WEIGHTEDNORMINEQUALITIESFORCALDER ON{ZYGMUND OPERATORS By AleksandrB.Reznikov ADISSERTATION Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof Mathematics|DoctorofPhilosophy 2014 ABSTRACT WEIGHTEDNORMINEQUALITIESFORCALDER ON{ZYGMUND OPERATORS By AleksandrB.Reznikov Givenaon-Zygmundoperator T andtwoweights u and v ,westudyt conditionsforthisoperatortobeboundedfromthespace L p ( u )to L p ( v ).Wealsostudy sharpboundsforthecorrespondingnorm.Further,westudyaquestionaboutconditions forboundednessofallon-Zygmundoperatorsfrom L p ( u )to L p ( v ).Wedoitinthe Euclidiansettingandinmetricspaces. Finally,westudythelimitingcase p =1andthecase u = v ,whentheoperatorhasa chansetobeweaklybounded,i.e.boundedfromthespace L 1 ( u )tothespace L 1 ; 1 ( u ). Inparticular,wedisprovethe\ A 1 conjecture",provethe\ A 2 conjecture"inthemetric spacesetting,provethe\bumpconjecture"for p =2;moreover,westatethe\separated bumpconjecture"andproveitinseveralparticularcases. Tomymom,wifeanddaughter|threemostwonderfulwomen. iii ACKNOWLEDGMENTS Thissectionisthemostpleasanttowrite.DuringmygraduatestudyatMSUIgot,besides someniceresults,alotofgreatfriends,colleguesand,mostimportant,gotmarried.Though someproblemsremainunsolvedandsomethingsremainundone,Icouldnotwishbettere yearsformyself. Firstofall,IwouldliketoexpressmyutmostgratitudetoAlexanderVolberg,who,in theseeyears,becameformemorethanjustanacademicfather.Hishelpful,respectful andfriendlyattitudetowardsgraduatestudentsareabsolutelyunique,andIneverfeltsorry formychoiceoftheuniversityandoftheadvisor.Theproblemsthathegaveme,andthe conferencesandworkshopsthatheencouragedmetoattend,wereextremelyusefulformy mathematicalcareer. IwouldalsoliketomentionotherMSUfacultyandthatmentoredandhelped meduringtheseeyears.OursecretariesBarbaraMillerandLeslieAitcheson,graduate directorsZhengfangZhouandCasimAbbas,professorsAaronLevin,SheldonNewhouse, VladimirPeller,MichaelShapiro,IgnacioUriarte-Tuero,KirillVanninskii,JonWolfson, DapengZhanandJaneZimmermanmademyacademiclifealotmorepleasant,challenging andinteresing. MyresearchwasalsogreatlybycolleguesoutsideMSU.Itwasagreatpleasure tointeractwithDavidCruz-Uribe,PaulHagelstein,ViktorHavin,SteveAlex Iosevich,CarlosKenig,MichaelLacey,FedorNazarov,CarlosPerez,StefaniePetermichl, MariaReguera,SergeiTreil,CristophThiele,VasiliiVasyunin,IgorVerbitskii. ItwouldbeapitynottomentionmycolleguesandfriendsAlyaBeznosova,MattBond, NickBoros,LipingChen,AsyaDiop,MishaDubashinskii,PaataIvanishvili,MishaIvanov, iv BoryaKrylov,SeryozhaMatveenko,SeryozhaNikitin,NickPattakos,GuillermoRey,Asya Slutskaya,SashaVallander,LiangminZhou. IwouldliketothankVladimirShlapentokhfororganizingalotofinterestingseminars andconversations.Theystimulatedmealot,andIdothinkthattheywereveryimportant formydevelopment.Specialthankstoparticipantsofthesemeetings:LyubaandVladimir Shlapentokhs,ViktoriyaandMarkDykmans,ZhannaandYuriyGandelsmans,Irinaand MichaelShapiro,OlgaandAlexanderVolbergs.Thelevelofthesemeetingsisextremely high,andtheywereinspiringbothfor\academic"and\real"life. Finally,itismyutmostpleasuretothankforallsupportmyfamily:mygrandfather GrishaMints,mygrandmotherInnaMints,mymotherAnnaReznikova,myparentsinlaw TatianaandViktorShushkovs,andmywifeNataliaShushkova. v TABLEOFCONTENTS Chapter1Preliminarynotation,andtheorems .......... 1 1.1Preliminarynotationandnitions......................1 1.2Someknowntheorems..............................7 Chapter2Twoweightestimates .......................... 9 2.1Mainresults....................................9 2.2Thestoppingtimeapproachtotheseparatedbumpconjecture........11 2.2.1ProofofTheorem2.2.4..........................23 2.2.2Prooffortheloglog-bumps.......................24 2.3TheBellmanfunctionapproachtothebumpconjecture............27 2.3.1Mainresult................................27 2.3.2Orlicznormsanddistributionfunctions.................27 2.3.2.1AlowerboundfortheOrlicznorm..............27 2.3.2.2Examples............................32 2.3.3Mainresultinnewlanguage.......................33 2.3.4Generalsetup...............................33 2.3.4.1Haarshifts...........................34 2.3.4.2Paraproducts..........................36 2.3.5Reductiontothemartingalecase.....................37 2.3.6Proofof(thetialEmbedding)Theorem2.3.6:Bellmanfunc- tionandmaintialinequality...................41 2.3.7Maininequalityintheform..............45 2.3.7.1Dyadiccase...........................45 2.3.7.2Generalcase..........................46 2.3.8Proofof(theEmbedding)Theorem2.3.7................47 2.3.8.1Anauxiliaryfunction......................47 2.3.8.2Bellmanfunctionandthemaindtialinequality....48 2.3.9Finiteformofthemaininequality..............51 2.3.9.1Frommaininequality(2.48)toTheorem2.3.7........52 2.3.10Frommaininequality(2.43)toTheorem2.3.6.............56 2.4TheBellmanfunctionapproachtotheseparatedbumpconjecture......57 2.4.1Aquickreminder.............................57 2.4.2Aconstructionoffunction.......................58 2.4.3Themainresults.Boundednessandweakboundedness.........59 2.4.4Examplesofsatisfyingtherestrictionsofthemainresults:thecases from[CURV]...............................61 2.4.5SelfimprovementsofOrlicznorms....................62 2.4.6Examples.................................64 2.4.6.1Example1:log-bumps.....................64 vi 2.4.6.2Example2:loglog-bumps...................64 2.4.7Proofofthemainresult:notationandthereduction.......65 2.4.8Bellmanproofof(2.55):introducingthe\maininequality"......66 2.4.9Fourthstep:buildingthefunction B 2 ..................74 2.4.10Fifthstep:buildingthefunction B 1 ...................78 Chapter3Oneweightestimateforthelimitingcase:the A 1 conjecture . 79 3.1Themainresult..................................79 3.2TheBellmanapproach..............................80 3.2.1Homogeneity...............................80 3.2.2Themaininequality...........................81 3.3Theunweightedestimate:theexactBellmanfunction.............85 3.3.1 B > B ...................................87 3.3.2 B ( g;f;F ) 6 B ( g;f;F )..........................89 3.3.2.1Changeofvariables.......................92 3.3.2.2Theproofof B > B ......................92 3.3.2.3Thecase F > 2.........................94 3.3.2.4Thecase F 6 2.........................94 3.3.3Buildingtheextremalsequenseforpoints(1 ; 1 ;F )...........95 3.3.3.1Thecase F > 2.........................101 3.3.3.2Thecase F< 2.........................102 3.3.4HowtotheBellmanfunction B ...................103 3.3.4.1Theboundary F = y 1 y 2 ..................104 3.3.4.2Thedomain.........................106 3.4Theweightedestimate..............................110 3.4.1tialpropertiesof B translatedtorentialpropertiesof B .110 3.4.2Obstacleconditionsfor B .........................125 Chapter4Oneweightestimatesinmetricspaces ................ 126 4.1Mainresults....................................126 4.2Themainconstruction..............................127 4.2.1FirstStep.................................127 4.2.2Secondstep:technicallemmata.....................131 4.2.3Mainandtheorem.......................135 4.2.4Probabilitytobe\good"isthesameforeverycube..........138 4.3TheHaarshiftdecomposition..........................139 4.3.1Paraproducts...............................144 4.3.2Estimatesof ˙ 1 ..............................150 4.3.3Estimateof in ..............................151 4.3.4Estimatesfor out ............................153 4.4Therestoftheproof...............................156 4.4.1ParaproductsandBellmanfunction...................156 4.4.2WeightedestimatesfordyadicshiftsviaBellmanfunction.......158 vii BIBLIOGRAPHY .............................. 170 viii Chapter1 Preliminarynotation,and theorems 1.1Preliminarynotationand Webeginwithsomenotationandthatareneededthroughoutthisthesis. 1 (Weight) . Byaweightin R n wecallafuntion w ,whichispositivealmost everywhereandlocallyintegrablewithrespecttotheLebesguemeasure dx . 2 on-Zygmundkernel) . Afunction K : R n R n ! R iscalledaon- Zygmundkernelifthereexistpositivenumbers C and " suchthatthefollowingconditions are j K ( x;y ) j 6 C j x y j n (1.1) j K ( x;y ) K ( x 0 ;y ) j 6 C j x x 0 j " j x y j n + " if j x x 0 j < 1 2 j x y j (1.2) j K ( x;y ) K ( x;y 0 ) j 6 C j y y 0 j " j x y j n + " if j y y 0 j < 1 2 j x y j : (1.3) 3 on-ZygmundOperator) . Anoperator T iscalledaon-Zygmund 1 operator,ifthereexistsaon-ZygmundKernel K ,suchthat Forany f 2 C 1 0 ; andany x 62 supp f : Tf ( x )= Z K ( x;y ) f ( y ) dy (1.4) T isaboundedoperatorfrom L 2 ( dx )to L 2 ( dx ) : (1.5) Anexampleofaon-ZygmundoperatorindimensiononeisHilberttransform H withkernel K ( x;y )= 1 x y .Anexampleofaon-Zygmundoperatorindimension n is Rietztransformwithvector-valuedkernel K ( x;y )= x y j x y j n +1 . Notation1. Foraset Q ˆ R n andafunction ' wedenote h ' i Q = 1 j Q j Z Q ' ( x ) dx; where j Q j istheLebesguemeasureoftheset Q . 4 (The A p class) . Let1 0: 1 j J j Z J j f ( x ) j dx 1 ˙ : Finally,wetranslateseveralnotionstothemetricspacesetting. 13 (Doublingmetricspace) . Aspace X withametric ˆ iscalleddoublingifthere existsameasure on X andaconstant C ,suchthatforanyball B ( x;r )= f y : ˆ ( x;y ) Cˆ ( x;x 0 ) ; (1.7) j K ( x;y ) K ( x;y 0 ) j 6 C ˆ ( y;y 0 ) " ˆ ( x;y ) " ( y;ˆ ( x;y )) ;ˆ ( x;y ) > Cˆ ( y;y 0 ) : (1.8) 15 on-Zygmundoperator) . Let and K beasintheprevious Let beameasureon X ,suchthat ( B ( x;r )) 6 C ( x;r ),where C doesnotdependon x and r .Wesaythat T isaon-Zygmundoperatorwithkernel K if T isbounded L 2 ( ) ! L 2 ( ) ; (1.9) Tf ( x )= Z K ( x;y ) f ( y ) ( y ) ; 8 x 62 supp f (1.10) 16 ( A 2 weightsinmetricspaces) . Let beadoublingmeasure.Wesaythata weight w belongsto A 2 if [ w ] 2 =sup x;r 1 ( B ( x;r )) Z B ( x;r ) w 1 ( B ( x;r )) Z B ( x;r ) w 1 < 1 : Themeasure willalwaysbeandwewillsupressthesubindex . 6 1.2Someknowntheorems Inthissectionwecollectthetheoremsthatareknownandthatwewillusewithoutproofs. Theorem1.2.1 onen'sdecomposition) . Inaspace R d ,set D 0 = f 2 k ([0 ; 1) d + m ): k 2 Z ;m 2 Z d g .Forabinaryfamily ! =( ! j ) j 2 Z , ! j 2f 0 ; 1 g ,set I + ! = I + P j :2 j <` ( I ) 2 j ! j . Denote D ! = f I + ! : I 2D 0 g .Forthecanonicalprobabilityonsetofbinarysequences,and foraon-Zygmundoperator T itistruethat ( Tf;g )= c ( T ) E ! X i > 0 ;j > 0 ˝ ij ( S ij ! f;g ) ;f;g 2 C 1 0 ; where ˝ ij 6 c 2 i + j ,and S ij ! isageneralizeddyadicshiftofcomplexity ( i;j ) . IntheSection4.3weproveaversionofthistheoremformetricspaces.Thenexttheorem isanotherwaytoestimateaon-Zygmundoperator. Theorem1.2.2 (Lerner'sdecomposition) . Foraon-Zygmundoperator T andafunc- tionBanachspace X itistruethat k T k X 6 C ( T;X ) sup k S k X ; where S isapositivedyadicshiftwitha 2 -Carlesonsequense f a I g .Thesupremumistaken overalldyadicgridson R d andall 2 -Carlesonsequences. Thenexttheoremshowshowtoestimatesuchoperators. 7 Theorem1.2.3. Let S beapositiveHaarshiftofcomplexity ( m;n ) .Then k S ( ˙ ) k L p ( ˙ ) ! L p ( u ) 6 ˝ k M ( ˙ ) k L p ( ˙ ) ! L p ( u ) +sup Q k ˜ Q S ( ˜ Q ˙ ) k L p ( u ) ˙ ( Q ) 1 p +sup Q k ˜ Q S ( ˜ Q u ) k L p 0 ( ˙ ) u ( Q ) 1 p 0 ; (1.11) where M istheHardy-Littlewoodmaximalfunction. 8 Chapter2 Twoweightestimates 2.1Mainresults Suppose T isaCaon-Zygmundoperatoron R ,and u;v areweights.By T u wedenote theoperatorthatactsas T u ( f )= T ( fu ).Thequestiononeasksitthefollowing: Whatconditionsshouldweights u and v havetoassurethattheoperator T u isbounded from L 2 ( u )to L 2 ( ˙ )? ThusquestionsgotsomeattentionrecentlyintheworksofF.Nazarov,S.Treil,A. Volberg,A.Lerner,M.Lacey,E.Sawyer,C.Y.Shen,I.Uriarte-Tuero,D.Cruz-Uribe,C. Perez,J.M.Martell. Thisquestionwasconsideredforindividualoperators:Haarshift,see[NTV2,NTV3] andHilbertTransform,see[NTV4,LSUT,LSSUT,Lac1,Lac2].Theconditionsinthese questionswereformulatedintermsoftheseindividualoperators. Inourpapers[CURV,NRTV1,NRTV2,NRV1]weconsiderthe\bump"approachtothis problem.Wegiveaconditiononweights u;˙ whichassuresthatfor any on-Zygmund OperatorT, T u isboundedfrom L 2 ( u )to L 2 ( ˙ ).In[CURV]wealsohavesome L p results. The\bump"conditionappearsfromthefamousSarasonconjecture. Conjecture. Ifthereexistsanumber R ,suchthatforanyinterval I wehave P u ( z ) P v ( z ) 6 9 R ,thentheHilbertTransform H u isboundedfrom L 2 ( u )to L 2 ( ˙ ).Here P u ( z )= Z R Im z (Re z t ) 2 +(Im z ) 2 u ( t ) dt: Thisconjectureisknowntobe false ,see[NV]or[LSUT]foracounterexample. ThebumpapproachappearedinworksofC.F[F],Chang-Wilson-Wolf,[CWW]. Formorehistorywereferthereadertothebook[CUMP1].Infact,the A 2 conditionfor aweight w readsas h w i I h w 1 i I 6 Q .Inoursettingwehavetwoweights u;v ,andthe condition h u i I h v i I 6 Q isevenweakerthantheoneintheSarasonconjecture(justtake z = c I + j I j i ,where c I isthecenteroftheinterval I ).Wenoticethat h u i I isthesquared L 2 ( dx j I j )normofthefunction u 1 2 ontheinterval I .Wetrytoconsiderastrongernorm. Precisely,let A :[0 ; 1 ) ! [0 ; 1 )beaYoungfunction.In[CURV]weprovethefollowing theorems. Theorem2.1.1 (Separatedbumpconjecture) . Suppose A ( t )= t 2 log 1+ " ( t ) .Theniffor anyinterval I k u 1 2 k I;A h ˙ i 1 2 I + k ˙ 1 2 k I;A h u i 1 2 I 6 Q; thentheoperator T u isboundedfrom L 2 ( u ) to L 2 ( ˙ ) . Thesameistruefor A ( t )= t 2 log( t )(loglog( t )) 1+ " forbig " . Theorem2.1.2 (Weakseparatedbumpconjecture) . Suppose A ( t )= t 2 log 1+ " ( t ) .Thenif foranyinterval I k v 1 2 k I;A h u i 1 2 I 6 Q; thentheoperator T u isboundedfrom L 2 ( u ) to L 2 ; 1 ( v ) . Thesameistruefor A ( t )= t 2 log( t )(loglog( t )) 1+ " forbig " . 10 Theorem2.1.3 (Bumpconjecture) . Suppose t ) isayoungfunction,suchthat 1 t ) is integrableat 1 .Thenifforanyinterval I k u k I; k v k I; 6 Q; thentheoperator T w isboundedfrom L 2 ( u ) to L 2 ( v ) . Noticethatwhilethebumpconjectureisproveninfull,theseparatedbumpconjecture isprovenonlyforsomefunctions A .Inwhatfollowswegivethepreciseconditionson A for whichwecanprovetheresult. 2.2Thestoppingtimeapproachtotheseparatedbumpconjecture Westartwiththefollowing 17. WewillsaythataYoungfunction A the B p 0 condition,1 0, Z 1 c A ( t ) t p 0 dt t < 1 : If A and A aredoubling(i.e.,if A (2 t ) CA ( t ),andsimilarlyfor A ),then A 2 B p ifand onlyif Z 1 c t p A ( t ) p 0 1 dt t < 1 : Examplesofsuchbumpsare A ( t )= t p log( e + t ) p 1+ ; A ( t ) ˇ t p 0 log( e + t ) 1+ 0 ; (2.1) 11 B ( t )= t p 0 log( e + t ) p 0 1+ ; B ( t ) ˇ t p log( e + t ) 1+ 00 ; (2.2) where > 0, 0 = = ( p 1), 00 = = ( p 0 1)Given p ,1 2 h ˙ i P o ; P a = [ n > 0 P a n : Followingtheterminologyfrom[LPR],wecallmembersof P a principalcubes . Hereafterwesuppresstheindex i ;thiswillgiveusasumwith ˝ +1terms.Given Q 2K a , let Q )denotetheminimalprincipalcubethatcontainsit,and K a ( P )= f Q 2K a : Q )= P g : 14 Wewillestimatethe L p ( u )normofthesumontheright-handsideof(2.8)using theexponentialdecaydistributionalinequalityoriginatedin[LPR].Below, S isanypositive generalizedHaarshiftthatisboundedonunweighted L 2 .Inparticular,wewilltake S to beoneofthepositiveHaarshifts S L fromabove. Weneedthefollowingnotation.Forafamily S wedenote S Q = X Q 2Q S Q : Thefollowingdistributionalinequalityholds. Theorem2.2.5. Thereexistsaconstant c ,dependingonlyonthedimensionandtheun- weighted L 2 normoftheshift,suchthatforany P 2P a , u x 2 P : j S K a ( P ) ( ˙ ) j >t ˙ ( P ) j P j . e ct u ( P ) : ItfollowsfromTheorem2.2.5thatforsomepositiveconstant c , k X R ( Q S R ( ˙ ) k L p ( u ) 6 C˝ X a 0 @ X P 2P a u ( P ) ˙ ( P ) j P j p 1 A 1 p : (2.9) Wesketchtheproofof(2.9)followingthebeautifulcalculationsin[HyLa]: X R ( Q S R ( ˙ )= ˝ X i =0 X a X P 2P a S K a ( P ) ( ˙ ) ; 15 andso k X R ( Q S R ( ˙ ) k L p ( u ) 6 ( ˝ +1) X a k X P 2P a S K a ( P ) ( ˙ ) k L p ( u ) : Fix a .UsingFubini'stheoremwewrite k X P 2P a S K a ( P ) ( ˙ ) k L p ( u ) = Z X j X P 2P a ˜ f S K a ( P ) ( ˙ ) 2 ( j;j +1] ˙ ( P ) j P j g S K a ( P ) ( ˙ )( x ) p u ( x ) dx 1 =p X j ( j +1) Z X P 2P a ˜ f S K a ( P ) ( ˙ ) 2 ( j;j +1] ˙ ( P ) j P j g ˙ ( P ) j P j p u ( x ) dx 1 =p : Bythechoiceofthestoppingcubes P 2P a wehavethat X P 2P a ˜ f S K a ( P ) ( ˙ ) 2 ( j;j +1] ˙ ( P ) j P j g ˙ ( P ) j P j p . X P 2P a ˜ f S K a ( P ) ( ˙ ) 2 ( j;j +1] ˙ ( P ) j P j g ˙ ( P ) j P j p : Letusexplainit.Takeapoint x andnestedcubes P 0 ˙ P 1 ˙ ::: ˙ P N , P k 2P a n k , x 2 P k , and x 2f S K a ( P ) ( ˙ ) 2 ( j;j +1] ˙ ( P ) j P j g (i.e.,forwhichthetermsinsumsabovearenon-zero). Bynitionof P a n k wehave h ˙ i P k > 2 h ˙ i P k 1 .Theinequalitymaybemuchbetterifwe skipseveralgenerations,but2intheright-handsideisguaranteed.Wehaveasequense y k = ˙ ( P k ) j P k j .Theinequalitysaysthat X k y k ! p 6 C X k y p k : Noticethat y k > 2 y k 1 .Thus, X k y k 6 N X k =0 1 2 N k y N . y N : 16 Therefore, X k y k ! p . y p N 6 X k y p k : Thisbeautifulobservationfrom[HyLa]letsuswrite k X P 2P a S K a ( P ) ( ˙ ) k L p ( u ) . X j ( j +1) X P 2P a ˙ ( P ) j P j p u ( S K a ( P ) ( ˙ ) 2 ( j;j +1] ˙ ( P ) j P j ) 1 =p : ThenbythedistributionalinequalityfromTheorem2.2.5: k X P 2P a S K a ( P ) ( ˙ ) k L p ( u ) . X j ( j +1) e cj=p X P 2P a ˙ ( P ) j P j p u ( P ) 1 =p : Thisgivesus(2.9). Itisatthispointintheproofthatwecannolongerassumethatourpairofweights ( u;˙ )thegeneral A p bumpconditionandwemustinsteadmakethemorerestrictive assumptionthatwehavelogbumps.Beforedoingso,however,wewanttoshowhowtheproof goesandwheretheproblemarisesforgeneralbumps.Wewillthengivethemo necessarytomakethisargumentworkforlogbumps. thesequence Q = 8 > > > < > > > : j P j ;Q = P; forsomecube P 2P a 0 ; otherwise; 17 thentheinnersumin(2.9)becomes X Q ˆ Q 0 u ( Q ) j Q j ˙ ( Q ) j Q j p Q : Butbyolder'sinequalityinthescaleofOrliczspaces, ˙ ( Q ) j Q j = h ˙ 1 p ˙ 1 p 0 i Q 6 C k ˙ 1 p 0 k Q;B k ˙ 1 p k Q; B 6 k ˙ 1 p 0 k Q;B inf x 2 Q M B ( ˙ 1 p ˜ Q ) : (2.10) Therefore,by(2.3), X Q ˆ Q 0 u ( Q ) j Q j ˙ ( Q ) j Q j p Q 6 K p X Q ˆ Q 0 Q inf x 2 Q M B ( ˙ 1 p ˜ Q ) p : (2.11) Tocompletetheproofweneedtwolemmas.Thecanbefoundin[LPR],formula (3 : 3). Lemma2.2.6. f Q g isaCarlesonsequence. Thesecondisafolktheorem;aproofcanbefoundin[MP]. Lemma2.2.7. If f Q g isaCarlesonsequence,then X Q ˆ Q 0 Q inf Q ˜ Q 0 F ( x ) . Z Q 0 F ( x ) dx: 18 CombiningthesetwolemmaswithTheorem2.2.1(since B 2 B p )weseethat X Q u ( Q ) j Q j ˙ ( Q ) j Q j p Q 6 K p X Q;Q ˆ Q 0 Q inf x 2 Q M B ( ˙ 1 p ˜ Q 0 ) p . K p k M B ( ˙ 1 p ˜ Q 0 ) k p L p ( dx ) . K p k ˙ 1 p ˜ Q 0 k p L p ( dx ) = K p ˙ ( Q 0 ) : Thiswouldcompletetheproofexceptthatwemustnowsumover a ,andin(2.9)thissum goesfrom tothelogarithmofthetwo-weight A p constantofthepair( u;˙ ).Wecannot evaluatethissumunlesswecanmodifytheaboveargumenttoyieldadecayconstantin a . Intheone-weightargumentin[HyLa]theauthorscouldusethefactthattheparameter a runfrom0tothelogarithmof A p constant:thisfollowssincebyolder'sinequalitythe A p constantofanyweightisatleast1.Inthetwo-weightcasethe A p constantcanbearbitrarily small,andthereforewemustsumovermanyvaluesof a .Weareabletogetthe desireddecayconstantonlybyassumingthatweareworkingwithlogbumps. Wemodifytheaboveargumentasfollows.Essentially,wewillusethepropertiesoflog bumpstoreplace B withaslightlylargerYoungfunction. B 0 ( t )= t p 0 log( e + t ) p 0 1+ 2 ; thenweagainhavethat B 0 2 B p .Insteadof(2.11)wewillprovethatthereexists , 0 << 1,suchthat X Q ˆ Q 0 u ( Q ) j Q j ˙ ( Q ) j Q j p Q 6 C K (1 ) p 2 p X Q ˆ Q 0 Q inf x 2 Q M B 0 ( ˙ 1 p ˜ Q 0 ) p : (2.12) Giveninequality(2.12),wecanrepeattheargumentabove,butwenowhavethedecayterm 2 p whichallowsustosumin a andgetthedesiredestimate. 19 Toprove(2.12)supposeforthemomentthatthereexists suchthat k ˙ 1 p 0 k Q;B 0 C 1 k ˙ 1 p 0 k 1 Q;B k ˙ 1 p 0 k L p 0 ( Q;dx= j Q j ) : (2.13) Giventhis,acube Q 2P a |wecandothissinceotherwise Q =0.Then u ( Q ) j Q j ˙ ( Q ) j Q j p . h u i Q k ˙ 1 =p 0 k p B 0 ;Q k ˙ 1 =p k p B 0 ;Q . h u i Q k ˙ 1 =p 0 k (1 ) p B;Q k ˙ 1 =p 0 k p L p 0 ( Q;dx= j Q j ) k ˙ 1 =p k p B 0 ;Q =( h u i 1 =p Q k ˙ 1 =p 0 k B;Q ) (1 ) p ( h u i 1 =p Q k ˙ 1 =p 0 k L p 0 ( Q;dx= j Q j ) ) p k ˙ 1 =p k p B 0 ;Q . K (1 ) p ( h u i 1 =p Q h ˙ i 1 =p 0 Q ) p k ˙ 1 =p k p B 0 ;Q . K (1 ) p 2 p k ˙ 1 =p k p B 0 ;Q . K (1 ) p 2 p inf x 2 Q M B 0 ( ˙ 1 p ˜ Q 0 ) p : Inequality(2.12)nowfollowsimmediately. Therefore,tocompletetheproofwemustestablish(2.13).Bytherescalingpropertiesof theLuxemburgnorm[1,Section5.1],theright-handsideofthisinequalityisequalto k ˙ 1 p 0 k C;Q k ˙ p 0 k p 0 ;Q ; where C ( t )= B ( t 1 1 ).Therefore,bythegeneralizedolder'sinequalityinOrliczspaces ([1,Lemma5.2]),inequality(2.13)holdsifforall t> 1, C 1 ( t ) t p 0 . B 1 0 ( t ) : (2.14) 20 Astraightforwardcalculation(see[1,Section5.4])showsthat C 1 ( t )= B 1 ( t ) 1 ˇ t 1 p 0 log( e + t ) 1 p + (1 ) p 0 ;B 1 0 ( t ) ˇ t 1 p 0 log( e + t ) 1 p + 2 p 0 : Byequatingtheexponentsonthelogarithmterms,weseethat(2.14)holdsifwetake = 2( p 0 1+ ) : Therefore,withthisvalueof inequality(2.13)holds,andthiscompletesourproof. Fortheconvenienceofthereaderwegiveadirectproofof(2.13);thiscomputationwill alsobeusedbelowinSection2.2.2.Thedesireinequalityobviouslyfollowsfromthefollowing lemma. Lemma2.2.8. Givenaprobabilitymeasure ,let f beanon-negativemeasurablefunction. Let B;B 0 belogarithmicbumpsasin (2.2) with = ˝ and = ˝ 2 respectively.Thenthere existsanabsoluteconstant C and = ( p 0 ;˝ ) > 0 suchthat k f k B 0 C k f k 1 B k f k L p 0 ( ) : (2.15) Proof. Wewillactuallyshowthat = 1 2+( p 0 1) 2 ˝ .:= R j f j p 0 .Sinceinequal- ity(2.15)ishomogeneous,wemayassumewithoutlossofgeneralitythat k f k B =1 : (2.16) Moreover,wemayassumethat 1:otherwise(2.15)canbeachievedbychoosing C 21 tlylarge.Let < 1and K beconstants;wewilldeterminetheirprecisevalue(in thisorder)below.Thenwehavethat Z f p 0 p 0 log e + f p 0 1+ ˝ 2 Z f f K g + Z f f K g ::: p 0 [log( e + K )] p 0 1+ ˝ 2 + Z f f K g f p 0 p 0 log( e + f ) p 0 1+ ˝ [log( e + K )] ˝ 2 p 0 [log( e + K )] p 0 1+ ˝ 2 + Z f p 0 p 0 log( e + f ) p 0 1+ ˝ [log( e + K )] ˝ 2 p 0 [log( e + K )] p 0 1+ ˝ 2 + 1 p 0 [log( e + K )] ˝= 2 Z f p 0 log p 0 1+ ˝ ( e + f ) + Z f p 0 log( 1 ) p 0 1+ ˝ p 0 [log( e + K )] p 0 1+ ˝ 2 + 1 p 0 [log( e + K )] ˝= 2 1+log( 1 ) p 0 1+ ˝ : Inthelastlineweused(2.16).Fix sothat =( p 0 ) 1+ c ; where c =1+( p 0 1) 2 ˝ .Inotherwords, = 1 =p 0 ) = k f k L p 0 ( ) ; = 1 1+ c : Nowchoose K sothat [log( e + K )] ˝= 2 ˇ p 0 ; 22 then [log( e + K )] p 0 1+ ˝= 2 ˇ ( p 0 ) 1+( p 0 1) 2 ˝ =:( p 0 ) c : Ifwesubstitutethesevaluesintotheabovecalculation,weseethattherighthandsideis dominatedbyaconstant.Hence,bytheoftheLuxemburgnorm, k f k B 0 C = C k f k L p 0 ( ) : Thiscompletestheproof. Remark2. Theconjugatetestingconditioncanbevsimilarly.Theadjoint S isalso aHaarshift,andsowecanapplythedistributioninequalityfromTheorem2.9toit.Also, thesecondsumin(2.8)willhavethesamepointwiseestimate(exchanging ˙ and v )ifwe replace S with S . Remark3. Intheproofofthetestingconditionweonlyusedthebumpcondition(2.3); toprovethesecondtestingconditionweusethesecondbumpcondition(2.4). 2.2.1ProofofTheorem2.2.4 Theproofoftheweak-typeinequalityusesessentiallythesameargumentasabove;herewe sketchthechangesrequired.Werepeattheargument,replacingthe L p ( u )normwiththe L p; 1 ( u )norm.Sincethepair( u;˙ )thetwo-weight A p conditionwehavethewell knowninequalitythat k M ( f˙ ) k L p; 1 ( u ) C k f k L p ( ˙ ) ; wheretheconstant C dependsonlyonthe A p constantandthedimension.Thereforeit remainstoestimatethe L p; 1 ( u )normof S L ( j f j ˙ ).However,fromonen, etal. [HLM+, 23 Theorem4.3]wehavethefollowinganalogofTheorem1.2.3. Theorem2.2.9. Let S beapositiveHaarshiftofcomplexity ( m;n ) .Then k S ( ˙ ) k L p ( ˙ ) ! L p; 1 ( u ) 6 ˝ k M ( ˙ ) k L p ( ˙ ) ! L p; 1 ( u ) +sup Q k ˜ Q S ( ˜ Q u ) k L p 0 ( ˙ ) u ( Q ) 1 p 0 : GivenTheorem2.2.9theargumentnowproceedsexactlyasbefore,usingthebump condition(2.4)toboundthetestingcondition.Thiscompletestheproof. 2.2.2Prooffortheloglog-bumps Inthissectionweconsiderbumpsofthefollowingform. A ( t )= t p log( e + t ) p 1 loglog( e e + t ) p 1+ A ( t ) ˇ t p 0 log( e + t )loglog( e e + t ) 1+ 0 ; (2.17) B ( t )= t p 0 log( e + t ) p 0 1 loglog( e e + t ) p 0 1+ ; B ( t ) ˇ t p log( e + t )loglog( e e + t ) 1+ 00 ; (2.18) where > 0.Ourproofsareverysimilartotheproofsgiveninprevioussections,sowe willdescribetheprinciplechanges.Asbefore,weneedtoprovethefollowingtheoremsfor positivedyadicshifts. Theorem2.2.10. Given p , 1 0 tlylarge ,andthepairofweights ( u;˙ ) (2.3) and (2.4) .Givenanypositivedyadicshift S , k S ( f˙ ) k L p ( u ) C j f k L p ( ˙ ) . Theorem2.2.11. Given p , 1 0 tlylarge ,andthepairofweights ( u;˙ ) (2.4) .Givenanypositive dyadicshift S , k S ( f˙ ) k L p; 1 ( u ) C j f k L p ( ˙ ) . 24 WewillproveTheorem2.2.10bymodifyingtheproofofTheorem2.2.3above;The- orem2.2.11isprovedsimilarly.ThemainstepistoadaptLemma2.2.8toworkwith loglog-bumps.Let B beasin(2.18),and B 0 similarlybutwith replacedby = 2. ThenarguingalmostexactlyaswedidintheproofofLemma2.2.8,wehavethat k f k B 0 C k f k B " k f k L p 0 ( ) k f k B ; (2.19) where " ( t )=(log C t ) , C = C ( p; ),and = ( p; )with > 1if islargeenough.For thedetailedproofforwiderrangeofbumpssee[NRV],Section5.2.2. Given(2.19)wehavethat u ( Q ) j Q j ˙ ( Q ) j Q j p C h u i Q k ˙ 1 =p 0 k p B 0 ;Q k ˙ 1 =p k p B 0 ;Q C h u i Q k ˙ 1 =p 0 k p B;Q " h ˙ i 1 =p 0 Q k ˙ 1 =p 0 k B;Q p k ˙ 1 =p k p B 0 ;Q C 0 @ h u i 1 =p Q k ˙ 1 =p 0 k B;Q h u i 1 =p Q h ˙ i 1 =p 0 Q 1 A p " h u i 1 =p Q h ˙ i 1 =p 0 Q h u i 1 =p Q k ˙ 1 =p 0 k B;Q p ( h u i 1 =p Q h ˙ i 1 =p 0 Q ) p k ˙ 1 =p k p B 0 ;Q : Tocompletetheproof,weneedagoodboundin a fortheproductofthreeterms. Moreover,itisenoughtogetagoodboundfornegativeandverybiginabsolutevalue a . Thus,wecanthinkthat h u i 1 =p Q h ˙ i 1 =p 0 Q isverysmall. Considerafunction ' ( t )= t" ( 1 t ) : 25 Then h u i 1 =p Q k ˙ 1 =p 0 k B;Q h u i 1 =p Q h ˙ i 1 =p 0 Q " h u i 1 =p Q h ˙ i 1 =p 0 Q h u i 1 =p Q k ˙ 1 =p 0 k B;Q = ' 0 @ h u i 1 =p Q k ˙ 1 =p 0 k B;Q h u i 1 =p Q h ˙ i 1 =p 0 Q 1 A : Set t 0 = h u i 1 =p Q k ˙ 1 =p 0 k B;Q h u i 1 =p Q h ˙ i 1 =p 0 Q .Then c 6 t 0 6 C 1 h u i 1 =p Q h ˙ i 1 =p 0 Q .Theright-handsideofthelast inequalityisverybig.Moreover,thefunction ' ( t )= t (log( Ct )) { isincreasingnear 1 . Therefore, ' ( t 0 ) 6 C' 0 @ 1 h u i 1 =p Q h ˙ i 1 =p 0 Q 1 A 6 C 1 ' (2 a ) : Therefore,sinceonallcubes P 2P a wehave h u i 1 =p Q h ˙ i 1 =p 0 Q ˘ 2 a ,weget C 0 @ h u i 1 =p Q k ˙ 1 =p 0 k B;Q h u i 1 =p Q h ˙ i 1 =p 0 Q 1 A p " h u i 1 =p Q h ˙ i 1 =p 0 Q h u i 1 =p Q k ˙ 1 =p 0 k B;Q p ( h u i 1 =p Q h ˙ i 1 =p 0 Q ) p k ˙ 1 =p k p B 0 ;Q 6 C 2 " (2 a ) p k ˙ 1 =p k p B 0 ;Q : UsingtheCarlesonpropertyofthesequence Q ,weget X Q ˆ Q 0 Q u ( Q ) j Q j ˙ ( Q ) j Q j p 6 C 2 " (2 a ) p Z M B 0 ( ˙ 1 =p ˜ Q 0 ) p dx 6 C 3 " (2 a ) p ˙ ( Q 0 ) : Thus,returningtotheformula(2.9),weget X a 0 @ X P 2P a u ( P ) ˙ ( P ) j P j p 1 A 1 p 6 ˙ 1 p ( Q 0 ) X a< 0 " (2 a ) : Bytheformulator " ,theseriesconvergeif { > 1. 26 2.3TheBellmanfunctionapproachtothebumpconjecture 2.3.1Mainresult InthissectionwewillworkwithOrlitzfunctionssuchthat 1 isintegrableneary. Weaimtoprovethefollowingtheorem. Theorem2.3.1. Letfunctions 1 and 2 beasabove.Lettheweights v , w satisfy sup I k v k 1 ;Q k w k 2 ;Q < 1 ;(2.20) herethesupremumistakenoverallcubes I . Thenforanyboundedon-Zygmundoperator T theoperator T v isboundedfrom L 2 ( v ) to L 2 ( w ) . 2.3.2Orlicznormsanddistributionfunctions Orlicznormisnotveryconvenienttoworkwith,sowewouldliketoreplaceitbysomething moretractable. 2.3.2.1AlowerboundfortheOrlicznorm Westartwiththeremarkthatnotation R 0 f ( t ) dt< 1 meansthatthefunctionisintegrable nearzero.Similarly, R 1 f ( t ) dt< 1 meansthatthefunctionisintegrableneary. Letbeacontinuousnon-negativeincreasingconvexfunctionsuchthat=0and R + 1 dt t ) < + 1 . s )parametricallyby s )= 0 ( t )when s = 1 t 0 ( t ) ( t> 0). Then s )ispositiveanddecreasingfor s> 0and s s )isincreasing.Moreover R 0 ds s s ) < 27 + 1 .Indeed,usingourparametrizationwecanrewritethelastintegralas Z + 1 1 t ) + 00 ( t ) 0 ( t ) 2 dt: Theintegralconvergesbyourassumptionandthesecondintegrandhasaboundednear + 1 antiderivative 1 0 ( t ) . Let w 0on I ˆ R n .thenormalizeddistributionfunction N of w by N ( t )= N w I ( t )= 1 j I j jf x 2 I : w ( x ) >t gj (2.21) Lemma2.3.2. Let :(0 ; 1] ! R + beadecreasingfunctionsuchthatthefunction s 7! s s ) isincreasing.Let beaYoungfunctionandlet s ) C 0 ( t ) where s = 1 t 0 ( t ) foralllarge t .Thenfor N = N w I n ( N ):= Z 1 0 N ( t N ( t )) dt C k w k L ( I ) : (2.22) Proof. Thelefthandsidescaleslikeanormundermultiplicationbyconstants,soitisenough toshowthatif k w k L ( I ) 1,i.e., 1 j I j Z I w )= Z 1 0 N ( t 0 ( t ) dt 1 then n ( N )isboundedbyaconstant.Since s s )increases,wemayhavetroubleonlyat 28 + 1 Itisclearthatittoestimatetheintegraloverthesetwhere N ( t )) > 0 ( t )but sinceisdecreasingthismeansthat N ( t ) C= t 0 ( t )),sowegetatmost R + 1 t ) 1 dt andwearedone. Remark4. Infact,fortlyregulartheconverseinequality k w k L ( I ) C Z 1 0 N ( t N ( t )) dt holdsforanypositivedecreasingintegrable N .Toseethis,letusconsiderthefamilyof suchthat t )= tˆ ( t )and ˆ ismonotonicallyincreasingand\logarithmicallyconcave"in thesensethat tˆ 0 ( t ) ˆ ( t ) decreasesmonotonicallywhen t !1 .Wealsoassumeofcoursethat lim t !1 ˆ ( t )= 1 andthat ˆ ( t ) 1.Let G ( t ):= N ( t N ( t )).Whentgoestoy, N ismonotonicallydecreasingtozero,andhence G isalsomonotonicallydecreasing(as s s ) increasesnearzero). Put s 1 = t 0 ( t ) tˆ 2 ( t )(justbecause 0 ( t ) ˆ ( t )byour\logarithmicconcavity" of ˆ assumption).Hence s c 1 ( tˆ 2 ( t )) 1 .Nowisdecreasingbyandthis implies c 1 ( tˆ 2 ( t )) 1 ) 0 ( t ) ˆ ( t ) c 2 ˆ ( t ) : (2.23) Wenowaskanadditionto\logarithmicconcavity",namely: tˆ 0 ( t ) ˆ ( t ) log ˆ ( t ) ! 0as t !1 : (2.24) Denote r ( x )=log( ˆ ( e x )).Werequiredatthebeginningthatlim x !1 r ( x )= 1 .The lastinequalitysaysinparticularthat r 0 ( x )= o (1) r ( x ) 1 ,andtherefore, r 0 tendstozeroat 29 y.Thus r ( x ) x 3 foralllarge x .Keepingthisinmindwecontinue. Set u = tˆ 2 ( t ) c 1 : Then t = c 1 u ˆ 2 ( t ) : Thus,since ˆ isanincreasingtoyfunctionandweassumethat t iscientlybig,we get ˆ 2 ( t ) c 1 .Therefore, t u; and,thus, t = c 1 u ˆ 2 ( t ) c 1 u ˆ 2 ( u ) : Hence,using(2.23),weget u 1 ) c 2 ˆ ( t ) c 2 ˆ ( c 1 u ˆ 2 ( u ) ) : (2.25) Next,wewillprovethefollowinginequality.Recallthat r ( x )=log( ˆ ( e x )).Weclaim that x )= r ( x ) r ( x 2 r ( x ) c 0 ) C: Infact,bythemeanvaluetheoremwehaveforcertain ˘ 2 ( x 2 r ( x ) c 0 ;x ) x )=(2 r ( x )+ c 0 ) r 0 ( ˘ )=(2 r ( x )+ c 0 ) ˆ 0 ( e ˘ ) ˆ ( e ˘ ) e ˘ : Sinceweassumedthat t ˆ 0 ( t ) ˆ ( t ) ismonotonicallydecreasing,weget(nowusing(2.24)inthe 30 secondcomparisonbelow): x ) (2 r ( x )+ c 0 ) ˆ 0 ( e x 2 r ( x ) c 0 ) ˆ ( e x 2 r ( x ) c 0 ) e ˆ ( e x 2 r ( x ) c 0 ) = =(2 r ( x )+ c 0 ) o (1) log ˆ ( e x 2 r ( x ) c 0 ) =(2 r ( x )+ c 0 ) o (1) r ( x 2 r ( x ) c 0 ) = = o (1) 2 r ( x )+ c 0 r ( x 2 r ( x ) c 0 ) 2+2 = o (1) x )+ c 0 r ( x 2 r ( x ) c 0 ) + o (1) : Finally,weusethat r ( x 2 r ( x ) c 0 )isseparatedfromzerowhen x isbig.Thus x ) x ) o (1)+ o (1) : Thisimmediatelyimplies x )= o (1)when x !1 ,andthus x ) C: (2.26) Letusnowwritewhatdoesitmean.Infact,bytheof r andby(2.26),wecan concludethat C r ( x ) r ( x 2 r ( x ) c 0 )=log ˆ ( e x ) ˆ ( e x 2log ˆ ( e x ) c 0 ) =log ˆ ( e x ) ˆ ( e x c 3 ˆ 2 ( e x ) ) : Thus,wegetforalllarge u : ˆ ( u ) c 4 ˆ ( u c 3 ˆ 2 ( u ) ) : Wechose c 3 = c 1 1 andplugtheaboveinequalityinto(2.25).Thenwellyget u 1 ) c 5 ˆ ( u ) 31 If N N )= G then c 6 G Nˆ ( 1 N )bythepreviousinequality.Therefore, N c 6 G (we assumedthat ˆ 1),and N c 6 G ˆ ( 1 N ) c 6 G ˆ ( 1 c 6 G ) .Andwecancontinuethepreviousestimate: N ( t ) c 6 G ( t ) ˆ ( 1 c 6 G ( t ) ) c 6 G ( t ) ˆ ( t ) .Weusedherethefactthattheintegrabilityandmonotonicityof G impliesthat G ( t )= o ( 1 t ),inparticular, G ( t ) < 1 c 6 t forlarge t .Butwealreadymentioned that 0 ( t ) c 7 ˆ ( t ).Combiningthelasttwoinequalities,weget N ( t 0 ( t ) c 6 c 7 G ( t ),and wejustobtainedthat R 1 0 N ( t 0 ( t ) dt c 4 c 5 . 2.3.2.2Examples Intheabovesectiononlythebehaviorofat+ 1 (equivalently,thebehaviorofnear0) wasimportant,sowewillconcentrateourattentionthere. Let t )= t (ln t ) , > 1near 1 .Then 0 ( t ) ˘ (ln t ) ; t 0 ( t ) ˘ t (ln t ) 2 ; so s ):=(ln(1 =s )) theassumptionsofLemma2.3.2:toseethatwenotice t 0 ( t )) ˘ ln t: If t )= t ln t (lnln t ) , > 1,then 0 ( t ) ˘ ln t (lnln t ) ; t 0 ( t ) ˘ t (ln t ) 2 (lnln t ) 2 and s )=ln(1 =s )(lnln(1 =s )) works.becauseagain t 0 ( t )) ˘ ln t . Notethatinbothexamples R 0 ( s s )) 1 ds< 1 . 32 TheexamplesofYoungfunctionswithhigherorderlogarithmsaretreatedsimilarly. 2.3.3Mainresultinnewlanguage Werestateourmainresultusingthenewlybuiltfunctions 1 ; 2 .Let 1 ; 2 :(0 ; 1] ! R + beasabove,i.e.for i =1 ; 2, i isdecreasing, s 7! s i ( s )isincreasingand Z 1 0 ds s i ( s ) < 1 : Recallthatforaweight w thenormalizeddistributionfunction N w I isby(2.21) Theorem2.3.3. Lettheweights v , w satisfy sup I n 1 ( N v I ) n 2 ( N w I ) < 1 ;(2.27) herethesupremumistakenoverallcubes I ,and n isdby (2.22) . Thenforanyon-Zygmundoperator T theoperator T v isboundedfrom L 2 ( v ) to L 2 ( w ) . 2.3.4Generalsetup Considerameasurespace X with ˙ measure let L k = f I k j g j , k 2 Z (or k 2 Z + )be partitionsof X intodisjointsets I k j ,0 < ( I k j ) < 1 . Weassumethatthepartition L k +1 isatof L k . Let A bethe ˙ -algebrageneratedbyallthepartitions L k .Inwhatfollowsallfunctions on X weconsiderwillbeassumedtobe A -measurable. Withrespecttothis ˙ -algebraswecanmartingaleaveragingoperators E k ,and 33 martingaleoperators n k := E k + E k + n . Weadaptthefollowingnotation. ch I Thecollectionofchildrenof I 2L ,i.e.if I 2L n thench I = f J 2L n +1 : J ˆ I g . ch k I Thecollectionofchildrenoftheorder k of I 2L ;ch 0 ( I )= f I g ,ch k +1 ( I )= f ch( J ): J 2 ch k ( I ) g . h f i I Theaverageof f over I , h f i I = ( I ) 1 R I f ( x ) ( x ); E I Theaveragingoperator, E I f := h f i I 1 I ;notethat E k = P I 2L k E I . I Martingaleoperator, I := E I + P J 2 ch( I ) E J ;notethat k = P I 2L k I . n I Martingaleoperatoroforder n , n I := E I + X J 2 ch n ( I ) E J : Sincethemeasure isassumedtobewesometimeswillbeusing j E j for ( E )and dx for ( x ).Wealsowillbeusing L 2 for L 2 ( ) Theprototypicalexampleis X = R or R d with L beingadyadiclattice D . 2.3.4.1Haarshifts WewilluseaslightlymoregeneralofaHaarshift. 34 18. AHaarshift S ofcomplexity n isgivenby S f = X I 2D S I n I f; wheretheoperators S I acton n I L 2 andcanberepresentedasintegraloperatorswith kernels a I , k a I k 1 j I j 1 .Thelattermeansthatforall f;g 2 n I L 2 h S I f;g i = Z I Z I a I ( x;y ) f ( y ) g ( x ) dxdy: Thisisaslightlymoregeneralnitionthantheonein[HPTV],butonlytheestimate k a I k 1 j I j 1 isessentialforourconstruction.Notealsothataccordingtothe in[HPTV]thecomplexityofthecorrespondingshiftis n 1,not n ,whichreallydoesnot matter;wejustourofcomplexityabitmoreconvenient. Theestimate k a I k 1 j I j 1 meansthattheoperators S I are\ L 1 L 1 normalized", meaningthat jh S I f;g ijj I j k f k 1 j I j k g k 1 j I j 8 f;g 2 n I L 2 (2.28) Haarshiftsofcomplexity1aresimply\ L 1 L 1 normalized"martingaletransforms;mar- tingaletransformheremeansinparticularthatthesubspaces I areorthogonal,and S can berepresentedasanorthogonalsumoftheoperators S I . AHaarshiftofcomplexity n 2isnotgenerallyamartingaletransform,meaningthat thesubspaces n I generallyintersect,so S doesnotsplitintodirectsumof S I . However,ifonegoeswithstep n ,thenthecorrespondingoperatorisamartingaletrans- form,soaHaarshiftofcomplexity n canberepresentedasasumof n Haarshiftsof 35 complexity1.Namely,for k =1 ; 2 ;:::;n 1 L k = f I : I 2L k + nj ;j 2 Z g ; andlet S k = X I 2L k S I : Then S = P n 1 k =0 S k andeach S k isaHaarshiftofcomplexity1withrespecttothelattice L k . Remark5. Therefore,uniformestimatefortheHaarshiftsofcomplexity1(i.e.forthe \ L 1 L 1 normalized"martingaletransforms)givesthelinearincomplexityestimateforthe generalHaarshifts.Noticethattheestimatedoesnotdependonthenumberofchildren. 2.3.4.2Paraproducts Giventhelattice L andalocallyintegrablefunction b ,theparaproduct= b = b ( L )is as f := X I 2L ( E I f I b ) : Thenecessaryandtconditionfortheparaproducttobeboundedisthat sup J 2L j J j 1 X I 2L : I ˆ J k I b k 2 2 < 1 : Inthecaseofdyadiclatticein R d or,moregenerallyinthehomogeneoussituation,when inf J 2L inf I 2 ch( J ) j I j j J j > 0 36 thisconditionisequivalentto b belongingtothecorrespondingmartingaleBMOspace BMO L 2.3.5Reductiontothemartingalecase. Toreducetheproblemtothemartingalecaseweusethefollowingresultthatcanbefound in[H]and[HPTV]: Theorem2.3.4. Let T beaon{Zygmundoperatorin R d .Thereexistsaprobability space ; P ) ofdyadiclattices D ! ,suchthat T = C Z 1 X n =1 2 "n S n ( ! ) d P ( ! )+ Z 1 ( ! )+ 2 ( ! )) ) d P ( ! ) ! ; where S n ( ! ) areHaarshiftsofcomplexity n withrespecttothelattice D ! , 1 ; 2 ( ! ) arethe paraproductswithrespecttothelattice D ! , k 1 ; 2 ( ! ) k 1 . Theconstants C and " dependon d , k T k andon{Zygmundparametersofthekernel of T . Theorem2.3.4impliesimmediatelythatthemaintheorem(Theorem2.3.3)followsfrom thetheorembelow. Theorem2.3.5. Lettheweights v , w satisfytheassumptionsofTheorem2.3.3.Then 1.ForallHaarshifts S oforder 1 theoperators S ( v ) areuniformlyboundedfrom L 2 ( v ) to L 2 ( w ) , k S ( v ) k L 2 ( v ) ! L 2 ( w ) C ,where C dependson 2 , 2 ,thesupremumin (2.27) ,butnotonthelattice L . 2.ForallHaarshifts S n theoperators S n ( v ) areuniformlyboundedfrom L 2 ( v ) to L 2 ( w ) by Cn ,where C . 37 3.Let = b beaparaproductsuchthat j J j 1 X I 2L : I ˆ J k I b k 2 1 j I j 1 8 J 2L : (2.29) Thentheoperator v ) isboundedfrom L 2 ( v ) to L 2 ( w ) by C ,whereagain C depends on 1 , 2 ,thesupremumin (2.27) ,butnotonthelattice L . Remark6. Forthehomogeneouslattices,i.e.forlatticessatisfying inf J 2L inf I 2 ch( J ) j I j j J j =: > 0 allthenormalized L p norms j I j 1 =p k I g k p , p 2 [1 ; 1 ]areequivalentinthesenseoftwo sidedestimates.Soforsuchlatticescondition(2.29)meansthat k k C ( ).SoTheorem 2.3.5givestheestimatesthatbeingfedtoTheorem2.3.4implyTheorem2.3.3. Theorem2.3.6. Let beasabove.Thenforanyweight w on X suchthat n ( N w I ) < 1 forall I 2L X I 2L n ( N w I ) 1 j I j 1 Z X j I ( fw 1 = 2 ) j dx 2 j I j C k f k 2 L 2 ( dx ) (2.30) forall f 2 L 2 ( dx ) ;here C = C andinthesummationweskip I onwhich w 0 . Letusseethatthistheoremimpliesthecondition1ofTheorem2.3.5.Assume,multi- plyingtheweightsbyappropriateconstantsthattheinequality n 1 ( N w I ) n 2 ( N v I ) 1(2.31) 38 holdsforall I 2L .Then jh S ( fw 1 = 2 ) ;gv 1 = 2 ij X I 2L jh S I I ( fw 1 = 2 ) ; I ( gv 1 = 2 ) ij X I 2L j I j 1 k I ( fw 1 = 2 ) k 1 k I ( gv 1 = 2 ) k 1 X I 2L j I j 1 k I ( fw 1 = 2 ) k 1 k I ( gv 1 = 2 ) k 1 n 1 ( N w I ) n 2 ( N v I ) 1 = 2 1 2 X I 2L j I j 1 k I ( fw 1 = 2 ) k 2 1 n 1 ( N w I ) + 1 2 X I 2L j I j 1 k I ( gv 1 = 2 ) k 2 1 n 2 ( N v I ) : Thesecondinequalityherefollowsfrom\ L 1 L 1 normalization"condition(2.28),thesecond onefrom(2.31)andthelastoneisjustthetrivialinequality2 xy x 2 + y 2 . ApplyingTheorem2.3.6toeachsumwegetthat jh S ( fw 1 = 2 ) ;gv 1 = 2 ij 1 2 C 1 ) k f k 2 2 + C 2 ) k g k 2 2 : Replacing f 7! tf , g 7! t 1 g , t> 0weget jh S ( fw 1 = 2 ) ;gv 1 = 2 ij 1 2 t 2 C 1 ) k f k 2 2 + t 2 C 2 ) k g k 2 2 : Takingumoverall t> 0andrecallingthat2 ab =inf t> 0 ( t 2 a + t 2 b )for a;b 0we obtain jh S ( fw 1 = 2 ) ;gv 1 = 2 ij ( C 1 ) C 2 )) 1 = 2 k f k 2 k g k 2 ; whichisexactlystatement1ofTheorem2.3.5. Forthestatement3ofTheorem2.3.5 wealsoneedanotherembeddingtheorem. 39 Theorem2.3.7. Let beasabove.ThenforanynormalizedCarlesonsequence f a I g I 2D ( a I 0 ),i.e.foranysequencesatisfying sup I 2D j I j 1 X I 0 2D : I 0 ˆ I a I 0 j I 0 j 1 weget X I 2D h fw 1 = 2 i 2 I n ( N w I ) a I j I j C k f k 2 L 2 ( dx ) ; whereagain C = C . LetusshowthatthistheoremtogetherwithTheorem2.3.6impliesstatement3ofThe- orem2.3.5.Let a I = k I b k 2 1 . Again,multiplyingifnecessarytheweights v and w byappropriateconstantswecan assume(2.31).Thenwecanwrite jh b ( fw 1 = 2 ) ;gv 1 = 2 ij X I 2D jh fw 1 = 2 i I jjh I b; I ( gv 1 = 2 ) ij X I 2D jh fw 1 = 2 i I j ( a I ) 1 = 2 j I j 1 = 2 n 1 ( N w I ) 1 = 2 k I ( gv 1 = 2 ) k 1 n 2 ( N v I ) 1 = 2 j I j 1 = 2 0 @ X I 2D jh fw 1 = 2 i I j 2 a I n 1 ( N w I ) j I j 1 A 1 = 2 0 @ X I 2D k I ( gv 1 = 2 ) k 2 1 n 2 ( N v I ) j I j ; 1 A 1 = 2 thesecondinequalityholdsbecauseof(2.31),andthelastoneisjusttheCauchy{Schwarz inequality. EstimatingthesumsinparenthesesbyTheorem2.3.7and2.3.6respectivelyweget statement3ofTheorem2.3.5. 40 2.3.6Proofof(thentialEmbedding)Theorem2.3.6:Bellmanfunc- tionandmaintialinequality Let ' ( s ):= s s ).Multiplyingbyanappropriateconstantwecanassumewithoutloss ofgeneralitythat Z 1 0 1 ' ( s ) ds =1 : (2.32) m ( s )on[0 ; 1]by m (0)= m 0 (0)=0, m 00 ( s )=1 =' ( s ).Identity(2.32)impliesthat m iswand0 m 0 ( s ) 1,0 m ( s ) s .Foradistributionfunction N = N w I u ( N )= Z 1 0 (2 N ( t ) m ( N ( t ))) dt =2 h w i I Z 1 0 m ( N ( t )) dt ;(2.33) Notethattheinequality m ( s ) s impliesthat u ( N w I ) h w i I . Thefunctional u isontheconvexsetofdistributionfunctions,i.e.onthesetof decreasingfunctions N :[0 ; 1 ) ! [0 ; 1]suchthat R 1 0 N ( t ) dt< 1 . Inwhatfollowswecanconsideronlysupportedfunctions N ,andthenuse standardapproximationreasoning.Considertwodistributionfunctions N and N 1 andlet N = N 1 N .Denotealso w := Z 1 0 N ( t ) dt; w 1 := Z 1 0 N 1 ( t ) dt; andlet w := w 1 w = Z 1 0 N ( t ) dt ; themotivationforthisnotationisthatif N and N 1 arethedistributionfunctionsofthe 41 weights w and w 1 ,thentheintegralsaretheaveragesonthecorrespondingweights.Denote also w := Z 1 0 j N ( t ) j dt ;(2.34) clearly j w j w . Letuscomputederivativesof u inthedirectionof N .Therstderivativeisgivenby u 0 N ( N )= d d˝ u ( N + ˝ N ) ˝ =0 = Z 1 0 2 m 0 ( N ( t )) N ( t ) dt; so,inparticular j u 0 N j 2 w : Thereforewecanwrite u 0 N = w ; = ( N ) ; j j 2 : (2.35) Thesecondderivativeinthedirection N = N 1 N isgivenby u 00 N ( N )= d 2 d˝ 2 u ( N + ˝ N ) ˝ =0 = Z 1 0 ' ( N ( t )) 1 ( N ( t )) 2 dt 42 ByCauchy-Schwarz,theintegralintherightsideisatleast h Z 1 0 N ( t N ( t )) dt i 1 h Z 1 0 j N ( t ) j dt i 2 = n ( N ) 1 h Z 1 0 j N ( t ) j dt i 2 = n ( N ) 1 ( w ) 2 ; so u 00 N ( N ) ( w ) 2 n ( N ) (2.36) Forthescalarvariable f 2 R andthedistributionfunction N theBellmanfunction e B ( f;N )= B ( f ; u ( N ))where B ( f ; u )= f 2 u : Computingsecondderivativeof e B inthedirection =( f ; N )weget e B 00 = 0 B @ f u 0 N 1 C A T 0 B @ B B fu B fu B uu 1 C A 0 B @ f u 0 N 1 C A + B u u 00 N Inthelastformulathederivativeof e B isevaluatedatthepoint( f;N ),andderivatives of B areevaluatedat( f ; u ( N )). TheHessianiseasytocompute 0 B @ B B fu B fu B uu 1 C A = 0 B @ 2 u 2 f u 2 2 f u 2 2 f 2 u 3 1 C A ;(2.37) notethatthismatrixispositive 43 Since B u = f 2 = u 2 ,wegetusing(2.36) B u u 00 N f 2 u 2 n ( w ) 2 : Thus,gatheringeverythingandusing(2.35)weget e B 00 0 B @ f w 1 C A T 0 B @ 2 u 2 f u 2 2 f u 2 2 f 2 u 3 (1+ u 2 2 n ) 1 C A 0 B @ f w 1 C A (2.38) ThematrixhereisobtainedfromtheHessianin(2.37)bymultiplyingthelowerrightentry by1+ u 2 2 n 1,soithasmorepositivitythantheHessian.Inparticular,ifwedividethe upperleftentryofthematrixin(2.38)bythesamequantity1+ u 2 2 n ,thematrixstillbe positivee.Butourmatrixin(2.38)hassomethingbiggerintheupper-leftcorner! Therefore,since 1 1+ u 2 2 n 1 = u 2 2 n + u wegetthat e B 00 2( f ) 2 2 2 n + u 2( f ) 2 2 2 2 n + u c ( f ) 2 n ;(2.39) thelastinequalityholdsforsome c> 0because u 2 w C n . Letusexplainit.Infact,wewant Z N I ( t ) dt = h w i I C Z N I ( t N I ( t )) dt: Clearly,itisenoughtoconsidertheset B = f t : N I ( t )) 1 g .Sinceisdecreasing,for 44 t 2 B wegetthat N I ( t ) 1 (1).Since s 7! s s )isincreasing,weget N I ( t N I ( t )) 1 (1) 1 (1) N I ( t )(thelastisbecause N I isnormalized).Wearedone. Inequality(2.39)isexactlywhatwewillusetoobtaintheMaininequalityin forminthenextsection. 2.3.7Maininequalityintheform 2.3.7.1Dyadiccase Lemma2.3.8. Let f = f 1 + f 2 2 ;N ( t )= N 1 ( t )+ N 2 ( t ) 2 : Then 1 2 B ( f 1 ; u ( N 1 ))+ B ( f 2 ; u ( N 2 )) B ( f ; u ( N )) c 4 ( f 1 f ) 2 n ( N ) : (2.40) where c istheconstantfrom (2.39) .(Notethat f 1 f = f f 2 ,sowecanreplace ( f 1 f ) 2 intherightsideby ( f 2 f ) 2 ) Proof. Noticethat s 1 + s 2 2 s 1 + s 2 2 s 1 + s 2 2 ( s 1 + s 2 ) 1 2 s 1 s 1 );(2.41) heretheinequalityholdsbecauseisdecreasingandthesecondonebecause s s )is increasing.Ofcourse,wecaninterchange s 1 and s 2 intheaboveinequality. 45 Let f := f 1 f , N := N 1 N . F ( ˝ )= B ( f + ˝ f ; u ( N + ˝ N ))+ B ( f ˝ f ; u ( N ˝ N )) Taylor'sformulatogetherwiththeestimate(2.39)implythat F (1) F (0) c 2 ( f ) 2 1 n ( N + ˝ N ) + 1 n ( N ˝ N ) (2.42) forsome ˝ 2 (0 ; 1). Estimate(2.41)impliesthat n ( N ) 1 2 n ( N ˝ N ) ; so 1 n ( N + ˝ N ) + 1 n ( N ˝ N ) 1 n ( N ) : Thenitfollowsfrom(2.42)that F (1) F (0) c 2 ( f ) 2 n ( N ) : Recallingthenitionof F anddividingthisinequalityby2weget(2.40). 2.3.7.2Generalcase Let ' and e B beasabove. Lemma2.3.9. Let f ; f k 2 R , k 2 R + andthedistributionfunctions N , N k , k =1 ; 2 ;:::;n 46 satisfy f = n X k =1 k f k ;N = n X k =1 k N k ; n X k =1 k =1 : Then e B ( f ;N )+ n X k =1 k e B ( f k ;N k ) c 16 1 n ( N ) n X k =1 k j f k f j ! 2 (2.43) 2.3.8Proofof(theEmbedding)Theorem2.3.7. 2.3.8.1Anauxiliaryfunction LetbethefunctionfromTheorem2.3.7. ' ( s ):= s s ). Forthenumbers A 2 [1 ; 2], N 2 R + T ( A;N ):= N Z N=A 0 1 ' ( s ) ds Lemma2.3.10. Thefunction T isconvexandtheentialinequality @T @A 1 4 N 2 ' ( N ) : Proof. tiatingtheintegralweget @T @A = N 2 A 2 ' ( N=A ) 1 4 N 2 ' ( N ) : (2.44) since ' isincreasingand1 A 2. Toprovetheconvexitynoticethat T islinearonthelines N = kA ,sotheHessian d 2 T 47 degenerates. tiating(2.44)weget @ 2 T @A 2 = N 2 2 A' ( N=A ) N' 0 ( N=A ) ( A 2 ' ( N=A )) 2 Notethattherightsideispositiveif s' 0 ( s ) < 2 ' ( s )(because ' ( s ) > 0). Butforourfunctionevenastrongerinequality s' 0 ( s ) ' ( s )isIndeed,since ' ( s )= s s )isincreasingandisdecreasing,then 0 ( s s )) 0 = s )+ s 0 ( s ) s ) (thesecondinequalityholdsbecauseisdecreasing).Multiplyingthisinequalityby s we get s' 0 ( s ) ' ( s ). Therefore,since ' ( s ) > 0,weconcludethat @ 2 T @A 2 > 0. ButtheHessian d 2 T issingular,anditisaneasyexerciseinlinearalgebratoshowthat asingularHermitian2 2matrixwithapositiveentryonthemaindiagonalispositive 2.3.8.2Bellmanfunctionandthemaintialinequality. Letnow N beadistributionfunction,andlet T ( A;N )= Z 1 0 T ( A;N ( t )) dt: 48 AsinSection2.3.6assume,multiplyingbyanappropriateconstant,that Z 1 0 1 ' ( s ) ds =1 : Then T ( A;N ( t )) N ( t ),so T ( A;N ) Z 1 0 N ( t ) dt =: w = w ( N ) : For f 2 R , M 2 [0 ; 1]andforadistributionfunction N thefunction e B ( f ;N;M ):= B ( f ; u ( M;N )),where B ( f ; u )= f 2 u and u = u ( M;N )=2 Z 1 0 N ( t ) dt T ( M +1 ;N ) =:2 w ( N ) T ( M +1 ;N ) : Notethat2 w ( N ) u ( M;N ) w ( N ). Weclaimthatthefunction e B isconvex.Indeed,adirection :=( f ; N; M ) T and computethesecondderivative e B 00 inthisdirection e B 00 = d 2 d˝ 2 e B ( f + ˝ f ;N + ˝ N;M + ˝ M ) ˝ =0 : 49 Weget e B 00 = 0 B @ f u 0 1 C A T 0 B @ B B fu B fu B uu 1 C A 0 B @ f u 0 1 C A + B u u 00 : TheHessian 0 B @ B B fu B fu B uu 1 C A = 0 B @ 2 u 2 f u 2 2 f u 2 2 f 2 u 3 1 C A isclearlypositivesothetermisnonnegative.Forthesecondtermnotice that B u = f 2 u 2 ; u 00 = T 00 0(2.45) because T ,andtherefore T isconvex.Thus e B 00 0,so e B isconvex.Letuscomputethe partialderivative @ e B @M = u @ u @M = f 2 u 2 @ T @M (2.46) ByLemma2.3.10 @ T @M 1 4 Z 1 0 N ( t ) 2 ' ( N ( t )) dt 1 4 Z 1 0 N ( t ) dt 2 Z 1 0 ' ( N ( t )) dt 1 = 1 4 w ( N ) 2 n ( N ) ; thesecondinequalityhereisjusttheCauchy{Schwarzinequality.Combiningwith(2.46) 50 andrecallingthat u 2 w weget @ e B @M 1 16 f 2 n (2.47) Thisinequality(togetherwiththeconvexityof e B )isthemaintialinequalityforour function. 2.3.9Finiteformofthemaininequality Let X =( f ;N;M ), X k =( f k ;N k ;M k ),( f ; f k 2 R , M;M k 2 [0 ; 1], N , N k arethedistribution functions)satisfy f = n X k =1 k f k ;N = n X k =1 k N k ;M = a + n X k =1 k M k ;a 0 ; where n X k =1 k =1 ; k 0 : Then e B ( X )+ n X k =1 k e B ( X k ) 1 16 a f 2 n (2.48) where n = n ( N ). Indeed,for M 0 := P n k =1 k M k themaininequality(2.47)implies e B ( f ;N;M 0 ) e B ( f ;N;M ) 1 16 a f 2 n : 51 Theconvexityof e B impliesthat e B ( f ;N;M 0 ) n X k =1 k e B ( X k ) whichtogetherwiththepreviousinequalitygivesus(2.48). 2.3.9.1Frommaininequality(2.48)toTheorem2.3.7. ThereasoninghereisalmostverbatimthesameasinSection2.3.10. Foracube I 2L letusdenote f I = h fw 1 = 2 i I , N I = N w I , M I = j I j 1 P I 0 ˆ I a I 0 , w I = h w i I , u I = u ( M I ;N I ). Fix I 0 2L ,andlet I k beitschildren.Applyingtheinequality(2.48)with k = j I k j = j I 0 j , f k = f I k , N k = N w I k , M k = M I k wegetthat 1 16 a I 0 f 2 I 0 n ( N w I 0 ) j I 0 j I 0 j e B ( X I 0 )+ X I 2 ch( I 0 ) j I j e B ( X I ) Writingthecorrespondingestimatesforthechildrenof I 0 ,thenfortheirchildren,weget aftergoing n generationsdownandusingthetelescopingsumintherightside 1 16 X I 2 ch k ( I 0 ) 0 k > > < > > > : s = 1 t 0 ( t ) s ):= 0 ( t ) : Ofcourse,weinthiswaynear s =0. Wegivethefollowing 19. Afunctioniscalled regularbump ,ifforanyfunction u thereholds k u k L I > C Z N I ( t N I ( t )) dt: Remark7. Anexampleofregularbumpisthefollowing: t )= tˆ ( t ),and t ˆ 0 ( t ) ˆ ( t ) log ˆ ( t ) ! 0 ; as t !1 : Theimportantresultisthefollowing. Lemma2.4.1. Thefunction s 7! s ) isdecreasing;thefunction s 7! s s ) isincreasing; thefunction 1 s s ) isintegrablenear 0 .Moreover,thefollowinginequalityistruewitha 58 uniformconstant C (whichmaydependonlyon ): C k u k L I > Z N I ( t N I ( t )) dt; where N I ( t )= 1 j I j jf x 2 I : u ( x ) > t gj : Further,for\regular"functions wehavethat k u k L I ˘ Z N I ( t N I ( t )) dt: 2.4.3Themainresults.Boundednessandweakboundedness. Givenafunctionsatisfying(2.51),buildthecorrespondingfunctionasinSection2.4.2. Weprovethefollowingtheorems.Regularityconditionsarenotveryimportant,butthelast conditioninthestatementofthetheoremisactuallyanimportantrestriction.Thisisthe restrictiononewouldwishtogetridof.Ortoprovethatitisactuallyneeded.Latelywe believethatonecannotgetridofit.Wegiveanon-standardn. 20. Afunction f is\weaklyconcave"onitsdomain,ifforanynumbers x 1 ;:::;x n and 1 ;:::; n ,suchthat0 6 j 6 1,and P j =1,thefollowinginequalityholds: f ( X j x j ) > C X j f ( x j ) ; wheretheconstant C doesnotdependon n . Theorem2.4.2. Supposethereexistsafunction 0 withcorresponding 0 ,suchthat: 59 0 (2.51) ; and 0 areregularbumps; Thereisafunction " ,suchthat 0 ( s ) 6 C s ) " s )) ; Thefunction t 7! t" ( t ) isweaklyconcave,inthesenseofthe20; Thefunction t 7! t" ( t ) isstrictlyincreasingnear 1 ; Thefunction t 7! t" ( t ) isconcavenear 1 ; Thefunction t 7! " ( t ) t isintegrableat 1 . Supposethatthereexistsaconstant C ,suchthataone-sidedbumpcondition (2.52) holds. Thenanyon{Zygmundoperatorisboundedfrom L 2 ( u ) into L 2 ( v ) inthesenseof (2.53) . Theorem2.4.3. Supposethefunction allconditionsfromthetheoremabove. Supposethatthereexistsaconstant C ,suchthat k u k L 1 ( I; dx j I j ) k v k L I 6 C: ThenanyCalderon-Zygmundoperatorisweaklyboundedfrom L 2 ( u ) into L 2 ; 1 ( v ) ,i.e.there existsaconstant C ,suchthatforanyfunction f 2 C 1 0 thereholds k T ( fu ) k L 2 ; 1 ( v ) 6 C k f k L 2 ( u ) : (2.54) 60 2.4.4Examplesofsatisfyingtherestrictionsofthemainresults:thecases from[CURV] Thebiggestoftheaboveresultswiththoseof[CURV]isthatherewegavethe integralconditiononthecorrespondingbumpfunctionTocomparewith[CURV]we noticethatin[CURV]theoremsabovewereprovedintwocases: 1. t )= t log 1+ ˙ ( t ); 2. t )= t log( t )loglog 1+ ˙ ( t ),fortlybig ˙ . Weshowthattheseresultsarecoveredbyourtheorems. First,suppose t )= t log 1+ ˙ ( t ).Then s ) log 1+ ˙ ( 1 s ).Weput 0 ( s )= t log 1+ ˙ 2 ( t ), andthen " ( t )= t ˙ 2(1+ ˙ ) .Then,clearly,allpropertiesof " fromourtheoremare Next,suppose t )= t log( t )loglog 1+ ˙ ( t ).Then s ) log( 1 s )loglog 1+ ˙ ( 1 s ).Weput 0 ( t )= t log( t )loglog 1+ ˙ ( t ), < 1whichgives " ( t )=log (1 ) ˙ ( t ).Then,theintegral R 1 " ( t ) t dt convergesif ˙> 1,andwechoose tobeverysmall. Moreover,examiningtheproofofTheorem5.1from[CURV],wegettheresultfromour paperbutwithacondition Thefunction t 7! p " ( t ) t isintegrableat 1 . Wenoticethatforregularfunctionswehave " ( t ) ! 0when t !1 ,andso " ( t ) < p " ( t ). Thus,ourresultsworkformorefunction " and,thus,bumps 61 2.4.5SelfimprovementsofOrlicznorms. Inthissectionweproveatechnicalresult,whichhasthefollowing\hand-waving"explana- tion:supposewetakeafunctionandasmallerfunction 0 .Weexplainhowsmallcanbe thequotient k u k L 0 I k u k L I intermsofsmallnessof 0 .Inwhatfollowsweconsideronly\regular bumps"functionsinthesenseofthe19. Supposewehavetwofunctionsand 0 ,andwehavebuiltfunctionsand 0 .We supposethat 0 ( s ) 6 C s ) " s )) : Thefollowingtheoremholds. Theorem2.4.4. Let I beanarbitraryinterval(cube).Ifafunction t 7! t" ( t ) isweakly concave,then k u k L 0 I 6 C k u k L I " k u k L I h u i I : Todothatweneedthefollowingeasylemma: Lemma2.4.5. ForweaklyconcavefunctionstheJenseninequalityholdswithaconstant: Z f ( g ( t )) ( t ) 6 Cf ( Z g ( t ) ( t )) : Proof. Thisistruesinceif g isastepfunction,thenthisisjustaThenwepass tothelimit.Hereweessentiallyusedthatwecantakeaconvexcombinationof n points, andtheconstantintheabovedoesnotdependon n . ProofoftheTheorem. Intheproofweomittheindex I .Sinceforregularbumpsweknow 62 that k u k L ˘ Z N ( t )) N ( t ) dt; wesimplyneedtoprovethat Z 0 ( N ( t )) N ( t ) dt 6 C Z N ( t )) N ( t ) dt" R N ( t )) N ( t ) dt R N ( t ) dt Ourstepistheobviousestimateoftheleft-handside: Z 0 ( N ( t )) N ( t ) dt 6 C Z N ( t )) " N ( t )) N ( t ) dt: Denote a ( t )= t" ( t ).Thenweneedtoprovethat Z a N ( t )) N ( t ) dt 6 C Z N ( t ) dta R N ( t )) N ( t ) dt R N ( t ) dt : Wedenote = N ( t ) R N ( t ) dt dt; itisaprobabilitymeasure.Moreover,byassumption, t 7! a ( t )isconcave.Therefore,by Jensen'sinequality(fromtheLemma), Z a ( f ( t )) ( t ) 6 Ca Z f ( t ) ( t ) : Take f ( t )=( N ( t )),andtheresultfollows. 63 2.4.6Examples 2.4.6.1Example1:log-bumps First,if t )= t log 1+ ˙ ( t ),then s )=log 1+ ˙ (1 =s ),and 0 ( s ) s ) =log ˙ 2 (1 =s )= ˙ 2(1+ ˙ ) : Thus, " ( t )= t ˙ 2(1+ ˙ ) ,andeverythingis 2.4.6.2Example2:loglog-bumps Nextexampleiswithdoublelogs.Infact,when s )= log (1 =s )(loglog(1 =s )) 1+ ˙ ; 0 ( s )= log (1 =s )(loglog(1 =s )) 1+ ˙= 2 then 0 ( s ) s ) =loglog ˙= 2 (1 =s ) ˘ (log s ))) ˙= 2 : Thus, " ( t )=(log t ) ˙ 2 .Everythingwouldbealsoexceptforonelittlething:the function t 7! t" ( t )isconcaveony,butnotnear1.However, t 7! t" ( t )isweakly concaveon[2 ; 1 ),andthisisenoughforourgoalsaswithoutlossofgenerality, s ) > 2. Soletusprovethat a ( t )= t" ( t )isweaklyconcaveon[2 ; 1 ). Let { := ˙ 2 .Thefunction a hasalocalminimumat e { anditsconcavitychangesat e { +1 .Wenowtake x j , j and x = P j x j .Wenoticethatif x>e { +1 ,theweare done,becausethen( x; P j a ( x j ))liesunderthegraphof a . 64 If2 x min [2 ;e { +1 ] a = c ( { ).Moreover,if ` isalinetan- genttographof a ,startingat(2 ;a (2)),and ` \kisses"thegraphatapoint( r;a ( r )),then P j a ( x j ) 6 a ( r )= c 1 ( { ).Thisfollowsfromthepicture:aconvexcombinationof a ( x j ) cannotbehigherthanthisline. Therefore, a ( X j x j ) > c ( { ) > Cc 1 ( { ) > X j a ( x j ) : Thisourproof. 2.4.7Proofofthemainresult:notationandthereduction. Weadyadicgrid D .Toproveourmainresultsitisenoughtoshowthatthefollowing implicationholds: ifforall I k u k L I k v k L 1 ( I; dx j I j ) 6 B u;v then k ˜ J T D ; f a I g ( u˜ J ) k 2 L 2 ( v ) 6 Cu ( J ) ; where C doesnotdependneitheronthegrid,noronthesequense f a I g .Itcan,ofcourse, dependon B u;v .Thiswillprovetheweakbound T : L 2 ( v ) ! L 2 ; 1 ( u ).Forsimplicity,we denote T a = T D ; f a I g .Itisaneasycalculationthat,underthejoint A 2 condition(whichis underthebumpcondition),itisenoughtogetanestimateofthefollowing form: 1 j J j X J ˆ I a I h u i I 1 j I j X K ˆ I a K h u i K h v i K j K jj I j 6 Cu ( J ) : (2.55) Remark8. Bytherescalingargumentitisclearthatwecanassume B u;v assmallaswe need(where\smallness",ofcourse,dependsonlyonthefunctionWeneedthisremark, sinceallbehaviorsofourfunction " arestudiednear0. 65 Remark9. Everythingisreducedto(2.55).Weconcentrateonproving(2.55).Clearly,by scaleinvariance,itlooksverytemptingtomake(2.55)aBellmanfunctionstatement.This willbeexactlyourplanfromnowon. 2.4.8Bellmanproofof(2.55):introducingthe\maininequality" WestartthisSectionwiththefollowingnotation.Wetwoweights u and v ,andaCarleson sequense f a I g .Wedenote u I = h u i I ;v I = h v i I ; N I ( t )= 1 j I j jf x : u ( x ) > t gj ; A I = 1 j I j X J ˆ I a J j J j ; L I = 1 j I j X J ˆ I a J h u i J h v i J j J j : Weproceedwithtwotheoremsthatproveourmainresult.Everywhereinthefuturewe usethat h u i I h v i I = u I v I 6 < 1forany I .Wecandoitduetosimplerescaling. Theorem2.4.6. Supposethat 0 6 " ; where " propertiesofTheorem2.9,fromwhichthemainoneis Z 1 " ( t ) t dt< 1 : (2.56) Let besmallenough,and 1 = f ( N;A ):0 6 N 6 1;0 6 A 6 1 g 66 andforsomeconstant P 2 = f ( u;v;L;A ):0 6 A 6 1; u;v;L > 0; uv 6 ; L 6 P p uv g : Supposewehavefoundafunction B 1 ,don 1 ,andafunction B 2 ,don 2 , suchthat: 0 6 B 1 6 N ;(2.57) ( B 1 ) 0 A > 10 N 0 ( N ) ;(2.58) d 2 B 1 > 0;(2.59) 0 6 B 2 6 u ;(2.60) ( B 2 ) 0 A > 0(2.61) ( B 2 ) 0 A > c u L; when P p uv L > uv " ( 1 uv ) ;(2.62) uv ( B 2 ) 0 L > 1 uL; forsmall 1 inthewholeof 2 ;(2.63) d 2 B 2 > 0 : (2.64) Thenforthefunctionofaninterval B ( I ):= B 2 ( u I ;v I ;L I ;A I )+ 1 R 0 B 1 ( N I ( t ) ;A I ) dt the followingholds: 0 6 B ( I ) 6 2 u I (2.65) B ( I ) B ( I + )+ B ( I ) 2 > Ca I u I L I : (2.66) Next,westate 67 Theorem2.4.7. Ifsuchtwofunctions B 1 and B 2 exist,then (2.55) holds,namely 1 j I j X J ˆ I a I h u i J 1 j J j X K ˆ J a K h u i K h v i K j K jj I j 6 R 2 Z I u: ProofoftheTheorem2.4.7. ThisisastandardGreen'sformulaappliedtofunction B ( I )on thetreeofdyadicintervals.Letusexplainthedetails. Sincethefunction B isnon-negative,wehavethat 2 j I j u I > j I jB ( I ) > j I jB ( I ) 2 n X k =1 j I n;k jB ( I n;k ) : Here n ised,and I n;k are n th generationdescendantsof I .Clearly,all j I n;k j areequal to2 n . Letusdenote J )= j J jB ( J ) j J + jB ( J + ) j J jB ( J ),where J arechildrenof J .By theproperty(2.66)weknowthat J ) > C j J j a J u J L J .Bythetelescopiccancellation,we getthat j I jB ( I ) 2 n X k =1 j I n;k jB ( I n;k )= n 1 X m =0 2 m X k =1 I m;k ) : Combiningourestimates,weget 2 j I j u I > C n 1 X m =0 2 m X k =1 j I m;k j a I m;k u I m;k L I m;k = C X J ˆ I; j J j > 2 n j I j j J j a J u J L J : Thisistrueforevery n ,withtheconstant C independentof n .Thus, u I > C 1 j I j X J ˆ I a J u J L J j J j : 68 Theresultfollowsfromtheof L J . InthefutureweusethefollowingvariantofSylvestercriterionofpositivityofmatrix. Lemma2.4.8. Let M =( m ij ) 3 i;j =1 bea 3 3 realsymmetricmatrixsuchthat m 11 < 0 , m 11 m 22 m 12 m 21 > 0 ,and det M =0 .Then M isnonpositive Proof. Let E beamatrixwithallentriesbeing0exceptfor e 33 =1.Consider t> 0 and A := A ( t ):= M + tE .Itiseasytoseethat a 11 < 0, a 11 a 22 a 12 a 21 > 0,and det A = t ( m 11 m 22 m 12 m 21 ) > 0when t> 0.BySylvestercriterion,matrices A ( t ), t> 0,areallnegativelyTherefore,tending t to0+,weobtain,that M isnonpositive Weneedthefollowinglemma,whichisinspiritof[VaVo]. Lemma2.4.9. Let L I begivenby L I = 1 j I j X J ˆ I a J h u i J h v i J j J j : Let A I givenby A I = 1 j I j P J ˆ I a J j J j .Supposethatitisboundedby 1 foranydyadic I (Carlesoncondition).Ifforanydyadicinterval I wehavethat h u i I h v i I 6 1 ,thenitholds thatforanydyadicinterval I wehave L I 6 P q h u i I h v i I . Proof. Itistruesincethefunction T ( u;v;A )=100 p uv uv A +1 isconcaveenoughinthe domain G := f 0 6 A 6 1 ;uv< 1 ;u;v > 0 g .Onecanadapttheprooffrom[VaVo]. First,weneedtocheckthatthefunction T ( x;y;A )isconcavein G .Clearly, T 00 A;A < 0. Next, det 0 B @ T 00 A;A T 00 A;v T 00 A;v T 00 v;v 1 C A = x y ( A +1) 4 (50( A +1) p xy xy ) > 0 : (2.67) 69 Thisexpressionisnon-negative,because A +1 > 1,and p uv 6 1.Finally, det 0 B B B B B @ T 00 A;A T 00 A;v T 00 A;u T 00 A;v T 00 v;v T 00 v;u T 00 A;u T 00 v;u T 00 u;u 1 C C C C C A =0 : Therefore,byLemma2.4.8weconcludethat T ( u;v;A )isaconcavefunction. Next, T 0 A = uv ( A +1) 2 > 1 4 uv: Thus,ifwethreepoints( u;v;A ),( u ;v ;A ),suchthat u = u + + u 2 , v = v + + v 2 , and A = A + + A 2 + a ,wegetbytheTaylorformula: T ( u;v;A ) T ( u + ;v + ;A + )+ T ( u ;v ;A ) 2 > aT 0 A ( u;v;A ) > Ca uv: Thisrequirestheexplanation.TheTaylorformulaweusedhasaremainderwiththesec- ondderivativeattheintermediatepoint P onsegments S + :=[( u;v; A + A + 2 ) ; ( u;v;A + )] ; S :=[( u;v; A + A + 2 ) ; ( u;v;A )].Oneofthissegmentsliesinsidedomain G , where T isconcave,andthisremainderwillhavetherightsign.Howeverthesecondseg- mentcaneasilystickoutofdomain G ,because G itselfisnotconvex.Butnoticethatif,for example, S + isnotinside G ,still( x;y;B ) 2 S + impliesthatoneofthecoordinates,say x , mustbesmallerthan u .Then y canbebiggerthan v ,butnotmuch.Infact, v + v = v v ) v + 2 v v 2 v: Therefore, y v + 2 v .Thenwehavethat xy 2 uv 2.Letusconsider e G := f ( x;y;A ): 70 0 A 1 ;x;y 0 ; 0 xy 2 g .Nowcomebacktotheproofthat T isconcavein G . In(2.67)weusedthatif( x;y;A ) 2 G ,then xy 1andthecorrespondingdeterminantis non-negative.Butthesamenon-negativityin(2.67)holdsunderslightlyrelaxedassumption ( x;y;A ) 2 e G . Wenoticethatour u I = h u i I , v I = h v i I ,and A I = 1 j I j P J ˆ I a I j I j havethedynamics above.TherestoftheproofreadsexactlyastheproofoftheTheorem2.4.7. ProofoftheTheorem2.4.6. WestartwiththefollowingcorollaryfromtheTaylorexpansion. Supposewehavethreetuples( N;A ),( N ;A ),suchthat: N = N + + N 2 ; A = A + + A 2 + m: Moreover,supposethereare( u;v;L ),( u ;v ;L ),suchthat u = u + + u 2 ; v = v + + v 2 ; L = L + + L 2 + m uv: Then,since d 2 B 1 6 0,wewrite B 1 ( N + ;A + ) 6 B 1 ( N;A )+( B 1 ) 0 N ( N;A )( N + N )+( B 1 ) 0 A ( N;A )( A + A ) : Thus, B 1 ( N;A ) B 1 ( N + ;A + )+ B 1 ( N ;A ) 2 > ( B 1 ) 0 A ( N;A ) ( A A + + A 2 )= m ( B 1 ) 0 A ( N;A ) > m N 0 ( N ) : 71 Similarly, B 2 ( u;v;L;A ) B 2 ( u + ;v + ;L + ;A + )+ B 2 ( u ;v ;L ;A ) 2 > m (( B 2 ) 0 A ( u;v;L;A ) + uv ( B 2 ) 0 L ) First,supposethat L I 6 u I v I " ( 1 u I v I ) .Then,using m = a I weget B ( I ) B ( I + )+ B ( I ) 2 > > Z B 1 ( N I ( t ) ;A I ) B 1 ( N I + ( t ) ;A I + )+ B 1 ( N I ( t ) ;A I ) 2 ! dt + + B 2 ( u I ;v I ;L I ;A I ) B 2 ( u I + ;v I + ;L I + ;A I + )+ B 2 ( u I ;v I ;L I ;A I ) 2 ! > a I ( B 2 ) 0 A ( u I ;v I ;L I ;A I )+ u I v I ( B 2 ) 0 L ( u I ;v I ;L I ;A I ) + a I Z ( B 1 ) 0 A ( N I ( t ) ;A I ) dt > a I Z N I ( t ) 0 ( N I ( t )) dt 1 u I L I : (2.68) Thelastinequalityistrue,since( B 2 ) 0 A > 0and uv ( B 2 ) 0 L > 1 uL onthedomainof B 2 . Weuseolder'sinequality(andthat R N I ( t ) dt = u I )toget: Z N I ( t ) 0 ( N I ( t )) dt > u 2 I R N I ( t 0 ( N I ( t )) dt > C u 2 I R N I ( t N I ( t )) dt" R N I ( t N I ( t )) dt u I : (2.69) 72 LastinequalityisTheorem2.4.4.Therefore,wegetthat Z N I ( t ) 0 ( N I ( t )) dt > u I u I k u k L I 1 " 0 @ k u k L I u I 1 A = u I u I v I k u k L I v I 1 " 0 @ k u k L I v I u I v I 1 A : (2.70) Wearegoingtousetheone-sidedbumpcondition k u k L I v I 6 B u;v 6 1.Thus, u I v I 6 u I v I k u k L I v I : Sincethefunction x 7! x " ( 1 x ) isincreasingnear0(on[0 ;c " ])andboundedfrombelowbetween c " and1,weget u I v I v I k u k L I 1 " 0 @ v I k u k L I u I v I 1 A > C u I v I 1 " ( 1 u I v I ) : Therefore, Z N I ( t ) 0 ( N I ( t )) dt > Cu I u I v I " ( 1 u I v I ) > Cu I L I : Thelastinequalityfollowsfromourassumptionthat L I 6 u I v I " ( 1 u I v I ) .Puttingeverything together,weget B ( I ) B ( I + )+ B ( I ) 2 > a I u I L I ( C 1 ) > C 1 a I u I L I : 73 Weproceedtothecase L I > u I v I " ( 1 u I v I ) .Thenwewrite B ( I ) B ( I + )+ B ( I ) 2 > B 2 ( u I ;v I ;L I ;A I ) B 2 ( u I + ;v I + ;L I + ;A I + )+ B 2 ( u I ;v I ;L I ;A I ) 2 : Thisisobviouslytrue,since( B 1 ) 0 A > 0everywhereand B 1 isaconcavefunction.Next,we use B 2 ( u I ;v I ;L I ;A I ) B 2 ( u I + ;v I + ;L I + ;A I + )+ B 2 ( u I ;v I ;L I ;A I ) 2 > a I ( B 2 ) 0 A + uv ( B 2 ) 0 L > ca I u I L I ; (2.71) bythepropertyof B 2 .Therefore,wearedone. 2.4.9Fourthstep:buildingthefunction B 2 Inordertotheproof,weneedtobuildfunctions B 1 and B 2 .Inthissectionwewill presentthefunction B 2 .Denote ' ( x )= x " ( 1 x ) : Thisfunctionisincreasing(byregularityassumptionson " inTheorem2.9),therefore,there exists ' 1 .Weintroduce B 2 ( u;v;L;A )= Cu L 2 v 1 Z A +1 L ' 1 1 x dx: 74 Letusexplainwhytheintegralisconvergent.Infact,usingchangeofvariables,weget 1 Z 1 ' 1 1 x dx = ' 1 (1) Z 0 " ( 1 t ) t d dt ( " ( 1 t )) t dt; whichconvergesat0byassumption(2.56). Therefore,since L I 6 C p u I v I ,weget 0 6 B ( u I ;v I ;L I ;A I ) 6 Cu I : Next, ( B 2 ) 0 A + uv ( B 2 ) 0 L = L v ' 1 L A +1 u ( A +1) ' 1 L A +1 2 uL 1 Z A +1 L ' 1 1 x dx = uL 0 B B B @ 1 uv ' 1 L A +1 A +1 L ' 1 L A +1 2 1 Z A +1 L ' 1 1 x dx 1 C C C A (2.72) Weusethat L > uv " 1 uv = ' ( uv ).Then ' 1 ( L ) > uv ,and,since A +1 ˘ 1,weget 1 uv ' 1 L A +1 > C 1 : Moreover,since uv 6 isasmallnumber,wegetthat L issmallenoughfortheintegral 1 R A +1 L ' 1 ( 1 x ) dx tobelessthanasmallnumber c 2 .Finally,letuscompare A +1 L ' 1 ( L A +1 ) 75 withasmallnumber c 3 .Since L issmall,wecanwrite " 1 c 3 L 6 c 3 : Wedoit,since c 3 isfromthebeginning(say, c 3 = 1 10 ).Thus, L 6 ' ( c 3 L ) : Thisimplies ' 1 ( L ) 6 c 3 L; thus 1 L ' 1 ( L ) 6 c 3 : Since A +1 ˘ 1,wegetthedesired.Therefore,if L > uv " ( 1 uv ) = ' ( uv )then( B 2 ) 0 A + uv ( B 2 ) 0 L > cuL . Moreover,inthewholedomainof B 2 weget,since( B 2 ) 0 A > 0, ( B 2 ) 0 A + uv ( B 2 ) 0 L > uv ( B 2 ) 0 L > ( c 2 + c 3 ) uL withsmall c 2 + c 3 .ThisisapenultimateinequalityinthestatementofTheorem2.4.6. Nowweshallprovetheconcavityof B 2 .Forthisitisenoughtoprovetheconcavityof thefunctionofthreevariables: B ( v;L;A ):= B 2 ( u;v;L;A ) Cu .Clearly,( B ) 00 vv < 0,which 76 isobvious.Also,itisacalculationthat det 0 B B B B B @ ( B ) 00 vv ( B ) 00 vA ( B ) 00 vL ( B ) 00 vA ( B ) 00 AA ( B ) 00 AL ( B ) 00 vL ( B ) 00 AL ( B ) 00 LL 1 C C C C C A =0 : Thus,weneedtoconsiderthematrix 0 B @ ( B ) 00 vv ( B ) 00 vA ( B ) 00 vA ( B ) 00 AA 1 C A andtoprovethatitsdeterminantispositive.Wedenote f ( t )= ' 1 ( t ),tosimplifythenext formula.Thecalculationshowsthatthedeterminantaboveisequalto g L A +1 := f L A +1 2 +2 L A +1 2 f 0 L A +1 1 Z A +1 L f 1 x dx: Weneedtoprovethat g ispositivenear0.First, g (0)=0.Next, g 0 ( s )= 2 f ( s ) f 0 ( s )+4 sf 0 ( s ) 1 Z 1 s f 1 x dx +2 s 2 f 00 ( s ) 1 Z 1 s f 1 x dx +2 f 0 ( s ) f ( s )= 4 sf 0 ( s ) 1 Z 1 s f 1 x dx +2 s 2 f 00 ( s ) 1 Z 1 s f 1 x dx: (2.73) Wenoticethat f 0 ispositive,since ' 1 isincreasingnear0.Moreover,bythefactthat ' isstrictlymonotonous,andbyconcavityof t" ( t )(seeTheorem2.4.2),wegetthat ' is strictly convex,hence ' 1 isstrictlyconvexnear0aswell.Thatis, f 00 isalsopositive. 77 Therefore, g 0 ( s ) > 0,andso g ( s ) >g (0)=0.TheapplicationofLemma2.4.8 theproofofconcavityof B (andthereforeoftheconcavityof B 2 ).Wearedone. Remark10. Wecanalwaysthinkthatthebumpconstant B u;v 6 C " ,where C " issuch that L I 6 c " .Thenwecanusethemonotonicityandconcavityofthefunction ' near0. 2.4.10Fifthstep:buildingthefunction B 1 Wepresentthefunctionfrom2.3.8.1. B 1 ( N;A )= CN N N A Z 0 ds s 0 ( s ) 78 Chapter3 Oneweightestimateforthelimiting case:the A 1 conjecture 3.1Themainresult Weareon I 0 :=[0 ; 1].Asalways D denotethedyadiclattice.Inthischapterweusethe usualHaarsystem f h I g : h I ( x ):= 8 > > > < > > > : 1 p j I j ;x 2 I + 1 p j I j ;x 2 I Theweightedweaknormofanoperator T isby k T k L 1 ; 1 ( w ) =sup t> 0 ; k f k L 1 ( w ) =1 t w f x : j Tf ( x ) j > t g Weconsidertheoperator T " : ' ! X I I 0 ;I 2D " I ( ';h I ) h I ; where " I = 1.Noticethatthesumdoesnotcontaintheconstantterm. Ourmaintheoremisthefollowing. Theorem3.1.1. Forany p< 1 5 andforanylarge Q thereexistsaweight w ,suchthat 79 [ w ] 1 = Q ,and sup " = f " I g k T " k L 1 ; 1 ( w ) > Q log p Q: 3.2TheBellmanapproach Put F = hj f j w i I ;f = h f; i I ; = w = h w i I ;m =inf I w: Weareinthedomain := f ( F;w;m;f; ): F j f j m;m w Qm g : (3.1) Introduce B ( F;w;m;f; ):=sup 1 j I j w f x 2 I : X J I;J 2 D " J ( ';h J ) h J ( x ) > g ; (3.2) wherethe sup istakenoverall " J ; j " J j 1 ;J 2 D;J I ,andoverall f 2 L 1 ( I;wdx ) suchthat F := hj f j w i I ;f := h f i I , w = h w i I ;m inf I w ,and w aredyadic A 1 weights, suchthat 8 I 2 D h w i I Q inf I w ,and Q beingthebestsuchconstant.Inotherwords Q :=[ w ] dyadic A 1 . 3.2.1Homogeneity Byitisclearthat s B ( F=s;w=s;m=s;f; )= B ( F;w;m;f; ) ; 80 B ( tF;w;m;tf; )= B ( F;w;m;f; ) : Choosing s = m and t = 1 ,wecanseethat B ( F;w;m;f; )= mB ( F ; w m ; f )(3.3) foracertainfunction B .Introducingnewvariables = F ; = w m ; = f wewritethat B isin G := f ( ;; ): j j ; 1 Q g : (3.4) 3.2.2Themaininequality Theorem3.2.1. Let P;P + ;P 2 ;P =( F;w; min( m + ;m ) ;f; ) , P + =( F + ;w + ;m + ;f + ; + ) , P =( F ;w ;m ;f ; ) .Then B ( P ) 1 2 ( B ( P + )+ B ( P )) 0 : (3.5) Atthesametime,if P;P + ;P 2 ;P =( F;w; min( m + ;m ) ;f; ) , P + =( F + ;w + ;m + ;f + ; ) , P =( F ;w + ;m + ;f ; + ) .Then B ( P ) 1 2 ( B ( P + )+ B ( P )) 0 : (3.6) Inparticular,withd m ,andwithallpointsbeinginside weget B ( F;w;m;f; ) 1 4 ( B ( F dF;w dw;m;f )+ B ( F dF;w dw;m;f + )+ B ( F + dF;w + dw;m;f + )+ B ( F + dF;w + dw;m;f + + )) 0 : (3.7) 81 Remark. 1)tialnotations dF;dw; justmeansmallnumbers.2)In(3.7)weloose abitofinformation(incomparisonto(3.5),(3.6)),butthisisexactly(3.7)thatwearegoing touseinthefuture. Proof. Fix P;P + ;P 2 Let ' + ;' , w + ;w befunctionsandweightsgivingthesupre- mumin B ( P + ) ;B ( P )respectivelyuptoasmallnumber > 0.Usingthefactthat B does notdependon I ,wethinkthat ' + ;w + ison I + and ' ;w ison I .Consider ' ( x ):= 8 > > > < > > > : ' + ( x ) ;x 2 I + ' ( x ) ;x 2 I ! ( x ):= 8 > > > < > > > : w + ( x ) ;x 2 I + w ( x ) ;x 2 I Noticethatthen ( ';h I ) 1 p j I j = : (3.8) Thenitiseasytoseethat hj ' j ! i I = F = P 1 ; h ' i I = f = P 4 : (3.9) 82 Noticethatfor x 2 I + using(3.8),wegetif " I = 1 1 j I j w + f x 2 I + : X J I + ;J 2 D " J ( ';h J ) h J ( x ) > g = 1 j I j w + f x 2 I + : X J I + ;J 2 D " J ( ';h J ) h J ( x ) > + g = 1 2 j I + j w + f x 2 I + : X J I + ;J 2 D " J ( ' + ;h J ) h J ( x ) >P + ; 3 g 1 2 B ( P + ) : Similarly,for x 2 I using(3.8),wegetif " I = 1 1 j I j w f x 2 I : X J I;J 2 D " J ( ';h J ) h J ( x ) > g = 1 j I j w f x 2 I : X J I ;J 2 D " J ( ';h J ) h J ( x ) > g = 1 2 j I j w f x 2 I : X J I ;J 2 D " J ( ' ;h J ) h J ( x ) >P ; 3 g 1 2 B ( P ) : Combiningthetwolefthandsidesweobtainfor " I = 1 1 j I j ! f x 2 I + : X J I;J 2 D " J ( ';h J ) h J ( x ) > g 1 2 ( B ( P + )+ B ( P )) 2 : Letususenowthesimpleinformation(3.9):ifwetakethesupremuminthelefthandside overallfunctions ' ,suchthat hj ' j w i I = F; h ' i I = f; h ! i = w ,andweights ! : h ! i = w ,in dyadic A 1 with A 1 -normatmost Q ,andsupremumoverall " J = 1(only " I = 1stays wegetaquantitysmallerorequalthantheone,wherewehavethesupremumover allfunctions ' ,suchthat hj ' j ! i = F; h ' i I = f; h ! i = w ,andweights ! : h ! i = w ,indyadic A 1 with A 1 -normatmost Q ,andanunrestrictedsupremumoverall " J = 1including 83 " I = 1.Thelatterquantityisofcourse B ( F;w;m;f; ).Soweproved(3.5). Toprove(3.6)werepeatverbatimthesamereasoning,onlykeepingnow " I =1.Weare done. Remark. Thistheoremisasortof\fancy"concavityproperty,theattentivereaderwould seethat(3.5),(3.6)representbi-concavitynotunlikedemonstratedbythecelebratedBurk- holder'sfunction.Wewillusetheconsequenceofbi-concavityencompassedby(3.7).There isstillanotherconcavityifweallowtohave j " J j 1. Theorem3.2.2. Intheof B weallownowtotakesupremumoverall j " j j 1 . Let P;P + ;P 2 ;P =( F;w;m;f; ) , P + =( F + ;w + ;m;f + ; ) , P =( F ;w ;m;f ; ) .Then B ( P ) 1 2 ( B ( P + )+ B ( P )) 0 : (3.10) Proof. Werepeattheproofof(3.5)butwith " I =0. Theorem3.2.3. Ford F;w;f; function B isdecreasingin m . Proof. Let m =min( m ;m + )= m .Andlet m + >m .Then(3.5)becomes B ( F;w;m;f; ) B ( F;w;m + ;f; ) 0 : Thisiswhatwewant. 84 3.3Theunweightedestimate:theexactBellmanfunction Wedealwiththecasewhenthereisnoweight,i.e.withthecasewhen w =1a.e.We noticethatthisistheboundaryofourdomain w = m . Introduceafunction B 0 ( f;F )=sup 8 < : x : X I ˆ I 0 ;I 2 D " I ( ';h I ) h I ( x ) > 9 = ; ; wherethesupremumistakenoverallfamilies f " I g suchthat j " I j =1,andallfunctions ' with hj ' ji I 0 = F , h ' i I 0 = f . Let 0 = f ( f;F ): F > j f jg bethedomainof B 0 . Denote B 0 ( f;F )= 8 > > > < > > > : 1 ; 6 F 1 ( F ) 2 2 f 2 ; > F; ( F;f; ) 2 0 : Ourmaintheoremisthefollowing. Theorem3.3.1. Forany ( f;F ) 2 0 itholdsthat B 0 ( F;f; )= B 0 ( F;f; ) . Firstly,itwillbemoreconvenienttoworkwithaslightlymofunction.Weneeda 21. Afunction iscalledamartingaletransformofafunction ' ,ifforsome family f " I g ,with j " I j =1, ( x )= h i I 0 + X I ˆ I 0 ;I 2 D " I ( ';h I ) h I ( x ) ;x 2 I 0 : 85 Denote B ( g;f;F )=sup jf x : ( x ) > 0 gj ; wherethesupremumistakenoverallfunctions ' with hj ' ji I 0 = F , h ' i I 0 = f ,andall martingaletransforms of ' with h i I 0 = g .Itiseasytoseethat B 0 ( f;F )= B ( g;f;F ) : Denote= f ( g;f;F ): F > j f jg and B ( g;f;F )= 8 > > > < > > > : 1 ; g 6 F 1 ( g + F ) 2 g 2 f 2 ; g > F; ( g;f;F ) 2 : Thenourmaintheoremisequivalenttothefollowingone. Theorem3.3.2. Forany ( g;f;F ) 2 itholds B ( g;f;F )= B ( g;f;F ) . Corollary3.3.3. Foranyfunction ' 2 L 1 ,anynumber > 0 andanyfamily f " I g with j " I j =1 itholds 8 < : x : X I ˆ I 0 ;I 2 D " I ( ';h I ) h I ( x ) > 9 = ; 6 2 k ' k 1 Proof. Itiseasytoverifythat sup B 0 ( f;F ) F =2 : Thus, 8 < : x : X I ˆ I 0 ;I 2 D " I ( ';h I ) h I ( x ) > 9 = ; 6 2 F =2 k ' k 1 : 86 Corollary3.3.4. Foranyfunction ' 2 L 1 ,anynumber > 0 andanyfamily f " I g with j " I j =1 itholds 8 < : x : X I ˆ I 0 ;I 2 D " I ( ';h I ) h I ( x ) > 9 = ; 6 4 k ' k 1 Proof. 8 < : x : X I ˆ I 0 ;I 2 D j " I ( ';h I ) h I ( x ) j > 9 = ; = 8 < : x : X I ˆ I 0 ;I 2 D " I ( ';h I ) h I ( x ) > 9 = ; + 8 < : x : X I ˆ I 0 ;I 2 D " I ( ';h I ) h I ( x ) > 9 = ; 6 4 k ' k 1 (3.11) Westarttoproveourmaintheorem. 3.3.1 B > B Weneedatechnicallemma. Lemma3.3.5. Let x betwopointsin suchtat j f + f j = j g + g j and x = 1 2 ( x + + x ) . Then B ( x ) B ( x + )+ B ( x ) 2 0 : (3.12) Giventhelemma,weprovethefollowingtheorem. Theorem3.3.6. Foranypoint x 2 itholds B ( x ) > B ( x ) . 87 Proof. Letusapoint x 2 andapairofadmissiblefunctions ' , on I 0 corresponding to x .Forany I 2 D bythesymbol x I wedenotethepoint( h i I ; h ' i I ; hj ' ji I ; ).Wenotice thatsince isamartingaletransformof ' ,wealwayshave j f I + f I j = j g I + g I j ; and x I = x I + + x I 2 : Usingconsequentlymaininequalityforthefunction B wecanwritedownthefollowingchain ofinequalities B ( x ) 1 2 B ( x I + 0 )+ B ( x I 0 ) X I 2 D; j I j =2 n 1 j I j B ( x I )= Z 1 0 B ( x ( n ) ( t )) dt; where x ( n ) ( t )= x I ,if t 2 I , j I j =2 n . Notethat x ( n ) ( t ) ! ( ( t ) ;' ( t ) ; j ' ( t ) j )almosteverywhere(atanyLebesguepoint t ),and therefore,since B iscontinuousandbounded,wecanpasstothelimitintheintegral.So, wecometotheinequality B ( x ) Z 1 0 B ( ( t ) ;' ( t ) ; j ' ( t ) j ) dt Z f t : ( t ) 0 g = f t 2 I 0 : ( t ) 0 g (3.13) wherewehaveusedtheproperty B ( g;f; j f j )=1for g 0.Now,takingsupremumin(3.13) overalladmissiblepairs ' , ,wegettherequiredestimate B ( x ) B ( x ). 88 3.3.2 B ( g;f;F ) 6 B ( g;f;F ) Thissectionisdevotedtothefollowingtheorem. Theorem3.3.7. Foranypoint x 2 itholds B ( x ) 6 B ( x ) . Toprovethetheoremweneedtopresenttwosequencesoffunctions f ' n g , f n g ,such that Forevery n thefunction n isamartingaletransformof ' n ; Forevery n : hj ' n ji I 0 = F , h ' n i I 0 = f , h n i I 0 = g ; Itholdsthat B ( g;f;F )=lim n !1 jf x : n ( x ) > 0 gj . Weneedthefollowing 22. Wecallapair( '; )admissibleforthepoint( g;f;F )if isamartingale transformof ' ,and hj ' ji I 0 = F , h ' i I 0 = f , h i I 0 = g . 23. Wecallapair( '; )an " -extremizerforapoint( g;f;F ),ifthispairis admissibleforthispointand jf x : ( x ) > 0 gj > B ( g;f;F ) " . Thefollowinglemmaisalmostobvious. Lemma3.3.8. 1.Forapositivenumber s : B ( sg;sf;sF )= B ( g;f;F ) .Moreover,ifa pair ( '; ) isadmissibleforapoint ( g;f;F ) then ( s';s ) isadmissiblefor ( sg;sf;sF ) . Ifapair ( '; ) isan " -extremizerforapoint ( g;f;F ) then ( s';s ) isan " -extremizer for ( sg;sf;sF ) . 2. B ( g;f;F )= B ( g; f;F ) .Moreover,ifapair ( '; ) isadmissibleforapoint ( g;f;F ) then ( '; ) isadmissiblefor ( g; f;F ) .Ifapair ( '; ) isan " -extremizerforapoint ( g;f;F ) then ( '; ) isan " -extremizerfor ( g; f;F ) . 89 Thenextlemmaisakeytoour\splitting"technique. Lemma3.3.9. Supposetwopairs ( ' ; ) areadmissibleforpoints ( g ;f ;F ) corre- spondingly.Supposealsothat F = F + + F 2 ;f = f + + f 2 ;;g = g + + g 2 ; j f + f j = j g + g j : Thenapair ( '; ) isadmissibleforthepoint ( g;f;F ) ,where ' ( x )= 8 > > > < > > > : ' (2 x ) ;x 2 [0 ; 1 2 ) ' + (2 x 1) ;x 2 [ 1 2 ; 1] ; ( x )= 8 > > > < > > > : (2 x ) ;x 2 [0 ; 1 2 ) + (2 x 1) ;x 2 [ 1 2 ; 1] : Proof. Itisclearthat h ' i I 0 = f , h i I 0 = g ,and hj ' ji I 0 = F .Allweneedtoproveisthat foranyinterval I itistruethat j ( ;h I ) j = j ( ';h I ) j : Foranyinterval I 6 = I 0 itisobvious,sincepairs( ' ; )areadmissibleforcorresponding points.Thus,weneedtoshowthat j ( ';h I 0 ) j = j ( ;h I 0 ) j : But ( ';h I 0 )= h ' i [ 1 2 ; 1] h ' i [0 ; 1 2 ] = h ' + i [0 ; 1] h ' i [0 ; 1] = f + f ; ( ;h I 0 )= h i [ 1 2 ; 1] h i [0 ; 1 2 ] = h + i [0 ; 1] h i [0 ; 1] = g + g ; 90 whichourproof. Wegeneralizethislemmaalittle. Lemma3.3.10. Supposetwopairs ( ' ; ) areadmissibleforpoints ( g ;f ;F ) corre- spondingly.Supposealsothat F = F + + F 2 ;f = f + + f 2 ;;g = g + + g 2 ; j f + f j = j g + g j : Suppose I isadyadicintervalwith\sons" I .Supposethatapair ; isadmissiblefor somepoint ( g 0 ;f 0 ;F 0 ) .Supposethat 8 x 2 I x )= ' I ( x ) ; x )= I ( x ) ; wherethepair ( '; ) isadmissibleforthepoint ( g;f;F ) .Thenthepair 1 ; 1 ) ,d below,isadmissibleforthepoint ( g 0 ;f 0 ;F 0 ) : 1 ( x )= 8 > > > > > > > > < > > > > > > > > : x ) ;x 62 I ' I + + ( x ) ;x 2 I + ' I ( x ) ;x 2 I ; 1 ( x )= 8 > > > > > > > > < > > > > > > > > : x ) ;x 62 I I + + ( x ) ;x 2 I + I ( x ) ;x 2 I Essentiallythislemmasaysthatifwehavepairs( ' ; ),andandapair( '; ) intheLemma3.3.9,thenwecansplitthispairinto( ' ; ),nedon I correspondingly. TheproofoftheLemma3.3.10isessentiallythesameastheproofoftheLemma3.3.9. 91 3.3.2.1Changeofvariables Itwillbemoreconvenientforustoworkinvariables y 1 = f g 2 ;y 2 = f g 2 ;F: We M ( y 1 ;y 2 ;F )= B ( g;f;F ).Thenallpropertiesof B areeasilytranslatedto propertiesof M .Moreover,the\splitting"lemmas3.3.9,3.3.10remaintruefor y 1 or y 2 . Ifwehaveapoint( y 1 ;y 2 ;F )thenby( ' ( y 1 ;y 2 ;F ) ; ( y 1 ;y 2 ;F ) )wedenoteanadmissible pairforthispoint.Anindividualfunction ' ( y 1 ;y 2 ;F ) isalwayssuchthatthereisafunction ( y 1 ;y 2 ;F ) ,suchthatthepair( ' ( y 1 ;y 2 ;F ) ; ( y 1 ;y 2 ;F ) )isadmissiblefor( y 1 ;y 2 ;F ). 3.3.2.2Theproofof B > B Wewillworkinthe y -variables.Inthesevariablesitistruethatthefunction M isconcave when y 1 or y 2 isThisisprovedintheTheorem3.3.4.Analogouslytotheprevious we M ( y 1 ;y 2 ;F )= B ( g;f;F ) : Weprovethat M (1 ; 1 ;F ) > M (1 ; 1 ;F ) : 92 Fixalargeinteger r andset = 1 2 r .Wenoticethefollowingchainofinequalities: M (1 ; 1 ;F ) > 1 2 ( M (1 ; 1 ;F + (1 F ))+ M (1 ; 1+ ;F (1 F )))= = 1 2 ( M (1 ; 1 ;F + (1 F ))+ M (1+ ; 1 ;F (1 F ))) : (3.14) Applyingthesameconcavityweseethat M (1 ; 1 ;F + (1 F )) > M (1 ; 0 ; 1)+(1 ) M (1 ; 1 ;F )= +(1 ) M (1 ; 1 ;F ) : Moreover,bytheconcavity M (1+ ; 1 ;F (1 F )) > ( 2 ) M (1+ ; 0 ; 1+ )+(1 ) M (1+ ; 1+ ; (1+ )( F (2 F )))+ 2 M (1+ ; 1 ;F (1 F )) > 2 +(1 ) M (1 ; 1 ;F (2 F ))(3.15) Therefore,weget M (1 ; 1 ;F ) > 1 2 +(1 ) M (1 ; 1 ;F )+ 2 +(1 ) M (1 ; 1 ;F (2 F )) ; or M (1 ; 1 ;F ) > 2 2 1+ + 1 1+ M (1 ; 1 ;F (2 F )) : Noticethatitistrueforany F .Wenowdenote F k =2 (2 F )(1+ ) k : 93 Then,clearly, F 0 = F ,and F k +1 = F k (2 F k ).Withthisnotationweget M (1 ; 1 ;F ) > 2 2 1+ K X k =0 1 1+ k + 1 1+ K +1 M (1 ; 1 ;F K +1 ) : 3.3.2.3Thecase F > 2 Inthiscasewehave F k +1 > F k ,andthereforethepoint(1 ; 1+ ;F k (1 F k ))always liesinThus,wecantake K ashugeaswewant.Therefore, M (1 ; 1 ;F ) > 2 2 1+ 1 X k =0 1 1+ k = 2 2 2 : Thisistrueforarbitrarysmall ,andthus M (1 ; 1 ;F ) > 1. 3.3.2.4Thecase F 6 2 Inthiscasetoassurethat(1 ; 1+ ;F k (1 F k )) 2 weneed F k (1 F k ) > ,which implies (1+ ) K +1 6 2 2 F : Take K 2 [ log 2 2 F log(1+ ) 10 ; log 2 2 F log(1+ ) +10],suchthatthisinequalityholds.Thenweget M (1 ; 1 ;F ) > 2 2 1+ K X k =0 1 1+ k = 2 2 2 1 1 1+ K +1 ! : Itisonlylefttonoticethatwithourchoiseof K wehave 1 1+ K +1 ! (2 F ) 2 4 ; ! 0 ; 94 andtherefore M (1 ; 1 ;F ) > 1 (2 F ) 2 4 = M (1 ; 1 ;F ) : Weleavetheproofofthegeneralinequality M ( y 1 ;y 2 ;F ) > M ( y 1 ;y 2 ;F )tothereader. Infact,itisasimpleuseoftheconcavityof M alongthelinethatconnects( y 1 ; 0 ;y 1 )with ( y 1 ;y 2 ;F ). 3.3.3Buildingtheextremalsequenseforpoints(1 ; 1 ;F ) TheaimofthisSectionistoprovethat B ( g;f;F ) 6 B ( g;f;F )byaconstructionofan extremalsequenseofpairs( ' n ; n ).Forthesakeofsimplicity,wedoitonlyforthecase f g =2. Duetothehomogeneityandsymmetryofthefunction B itisenoughtoprovethat B ( g;f;F ) 6 B ( g;f;F ) for f > 0, f g =2.Inthenewvariablesitmeansthatweconsiderthecase y 1 =1,and y 2 6 y 1 =1.Aswehaveseen,for f > g wehave B ( g;f;F )= B ( g;f;F )=1,andsowe needtoconsiderthecase f 6 g ,i.e. y 2 > 0.Webuildthe " -extremizerforthepoint ( F; 1 ; 1). Fixalargeinteger r andlet =2 r .Asbefore,denote I 0 =[0 ; 1].Alsodenote J i =[2 i ; 2 i +1 ),Denote m i ( x )=2 i x 1|thelinearfunctionfrom J k onto I 0 . Weneedthefollowinglemma. Lemma3.3.11. Suppose =2 r issmallenough.Also,asmallnumber "> 0 .Suppose F 1 = F (2 F ) ,andthepair ( ' (1 ; 1 ;F 1 ) ; (1 ; 1 ;F 1 ) ) isadmissible.Thenthereexistsan 95 admissiblepair ( ' (1 ; 1 ;F ) ; (1 ; 1 ;F ) ) suchthat jf x : (1 ; 1 ;F ) > 0 gj > 2 2 1+ + 1 1+ jf x : (1 ; 1 ;F 1 ) > 0 gj ": (3.16) Proof. First,weexplainourstrategy.Inwhatfollows,wealwaysassumethatfunctionson theright-handsidearealreadyWespecifytheirlater;however,weclearly indicatepointstowhichthefunctionsareadmissible. We ' (1 ; 1 ;F ) ( x )= 8 > > > < > > > : ' (1 ; 1 ;F + (1 F )) ( m 1 ( x )) ;x 2 J 1 ' (1 ; 1+ ;F (1 F )) (2 x ) ;x 2 [0 ; 1 2 ) : (1 ; 1 ;F ) ( x )= 8 > > > < > > > : (1 ; 1 ;F + (1 F )) ( m 1 ( x )) ;x 2 J 1 (1 ; 1+ ;F (1 F )) (2 x ) ;x 2 [0 ; 1 2 ) : BytheLemma3.3.10weseethat (1 ; 1 ;F ) isamartingaletransformof ' (1 ; 1 ;F ) .We 96 next ' (1 ; 1 ;F ) ( x )= 8 > > > > > > > > < > > > > > > > > : ' (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) ' (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r ' (1+ ; 1 ;F (1 F )) (2 x ) ;x 2 [0 ; 1 2 ) : ' (1 ; 1 ;F ) ( x )= 8 > > > > > > > > < > > > > > > > > : (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r (1+ ; 1 ;F (1 F )) (2 x ) ;x 2 [0 ; 1 2 ) : (3.17) BytheLemma3.3.8andamultipleapplicationoftheLemma3.3.10,westillgetan admissiblepairforthepoint(1 ; 1 ;F ). Finally, ' (1+ ; 1 ;F (1 F )) ( x )= 8 > > > > > > > > < > > > > > > > > : ' (1+ ; 0 ; 1+ ) ( m k ( x )) ;x 2 J k ;k =1 :::r ' (1+ ; 1 ;F (1 F )) ( x 2 ) ;x 2 [0 ; 2 ) (1+ ) ' (1 ; 1 ;F (2 F )) ( m k ( x )) ;x 2 J k ;k =1 :::r (1+ ; 1 ;F (1 F )) ( x )= 8 > > > > > > > > < > > > > > > > > : (1+ ; 0 ; 1+ ) ( m k ( x )) ;x 2 J k ;k =1 :::r (1+ ; 1 ;F (1 F )) ( x 2 ) ;x 2 [0 ; 2 ) (1+ ) (1 ; 1 ;F (2 F )) ( m k ( x )) ;x 2 J k ;k =1 :::r (3.18) Again,theLemma3.3.8andtheLemma3.3.10assurethatthepairisadmissible. 97 Bringingeverythingtogether,weget ' (1 ; 1 ;F ) ( x )= 8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : ' (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) ' (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r ' (1+ ; 0 ; 1+ ) ( m k ( 2 x )) ;x 2 2 m 1 k ( I 0 ) ;k =1 :::r ' (1+ ; 1 ;F (1 F )) ( 2 x 2 ) ;x 2 [0 ; 2 2 ) (1+ ) ' (1 ; 1 ;F (2 F )) ( m k (2 x )) ;x 2 1 2 m 1 k ( I 0 ) ;k =1 :::r: (1 ; 1 ;F ) ( x )= 8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r (1+ ; 0 ; 1+ ) ( m k ( 2 x )) ;x 2 2 m 1 k ( I 0 ) ;k =1 :::r (1+ ; 1 ;F (1 F )) ( 2 x 2 ) ;x 2 [0 ; 2 2 ) (1+ ) (1 ; 1 ;F (2 F )) ( m k (2 x )) ;x 2 1 2 m 1 k ( I 0 ) ;k =1 :::r: (3.19) Wenowspecifysoffunctionsontheright-handside.Thepair( ' (1 ; 0 ; 1) ; (1 ; 0 ; 1) ) isa " 2 -extremizerforthepoint(1 ; 0 ; 1).Thepair( ' (1+ ; 0 ; 1+ ) ; (1+ ; 0 ; 1+ ) )isa " 2 - extremizerforthepoint(1+ ; 0 ; 1+ ). Thepair( ' (1 ; 1 ;F (2 F )) ; (1 ; 1 ;F (2 F )) )isgiveninthelemma.Asforthepair ( ' (1+ ; 1 ;F (1 F )) ; (1+ ; 1 ;F (1 F )) )|wetakeanyadmissiblepairforthispoint. Itisaneasycalculationthatthefunction (1 ; 1 ;F ) theinequality(3.16).More- over,itiseasytoseethatfor any pair,by(3.19)wehave h ' (1 ; 1 ;F ) i I 0 h (1 ; 1 ;F ) i I 0 = 2.Thus,whatweneedtoshowisthatthereexistsanadmissiblepair( ' (1 ; 1 ;F ) ; (1 ; 1 ;F ) ) 98 thattheself-similaritycondition(3.19) Todothat,wetakeanyadmissiblepair(~ ' (1 ; 1 ;F ) ; ~ (1 ; 1 ;F ) )and ' 0 (1 ; 1 ;F ) ( x )= 8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : ' (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) ~ ' (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r ' (1+ ; 0 ; 1+ ) ( m k ( 2 x )) ;x 2 2 m 1 k ( I 0 ) ;k =1 :::r ' (1+ ; 1 ;F (1 F )) ( 2 x 2 ) ;x 2 [0 ; 2 2 ) (1+ ) ' (1 ; 1 ;F (2 F )) ( m k (2 x )) ;x 2 1 2 m 1 k ( I 0 ) ;k =1 :::r: 0 (1 ; 1 ;F ) ( x )= 8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) ~ (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r (1+ ; 0 ; 1+ ) ( m k ( 2 x )) ;x 2 2 m 1 k ( I 0 ) ;k =1 :::r (1+ ; 1 ;F (1 F )) ( 2 x 2 ) ;x 2 [0 ; 2 2 ) (1+ ) (1 ; 1 ;F (2 F )) ( m k (2 x )) ;x 2 1 2 m 1 k ( I 0 ) ;k =1 :::r: (3.20) Thenthepair( ' 0 (1 ; 1 ;F ) ; 0 (1 ; 1 ;F ) )isadmissibletopoint(1 ; 1 ;F ).ItistruebytheLemma 3.3.10,andbyaneasycalculationthatshowsthatallaveragesareasweneed.Wenow 99 inductively ' n +1 (1 ; 1 ;F ) ( x )= 8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : ' (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) ' n (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r ' (1+ ; 0 ; 1+ ) ( m k ( 2 x )) ;x 2 2 m 1 k ( I 0 ) ;k =1 :::r ' (1+ ; 1 ;F (1 F )) ( 2 x 2 ) ;x 2 [0 ; 2 2 ) (1+ ) ' (1 ; 1 ;F (2 F )) ( m k (2 x )) ;x 2 1 2 m 1 k ( I 0 ) ;k =1 :::r: n +1 (1 ; 1 ;F ) ( x )= 8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : (1 ; 0 ; 1) ( m 1 ( x ) )) ;x 2 m 1 1 ( I 0 ) n (1 ; 1 ;F ) ( m k ( m 1 ( x ))) ;x 2 m 1 1 m 1 k ( I 0 ) ;k =1 :::r (1+ ; 0 ; 1+ ) ( m k ( 2 x )) ;x 2 2 m 1 k ( I 0 ) ;k =1 :::r (1+ ; 1 ;F (1 F )) ( 2 x 2 ) ;x 2 [0 ; 2 2 ) (1+ ) (1 ; 1 ;F (2 F )) ( m k (2 x )) ;x 2 1 2 m 1 k ( I 0 ) ;k =1 :::r: (3.21) Thenforany n wegetanadmissiblepairtothepoint(1 ; 1 ;F ). Weneedtonoticethat Z I 0 j ' n +1 (1 ; 1 ;F ) ' n (1 ; 1 ;F ) j 2 dx = X k j J k j 2 Z I 0 j ' n (1 ; 1 ;F ) ' n 1 (1 ; 1 ;F ) j 2 dx = = 1 2 Z I 0 j ' n (1 ; 1 ;F ) ' n 1 (1 ; 1 ;F ) j 2 dx = =( 1 2 ) n Z I 0 j ' 1 (1 ; 1 ;F ) ' 0 (1 ; 1 ;F ) j 2 dx: (3.22) 100 Thus,wecantake ' (1 ; 1 ;F ) =lim ' n +1 (1 ; 1 ;F ) in L 2 ( I 0 ) : Similarly (1 ; 1 ;F ) =lim n +1 (1 ; 1 ;F ) in L 2 ( I 0 ) : Itisclearthatthepair( ' (1 ; 1 ;F ) ; (1 ; 1 ;F ) )theself-similarityconditions(3.19).More- over,sincethelimitin L 2 impliestheliminin L 1 ,wegetthatalltheaveragesareasneeded. Moreover,foreveryinterval I : j ( ' (1 ; 1 ;F ) ;h I ) j =lim j ( ' n (1 ; 1 ;F ) ;h I ) j = j ( n (1 ; 1 ;F ) ;h I ) j = j ( (1 ; 1 ;F ) ;h I ) j ; andthuswegetanadmissiblepair.Theproofofthelemmais Wearenowreadytothewholeconstruction.Weconsiderasequence F k =2 (2 F )(1+ ) k : Thenitisclearthe F 0 = F and F k +1 = F k (2 F k ). 3.3.3.1Thecase F > 2 Wetakeahugenumber N andasmallnumber " .Forapoint(1 ; 1 ;F N )wetakeanyadmis- siblepair( ' (1 ; 1 ;F N ) ; (1 ; 1 ;F N ) ).UsingtheLemma3.3.11 N timeswebuildanadmissible pair( ' (1 ; 1 ;F ) ; (1 ; 1 ;N ) ).Moreover,weget jf x : (1 ; 1 ;F ) ( x ) > 0 gj > 2 2 1+ N X k =0 1 1+ k N": 101 Wenowspecifythechoiseof , N and " .Weasmall ,sothat 2 2 2 =1 ˙ . Thenahugenumber N ,suchthat N P k =0 1 1+ k > 1+ 2 ˙ 1+ 2 2 .Finally,averysmall number " ,suchthat N"<˙ .Thenweget jf x : (1 ; 1 ;F ) ( x ) > 0 gj > 2 2 1+ 1+ 2 ˙ 1+ 2 2 ˙ =1 3 ˙: where ˙ isanarbitrarysmallnumber. 3.3.3.2Thecase F< 2 Weremindthatourverysteprequiresthatthepoint(1 ; 1+ ;F (1 F ))tobeinour domain.Thus,theonthe N -thiterationweneedthatthepoint(1 ; 1+ ;F N (1 F N )) isinthedomain= f ( y 1 ;y 2 ;F ): F > j y 1 y 2 jg .Thisyieldstotheinequality (1+ ) N +1 < 2 2 F : Thus,weshouldstopatthe K -thstepwith (1+ ) N +1 ˇ 2 2 F : Herethesign\ ˇ "meansthat N 2 [ log 2 2 F log(1+ ) 10 ; log 2 2 F log(1+ ) +10] : 102 WeagainapplytheLemma3.3.11 N timesandget jf x : (1 ; 1 ;F ) ( x ) > 0 gj > 2 2 1+ N X k =0 1 1+ k N" = 2 2 2 1 1 1+ N +1 ! N" Finally,since N 2 [ log 2 2 F log(1+ ) 10 ; log 2 2 F log(1+ ) +10] wegetthat ! 0implies1 1 1+ N +1 ! 1 (2 F ) 2 4 ,whichourproof. 3.3.4HowtotheBellmanfunction B Inthissectionweexplainhowdidwesearchforthefunction B andit.Westartwith thefollowinglemma.Let x betwopointsinsuchtat j f + f j = j g + g j and x = 1 2 ( x + + x ).Then B ( x ) B ( x + )+ B ( x ) 2 0 : (3.23) Proof. Fix x 2 andlet( ' ; )betwopairsoffunctionsgivingthesupremumfor B ( x + ), B ( x )respectivelyuptoasmallnumber > 0.Write ' = f + X I I 0 ;I 2 D ( ';h I ) h I ; = g + X I I 0 ;I 2 D " I ( ';h I ) h I ; Consider ' ( t ):= 8 > > > < > > > : ' + (2 t 1) ; if t 2 [ 1 2 ; 1] ' (2 t ) ; if t 2 [0 ; 1 2 ) : 103 and ( t ):= 8 > > > < > > > : + (2 t 1) ; if t 2 [ 1 2 ; 1] (2 t ) ; if t 2 [0 ; 1 2 ) Since j x + 1 x 1 j = j x + 2 x 2 j ,thefunction isamartingaletransformof ' ,andthepair ( '; )isanadmissiblepairofthetestfunctionscorrespondingtothepoint x .Therefore, B ( x ) 1 j I 0 j f t 2 I 0 : ( t ) 0 g = 1 2 j I + 0 j f t 2 [ 1 2 ; 1]: ( t ) 0 g + 1 2 j I 0 j f t 2 [0 ; 1 2 ): ( t ) 0 g 1 2 B ( x + )+ 1 2 B ( x ) 2 : Sincethisinequalityholdsforanarbitrarysmall ,wecanpasstothelimit ! 0,what givesustherequiredassertion. Corollary3.3.12. Thelemmameansthatifwechangevariables f = y 1 y 2 , g = y 1 y 2 ,andintroduceafunction M ( y 1 ;y 2 ;F ):= B ( g;f;F ) dinthedomain G := f y = ( y 1 ;y 2 ;F ) 2 R 3 : j y 1 y 2 j F g ,thenwegetthatforeachd y 2 , M ( F;y 1 ; ) isconcave andforeachd y 1 , M ( F; ;y 2 ) isconcave. 3.3.4.1Theboundary F = y 1 y 2 Westartwithconsideringaboundarycase F = f or,inthe y variables, F = y 1 y 2 .It meansthatweconsideronlynon-negativefunctions ' .Bythehomogeneityofthefunction M weneedtoafunction S ofvariable s = y 1 y 2 ,suchthat S ( y 1 y 2 ) 00 y 1 y 1 6 0 ; and S ( y 1 y 2 ) 00 y 2 y 2 6 0 : (3.24) 104 Wenoticethatwhen g ! 0wehave s ! 1andwemusthave S ! 0.Thus,wegeta condition S ( s ) ! 0 ; as s ! 1 : (3.25) Moreover,wehaveseenthatif f > g then B ( g;f;F )=1.Inparticular,itholdswhen f = g .Therefore,wehave M ( y 1 ; y 1 ; 0)=1.Thisimpliesthat S ( s ) ! 1 ; as s ! : Frominequalities(3.24)wegetthat S 00 ( s ) 6 0 ;;s 2 S 00 ( s )+2 S 0 ( s ) 6 0 ;s 2 ( ; 1] : Makethesecondinequalityanequation(wearelookingforthe best nontrivial S ).Weget S ( s )= c 1 + c 2 s : Theboundaryconditionsimplythat S ( s )=1 1 s ; andtherefore M ( y 1 ;y 2 ;y 1 y 2 )=1 y 2 y 1 = y 1 y 2 y 1 ; or B ( g;f;f )= 2 f f g : 105 Thus,wegetananswer M ( y 1 ;y 2 ;y 1 y 2 )= 8 > > > < > > > : 1 ;y 2 6 0 y 1 y 2 y 1 ;y 2 > 0 ; (3.26) or B ( g;f;f )= 8 > > > < > > > : 1 ;f > g 2 f f g ;f 6 g: 3.3.4.2Thedomain Weremindthereaderthatfora y 1 thefunction M isconcaveinvariables( F;y 2 ).We alsoremindthesymmetrycondition,i.e. M ( y 1 ;y 2 ;F )= M ( y 2 ;y 1 ;F ) : Letustiatethisequationin y 2 andset y 2 = y 1 .Thenwegetanequation: M y 1 ( y 1 ;y 1 ;F )= M y 2 ( y 1 ;y 1 ;F ) : Moreover,duetothesymmetryitisenoughto M for y 2 6 y 1 .Asbefore,wesawthat for f > g wehave B ( g;f;F )=1,i.e. for y 2 6 0,wehave M ( y 1 ;y 2 ;F )=1.(3.27) 106 Thus,itisenoughtoconsiderthecase0 6 y 2 6 y 1 .Denote y 1 = f ( y 2 ;F ): F > j y 2 y 1 jg |thesectionoffor y 1 .Wewantto M satisfyingconcavityinthishyperplane{we aregoingtolookfor M (andwewillchecklaterthatitisconcave)thatsolvesMonge{Ampere (MA)equationin y 1 withboundaryconditions(3.26)and(3.27).In y 1 ,thereisapoint P :=(0 ;y 1 ;y 1 ).Letusmakeaguessthatthecharacteristics(andweknowbyPogorelov's theoremthattheyformthefoliationof y 1 bystraightlines)ofourMAequationin y 1 formthefanoflineswithcommonpoint P =( y 1 ;y 1 ; 0).ByPogorelov'stheoremwealso knowthatthereexistsfunctions t 1 ;t 2 ;t constantoncharacteristicssuchthat M = t 1 F + t 2 y 2 + t; (3.28) suchthat t 1 = t 1 ( t ; y 1 ) ;t 2 = t 2 ( t ; y 1 )(wethinkthat y 1 isaparameter),that 0=( t 1 ) 0 t F +( t 2 ) 0 t y 2 +1 ; (3.29) that t 1 = @M ( ;y 2 ;F ) @F ;t 1 = @M ( ;y 2 ;F ) @y 2 : (3.30) Letuscallcharacteristics L t .Extendoneofthemfrom P till y 2 = y 1 .Werecallanother boundarycondition: If y 2 = y 1 ) @M @y 2 = @M @y 1 : (3.31) Orifwedenotetheintersectionof L t with y 2 = y 1 by( y 1 ;y 1 ;F ( t ))weget t 2 ( t ; y 1 )= @M @y 1 ( y 1 ;y 1 ;F ( t )) : (3.32) 107 Wewanttoprovenowthat Onthewhole L t wehave F ( t ) t 1 +2 y 1 t 2 =0 : (3.33) Infact,our M is0homogeneous.Soeverywhere FM 0 F + y 1 M 0 y 1 + y 2 M 0 y 2 =0.Applythis topoint( y 1 ;y 1 ;F ( t )),wherewecanuse(3.32)andget F ( t ) t 1 + t 2 y 1 + t 2 y 1 =0,whichis (3.33)inonepoint.Butthenallentriesareconstantson L t ,therefore,(3.33)follows. Nowuseourguessthat L t fanfrom P =( y 1 ;y 1 ; 0).Plugthiscoordinatesinto0= ( t 1 ) 0 t F +( t 2 ) 0 t y 2 +1,whichis(3.29).Thenwegetthecrucial(andtrivial)ODE t 0 1 ( t )= 1 y 1 ) t 1 ( t )= 1 y 1 t + C 1 ( y 1 ) : (3.34) Letboundaryline F = y 1 u correspondsto t = t 0 .Thenweuse(3.28)and(3.26): ( 1 y 1 t 0 + C 1 ( y 1 ))( y 1 u )+ t 2 u + t 0 =1 u y 1 : Using(3.33)wecanplug t 2 expressedvia F ( t ).Butbyion F ( t 0 )=0.Soweget ( 1 y 1 t 0 + C 1 ( y 1 ))( y 1 u )+ t 0 =1 u y 1 : Or C 1 ( y 1 ) y 1 ( t 0 + C 1 ( y 1 ) y 1 ) u y 1 =1 u y 1 : Varying u weget C 1 ( y 1 )= 1 y 1 , t 0 =0.Nowfrom(3.34)weget t 1 ( t )= 1 y 1 (1 t ) : (3.35) 108 Afterthat(3.29)and(3.33)becomethesystemoftwolinear\ODE"son F ( t )and t 2 ( t ): 8 > > > < > > > : 1 y 1 F ( t )+ y 1 t 0 2 ( t )+1=0 2 y 1 t 2 ( t )+ F ( t ) 1 y 1 (1 t )=0 : (3.36) We t 2 = 1 y 1 (1 t ) t .Wethearbitraryconstantfor t 2 bynoticingthatthe secondequationof(3.36)at t 0 =0impliesthat t 2 (0)=0as F ( t 0 )= F (0)=0by Hence(3.29)becomes 1 y 1 F + 1 y 1 (2 t 1) y 2 +1=0 : (3.37) Given( y 1 ;y 2 ;F ) 2 y 1 \f 0 y 2 y 1 g ,we t from(3.37)andplugitinto(3.28),in whichweknowalready t ( t )and t 2 ( t ).Namely,weknowthat M ( y 1 ;y 2 ;F )= 1 y 1 F 1 y 1 t (1 t ) y 2 + t: (3.38) Plugging t = 1 2 F ( y 1 y 2 ) y 2 from(3.37)intothisequationweobtain M ( y 1 ;y 2 ;F )=1 ( F y 1 y 2 ) 2 4 y 1 y 2 : (3.39) Wenoticethatontheline F = y 2 + y 1 weget M =1.Thus,wegetthefollowinganswer for M : M ( y 1 ;y 2 ;F )= 8 > > > < > > > : 1 ( F y 1 y 2 ) 2 4 y 1 y 2 ;F 6 y 1 + y 2 1 ;F > y 1 + y 2 : (3.40) 109 Inourinitialcoordinatesweget B ( g;f;F )= 8 > > > < > > > : 1 ( F + g ) 2 g 2 f 2 ;F 6 g 1 ;F > g: 3.4Theweightedestimate 3.4.1tialpropertiesof B translatedtoerentialpropertiesof B Itisconvenienttointroduceanauxiliaryfunctionsof4and3variables: e B ( x;y;f; ):= B ( x ;y; f ) : Ofcourse B ( F;w;m;f; )= m e B ( F m ; w m ;f; )= mB ( F ; w m ; f ) : (3.41) Lemma3.4.1. Function B increasesintheandinthesecondvariable. Proof. WeknowthatbytheRHSof(3.41)isgettingbiggerif isgettingsmaller. Soletusconsider 1 > 2 ; 1 = 2 + ,andvariables F;w;m;f andchoose ˚ 1 (and aweight ! ), h ˚ 1 i = f + "; hj ˚ 1 j ! i = F ,whichalmostrealizesthesupremum B ( F;w;m;f + "; 1 ).Consider ˚ 2 suchthat ˚ 2 = ˚ 1 h .Function h willbechosenlater,howeverwe saynowthat h isequaltoacertainconstant a onasmalldyadicinterval ` andiszero otherwise.Constant a andinterval ` wewillchoselater.But " := h h i willbechosenvery soon.Function ˚ 2 competesforsupremizing B at( hj ˚ 2 j ! i ;w;m;f; 2 ).Wechoose " insuch 110 awaythat h ˚ 1 i 1 = f + " 1 = f 1 = h ˚ 2 i 2 : (3.42) Letusprovethat(3.42)impliesthat hj ˚ 1 j ! i 1 hj ˚ 2 j ! i 2 : (3.43) By(3.42)thisisthesameas hj ˚ 2 + h j ! i hj ˚ 2 j ! i h ˚ 1 i h ˚ 2 i = h ˚ 2 i + " h ˚ 2 i : Thepreviousinequalitybecomes hj ˚ 2 + h j ! i hj ˚ 2 j ! i 1+ h h i h ˚ 2 i : Bytriangleinequalitythelatterinequalitywouldfollowfromthefollowingone hj ˚ 2 j ! ih ˚ 2 i hj h j ! i h h i : Wecanthinkthattheminimum m of ! isattainedonawholetinydyadicinterval ` (we aretalkingabout almost supremums).Put h tobeacertain a> 0onthisintervalandzero otherwise.Ofcoursewechoose a tohave h h i = " ,where " waschosenbefore.Nowthe previousdisplayinequalitybecomes hj ˚ 2 j ! ih ˚ 2 i m; 111 whichisobvious. Noticethat B ( hj ˚ 2 ji ;w;m;f; 2 )asasupremumislargerthanthe ! -measureofthelevel set > 2 ofthemartingaletransformof ˚ 2 .Butthisisalsothemartingaletransformof ˚ 1 . The 1 -levelsetforanymartingaletransformof ˚ 1 issmaller,as 1 > 2 .Butrecallthatwe alreadysaidthat ˚ 1 (andweight ! )almostrealizesitsownsupremum B ( F;w;m;f + "; 1 )= B ( hj ˚ 1 ji ;w;m; h ˚ 1 i ; 1 )So B ( hj ˚ 1 ji ;w;m; h ˚ 1 i ; 1 ) B ( hj ˚ 2 ji ;w;m; h ˚ 2 i ; 2 ) : Inothernotationsweget B ( hj ˚ 1 ji 1 ; w m ; h ˚ 1 i 1 ) B ( hj ˚ 2 ji 2 ; w m ; h ˚ 2 i 2 ) : LetusdenotetheargumentontheLHSas( x 1 ;y 1 ;z 1 ),andontheRHSas( x 2 ;y 2 ;z 2 ).Notice that y 1 = y 2 =: y triviallyand z 1 = z 2 =: z by(3.42).Noticealsothat x 1 m ,but h ! i I = inf I !m .Thenaugment ! on I slightlyto get ! 1 with h ! 1 i = w + " .Itiseasytoseethatasaresultwehavethenewweightwith 112 the A 1 normatmost Q ,thesameglobalum m butalargerglobalaverage h ! i .The ! 1 measureofthelevelsetofthemartingaletransformwillbebiggerthan ! measureof thesamelevelsetofthesamemartingaletransform,and w=m alsogrowsto( w + " ) =m . Allothervariablesstaythesame.Soiftheoriginal ! (andsome ˚ )were(almost)realizing supremum,wewouldget B ( x;y 1 ;z ) B ( x;y 2 ;z ) for y 1 = w=m;y 2 =( w + " ) =m . Theorem3.4.2. Function B from (3.3) t ! t 1 B ( t;t; ) isincreasingfor j j t Q : (3.44) B isconcave : (3.45) B ( x ;y; f ) 1 4 B ( x dx ;y dy; f )+ B ( x dx ;y dy; f + )+ B ( x + dx + ;y + dy; f + )+ B ( x + dx + ;y + dy; f + + ) 0 : (3.46) Proof. TheserelationsfollowfromTheorem3.2.3,Theorem3.2.2,andTheorem3.2.1(actu- allyfrom(3.7))correspondingly. Wecanchooseextremelysmall " 0 andinsidethedomainwecanmollify B bya convolutionofitwith " 0 -bellfunction supportedinaballofradius " 0 = 10. Multiplicativeconvolutioncanbeviewedastheintegrationwith 1 5 ( x x 0 ),where = " 0 = 10.Here x 0 isapointinsidethedomainofforfunction B . Thisnewfunctionwecall B again.Itisexactlyastheinitialfunction B ,anditobviously allthesamerelationships,inparticularitTheorems3.2.1,3.2.2,3.2.3.Only 113 itsdomainof " 0 issmaller(slightly)thanTheadvantagehoweveristhatthe new B issmooth.Webuild B bythisnew B .Anewfunction B bythenew B as in(3.41)willbesmooth.Actuallythenew B shouldbedenoted B 0 ,wheresuperscript denotesouroperationofbutwedropthesuperscriptforthesakeofbrevity.In fact,alltheseareforthesakeofconvenience,thenewfunctionssatisfytheold inequalitiesintheuniformway,independentlyof " 0 .Property(3.46)canbenowrewritten bytheuseofTaylor'sformula: Theorem3.4.3. 2 B dx x 2 2 B dy y 2 (1+ 2 ) B 2 2 B dx x dy y +2 B dy y +2 B dx x + +2 B dx x 2 B 2 0 : Proof. ThisisjustTaylor'sformulaappliedto(3.46). Denoting ˘ = dx x = dy y ; = weobtainthefollowingquadraticforminequality Theorem3.4.4. ˘ 2 [ 2 B + 2 B +2 B ] 2 [ 2 B +(1+ 2 ) B +2 B +2 B +2 B ]+ +2 ˘ [ 2 B + B + B + B + B ] 0 : 114 NowletuscombineTheorem3.4.4andTheorem3.2.2.Infact,Theorem3.2.2implies 2 B 2 2 B 2 B 2 : Weplugitintothesecondtermabove.AlsoTheorem3.2.2implies 2 B ˘ 2 B ˘ 2 B 2 ; 2 B ˘ 2 B ˘ 2 B 2 ; Wewillplugitintothethirdtermabove.Thenusingthenotation ( ;; ):= 2 B 2 B 2 B (whichisnon-negativebytheconcavityof B initstwovariablesbytheway)weintroduce thenotations K := ( ;; )+( 2 B 2 B ) ; L := ( ;; )+( 2 B ) 2 B ; N := (1+3 + 2 ) B 2 B ( 2 B ) 2 B : Andwegetthatthefollowingquadraticformisnon-negative: ˘ 2 K + ˘L + 2 N := ˘ 2 [ ( ;; )+( 2 B 2 B ) ]+ 115 ˘ [ ( ;; )+( 2 B ) 2 B ]+ 2 [ (1+3 + 2 ) B 2 B ( 2 B ) 2 B ] 0 : Therefore, K ispositive,and N L 2 4 K : (3.47) Nowwewillestimate L frombelow, K fromaboveandasaresultwewillobtainthe estimateof N frombelow,whichwillbringusourproof. Butweneedsomeaprioriestimates,andforthatwewillneedtomollify B = B 0 invariables ; .Againwemakeamultiplicativeconvolutionwithabell-typefunction.Let usexplainwhyweneedit.Let ^ Q :=sup G B: Wewanttoprovethat ^ Q=Q !1 : (3.48) Firstweneedtonoticethat Z 1 1 = 2 ( t;t; ) dt C ( ^ + ^ Q Q ) ; ( ;; ):= 2 B 2 B 2 B : (3.49) Infact,consider 2 [ Q= 4 ;Q= 2], b ( t ):= B ( t;t; )ontheinterval j j =: t 0 t 1. Let ` ( t )= b (1) t ^ .Wesawthat b ( t ) =t isincreasingand b isconcave,and b isunder ` ,andsobyelementarypictureofconcavefunctionhavingproperty b ( ) = increasingand b ( )concaveontheinterval[ t 0 0 ; 1]wegetthatthemaximumof ` ( ) b ( )isattainedonthe leftend-point.Theleftend-point t 0 0 isthemaximumof t 0 = j j and1 whichis c=Q . 116 Therefore, ` ( t ) b ( t ) j ( t =(max( ; c Q )) ` (max( ; c Q )) C ^ max( ; 1 Q ) ^ + ^ Q Q ; andtheabovevalueismaximumof g ( t ):= ` ( t ) b ( t )on[ t 0 0 ; 1].Bythesamepropertythat b ( t ) =t isincreasingwegetthat g 0 (1)= ` 0 (1) b 0 (1)= b (1) b 0 (1) 0 : CombiningthiswithTaylor'sformulaon[ t 0 ; 1]wegetfor g := ` b (gisconvexofcourse): (1 t 0 ) g 0 (1)+ Z 1 t 0 dt Z 1 t g 00 ( s ) ds =positive+ Z 1 t 0 ( s t 0 ) g 00 ( s ) ds sup g ^ + ^ Q Q : (3.50) Thisimplies(3.49)because g 00 ( t )= 1 t 2 ( t;t; ) ;t 2 [1 = 2 ; 1]. Considernowfunction a ( t ):= B ( t;; )Wealsohavethesametypeofconsideration appliedtoconvexfunction ^ a ( t )bringingus Z 1 1 = 2 2 B ( t;; ) dt C ^ : (3.51) Similarly, Z 1 1 = 2 2 B ( ;t; ) dt C ^ : (3.52) Weusedherethat B 0 ;B 0,whichisnottosee. Forthefutureestimateswewant(3.49),(3.51),(3.52)toholdnotinaveragebutpoint- wise. 117 Toachievethereplacementof\in-average"estimates(3.49),(3.51),(3.52)bytheirpoint- wiseanalogsletusconsideryetanothernowitisof B : B new ( ;; ):=2 Z 1 1 = 2 B ( t;t; ) dt: Thedomainofof B new isonlyintinywiththedomainof of B .Infact,thelatteris f ( ;; ): j j ; 1 Q g ,andtheformerisjust G := f ( ;; ): j j 1 2 ; 2 Q g . Ifwereplace( ;; )by( t;t; ) ; 1 = 2 t 1 ; everywhereintheinequalityofTheorem 3.4.4,andthenintegratetheinequalitywith2 R 1 1 = 2 :::dt ,wewillgetTheorem3.4.4butfor B new . Itisnottoseethat(3.49)becomesapointwiseestimatefor B new (just tiatetheformulafor B new in ;; andmultiplyby ;; appropriately): 2 ( B new ) 2 ( B new ) 2 ( B new ) C ( ^ + ^ Q Q ) : (3.53) Thispointwiseestimateautomaticallyimplynew\average"estimate: 2 Z 1 1 = 2 2 s 2 ( B new ) ( s;; ) 2 ( B new ) ( :;;: ) 2 ( B new ) C ( ^ + ^ Q Q ) : Thismeansexactlythatthefunction ~ B :=( B new ) new :=2 Z 1 1 = 2 B ( s;; ) ds still(3.53).ItalsoclearlytheinequalityofTheorem3.4.4because(aswe 118 noticedabove) B new thisinequality.Toseethisfactjustreplaceall 'sinthe inequalityofTheorem3.4.4appliedto B new by s andintegrate2 R 1 1 = 2 :::ds . Nowletusseethat ~ B =( B new ) new alsoapointwiseanalogof(3.51),namely, that 2 ~ B ( ;; ) C ^ : (3.54) Toshow(3.54)wejustrepeatwhathasbeendoneabove.Let~ g ( t ):= ^ B new ( t;; ). Thenwehave:1)0 ~ g ^ on[ t 0 ; 1],2)~ g 0 (1) 0(wesawthat B ,andhence B new ,are increasingintheargument),3)~ g isconvex.Thenwesawin(3.50)that Z 1 1 = 2 s 2 ~ g 00 ( s ) ds Z 1 1 = 2 ~ g 00 ( s ) ds C ^ : Butthisisexactly(3.54). Sofarweconstructedafunction ~ B =( B new ) new thatpointwiseinequalities (3.53),(3.54)andtheinequalityofTheorem3.4.4.Wearelefttoseethatbyintroducing ^ B :=2 Z 1 1 = 2 ~ B ( ;s; ) ds wekeep(3.53),(3.54)andtheinequalityofTheorem3.4.4validandalsoensure 2 ^ B ( ;; ) C ^ : (3.55) Walreadyjustsawthat(3.53),(3.54)andtheinequalityofTheorem3.4.4arevalidfor ^ B justbyaveragingthesameinequalitiesfor ~ B .Wecanseethat(3.55)holdsbytherepetition ofwhathasbeenjustdone.Namely,consider^ g ( t ):= ^ ~ B ( ;t; ).Thenwehave:1) 119 0 ^ g ^ on[ t 0 ; 1],2)^ g 0 (1) 0(wesawthat B ,andhence B new , ~ B areincreasingin theargument),3)^ g isconvex.Using(3.50)againinexactlythesamemanneraswedid withproving(3.54)weget Z 1 1 = 2 s 2 ^ g 00 ( s ) ds Z 1 1 = 2 ^ g 00 ( s ) ds C ^ : Butthisisexactly(3.55). Wedrop\hat",andfromnowon ^ B isjustdenotedby B .Wecansummarizeitsproperties asfollows. 0 ( ;; ) C ( ^ + ^ Q Q ) : (3.56) 0 2 B ( ;; ) C ^ : (3.57) 0 2 B ( ;; ) C ^ : (3.58) Recallthat(nowwiththis B ): ˘ 2 K + ˘L + 2 N := ˘ 2 [ ( ;; )+( 2 B 2 B ) ] ˘ [ ( ;; )+( 2 B ) 2 B ] 2 [ (1+3 + 2 ) B 2 B ( 2 B ) 2 B ] 0 : Wewillchoosesoonappropriate 0 ; 1 1 100 0 and ˝ 0 withsomesmall ˝ .Letus 120 introduce k := Z 0 1 K = Z 0 1 [ ( ;; )+( 2 B 2 B ) ] ; n := Z 0 1 N = Z 0 1 [ (1+3 + 2 ) B 2 B ( 2 B ) 2 B ] ; ` := Z 0 1 [ ( ;; )+( 2 B ) 2 B ] : Estimateof k fromabove. Theintegrandof k isobviouslypositiveand termdominates otherterms(by(3.56),(3.57),(3.58)andthesmallnessof ).Therefore, 0 k C 1 ( ^ 0 + C ^ Q Q 2 0 )+ C 2 ^ 2 0 C ( ^ 0 + C ^ Q Q 2 0 ) ; (3.59) if Q isverylarge.Wechoose(wearesorryforastrangewayofwriting 0 ,whywedothat willbeseeninthenextsection) 0 = c Q ^ Q ˆ ;ˆ =1 ; 1 = 1 100 s Q ^ Q 0 : (3.60) Here c isasmallpositiveconstant.Wealsochoosetohave runningonlyonthefollowing interval 2 [0 ; 0 ] ; 0 := ˝ Q ^ Q ˆ 0 ;ˆ =1 ; (3.61) where ˝ isasmallpositiveconstant. Estimateof ` frombelow. Estimatingfrombelowwecanskipthenon-negativeterm 2 B .Also Z 0 1 ( ;; ) C ^ 0 C ^ Q Q 2 0 : 121 Ontheotherhand, Z 0 1 ( 2 B ) 2 0 B ( 0 ;; ) 2 1 ^ Q; asgivesapointwiseestimate B C ^ Q: (3.62) Recallthat 2 [ Q= 4 ;Q= 2].Wealsowillprovesoontheobstaclecondition(3.74),which saysthat B (1 ;; ) 8 : (3.63) If B ( 0 ;; )wouldbesmallerthan Q= 40(andthen B ( s;; ) Q= 40forall s 2 [ 0 ; 1]byconcavityof B initsrstvariable)wewouldnotbeabletoreachatleast Q 4 8 .In fact,byourchoiceof 0 in(3.60)wehave B ( 0 ;; ) ^ 0 cQ: (3.64) If B ( 0 ;; ) Q 40 ,andsothisderivative B ( s;; ) Q 40 on s 2 [ 0 ; 1](concavity),we cannotreach Q= (4 8)for s =1ifwestartwithvalueof B in(3.64)at s = 0 .Butthefact thatwecannotreach Q= (4 8)contradictsto(3.63).Therefore, B ( 0 ;; ) Q 40 ; (3.65) and ` 2 0 40 Q 2 1 ^ Q C ^ 0 C ^ Q Q 2 0 : (3.66) 122 As 1 = 1 100 0 r Q ^ Q (see(3.60)),thesecondtermisdominatedbythethethirdterm isdominatedbythebecauseofthechoiceof 0 in(3.61),thefourthtermisdominated bytheonebecause Q 2 >> ^ Q ,see[P]foramuchbetterestimate. Finally, ` 2 0 80 Q c 2 0 Q: (3.67) And k is 0 k C ( ^ 0 + C ^ Q Q 2 0 )= 0 ^ Q ( + 1 Q 0 ) : Wegot n ` 2 4 k c 4 0 Q 2 0 ^ Q ( + 1 Q 0 ) : (3.68) Estimateof n fromabove. By(3.65),(3.62)and(3.57)weget Z 0 1 ( 2 B ) Z 0 1 2 B 2 0 + C ^ 2 1 + c ^ 2 0 0 : Negativityisbythechoiceof 1 in(3.60)andbythefactthat c s Q ^ Q ; (3.69) whichismuchoverdonein(3.61). Therefore,weget,combiningwith(3.68)(here > isanabsoluteconstantanditisat leastthemaximumofallour3 + 2 ) c 3 0 Q 2 ^ Q ( + 1 Q 0 ) n (1+ ) Z 0 1 ( e 1 1+ 2 B ) ; 123 or Z 0 1 ( e 1 1+ 2 B ) C 3 0 Q 3 ^ Q ( + 0 ) : (3.70) Function B issmooth,concavein andsymmetricin (thelatterisbyIn particular B ( ;; 0)=0.Soafterintegratingin on[0 ; ] ;< 0 weget Z 0 1 ( B ) C 3 0 Q 2 ^ Q [log( 0 + ) log 0 ]= C 3 0 Q 2 ^ Q log(1+ Q 0 ) : (3.71) Integrateagainin on[0 ; 0 ].Wegettheintegralover[ 1 ; 0 ]oftheoscillationof B , whichis Z 0 1 [ B ( ;; 0) B ( ;; 0 )] C 3 0 Q 2 ^ Q 0 Q (1+ Q 0 0 )log(1+ Q 0 0 ) : Butthisoscillationissmallerthan C ^ 2 0 .Wegettheinequality C 4 0 Q ^ Q (1+ Q 0 0 )log(1+ Q 0 0 ) 2 0 ^ Q: (3.72) Noticethat 0 , 0 , 0 0 areallpowersof Q ^ Q ,whichweexpecttobeasortof 1 (log Q ) p . Thenwegettheestimateintermsof powers of Q ^ Q : C 2 0 Q 2 ^ Q 2 0 0 log(1+ Q 0 0 ) 1 : (3.73) Letuscountthepowersof Q ^ Q : 2 0 bringspower2|by(3.60), 0 0 bringspower1by(3.61), sototallywehave 1 (log Q ) 5 p log Q (log Q ) ::: inthelefthandside. Wecanseethatif ^ Q Q log p Q with p< 1 5 ,then(3.73)leadstoacontradiction.Sowe 124 proved Theorem3.4.5. Theweightedweaknormofthemartingaletransformforweights w 2 A dyadic 1 canreach c [ w ] A 1 log p [ w ] A 1 foranypositive p< 1 = 5 . 3.4.2Obstacleconditionsfor B . Nowwewanttoshowthefollowingobstacleconditionfor B ,whichwealreadyused: if j j < 1 4 ; then B (1 ;; ) 8 : (3.74) Let I :=[0 ; 1].Givennumbers j f j < 4 ; F m = itisenoughtoconstructfunctions '; ;w on I suchthat Put ' = a on I ,= b on I ++ ,zerootherwise.And w =1on I [ I ++ ,and w = Q otherwise.Thenput :=( ';h I ) h I ( ';h I + ) h I + : Let0 0wecannomorethan A disjointballsofradius2 intheball B ( x;r ). Asauthorsof[HM],weessentiallyusetheideaofMichaelChrist[Chr],butrandomize hisconstructioninatway.Therefore,wewanttoguardthereaderthateventhough onthesurfacetheproofbelowisveryclosetotheprooffrom[HM],however,ourconstruction isessentiallyt,andsotheproofoftheassertioninourmainlemma,whichwasnot hardin[HM],becomesmuchmoresubtlehere. Wenowproceedtotheconstruction. Foranumber k> 0wesaythataset G isa k -gridif G ismaximal(withrespectto inclusion)set,suchthatforany x;y 2 G wehave d ( x;y ) >k . Letfromnowondiam X =1.Takeasmallpositivenumber ˝ 1dependingonthe doublingconstantof X andalargenaturalnumber N ,andforevery M > N G M = f z M g , acertain M -gridof X .Nowtake G N andrandomlychoosea G N 1 = N 1 -gridin G N . 127 Thentake G N 1 andrandomlychoosea G N 2 = N 2 -gridin G N 1 .Dothis N times. Noticethat G 0 consistsofjustonerandompointof G N . Weexplainwhatis\randomly".Since X isacompactmetricspace,all G k 'sare Therefore,therearemany( N 1)-gridsin G N .Wechooseoneofthemwitha probability 1 numberof( N 1)-gridsin G N : Ourlemmaisthefollowing. Lemma4.2.1. For k =0 ;:::;N [ y 2 G N k B ( y; 3 N k )= X: Remark11. For N + k;k 0 ; insteadof N k thisisobvious. Proof. Take x 2 X .Then,since G N ismaximal,thereexistsapoint y 0 2 G N ,such that j xy 0 j 6 N .Since G N 1 ismaximalin G N ,thereisapoint y 1 2 G N 1 ,suchthat j y 0 y 1 j 6 N 1 .Similarlyweget y 2 ;:::;y k andthen j xy k j 6 j xy 0 j + ::: + j xy k j 6 N + ::: + N k = N k (1+ + ::: + k ) 6 N k 1 6 2 N k : Oncewehavealloursets G N ,weintroducearelationship ˚ betweenpoints.Wefollow [HM]and[Chr]. Takeapoint y k +1 2 G k +1 .Thereexistsatmostone y k 2 G k ,suchthat j y k +1 y k j 6 k 4 . 128 Thisistruesinceiftherearetwosuchpoints y 1 k ;y 2 k ,then j y 1 k y 2 k j 6 k 2 ; whichisacontradiction,since G k wasa k -gridin G k +1 . Alsothereexistsatleastone z k 2 G k suchthat j y k +1 z k j 6 3 k .Thisistruebythe lemma. Now,ifthereexistsan y k asabove,weset y k +1 ˚ y k .Ifno,thenwepickoneof z k as aboveandset y k +1 ˚ z k .Forallother x 2 G k weset y k +1 6˚ x .Thenextendbytransitivity. Wealsoassumethat y k ˚ y k .Thisisif y k onthelefthappenedtobelongalreadyto G k +1 . Wedothisprocedurerandomlyandindependently,andtreatsamefamiliesof G k 'swith t ˚ -lawastfamilies. Takenowapoint y k 2 G k and Q y k = [ z ˚ y k ;z 2 G ` B ( z; ` 100 ) : Lemma4.2.2. Forevery k wehave X = [ y k 2 G k clos( Q y k ) Remark12. Thereisonlyonepointin G 0 ,and clos ( Q y ) ;y 2 G 0 ; isjust X .Butforsmall , X = S y 1 2 G 1 clos( Q y 1 )isagenuine(andrandom)splittingof X . Proof. Takeany x 2 X .Bythepreviouslemma,forevery m>k thereexistsapoint 129 x m 2 G m ,suchthat j xx m j 6 3 m .Inparticular, x m ! x .Fixforamoment x m .Then therearepoints y m 1 2 G m 1 ;:::;y k 2 G k ,suchthat x m ˚ y m 1 ˚ ::: ˚ y k .In particular, x m 2 Q y k ,where y k dependson x m .Then j y k x j 6 j y k x m j + j x m x j 6 j y k x m j +3 m 6 j y k x m j +3 k : Moreover,bythechainof ˚ 's,weknowthat j y k x m j 6 10 k .Therefore, j y k x j 6 15 k : Weclaimthattheset f y k g = f y k ( x m ) g m > k isindependentlyon k .Thisistruesince all y k 'sareseparatedfromeachotherandbythedoublingofourspace(weare theball B ( x; 15 k )withballs B ( y k ; k )). So,takeansubsequence x m thatcorrespondstoonepoint y k 2 G k .Thenweget x m 2 Q y k , x m ! x ,so x 2 clos Q y k ,andwearedone. Remark13. Sincethespace X iscompact,ourrandomprocedureconsistsofmany steps.Therefore,ourprobabilityspaceisdiscreet.Wesuggesttothinkaboutallprobabilities justasnumberofgoodeventsdividedbynumberofallevents. However,allourestimateswillnotdependonnumberofsteps(and,therefore,diameter of X ),whichisessential. Remark14. WenoticethatintheEuclidianspace,say, R ,thisproceduredoesnotgivea standarddyadiclattice. 130 4.2.2Secondstep:technicallemmata ~ Q y k = X n [ z k 6 = y k ;z k 2 G k clos Q z k : Inparticular, Q y k ˆ ~ Q y k ˆ clos( Q y k ) : Lemma4.2.3 (Lemma4.5in[HM]) . Let m beanaturalnumber, "> 0 ,and m > 100 " . Suppose x 2 clos Q y k and dist ( x;X n ~ Q y k ) < k .Thenforanychain z k + m ˚ z k + m 1 ˚ ::: ˚ z k +1 ˚ z k ; suchthat x 2 clos Q z k + m ,thefollowingrelationshipshold j z i z j j > j 100 ;k 6 j a (4.2) forsome a 2 (0 ; 1) . Proof. Weremindthatweareinacompactmetricsituation.Byrescalingwecanthinkthat weworkwith G 1 andchoose G 0 .Wecaneventhinkthatthemetricspaceconsistsof manypoints,itis X := G 2 .Theset G 1 ˆ X consistsofpointshavingthefollowing properties: 1. 8 x;y 2 G 1 wehave j xy j ; 2.if z 2 X n G 1 then 9 x 2 G 1 suchthat j zx j < . Thesetwopropertiesareequivalenttosayingthatthesubset G 1 of X consistsofpoints suchthat 8 x;y 2 G 1 wehave j xy j andwecannotaddanypointfrom X to G 1 without violatingthatproperty.Inotherwords: G 1 isa maximal setwithproperty1. Recallthatheretheword\maximal"meansmaximalwithrespecttoinclusion,not 132 maximalinthesenseofthenumberofelements. Nowweconsiderthenewmetricspace Y = G 1 and G 0 isanymaximalsubsetsuchthat 8 x;y 2 G 0 ; j xy j 1 : (4.3) Inotherwords,wehave1. 8 x;y 2 G 0 wehave j xy j 1; 2.if z 2 Y n G 0 then 9 x 2 G 0 suchthat j zx j < 1. Therearelymanysuchmaximalsubsets G 0 of Y .Weprescribeforeachchoicethe sameprobability.Nowwewanttoprovetheclaimthatisevenstrongerthan(4.2).Namely, wearegoingtoprovethatgiven y 2 Y P ( 9 x 0 2 G 0 : x 0 = y ) > a; (4.4) where a dependsonlyon andtheconstantsofgeometricdoublingofourcompactmetric space. Let Y beanymetricspacewithitelymanyelements.Wewillcolorthepointsof Y intoredandgreencolors.Thecoloringiscalledproperif 1.everyredpointdoesnothaveanyotherredpointatdistance < 1; 2.everygreenpointhasatleastoneredpointatdistance < 1. Given apropercoloring of Y thecollectionofredpointsiscalled1- lattice .Itisamaximal (byinclusion)collectionofpointsatdistance 1fromeachother. Whatweneedtotheproofis Lemma4.2.5. Let Y beametricspaceasabove.Assume Y hasthefollowingproperty: Ineveryballofradiuslessthan 1 thereareatmost d elements : (4.5) 133 Let L beacollectionof 1 -latticesin Y .Elementsof L arecalled L .Let v 2 Y .Then thenumberof1-latticesLsuchthatvbelongstoL thetotalnumberof1-latticesL a> 0 ; where a dependsonlyon d . Proof. Given v 2 Y considerallsubsetsof B ( v; 1) n v ,thiscollectioniscalled S .Let S 2S . Wecall W S thecollectionofallpropercoloringssuchthat v isgreen,allelementsof S are red,andallelementsof B ( v; 1) n S aregreen.Wecall ~ S allpointsin Y ,whicharenotin B ( v; 1),butatdistance < 1fromsomepointin S . Allpropercoloringsof Y suchthat v isredarecalled B .Letusshowthat card W S card B: (4.6) Noticethatif(4.6)wereproved,wewouldbedonewithLemma4.2.5, a 2 d +1 ,and, consequently,theproofofthemainlemmawouldbe a 2 D ,where D isa geometricdoublingconstant. Toprove(4.6)letusshowthatwecanrecoloranypropercoloringfrom W S intotheone from B ,andthatthismapisinjective.Let L 2 W S .We 1.Color v intored; 2.Color S intogreen; 3.Elementsof ~ S wereallgreenbefore.Weleavethemgreen,butweamongthemall those y thatnowintheopenball B ( y; 1)in Y allelementsaregreen.Wecallthemyellow (temporarily)anddenotethem Z ; 4.Weenumerate Z inanyway(non-uniquenessishere,butwedonotcare); 134 5.Intheorderofenumerationcoloryellowpointstored,ensuringthatweskiprecoloring ofapointin Z ifitisat < 1distancetoanypreviouslycoloredyellow-to-redpointfrom Z . Afterseveralstepsallgreenandyellowelementsof ~ S willhavethepropertythatatdistance < 1thereisaredpoint; 6.Colortherestofyellow(ifany)intogreenandstop. Weresultinapropercoloring(itiseasytocheck),whichisobviously B .Suppose L 1 ;L 2 aretwotpropercoloringin W S .Noticethatthecolorsof v;S;B ( v; 1) n S , ~ S arethe sameforthem.Sotheyersomewhereelse.Butourproceduredoesnottouch\somewhere else".Sothemocolorings L 0 1 ;L 0 2 thatweobtainafterthealgorithm1-6willas wellmaybeevenmore).Soourmap W S ! B (beingnotuniquelyd)ishowever injective.Weproved(4.6). Thus,theproofoftheLemma4.2.4isished. Remark. WearegratefultoMichaelShapiroandDapengZhanwhohelpedustoprove Lemma4.2.4. 4.2.3Mainandtheorem Fixanumber ,0 << 1.Laterthechoiceof willbedictatedbytheon-Zygmund propertiesoftheoperator T .Alsoatlybig r .Thecoiceof r willbemadeinthis section. 25 (Badcubes) . Takea\cube" Q = Q x k .Wesaythat Q isgoodifthereexists 135 acube Q 1 = Q x n ,suchthatif k 6 r n ( k > n + r ) theneither dist ( Q;Q 1 ) > k n (1 ) or dist ( Q;X n Q 1 ) > k n (1 ) : Remark15. Noticethat k = ` ( Q )justby If Q isnotgoodwecallitbad. Theorem4.2.6. Fixacube Q x k .Then P ( Q x k isbad ) 6 1 2 : Remark16 (Discussion) . Thistheoremmakessensebecausewhenweacube Q k ,say, k > N ,sothegrid G k isnotevenrandom,wecanmakebigcubesrandom.Andweclaim thatforbigquantityofchoices,ourbigcubeswillhave Q k either\inthemiddle"orfar away,butnotclosetotheboundary. 26. For Q = Q x k Q ( " )= Q = f x : dist ( x;Q ) 6 k and dist ( x;X n Q ) 6 k g Lemma4.2.7. Letusstartwithlevel N bya N -grid(non-random),andlet k 0 . Proofofthetheorem. Takethecube Q x k .Thereisaunique(random!)point x k s such that x k 2 Q x k s .Then dist ( Q x k ;X n Q x k s ) > dist ( x k ;X n Q x k s ) diam ( Q x k ) > dist ( x k ;X n Q x k s ) C k : Assumethat dist ( x k ;X n Q x k s ) > 2 k ( k s )(1 ) andthat s > r (thisassumptionis obvious,otherwise Q x k s doesnotgoodnessof Q x k ). Then,if r isbigenough( r (1 ) < 1 C )weget dist ( Q x k ;X n Q x k s ) > k ( k s )(1 ) ; andso Q x k isgood.Therefore, P ( Q x k isbad) 6 C X s > r P ( x k 2 Q k s ( " =2 )) 6 C X s > r s 6 100 C r : Bythechoiceof ,fortlylarge r thisislessthan 1 2 . Proofofthelemma. Let x k besuchthat x 2 clos Q x k (seeLemma4.2.2).Wewillestimate P ( dist ( x;X n ~ Q k ) < k ) j x 2 clos Q x k ).Fixthelargest m suchthat500 " 6 m .Choosea 137 point x k + m suchthat x 2 clos Q x k + m .Thenbythemainlemma P ( 9 x k + m 1 2 G k + m 1 : j x k + m x k + m 1 j < k + m 1 1000 ) > a: Therefore, P ( 8 x k + m 1 2 G k + m 1 : j x k + m x k + m 1 j > k + m 1 1000 ) 6 1 a: Letnow x k + m ˚ x k + m 1 : Then P ( 8 x k + m 2 2 G k + m 2 : j x k + m 1 x k + m 2 j > k + m 2 1000 ) 6 1 a: SobyLemma4.2.3 P ( dist ( x;X n ~ Q k ) < k ) 6 P ( j x k + j x k + j 1 j > k + j 1 1000 8 j =1 ;:::;m ) 6 (1 a ) m 6 C" for = log(1 a ) log( ) : 4.2.4Probabilitytobe\good"isthesameforeverycube Wemakethelaststeptomaketheprobabilitytobe\good"notjustboundedawayfrom zero,butthesameforallcubes.Weusetheideafrom[M]. Takeacube Q ( ! ).Takearandomvariable ˘ Q ( ! 0 ),whichisequallydistributedon[0 ; 1]. 138 Weknowthat P ( Q isgood)= p Q >a> 0 : Wecall Q \reallygood"if ˘ Q 2 [0 ; a p Q ] : Otherwise Q joinsbadcubes.Then P ( Q isreallygood)= a; andwearedone. 4.3TheHaarshiftdecomposition Taketwostepfunctions, f and g .Wean N -grid G N in X ,and\cubes"onlevel N ,suchthat f and g areconstantsoneverysuchcube.Thenwestartourrandomization process. Aswementioned,thisprocessconsistsofmanysteps,soallprobabilistictermi- nologybecomestrivial:wehaveaprobabilityspace. Startingfrom G N ,wego\up"andoneachlevelgetdyadiccubes(randomChrist'scubes). Theyhavetheusualstructureofbeingeitherdisjointoronecontainingtheother.Foreach dyadiccube Q wehaveseveraldyadicsons,theyaredenotedby s i ( Q ), i =1 ;:::;M ( Q ) M . Thenumber M hereisuniversalanddependsonlyongeometricdoublingconstantsofthe space X . 27. By E k wedenotesetofalldyadic\cubes"ofgeneration k .Wecall Q i k ˆ Q j k 1 , Q i k 2E k sons of Q j k 1 . 139 Witheverycube Q = Q x k weassociate Haarfunctions h j Q , j =1 ;:::;M 1,with followingproperties: 1. h j Q issupportedon Q ; 2. h j Q takesconstantvaluesoneach\son"of Q ; 3.Foranytwocubes Q and R ,wehave( h j Q ;h i R )=0,and( h j Q ; 1)=0; 4. k h j Q k 1 6 C p ( Q ) . Wenoticethatthelastpropertyimpliesthat k h j Q k 2 6 C . Weuseangularbracketstodenotetheaverage: h f i := 1 ( Q ) R Q f .Whenweaverage overthewholespace X ,wedroptheindexandwrite h f i = 1 ( X ) R X f . Ourmain\tool"isgoingtobethefamous\dyadicshifts".Precisely,wecallby S m;n the operatorgivenbythekernel f ! X L 2D Z L a L ( x;y ) f ( y ) dy; where a L ( x;y )= X I ˆ L;J ˆ L g ( I )= g ( L )+ m;g ( J )= g ( L )+ n c L;I;J h j J ( x ) h i I ( y ) ; where h i I ;h j J areHaarfunctionsnormalizedin L 2 ( )andsatisfying(iv),and j c L;I;J j p ( I ) p ( J ) ( L ) .Oftenwewillskipsuperscripts i;j . 28. Wecallthenumber m + n +1the complexity ofashift S m;n . Ournextaimistodecomposethebilinearformoftheoperator T intobilinearforms 140 ofdyadicshifts,whichareestimatedintheSection4.4.2.Therestwillbetheso-called \paraproducts",estimatedintheSection4.4.1. Functions f ˜ X g[f h j Q g formanorthogonalbasisinthespace L 2 ( X; ).Therefore,we canwrite f = h f i ˜ X + X Q X j ( f;h j Q ) h j Q ;g = h g i ˜ X + X R X i ( g;h i R ) h i R : First,westateandproofthetheorem,thatsaysthatessentialpartofbilinearformof T canbeexpressedintermsofpairofcubes,wherethesmallestoneisgood.Wefollowthe ideaofonen[H].Infact,thework[H]improvedon\good-bad"decompositionof[NTV], [NTV2],[NTV3]byreplacinginequalitiesbyanequality. Theorem4.3.1. Let T beanylinearoperator.Thenthefollowingequalityholds: ˇ good E X Q;R;i;j ` ( Q ) > ` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R )= E X Q;R;i;j ` ( Q ) > ` ( R ) ;R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R ) : Thesameistrueifwereplace > by > . Proof. Wedenote ˙ 1 ( T )= X ` ( Q ) > ` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R ) : ˙ 1 ( T )= X ` ( Q ) > ` ( R ) R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R ) : Wewouldliketogetarelationshipbetween E ˙ 1 ( T )and E ˙ 1 ( T ). 141 We R andwrite(using g good := P R isgood ( g;h i R ) h i R ) X Q X R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R )= 0 @ T ( f h f i ˜ X ) ; X R isgood ( g;h i R ) h i R 1 A = T ( f h f i ˜ X ) ;g good : Takingexpectations,weobtain E X Q;R ( Th j Q ;h i R )( f;h j Q )( g;h i R ) 1 R isgood = E ( T ( f h f i ˜ X ) ;g good )=( T ( f h f i ˜ X ) ; E g good )= ˇ good ( T ( f h f i ˜ X ) ;g )= ˇ good E X Q;R ( Th j Q ;h i R )( f;h j Q )( g;h i R ) : (4.7) Next,suppose ` ( Q ) <` ( R ).Thengoodnessof R doesnotdependon Q ,andso ˇ good ( Th j Q ;h i R )( f;h j Q )( g;h i R )= E ( Th j Q ;h i R )( f;h j Q )( g;h i R ) 1 R isgood j Q;R : Letusexplainthisequality.Therighthandsideisconditioned:meaningthatthelefthand sideinvolvesthefractionofthenumberofalllatticescontaining Q;R inthislatticeandsuch that R (thelargerone)isgoodtothenumberoflatticescontaining Q;R init.Thisfraction isexactly ˇ good .Nowweapairof Q;R , ` ( Q ) <` ( R ),andmultiplybothsidesbythe probabilitythatthispairisinthesamedyadiclatticefromourfamily.Thisprobabilityis justtheratioofthenumberofdyadiclatticesinourfamilycontainingelements Q and R tothenumberofalldyadiclatticesinourfamily.Aftermultiplicationbythisratioandthe 142 summationofalltermswith ` ( Q ) <` ( R )weget, ˇ good E X ` ( Q ) <` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R )= E X ` ( Q ) <` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R ) 1 R isgood : (4.8) Nowweuse(4.7)andthen(4.8): ˇ good E X Q;R ( Th j Q ;h i R )( f;h j Q )( g;h i R )= E X Q;R ( Th j Q ;h i R )( f;h j Q )( g;h i R ) 1 R isgood = = E X ` ( Q ) <` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R ) 1 R isgood + E X ` ( Q ) > ` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R ) 1 R isgood = = ˇ good E X ` ( Q ) <` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R )+ E X ` ( Q ) > ` ( R ) ;R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R ) ; (4.9) andtherefore E X ` ( Q ) > ` ( R ) ;R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R )= ˇ good E X ` ( Q ) > ` ( R ) ( Th j Q ;h i R )( f;h j Q )( g;h i R ) : (4.10) Thisisthemaintrick.Tohavethewholesumexpressedasthemultipleofthesum, wherethe smaller insizecubeisgood,is veryuseful aswewillsee.Itgivesextra decayonmatrixcots( Th j Q ;h i R )andallowsustorepresentouroperatoras\convex combinationofdyadicshifts". 143 So,wehaveobtainedthat E ˙ 1 ( T )= ˇ 1 good E ˙ 1 ( T ) : Thus,toestimate E ˙ 1 ( T )itisenoughtoestimate E ˙ 1 ( T ).Absolutelythesamesym- metricallyholdsfor ˙ 2 ( T ). 4.3.1Paraproducts Inthissubsectionwetakecareoftheterms h f i ˜ X and h g i ˜ X .Thesetermswillleadtoso calledparaproducts.Infact,letusintroducethreeauxiliaryoperators: ˇ ( f ):= ˇ T˜ X ( f ):= X Q;j h f i Q ( T˜ X ;h j Q ) h j Q ;(4.11) ˇ ( f ):= X Q;j ( f;h j Q )( T ˜ X ;h j Q ) ˜ Q ( Q ) =( ˇ T ˜ X ) ( f );(4.12) o ( f ):= h f ih T˜ X i ˜ X : (4.13) Recallthat h ' i denotes 1 ( X ) R X ' .Theseoperatorsdependonthedyadicgridwe chose.Weshallneedthefollowingtechnicallemma. Lemma4.3.2. ( ˇ ( f ) ;g )= h f i ( T˜ X ;g h g i ˜ X )+ X ( ˇh j Q ;h i R )( f;h j Q )( g;h i R ) ; ( ˇ ( f ) ;g )= h g i ( T ˜ X ;f h f i ˜ X )+ X ( ˇ h j Q ;h i R )( f;h j Q )( g;h i R ) : 144 Proof. Thesecondequalityfollowsfromtheoneandtheof ˇ .Weprovethe equality.Wewillnotwritesuperscripts i and j inHaarfunctions. Wewrite ˇ ( f )= h f i ˇ ( ˜ X )+ X ( f;h i Q ) ˇ ( h i Q ) : Noticethat ˇ ( ˜ X )= X ( T˜ X ;h i Q ) h i Q = T˜ X h T˜ X i ; andthat ˇ ( f )isorthogonalto ˜ X .Thus, ( ˇ ( f ) ;g )=( ˇ ( f ) ;g h g i ˜ X )= h f i ( ˇ ( ˜ X ) ; X ( g;h j R ) h j R )+ X ( ˇh i Q ;h j R )( f;h i Q )( g;h j R )= = h f i ( T˜ X ;g h g i ˜ X )+ X ( ˇh i Q ;h j R )( f;h i Q )( g;h j R ) ; asdesired.Thelastequalityistruebecause h T˜ X i isorthogonalto g h g i ˜ X . Noticethat ˇ;ˇ dependontherandomdyadicgrid.Weintroducearandomoperator ~ T = Tf ˇ ( f ) ˇ ( f ) : Nowwestatethefollowingveryusefullemma. Lemma4.3.3. ( Tf;g )= ˇ 1 good E X Q;R smallerisgood ( ~ Th i Q ;h j R )( f;h i Q )( g;h j R )+ E ( ˇ ( f ) ;g )+ E ( ˇ ( f ) ;g )+ h f ih g i ( T˜ X ;˜ X ) : 145 Proof. First,wewrite ( Tf;g )= X ( Th i Q ;h j R )( f;h i Q )( g;h j R )+ h f i ( T˜ X ;g )+ h g i ( T ˜ X ;f h f i ˜ X ) : Wetakeexpectationsnow.Noticethatonlythetermintheright-handsidedepends onadyadicgrid.Therefore, ( Tf;g )= E X ( Th i Q ;h j R )( f;h i Q )( g;h j R )+ h f i ( T˜ X ;g )+ h g i ( T ˜ X ;f h f i ˜ X ) : Wefocusontheterm.BytheTheorem4.3.1,weknowthat E X ( Th i Q ;h j R )( f;h i Q )( g;h j R )= ˇ 1 good E X smallerisgood ( Th i Q ;h j R )( f;h i Q )( g;h j R )= = ˇ 1 good E X smallerisgood ( ~ Th i Q ;h j R )( f;h i Q )( g;h j R )+ + ˇ 1 good E X smallerisgood ( ˇh i Q ;h j R )( f;h i Q )( g;h j R )+ ˇ 1 good E X smallerisgood ( ˇ h i Q ;h j R )( f;h i Q )( g;h j R ) : (4.14) Thetermisoneofthosethatwewanttogetintheright-handside. Ontheotherhand,wewanttogetaresultforparaproducts,similartotheTheorem 4.3.1.Indeed,itisclearthat ( ˇh i Q ;h j R )= h h i Q i R ( T˜ X ;h j R ) ; 146 whichisnon-zeroonlyif R ˆ Q ,and R 6 = Q .So, E X smallerisgood ( ˇh i Q ;h j R )( f;h i Q )( g;h j R )= E X R ˆ Q h h i Q i R ( T˜ X ;h j R )( f;h i Q )( g;h j R ) 1 R isgood = = E X R ( T˜ X ;h j R )( g;h j R ) 1 R isgood X Q : R ( Q ( f;h i Q ) h h i Q i R : (4.15) Wenowseethatsince f = h f i ˜ X + P Q ( f;h i Q ) h i Q ,wehave h f i R h f i =( f; ( R ) 1 ˜ R ) h f i = X Q : R ( Q ( f;h i Q ) h h i Q i R = X Q ( f;h i Q ) h h i Q i R : Therefore, E X R ( T˜ X ;h j R )( g;h j R ) 1 R isgood X Q ( f;h i Q ) h h i Q i R = E X R ( T˜ X ;h j R )( g;h j R ) 1 R isgood ( h f i R h f i ) : (4.16) Nowitisclearthatwecantaketheexpectationinside(wehaveno Q anymore,whichwas preventingusfromdoingthat),andsoweget E X smallerisgood ( ˇh i Q ;h j R )( f;h i Q )( g;h j R )= ˇ good E X R ( T˜ X ;h j R )( g;h j R )( h f i R h f i ) : Makingallabovestepsbackwards,weget E X smallerisgood ( ˇh i Q ;h j R )( f;h i Q )( g;h j R )= ˇ good E X ( ˇh i Q ;h j R )( f;h j Q )( g;h j R ) 147 Therefore, ˇ 1 good E X smallerisgood ( ˇh i Q ;h j R )( f;h i Q )( g;h j R )+ ˇ 1 good E X smallerisgood ( ˇ h i Q ;h j R )( f;h i Q )( g;h j R )= = E X ( ˇh i Q ;h j R )( f;h i Q )( g;h j R )+ E X ( ˇ h i Q ;h j R )( f;h i Q )( g;h j R )= = E ( ˇ ( f ) ;g )+ E ( ˇ ( f ) ;g ) E [ h f i ( T˜ X ;g h g i ˜ X )] E [ h g i ( T ˜ X ;f h f i ˜ X )] : (4.17) Wenowusethatlasttwotermsdonotdependonthedyadicgrid,andsowedropexpecta- tions.Finally, ( Tf;g )= E X smallerisgood ( ~ Th i Q ;h j R )( f;h i Q )( g;h j R )+ E ( ˇ ( f ) ;g )+ E ( ˇ ( f ) ;g ) h f i ( T˜ X ;g h g i ˜ X ) h g i ( T ˜ X ;f h f i ˜ X )+ h f i ( T˜ X ;g )+ h g i ( T ˜ X ;f h f i ˜ X )= = E X smallerisgood ( ~ Th i Q ;h j R )( f;h i Q )( g;h j R )+ E ( ˇ ( f ) ;g )+ E ( ˇ ( f ) ;g )+ h f ih g i ( T˜ X ;˜ X ) : (4.18) Thisiswhatwewanttoprove. Thefollowinglemma,whichwillbeprovedlater,takescareofparaproducts. Lemma4.3.4. Theoperators ˇ , ˇ areboundedon L 2 ( X;w ) ,and k ˇ k 2 ;w 6 C [ w ] 2 : Thesameistruefor ˇ . 148 Wepostponetheproofofthislemma.Wealsonoticethattheoperator o ( f )= h f ih T˜ X i ˜ X isclearlyboundedwithdesiredconstant.Infact,as T isboundedintheunweighted L 2 ,we have h T˜ X i 2 k T k 2 L 2 =: C 0 k o ( f ) k 2 2 ;w = h f i 2 h T˜ X i 2 w ( X ) 6 C 0 h f 2 w ih w 1 i w ( X ) 6 C 0 [ w ] 2 k f k 2 2 ;w : We,therefore,shouldtakecareonlyoftheterm,with ~ T .Wenowerasethetilde,and write T insteadof ~ T .Eventhough T isnotaCalderon-Zygmundoperatoranymore,all furtherestimatesaretruefor T (i.e.,foraCZOminusparaproducts),see,forexample,[HM] or[HPTV]. 149 4.3.2Estimatesof ˙ 1 Ournextstepistodecompose ˙ 1 intorandomdyadicshifts.Wewrite ˙ 1 ( T )= X ` ( Q ) > ` ( R ) R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R )= = E X ` ( Q ) > r 0 ` ( R ) ; R ˆ Q; R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R )+ + E X ` ( R ) 6 ` ( Q ) r 0 ` ( R ) ; R ˆ Q; R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R )+ + E X ` ( R ) 6 ` ( Q ) ; R \ Q = ; ; R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R ) : (4.19) Essentially,wewillprovethatthenormofeveryexpectationisboundedby C ( T ) E X n " ( T ) n k S n k : First,westateourchoicefor ,whichwehaveseenintheofgoodcubes. 29. Put = " 2 ( " +log 2 ( C )) ; where C isthedoublingconstantofthefunction . Remark17. Weremarkthatthischoiceof makeLemmata4.3.5and4.3.6true. 150 Theestimateofthesecondsumiseasy.Infact, E X ` ( R ) 6 ` ( Q ) r 0 ` ( R ) ; R ˆ Q; R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R ) 6 Cr 0 [ w ] 2 k f kk g k : Thisisboundedbyatmost r 0 expressionsforshiftsofboundedcomplexity,sojustsee[NV]. Formoredetails,see[HPTV] Wedenote in = E X ` ( Q ) > r 0 ` ( R ) ; R ˆ Q; R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R ) ; out = E X ` ( R ) 6 ` ( Q ) ; R \ Q = ; ; R isgood ( Th j Q ;h i R )( f;h j Q )( g;h i R ) : 4.3.3Estimateof in . Weusethefollowinglemma. Lemma4.3.5. Let T beasbefore;suppose ` ( Q ) > r 0 ` ( R ) and R ˆ Q .Let Q 1 betheson of Q thatcontains R .Then j ( Th j Q ;h i R ) j . ` ( R ) " 2 ` ( Q ) " 2 ( R ) ( Q 1 ) 1 2 : Wenoticethat ( Q 1 ) ( Q ). 151 Wewrite in = X n > r 0 X ` ( Q )= n ` ( R ) ;R isgood ;R ˆ Q ( Th j Q ;h i R )( f;h j Q )( g;h i R ) ; j in j 6 X n > r 0 X ` ( Q )= n ` ( R ) ; R isgood ; R ˆ Q j ( Th j Q ;h i R ) jj ( f;h j Q ) jj ( g;h i R ) j 6 6 C X n > r 0 X ` ( Q )= n ` ( R ) ; R isgood ; R ˆ Q ` ( R ) " 2 ` ( Q ) " 2 ( R ) ( Q ) 1 2 j ( f;h j Q ) jj ( g;h i R ) j = = C X n > r 0 n" 2 X ` ( Q )= n ` ( R ) ; R isgood ; R ˆ Q ( R ) ( Q ) 1 2 j ( f;h j Q ) jj ( g;h i R ) j : (4.20) We functions f and g and S n asanoperatorwiththefollowingquadraticform: ( S n u;v )= X ` ( Q )= n ` ( R ) ; R isgood ; R ˆ Q ( R ) ( Q ) 1 2 ( u;h j Q )( v;h i R ) ; where ischosenso j ( f;h j Q ) jj ( g;h i R ) j = ( f;h j Q )( g;h i R ).Thenclearly S n isadyadicshift ofcomplexity n ,andso,seeSection4.4.2, j ( S n f;g ) j 6 Cn a [ w ] 2 k f k w k g k w 1 : 152 Therefore, j in j 6 X n Cn a n" 2 [ w ] 2 k f k w k g k w 1 6 C [ w ] 2 k f k w k g k w 1 : 4.3.4Estimatesfor out Weusethefollowinglemmafrom[HM]. Lemma4.3.6. Let T beasbefore, ` ( R ) 6 ` ( Q ) and R \ Q = ; .Thenthefollowingholds j ( Th j Q ;h i R ) j . ` ( Q ) " 2 ` ( R ) " 2 D ( Q;R ) " sup z 2 R ( z;D ( Q;R )) ( Q ) 1 2 ( R ) 1 2 ; where D ( Q;R )= ` ( Q )+ ` ( R )+dist( Q;R ) . Remark18. Weshouldclarifyonethinghere.If T wasaCalderon-Zygmundoperator,this estimatewouldbestandard,see[NTV],[NTV2]or,formetricspaces,[HM].We,however, subtractedfrom T twooperators:paraproductandadjointtoparaproduct.However,an easyargument(see[HPTV])showsthatif R \ Q = ; ,then( Th j Q ;h i R )=( ~ Th j Q ;h i Q )(forthe of ~ T seeLemma4.3.4andthereon). Supposenowthat D ( Q;R ) ˘ s ` ( Q ).Weaskthequestion:whatistheprobability P ( R ˆ Q ( s + s 0 +10) j Q;R 2 D ! ) ; where s 0 isatlybignumber.WeusetheLemma4.2.7.Supposethat R \ Q ( s + s 0 +10) = ; : 153 Supposealso R = R x (so x isthe\center"of R ).Then dist ( x;Q ( s + s 0 +10) ) 6 dist ( x;Q ) 6 dist ( Q;R ) 6 C s ` ( Q )= = C s s + s 0 +10 ` ( Q ( s + s 0 +10) )= C s 0 +10 ` ( Q ( s + s 0 +10) ) : (4.21) So x 2 Q ( s + s 0 +10) ( s 0 +10 )),andtheprobabilityofthisisestimatedby ( s 0 +10) < 1 2 for tlybig s 0 (weremindthat =log (1 a )).Therefore, P ( R ˆ Q ( s + s 0 +10) j Q;R 2 D ! ) > 1 2 : 154 So j out j 6 2 E X t;s X ` ( Q )= t ` ( R ) ; D ( Q;R ) ˘ s ` ( Q ) ; R \ Q = ; j ( Th j Q ;h i R ) jj ( f;h j Q ) jj ( g;h i R ) j 1 R isgood 1 R ˆ Q ( s + s 0 +10) 6 2 E X t;s X ` ( Q )= t ` ( R ) ; D ( Q;R ) ˘ s ` ( Q ) ; R \ Q = ; R;Q ˆ Q s + s 0 +10 ` ( Q ) " 2 ` ( R ) " 2 D ( Q;R ) " sup z 2 R ( z;D ( Q;R )) ( Q ) 1 2 ( R ) 1 2 j ( f;h j Q ) jj ( g;h i R ) j 1 R isgood 6 6 2 E X t;s X ` ( Q )= t ` ( R ) ; D ( Q;R ) ˘ s ` ( Q ) ; R \ Q = ; ; R;Q ˆ Q s + s 0 +10 t" 2 ` ( Q ) D ( Q;R ) " ( Q ) 1 2 ( R ) 1 2 sup z 2 R ( z;D ( Q;R )) j ( f;h j Q ) jj ( g;h i R ) j 1 R isgood 6 6 C 2 E X t;s t" 2 s" X ` ( Q )= t ` ( R ) ; D ( Q;R ) ˘ s ` ( Q ) ; R \ Q = ; ; R;Q ˆ Q s + s 0 +10 ( Q ) 1 2 ( R ) 1 2 sup z 2 R ( z;D ( Q;R )) j ( f;h j Q ) jj ( g;h i R ) j 1 R isgood : (4.22) Wenow S n aswedidbefore: ( S n u;v )= X ` ( Q )= t ` ( R ) ; D ( Q;R ) ˘ s ` ( Q ) ; R \ Q = ; ; R;Q ˆ Q s + s 0 +10 ( Q ) 1 2 ( R ) 1 2 sup z 2 R ( z;D ( Q;R )) ( u;h j Q )( v;h i R ) 1 R isgood : 155 Weneedtoestimatethecot.Wewrite ( z;D ( Q;R )) ˘ ( z; s ` ( Q )) ˘ ( z; s s 0 10 ` ( Q )) ˘ ˘ ( z;` ( Q ( s + s 0 +10) )) ˘ ( z;diam ( Q ( s + s 0 +10) )) > ( B ( z;diam ( Q ( s + s 0 +20) ))) > > ( Q ( s + s 0 +10) ) ; (4.23) andtherefore j ( Q ) 1 2 ( R ) 1 2 sup z 2 R ( z;D ( Q;R )) j 6 C ( Q ) 1 2 ( R ) 1 2 ( Q s + s 0 +10 ) : Wenoticethat C doesnotdependon s sinceweusedthedoublingpropertyof onlyfor transmissionfrom s ` ( Q )to s s 0 10 ` ( Q ). Weconcludethat S n isadyadicshiftofcomplexityatmost C ( s + t ).Therefore,see Section4.4.2, j out j 6 2 C E X t;s t" 2 s" ( s + t ) a [ w ] 2 k f k w k g k w 1 6 C [ w ] 2 k f k w k g k w 1 ; andourproofiscompleted. 4.4Therestoftheproof 4.4.1ParaproductsandBellmanfunction NowwewillprovetheLemma4.3.4. 156 Weremindthatthequadraticformofourparaproduct ˇ isthefollowing: ( ˇ ( f ) ;g ):= X R X i h f i ( T˜ X ;h i R )( g;h i R ) : Operator T isboundedin L 2 ( )and isdoubling.Therefore,itiswellknownthat cots b R := b i R :=( T˜ X ;h i R )satisfyCarlesonconditionforanyofourlatticesof Christ'sdyadiccubes: 8 Q 2D X R 2D ;R ˆ Q j b R j 2 B ( Q ) : (4.24) Thebestconstant B hereiscalledtheCarlesonconstantanditisdenotedby k b k C .It isknownthatforour b R :=( T˜ X ;h i R )theCarlesonconstantisboundedby B T := C k T k L 2 ( ) ! L 2 ( ) . IfwewouldbeonthelinewithLebesguemeasure and w wouldbeausualweightin A 2 ,thenthesumwouldfollowtheestimateofO.Beznosova[B]: j ˇ T˜ X ( f;g ) j C p B T [ w ] A 2 : (4.25) Butthesameistrueinoursituation.Toprovethat,oneshouldanalyzetheproofin [B]andseethatitusedalwaysconditionson w and b separately.Theywerealwayssplitby Cauchy{Schwarzinequality.Theonlyinequality,where w and b meetwasofthetype:let Q beaChrist'scubeofacertainlattice,then X R ˆ Q;R 2D h w i b 2 R [ w ] A 1 k b k C Z Q w; (4.26) 157 where [ w ] A 1 =sup 1 ( B ) Z B w exp 0 @ 1 ( B ) Z B w 1 A : Letusexplainthelastinequality.Wewrite h w i 6 [ w ] A 1 exp h w i =[ w ] A 1 exp 2 h w 1 2 i 6 [ w ] A 1 h w 1 2 i 2 6 [ w ] A 1 inf x 2 R M ( w 1 2 ˜ R ) 2 : Finally,wenoticethat f b 2 R g isaCarlesonsequence,andourexplanationwiththe followingwellknowntheorem. Theorem4.4.1. Suppose f K g isaCarlesonsequence.Thenforanypositivefunction F thefollowinginequalityholds: X K K inf K F ( x ) 6 Z F ( x ) ( x ) : Inallotherestimatesin[B]thesumswith Q w (seethebeforeLemma3.2 of[NV])andthesumswith b arealwaysestimatedseparately.Thesumswheretheterms containtheproductof Q w and b Q nevergotestimatedbyBellmantechnique:theygot splitThen(4.25)followsinourmetricsituationaswell. 4.4.2WeightedestimatesfordyadicshiftsviaBellmanfunction Thissectionisherejustforthesakeofcompleteness.Infact,itjustrepeatsthearticleof Nazarov{Volberg[NV].Inthissectionweprovethefollowingtheorem. 158 Theorem4.4.2. Let S m;n beadyadicshiftofcomplexity m + n +1 .Then k S m;n k w 6 C ( m + n +1) a [ w ] 2 : Remark19. Wenoticethatthebestknown a isequaltoone.Itcanbegottenusing thetechniquefrom[HLM+]orfrom[T].However,fortheapplicationwemadeinthe previoussections,namely,thelinear A 2 boundforanarbitraryon{Zygmundoperator ongeometricallydoublingmetricspace,theactualvalueof a isnotimportant. Wedenote ˙ = w 1 .Webeginwiththefollowingfamouslemma. Lemma4.4.3. h j I = j I h w;j I + j I ˜ I ; where 1) j j I j q h w i , 2) j j I j j ( h w;j I ;w ) j w ( I ) ,where w ( I ):= R I w , 3) f h w;j I g I issupportedon I ,orthogonaltoconstantsin L 2 ( w ) , 4) h w;j I assumesoneachson s i ( I ) aconstantvalue, 5) k h w;j I k L 2 ( w ) =1 . Let I w := X sonsof I jh w i ( I ) h w i j : Itisaeasytoseethatthedoublingpropertyofmeasure implies j ( h w;j I ;w ) j C I w ) ( I ) 1 = 2 : (4.27) 159 Therefore,theproperty2)abovecanberewrittenas 2') j j I j C j I w j h w i 1 ( I ) 1 = 2 . Fix ˚ 2 L 2 ( w ) ; 2 L 2 ( ˙ ).Weneedtoprove j ( S m;n ˚w; ˙ ) j C ( n + m +1) a k ˚ k w k k ˙ : (4.28) Remark20. Innextcalculationswedropthesuperscript i and j inHaarfunctions h i I and h w;i I .Thereadershouldalwaysassumethatwesumupoverall i 's. Weestimate( S m;n ˚w; ˙ )as j X L X I;J c L;I;J ( ˚w;h I ) ( ˙;h J ) j X L X I;J j c L;I;J ( ˚w;h w I ) q h w i ( ˙;h ˙ J ) j q h ˙ i j + X L X I;J j c L;I;J h ˚w i I w h w i ( ˙;h ˙ J ) q h ˙ i p I j + X L X I;J j c L;I;J h ˙ i J ˙ h ˙ i ( ˚w;h w I ) q h w i p J j + X L X I;J j c L;I;J h ˚w i h ˙ i I w h w i J ˙ h ˙ i p I p J j =: I + II + III + IV: Wecannoticethatbecause j c L;I;J j p ( I ) p ( J ) ( L ) eachsuminside L canbeestimated byaperfectproductof S and R terms,where R L ( ˚w ):= X I ˆ L::: h ˚w i j I w j h w i ( I ) p ( L ) 160 S L ( ˚w ):= X I ˆ L::: ( ˚w;h w I ) q h w i p ( I ) p ( L ) andthecorrespondingtermsfor ˙ .Sowehave I X L S L ( ˚w ) S L ( ˙ ) ;II X L S L ( ˚w ) R L ( ˙ ) ; III X L R L ( ˚w ) S L ( ˙ ) ;IV X L R L ( ˚w ) R L ( ˙ ) : Now S L ( ˚w ) s X I ˆ L::: j ( ˚w;h w I ) j 2 q h w i ;S L ( ˙ ) s X J ˆ L::: j ( ˙;h ˙ J ) j 2 q h ˙ i (4.29) Therefore, I 6 C [ w ] 1 = 2 A 2 k ˚ k w k k ˙ : (4.30) Terms II;III aresymmetric,soconsider III .UsingBellmanfunction( xy ) onecan provenow Lemma4.4.4. Let Q :=[ w ] A 2 and 2 (0 ; 1 = 2) . Thesequence ˝ I := h w i h ˙ i j I w j 2 h w i 2 + j I ˙ j 2 h ˙ i 2 ( I ) formaCarlesonmeasurewithCarlesonconstantatmost c Q . Proof. Weneedaverysimple Sublemma .Let Q> 1,0 << 1 2 .Indomain Q := f ( x;y ): X>o;y> 0 ; 1 0 ;y> 0.Alsoobviously0 B Q ( x;y ) Q in Q . Proof. Directcalculation. FixnowaChrist'scube I andlet s i ( I ) ;i =1 ;:::;M ,beallitssons.Denote a = ( h w i ; h ˙ i ), b i =( h w i i ( I ) ; h ˙ i i ( I ) ), i =1 ;:::;M ,bepoints{obviously{in Q ,where Q temporarilymeans[ w ] A 2 .Consider c i ( t )= a (1 t )+ b i t; 0 t 1and q i ( t ):= B Q ( c i ( t )). WewanttouseTaylor'sformula q i (0) q i (1)= q 0 i (0) Z 1 0 dx Z x 0 q 00 i ( t ) dt: (4.31) Noticetwothings:Sublemmashowsthat q 00 i ( t ) 0everywhere.Moreover,itshowsthat if t 2 [0 ; 1 = 2],thenthefollowingqualitativeestimateholds q 00 i ( t ) c ( h w i h ˙ i ) ( h w i i ( I ) h w i ) 2 h w i 2 + ( h ˙ i i ( I ) h ˙ i ) 2 h ˙ i 2 (4.32) Thisrequiresasmallexplanation.Ifweareonthesegment[ a;b i ],thenthecoordinate ofsuchapointcannotbelargerthan C h w i ,where C dependsonlyondoublingof (not w ).Thisisobvious.Thesameistrueforthesecondcoordinatewiththeobviouschangeof w to ˙ .Butthereisnosuchtypeofestimatefrombelowonthissegment:thecoordinate cannotbesmallerthan k h w i ,but k may(andwill)dependonthedoublingof w (so 162 ultimatelyonits[ w ] A 2 norm.Infact,atthe\right"endpointof[ a;b i ].Thecoordinate is h w i i ( I ) R I w ( s i ( I )) C R I w ( I ))= C h w i ,with C onlydependingon thedoublingof .Buttheestimatefrombelowwillinvolvethedoublingof w ,whichwe mustavoid.Butif t 2 [0 ; 1 = 2],andweareonthe\lefthalf"ofinterval[ a;b i ]thenobviously thecoordinateis 1 2 h w i andthesecondcoordinateis 1 2 h ˙ i . Wedonotneedtointegrate q 00 i ( t )forall t 2 [0 ; 1]in(4.31).Wecanonlyuseintegration over[0 ; 1 = 2]noticingthat q 00 i ( t ) 0otherwise.Thenthechainrule q 00 i ( t )=( B Q ( c i ( t )) 00 =( d 2 B Q ( c i ( t )( b i a ) ;b i a ) immediatelygivesus(4.32)withconstant c dependingonthedoublingof but independent ofthedoublingof w . Nextstepistoaddall(4.31),withconvexcots ( s i ( I )) ( I ) ,andtonoticethat P M i =1 ( s i ( I )) ( I ) q 0 i (0)= r B Q ( a ) P M i =1 ( a b i ) ( s i ( I )) ( I ) =0,becauseby a = M X i =1 ( s i ( I )) ( I ) b i : Noticethattheadditionofall(4.31),withconvexcots ( s i ( I )) ( I ) givesusnow(wetake intoaccount(4.32)andpositivityof q 00 i ( t )) B Q ( a ) M X i =1 ( s i ( I )) ( I ) B Q ( b i ) cc 1 ( h w i h ˙ i ) M X i =1 ( h w i i ( I ) h w i ) 2 h w i 2 + ( h ˙ i i ( I ) h ˙ i ) 2 h ˙ i 2 : 163 Weusedherethedoublingof again,bynoticingthat ( s i ( I )) ( I ) c 1 (recallthat s i ( I )and I arealmostballsofcomparableradii).Werewritethepreviousinequalityusingour of I w; I ˙ listedaboveasfollows ( I ) B Q ( a ) M X i =1 ( s i ( I )) B Q ( b i ) cc 1 ( h w i h ˙ i ) I w ) 2 h w i 2 + I ˙ ) 2 h ˙ i 2 ( I ) : Noticethat B Q ( a )= h w i h ˙ i .Nowweiteratetheaboveinequalityandgetforany ofChrist'sdyadic I 's: X J ˆ I;J 2D ( h w i h ˙ i ) J w ) 2 h w i 2 + J ˙ ) 2 h ˙ i 2 ( J ) CQ ( I ) : ThisisexactlytheCarlesonpropertyofthemeasure f ˝ I g indicatedinourLemma4.4.4, withCarlesonconstant CQ .Theproofshowedthat C dependedonlyon 2 (0 ; 1 = 2)and onthedoublingconstantofmeasure . Now,usingthislemma,westarttoestimateour S L 'sand R L 's.For S L ( ˙ )wealready hadestimate(4.29). Toestimate R L ( ˚w )letusdenoteby P L maximalstoppingintervals K 2D ;K ˆ L , wherethestoppingcriteriaare1)either j K w j h w i 1 m + n +1 ,or j K ˙ j h ˙ i 1 m + n +1 ,or2) g ( K )= g ( L )+ m . 164 Lemma4.4.5. If K isanystoppingintervalthen X I ˆ K;` ( I )=2 m ` ( L ) jh ˚w i j j I w j h w i ( I ) p ( L ) 2 e ( m + n +1) hj ˚ j w i p ( K ) p ( L ) p ˝ K h w i = 2 h ˙ i = 2 : (4.33) Proof. Ifwestopbythecriterion,then X I ˆ K;` ( I )=2 m ` ( L ) jh ˚w i j j I w j h w i ( I ) p ( L ) 2 X I ˆ K;` ( I )=2 m ` ( L ) jh ˚w i j ( I ) 1 ( K ) ( K ) p ( L ) 2 hj ˚ j w i ( K ) p ( L ) 2( m + n +1) hj ˚ j w i j K w j h w i + j K ˙ j h ˙ i ( K ) p ( L ) 2( m + n +1) hj ˚ j w i p ( K ) p ( L ) p ˝ K h w i = 2 h ˙ i = 2 : Nowreplacing h w i = 2 h ˙ i = 2 by h w i = 2 h ˙ i = 2 doesnotgrowtheestimatebymore than e asallpairsofson/fatherintervalslargerthan K andsmallerthan L willhavethere averagescomparedbyconstantatmost1 1 m + n +1 .Andthereareatmost m suchintervals between K and L . Ifwestopbythesecondcriterion,then K isoneof I 's, g ( I )= g ( L )+ m ,and jh ˚w i j j I w j h w i ( I ) p ( L ) jh ˚w i j ( K ) p ( L ) j K w j h w i hj ˚ j w i p ( K ) p ( L ) p ˝ K h w i = 2 h ˙ i = 2 : Nowwereplace h w i = 2 h ˙ i = 2 by h w i = 2 h ˙ i = 2 asbefore. 165 Now R L ( ˚w ) C ( m + n +1) h w i = 2 h ˙ i = 2 X K 2P L hj ˚ j w i p ( K ) p ( L ) p ˝ K C ( m + n +1) h w i = 2 h ˙ i = 2 X K 2P L hj ˚ j w i 2 ( K ) ( L ) 1 = 2 ( e ˝ L ) 1 = 2 ; where e ˝ L = X K 2P L ˝ K : Noticethatthesequence f e ˝ L g L 2D formaCarlesonsequence(measure)withconstantat most C ( m +1) Q . Nowwemakeatrick!Wewillestimatetherighthandsideas R L ( ˚w ) C ( m + n +1) h w i = 2 h ˙ i = 2 X K 2P L hj ˚ j w i p ( K ) ( L ) 1 =p ( e ˝ L ) 1 = 2 ; where p =2 1 m + n +1 .Infact, X K ˆ L;Kismaximal hj ˚ j w i 2 ( K ) ( L ) p= 2 X K 2P L hj ˚ j w i p ( K ) ( L ) p= 2 : Butifif0 j m ,then( C j ) 1 m + n +1 C ,andthereforeintheformulaabove ( K ) ( L ) 1 1 2( m + n +1) C ( K ) ( L ) ,and C dependsonlyonthedoublingconstantof .So 166 thetrickisTherefore,usingCauchyinequality,onegets R L ( ˚w ) C ( m + n +1) h w i = 2 h ˙ i = 2 X K 2P L hj ˚ j p w i h w i p 1 ( K ) ( L ) 1 =p ( e ˝ L ) 1 = 2 : Wecanreplaceall h w i p 1 by h w i p 1 payingthepricebyconstant.Thisisagainbecauseall intervalslargerthan K andsmallerthan L willhavethereaveragescomparedbyconstant atmost1 1 m + n +1 .Andthereareatmost m suchintervalsbetween K and L .Finally, R L ( ˚w ) C ( m + n +1) h w i = 2 h ˙ i = 2 X K 2P L hj ˚ j p w i ( K ) ( L ) 1 =p h w i 1 1 p ( e ˝ L ) 1 = 2 (4.34) Weneedthestandardnotations:if isanarbitrarypositivemeasurewedenote M f ( x ):=sup r> 0 1 ( B ( x;r )) Z B ( x;r ) j f ( x ) j ( x ) : Inparticular M w willstandforthismaximalfunctionwith = w ( x ) . From(4.34)weget R L ( ˚w ) C ( m + n +1) h w i 1 = 2 h ˙ i = 2 inf L M w ( j ˚ j p ) 1 =p ( e ˝ L ) 1 = 2 (4.35) Now S L ( ˙ ) R L ( ˚w ) C ( m + n +1) h w i 1 = 2 h ˙ i 1 = 2 inf L M w ( j ˚ j p ) 1 =p h ˙ i 1 = 2 ( e ˝ L ) 1 = 2 s X J ˆ L::: j ( ˙;h ˙ J ) j 2 ; (4.36) 167 R L ( ˙ ) R L ( ˚w ) C ( m + n +1) h w i 1 h ˙ i 1 inf L M w ( j ˚ j p ) 1 =p inf L M ˙ ( j j p ) 1 =p e ˝ L : (4.37) NowweusetheCarlesonpropertyof f e ˝ L g L 2D .WeneedasimplefolkloreLemma. Lemma4.4.6. Let f L g L 2D Carlesonmeasurewithintensity B relatedtodyadic lattice D onmetricspace X .Let F beapositivefunctionon X .Then X L (inf L F ) L 2 B Z X F: (4.38) X L inf L F h ˙ i L CB Z X F ˙ : (4.39) Nowuse(4.36).Thentheestimateof III P L S L ( ˙ ) R L ( ˚w )willbereducedto estimating ( m + n +1) Q 1 = 2 X L inf L M w ( j ˚ j p ) 2 =p h ˙ i e ˝ L 1 = 2 ( m + n +1) 2 Q Z R ( M w ( j ˚ j p )) 2 =p w 1 = 2 ( 1 2 p ) 1 =p ( m + n +1) 2 Q Z R ˚ 2 w 1 = 2 ( m + n +1) 3 Q Z R ˚ 2 w 1 = 2 : Hereweused(4.39)andtheusualestimatesofmaximalfunction M in L q ( )when q ˇ 1. Ofcoursefor II weusethesymmetricreasoning. Now IV :weuse(4.37) X L R L ( ˙ ) R L ( ˚w ) ( m + n +1) Q 1 X L inf L M w ( j ˚ j p ) 1 =p inf L M ˙ ( j j p ) 1 =p e ˝ L C ( m + n +1) 2 Q Z R ( M w ( j ˚ j p )) 1 =p ( M ˙ ( j j p )) 1 =p w 1 = 2 ˙ 1 = 2 168 C ( m + n +1) 2 Q Z R ( M w ( j ˚ j p )) 2 =p w 1 = 2 Z R ( M ˙ ( j j p )) 2 =p ˙ 1 = 2 C ( m + n +1) 4 Q Z R ˚ 2 w 1 = 2 Z R 2 ˙ 1 = 2 : Hereweused(4.38)andtheusualestimatesofmaximalfunction M in L 2 =p ( )when p ˇ 2 ;p< 2. 169 BIBLIOGRAPHY 170 BIBLIOGRAPHY [R1]Reznikov,Alexander SharpconstantsinthePaneyah-Logvinenko-Sereda theorem C.R.Math.Acad.Sci.Paris348(2010),no.3-4,141{144. [NR1]Nazarov,A.I.;Reznikov,A.B. Ontheexistenceofanextremalfunction incriticalSobolevtraceembeddingtheorem J.Funct.Anal.258(2010), no.11,3906{3921. [NR2]NazarovA.,ReznikovA., AttainabilityofinthecriticalSobolev traceembeddingtheoremonmanifolds |AmericanMathematicalSoci- etyTranslations{Series2AdvancesintheMathematicalSciences2010;252pp; hardcoverVolume:229. [R2]Reznikov,Alexander Sharpweaktypeestimatesforweightsintheclass A p 1 ;p 2 ,Rev.Mat.Iberoam. 29 (2013),no.2,433{478;doi10.4171/rmi/726; arXiv:1105.4848v1. [RVV]ReznikovA.,VasyuninV.,VolbergA. Anobservation:oftheweight w doesnotincreasethe A p 1 ;p 2 -\norm"of w arXiv:1008.3635 [BR1]BeznosovaO.,ReznikovA. EquivalentofdyadicMucken- houptandReverseolderclassesintermsofCarlesonsequences, weakclasses,andcomparabilityofdyadic L log L and A 1 constants , arXiv:1201.0520;acceptedtoRevistaMatematicaIberoamericana. [BR2]BeznosovaO.,ReznikovA. Sharpestimatesinvolving A 1 and L log L con- stants,andtheirapplicationstoPDE ,arXiv:1107.1885;acceptedtotheSt. PetersburgMathJournal. [RTV]ReznikovA.,TreilS.,VolbergA. Asharpestimateofweighteddyadicshifts ofcomplexity0and1 ,arXiv:1104.5347. [RV2]ReznikovA.,VolbergA. Random\dyadic"latticeingeometricallydou- blingmetricspaceand A 2 conjecture ,arXiv:1103.5246; 171 [NRV]NazarovF.,ReznikovA.,VolbergA. Theproofof A 2 conjectureinageo- metricallydoublingmetricspace ,arXiv:1106.1342;acceptedtotheIndiana UniversityMathJournal. [NRVV]NazarovF.,ReznikovA.,VasyuninV.,VolbergV. A 1 conjectureandBellmanfunctions ,2010.Availableat http://sashavolbordpress.com/2010/11/a11 7loghilb11 21 2010.pdf [CURV]Cruz-UribeD.,ReznikovA.,VolbergA. Logarithmicbumpconditions andthetwoweightboundednessofCaldern-Zygmundoperators , arXiv:1112.0676;submittedtotheAdvancesinMathematics. [NRTV1]Nazarov,F.,Reznikov,A.,Treil,S.,Volberg,A. ABellmanfunctionproofof the L 2 bumpconjecture ,arXiv:1202.2406;acceptedtotheJournald'Analyse Mathematique. [NRTV2]Nazarov,F.,Reznikov,A.,Treil,S.,Volberg,A. Carleson{Buckleymeasures beyondthescopeof A 1 andtheirapplications ,arXiv:1202.2931. [NRV1]NazarovF.,ReznikovA.,VolbergA., Bellmanapproachtotheone-sided bumpingforweightedestimatesofon{Zygmundoperators , arXiv:1306.2653. [RV]Reznikov,A.,Volberg,A. Cauchyindependentmeasuresandsuper- additivityofanalyticcapacity ,arXiv:1211.2675;submittedtotheMathRe- searchLetters. [ACUM]AndersonT.,Cruz-UribeD.,MoenK., Logarithmicbumpconditions foron-ZygmundOperatorsonspacesofhomogeneoustype , arXiv:1308.2026. [B] O.Beznosova ,LinearboundforthedyadicparaproductonweightedLebesgue spaceL2(w).J.Funct.Anal.255(2008),no.4,994{1007 [BMP]BeznosovaO.,MoraesJ.C.,PereyraM.C., SharpboundsforT-Haarmulti- plierson L 2 . ToappearinProceedingsElEscorial2012 [Chr]ChristM., A T ( b ) theoremwithremarksonanalyticcapacityandthe Cauchyintegral ,Colloq.Math. 60/61 (1990),no.2,601-628; 172 [CUMP]Cruz-UribeD.,MartellJ.M.,PerezC., Sharpweightedestimatesforclas- sicaloperators ,Adv.inMath.,229(2012),408{441. [1] D.Cruz-Uribe,J.M.Martell,C.P erez, Weights,Extrapolationandthe TheoryofRubiodeFrancia ,OperatorTheory:AdvancesandApplications,215, Birkhauser,Basel,(2011). [CWW]ChangA.,WilsonM.,WT., Someweightednorminequalitiescon- cerningtheScodingeroperators ,Comment.Math.Helvetici,60(1985), 217{286. [CUMP1]Cruz-UribeD.,MartellJ.M.,PerezC., Weights,Extrapolationandthe TheoryofRubiodeFrancia ,OperatorTheory:AdvancesandApplications, 215,Birkhauser,Basel,(2011) [F]FermanC., Theuncertaintyprinciple ,Bull.Amer.Math.Soc.,9(1983), 129{206 [HavJ]Havin,V.,oricke,B. Theuncertaintyprincipleinharmonicanalysis. ErgebnissederMathematikundihrerGrenzgebiete(3)[ResultsinMathematics andRelatedAreas(3)],28.Springer-Verlag,Berlin,1994.xii+543pp.ISBN: 3-540-56991-X [H]onenT., Thesharpweightedboundforgeneralon-Zygmund operators ,arXiv:1007.4330v1; [HyLa]onenT.,LaceyM., The A p - A 1 inequalityforgeneralon{ Zygmundoperators ,arXiv:1106.4797; [HLM+]onen,T.,Lacey,M.,Martikainen,H.,Orponen,T.,Reguera,M.,Sawyer,E., Uriarte-Tuero,I., Weakandstrongtypeestimatesformaximaltrunca- tionsofon-Zygmundoperatorson A p weightedspaces. J.Anal. Math.118(2012),no.1,177{220; [HM]onenT.,MartikainenH., Non-homogeneous Tb theoremandrandom dyadiccubesonmetricmeasurespaces ,arXiv:0911.4387; [HP]onen,T.Perez,C. Sharpweightedboundsinvolving A 1 .Anal.PDE6 (2013),no.4,777{818. [HPTV]onenT.,PerezC.,TreilS.,VolbergA., Sharpweightedestimatesfor dyadicshiftsandthe A 2 conjecture ,arXiv:1010.0755v2; 173 [KV]KonyaginS.,VolbergA., Onmeasureswiththedoublingcondition. (Rus- sian)Izv.Akad.NaukSSSRSer.Mat. 51 (1987),no.3,666{675;translationin Math.USSR-Izv. 30 (1988),no.3,629{638; [Lac1]Lacey,M. TheTwoWeightInequalityfortheHilbertTransform:A Primer ,arXiv:1304.5004; [Lac2]Lacey,M. TwoWeightInequalityfortheHilbertTransform:AReal VariableCharacterization,II ,arXiv:1301.4663; [Lac3]Lacey,M. Onthe A 2 inequalityforon{ZygmundOperators , arXiv:1106.4802; [LPR]LaceyM.,PetermichlS.,RegueraM., Sharp A 2 inequalityforHaarshift operators ,arXiv:0906.1941; [LSUT]Lacey,M.,Sawyer,S.,Uriarte-Tuero, I.ATwoWeightInequalityforthe HilberttransformAssuminganEnergyHypothesis ,arXiv:1001.4043; [LSSUT]Lacey,M.,Sawyer,S.,Shen,C.Y.,Uriarte-Tuero,I. TwoWeightInequal- ityfortheHilbertTransform:ARealVariableCharacterization,I , arXiv:1201.4319; [L]LernerA., AsimpleproofofA2conjecture ,Intern.Math.Res.Notices IMRN,2012 [L1]LernerA., OnanestimateofCaldern-Zygmundoperatorsbydyadic positiveoperators ,arXiv:1202.1860. [M] H.Martikainen ,Vector-valuednon-homogeneous Tb theoremonmetricmea- surespaces,arXiv:1004.3176; [MP] J.MoraesandM.C.Pereyra , Weightedestimatesfordyadicparaproducts and t -Haarmultiplierswithcomplexity ( m;n ),ArXiv:1108.3109. [NV]Nazarov,F.,Volberg,A. TheBellmanfunction,thetwo-weightHilbert transform,andembeddingsofthemodelspaces K .Dedicatedtothe memoryofThomasH.WJ.Anal.Math.87(2002),385414. [NV1]NazarovF.,VolbergA., Asimplesharpweightedestimateofthedyadic shiftsonmetricspacewithgeometricdoubling ,arxiv1104.4893; 174 [NV2]NazarovF.,VolbergA., Onanalyticcapacityofportionsofcontinuum andaquestionofT.Murai ,Proc.Sympos.PureMath.,79,Amer.Math. Soc.,Providence,RI,2008; [NTV]NazarovF.,TreilS.,VolbergA., The Tb -theoremonnon-homogeneous spaces ,ActaMath.,190(2003),151-239; [NTV2]Nazarov,F.,Treil,S.,Volberg,A. TheBellmanfunctionsandtwo-weight inequalitiesforHaarmultipliers ,J.Amer.Math.Soc.12(1999),no.4,909{ 928 [NTV3]NazarovF.,TreilS.,VolbergA., Twoweightinequalitiesforindividual Haarmultipliersandotherwelllocalizedoperators ,Math.Res.Lett. 15 (2008),no.4,583-597; [NTV4]NazarovF.,TreilS.,VolbergA., TwoweightestimatefortheHilberttrans- formandcoronadecompositionfornon-doublingmeasures ,Preprint 2005,arXiv:1003.1596; [Pan]Panejah,B. SometheoremsofPaley-Wienertype. Dokl.Akad.NaukSSSR 13847{50(Russian);translatedasSovietMath.Dokl.21961533536. [P] C.P erez, Weightednorminequalitiesforsingularintegraloperators .J.London Math.Soc.(2) 49 (1994),no.2,296{308 [Pe] C.P erez OnconditionsfortheboundednessoftheHardy-Littlewood maximaloperatorbetweenweighted L p -spaceswithentweights. Proc.Lon- donMath.Soc. 71 (1995),No.3,135{157. [PTV]PerezC.,TreilS.,VolbergA., On A 2 conjectureandcoronadecomposition ofweights ,arXiv:1006.2630; [Pet1]Petermichl,S. ThesharpboundfortheHilberttransformonweighted Lebesguespacesintermsoftheclassical A p characteristic. Amer.J. Math.129(2007),no.5,1355{1375. [Pet2]Petermichl,S. ThesharpweightedboundfortheRiesztransforms .Proc. Amer.Math.Soc.136(2008),no.4,1237{1249. [RegS]Reguera,M.,Scurry,J., Onjointestimatesformaximalfunctionsand singularintegralsonweightedspaces .Proc.Amer.Math.Soc.141(2013), no.5,1705{1717. 175 [RegTh]Reguera,M.,Thiele,C. TheHilberttransformdoesnotmap L 1 ( Mw ) to L 1 ; 1 ( w ) . Math.Res.Lett.19(2012),no.1,1{7; [SlVa]SlavinL.,VasyuninV., Sharpresultsintheintegral-formJohn-Nirenberg inequality. Trans.Amer.Math.Soc.363(2011),no.8,4135{4169 [St]SteinE., Noteontheclass L log L . StudiaMath.,31:305-310,1969. [Tol]TolsaX., Analyticcapacity,theCauchytransform,andnon- homogeneouson-Zygmundtheory. Toappear(2012). [T]TreilS., Sharp A 2 estimatesofHaarshiftsviaBellmanfunction , arXiv:1105.2252v1; [Va1]VasyuninV., Theexactconstantintheinverseolderinequalityfor Muckenhouptweights .St.PetersburgMathematicalJournal,15:49{79,2004. [Va2]VasyuninV., Mutualestimatesof L p -normsandtheBellmanfunc- tion Journalofmathematicalscience,Volume156,Number5,766{798,DOI: 10.1007/s10958-009-9288-3; [VaVo] V.Vasyunin,A.Volberg , TheBellmanfunctionforthesimplesttwo-weight inequality:aninvestigationofaparticularcase ,St.PetersburgMath.J.18 (2007),no.2,201{222. [V]VolbergV., on-Zygmundcapacitiesandoperatorsonnonhomo- geneousspaces. CBMSRegionalConf.Ser.inMath.100,Amer.Math.Soc., Providence,2003. [Wil]WilsonM., WeightedLittlewood-PaleyTheoryandExponential-Square Integrability LectureNotesinMathematics,1924.Springer,Berlin,2008. xiv+224pp.ISBN:978-3-540-74582-2 [W]Wittwer,J. Asharpestimateonthenormofthemartingaletransform . Math.Res.Lett.7(2000),no.1,1{12. 176