500,1000} = Number of simulated individuals.

(51,32,...,(§10} = location for items 1 — 10. {fljz} = thresholds l

and 2. ,ué = Mean person location. Zé= Standard deviation of the

person locations. M = Mean. SE = Standard error.
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Table 5. Mean and Standard Error of the Parameter Estimates for the HMGL-RSM when

 

   

 

J = 10

100 500 1000

M SE M SE M SE

31 -0.18 (0.26) .011 (0.12) -009 (0.07)

52 0.01 (0.22) 0.00 (0.09) 0.02 (0.07)

53 -0.88 (0.28) -0.92 (0.13) -0.93 (0.08)

54 -1.51 (0.25) -1.57 (0.10) -1.57 (0.08)

55 -O.84 (0.21) -O.84 (0.12) -0.82 (0.07)

56 -0.76 (0.21) -0.75 (0.10) -075 (0.08)

57 -0.81 (0.24) -0.82 (0.12) -079 (0.08)

38 -0.04 (0.21) -004 (0.11) 0.00 (0.08)

59 0.05 (0.22) 0.04 (0.11) 0.08 (0.07)

510 -0.85 (0.21) -O.84 (0.11) -0.84 (0.07)

.3 -2.25 (0.10) -225 (0.05) -224 (0.03)

£2 2.25 (0.10) 2.25 (0.05) 2.24 (0.03)

#6 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

zé 0.99 (0.12) 1.00 (0.05) 1.00 (0.04)
 

Note. {100,500,1000} = Number of simulated individuals.

(51,52,...,310} = location for items 1 — 10. (f1,f2} = thresholds l

and 2. p6 = Mean person location. 263: Standard deviation of the

person locations. M = Mean. SE = Standard error.

48



Table 6. Mean and Standard Error of the Parameter Estimates for the RSM when J = 25

 

   

 

100 500 1000

M SE M SE M SE

51 -0.19 (0.27) -0.12 (0.12) -010 (0.08)

52 0.02 (0.22) 0.00 (0.10) 0.02 (0.07)

5‘3 -092 (0.30) -0.96 (0.13) -0.96 (0.08)

54 -157 (0.24) -1.63 (0.10) -1.64 (0.08)

55 -0.87 (0.23) -0.87 (0.12) -O.85 (0.07)

56 -079 (0.21) -0.78 (0.10) 078 (0.08)

37 -0.84 (0.25) -0.85 (0.12) -0.82 (0.08)

53 -004 (0.22) -004 (0.11) 0.00 (0.08)

59 0.05 (0.23) 0.05 (0.12) 0.08 (0.07)

510 -0.88 (0.21) -0.88 (0.11) -0.87 (0.07)

3“ -129 (0.24) -133 (0.12) -133 (0.07)

512 -1.10 (0.25) -109 (0.12) -1.05 (0.09)

513 —1.14 (0.22) -120 (0.14) -1.19 (0.09)

514 —1.41 (0.24) -1.44 (0.08) -1.45 (0.08)

515 0.58 (0.26) 0.56 (0.10) 0.56 (0.07)

316 -O.36 (0.26) -033 (0.12) -032 (0.10)

517 -005 (0.20) -0.09 (0.10) -0.11 (0.07)

513 0.10 (0.26) 0.10 (0.12) 0.11 (0.08)

519 -0.13 (0.25) -0.17 (0.13) -O.16 (0.07)

520 -044 (0.21) -044 (0.1 1) -0.45 (0.09)

521 0.03 (0.25) 0.00 (0.11) 0.00 (0.08)

522 0.50 (0.25) 0.54 (0.10) 0.50 (0.09)

523 0.54 (0.24) 0.53 (0.11) 0.54 (0.09)

524 0.80 (0.25) 0.76 (0.10) 0.77 (0.07)

525 0.85 (0.26) 0.79 (0.10) 0.82 (0.08)

£, -2.36 (0.06) -235 (0.03) -234 (0.02)

£2 2.36 (0.06) 2.35 (0.03) 2.34 (0.02)

”(9 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

:6. 1.13 (0.08) 1.14 (0.04) 1.13 (0.02)
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Table 6 (cont’d)

 

Note. {100,500,1000} = Number of simulated individuals.

(61,52,...,625} = location for items 1 - 25. (f1,f2} = thresholds 1

and 2. ,ué = Mean person location. 29*: Standard deviation of the

person locations. SE = Standard error.

Table 7. Mean and Standard Error ofthe Parameter Estimates for the HMGL-RSM when

 

 

 

J=25

100 500 1000

M SE M SE M s13

31 -019 (0.26) -009 (0.11) -009 (0.07)

52 0.02 (0.21) 0.02 (0.09) 0.02 (0.07)

53 -0.89 (0.28) -091 (0.13) -093 (0.08)

54 -1.52 (0.23) -1.56 (0.10) -1.58 (0.07)

55 -0.84 (0.22) -0.82 (0.12) -0.82 (0.07)

56 -0.76 (0.20) -0.73 (0.10) —0.75 (0.08)

57 -O.81 (0.24) -O.80 (0.12) -079 (0.08)

58 -004 (0.21) -002 (0.11) 0.00 (0.08)

59 0.05 (0.22) 0.06 (0.11) 0.08 (0.07)

510 -0.85 (0.20) -O.82 (0.11) -0.84 (0.07)

5“ -124 (0.23) -1.27 (0.11) -l.28 (0.07)

512 -1.06 (0.24) -1.03 (0.11) -1.01 (0.09)

513 -1.10 (0.21) -1.14 (0.13) -1.15 (0.09)

514 -l.36 (0.23) -137 (0.07) -139 (0.08)

515 0.56 (0.25) 0.56 (0.09) 0.54 (0.07)

316 -035 (0.25) -030 (0.11) -0.31 (0.09)

317 -0.04 (0.19) -007 (0.09) -0.11 (0.07)

513 0.10 (0.25) 0.12 (0.12) 0.11 (0.07)

5‘19 -012 (0.24) -0.15 (0.12) -O.16 (0.07)

520 -042 (0.20) -0.40 (0.1 1) -043 (0.08)

521 0.03 (0.24) 0.02 (0.1 1) 0.00 (0.08)
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Table 7 (cont’d)

522 0.48 (0.24) 0.55 (0.10) 0.49 (0.08)

523 0.52 (0.23) 0.53 (0.10) 0.52 (0.09)

524 0.77 (0.24) 0.76 (0.10) 0.75 (0.07)

525 0.82 (0.25) 0.78 (0.10) 0.79 (0.08)

£1 -2.26 (0.06) -225 (0.03) -224 (0.02)

£2 2.26 (0.06) 2.25 (0.03) 2.24 (0.02)

#6., 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)

zé 0.99 (0.08) 1.00 (0.04) 1.00 (0.02)

 

159$ {100, 500,1000} = Number of simulated individuals.

(61,52,...,525}= location for items 1 — 25. (f1,f2} = thresholds l

and 2. ya = Mean person location. Xé= Standard deviation ofthe

person locations. SE = Standard error.

3-2-2. _R_M_S§

The results of the RMSE for [.19 , Z , 61- , and r,- of the RSM and HMGL-RSM

when persons respond to 10 and 25 items are provided in Tables 8 and 9. For both the

RSM and HMGL-RSM, trends indicated that as persons increased from 100 to 1000, the

RMSE generally decreased for #6 , 2 , 6]- , and r,- . This is expected because as the

persons increase there were more observations from which to estimate the person and

item parameters.

Additionally as one case see, although the RMSE decreases for both the RSM and

HMLG-RSM, the RSME is somewhat higher for the RSM estimates. This is particularly

the case for I], 12 , and 29, when persons responded to 10 items. This probably occurs

because, when using WINSTEPS to estimate these parameters, more items are needed to

obtain more precise estimates. In contrast, notice that as more items are estimated the
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RMSE does not decrease for 29 for the HMGL-RSM; rather the RMSE remains fairly

stable. This occurs because 29 of the HMGL-RSM is the variation between the

empirical Bayes estimates of the random effect ofpersons. As discussed by Raudenbush

and Bryk (2002), and shown here, this estimate depends on the number of units ofthe

random effects, not the number of fixed effects, in this case, the number of items.

Table 8. RMSE for the RSM and I-IMGL-RSM across 10 Items

 

  

  

 

RSM HMGL-RSM

K K

100 500 1000 100 500 1000

.5] 0.30 0.13 0.08 0.27 0.12 0.07

52 0.24 0.10 0.08 0.21 0.10 0.07

53 0.32 0.17 0.14 0.28 0.12 0.08

.54 0.29 0.21 0.20 0.25 0.10 0.08

.55 0.26 0.18 0.12 0.21 0.12 0.07

56 0.25 0.14 0.13 0.20 0.10 0.08

.57 0.28 0.17 0.11 0.24 0.12 0.08

68 0.24 0.12 0.08 0.21 0.11 0.08

59 0.25 0.13 0.08 0.22 0.11 0.07

510 0.25 0.15 0.11 0.21 0.11 0.07

2'1 0.31 0.30 0.28 0.10 0.05 0.03

.2 0.31 0.30 0.28 0.10 0.05 0.03

#0 0.01 0.01 0.00 0.01 0.01 0.01

29 0.37 0.37 0.36 0.12 0.05 0.04
 

Note. K = Number of simulated persons. (61,62, . . ,510} =

location for items 1 — 10. {11,12} = thresholds l and 2. ”6!

= Mean person location. 20: Standard deviation of the

person locations.
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Table 9. RMSE for the RSM and HMGL-RSM across 25 Items

 

 
 

  

 

RSM HMGL-RSM

K K

100 500 1000 100 500 1000

51 0.28 0.12 0.08 0.27 0.1 1 0.07

.52 0.22 0.10 0.07 0.21 0.09 0.07

.53 0.29 0.13 0.09 0.28 0.13 0.08

.54 0.24 0.12 0.10 0.24 0.10 0.07

.55 0.24 0.14 0.08 0.22 0.12 0.07

56 0.21 0.11 0.09 0.20 0.10 0.08

57 0.25 0.12 0.08 0.23 0.12 0.08

.38 0.22 0.11 0.08 0.21 0.10 0.08

59 0.23 0.12 0.07 0.22 0.11 0.07

510 0.21 0.11 0.07 0.20 0.11 0.07

.511 0.24 0.13 0.09 0.23 0.11 0.07

.512 0.26 0.14 0.09 0.24 0.11 0.09

513 0.22 0.15 0.10 0.22 0.13 0.09

514 0.24 0.10 0.10 0.23 0.07 0.08

515 0.26 0.10 0.07 0.25 0.09 0.07

516 0.26 0.12 0.09 0.25 0.12 0.09

.317 0.20 0.10 0.08 0.20 0.09 0.07

613 0.25 0.12 0.08 0.24 0.12 0.07

.519 0.25 0.13 0.07 0.24 0.12 0.07

.520 0.21 0.11 0.09 0.20 0.11 0.08

521 0.25 0.11 0.08 0.24 0.11 0.08

.522 0.25 0.11 0.09 0.24 0.11 0.08

523 0.24 0.11 0.09 0.23 0.10 0.08

524 0.26 0.10 0.08 0.24 0.10 0.07

.525 0.26 0.10 0.08 0.25 0.10 0.07

.1 0.13 0.11 0.10 0.06 0.03 0.02

.2 0.13 0.11 0.10 0.06 0.03 0.02

#9 0.00 0.00 0.00 0.01 0.01 0.01

:9 0.15 0.14 0.13 0.12 0.05 0.04
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Table 9 (cont’d)

 

Etc; K = Number of simulated persons. (61,62, ..,625} =

location for items 1 — 25. (71,72) = thresholds 1 and 2. #9-

= Mean person location. Zg= Standard deviation of the

person locations.

3-3. Example

Below, an example analysis is presented using both the HMGL-RSM and -PCM.

The purpose is to illustrate the basic concepts underlying these two models, as well as to

illustrate the differences between the two models.

3-3-1. M

The design ofthe analysis is as follows. Five hundred respondents were randomly

selected from a larger sample of students that responded to a confidential readiness

assessment. (Note this was the same assessment that was simulated in Section 3-1.) In

this sample, 46% had parents with high SES (SES = 1); 44% had parents with middle

SES (SES = 2); and 10% had parents with low SES (SES = 3). 56% were male, and 44%

were female. Additionally, approximately less than 1% were age 5; 23% were age 6; 65%

were age 7; 12% were age 8; and less than 1% were age 9. Lastly, less than 1% were

Asian; 42% were African-American; 2% were Hispanic; and 56% were Caucasian.

For the purposes of this illustration, only the first 10 items of the assessment were

used. (Note each item measured the person’s personal and social development.)

Additionally, only those respondents who answered each item and whose parents
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provided their SES were used. As illustrated above, the sample and item sizes were

adequate to obtain relatively precise parameter estimates.

3-3-2. £11193

To analyze the responses ofthe students, PROC NLMIXED of SAS (2001) was

used to estimate the person and item parameters for the HMGL-RSM and -PCM.

Comparison between model fit is achieved using the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC). Manalo (2004) and Singer (1998) shows these

measures to be adequate for judging model fit in HLM analyses.

3-3-3. Results

The results of the analysis for the HMGL-RSM and -PCM are presented in Table

10. As can be seen, 31 - 510 , ”é , and 2% are similar between the two models.

Additionally, in - filo are similar across the ten items for the -PCM. Lastly, notice in -

filo are also generally similar to £1 and £2 for the -RSM.

To determine which model better fits the data, the AIC and BIC are examined. As

shown, the AIC is lower for the HMGL-PCM than the -RSM, but the BIC is lower for the

HMGL-RSM than the -PCM. This suggests that the AIC indicates the HMGL-PCM as

being a better fit for the data, while the BIC indicates the HMGL-RSM as being the better

fit. However, focusing on the information weights, which act similar to an effect size in

that measures are normalized and models can be compared on a common (probabilistic)

scale (formulas can be found in Bumham and Anderson (2002)), we see that the

information weights for the HMGL-RSM and -PCM are .11 and .89 for the AIC, and 1.00
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and 0.00 for the BIC. Since higher values indicate better fit, and given the larger disparity

in the weights between the BIC than the AIC, and because the BIC compensates for the

large sample size and the AIC does not, the BIC might give a better representation of the

model fit for the two models. Hence, using the BIC, it appears that the HMGL-RSM fits

the data better. This suggests that the thresholds (721') are common across items (i.e.,

ry- = ri ), and items share common thresholds.

Table 10. Parameter Estimates for the HMGL-RSM and -PCM

 

 

 

RSM PCM

Est. SE Est. SE 2'1]. 2'2j SE(1'21-)

51 0.49 (0.16) 0.48 (0.14) -2.10 2.10 (0.09)

52 0.75 (0.16) 0.72 (0.15) -2.03 2.03 (0.09)

63 -0.28 (0.16) -0.28 (0.14) -2.00 2.00 (0.08)

64 -0.92 (0.16) -0.93 (0.14) -2.22 2.22 (0.07)

55 -0. 12 (0.16) -0.12 (0.14) -2.05 2.05 (0.08)

56 0.03 (0.16) 0.04 (0.14) -2.22 2.22 (0.08)

67 -0.22 (0.16) -0.22 (0.14) -2.69 2.69 (0.09)

68 0.79 (0.16) 0.85 (0.15) -2.39 2.39 (0.10)

69 0.87 (0.16) 0.81 (0.15) -1.87 1.87 (0.09)

610 -0.04 (0.16) -0.05 (0.14) -2.09 2.09 (0.08)

2'1 -2.15 . - - - - -

2'2 2.15 (0.03) - - - - -

#0 -0.01 . -0.01 .

20 2.80 (0.12) 2.82 (0.12)

AIC 7146.7 7142.6

BIC 7201.5 7273.2
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Table 10 (cont’d)

 

Note. {51,62,...,510} = location for items 1 — 10. (r1,r2} = thresholds l and 2

for the -RSM. {r11312]) = thresholds 1 and 2 for itemj of the -PCM. ya =

Mean person location. Zg= Standard deviation of the person locations. AIC =

Akaike Information Criterion. BIC = Bayesian Information Criterion. Est. =

Estimate. SE = Standard error.

To illustrate the interpretation of 9 for the HMGL-RSM (which is similar for the

-PCM), one focuses on an arbitrarily chosen respondent. For this respondent, 9 = —2.36

logits. Note although a rater selected the categories for the respondent, assume (for this

example and the following examples) that the respondent made the selection for himself

or herself. Thus, on the underlying continuum, notice this person’s location is much

lower on the scale than the overall attractiveness of, say, item 1 (3] = .49). As shown

below, for this item this suggests that the respondent is more likely to be attracted to the

lower categorical responses than the higher categorical responses.

To determine the probability that this respondent will select category 0, 1, or 2,

one refers back to Equations (2.6) and (2.32)-(2.35). For item 1,

...,, = ”PM = .67
ll’

 

 

exp(—2.36—.49-(—2.15)) = 33

w
”11:

exp([—2.36-.49-2.15]+[—2.36—.49—(—2.15)])

”21 = =° ’
11/

 

where
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1,11 = exp(O) +

exp(-2.36 — .49 -(—2.15)) +

exp([-2.36—.49—2.15]+[—2.36—.49—(-2.15)])

= 1.50.

This suggests that, for item 1, the probability that this respondent will select category 0 is

.67, which is approximately double the probability of selecting category 1. As for

category 2, the respondent has a probability of0 of selecting this category.
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Chapter 4. Extending the HMGL-RSM To Include Person Covariates

4-1. The HMGL-RSM with Person Covariates

As seen in Chapter 3, one advantage of applying the HMGLM to model the RSM

is that the it affords the opportunity to obtain better precision for the estimates of the

person and item parameters. However, this is not the only advantage. As mentioned

previously, another advantage—the primary focus of this paper—is that by modeling the

RSM in the HMGLM, the user may posit a model that includes covariates. In this

chapter, the inclusion of covariates at the person level is discussed. This form of the

HMGL-RSM may be especially important in accountability investigations in which the

user is interested in the location of student, after controlling for the effects of a covariate

(e. g., Stone and Lane (2003)).

To model the HMGL-RSM with person covariates, one follows the previous

definitions ofthe HMGL-RSM (Section 2-2), in which the category is nested within the

item, which in turn is nested within the person. However, now covariates at the person

level are included.

4-1-1. The Level-1 Model with Person Covariates

The Level-l model (the category level) is defined as

.. J .

log[—flU-k—-] = 2 65.23:!) , (4.1)

”i-l,jk j-_-1

where )6)? is the mean category effect ifperson k selects category i of itemj; and xjk is

a dummy variable with values 1 if person k answers itemj, and 0 otherwise.
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4-1-2. The Level-2 Model with Person Covariates

The Level-2 model (the item level) is defined as

. I . .

9);) =70,1. €79,242. (42)

where, for person k, 70jk is the mean effect of itemj across categories i; 718,2 is the

effect of an item on a particular category i; and “’12 is a dummy variable with values 1 if

i' = i, and 0 otherwise. For identifiability, 71(2) 2 0.

4-1-3. The Level-3 Model with Person Covariates

The Level-3 model (the person level model) is defined as

T

7017. = 4010 + 240131190jk,t +141: (43)

(=1

71",? =42. (4.4)

where, for the jth item that is answered by person k, 101-0 is the mean effect ofpersons

on itemj; 10j” is the effect ofperson covariate t; ”’0ij is a dummy variable with

values 1 if covariate t effects person k, and 0 otherwise; uk is the random effect ofperson

k on the mean effect of itemj, after accounting for covariate t; and [1100) is the mean

change in 201-0 for a particular category of the items, for all persons.

However, the effect of covariate t is assumed to effect person k equally for each

itemj; hence 20],, = 102’, =... = .10), = ’10,). Thus, the Level-3 model for 70jk becomes
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T

701k = 101-0 + 210.,tWo.k,t + uk, (4.5)

t=l

where 101-0 and uk are defined above; 103, is the effect ofperson covariate t, which is

now constant across items; and WC,“ is a dummy variable with values 1 if covariate t

effects person k, and 0 otherwise.

Here, it is helpfiil to refer back to the honesty example, in which a panicular

feeling of an applicant in nested within an item, which in turn is nested within the person.

As before, a particular answered item not only depends upon the overall attractiveness of

the item (101-0) , but it also depends on the attractiveness of the item influencing a

particular feeling (if?) . In addition to the honesty of the person, the response to the

item also depends upon the person covariate (x103, ) , such as SES. In other words, for

example, the respondent may become more honest as SES increases.

4-1-4. The Combined Model with Person Covariates

The combined model ofthe HMGL-RSM with person covariates reduces to the

following for a particular category i of the itemj

”fit (1')

log——-”11. =20j0+210 +Zzom,w0k,+uk, (4.6)

" 1

where all terms are defined above.

Therefore, the parameters of the HMGL-RSM with person covariates are related

to and extend the parameters ofthe traditional RSM in the following manner:

5} = ”1010’ (4-7)

61



r,- = 41(1)). (4.8)

and

9m = 30.,1Wo-k,1 + “k

9m = 10-,2Wo-k,2 + “k (4 9)

9m = ’10-,TWO-k,T +“k

where 6j and r,- are defined above; and 61"], 0&2” . . ,ij is the location ofperson k,

when accounting for covariate t (t = 1, ..., T).

4-2. Simulation Study for the HMGL-RSM with Person Covariates

The following section describes a simulation study for the HMGL-RSM with

person covariates. Since Section 3-2 already described a simulation study that examined

the parameter recovery ofthe person and item parameters when person covariates were

not added to the HMGL-RSM, the focus of this section is to examine the behaviors of the

person parameters when being influenced by covariates.

4-2-1. Disign

The design of the simulation is as follows. Observations were simulated using the

HMGL—RSM. For the study, 100, 500, or 1000 simulees responded to 10 polytomous

items, where each item consisted of 3 categories i (i = O, 1, 2). The number of simulees,

items, and categories were chosen to follow typical data from a questionnaire (e. g., Dodd,

1990; Smith & Johnson, 2000; Zhu, Updyke, & Lewandowski, 1997) or a large-scale

assessment (e.g., Michigan Education Assessment Program, 2003; US. Department of

Education, 1999). In addition, the number of simulees and items were chosen because, as
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shown in Section 3-2, these sample sizes allow for reasonable precision (at least when

covariates were not modeled).

To produce the simulated responses, each simulee k was randomly assigned to be

in one of three levels of a person covariate (1031). The probability ofbeing selected to a

given level was chosen to be .46, .46, and .08, respectively. Probabilities followed the

actual frequencies of the levels of a covariate used in an actual administration of a

confidential readiness assessment. Here, the covariate was SES.

Additionally, each simulee k was randomly assigned a uk , u ~ N(0,1) . Thus, 9k

was obtained by using Equation (4.9). For the simulation, to examine the effect of the

person covariate, 2031 was selected to be .2, .5, and 1. These values were chosen to

follow previous simulation designs of hierarchical IRT models using person covariates

(Kamata, 1998). 61- and 2',- were randomly selected to represent parameter estimates

obtained from typical polytomous data (i.e., items 1-10 in Table 2).

Using 6k , 61- , and r,- , three response probabilities for each simulee by item

combination were produced, POjk (0) , Pljk (t9) , and szk (6). If

i' i'+1

20:13-91, (0) < Yjk 5 Z Ii'jk (9) , then simulee k was assigned a response of i' +1 for itemj;

0

otherwise a response of 0 was assigned. Note that i' = 0, 1; and ij was a single,

random number for each j x k combination, Y ~ U(0, l) .

The simulation procedure utilized a fully crossed 3 x 3 factorial design that

simulated 9 conditions. Each administration was iterated 50 times producing 450 unique

response data matrices. The number of iterations was chosen because Kamata (1998)
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showed this to be a reasonable number for obtaining stable estimates. S-Plus (2000) was

used to generate all data. SAS (2001) was used to obtain parameter estimates and conduct

significance tests.

4-2-2. Analysis

For the analysis regarding the parameter recovery ofthe HMGL-RSM with

person covariates, the RMSE for uk , 1031, 51- and r,- was obtained over the iterations

for each condition. Specifically, the RMSE was obtained by

 

. 1 N . 2
RMSE(w)= 7v-2(w,,-a),,) , (4.10)

n=l

where the maximum number ofn iterations was N= 50; and a) is an arbitrary parameter

representing either uk , 2031, 6]- and 2',- . A descriptive analysis of the RMSE was

conducted for each condition.

4-2-3. Results: Descriptive Stzfistics

Displayed in Tables 11, 12, and 13 are the mean and standard deviations ofthe

parameter estimates for the HMGL-RSM when 1031 equaled .2, .5, and 1, respectively.

As can be seen, the standard deviations of the estimates are similar across conditions.

Additionally, the standard deviations are fairly low and decrease as the number of

persons increase. This suggests that PROC NLMIXED obtains relatively consistent

estimates of the HMGL-RSM parameters.
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As for the mean of the estimates, in general, the estimates obtained by PROC

NLMIXED for the HMGL-RSM appear to differ only slightly from their parameter

values. Below, in Section 4-2-4, the RMSE is examined.

Table 11. Mean and Standard Error of the Parameter Estimates for the HMGL-RSM

when 1031 = .2

 

   

 

100 500 1000

M SE M SE M SE

51 -010 (0.35) -013 (0.14) -009 (0.11)

52 0.04 (0.37) 0.00 (0.16) 0.00 (0.14)

53 -0.89 (0.39) -093 (0.16) -092 (0.12)

54 -1.59 (0.29) -l.61 (0.16) -1.58 (0.14)

55 -0.81 (0.38) -O.83 (0.18) -0.82 (0.14)

56 -O.76 (0.34) -0.76 (0.15) -073 (0.13)

57 -O.88 (0.35) -O.85 (0.15) -0.81 (0.12)

58 -0.05 (0.31) -005 (0.14) 0.00 (0.11)

59 0.05 (0.37) 0.05 (0.16) 0.07 (0.12)

510 -0.84 (0.38) -O.87 (0.17) -035 (0.12)

{-1 -2.27 (0.12) -225 (0.05) -225 (0.03)

£2 2.27 (0.12) 2.25 (0.05) 2.25 (0.03)

1031 0.19 (0.18) 0.19 (0.07) 0.20 (0.06)

#0 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

2,; 0.99 (0.13) 1.00 (0.06) 1.00 (0.03)
 

Note. {100, 500,1000} = Number of simulated individuals.

{$1,52,...,310} = location for items 1 — 10. {23,52} = thresholds 1

and 2. 2031 = person covariate. #12 = Mean person location, after

controlling for 11031. Zé= Standard deviation of the person

locations, after controlling for 10,1. M = Mean. SE = Standard

CITOI'.
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Table 12. Mean and Standard Error of the Parameter Estimates for the HMGL-RSM

when 1031 = .5

 

 
 

 

100 500 1000

M SE M SE M SE

51 -0.14 (0.39) -012 (0.14) -009 (0.11)

32 0.06 (0.36) 0.01 (0.16) 0.00 (0.16)

53 -O.87 (0.40) -095 (0.14) -093 (0.12)

54 -1.57 (0.31) -1.62 (0.16) -1.58 (0.15)

55 -O.80 (0.34) -0.83 (0.16) -0.81 (0.14)

36 -0.75 (0.33) —0.77 (0.14) -073 (0.13)

57 -0.83 (0.33) -0.86 (0.16) -O.80 (0.13)

33 0.00 (0.32) -0.06 (0.14) -0.01 (0.12)

39 0.07 (0.31) 0.06 (0.15) 0.07 (0.12)

510 -O.82 (0.35) -O.87 (0.16) -O.86 (0.14)

i1 924 (0.13) -225 (0.05) -224 (0.04)

£2 2.24 (0.13) 2.25 (0.05) 2.24 (0.04)

2031 0.50 (0.17) 0.49 (0.07) 0.50 (0.06)

#12 0.00 (0.00) 0.01 (0.00) 0.01 (0.00)

2,; 0.97 (0.13) 1.00 (0.06) 1.00 (0.03)
 

Note. {100, 500,1000} = Number of simulated individuals.

{31,52,...,310} = location for items 1 — 10. {fijz} = thresholds l

and 2. 1031 = person covariate. pa = Mean person location, after

controlling for 1031. 263: Standard deviation of the person

locations, after controlling for 2031. M = Mean. SE = Standard

error.
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Table 13. Mean and Standard Error of the Parameter Estimates for the HMGL-RSM

when 1031 = 1

 

   

 

100 500 1000

M SE M SE M SE

51 -0.10 (0.35) -012 (0.14) -0.10 (0.12)

52 0.10 (0.38) 0.00 (0.17) 0.00 (0.15)

53 -0.87 (0.39) -094 (0.17) -093 (0.14)

54 -1.53 (0.34) -1.60 (0.17) -1.59 (0.16)

55 -0.77 (0.37) -0.83 (0.17) -O.82 (0.15)

56 -071 (0.38) -0.77 (0.14) -075 (0.16)

57 -0.78 (0.36) -O.86 (0.15) -0.82 (0.13)

58 0.04 (0.34) -0.04 (0.15) -0.01 (0.13)

59 0.11 (0.34) 0.07 (0.16) 0.07 (0.14)

510 -0.79 (0.38) -O.87 (0.17) -0.86 (0.14)

f1 -2.26 (0.16) -225 (0.07) -2.25 (0.05)

£2 2.26 (0.16) 2.25 (0.07) 2.25 (0.05)

4031 1.03 (0.18) 0.99 (0.07) 1.00 (0.07)

11,; -0.01 (0.01) -0.01 (0.00) -001 (0.00)

2,; 0.98 (0.11) 1.01 (0.06) 1.00 (0.04)
 

Note. {100, 500,1000} = Number of simulated individuals.

{31,52,...,r§10} = location for items 1 — 10. {23,23} = thresholds 1

and 2. 2031 = person covariate. #12 = Mean person location, after

controlling for 11031. 25,: Standard deviation of the person

locations, after controlling for [1031. M = Mean. SE = Standard

error.

4-2-4. Results: RMSE

The results of the RMSE for ya , 2,; , 11031, 6]- , and r,- of the HMGL-RSM with

a person covariate are provided in Table 14. Trends indicated that as persons increased

67



from 100 to 1000, the RMSE generally decreased for 21,; , 2,; , 2031, 61- , and r,- . This is

expected because as the persons increase there were more observations from which to

estimate the person and item parameters.

Additionally as one case see, the magnitude ofthe covariate (20,1) does not

influence the RMSE. This illustrates that regardless of the size ofthe covariate, the

coefficient for the covariate is recovered fairly well, with increasing precision as the

number ofpersons increase.

Table 14. RMSE for the HMGL-RSM with Person Covariates

 

  

 

.2 .5 1

100 500 1000 100 500 1000 100 500 1000

51 0.35 0.15 0.11 0.38 0.14 0.11 0.35 0.15 0.12

52 0.37 0.15 0.14 0.36 0.15 0.16 0.39 0.17 0.15

53 0.39 0.16 0.12 0.40 0.15 0.12 0.39 0.17 0.14

64 0.29 0.16 0.13 0.31 0.17 0.15 0.34 0.17 0.16

55 0.38 0.18 0.14 0.34 0.16 0.14 0.37 0.17 0.15

66 0.34 0.15 0.12 0.33 0.15 0.13 0.37 0.15 0.16

57 0.36 0.16 0.12 0.33 0.17 0.13 0.36 0.16 0.13

63 0.31 0.14 0.11 0.32 0.15 0.12 0.34 0.16 0.13

59 0.37 0.16 0.12 0.31 0.15 0.12 0.34 0.15 0.14

510 0.38 0.17 0.12 0.35 0.16 0.14 0.39 0.17 0.14

2'1 0.12 0.05 0.03 0.13 0.05 0.04 0.16 0.07 0.05

2'2 0.12 0.05 0.03 0.13 0.05 0.04 0.16 0.07 0.05

2031 0.18 0.07 0.05 0.16 0.07 0.06 0.18 0.07 0.07

#1, 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

z . 0.12 0.06 0.03 0.13 0.06 0.03 0.1 1 0.06 0.03
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Table 14(cont’d)

 

 

Note. {100, 500,1000} = Number of simulated individuals. {2,5,1} = Values of

.J. {61,52,...,510} = location for items 1 — 10. {11,12} = thresholds 1 and 2.20

210 ,1 = person covariate. 11,; = Mean person location, after controlling for 1031.

Z =
Standard deviation of the person locations, after controlling for 1031 .

4-3. Example Analysis of the HMGL-RSM with Person Covariates

The purpose ofthis section is to provide an example analysis that illustrates the

basic concepts of the HMGL-RSM. In particular, how to use the HMGL-RSM to model

person covariates is illustrated.

4-3-1. _DLsign

The design of the analysis is as follows. Five hundred respondents were randomly

selected from a larger sample of students that responded to a confidential readiness

assessment. Note this was the same assessment simulated in Sections 3-1 and 4-2, and

notice this was the same sample and set ofitems illustrated in Section 3-3. Specifically,

in this sample, 46% had parents with high SES (SES = l); 44% had parents with middle

SES (SES = 2); and 10% had parents with low SES (SES = 3). 56% were male, and 44%

were female. Additionally, approximately less than 1% were age 5; 23% were age 6; 65%

were age 7; 12% were age 8; and less than 1% were age 9. Lastly, less than 1% were

Asian; 42% were African-American; 2% were Hispanic; and 56% were Caucasian.

For the purposes of this illustration, only the first 10 items of the assessment were

used. (Note each item measured the person’s personal and social development.)
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Additionally, only those respondents who answered each item and whose parents

provided their SES were used. As illustrated in Section 4-2, the sample and item sizes

were adequate to obtain relatively precise parameter estimates.

4-3-2. Analysis

To analyze the responses of the students, PROC NLMIXED of SAS (2001) was

used to estimate the person and item parameters for the HMGL-RSM with SES as the

person covariate. For comparison, the MRCMM (Equation (1.5) and (1.6)) with SES as a

covariate for the random person location (19k ) was also estimated using PROC

NLMIXED. Note that SAS was used and not Conquest because it was of interest to

compare the models, not the estimation algorithms ofthe software.

Also note that for the MRCMM, typically the item response is a column vector,

where the number ofrows is equal to the number of categories, and where a row equals 1

if the person selected a particular category, and 0 otherwise. This creates a dummy,

column vector with observations equal to I x J x K rows. For the data here, when the

observation vector was created this way, the adaptive Gaussian quadrature integral

approximations did not converge. To reduce the number of observations, rather than

using a column vector of 0s and Is, the categorical response itself (e. g., if the person

selected category 2, the response was 2) was used. This created a response column vector

with observations equal to J x K rows. By doing this column vector, convergence was

achieved.

4-3-3. Results
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The results of the analysis for the HMGL-RSM and MRCMM with SES as a

person covariate are presented in Table 15. As can be seen, the HMGL-RSM and

MRCMM yield identical estimates for all parameters. This result is not surprising given

that in order to comply with the assumptions of IRT, the HMGL-RSM is defined by

constraining the person location to be equal across items and categories (see Section 2-1-

3). Consequently, there is no variation in the person location across items and categories,

as is the case with the MRCMM. Additionally, recall that in order to get the estimation

algorithm to converge for the MRCMM, the number ofobservations was reduced.

Therefore, because the general form ofthe HMGL-RSM and MRCMM are similar, and

because the number of observations is equivalent, similar estimates are obtained.
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Table 15. Parameter Estimates for the MRCMM and HMGL—RSM With SES as a Person

Covariate

 

 

 

MRCMM HMGL-RSM

M SE M SE

61 0.09 (0.36) 0.09 (0.36)

62 0.35 (0.36) 0.35 (0.36)

63 -0.68 (0.36) -O.68 (0.36)

64 -1.31 (0.36) -1.31 (0.36)

65 -0.51 (0.36) -0.51 (0.36)

66 -0.37 (0.36) -0.37 (0.36)

57 -0.62 (0.36) -0.62 (0.36)

68 0.39 (0.36) 0.39 (0.36)

59 0.48 (0.36) 0.48 (0.36)

610 -0.44 (0.36) -0.44 (0.36)

11 2.15 . 2.15 .

12 -2.15 (0.03) -2.15 (0.03)

pm -0.12 (2.42) 012 (2.42)

flu 0.12 (2.42) 0.12 (2.42)

1031 -0.24 (0.20) ~0.24 (0.20)

[.102 -O.74 (2.65) -O.74 (2.65)

flu -O.26 (2.65) -0.26 (2.65)

1031 -0.24 (0.20) -O.24 (0.20)

#93 -O.15 (2.52) -0.15 (2.52)

flu 0.57 (2.52) 0.57 (2.52)

1031 -0.24 (0.20) -0.24 (0.20)

#49 -0.40 -0.40

#14 -0.01 -0.01

20 2.80 (0.12) 2.80 (0.12)

AIC 7147.3 7147.3

BIC 7206.3 7206.3
 

Note. {61,62,...,6|0} = location for items 1 — 10. {11,12} = thresholds l and 2. 2001

= Effect of SES. #9 = Overall Mean person location. {flap/1192,!193} = Mean for

person locations of high, medium, and low SES groups. 29= Standard deviation of

the person locations. AIC = Akaike Information Criterion. BIC = Bayesian

Information Criterion. Est. = Estimate. SE = Standard error.
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Nevertheless, the HMGL-RSM may be the preferred model, because it is

expected that if the number of observations was increased for the MRCMM, as the

developers intended it to be, then the estimates would be somewhat different. And as

mentioned above, the MRCMM was not defined as being able to model additional

hierarchical levels that predict how the item parameters behave, which may be important

(e.g., see Section 5).

To illustrate the influence of SES, one now compares the HMGL-RSM with and

without SES (Table 10 in Chapter 3). As one can see, when SES is not included in the

model, the overall mean person location is centered near zero (,ué = —.01), as would be

expected. Additionally, if SES is not modeled, the low, medium, and high SES groups

have mean person locations equaling .27, -.34, and .26, respectively. Notice, then, that the

mean person location of the high SES group is actually lower than the location for the

low SES group. Also, the middle SES group is nearly one logit lower than both the high

and low SES groups.

In contrast, when controlling for SES, the overall mean ofthe random effect of

persons is centered near zero, [1,; = —.01 . Notice this value is similar to the overall mean

person location when SES is not accounted for. This is expected because, recall, the mean

of the random effect ofpersons (u) is set to zero, and when SES is not modeled, 0 = u .

However, by modeling SES, we see that its effect on the person location ([1031) is

-.24. Hence, as a person increases in one unit in SES (i.e., increases in poverty), his

location decreases. Thus, by including SES, the overall person location decreases by

almost half a logit (yé = —.40) . Hence, if the parent’s SES is controlled for—that is, we
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ignore the effects of the parent’s SES—then, the average person’s location on the

underlying continuum is almost half a logit higher.

For example, the mean location (”19) of the high, medium, and low SES groups

is -.12, -.74 and -.15. However, notice after controlling for SES, the mean location ('11,?)

of the high, medium, and low SES groups now becomes .12, -.26, and .57. Although the

rankings are the same to the rank orderings when SES is not controlled for, notice now

that by controlling for SES, the groups’ mean location increases. Additionally, the

difference in mean locations between the groups becomes larger at nearly a half a logit.

So which is the better model for the data: the HMGL-RSM with SES or without

SES? Examining the AIC and BIC values, we see that for both the AIC and BIC, the

lower values are for the HMGL-RSM without SES. Furthermore, when inspecting the

information weights, the AIC and BIC weights for the HMGL-RSM without SES are .57

and 1.00, while the AIC and BIC weights for the HMGL-RSM with SES are .43 and .08.

Since the AIC and BIC are lower for the HMGL-RSM without SES, and since higher

weights indicate the model is more likely, the evidence suggests that the HMGL-‘RSM

without SES is the better fitting model.

Before this section is concluded, the reader should notice that the difference

between the item locations for each item of the two the models is -.4. This difference

does not necessarily indicate that by including SES in the model, the item location

decreases by -.4; rather, it indicates the arbitrariness of the IRT scale. That is, recall from

Section 24, the IRT scale is indeterminate, and the indeterminacy is resolved by

centering on the normally distributed person measures, where the mean is equal to zero.

By including the covariate SES in the model, the mean of the scale changes. Specifically,
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in contrast to before, when not including SES, 210 = 21,, = O . However by including SES,

”9 = ”10,1W0k,1 W = ”10,1110“ + ”u = ”40,1140“ + 0 = —'4'
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Chapter 5. Extending the HMGL-RSM To Include a Group Level

5-1. The Four-Level HMGL-RSM

As seen in Chapter 4, one advantage of applying the HMGLM to model the RSM

is that the user may posit a model that includes person covariates. Another advantage is

that the user may posit a model that includes a group level, which defines how the item

parameters behave across groups. Hence, a Four-Level I-IMGL-RSM is defined. This

form ofthe HMGL-RSM may be especially important in educational testing during

investigations of differential item functioning (DIP).

To model the Four-Level HMGL-RSM, four models are defined. The Level-l, -2,

and -3 models follow the previous definitions ofthe HMGL-RSM, in which the category

is nested within the item, which in turn is nested within the person (Section 2-3). For the

4-Level HGL-RSM, the Level-4 model is defined for the group level, where persons are

nested within groups.

5-1-1. The Level-l Model

The Level-1 model (the category level) is defined as

.. J .

log[-—7—rykI—] = 2 [35.21%] , (5.1)

”i-l,jkl j=1

where ,6?) is the mean category effect ifperson k in group I selects category i of itemj;

and xjkl is a dummy variable with values 1 ifperson k in group 1 answers itemj, and 0

otherwise.

5-1-2. The Level-2 Model
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The Level-2 model (the item level) is defined as

. l . .

1652 = 701k] +Z7l(flzlwl(.l]2p (5'2)

i=1

where, for person k in group I, 7’0jk1 is the mean effect of itemj across categories i; 719,2,

is the effect of an item on a particular category i; and w”, is a dummy variable with

values 1 if i' = i for the jth item answered by person k in group I, and 0 otherwise. For

identifiability, 71(‘20so

Here, notice that before, the item effects only varied across persons. Now, not

only do the item effects vary for each person k, but the item effects vary for each group I

as well. To see how the effects vary, the person level model (Level 3) and the group level

model (Level 4) are defined.

5-1-3. The Level-3 Model

The Level-3 model (the person level) is defined as

70,21 = 40101 + “kl, (5-3)

(1') - ()
718-4101’ (5.4)

where, for the jth item that is answered by person k in group I, 40101 is the mean effect

ofpersons for group I on itemj; “k1 is the random effect ofperson k in group [on the

mean effect of itemj; and 21(2, is the mean change in 1101-01 for a particular category of

the items.
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However in IRT, we assume that the person effects are not only constant across

items, but constant regardless of group as well. Thus, the following constraint is made

uk1=uk2 =...=uk1 =uk,

and the Level-3 model for the mean item effect becomes

70jkl =40j01+ulw (55)

where 1101-01 is defined above; and uk is the random effect ofperson k (regardless of

group) across items.

Here, it is helpful to refer back to the honesty example, for we can clearly see how

the category effects function as the categories are nested within items, which in turn are

nested within persons. Specifically, as mentioned above, the probability that an applicant

is attracted to a particular feeling for a particular answered item not only depends upon

the overall attractiveness ofthe item (1101-0, ) , but also how the attractiveness ofthe item

influences a particular feeling (11(2),). In addition, as the Level-3 model shows, the

overall attractiveness of the item (201-01) and the influence of an item on a particular

feeling (211(3),) is fixed across persons, but may vary across 1 groups. Lastly, as is

commonly assumed in IRT, the unique effect of an applicant randomly varies across the

different applicants.

5-1-4. The Level-4 Model

Lastly, the Level-4 model (the group level) is defined as
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[—1

40101 =50j00 +25010120101, (5-6)

71(2) = 61(30, (5.7)

where, for the jth item that is answered by person k in group 1, 601-00 is the mean effect

of groups on itemj; 501-0, is the mean change in ‘50j00 as group membership changes;

51(ng is the mean change in 501-00 for a particular category of itemj; and 201-0, is a

dummy variable with values 1 ifperson k is a member of a particular group I, and 0

otherwise.

Again, one refers back to the honesty example. In the group level model, we can

see how the overall attractiveness of the item (101-0,) depends on group membership. For

example, if an applicant belongs to the baseline group, such as Caucasian, then the

overall attractiveness of the item for Caucasians is given as 501-00. However, if an

applicant belongs to a comparison group, such as Asians, then the overall attractiveness

of the item for Asians is given as 501-00 + 601-01. Additionally, notice the attractiveness of

the item for a particular feeling (2100) ) remains fixed not only for different persons, but

for different groups as well (6:20).

5-1-5. The Combined Model

The combined model of the 4—Level HMGL-RSM reduces to the following for a

particular category i of itemj
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1—1
7’"k1 i

104” y ]= 50100 + 25010120101 + 55.30 + “k, (5-3)

where all terms are defined above.

Therefore, the parameters ofthe HMGL-RSM are related to and extend the

parameters of the traditional RSM in the following manner:

510 = '50100

511: "(501'00 +50j01)

512 = ‘(501‘00 +50102) , (5.9)

51]-] = '(60j00 +§0j0,1’1)

75-51120, (5.10)

and

6k = uk , (5.11)

where r,- and 9k are defined above; 61-0 is the location of the item on the underlying

continuum for the baseline group; and 61-, is the location of the item on the underlying

continuum for a particular group 1.

5—2. Simulation Study for the Four-Level HMGL-RSM

The following section describes a simulation study for the Four-Level HMGL-

RSM. Since Section 3-2 already described a simulation study that examined the

parameter recovery of the person and item parameters when a fourth level was not added

to the HMGL-RSM, the focus of this section is to examine the behaviors of the item

parameters when being influenced by the additional level. Specifically, the purposes of
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the following section is (1) to determine the precision ofthe parameter recovery for the

person and item parameters——in particular, the item parameters at the group level, and (2)

to determine the accuracy of a statistical test to detect the influence of a group-level

coefficient as a measure of DIF.

5-2-1. Disign

The design ofthe simulation is as follows. Observations were simulated using the

HMGL-RSM. For the study, 500 simulees from 2 groups (I = 0, 1) responded to 10

polytomous items, where each item consisted of 3 categories i (i = 0, l, 2). The number

of groups, simulees, items, and categories were chosen to follow typical data from a

questionnaire (e.g., Dodd, 1990; Smith & Johnson, 2000; Zhu, Updyke, & Lewandowski,

1997) or a large-scale assessment (e.g., Michigan Education Assessment Program, 2003;

US. Department of Education, 1999). In addition, the number of simulees and items were

chosen because, as shown in Section 3-2, these sample sizes allow for reasonable

precision (at least when a four-level model was not employed).

To produce the simulated responses, each simulee k in group I was randomly

assigned a location 61“ , 0 ~ N(0,1). Additionally, each itemj was randomly assigned a

set of item parameters. These item parameters were selected to represent parameter

estimates from typical polytomous data, and follow those that are presented in Table 2 for

a confidential readiness assessment. The items that were selected to be simulated were

randomly chosen to be the first 10 items of the confidential readiness assessment that did

not exhibit DIF between males and females (Table 16). By selecting only non-DIP items

(in regards to gender DIF), the influence ofDIF by the non-focus items was minimized.
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Table 16. DIF results for the Mantel-Haenszel test

 

 

Original Simulation M2 9

Item Item

1 1 0.52 0.471

2 2 0.37 0.545

3 76.52 0,000"

4 74.91 0.000"

5 36.46 0.000"

6 3 0.15 0.699

7 4 0.77 0.379

8 5 0.16 0.688

9 38-89 0.000"

10 6 8.17 0.004

11 7 0.12 0.731

12 8 0.39 0.532

13 13.28 0.000"

14 31.21 0.000"

15 16.13 0.000"

16 1890 0.000"

17 9 7.75 0.005

13 1738 0.000"

19 10 0.70 0.403

20 2.94 0.086

21 9.23 0.002"

22 0.09 0.760

23 2.85 0.091

24 0.03 0.871

25 9.79 0.002
 

_No_te, M2 = Mantel-Haenszel test statistic. p =

p-value. " = statistically significant at

a = ~05 25 = .002 . p_ = .000 implies p < .0001.

The Mantel-Haenszel (MH) test (Mantel, 1963) was used as the original test for

DIF. This test was selected because it has been well-studied (e.g., Kim, 2000), and has
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been typically used in DIF analyses ofpolytomous data (e.g., US. Department of

Education, 1999).

Thus, using 9k] , 511 , and r,- , three response probabilities for each simulee by

item combination were produced, P011109) , P1jkl (19) , and P2jk1(9) . If

i' i’+l

ZPi'jkl (0) < Yjk 5 Z Ii'jkl (6) , then simulee k in group I was assigned a response of

0 0

1" +1 for itemj; otherwise a response of 0 was assigned. Note that i' = 0, l; and Yjk was

a single, random number for each j x k combination, Y ~ U(0, 1) .

The simulation manipulated three variables: (1) the proportion of simulees in the

focus group, (2) the difference in the mean location of the person parameters for the

reference group (67,0) and the focal group (51) , and (3) the level of DIF in the focus

item. Each variable and each condition (described below) was chosen because previous

research found these to influence DIF detection (Luppescu, 2002).

The conditions for the proportion of simulees in the focus group varied between

10% (50 simulees) and 25% (125 simulees). This represented a testing situation where

the focus group was small or moderate in size.

The conditions for the difference in mean location varied such that 60 was

randomly sampled from N(0,1) , and 6] was randomly sampled from N(-l,1) or

N(—.5,l). This represented a testing situation where, on average, the focus group had a

moderately lower or somewhat lower person location than the reference group.

Lastly, the conditions for the level of DIF in the focus item (which was arbitrarily

chosen to be item 1 in Table 16) varied for the focus group by a positive difference of l
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standard error (.07) or 2 standard errors (.14). This represented a testing situation where

the focus item displayed a small or moderate effect of DIF; that is, the focus item was

somewhat or moderately less attractive to endorse for the focus group. (Note the standard

error for item 1 was found in Table 5 of Section 3-2-1 and chosen to be the standard error

when 1000 persons responded to 10 items.)

The simulation procedure utilized a fully crossed 2 x 2 x 2 factorial design that

simulated 8 conditions. Each administration was iterated 50 times producing 400 unique

response data matrices. The number of iterations was chosen because Kamata (1998)

showed this to be a reasonable number for obtaining stable estimates. S-Plus (2000) was

used to generate all data. SAS (2001) was used to obtain parameter estimates and conduct

significance tests.

5-2-2. Analysis

For the analysis regarding the parameter recovery of the Four-Level HMGL-

RSM, the RMSE for 61-, and r,- was obtained over the iterations for each condition.

Specifically, the RMSE was obtained by

 

. 1 N .- 2
RMSE(a))= FEM-w” , (5.12)

n=l

where the maximum number ofn iterations was N = 50; and a) is an arbitrary parameter

representing either 61-, or r,- . A descriptive analysis of the RMSE was conducted for

each condition.

For the analysis regarding the accuracy of a statistical test to detect DIF: a t-test

with a = .05 is applied to examine the following hypotheses:
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”0 350101 = 0

H1 350101 3“ 0

Thus, if H0 is not rejected, then there is statistical evidence to suggest that @0101

does not significantly differ from zero, and no DIF exists. That is, the location of item 1

for each group is equal

51,1 = ‘(50100 +50101)

= ‘(50100)

= 51,0-

If H0 is rejected, then there is statistical evidence to suggest that £0101

significantly differs from zero, and DIF exists. That is, the location of item 1 for each

group is not equal

51,1 = ‘(50100 +50101)

it ’(50100)

¢ 51,0.

Thus to examine the accuracy, if H0 was rejected, then a ‘hit’ was made;

otherwise a ‘miss’ was made. The number of hits across iterations for a condition was

defined as the hit rate, i.e., the accuracy ofthe t-test for detecting DIF (when DIF exists)

under the aforementioned conditions. A descriptive analysis ofthe hit rate was conducted

for each condition.

Note Cheong and Raudenbush (2000), Kamata (1998), Luppescu (2002), and Kim

(2003) describe and illustrate similar DIF analyses using a two-level, hierarchical IRT

model for dichotomous data, in which the covariates for the item parameters were added

at the item level rather than a group level. Although the model presented above will
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reduce to an analogous formulation of the aforementioned models, the model that was

defined may be preferable because users are given the option of specifying a random

component at the group level. Although one did not include the random component here

since it was not of interest, other users may wish to examine this component as a measure

ofthe group location across the items.

5-2-3. Results: Descripfitive Statistics

Displayed in Tables 17 and 18 are the mean and standard deviations of the

parameter estimates for the Four-Level HMGL-RSM when the proportion of simulees in

the focus group was 10% and 25%, respectively. As can be seen, the standard deviations

of the estimates are similar and fairly low across conditions, except for 51,1. For 51,1, as

the proportion of simulees in the focus group increased from 10% to 25%, the standard

deviation decreased from a moderate to somewhat moderate magnitude, as would be

expected. This suggested that PROC NLMD(ED obtained relatively consistent estimates

ofthe HMGL-RSM parameters, especially as the group size increased.
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Table 17. Mean and Standard Error of the Parameter Estimates for the Four-Level

HMGL-RSM for Proportion = 10%

 

  

    

 

6.2 = -.5 9.2 = -l

1 SD 2 SD 1 SD 2 SD

M SE M SE M SE M SE

31,0 -005 (0.12) -005 (0.12) -002 (0.12) -002 (0.12)

51.1 0.06 (0.31) 0.13 (0.31) 0.28 (0.33) 0.34 (0.30)

52 0.08 (0.09) 0.08 (0.09) 0.12 (0.09) 0.12 (0.09)

53 -0-84 (0.11) -0.84 (0.11) -0.79 (0.12) -0.79 (0.12)

54 -1.45 (0.11) -1.45 (0.11) -1.40 (0.10) -1.40 (0.10)

55 -0.67 (0.11) -0.67 (0.11) -O.63 (0.11) -O.63 (0.11)

56 -071 (0.10) -071 (0.10) -0.65 (0.10) -O.65 (0.10)

37 -0.78 (0.10) -0.78 (0.10) -0.73 (0.10) -0.73 (0.10)

53 -0.06 (0.11) -0.06 (0.11) -001 (0.11) -0.01 (0.11)

39 0.12 (0.11) 0.12 (0.11) 0.17 (0.11) 0.17 (0.11)

3,0 -0-71 (0.09) -0.71 (0.09) -O.65 (0.09) -0.65 (0.09)

a, -2.23 (0.04) -223 (0.04) -223 (0.04) -223 (0.04)

82 2.23 (0.04) 2.23 (0.04) 2.23 (0.04) 2.23 (0.04)
 

Note. §2= mean location of focus group. SD = standard deviation shift in item 1 for

focus group. {31’0,(§1,1} = location for item 1 for the reference (0) and focal (1) groups.

{32,53,...,510} = location for items 2 - 10 for both groups. {fljz} = thresholds l and 2.

M = mean. SE = standard error.
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Table 18. Mean and Standard Error of the Parameter Estimates for the Four-Level

HMGL-RSM for Proportion = 25%

 

  

    

 

02:-.5 192=-1

ISD 2SD 1SD 2SD

M SE M SE M SE M SE

31,0 0.01 (0.14) 0.01 (0.14) 0.10 (0.14) 0.10 (0.14)

31,1 0-16 (0.19) 0.23 (0.20) 0.38 (0.21) 0.45 (0.19)

52 0.15 (0.08) 0.15 (0.08) 0.27 (0.08) 0.27 (0.08)

53 -0-75 (0.11) -0.75 (0.11) -0.63 (0.11) -0.63 (0.11)

54 -125 (0.11) -125 (0.11) -1.12 (0.10) -1.12 (0.10)

55 -O.46 (0.10) -0.46 (0.10) -034 (0.10) -034 (0.10)

56 -O.64 (0.10) -0.64 (0.10) -0.52 (0.10) -052 (0.10)

57 -0.77 (0.10) -0.77 (0.10) -0.65 (0.10) -0.65 (0.10)

53 -013 (0.11) -013 (0.11) 0.00 (0.11) 0.00 (0.11)

59 0.17 (0.11) 0.17 (0.11) 0.28 (0.11) 0.28 (0.11)

510 -054 (0.10) -0.54 (0.10) -041 (0.10) -041 (0.10)

a, -2.21 (0.04) -221 (0.04) -221 (0.04) -221 (0.04)

52 2.21 (0.04) 2.21 (0.04) 2.21 (0.04) 2.21 (0.04)
 

Note. 5.2 = mean location of focus group. SD = standard deviation shift in item 1 for

focus group. {510,611} = location for item 1 for the reference (0) and focal (1) groups.

{32,53,...,310} = location for items 2 — 10 for both groups. {fljz} _= thresholds 1 and 2.

M = mean. SE = standard error.

As for the mean of the estimates: In general, the estimates obtained by PROC

NLMIXED appeared to differ slightly from the parameter values (c.f., Table 2).

Specifically, trends indicated that the level of DIF did not influence the mean of the

estimates. However, it appeared that as the proportion of simulees in the focus group

increased and as the mean location of the focus group decreased, the mean of the
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estimates generally deviated fiom the parameter values by a positive magnitude. Below,

the RMSE is examined.

5-2-4. Results: RMSE

The results ofthe RMSE for the item parameters of the Four-Level HMGL-RSM

are provided in Table 19. As alluded to above, trends indicated that as the level ofDIF

increased, the RMSE did not vary across the conditions substantially. This is expected

because, as shown in Section 3-2-2, the location ofthe item does not influence the

RMSE.

Table 19. RMSE for the Four-Level HMGL-RSM

 

  

    

 

10% 25%

9.2: -.5 32:4 9.2=-.5 32:4

SD 1 2 1 2 1 2 1 2

31,0 0.13 0.13 0.14 0.14 0.17 0.17 0.23 0.23

5‘” 0.32 0.32 0.44 0.42 0.26 0.27 0.45 0.44

32 0.11 0.11 0.14 0.14 0.15 0.15 0.26 0.26

53 0.14 0.14 0.17 0.17 0.21 0.21 0.31 0.31

54 0.16 0.17 0.20 0.20 0.34 0.34 0.46 0.46

5‘5 0.17 0.17 0.21 0.21 0.36 0.36 0.48 0.48

86 0.11 0.11 0.13 0.13 0.14 0.14 0.25 0.25

5‘7 0.10 0.10 0.12 0.12 0.11 0.11 0.19 0.19

58 0.12 0.12 0.11 0.11 0.16 0.16 0.10 0.10

39 0.12 0.12 0.15 0.15 0.15 0.15 0.24 0.24

510 0.17 0.17 0.22 0.22 0.33 0.33 0.45 0.45

f1 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05

f2 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05
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Table 19 (cont’d)

 
Note

 

. {10%,25%} = percentage of sample in focus group. 67.2 = mean location of focus

group. SD = standard deviation shift in item 1 for focus group. {51,0,(§1,1} = location for

item 1 for the reference (0) and focal (1) groups. {3233” ”310} = location for items 2 —

1 0 for both groups. {51, {'2} = thresholds 1 and 2. M = mean. SE = standard error.

Additionally, as the proportion of simulees in the focus group increased and as the

mean location ofthe focus group decreased, the RMSE generally increased. The one

exception occurs for 51,1 when 67.2 = -.5. In this case, as the proportion of simulees in the

focus group increased, the RMSE decreased.

Additionally, as the proportion of simulees in the focus group increased, the

magnitude ofthe RMSE generally increased from a low range (.04 to .22) to a moderate

range (.32 to .42). For 51,], the RMSE increased from a range of .32 to .44 to a range of

.26 to .45. These trends and magnitudes suggest that the sample characteristics of the

focal group influence the empirical Bayes estimates ofnot only the focal group, but the

non-focal group as well.

5-2-5. Results: Accurm

As for the accuracy of the t-test for detecting DIF (when DIF exists), the results

show the hit rates were low (Table 20), but still moderately higher than the MH test

(Table 21). Also, trends indicated that the hit rates increased as (1) the level ofDIF

increased, (2) the mean location of the focus group decreased, and (3) the proportion in

the focus group increased. Thus, although the hit rates for detecting DIF with the HMGL-
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RSM were low, it is expected that increasing the sample and group size should increase

hit rates as well, and firrther set itself apart from the MH test. This provides some

evidence for the use of the HMGL-RSM as a test for DIF.

Table 20. Hit Rates for Detecting DIF with the HMGL-RSM

 

  

 

10% 25%

1 SD 2 SD 1 SD 2 SD

52: -5 0.06 0.10 0.10 0.16

52: -1 0.16 0.22 0.26 0.38

 

Note. {10%,25%} = percentage of sample in

focus group. 52: mean location of focus group.

SD = standard deviation shift in item 1 for focus

group.

Table 21. Hit Rates for Detecting DIF with the MH test

 

  

 

10% 25%

1 SD 2 SD 1 SD 2 SD

52: -5 0.04 0 0.10 0.10

§2= -1 0.02 0 0.12 0.08

 

Note. {10%,25%} = percentage of sample in

focus group. 5.2 = mean location of focus group.

SD = standard deviation shift in item 1 for focus

group.

5-3. Example Analysis of the Four-Level HMGL-RSM

The purpose of this section is to provide an example analysis that illustrates the

basic concepts of the 4-Level HMGL-RSM. In particular, one illustrates how to use the

model to detect DIF between males and females.
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5-3-1. Disign

The design of the analysis is as follows. Five hundred respondents were randomly

selected from a larger sample of students that responded to a confidential readiness

assessment. Note this was the same assessment simulated in Sections 3-1, 4-2, and 5-2. In

this sample, 53% were male, and 47% were female, as was the case in the original

sample. Additionally, approximately 1% were age 5; 26% were age 6; 67% were age 7;

and 6% were age 8. Lastly, approximately 1% were Asian; 48% were Afiican-American;

8% were Hispanic; and 42% were age Caucasian.

For the purposes ofthis illustration, only the first 10 items of the assessment were

used. (Note each item measured the person’s personal and social development.)

Additionally, only those respondents who answered each item and provided their gender

were used. As illustrated in Sections 3-1 and 5-2, the sample and item sizes were

adequate to obtain relatively precise parameter estimates and moderately accurate DIF

tests.

5-3-2. m

To analyze the responses of the students, PROC NLMIXED ofSAS (2001) was

used to estimate the person and item parameters for the Four-Level HMGL-RSM. Recall

that the four levels of this model are given above. The group predictor that was used was

Gender, in which Males was the reference group (0), and Females was the focus group

(1).

For each item, the following hypotheses are examined
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H03§0j01 =0

”13501013”,

wherej=1,..., 10.

Thus for a particular itemj, if H0 was not rejected, then there was statistical

evidence to suggest that DIF does not exist. Likewise, if H0 was rejected, then there was

statistical evidence to suggest that DIF exists.

Additionally, for comparative purposes, the MH test was conducted. As

mentioned above, this test was selected because it has been well studied (e.g., Kim,

2000), and has been typically used in DIF analyses ofpolytomous data (e.g., US.

Department of Education, 1999). Also, note previous simulation research has suggested

that similar findings occur ifno purification procedures were used, two stage purification

procedures were used, or an iterative purification process was used (Wang & Su, 2004).

Hence, because similar DIF results are obtained regardless ofpurification procedures,

and because research has shown that the two stage and iterative purification procedures

become inefficient when used in conditions similar to those studied here (Donoghue,

Holland, & Thayer, 1993 as cited by Wang & Su, 2004), the decision to not apply any

purification was made.

To examine, if the t-test for 501-01 and MH test for itemj was accurate, the results

of the analyses was compared to the DIF results found for the larger sample (Table 16).

As shown, of the first 10 items, it was found that items 3-5 and 9 exhibit DIF between

Males and Females.

5-3-3. Results
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The results of the analysis are presented in Table 22. As can be seen, the t-test

was fairly conservative at flagging DIF, while the MH test was not. Specifically, the t—test

correctly identified items 3-5 and 9 as exhibiting DIF. However, the t-test also incorrectly

identified items 7, 8, and 10 as exhibiting DIF. In contrast, the MH test only correctly

identified item 9, and incorrectly identified item 1 as exhibiting DIF. Although the Type I

error may be high for the HMGL-RSM, this may be preferable because the consequences

may be greater ifDIF was not flagged rather than flagged. Thus, although the Type I

error may be high, it appears that the t—test was more powerful at detecting DIF than the

MH test.

One reason the HMGL-RSM may be more powerful at detecting DIF than the

MH test is that the HMGL-RSM is based on parametric methods, while the MH test is

not. That is, the HMGL—RSM is based on the HMGLM framework which attempts to

explicitly model the parameters that characterize the DIF. And, as shown above, the

HMGL-RSM is estimated rather precisely; hence the parameters that characterize the DIF

may be estimated rather precisely as well.
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Table 22. Item Analysis of a Real Data Set

 

  

 

HMGL-RSM MH

Item Par. Est. SE t p M2 p

1 50100 -1.49 0.22 -6.66 0.00 6.20 0.01 b

£0101 0.31 0.33 0.95 0.34

2 50200 -1 .87 0.23 -8.30 0.00 4.03 0.04

50201 0.63 0.33 1.91 0.06

3 50300 -1.21 0.22 -5.46 0.00 5.46 0.02

430301 1.52 0.33 4.61 000a

4 50400 -0.68 0.22 -3.12 0.00 5.83 0.02

420401 1.52 0.33 4.61 0.00 a

5 50500 -0.94 0.22 -4.25 0.00 0.01 0.93

50501 1.13 0.33 3.45 0.00 a

6 £0600 -0.82 0.22 -3.73 0.00 3.34 0.07

£0601 0.59 0.33 1.80 0.07

7 50700 -1 .13 0.22 -5.11 0.00 0.04 0.84

(50701 0.92 0.33 2.81 0.01 b

8 50800 -1.90 0.23 -8.39 0.00 0.04 0.84

£0801 0.99 0.33 3.00 0.00b

9 420900 -2.25 0.23 -9.83 0.00 6.23 0.01 a

50901 1.62 0.33 4.87 0.00 b

10 4,30,10,00 -1.11 0.22 -5.03 0.00 0.24 0.62

50,10,01 0.93 0.33 2.82 0.01 b

f1 -2.11 . . .

7‘2 2.11 0.04 -60.31 0.00

 

Note. Par. = parameter. Est. = estimate. SE = standard error. 1 = 1-

statistic. p = p—value. M2 = Mantel-Haenszel test statistic.

{5010060101} = overall attractiveness of itemj for Males and Females,

respectively. {fljz} = thresholds 1 and 2. a = %0 = .01 . p_ = 0.00

implies p < .001. a = correct flag for DIF. b = incorrect flag for DIF.
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To interpret the item parameters, recall that if the item does not exhibit DIF, then

60101:0 and

511 =5j0

56]-

--§0100

If the item exhibits DIF, then 501-01 at 0 and

510 = '501'00

511 = ‘(501'00 +90j01)

For example, for item 1, the t-test was not statistically significant for $0101;

hence, 51-0 = .fl = 51 = {“0100 = 1.49 . Similarly, for item 2, the t-test was not

statistically significant for 50101; hence 5‘2 = —.§0200 =1.87. In other words, for item 1,

the log-odds ofthe overall attractiveness of the item is 1.49 for a typical respondent,

while for item 2, the log-odds ofthe overall attractiveness of the item is 1.87. Thus, item

1 has a lower overall attractiveness than item 2, which suggests that the polytomous

alternatives for item 1 are more easier to endorse than those for item 2, for a typical

respondent regardless of gender.

In contrast to items 1 and 2, for item 3 the t-test was statistically significant for

50101; hence for M3165, 330 = -§0300 = 1.21 , and for Females,

53,1 = —(Zjo300 +5030] ) = -(—1.21 +1.52) = —.31 . Thus, the overall attractiveness of item

3 is substantially lower for Females than for Males. This suggests that the polytomous

alternatives for item 3 are easier to endorse for Females than for Males.
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(As an aside, the reader should note that the item location for all items is lower for

Females than for Males. In other words, the items are easier for Females than for Males.

However, this does makes sense because each of the studied items measures a person’s

personal and social development, and it is well known that Female children are more

advanced in terms ofpersonal and social development than Male children. Hence, the

items are expected to be easier for Females than for Males.)
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Chapter 6. Extending the HMGL-RSM To Include Item Covariates

6—1. The HMGL-RSM with Person Covariates

As seen in the preceding chapters, the major advantages of applying the HMGLM

to model the RSM is that the it affords the user the opportunity to (I) obtain better

precision for the estimates of the person and item parameters; (2) posit a model with

person covariates; and (3) posit a model with a group level. In addition, the HMGLM

affords one the opportunity to posit a model with item covariates. This form ofthe

HMGL-RSM may be especially important in DIF studies in which the user attempts to

explain why DIF exists.

To model the HMGL-RSM with item covariates, one follows the previous

definitions of the HMGL-RSM (Section 2-2), in which the category is nested within the

item, which in turn is nested within the person. But now, one includes covariates at the

item level.

6-1-1. The Level-1 Model with Item Cgariates

 

The Level-1 model (the category level) is defined as

.. J .

log[—£lk-—] = z $239k , (6.1)

”i—1,jk j=1

where ,65? is the mean category effect if person k selects category i of itemj; and xjk is

a dummy variable with values 1 if person k answers itemj, and 0 otherwise.

6-1-2. The Level-2 Model with Item Covariates

The Level—2 model (the item level) is defined as
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(i) _ ( ( ) ()
fljk ‘701'k+2;712W1-k+272jkw21k+

+Zy(jkw7jk (6.2)

i:

where, for person k, 70jk is the mean effect of itemj across categories i; 7182 is the

effect of an item on a particular category i; w(12 is a dummy variable with values 1 if

i' = i , and 0 otherwise; 73°72 is the effect of covariate t (t = 2,. ..,T —1) on a particular
1

category i for itemj; and w,(k)is a the value of the tth covariate of category i for itemj.

For identifiability, 71(0)“=0 and 713(12):“

6-1-3. The Level-3 Model with Item Covariates

The Level-3 model (the person level) is defined as

70jk = 4010 + “k i (6.3)

7192 = 4‘2, (6.4)

7,9,).- 2,52, (6.5)

where, for the jth item that is answered by person k, 201-0 is the mean effect ofpersons

on itemj; uk is the random effect ofperson k on the mean effect of itemj; 11100) is the

,0
mean change in 101-0 for a particular category of the items; and W is the mean change

in 110jO for a particular covariate t of category i for itemj.

Here, it is helpful to refer back to the honesty example, in which a particular

feeling of an applicant in nested within an item, which in turn is nested within the person.
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As before, a particular answered item not only depends upon the overall attractiveness of

the item (201-0) , but also how the attractiveness of the item influences a particular

feeling (2100)) . However, in addition to the honesty of the person, the response to the

item also depends upon an item covariate (21,513) , such as age. In other words, for

example, the respondent may select one feeling over another more frequently because of

his or her age.

6-1-4. The Combined Model with Item Comm

The combined model of the HMGL-RSM with person covariates reduces to the

following for a particular category i of the itemj

log[—”W" J: 201-0 +2.50n)+22,§3w()wgk+uk, (6.6)

”i-1,11:

where all terms are defined above.

Therefore, the parameters of the HMGL-RSM with item covariates are related to

and extend the parameters ofthe traditional RSM in the following manner:

6,- =T4Oj0’ (6.7)

t.- = 41(2)), (6.8)

6k = uk , (6.9)

and

u“,- = 4,52, (6.10)
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where 6j , 2',- , and 9k are defined above; and U")- is the location of covariate t of

category i for itemj on the underlying continuum, which increases one unit as wfjlk)

increases one unit.

Notice the HMGL-RSM with item covariates allows the item covariates to vary

not only for each item, but for each threshold within each item as well. Currently, the

aforementioned models in Chapter 1 do not allow for such flexibility in item covariate

modeling.

6-2. Simulation Study for the HMGL-RSM with Item Covariates

The following section describes a simulation study for the HMGL-RSM with item

covariates. The focus of this section is to examine the behaviors of the person and item

parameters of the HMGL-RSM when being influenced by an item covariate.

6-2-1. Design

The design ofthe simulation is as follows. Observations were simulated using the

HMGL-RSM. For the study, 500 simulees responded to 10 polytomous items, where each

item consisted of 3 categories i (i = 0, l, 2). The number of simulees, items, and

categories were chosen to follow typical data from a questionnaire (e.g., Dodd, 1990;

Smith & Johnson, 2000; Zhu, Updyke, & Lewandowski, 1997) or a large-scale

assessment (e.g., Michigan Education Assessment Program, 2003; US. Department of

Education, 1999). In addition, the number of simulees and items were chosen because, as

shown in Section 32, these sample sizes allow for reasonable precision (at least when

covariates were not modeled).
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To produce the simulated responses, each simulee k was randomly assigned to be

in one of four levels of the item covariate ([190). The probability of being selected to a

given level was chosen to be .01, .25, .66, and .08, respectively. Probabilities followed

the actual frequencies of the levels of a covariate used in an operational administration of

a confidential readiness assessment. Here, the covariate was age. For the simulation, the

covariate influenced an arbitrarily chosen item, item 1.

Additionally, each simulee k was randomly assigned a 19k , 6? ~ N(0,1). 6j and

I,- were randomly selected to represent parameter estimates obtained from a confidential

readiness assessment (i.e., items 1-10 in Table 2).

Using 0,, , 6j , and r,- , three response probabilities for each simulee by item

combination were produced, P011‘ (6) , Pljk (0) , and P211: (6) . If

i' i'+1

ZPi'jk (0) < Yjk 5 Z Pi'jk (19) , then simulee k was assigned a response of i' +1 for itemj;

0 0

otherwise a response of 0 was assigned. Note that i' = O, 1; and Yjk was a single,

random number for each j x k combination, Y ~ U(0, 1) .

For the simulation, three different models were simulated for item 1. They were:

 

Model 1

\ .
It 1

1037,11 = 4010 +41%)“ (1)0 +141

\ . ’ '
7t 2

log{—2—1-k- = 101-0 +1.](j0)+k§1())+uk

”11k 1

Model 2
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log[:——“1:)= [101-0 +21%)+4210+“k

”0" , (6.12)

log{—21k]: 4010 +4183 +4210 +uk

”11k

where the following constraint is made: (11),) = 2132) = 1210 ;

  

and Model 3

f \ .
7r 1

log J-li =40j0 +11% + (1)()+“k

M011: 1 , (6 13)

log L21"\ = 201-0 +111(2+O+uk

M111: J

where all terms are defined above.

For the other items, the model was

10g[7:1——kjk]= 20j0+11()+uk, (6.14)

_ ,1

wherej= 2, ..., 10.

Note that (11),) and 1%?) were arbitrarily set to .25 and .5, respectively, and that

Ilglo was arbitrarily set to .25. The reason for arbitrarily selecting the values for the

coefficients was because the simulation studies above illustrated that the magnitude of the

coefficient did not affect the RMSE, so little would be gained by manipulating the

magnitude. Additionally, the values appeared to represent typical coefficient values of a

covariate when using the HMGL-RSM (see Chapter 4).

Also note that the sample, item, and group sizes were not manipulated. The reason

for this is that previous simulation studies from the previous sections have already
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examined this issue. It seems that similar results would follow for the current model if a

similar design to those above were used.

The simulation procedure simulated the 3 aforementioned conditions. Each

administration was iterated 50 times producing 150 unique response data matrices. The

number of iterations was chosen because Kamata (1998) showed this to be a reasonable

number for obtaining stable estimates. S-Plus (2000) was used to generate all data. SAS

(2001) was used to obtain parameter estimates and conduct significance tests.

6-2-2. ms

The purpose ofthe analysis is not only to examine the RMSE of estimating the

parameters for the HMGL-RSM with item covariates, but the purpose is to examine the

RMSE of estimating the parameters for the HMGL-RSM with item covariates when the

incorrect model is specified. The reason being is that typically the user does not know the

true model that explains the data. By examining the RMSE for the incorrect model, one

can better understand how incorrect model specification affects precision.

Therefore, for the analysis, the three models described above were simulated. For

a particular dataset, SAS (2001) was then used to estimate Models 1-3. Hence, one model

would yield estimations for the correct model, while the two other models would yield

estimations for the incorrect models.

Next, the parameter recovery of the HMGL-RSM with item covariates was

conducted. Specifically, the RMSE for 9k , 2,920, 22(3), [1210, 6j and r,- was obtained

over the iterations for each condition. The RMSE was
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1 N

—Z(a’3,, (6.15)RMSE(((0): Jan(

where the maximum number ofn iterations was N = 50; and a) is an arbitrary parameter

representing either 19,, , 21,990, [12(9), 2210, (5‘, and r,- . A descriptive analysis of the

RMSE was conducted for each condition.

6-2-3. Results: Descriptive Statistics

Displayed in Tables 23, 24, and 25 are the mean and standard deviations of the

parameter estimates for the HMGL-RSM when the correct model for item 1 was Model

1 2 and 3, respectively. As can be seen, the standard deviations of the estimates are

generally low and similar across conditions. However, the standard deviations are

relatively higher for item 1 when covariates are added to the model. This suggests that

PROC NLMIXED obtains relatively consistent estimates of the HMGL-RSM parameters,

but the consistency decreases for an item when covariates are added.

As for the mean ofthe estimates, in general, the estimates obtained by PROC

NLMIXED for the HMGL-RSM appear to differ only slightly from their parameter

values. Below, in Section 6-2-4, the RMSE is examined.
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Table 23. Mean and Standard Error of the Parameter Estimates for the HMGL-RSM for

 

  

 

Model 1

M SE M SE M SE

5", -0.03 (0.57) 0.13 (0.49) 1.16 (0.22)

«(1) 0.22 (0.20) 0.23 (0.17) -0.18 (0.09)

(2‘)) 0.51 (0.24)

5:0 0.01 (0.10) 0.01 (0.10) 0.01 (0.10)

53 -O.92 (0.10) -0.93 (0.10) -0.92 (0.10)

54 -1.59 (0.12) -1.62 (0.12) -1.60 (0.12)

55 -0.82 (0.11) -0.83 (0.11) -0.82 (0.11)

5‘6 -0.74 (0.12) -0.76 (0.12) -0.75 (0.12)

57 -0.84 (0.11) -0.86 (0.11) -0.85 (0.11)

5“,, -0.03 (0.11) -0.03 (0.11) -0.03 (0.11)

5‘9 0.05 (0.12) 0.05 (0.13) 0.05 (0.13)

310 -0.86 (0.13) -0.87 (0.13) -O.86 (0.13)

f1 -2.24 (0.05) -2.28 (0.05) -2.25 (0.05)

f2 2.24 (0.05) 2.28 (0.05) 2.25 (0.05)

#12 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

2,; 1.00 (0.06) 1.00 (0.06) 1.00 (0.06)

 

8% {1,2,3} =estimated Models 1,2, and 3. {51,32,...,310} =

location for items 1 - 10. {£132} == thresholds 1 and 2.

{411. 82,
Mean person location. 20: Standard deviation ofthe person

locations. M = Mean. SE = Standard error.
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Table 24. Mean and Standard Error of the Parameter Estimates for the HMGL-RSM for

 

  

 

Model 2

M SE M SE M SE

5] -0.02 (0.52) -0.01 (0.51) 0.56 (0.22)

~(1) 0.22 (0.19) 0.22 (0.19) 0.02 (O. 10)

1;; 0.23 (0.21)

3:0 0.01 (0.10) 0.01 (0.10) 0.01 (0.10)

53 -O.92 (O. 10) -O.92 (O. 10) -O.92 (O. 10)

54 -1.59 (0.12) -1.59 (0.12) -1.60 (0.12)

5‘5 -O.82 (0.1 1) -O.82 (0.1 1) -O.82 (0.1 1)

5‘6 -O.74 (0.12) -O.75 (0.12) -O.75 (0.12)

37 -O.84 (0.1 1) -O.84 (0.1 1) -O.84 (0.1 1)

58 -0.03 (0.1 1) -0.03 (0.1 1) -0.03 (0.1 1)

5'9 0.05 (0.12) 0.05 (0.12) 0.05 (0.12)

510 -O.86 (0.13) -O.86 (0.13) -0.86 (0.13)

1] -2.24 (0.05) -2.25 (0.05) -2.25 (0.05)

2‘2 2.24 (0.05) 2.25 (0.05) 2.25 (0.05)

#12 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

2,; 1.00 (0.06) 1.00 (0.06) 1.00 (0.06)

 

&{1, 2, 3} =estimated Models 1, 2, and 3. {&,SZ,...,310} =

location for items 1 - 10. {flj'z} = thresholds l and 2.

{21m
Mean person location. Zé= Standard deviation of the person

locations. M = Mean. SE = Standard error.

107

} = item covariates. £2030 for Model 2 = 13210. W =



Table 25. Mean and Standard Error of the Parameter Estimates for the HMGL—RSM For

 

 

 

Model 3

M SE M SE M SE

5“ -0.02 (0.48) 0.01 (0.10) 0.01 (0.10)

«(1) 0.22 (0.17) 0.13 (0.20) 0.25 (0.08)

1;? -0.03 (0.17)

3:0 0.01 (0.10) -0.89 (0.10) -0.92 (0.10)

53 -0.92 (0.10) -1.56 (0.12) -1.59 (0.12)

34 -1.59 (0.12) -0.80 (0.10) -0.82 (0.11)

5'5 -0.82 (0.1 1) -0.73 (0.12) -0.74 (0.12)

56 -0.74 (0.12) -0.82 (0.10) -0.84 (0.11)

57 -0.84 (0.11) -0.03 (0.11) -0.03 (0.11)

58 -0.03 (0.1 1) 0.05 (0.12) 0.05 (0.12)

59 0.05 (0.12) -0.83 (0.13) -0.86 (0.13)

31 0 -0.86 (0.13) -2.20 (0.05) -2.24 (0.05)

f] -2.24 (0.05) 2.20 (0.05) 2.24 (0.05)

f2 2.24 (0.05) -0.08 (0.56) -0.10 (0.17)

#1; 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

2,; 1.00 (0.05) 1.00 (0.05) 1.00 (0.05)

 

figs. {1, 2, 3} = estimated Models 1, 2, and 3. {51,52,..,,310} =

location for items 1 — 10. {£143} = thresholds 1 and 2.

{211ml
Mean person location. 203: Standard deviation of the person

locations. M = Mean. SE = Standard error.

6-2-4. Results: RMSE
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The results of the RMSE for ,ué , 263’ 22030, 12(3), 61- , and r,- of the HMGL-

RSM with item covariates are provided in Table 26. Trends indicated that the RMSE

generally remained the same, which were low, for ya , 263 , 62 - 610 , and t,- , even if an

incorrect model was estimated.

However, the RMSE generally increased for 61 , [1.930 , and 2%?) when an

incorrect model was estimated. This especially occurs if the correct model was Model 1

or 2 and the incorrect estimated model was Model 3. Nevertheless, except if the correct

model was Model 1 and the incorrect estimated model was Model 3, the RMSE tended to

remain within reasonable levels below or around .55. Thus, the analysis provides some

evidence that if the model was correctly specified, the parameters were estimated

extremely well unless it were influenced by an item covariate. In this case, only when the

model did not specify an item covariate when there should have been one does the

precision become unreasonable. Otherwise, the precision is somewhat low, yet

reasonable.
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Table 26. RMSE for the HMGL-RSM with Item Covariates

 

  

 

T l 2 3

E 1 2 3 1 2 3 1 2 3

61 0.56 0.53 1.26 0.52 0.52 0.69 0.48 0.55 0.17

(1) 0.20 0.17 0.44 0.19 0.19 0.25 0.18 0.23 0.08

1210

Ag?) 0.24 0.34 0.55

52 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

53 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

54 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12

55 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.11

56 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

57 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.10 0.11

58 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11

59 0.12 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12

510 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

71 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.05

2'2 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.05

w 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

21; 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

 

Note. T = True model. E = Estimated model. {1, 2, 3} = Models 1, 2, and 3.

{31,52,...,510} = location for items 1 - 10. {fijz} = thresholds 1 and 2.

 

{£90, “(3} = item covariates. #12 = Mean person location. Zé= Standard

deviation of the person locations. M = Mean. SE = Standard error.

6-3. Example Analysis of the HMGL-RSM with Item Covariates

The purpose of this section is to provide an example analysis that illustrates the

basic concepts of the HMGL-RSM with item covariates. In particular, one will illustrate

how to use the model to assist in explaining DIF.
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6-3-1. Disign

The design of the analysis is as follows. Five hundred respondents were randomly

selected fiom a larger sample of students who responded to a confidential readiness

assessment. Note these respondents were the same respondents used in Section 5-3.

However, those respondents who did not provide their Age were not used here. Thus, the

final sample consisted of473 respondents. Their demographics are provided below in

Table 27. As one can see, there appears to be an equal distribution ofMales and Females

in each of the demographic categories.

Table 27. Demographic Information

 

Males Females Total
 

SES

Hi 106 103 209

Mid 123 100 223

L0 22 17 39

Age

5 1 2 3

6 66 64 130

7 171 161 332

8 22 6 28

Ethnicity

Asian 2 5 7

Af.-Am. 132 104 236

Hisp. 23 18 41

Cauc. 98 105 203
 

Egg, Af.-Am. = African-American. Hisp. = Hispanic.

Cauc. = Caucasian. 9 Males and 13 Females did not

provide their parent’s SES. 5 Males and 1 Female did

not provide Ethnicity.
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As in Section 5-3, this illustration only utilized the first 10 items of a confidential

readiness assessment (which again measured the person’s personal and social

development). The item covariate that was used was Age. Age was selected as the

covariate because there was some reason to believe that the older respondents may have

interpreted the categories differently than the younger respondents. Lastly, recall that

items 3-5 and 9 contained DIF. Hence, Age was used to explain the DIF that appeared for

items 3-5 and 9 for Males and Females. (Note although the HMGL-RSM identified

additional items as containing DIF, they were not modeled as being influenced by Gender

or Age. The reason for doing so was because the effects of the non-DIF items on the item

covariates were not of interest here.)

6-3 -2. mugs

To analyze the responses of the students, PROC NLMIXED ofSAS (2001) was

used to estimate the person and item parameters for the HMGL-RSM with Gender and

Age as the item covariate for items 3-5 and 9, and no item covariates for the remaining

items. Hence, the final model is the HMGL-RSM with a group level and item covariates.

6-3-3. Results

The results of the analysis are presented below in Table 28. To interpret the

HMGL-RSM with item covariates, recall from above that if the item exhibits DIF, then

(50101 $0 and

510 = 150100

511 =‘(4‘0j00 +9‘Oj01)-
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For example, for item 3, when item covariates are added to explain DIF, the overall

attractiveness ofthe item for Males is 33,0 = ~60300 = 4.34 , while the overall

attractiveness ofthe item for Females is

53,] = ”(50300 +5330] ) = —(—4.34+ 0.82) = 3.52.

Table 28. Parameter Estimates for the HMGL-RSM With Age as an Item Covariate

 

 

 

Age Included Age Not Included

Item Par. Est. SE t 2 Est. SE t p—

1 50100 -1.34 0.16 -8.21 0.00 -1.32 0.16 -8.12 0.00

2 $0200 -1.60 0.16 -9.68 0.00 -1.57 0.16 -9.58 0.00

3 £0300 .434 1.42 -3.05 0.00 -0.89 0.19 -4.649 0.00

50301 0.82 0.23 3.66 0.00 0.81 0.22 3.64 0.00

~ 1 0.49 0.21 2.34 0.02

60302

~(2) 0.54 0.21 2.60 0.01

50302

4 420400 -1.53 1.42 -1.08 0.28 -0.37 0.19 -1.97 0.05

50401 0.84 0.23 3.69 0.00 0.82 0.22 3.69 0.00

~ 1 0.16 0.21 0.79 0.43

50402

~(2) 0.18 0.21 0.85 0.40

60402

5 420500 -2.62 1.40 -1.87 0.06 -0.65 0.19 -3.41 0.00

50501 0.46 0.22 2.09 0.04 0.48 0.22 2.17 0.03

.(1) 0.26 0.20 1.27 0.21

60502

. 2 0.33 0.20 1.61 0.11

60502

6 420600 -0.58 0.16 -3.62 0.00 -0.57 0.16 -3.59 0.00

$0700 071 0.16 -4.42 0.00 -0.70 0.16 -4.37 0.00

8 430800 -1.44 0.16 -8.79 0.00 -1.42 0.16 -8.70 0.00
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Table 28 (cont’d)

9 50900 -137 1.45 -0.94 0.35 -1.95 0.20 -9.79 0.00

50901 0.88 0.23 3.86 0.00 0.95 0.23 4.17 0.00

~(1) -011 0.21 -052 0.60

0902

~ 2 -004 0.21 -0.18 0.86

60902

10 50,10,00 -0.67 0.16 -4.16 0.00 -0.66 0.16 -4.11 0.00

81 -2.18 . . . 2.10 . . .

82 2.18 0.05 -46.18 0.00 -2.10 0.03 -60.25 0.00
 

Note. Par. = parameter. Est. = estimate. SE = standard error. 1 = t-statistic. p = p-value.

{99ij $01.01} = overall attractiveness of itemj for Males and Females, respectively.

{51,5} = thresholds 1 and 2. p = 0.00 implies p < .01,

To explain the difference in the attractiveness between Males and Females, the

model suggests that Age may influence the genders. That is, older Males and Females

may interpret the item categories differently than younger Males and Females.

Additionally, this influence is not constant across category thresholds. For example, the

location ofAge on the underlying continuum as the category increases from 0 to 1 is

13213 = @932” = —.49 , while the location ofAge as the category increases fiom 1 to 2 is

13223 = @3532 = —.54. Thus, if a Male or Female is age 5 then, then the location ofAge

on the underlying continuum as the category increases from 0 to 1 is

13213 x “£13k = —.49x 5 = —2.45 . If the age is 6, then the location is

13213 x ng3)k = —.49x 6 = —2.94. And so on, for Ages 7 and 8, where similar
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interpretations hold for the location ofAge as the category increases from 1 to 2. This

suggests that as Age increases, the location ofAge decreases for Males and Females.

To answer the question ofwhether Age adequately explains the DIF exhibited in

the items, one examines the model fit ofthe current model compared to the model

without Age as a covariate using the AIC and BIC. When Age is included in the model,

the AIC and BIC are 6955.7 and 7060.7, respectively. When Age is not included in the

model, the AIC and BIC are 6955.6 and 7027.0, respectively. Furthermore, when

inspecting the information weights, the AIC and BIC weights for the HMGL-RSM

without Age are .51 and 1.00, while the AIC and BIC weights for the HMGL-RSM with

Age are .49 and .00. Since the AIC and BIC are lower for the HMGL-RSM without Age,

and since higher weights indicate the model is more likely, the evidence suggests that the

HMGL-RSM without Age is the better fitting model. Thus, although the HGML-RSM

aids in the explanation ofDIF, it was found that Age does not explain the existence of

DIF for this particular example.
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Chapter 7. Conclusions and Future Directions

7-1. Conclusions

As shown in the preceding chapters, the parameters of the I-IMGL-RSM were

recovered fairly well. In addition, simulations and example analyses illustrated the three

primary advantages of utilizing the HMGLM to model the RSM and PCM. Specifically,

the HMGL-RSM and -PCM were able to extend existing models to include person
 

covariates, a group level, and item covariates.

In addition, the dissertation illustrated several advantages ofutilizing the HMGL-

RSM and -PCM for analyzing educational testing data. Specifically, in Chapter 1, it was

discussed that traditional methods, such as the RSM and PCM, do not account for the

variation between persons and variation ofresponses within a person. By applying the

I-IMGL-RSM and -PCM, this is accounted for. Additionally, in Chapter 1, one discussed

how the HMGL-RSM and -PCM allow for a singular method that utilizes a hierarchical

framework (HLM) that extends polytomous IRT models to include person covariates and

predictors of item behaviors, and accounts for the correlation between categories of a

polytomous item. No other method applies this specific framework to do so.

In Chapter 2, the HMGLM framework is used to define the HMGL-RSM and -

PCM. It was noted, and should be re-stated, that although Tuerlinckx and Wang (2004)

present similar models, the reader should be aware that the models presented here are not

the same models as those presented by the aforementioned authors. The models defined

here use the HMGLM framework; this framework defines a separate model for each

hierarchical level. As argued, this allows for a more ‘natural’ way of not only modeling

educational testing data, but also understanding educational testing data.
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In Chapter 3, the HMGLM framework is used to illustrate how the HMGL-RSM

performs in comparison to traditional IRT methods such as the RSM. As shown and

discussed, the primary advantage is that the HMGL-RSM estimates have smaller standard

errors than the RSM estimates. This, of course, becomes important as the user places

higher stakes on the interpretation of those estimates. For example, if the user interprets

the estimate of the person parameter as being the person proficiency, and if the user

utilizes this estimate to make the high-stakes decision ofwhether or not the person passes

high-school, then the less error associated with this estimate, the more confident the user

will be in making this high-stake decision.

In Chapter 4, the HMGLM framework is used to illustrate how the HMGL-RSM

can be extended to include person covariates. As shown, by applying the HMGL-RSM

with person covariates the user can control for the influence of a covariate at the person

level. This form ofthe HMGL-RSM may be especially important in accountability

investigations in which the user is interested in the location of a student, after controlling

for the effects of a covariate (e.g., Stone and Lane (2003)). For example, assume in the

example analysis in Section 4-3 that test-takers obtain a monetary reward for performing

well. As shown, SES was negatively related to performance. Thus, we can see that if the

monetary cut-offwere .5 logits, then the lower SES group would receive the monetary

reward—only if SES was controlled for. Compare this to not controlling for SES: the

lower SES group would not receive any monetary reward.

Additionally, as was implied in Chapter 4, the HMGL—RSM with person

covariates has its advantages over traditional methods using covariates such as the

analysis of covariance (ANCOVA). For instance, to apply ANCOVA as a measure for
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controlling the effects of the covariates on student performance, then the user must first

estimate the person and item locations using IRT. Next, the user applies ANCOVA

procedures. To do so, one must estimate a model where the dependent variable is the total

test score; and the independent variables are the IRT person estimate and covariate. By

estimating this model, the user may be able to examine how the covariate influences the

person’s performance on the test. However, this process has its limitations. One

limitation is that the estimates of the covariate and the estimates of the person

performance are not necessarily placed on the same scale. This issue becomes a problem

as the user attempts to interpret the estimates: Does 1 unit in the covariate scale mean the

same thing as 1 unit in the person performance scale? Another limitation is that the

process is somewhat time inefficient since two separate steps are used to obtain the

aforementioned estimates, the IRT step and the ANCOVA step.

The advantage of applying the HMGLM to extend IRT models is that the

procedure for controlling the effects of the covariates on student performance is

simplified to only one step (i.e., estimating one model as opposed to two, which as

mentioned earlier may be a more natural way of conceptualizing the data), and the

estimates are placed on the same scale (Lord, 1980).

In Chapter 5, the HMGLM fiamework is used to illustrate how the HMGL-RSM

can be extended to include a group level. As shown, this model was a somewhat powerful

test for detecting DIF. Additionally, when compared to another popular DIF procedure,

the MH test, the HMGL-RSM was not only more powerful, but it afforded a few

advantages the MH test did not. For instance, although a purification procedure was not

used here with the MH test because the purification procedure would not greatly
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influence the DIF results for the simulated testing conditions (e.g., Wang & Su, 2004),

there may be other operational conditions that a purification procedure may be necessary.

By utilizing the I-IMGL-RSM, a purification procedure is not necessary and this issue is

avoided. That is, by modeling the testing environment with the HMGL-RSM, the model

controls for the effects of DIF and non-DIF items and simultaneously investigates for

DIF. Hence, no purification is necessary since the effect of the other items is controlled

for.

In Chapter 6, the HMGLM framework is used to illustrate how the HMGL-RSM

can be extended to include item covariates. As shown, this extension may provide a way

to explain why DIF exists. As briefly discussed, after a DIF examination occurs in an

operational setting, the user must now attempt to explain why DIF occurs, and a decision

regarding the item must be made. That is, the user must decide: even though DIF exists,

does the item display any characteristics that would create a bias for a particular group? If

so, should the item be modified or removed from the test? By applying the HMGL-RSM

with item covariates, the guesswork is minimized for the first part ofthe decision. That is,

rather than providing a subject judgment for whether or not the item displays any biasing

characteristics, the HMGL—RSM allows the user to explicitly create a model that

examines the user’s hypothesis. For example, rather than the user suggesting a math item

may be exhibiting DIF because it is a trigonometry item and the other items are not

trigonometry items, the user may explicitly define a model that includes whether or not

an item is a trigonometry item, and then he may exarrrine this model for its ability to

explain the occurrence of DIF.
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Lastly, it is re-iterated: the HMGLM allows the user to accomplish all of the

aforementioned advantages—simultaneously. Again, there is currently no other

procedure that applies this particular hierarchical framework to do so. Below one

discusses additional contributions of this fiamework and these models.

7-1 -1 . Contributions

Beyond extending the RSM and PCM, there are four main contributions that

result by applying the HMGLM to unify HLM and polytomous IRT models. As stated

before, they include (1) models using HMGLM may currently be estimated using existing

software (e.g., SAS, 2001; STATA, 2000); (2) [RT and HLM are unified using a

common notation; (3) score fimctions and information matrices (which may be used for

parameter estimation) are well-known under the HMGLM (e.g., see Fahrrneir & Tutz,

2001); and (4) a broad class of IRT models within the HLM framework may be estimated

using a common method (e.g., maximum likelihood).

7-1-1 . 1. Swial Estigrtion Soflware is Not Necessg

By applying the HMGLM, estimation of IRT models does not require special

software (e.g., HLM for Windows, 2001). To estimate the HMGLM, all one needs is any

ofthe mass soflware that estimates generalized mixed models, such as SAS or STATA.

Consequently, this suggests that users do not have to learn additional software to estimate

these models. Although this may seem like a trivial point, it becomes a strong point once

one considers the amount of time and money saved by not expending one’s energies and

finances necessary in purchasing and learning new software.
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7-1-1.2. Common Notation

Another contribution of applying the HMGLM is that a common notation system

may be used to describe the models that are unified from two different areas of research.

Although this may seem trivial, it actually is not once one considers that each area of

research, HLM and IRT, has its own notation. Furthermore, each researcher may bring

his own ‘style’ to the notation system. Additionally, if one considers that each separate

notation system may be considered a separate language, then it becomes cumbersome and

confusing when researchers attempt to discuss similar concepts and theories in different

languages, i.e., notations. For example, notice in the discussion above, that the ability

parameter is represented by 0 in IRT, but the ability parameter is represented by u in

HLM. By applying the HMGLM, HLM and IRT may be unified in such a way that

avoids this issue. And, at the same time, the interpretation ofthe parameters remains

consistent. Furthermore, since the HMGLM is an extension ofunivariate GLM, which

already has a strong history and accepted notation, users may simply incorporate IRT and

HLM within a knowledge structure that already exists for GLM without confusing

oneselfany further.

7- 1 -1.3. Well-Known Score Functions and Information Mag'ces

By applying the HMGLM to IRT, the score functions and information matrices

are well known for the hierarchical IRT models (see Fahrmeir and Tutz, 2001, Chapter

3). Since these are well known, it is not necessary for the user to derive these such that

they can be used during maximum likelihood estimation of the parameters. Compare this
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to the Bayesian approach. In this approach, for each new model that is developed, the

user may have to derive a new prior and posterior distribution so that the parameters can

be estimated. Although this may be a simple task for some, this may be an extremely

difficult feat for others. By applying the HMGLM to IRT, this can be avoided, and most

researchers who have a general understanding of GLM, HLM, and IRT can enjoy its

application.

7-1-1 .4. Common Estimation Method

As the reader can see, there are numerous possibilities for postulating hierarchical

IRT models when the HMGLM is applied. Fortunately, since the HMGLM is simply an

extension ofGLM, which has well-studied and well-understood properties (e.g., score

functions and information matrices), the HMGLM also has well-studied and well-

understood properties. The advantage ofthis is that the nrunerous hierarchical IRT

models that can be developed under the HMGLM may be estimated using a common

estimation method. For instance, here, recall that estimates ofthe parameters are obtained

by maximizing an approximation to the likelihood integrated over the random effects,

where the integral approximations are obtained via adaptive Gaussian quadrature and the

optimization technique is carried out using a dual quasi-Newton algorithm (SAS, 2001)

or a modified Newton-Rapheson algorithm (Rabe-Hesketh, Pickles, & Skrondal, 2001).

Again, compare this to the Bayesian approach. For this approach, if a new model is

developed, characteristics such as the conditional probability distributions for the

variances may differ for each new model. Consequently, if the characteristics change for

each new model, then it may be necessary to alter the algorithm of the estimation method
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for each new model. Obviously, this may prove to be laborious, and consequently the

application of the new model may be avoided. Again, this is not the case for the

HMGLM.

7-2. Limitations

Below, one describes five limitations that were encountered during this

dissertation, some ofwhich was the result of using popular estimation software such as

PROC NLMD{ED in SAS. They include: (1) the item discrimination parameter is not

modeled; (2) data preparation is cumbersome; (3) potentially long estimation times; (4)

unbalanced data was not considered; and (5) a non-normal distribution ofrandom effects

was not investigated.

7-2-1. Item Discrimination Parameter is Not Modeled

The first limitation is that the item discrimination parameters were not modeled.

That is, Muraki (1992) presented an extension of the PCM in which each item has its own

discrimination (i.e., slope). As suggested by this model, this may be an important

parameter to consider if one cannot assume the discrimination ofthe test items equals

one. Notice that this assumption was made in order to simulate responses for the HMGL-

PCM and -RSM. Fortunately, this does not affect the generality ofthe HMGL-RSM or -

PCM. That is, although it may be necessary to model the discrimination parameter for

some achievement tests or questionnaires, this may not hold for all tests or

questionnaires. For example, the Michigan Education Assessment Program does not

apply a model with a discrimination parameter for estimating the parameters of the state’s
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achievement test (Michigan Education Assessment Program, 2003). Additionally, Dodd

(1990), Smith and Johnson (2000), and Zhu, Updyke, and Lewandowski (1997) also do

not model discrimination parameters for estimating the parameters of a questionnaire.

7-2-2. QEPrepaLLation is Cumbersome

A second limitation is that data preparation is fairly cumbersome. That is, before

using estimating the HMGL-RSM and -PCM, the user must structure the raw data such

that the categorical response is a multivariate vector (rather than the category selection

itself, which is typically the case when estimating non-hierarchical polytomous models,

e.g., see the software WINSTEPS (1999)). Additionally, the user must create J -l

dummy variables that identify the item under investigation (see Appendix C). As can be

guessed, this process becomes rather tiresome as the number of items and categories

increases. Nevertheless, the author feels that the time invested in pursuing the application

ofthe HMGLM in IRT is far outweighed by the benefits gained (see Section 7-1-1).

7-2-3. Possibly LongEstirnjtion Times

Another limitation is that, if adaptive Gaussian quadrature is used (as is done in

this dissertation), then the estimation of the HMGL-PCM and -RSM may require long

estimation times. For example when using a PC with a 3.2 GHz, Intel Pentium 4

processor, parameter estimation of the HMGL-RSM took approximately 12 hours when

the number ofpersons and items was 1000 and 25, respectively. This occurs because

adaptive Gaussian quadrature requires finding the mode of the function being integrated.

This means that as the number ofrandom effects increases—in the case for IRT
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modeling, as the number ofpersons increases—adaptive Gaussian quadrature finds the

mode for each unique random effect for each iteration of the estimation algorithm.

Thus, alternative methods to the HMGL-PCM and -RSM may be more

worthwhile if long estimation times are to be avoided. For example, if the user wants an

estimate ofthe effect of a covariate for a group of students, an ANCOVA can be applied.

Or, if the user wants to test for DIF, then the MH test can be applied. Of course, these

alternatives also have their disadvantages, which were discussed above. Hence, the user

must choose the preferred method based on which advantages and disadvantages are most

important to him/her.

Nevertheless, the long estimation times does not appear to be a major hurdle in

applying the HMGLM to IRT, at least in the near future, considering that computers are

becoming increasingly faster, which may decrease estimation times. Additionally, as

mentioned in Section 2-5, other estimation procedures, which are possibly faster than

adaptive Gaussian quadrature, may be employed.

7-2-4. Unbalanced Data

A fourth limitation encountered in this dissertation is that the simulation study did

not investigate the accuracy ofthe parameter estimates ofunbalanced data (i.e., all

persons do not respond to all items). Ofcourse, in real data, unbalanced data is more

likely the rule rather than the exception. Nevertheless, this dissertation provides insight

on how well the parameters for the HMGL-PCM and -RSM are estimated under ideal

conditions. Consequently, this ideal scenario can now be used as a benchmark for

comparison with future studies that investigate the effects ofunbalanced data.

125



7-2-5. Non-Normal Distribution for Random Effects Not Investigafid

A fifth limitation is that non-normal random effects were not investigated.

Although it is possible that the random effects may not be normal in actual data, in

educational research it is commonly assumed that the distribution of the effects is normal

(e.g., Cheong & Raudenbush, 2000; Kamata, 1998, 2001; Lord, 1980; Miyazaki, 2000).

Here, customary assumptions were used, and it is expected that this should not affect the

generality of the model itself. However, if the user is interested in non-normal effects,

then one may posit a non-normal distribution and estimate the model using approaches

other than those discussed here. For example, Hartzel et al. (2001) and Aitkin (1999, as

cited by Hartzel etal., 2001) present a semi-parametric estimation method that does not

rely on a multivariate normal specification ofthe random effects. Additionally,

GLLAMM for STATA allows one to apply binomial, gamma, or Poisson (Rabe-Hesketh,

Pickles, & Skrondal, 2001). Fahrrneir and Tutz (2001, Chapter 7) present estimation

methods based on posterior modes or Bayesian techniques, which also do not require the

distribution of the random effect to be normal. Lastly, Breslow and Clayton (1993, as

cited by Gueorguieva, 2001) and Wolfinger and O’Connell (1994, as cited by

Gueorguieva, 2001) present a penalized quasi-likelihood method, which also does not

require the distribution of the random effect to be normal

7-3. Future directions

Future researchers may direct their efforts toward addressing the limitations

described above. For instance, researchers can develop software specifically designed for
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estimating the HMGLM. If accomplished, limitations of data preparation and estimation

times would be avoided. However, that is not to say utilizing PROC NLMIXED in SAS

is not worthwhile. Typical everyday users who are not adept at developing computer

estimation software should fine SAS useful as it provides an easily understandable and

readily available method to estimate the models discussed here.

Additionally, researchers may attempt to apply the HMGLM to a polytomous IRT

model with a discrimination parameter (e.g., Muraki, 1992). This may be possible if one

extends the work ofMiyazaki (2000) to polytomous models. Additionally, researchers

may examine the parameter recovery rate for more ‘real-like’ simulated data in which the

data is unbalanced. Lastly, researchers may examine the estimates ifnon-normal random

effects were utilized.

Other research may direct their efforts toward extending the contributions

described above. For instance, researchers may wish to model a hierarchical FACETS

model (Linacre, 1994). One application of this model is found in the literature regarding

rater effects (e.g., Wolfe, Moulder, & Myford, 2001). It would be interesting to see how

accurately rater effects would be measured by the FACETS model by applying the

HMGLM.

Finally, future researchers may direct their efforts in comparing the HMGLM to

the Bayesian modeling ofrandom-effects approach (Section 1-2-3), the rater effects

approach (Section 1-2-4), and the hierarchical univariate general linear model approach

(Section 1-2-5). Although each ofthese approaches attempts to obtain similar

information, they do so in different manners, as discussed above. It would be interesting
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to examine the equivalence in the parameter estimates obtained from each approach. It is

possible that one approach provides better estimates than the other approaches.
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APPENDIX A.

Example SAS Code for Estimating the HMGL-RSM for a Polytomous Test with 10 Items

*-~ INPUT DATAWWW;

data RSM;

infile "C:\WINDOWS\Start Menu\temp\data.dat" ;

input y0 yl y2 y3 person_id item__id xl-x10 ;

run;

proc sort ;

by person_id;

run;

*

*-~ RUN NLMIXED FOR INITIAL ESTIMATESWWW;

proc nlrnixed data=RSM ;

*PRE-INITIAL ESTIMATES;

parms betal-betalO gammal-gamma3 = 0;

*CODE LINEAR PREDICTORS;

gamma3 = -1*(gammal+gamma2);

etal = xl“ betal + x2* beta2 + x3* beta3 + x4“ beta4 + x5* beta5 +

x6* beta6 + x7* beta7 + x8* beta8 + x9* beta9 + x10* betalO + garnmal;

eta2 = x1* betal + x2* beta2 + x3* beta3 + x4* beta4 + x5* beta5 +

x6* beta6 + x7* beta7 + x8* beta8 + x9* beta9 + x10* betalO + gamma2;

*RATING SCALE MODEL;

pi0 = 1 / (l + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

pi] = exp(etal) / (l + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

pi2 = exp(etal+eta2) / (1 + exp(eta1)+ exp(etal+eta2) + exp(etal+eta2) );

*DEFINE LH(ELIHOOD;

Z = (Pi0**y0)*(Pi1"yl)*(Pi2**y2)*(Pi3**y3);

if (z > 1e-8) then 11 = log(z);

else ll=-le100;

model y0 ~ general(ll);
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*SPECIFY RANDOM EFFECT DISTRIBUTION;

*none;

*OBTAIN INITIAL ESTIMATES;

ods output ParameterEstimates = parest ;

run;

*

*-~ RUN NLMD(ED FOR FINAL ESTIMATESWWW;

proc nlmixed data=RSM ;

*READ IN INITIAL ESTIMATES;

parms / data = parest;

*CODE LINEAR PREDICTORS;

theta = 111 ;

gamma3 = -1*(gamma1+gamma2);

etal = x1* betal + x2* beta2 + x3* beta3 + x4* beta4 + x5* beta5 +

x6* beta6 + x7* beta7 + x8* beta8 + x9* beta9 + xlO“ beta10 + gammal +

theta;

eta2 = xl" betal + x2* beta2 + x3"' beta3 + x4* beta4 + x5* beta5 +

x6* beta6 + x7* beta7 + x8* beta8 + x9* beta9 + x10* betalO + gamma2 +

theta;

*RATING SCALE MODEL;

pi0 = l / (1 + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

pil = exp(etal) / (l + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

pi2 = exp(etal+eta2) / (1 + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

*DEFINE LIKELIHOOD;

Z = (Pi0**y0)*(Pi1**y1)*(Pi2**y2)*(Pi3**y3);

if (z > 1e-8) then 11 = log(z);

else ll=-1e100;

model y0 ~ general(ll);

*SPECIFY RANDOM EFFECT DISTRIBUTION AND OBTAIN EMPIRICAL

BAYES ESTIMATES;

random 111 ~ normal(0, 81 ”'51) subject = person_id OUT=bayesest;

run;
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***********************************************************************o

9

NOTE. THIS PROGRAM WAS OBTAINED AND MODIFIED FROM

HARTZEL, AGRESTI, AND CAFFO (2001).

ALSO NOTE THEY STATE THE FOLLOWING:

"With Gauss-Hermite quadrature, computer

underflow can be a problem mainly when there are many within-cluster

observations. For most data sets in our experience, however, it is

the number of clusters that is large and not the number of

observations within a cluster. In using NLMDCED, we addressed this

problem by assigning the likelihood to a very small number within the

limits of computer precision. Specifically we entered

if (z > le-8) then 11 = log(z); else ll=-1e100

for this purpose."

****#********t*********#****************************#*********#********;
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APPENDIX B.

Example SAS Code for Estimating the HMGL-PCM for a Polytomous Test with 10 Items

*-~ INPUT DATAWWW;

data PCM;

infile "C:\WINDOWS\Start Menu\temp\data.dat" ;

input y0 yl y2 y3 person_id item_id xl-x10 ;

run;

proc sort ;

by person_id;

T1111;

*

*~—- RUN NLMIXED FOR INITIAL ESTIMATESWWW;

proc nlmixed data=PCM ;

*PRE-INITIAL ESTIMATES;

parms betal -beta10

gammal 1 -gammal 2

gamma2 1 -gamma22

gamma3 l -gamma32

gamma41-gamma42

gamma5 l -garnma52

gamma6l-gamma62

gamma7l-gamma72

gamma8 l —gamma82

gamma9l-gamma92

gammal 01 -gamma102 = 0;

*CODE LINEAR PREDICTORS;

gammal2 = -l*(gamma1 l);

gamma22 = -l*(gamma21);

gamma32 = -1*(gamma31);

gamma42 = -1*(gamma41);

gammaSZ = -l*(gamma51);

gamma62 = -1*(gamma6l);

gamma72 = -l*(gamma7l);
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gamma82 = -l*(gamma81);

gamma92 = -l*(gamma91);

gamma102 = -1*(gamma101);

betall = betal + garnmall ;

beta12 = betal + gamma12 ;

beta2] = beta2 + gamma2] ;

beta22 = beta2 + gamma22 ;

beta31 = beta3 + gamma3] ;

beta32 = beta3 + gamma32 ;

beta4] = beta4 + gamma41 ;

beta42 = beta4 + gamma42 ;

betaSl = beta5 + garnmaSl ;

beta52 = beta5 + gamma52 ;

beta6l = beta6 + gamma6l ;

beta62 = beta6 + gamma62 ;

beta71 = beta7 + gamma7l ;

beta72 = beta7 + gamma72 ;

beta8l = beta8 + gamma8] ;

beta82 = beta8 + gamma82 ;

beta9l = beta9 + garnma9l ;

beta92 = beta9 + gamma92 ;

etal = xl" betall + x2* beta2] + x3* beta31 + x4* beta4] + x5* beta5] +

x6* beta6] + x7* beta7] + x8* beta81 + x9* beta9] + x10“ beta101;

eta2 = xl" beta12 + x2* bet322 + x3* beta32 + x4* beta42 + x5* beta52 +

x6* beta62 + x7* beta72 + x8* beta82 + x9* beta92 + x10* beta102;

*PARTIAL CREDIT MODEL;

pi0 = l / (l + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

pil = exp(eta1)/ (1 + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

p12 = exp(etal+eta2) / (1 + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

I"DEFINE LIKELIHOOD;

Z = (Pi0**y0)*(pi1**y1)*(Pi2**y2)*(Pi3**y3);

if (z > le-8) then 11 = log(z);

else ll=-1e100;
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model y0 ~ general(ll);

*SPECIFY RANDOM EFFECT DISTRIBUTION;

*none;

*OBTAIN INITIAL ESTIMATES;

ods output ParameterEstimates = parest ;

run;

*

*-~ RUN NLMD(ED FOR FINAL ESTIMATES

proc nlmixed data= PCM;

*READ IN INITIAL ESTIMATES;

parms / data = parest;

*CODE LINEAR PREDICTORS;

theta = 111 ;

gamma12 = -1*(gammal l);

gamma22 = -1*(gamma21);

gamma32 = -1*(gamma31);

gamma42 = -l*(gamma4l);

gamma52 = -l*(gamma51);

gamma62 = -l*(gamma6l);

gamma72 = -l*(gamma71);

garnma82 = -1*(gamma81);

garnma92 = -1*(gamma91);

gamma102 = -1*(gamma101);

betall = betal + gammall ;

beta12 = betal + gamma12 ;

beta21 = beta2 + gamma21 ;

beta22 = beta2 + gamma22 ;

beta31 = beta3 + gamma31 ;

beta32 = beta3 + gamma32 ;

beta4] = beta4 + gamma4l ;

beta42 = beta4 + gamma42 ;

beta51 = beta5 + gamma51 ;
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beta52 = betaS + gamma52 ;

beta6l = beta6 + gamma61 ;

beta62 = beta6 + gamma62 ;

beta7l = beta7 + gamma71 ;

beta72 = beta7 + gamma72 ;

beta81 = beta8 + gamma8] ;

beta82 = beta8 + gamma82 ;

beta9] = beta9 + garnma91 ;

beta92 = beta9 + gamma92 ;

etal = x1* betall + x2"l beta21 + x3* beta31 + x4* beta4] + x5* beta51 +

x6* beta61 + x7* beta7l + x8* beta81 + x9* beta9l + x10* beta101 + theta;

eta2 = x1* beta12 + x2”II beta22 + x3"I beta32 + x4* beta42 + x5* bet352 +

x6* beta62 + x7* beta72 + x8* beta82 + x9* beta92 + x10* beta102 + theta;

*PARTIAL CREDIT MODEL;

piO = 1 / (l + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

pil = exp(etal) / (1 + exp(eta1)+ exp(etal+eta2) + exp(etal+eta2) );

pi2 = exp(etal+eta2) / (l + exp(etal) + exp(etal+eta2) + exp(etal+eta2) );

*DEFINE LIKELIHOOD;

Z = (Pi0**y0)*(pi1**y1)*(pi2**y2)*(Pi3**y3);

if (z > le-8) then 11 = log(z);

else ll=—1e100;

model y0 ~ general(ll);

*SPECIFY RANDOM EFFECT DISTRIBUTION AND OBTAIN EMPIRICAL

BAYES ESTIMATES;

random 11] ~ normal(0, 81*81) subject = person_id OUT=bayesest;

run;

* C

,

********************************1!II:III*************************#**********o

9

NOTE. THIS PROGRAM WAS OBTAINED AND MODIFIED FROM

HARTZEL, AGRESTI, AND CAFFO (2001).

ALSO NOTE THEY STATE THE FOLLOWING:
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"With Gauss-Hermite quadrature, computer

underflow can be a problem mainly when there are many within-cluster

observations. For most data sets in our experience, however, it is

the number of clusters that is large and not the number of

observations within a cluster. In using NLMIXED, we addressed this

problem by assigning the likelihood to a very small number within the

limits of computer precision. Specifically we entered

if (z > le-8) then 11 = log(z); else ll=-le100

for this purpose."

**#******************************************************************4!!!-

3
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APPENDIX C.

Example ofthe Input Data Structure
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