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ABSTRACT

WEIGHTED NORM INEQUALITIES FOR CALDERÓN–ZYGMUND
OPERATORS

By

Aleksandr B. Reznikov

Given a Calderón-Zygmund operator T and two weights u and v, we study sufficient

conditions for this operator to be bounded from the space Lp(u) to Lp(v). We also study

sharp bounds for the corresponding norm. Further, we study a question about conditions

for boundedness of all Calderón-Zygmund operators from Lp(u) to Lp(v). We do it in the

Euclidian setting and in metric spaces.

Finally, we study the limiting case p = 1 and the case u = v, when the operator has a

chanse to be weakly bounded, i.e. bounded from the space L1(u) to the space L1,∞(u).

In particular, we disprove the “A1 conjecture”, prove the “A2 conjecture” in the metric

space setting, prove the “bump conjecture” for p = 2; moreover, we state the “separated

bump conjecture” and prove it in several particular cases.
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Chapter 1

Preliminary notation, definitions and

theorems

1.1 Preliminary notation and definitions

We begin with some notation and definitions that are needed throughout this thesis.

Definition 1 (Weight). By a weight in Rn we call a funtion w, which is positive almost

everywhere and locally integrable with respect to the Lebesgue measure dx.

Definition 2 (Calderón-Zygmund kernel). A function K : Rn×Rn → R is called a Calderón-

Zygmund kernel if there exist positive numbers C and ε such that the following conditions

are satisfied:

|K(x, y)| 6 C

|x− y|n
(1.1)

|K(x, y)−K(x′, y)| 6 C
|x− x′|ε

|x− y|n+ε if |x− x′| < 1

2
|x− y| (1.2)

|K(x, y)−K(x, y′)| 6 C
|y − y′|ε

|x− y|n+ε if |y − y′| < 1

2
|x− y|. (1.3)

Definition 3 (Calderón-Zygmund Operator). An operator T is called a Calderón-Zygmund

1



operator, if there exists a Calderón-Zygmund Kernel K, such that

For any f ∈ C∞0 , and any x 6∈ suppf : Tf(x) =

∫
K(x, y)f(y)dy (1.4)

T is a bounded operator from L2(dx) to L2(dx). (1.5)

An example of a Calderón-Zygmund operator in dimension one is Hilbert transform H

with kernel K(x, y) = 1
x−y . An example of a Calderón-Zygmund operator in dimension n is

Rietz transform with vector-valued kernel K(x, y) = x−y
|x−y|n+1 .

Notation 1. For a set Q ⊂ Rn and a function ϕ we denote

〈ϕ〉
Q

=
1

|Q|

∫
Q

ϕ(x)dx,

where |Q| is the Lebesgue measure of the set Q.

Definition 4 (The Ap class). Let 1 < p <∞. A weight w belongs to a class Ap on a cube

I (where I is allowed to be equal to Rn) if the following holds:

For every cube J ⊂ I : 〈w〉
J
〈w−

1
p−1 〉p−1

J
6 Q.

The best constant Q is called the Ap characteristic of w and is denoted by [w]p.

Definition 5 (The RHp class). Let 1 < p < ∞. A weight w belongs to a class RHp on a

cube I (where I is allowed to be equal to Rn) if the following holds:

For every cube J ⊂ I : 〈wp〉
1
p
J 6 R〈w〉

J
.

2



The best constant R is called the RHp characteristic of w and is denoted by [w]RHp .

As one can see, these definitions do not work for p = 1 and p = ∞. However, if we

carefully consider the limit of the left-hand side, we get the following.

Definition 6 (The limiting cases). 1. A weight w belongs to a class A1 on a cube I

(where I is allowed to be equal to Rn) if the following holds:

For every cube J ⊂ I : 〈w〉
J
6 Q inf

J
w.

The best constant Q is called the A1 characteristic of w and is denoted by [w]1.

2. A weight w belongs to a class A∞ on a cube I (where I is allowed to be equal to Rn)

if the following holds:

For every cube J ⊂ I : 〈w〉
J
6 Qe

〈log(w)〉J .

The best constant Q is called the A∞ characteristic of w and is denoted by [w]∞.

3. A weight w belongs to a class RH1 on a cube I (where I is allowed to be equal to Rn)

if the following holds:

For every cube J ⊂ I : 〈 w

〈w〉
J

log
w

〈w〉
J

〉
J
6 R.

The best constant R is called the RH1 characteristic of w and is denoted by [w]RH1
.

Next definitions will concern so-called “dyadic models” for Calderón-Zygmund operators.

We make use of these models for weighted estimates of the operators.
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Notation 2. If I is a cube in Rn then by `(I) we denote the sidelength of I.

Definition 7 (Dyadic grid). A dyadic grid D is a union of collections of cubes Dk, such

that:

1. For a fixed k cubes in Dk do not intersect, and for I ∈ Dk: `(I) = 2−k.

2. For any cube I ∈ Dk+1 there exists a unique cube J ∈ Dk, such that I ⊂ J . In this

situation I is called a dyadic child of J ; J is called the dyadic father of I.

Elements of D are called dyadic cubes.

Definition 8 (Carleson sequense). Fix a dyadic grin D. A sequense {aI}I∈D is called

C-Carleson, if for any interval J ∈ D the following inequality holds:

∑
I⊂J

aI |I| 6 C|J |.

Definition 9 (Generalized Haar function). Given a dyadic cube J , hJ is a (generalized)

Haar function associated to a cube J if

hJ (x) =
∑

I∈ch(J)

cIχJ (x),

where ch(J) is the set of dyadic children of J and |cI | ≤ 1.

Definition 10 (Generalized Haar shift). We say that an operator S has a Haar shift kernel

of complexity (m,n) if

Sf(x) =
∑
J

SJ (f),

4



where

SJ (f) =
1

|J |
∑

I,I′⊂J
`(I)=2−n`(J)

`(I′)=2−m`(J)

(f, hI)hI′

and hI and hI′ are generalized Haar functions associated to the cubes I and I ′ respectively.

We say that S is a Haar shift of complexity (m,n) if it has a Haar shift kernel of complexity

(m,n), and it is bounded on L2(dx).

Definition 11 (Positive shift). We say that an operator S is a positive shift, if there exists

a 2-Carleson sequense {aI}I∈D, such that

Sf(x) =
∑
J∈D

aJ 〈f〉JχJ .

Definition 12 (Orlitz norm). Given a Young function Φ we define the corresponding Orlitz

norm on a cube J by

‖f‖J,Φ = ‖f‖
LΦ(J)

= ‖f‖
LΦ
J

= inf

{
λ > 0 :

1

|J |

∫
J

Φ
(
|f(x)|/λ

)
dx ≤ 1

}
.

Finally, we translate several notions to the metric space setting.

Definition 13 (Doubling metric space). A space X with a metric ρ is called doubling if there

exists a measure µ on X and a constant C, such that for any ball B(x, r) = {y : ρ(x, y) < r}

the following holds:

µ(B(x, 2r)) 6 Cµ(B(x, r)).

In what follows all metric spaces are assumed to be doubling.

Definition 14 (A Calderón-Zygmund kernel). Let λ(x, r) be a positive function, increas-

5



ing and doubling in r, i.e. λ(x, 2r) 6 Cλ(x, r), where C does not depend on x and r.

K(x, y) : X × X → R is a Calderón-Zygmund kernel, associated to a function λ, if there

exist positive numbers C, ε, such that

|K(x, y)| 6 C min

(
1

λ(x, ρ(x, y))
,

1

λ(y, ρ(x, y))

)
, (1.6)

|K(x, y)−K(x′, y)| 6 C
ρ(x, x′)|ε

ρ(x, y)ελ(x, ρ(x, y))
, ρ(x, y) > Cρ(x, x′), (1.7)

|K(x, y)−K(x, y′)| 6 C
ρ(y, y′)ε

ρ(x, y)ελ(y, ρ(x, y))
, ρ(x, y) > Cρ(y, y′). (1.8)

Definition 15 (Calderón-Zygmund operator). Let λ and K be as in the previous definition.

Let µ be a measure on X, such that µ(B(x, r)) 6 Cλ(x, r), where C does not depend on x

and r. We say that T is a Calderón-Zygmund operator with kernel K if

T is bounded L2(µ)→ L2(µ), (1.9)

Tf(x) =

∫
K(x, y)f(y)dµ(y), ∀x 6∈ suppfdµ. (1.10)

Definition 16 (A2 weights in metric spaces). Let µ be a doubling measure. We say that a

weight w belongs to A2,µ if

[w]2,µ = sup
x,r

1

µ(B(x, r))

∫
B(x,r)

wdµ · 1

µ(B(x, r))

∫
B(x,r)

w−1dµ <∞.

The measure µ will always be fixed and we will supress the subindex µ.
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1.2 Some known theorems

In this section we collect the theorems that are known and that we will use without proofs.

Theorem 1.2.1 (Hytönen’s decomposition). In a space Rd, set D0 = {2−k([0, 1)d+m) : k ∈

Z,m ∈ Zd}. For a binary family ω = (ωj)j∈Z, ωj ∈ {0, 1}, set I+ω = I+
∑

j : 2−j<`(I)

2−jωj.

Denote Dω = {I+ω : I ∈ D0}. For the canonical probability on set of binary sequences, and

for a Calderón-Zygmund operator T it is true that

(Tf, g) = c(T ) · Eω
∑

i>0,j>0

τij(S
ij
ω f, g), f, g ∈ C∞0 ,

where τij 6 c2−i+j, and S
ij
ω is a generalized dyadic shift of complexity (i, j).

In the Section 4.3 we prove a version of this theorem for metric spaces. The next theorem

is another way to estimate a Calderón-Zygmund operator.

Theorem 1.2.2 (Lerner’s decomposition). For a Calderón-Zygmund operator T and a func-

tion Banach space X it is true that

‖T‖X 6 C(T,X) · sup ‖S‖X ,

where S is a positive dyadic shift with a 2-Carleson sequense {aI}. The supremum is taken

over all dyadic grids on Rd and all 2-Carleson sequences.

The next theorem shows how to estimate such operators.
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Theorem 1.2.3. Let S be a positive Haar shift of complexity (m,n). Then

‖S(·σ)‖Lp(σ)→Lp(u)

6 τ‖M(·σ)‖Lp(σ)→Lp(u) + sup
Q

‖χQS(χQσ)‖Lp(u)

σ(Q)
1
p

+ sup
Q

‖χQS∗(χQu)‖
Lp
′
(σ)

u(Q)
1
p′

, (1.11)

where M is the Hardy-Littlewood maximal function.
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Chapter 2

Two weight estimates

2.1 Main results

Suppose T is a Calderón-Zygmund operator on R, and u, v are weights. By Tu we denote

the operator that acts as Tu(f) = T (fu). The question one asks it the following:

What conditions should weights u and v have to assure that the operator Tu is bounded

from L2(u) to L2(σ)?

Thus questions got some attention recently in the works of F. Nazarov, S. Treil, A.

Volberg, A. Lerner, M. Lacey, E. Sawyer, C.Y. Shen, I. Uriarte-Tuero, D. Cruz-Uribe, C.

Perez, J.M. Martell.

This question was considered for individual operators: Haar shift, see [NTV2, NTV3]

and Hilbert Transform, see [NTV4, LSUT, LSSUT, Lac1, Lac2]. The conditions in these

questions were formulated in terms of these individual operators.

In our papers [CURV, NRTV1, NRTV2, NRV1] we consider the “bump” approach to this

problem. We give a condition on weights u, σ which assures that for any Calderón-Zygmund

Operator T, Tu is bounded from L2(u) to L2(σ). In [CURV] we also have some Lp results.

The “bump” condition appears from the famous Sarason conjecture.

Conjecture. If there exists a number R, such that for any interval I we have Pu(z) ·Pv(z) 6

9



R, then the Hilbert Transform Hu is bounded from L2(u) to L2(σ). Here

Pu(z) =

∫
R

Imz

(Rez − t)2 + (Imz)2
u(t)dt.

This conjecture is known to be false, see [NV] or [LSUT] for a counterexample.

The bump approach appeared in works of C. Fefferman, [F], Chang-Wilson-Wolf, [CWW].

For more history we refer the reader to the book [CUMP1]. In fact, the A2 condition for

a weight w reads as 〈w〉
I
〈w−1〉

I
6 Q. In our setting we have two weights u, v, and the

condition 〈u〉
I
〈v〉

I
6 Q is even weaker than the one in the Sarason conjecture (just take

z = cI + |I|i, where cI is the center of the interval I). We notice that 〈u〉
I

is the squared

L2(dx|I|) norm of the function u
1
2 on the interval I. We try to consider a stronger norm.

Precisely, let A : [0,∞) → [0,∞) be a Young function. In [CURV] we prove the following

theorems.

Theorem 2.1.1 (Separated bump conjecture). Suppose A(t) = t2 log1+ε(t). Then if for

any interval I

‖u
1
2‖I,A〈σ〉

1
2
I + ‖σ

1
2‖I,A〈u〉

1
2
I 6 Q,

then the operator Tu is bounded from L2(u) to L2(σ).

The same is true for A(t) = t2 log(t)(log log(t))1+ε for sufficiently big ε.

Theorem 2.1.2 (Weak separated bump conjecture). Suppose A(t) = t2 log1+ε(t). Then if

for any interval I

‖v
1
2‖I,A〈u〉

1
2
I 6 Q,

then the operator Tu is bounded from L2(u) to L2,∞(v).

The same is true for A(t) = t2 log(t)(log log(t))1+ε for sufficiently big ε.
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Theorem 2.1.3 (Bump conjecture). Suppose Φ(t) is a young function, such that 1
Φ(t)

is

integrable at ∞. Then if for any interval I

‖u‖I,Φ · ‖v‖I,Φ 6 Q,

then the operator Tw is bounded from L2(u) to L2(v).

Notice that while the bump conjecture is proven in full, the separated bump conjecture

is proven only for some functions A. In what follows we give the precise conditions on A for

which we can prove the result.

2.2 The stopping time approach to the separated bump conjecture

We start with the following definition.

Definition 17. We will say that a Young function Ā satisfies the Bp′ condition, 1 < p <∞,

if for some c > 0, ∫ ∞
c

Ā(t)

tp
′
dt

t
<∞.

If A and Ā are doubling (i.e., if A(2t) ≤ CA(t), and similarly for Ā), then Ā ∈ Bp if and

only if ∫ ∞
c

(
tp

A(t)

)p′−1 dt

t
<∞.

Examples of such bumps are

A(t) = tp log(e+ t)p−1+δ, Ā(t) ≈ tp
′

log(e+ t)1+δ′
, (2.1)
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B(t) = tp
′
log(e+ t)p

′−1+δ, B̄(t) ≈ tp

log(e+ t)1+δ′′
, (2.2)

where δ > 0, δ′ = δ/(p − 1), δ′′ = δ/(p′ − 1) Given p, 1 < p < ∞, let A and B be Young

functions such that Ā ∈ Bp′ and B̄ ∈ Bp. Our main condition on weights u and σ will be

sup
Q
〈u〉1/p

Q
‖σ1/p′‖B,Q <∞, (2.3)

sup
Q
‖u1/p‖A,Q〈σ〉1/p

′
Q

<∞. (2.4)

Remark 1. By the properties of the Luxemburg norm we have that either condition implies

the two-weight Ap condition:

sup
Q
〈u〉1/p

Q
〈σ〉1/p

′
Q

<∞. (2.5)

Recall that the Hardy-Littlewood maximal operator is defined to be

Mf(x) = sup
Q3x
〈|f |〉

Q
= sup
Q3x
‖f‖1,Q.

Given a Young function A, we define the Orlicz maximal operator MA by

MAf(x) := sup
Q3x
‖f‖A,Q.

The following result is due to Pérez [Pe] (see also [1]).

Theorem 2.2.1. Fix p, 1 < p <∞, and let A be a Young function such that A ∈ Bp. Then

MA : Lp → Lp.

The Bp condition is also sufficient for a two-weight norm inequality for the Hardy-

Littlewood maximal operator. This result is also due to Pérez [Pe, 1].
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Theorem 2.2.2. Fix p, 1 < p < ∞, and let B be a Young function such that B̄ ∈ Bp. If

the pair of weights (u, σ) satisfies

sup
Q
〈u〉1/p

Q
‖σ1/p′‖B,Q <∞, (2.6)

then

‖M(fσ)‖Lp(u) ≤ C‖f‖Lp(σ). (2.7)

By the decomposition theorem of Lerner, to prove the separated bump conjecture it will

suffice to prove that they hold for a positive dyadic shift. More precisely we will prove the

following.

Theorem 2.2.3. Given p, 1 < p < ∞, suppose A and B are log-bumps of the form (2.1),

(2.2), and the pair of weights (u, σ) satisfies (2.3) and (2.4). Given any positive dyadic shift

S it holds that

‖S(fσ)‖Lp(u) ≤ C‖f‖Lp(σ).

Theorem 2.2.4. Given p, 1 < p < ∞, suppose A is a log-bump of the form (2.1), and the

pair of weights (u, σ) satisfies (2.4). Given any positive dyadic shift S it holds that

‖S(fσ)‖Lp,∞(u) ≤ C‖f‖Lp(σ).

By the Theorem 1.2.3 is suffices to estimate ‖χIS(χIσ)‖Lp(u). The dual estimate will be

the same.
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Fix a cube Q0; using the notation from the definition of a Haar shift, we have that

χQ0
S(χQ0

σ) =
∑
R⊂Q0

SR(σ) + χQ0

∑
R,Q0(R

SR(χQ0
σ) 6

∑
R⊂Q0

SR(σ) + χQ0
〈σ〉

Q0
. (2.8)

The second inequality is straightforward: see, for instance, [H, HyLa, HLM+, HPTV]. As

we noted above, the pair (u, σ) satisfies the two-weight Ap condition (2.5). Therefore, the

Lp(u) norm of the second term is bounded by

‖χQ0
‖Lp(u)〈σ〉Q0

= 〈u〉1/p
Q0
〈σ〉1/p

′
Q0

σ(Q0)1/p ≤ Cσ(Q0)1/p .

To estimate the Lp(u) norm of the first term, we form the following decomposition

(see [HyLa]):

K = Ki = {Q ⊂ Q0 : `(Q) = 2i+τn}, n ∈ Z;

Ka = {Q ∈ K : 2a 6 〈u〉
1
p
Q〈σ〉

1
p′
Q < 2a+1};

Pa0 = all maximal cubes in Ka;

Pan =
{

maximal cubes P ′ ⊂ P ∈ Pan−1, such that P ′ ∈ Ka, 〈σ〉
P ′

> 2〈σ〉
P

}
;

Pa =
⋃
n>0

Pan.

Following the terminology from [LPR], we call members of Pa principal cubes.

Hereafter we suppress the index i; this will give us a sum with τ+1 terms. Given Q ∈ Ka,

let Π(Q) denote the minimal principal cube that contains it, and define

Ka(P ) = {Q ∈ Ka : Π(Q) = P}.
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We will estimate the Lp(u) norm of the first sum on the right-hand side of (2.8) using

the exponential decay distributional inequality originated in [LPR]. Below, S is any positive

generalized Haar shift that is bounded on unweighted L2. In particular, we will take S to

be one of the positive Haar shifts SL from above.

We need the following notation. For a family S we denote

SQ =
∑
Q∈Q

SQ.

The following distributional inequality holds.

Theorem 2.2.5. There exists a constant c, depending only on the dimension and the un-

weighted L2 norm of the shift, such that for any P ∈ Pa,

u

(
x ∈ P : |SKa(P )(σ)| > t

σ(P )

|P |

)
. e−c t u(P ).

It follows from Theorem 2.2.5 that for some positive constant c,

‖
∑
R(Q

SR(σ)‖Lp(u) 6 Cτ
∑
a

 ∑
P∈Pa

u(P )

(
σ(P )

|P |

)p1
p

. (2.9)

We sketch the proof of (2.9) following the beautiful calculations in [HyLa]:

∑
R(Q

SR(σ) =
τ∑
i=0

∑
a

∑
P∈Pa

SKa(P )(σ) ,
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and so

‖
∑
R(Q

SR(σ)‖Lp(u) 6 (τ + 1)
∑
a

‖
∑
P∈Pa

SKa(P )(σ)‖Lp(u) .

Fix a. Using Fubini’s theorem we write

‖
∑
P∈Pa

SKa(P )(σ)‖Lp(u)

=

(∫ (∑
j

∑
P∈Pa

χ
{SKa(P )(σ)∈(j,j+1]

σ(P )
|P | }

SKa(P )(σ)(x)

)p
u(x) dx

)1/p

≤
∑
j

(j + 1)

(∫ [ ∑
P∈Pa

χ
{SKa(P )(σ)∈(j,j+1]

σ(P )
|P | }

σ(P )

|P |

]p
u(x) dx

)1/p

.

By the choice of the stopping cubes P ∈ Pa we have that

[ ∑
P∈Pa

χ
{SKa(P )(σ)∈(j,j+1]

σ(P )
|P | }

σ(P )

|P |

]p
.
∑
P∈Pa

χ
{SKa(P )(σ)∈(j,j+1]

σ(P )
|P | }

(
σ(P )

|P |

)p
.

Let us explain it. Take a point x and nested cubes P0 ⊃ P1 ⊃ . . . ⊃ PN , Pk ∈ Pank , x ∈ Pk,

and x ∈ {SKa(P )(σ) ∈ (j, j+ 1]
σ(P )
|P | } (i.e., for which the terms in sums above are non-zero).

By definition of Pank we have 〈σ〉
Pk

> 2〈σ〉
Pk−1

. The inequality may be much better if we

skip several generations, but 2 in the right-hand side is guaranteed. We have a sequense

yk =
σ(Pk)
|Pk|

. The inequality says that

(∑
k

yk

)p
6 C

∑
k

y
p
k.

Notice that yk > 2yk−1. Thus,

∑
k

yk 6
N∑
k=0

1

2N−k
yN . yN .
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Therefore, (∑
k

yk

)p
. y

p
N 6

∑
k

y
p
k.

This beautiful observation from [HyLa] lets us write

‖
∑
P∈Pa

SKa(P )(σ)‖Lp(u)

.
∑
j

(j + 1)

( ∑
P∈Pa

(
σ(P )

|P |

)p
u(SKa(P )(σ) ∈ (j, j + 1]

σ(P )

|P |
)

)1/p

.

Then by the distributional inequality from Theorem 2.2.5:

‖
∑
P∈Pa

SKa(P )(σ)‖Lp(u) .
∑
j

(j + 1)e−cj/p
( ∑
P∈Pa

(
σ(P )

|P |

)p
u(P )

)1/p

.

This gives us (2.9).

It is at this point in the proof that we can no longer assume that our pair of weights

(u, σ) satisfies the general Ap bump condition and we must instead make the more restrictive

assumption that we have log bumps. Before doing so, however, we want to show how the proof

goes and where the problem arises for general bumps. We will then give the modification

necessary to make this argument work for log bumps.

Define the sequence

µQ =


|P |, Q = P , for some cube P ∈ Pa

0, otherwise;
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then the inner sum in (2.9) becomes

∑
Q⊂Q0

u(Q)

|Q|

(
σ(Q)

|Q|

)p
µQ.

But by Hölder’s inequality in the scale of Orlicz spaces,

σ(Q)

|Q|
= 〈σ

1
pσ

1
p′ 〉

Q
6 C‖σ

1
p′ ‖Q,B‖σ

1
p‖Q,B̄ 6 ‖σ

1
p′ ‖Q,B inf

x∈Q
MB̄(σ

1
pχQ). (2.10)

Therefore, by (2.3),

∑
Q⊂Q0

u(Q)

|Q|

(
σ(Q)

|Q|

)p
µQ 6 Kp

∑
Q⊂Q0

µQ inf
x∈Q

MB̄(σ
1
pχQ)p. (2.11)

To complete the proof we need two lemmas. The first can be found in [LPR], formula

(3.3).

Lemma 2.2.6. {µQ} is a Carleson sequence.

The second is a folk theorem; a proof can be found in [MP].

Lemma 2.2.7. If {µQ} is a Carleson sequence, then

∑
Q⊂Q0

µQ inf
Q
χQ0

F (x) .
∫
Q0

F (x)dx.
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Combining these two lemmas with Theorem 2.2.1 (since B̄ ∈ Bp) we see that

∑
Q

u(Q)

|Q|

(
σ(Q)

|Q|

)p
µQ 6 Kp

∑
Q ,Q⊂Q0

µQ inf
x∈Q

MB̄(σ
1
pχQ0

)p

. Kp‖MB̄(σ
1
pχQ0

)‖p
Lp(dx)

. Kp‖σ
1
pχQ0

‖p
Lp(dx)

= Kpσ(Q0).

This would complete the proof except that we must now sum over a, and in (2.9) this sum

goes from −∞ to the logarithm of the two-weight Ap constant of the pair (u, σ). We cannot

evaluate this sum unless we can modify the above argument to yield a decay constant in a.

In the one-weight argument in [HyLa] the authors could use the fact that the parameter a

run from 0 to the logarithm of Ap constant: this follows since by Hölder’s inequality the Ap

constant of any weight is at least 1. In the two-weight case the Ap constant can be arbitrarily

small, and therefore we must sum over infinitely many values of a. We are able to get the

desired decay constant only by assuming that we are working with log bumps.

We modify the above argument as follows. Essentially, we will use the properties of log

bumps to replace B̄ with a slightly larger Young function. Define B0(t) = tp
′
log(e+t)p

′−1+δ
2 ;

then we again have that B̄0 ∈ Bp. Instead of (2.11) we will prove that there exists γ,

0 < γ < 1, such that

∑
Q⊂Q0

u(Q)

|Q|

(
σ(Q)

|Q|

)p
µQ 6 CγK

(1−γ)p2aγp
∑
Q⊂Q0

µQ inf
x∈Q

MB̄0
(σ

1
pχQ0

)p. (2.12)

Given inequality (2.12), we can repeat the argument above, but we now have the decay term

2aγp which allows us to sum in a and get the desired estimate.
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To prove (2.12) suppose for the moment that there exists γ such that

‖σ
1
p′ ‖Q,B0

≤ C1‖σ
1
p′ ‖1−γQ,B‖σ

1
p′ ‖γ

Lp
′
(Q,dx/|Q|)

. (2.13)

Given this, fix a cube Q ∈ Pa—we can do this since otherwise µQ = 0. Then

u(Q)

|Q|

(
σ(Q)

|Q|

)p
. 〈u〉Q‖σ1/p′‖pB0,Q

‖σ1/p‖p
B̄0,Q

. 〈u〉Q‖σ1/p′‖(1−γ)p
B,Q ‖σ1/p′‖γp

Lp
′
(Q,dx/|Q|)

‖σ1/p‖p
B̄0,Q

= (〈u〉1/pQ ‖σ
1/p′‖B,Q)(1−γ)p · (〈u〉1/pQ ‖σ

1/p′‖
Lp
′
(Q,dx/|Q|)

)γp · ‖σ1/p‖p
B̄0,Q

. K(1−γ)p · (〈u〉1/pQ 〈σ〉
1/p′
Q )γ p · ‖σ1/p‖p

B̄0,Q

. K(1−γ)p · 2aγp · ‖σ1/p‖p
B̄0,Q

. K(1−γ)p · 2aγp · inf
x∈Q

MB̄0
(σ

1
pχQ0

)p.

Inequality (2.12) now follows immediately.

Therefore, to complete the proof we must establish (2.13). By the rescaling properties of

the Luxemburg norm [1, Section 5.1], the right-hand side of this inequality is equal to

‖σ
1−γ
p′ ‖C,Q‖σ

γ
p′ ‖p′/γ,Q,

where C(t) = B(t
1

1−γ ). Therefore, by the generalized Hölder’s inequality in Orlicz spaces

([1, Lemma 5.2]), inequality (2.13) holds if for all t > 1,

C−1(t)t
γ
p′ . B−1

0 (t). (2.14)
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A straightforward calculation (see [1, Section 5.4]) shows that

C−1(t) = B−1(t)1−γ ≈ t
1−γ
p′

log(e+ t)
1−γ
p +

δ(1−γ)
p′

, B−1
0 (t) ≈ t

1
p′

log(e+ t)
1
p+ δ

2p′
.

By equating the exponents on the logarithm terms, we see that (2.14) holds if we take

γ =
δ

2(p′ − 1 + δ)
.

Therefore, with this value of γ inequality (2.13) holds, and this completes our proof.

For the convenience of the reader we give a direct proof of (2.13); this computation will

also be used below in Section 2.2.2. The desire inequality obviously follows from the following

lemma.

Lemma 2.2.8. Given a probability measure µ, let f be a non-negative measurable function.

Let B,B0 be logarithmic bumps as in (2.2) with δ = τ and δ = τ
2 respectively. Then there

exists an absolute constant C and γ = γ(p′, τ) > 0 such that

‖f‖B0,µ
≤ C ‖f‖1−γB,µ ‖f‖

γ

Lp
′
(µ)

. (2.15)

Proof. We will actually show that γ = 1

2+(p′−1) 2
τ

. Define ∆ :=
∫
|f |p′ dµ. Since inequal-

ity (2.15) is homogeneous, we may assume without loss of generality that

‖f‖B,µ = 1 . (2.16)

Moreover, we may assume that ∆ ≤ 1: otherwise (2.15) can be achieved by choosing C
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sufficiently large. Let ε < 1 and K be constants; we will determine their precise value (in

this order) below. Then we have that

∫
fp
′

εp
′ log

(
e+

f

ε

)p′−1+τ
2
dµ

≤
∫
{f≤Kε}

· · ·+
∫
{f≥Kε}

. . .

≤ ∆

εp
′ [log(e+K)]p

′−1+τ
2 +

∫
{f≥Kε}

fp
′

εp
′

log(e+ f
ε )p
′−1+τ

[log(e+K)]
τ
2

dµ

≤ ∆

εp
′ [log(e+K)]p

′−1+τ
2 +

∫
fp
′

εp
′

log(eε + f
ε )p
′−1+τ

[log(e+K)]
τ
2

dµ

≤ ∆

εp
′ [log(e+K)]p

′−1+τ
2

+
1

εp
′
[log(e+K)]τ/2

[ ∫
fp
′
logp

′−1+τ (e+ f) dµ+

∫
fp
′
log(ε−1)p

′−1+τ dµ

]
≤ ∆

εp
′ [log(e+K)]p

′−1+τ
2 +

1

εp
′
[log(e+K)]τ/2

[
1 + ∆ log(ε−1)p

′−1+τ
]
.

In the last line we used (2.16). Fix ε so that

∆ = (εp
′
)1+c ,

where c = 1 + (p′ − 1)2
τ . In other words,

ε = (∆1/p′)γ = ‖f‖γ
Lp
′
(µ)

, γ =
1

1 + c
.

Now choose K so that

[log(e+K)]τ/2 ≈ ε−p
′
;
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then

[log(e+K)]p
′−1+τ/2 ≈ (ε−p

′
)1+(p′−1) 2

τ =: (ε−p
′
)c .

If we substitute these values into the above calculation, we see that the right hand side is

dominated by a constant. Hence, by the definition of the Luxemburg norm,

‖f‖B0,µ
≤ C ε = C ‖f‖γ

Lp
′
(µ)

.

This completes the proof.

Remark 2. The conjugate testing condition can be verified similarly. The adjoint S∗ is also

a Haar shift, and so we can apply the distribution inequality from Theorem 2.9 to it. Also,

the second sum in (2.8) will have the same pointwise estimate (exchanging σ and v) if we

replace S with S∗.

Remark 3. In the proof of the first testing condition we only used the bump condition (2.3);

to prove the second testing condition we use the second bump condition (2.4).

2.2.1 Proof of Theorem 2.2.4

The proof of the weak-type inequality uses essentially the same argument as above; here we

sketch the changes required. We repeat the argument, replacing the Lp(u) norm with the

Lp,∞(u) norm. Since the pair (u, σ) satisfies the two-weight Ap condition we have the well

known inequality that

‖M(fσ)‖Lp,∞(u) ≤ C‖f‖Lp(σ),

where the constant C depends only on the Ap constant and the dimension. Therefore it

remains to estimate the Lp,∞(u) norm of SL(|f |σ). However, from Hytönen, et al. [HLM+,
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Theorem 4.3] we have the following analog of Theorem 1.2.3.

Theorem 2.2.9. Let S be a positive Haar shift of complexity (m,n). Then

‖S(·σ)‖Lp(σ)→Lp,∞(u) 6 τ‖M(·σ)‖Lp(σ)→Lp,∞(u) + sup
Q

‖χQS∗(χQu)‖
Lp
′
(σ)

u(Q)
1
p′

.

Given Theorem 2.2.9 the argument now proceeds exactly as before, using the bump

condition (2.4) to bound the testing condition. This completes the proof.

2.2.2 Proof for the log log-bumps

In this section we consider bumps of the following form.

A(t) = tp log(e+ t)p−1 log log(ee + t)p−1+δ Ā(t) ≈ tp
′

log(e+ t) log log(ee + t)1+δ′
, (2.17)

B(t) = tp
′
log(e+t)p

′−1 log log(ee+t)p
′−1+δ, B̄(t) ≈ tp

log(e+ t) log log(ee + t)1+δ′′
, (2.18)

where δ > 0. Our proofs are very similar to the proofs given in previous sections, so we

will describe the principle changes. As before, we need to prove the following theorems for

positive dyadic shifts.

Theorem 2.2.10. Given p, 1 < p < ∞, suppose A and B are loglog-bumps of the form

(2.17), (2.18) with δ > 0 sufficiently large, and the pair of weights (u, σ) satisfies (2.3)

and (2.4). Given any positive dyadic shift S, ‖S(fσ)‖Lp(u) ≤ C|f‖Lp(σ).

Theorem 2.2.11. Given p, 1 < p <∞, suppose A is a loglog-bump of the form (2.17) with

δ > 0 sufficiently large, and the pair of weights (u, σ) satisfies (2.4). Given any positive

dyadic shift S, ‖S(fσ)‖Lp,∞(u) ≤ C|f‖Lp(σ).
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We will prove Theorem 2.2.10 by modifying the proof of Theorem 2.2.3 above; The-

orem 2.2.11 is proved similarly. The main step is to adapt Lemma 2.2.8 to work with

loglog-bumps. Let B be as in (2.18), and define B0 similarly but with δ replaced by δ/2.

Then arguing almost exactly as we did in the proof of Lemma 2.2.8, we have that

‖f‖B0,µ
≤ C‖f‖B,µ ε

(‖f‖
Lp
′
(µ)

‖f‖B,µ

)
, (2.19)

where ε(t) = (log C
t )−κ, C = C(p, δ), and κ = κ(p, δ) with κ > 1 if δ is large enough. For

the detailed proof for wider range of bumps see [NRV], Section 5.2.2.

Given (2.19) we have that

u(Q)

|Q|

(
σ(Q)

|Q|

)p
≤ C〈u〉Q‖σ1/p′‖pB0,Q

‖σ1/p‖p
B̄0,Q

≤ C〈u〉Q‖σ1/p′‖pB,Q ε

( 〈σ〉1/p
′

Q

‖σ1/p′‖B,Q

)p
‖σ1/p‖p

B̄0,Q

≤ C

〈u〉1/pQ ‖σ
1/p′‖B,Q

〈u〉1/pQ 〈σ〉
1/p′
Q

p ε( 〈u〉1/pQ 〈σ〉
1/p′
Q

〈u〉1/pQ ‖σ
1/p′‖B,Q

)p
(〈u〉1/pQ 〈σ〉

1/p′
Q )p‖σ1/p‖p

B̄0,Q
.

To complete the proof, we need a good bound in a for the product of first three terms.

Moreover, it is enough to get a good bound for negative and very big in absolute value a.

Thus, we can think that 〈u〉1/pQ 〈σ〉
1/p′
Q is very small.

Consider a function

ϕ(t) = tε(
1

t
).

25



Then

〈u〉1/pQ ‖σ
1/p′‖B,Q

〈u〉1/pQ 〈σ〉
1/p′
Q

ε

( 〈u〉1/pQ 〈σ〉
1/p′
Q

〈u〉1/pQ ‖σ
1/p′‖B,Q

)
= ϕ

〈u〉1/pQ ‖σ
1/p′‖B,Q

〈u〉1/pQ 〈σ〉
1/p′
Q

 .

Set t0 =
〈u〉1/pQ ‖σ1/p′‖B,Q

〈u〉1/pQ 〈σ〉1/p
′

Q

. Then c 6 t0 6 C 1

〈u〉1/pQ 〈σ〉1/p
′

Q

. The right-hand side of the last

inequality is very big. Moreover, the function ϕ(t) = t(log(Ct))−κ is increasing near ∞.

Therefore,

ϕ(t0) 6 Cϕ

 1

〈u〉1/pQ 〈σ〉
1/p′
Q

 6 C1ϕ(2−a).

Therefore, since on all cubes P ∈ Pa we have 〈u〉1/pQ 〈σ〉
1/p′
Q ∼ 2a, we get

C

〈u〉1/pQ ‖σ
1/p′‖B,Q

〈u〉1/pQ 〈σ〉
1/p′
Q

p ε( 〈u〉1/pQ 〈σ〉
1/p′
Q

〈u〉1/pQ ‖σ
1/p′‖B,Q

)p
(〈u〉1/pQ 〈σ〉

1/p′
Q )p‖σ1/p‖p

B̄0,Q

6 C2ε(2
a)p‖σ1/p‖p

B̄0,Q
.

Using the Carleson property of the sequence µQ, we get

∑
Q⊂Q0

µQ
u(Q)

|Q|

(
σ(Q)

|Q|

)p
6 C2ε(2

a)p
∫
MB̄0

(σ1/pχQ0
)pdx 6 C3ε(2

a)pσ(Q0).

Thus, returning to the formula (2.9), we get

∑
a

 ∑
P∈Pa

u(P )

(
σ(P )

|P |

)p1
p

6 σ
1
p (Q0)

∑
a<0

ε(2a).

By the formula tor ε, the series converge if κ > 1.
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2.3 The Bellman function approach to the bump conjecture

2.3.1 Main result

In this section we will work with Orlitz functions Φ, such that 1
Φ is integrable near infinity.

We aim to prove the following theorem.

Theorem 2.3.1. Let functions Φ1 and Φ2 be as above. Let the weights v, w satisfy

sup
I
‖v‖Φ1,Q

‖w‖Φ2,Q
<∞; (2.20)

here the supremum is taken over all cubes I.

Then for any bounded Calderón-Zygmund operator T the operator Tv is bounded from

L2(v) to L2(w).

2.3.2 Orlicz norms and distribution functions

Orlicz norm is not very convenient to work with, so we would like to replace it by something

more tractable.

2.3.2.1 A lower bound for the Orlicz norm

We start with the remark that notation
∫

0 f(t)dt <∞ means that the function is integrable

near zero. Similarly,
∫∞ f(t)dt <∞ means that the function is integrable near infinity.

Let Φ be a continuous non-negative increasing convex function such that Φ(0) = 0 and∫ +∞ dt
Φ(t)

< +∞. Define Ψ(s) parametrically by Ψ(s) = Φ′(t) when s = 1
Φ(t)Φ′(t) (t > 0).

Then Ψ(s) is positive and decreasing for s > 0 and sΨ(s) is increasing. Moreover
∫

0
ds

sΨ(s)
<
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+∞. Indeed, using our parametrization we can rewrite the last integral as

∫ +∞( 1

Φ(t)
+

Φ′′(t)
Φ′(t)2

)
dt .

The first integral converges by our assumption and the second integrand has a bounded near

+∞ antiderivative −1
Φ′(t) .

Let w ≥ 0 on I ⊂ Rn. Define the normalized distribution function N of w by

N(t) = Nw
I (t) =

1

|I|
|{x ∈ I : w(x) > t}| (2.21)

Lemma 2.3.2. Let Ψ : (0, 1] → R+ be a decreasing function such that the function s 7→

sΨ(s) is increasing. Let Φ be a Young function and let

Ψ(s) ≤ CΦ′(t) where s =
1

Φ(t)Φ′(t)

for all sufficiently large t. Then for N = Nw
I

n
Ψ

(N) :=

∫ ∞
0

N(t)Ψ(N(t)) dt ≤ C‖w‖
LΦ(I)

. (2.22)

Proof. The left hand side scales like a norm under multiplication by constants, so it is enough

to show that if ‖w‖
LΦ(I)

≤ 1, i.e.,

1

|I|

∫
I

Φ(w) =

∫ ∞
0

N(t)Φ′(t) dt ≤ 1

then n
Ψ

(N) is bounded by a constant. Since sΨ(s) increases, we may have trouble only at
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+∞ It is clear that it suffices to estimate the integral over the set where Ψ(N(t)) > Φ′(t) but

since Ψ is decreasing this means that N(t) ≤ C/(Φ(t)Φ′(t)), so we get at most
∫ +∞Φ(t)−1dt

and we are done.

Remark 4. In fact, for sufficiently regular Φ, the converse inequality

‖w‖
LΦ(I)

≤ C

∫ ∞
0

N(t)Ψ(N(t)) dt

holds for any positive decreasing integrable N . To see this, let us consider the family of Φ’s

such that Φ(t) = tρ(t) and ρ is monotonically increasing and “logarithmically concave” in

the sense that
tρ′(t)
ρ(t)

decreases monotonically when t → ∞. We also assume of course that

limt→∞ ρ(t) = ∞ and that ρ(t) ≥ 1. Let G(t) := N(t)Ψ(N(t)). When t goes to infinity, N

is monotonically decreasing to zero, and hence G is also monotonically decreasing (as sΨ(s)

increases near zero).

Put s−1 = Φ(t)Φ′(t) � tρ2(t) (just because Φ′(t) � ρ(t) by our “logarithmic concavity”

of ρ assumption). Hence s ≥ c1(tρ2(t))−1. Now Ψ is decreasing by definition, and this

implies

Ψ(c1(tρ2(t))−1) ≥ Φ′(t) � ρ(t) ≥ c2ρ(t) . (2.23)

We now ask an addition to “logarithmic concavity”, namely:

tρ′(t)
ρ(t)

log ρ(t)→ 0 as t→∞ . (2.24)

Denote r(x) = log(ρ(ex)). We required at the beginning that limx→∞ r(x) = ∞. The

last inequality says in particular that r′(x) = o(1)r(x)−1, and therefore, r′ tends to zero at
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infinity. Thus r(x) ≤ x
3 for all large x. Keeping this in mind we continue.

Set u =
tρ2(t)
c1

. Then

t =
c1u

ρ2(t)
.

Thus, since ρ is an increasing to infinity function and we assume that t is sufficiently big, we

get ρ2(t) ≥ c1. Therefore,

t ≤ u,

and, thus,

t =
c1u

ρ2(t)
≥ c1

u

ρ2(u)
.

Hence, using (2.23), we get

Ψ(u−1) ≥ c2ρ(t) ≥ c2ρ(c1
u

ρ2(u)
) . (2.25)

Next, we will prove the following inequality. Recall that r(x) = log(ρ(ex)). We claim

that

∆(x) = r(x)− r(x− 2r(x)− c0) ≤ C.

In fact, by the mean value theorem we have for certain ξ ∈ (x− 2r(x)− c0, x)

∆(x) = (2r(x) + c0)r′(ξ) = (2r(x) + c0)
ρ′(eξ)

ρ(eξ)
eξ.

Since we assumed that t
ρ′(t)
ρ(t)

is monotonically decreasing, we get (now using (2.24) in the
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second comparison below):

∆(x) ≤ (2r(x) + c0)
ρ′(ex−2r(x)−c0)

ρ(ex−2r(x)−c0)
eρ(ex−2r(x)−c0) =

= (2r(x) + c0)
o(1)

log ρ(ex−2r(x)−c0)
= (2r(x) + c0)

o(1)

r(x− 2r(x)− c0)
=

= o(1)

(
2r(x) + c0

r(x− 2r(x)− c0)
− 2 + 2

)
= o(1)

2∆(x) + c0
r(x− 2r(x)− c0)

+ o(1).

Finally, we use that r(x− 2r(x)− c0) is separated from zero when x is big. Thus

∆(x) ≤ ∆(x)o(1) + o(1).

This immediately implies ∆(x) = o(1) when x→∞, and thus

∆(x) ≤ C . (2.26)

Let us now write what does it mean. In fact, by the definition of r and by (2.26), we can

conclude that

C ≥ r(x)− r(x− 2r(x)− c0) = log
ρ(ex)

ρ(ex−2 log ρ(ex)−c0)
= log

ρ(ex)

ρ( ex

c3ρ
2(ex)

)
.

Thus, we get for all large u:

ρ(u) ≤ c4ρ(
u

c3ρ2(u)
) .

We chose c3 = c−1
1 and plug the above inequality into (2.25). Then we finally get

Ψ(u−1) ≥ c5ρ(u)
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If NΨ(N) = G then c6G ≥ Nρ( 1
N ) by the previous inequality. Therefore, N ≤ c6G (we

assumed that ρ ≥ 1), and N ≤ c6G

ρ( 1
N )
≤ c6G

ρ( 1
c6G

)
. And we can continue the previous estimate:

N(t) ≤ c6G(t)

ρ( 1
c6G(t)

)
≤ c6G(t)

ρ(t)
. We used here the fact that the integrability and monotonicity of

G implies that G(t) = o(1
t ), in particular, G(t) < 1

c6t
for large t. But we already mentioned

that Φ′(t) ≤ c7ρ(t). Combining the last two inequalities, we get N(t)Φ′(t) ≤ c6c7G(t), and

we just obtained that
∫∞

0 N(t)Φ′(t)dt ≤ c4c5.

2.3.2.2 Examples

In the above section only the behavior of Φ at +∞ (equivalently, the behavior of Ψ near 0)

was important, so we will concentrate our attention there.

Let Φ(t) = t(ln t)α, α > 1 near ∞. Then

Φ′(t) ∼ (ln t)α, Φ(t)Φ′(t) ∼ t(ln t)2α,

so Ψ(s) := (ln(1/s))α satisfies the assumptions of Lemma 2.3.2: to see that we notice

ln(Φ(t)Φ′(t)) ∼ ln t.

If Φ(t) = t ln t(ln ln t)α, α > 1, then

Φ′(t) ∼ ln t(ln ln t)α, Φ(t)Φ′(t) ∼ t(ln t)2(ln ln t)2α

and Ψ(s) = ln(1/s)(ln ln(1/s))α works. because again ln(Φ(t)Φ′(t)) ∼ ln t.

Note that in both examples
∫

0(sΨ(s))−1ds <∞.

32



The examples of Young functions with higher order logarithms are treated similarly.

2.3.3 Main result in new language

We restate our main result using the newly built functions Ψ1,2. Let Ψ1,Ψ2 : (0, 1] → R+

be as above, i.e. for i = 1, 2, Ψi is decreasing, s 7→ sΨi(s) is increasing and

∫ 1

0

ds

sΨi(s)
<∞.

Recall that for a weight w the normalized distribution function Nw
I is defined by (2.21)

Theorem 2.3.3. Let the weights v, w satisfy

sup
I

n
Ψ1

(Nv
I )n

Ψ2
(Nw

I ) <∞; (2.27)

here the supremum is taken over all cubes I, and n
Ψ

is defined by (2.22).

Then for any Calderón-Zygmund operator T the operator Tv is bounded from L2(v) to

L2(w).

2.3.4 General setup

Consider a measure space X with σ-finite measure µ let Lk = {Ikj }j , k ∈ Z (or k ∈ Z+) be

partitions of X into disjoint sets Ikj , 0 < µ(Ikj ) <∞.

We assume that the partition Lk+1 is a refinement of Lk.

Let A be the σ-algebra generated by all the partitions Lk. In what follows all functions

on X we consider will be assumed to be A-measurable.

With respect to this σ-algebras we can define martingale averaging operators Ek, and
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martingale difference operators ∆n
k := −Ek + Ek+n.

We adapt the following notation.

ch I The collection of children of I ∈ L, i.e. if I ∈ Ln then ch I = {J ∈ Ln+1 : J ⊂ I}.

chk I The collection of children of the order k of I ∈ L; ch0(I) = {I}, chk+1(I) =

{ch(J) : J ∈ chk(I)}.

〈f〉
I

The average of f over I, 〈f〉
I

= µ(I)−1
∫
I f(x)dµ(x);

E
I

The averaging operator, E
I
f := 〈f〉

I
1
I
; note that

Ek =
∑
I∈Lk

E
I
.

∆
I

Martingale difference operator, ∆
I

:= −E
I

+
∑
J∈ch(I)EJ ; note that ∆k =∑

I∈Lk
∆
I
.

∆n
I

Martingale difference operator of order n,

∆n
I

:= −E
I

+
∑

J∈chn(I)

E
J
.

Since the measure µ is assumed to be fixed we sometimes will be using |E| for µ(E) and

dx for dµ(x). We also will be using L2 for L2(µ)

The prototypical example is X = R or Rd with L being a dyadic lattice D.

2.3.4.1 Haar shifts

We will use a slightly more general definition of a Haar shift.
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Definition 18. A Haar shift S of complexity n is given by

Sf =
∑
I∈D

S
I
∆n
I
f,

where the operators S
I

act on ∆n
I
L2 and can be represented as integral operators with

kernels a
I
, ‖a

I
‖∞ ≤ |I|−1. The latter means that for all f, g ∈ ∆n

I
L2

〈S
I
f, g〉 =

∫
I

∫
I
a
I
(x, y)f(y)g(x)dxdy.

This is a slightly more general definition than the one in [HPTV], but only the estimate

‖a
I
‖∞ ≤ |I|−1 is essential for our construction. Note also that according to the definition

in [HPTV] the complexity of the corresponding shift is n − 1, not n, which really does not

matter; we just find our definition of complexity a bit more convenient.

The estimate ‖a
I
‖∞ ≤ |I|−1 means that the operators S

I
are “L1 × L1 normalized”,

meaning that

|〈S
I
f, g〉| ≤ |I|‖f‖1

|I|
‖g‖1
|I|

∀f, g ∈ ∆n
I
L2 (2.28)

Haar shifts of complexity 1 are simply “L1 × L1 normalized” martingale transforms; mar-

tingale transform here means in particular that the subspaces ∆
I

are orthogonal, and S can

be represented as an orthogonal sum of the operators S
I
.

A Haar shift of complexity n ≥ 2 is not generally a martingale transform, meaning that

the subspaces ∆n
I

generally intersect, so S does not split into direct sum of S
I
.

However, if one goes with step n, then the corresponding operator is a martingale trans-

form, so a Haar shift of complexity n can be represented as a sum of n Haar shifts of
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complexity 1. Namely, for k = 1, 2, . . . , n− 1 define

Lk = {I : I ∈ Lk+nj , j ∈ Z},

and let

Sk =
∑
I∈Lk

S
I
.

Then S =
∑n−1
k=0 Sk and each Sk is a Haar shift of complexity 1 with respect to the lattice

Lk.

Remark 5. Therefore, uniform estimate for the Haar shifts of complexity 1 (i.e. for the

“L1×L1 normalized” martingale transforms) gives the linear in complexity estimate for the

general Haar shifts. Notice that the estimate does not depend on the number of children.

2.3.4.2 Paraproducts

Given the lattice L and a locally integrable function b, the paraproduct Π = Πb = Πb(L) is

defined as

Πf :=
∑
I∈L

(E
I
f)(∆

I
b).

The necessary and sufficient condition for the paraproduct to be bounded is that

sup
J∈L
|J |−1

∑
I∈L:I⊂J

‖∆
I
b‖22 <∞.

In the case of dyadic lattice in Rd or, more generally in the homogeneous situation, when

inf
J∈L

inf
I∈ch(J)

|I|
|J |

> 0

36



this condition is equivalent to b belonging to the corresponding martingale BMO space

BMOL

2.3.5 Reduction to the martingale case.

To reduce the problem to the martingale case we use the following result that can be found

in [H] and [HPTV]:

Theorem 2.3.4. Let T be a Calderón–Zygmund operator in Rd. There exists a probability

space (Ω,P) of dyadic lattices Dω, such that

T = C

(∫
Ω

∞∑
n=1

2−εn Sn(ω)dP(ω) +

∫
Ω

(Π1(ω) + (Π2(ω))∗)dP(ω)

)
,

where Sn(ω) are Haar shifts of complexity n with respect to the lattice Dω, Π1,2(ω) are the

paraproducts with respect to the lattice Dω, ‖Π1,2(ω)‖ ≤ 1.

The constants C and ε depend on d, ‖T‖ and Calderón–Zygmund parameters of the kernel

of T .

Theorem 2.3.4 implies immediately that the main theorem (Theorem 2.3.3) follows from

the theorem below.

Theorem 2.3.5. Let the weights v, w satisfy the assumptions of Theorem 2.3.3. Then

1. For all Haar shifts S of order 1 the operators S(·v) are uniformly bounded from L2(v)

to L2(w), ‖S(·v)‖
L2(v)→L2(w)

≤ C, where C depends on Ψ2, Ψ2, the supremum in

(2.27), but not on the lattice L.

2. For all Haar shifts Sn the operators Sn(·v) are uniformly bounded from L2(v) to L2(w)

by Cn, where C .
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3. Let Π = Πb be a paraproduct such that

|J |−1
∑

I∈L:I⊂J
‖∆

I
b‖2∞|I| ≤ 1 ∀J ∈ L. (2.29)

Then the operator Π(·v) is bounded from L2(v) to L2(w) by C, where again C depends

on Ψ1, Ψ2, the supremum in (2.27), but not on the lattice L.

Remark 6. For the homogeneous lattices, i.e. for lattices satisfying

inf
J∈L

inf
I∈ch(J)

|I|
|J |

=: δ > 0

all the normalized Lp norms |I|−1/p‖∆
I
g‖p, p ∈ [1,∞] are equivalent in the sense of two

sided estimates. So for such lattices condition (2.29) means that ‖Π‖ ≤ C(δ). So Theorem

2.3.5 gives the estimates that being fed to Theorem 2.3.4 imply Theorem 2.3.3.

Theorem 2.3.6. Let Ψ be as above. Then for any weight w on X such that n
Ψ

(Nw
I ) <∞

for all I ∈ L

∑
I∈L

n
Ψ

(Nw
I )−1

(
|I|−1

∫
X
|∆

I
(fw1/2)|dx

)2

|I| ≤ C‖f‖2
L2(dx)

(2.30)

for all f ∈ L2(dx); here C = C(Ψ) and in the summation we skip I on which w ≡ 0.

Let us see that this theorem implies the condition 1 of Theorem 2.3.5. Assume, multi-

plying the weights by appropriate constants that the inequality

n
Ψ1

(Nw
I )n

Ψ2
(Nv

I ) ≤ 1 (2.31)
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holds for all I ∈ L. Then

|〈S(fw1/2), gv1/2〉| ≤
∑
I∈L
|〈S

I
∆
I
(fw1/2),∆

I
(gv1/2)〉|

≤
∑
I∈L
|I|−1‖∆

I
(fw1/2)‖1‖∆I

(gv1/2)‖1

≤
∑
I∈L
|I|−1‖∆I

(fw1/2)‖1‖∆I
(gv1/2)‖1(

n
Ψ1

(Nw
I )n

Ψ2
(Nv

I )
)1/2

≤ 1

2

∑
I∈L
|I|−1‖∆I

(fw1/2)‖21
n

Ψ1
(Nw

I )
+

1

2

∑
I∈L
|I|−1‖∆I

(gv1/2)‖21
n

Ψ2
(Nv

I )
.

The second inequality here follows from “L1×L1 normalization” condition (2.28), the second

one from (2.31) and the last one is just the trivial inequality 2xy ≤ x2 + y2.

Applying Theorem 2.3.6 to each sum we get that

|〈S(fw1/2), gv1/2〉| ≤ 1

2

(
C(Ψ1)‖f‖22 + C(Ψ2)‖g‖22

)
.

Replacing f 7→ tf , g 7→ t−1g, t > 0 we get

|〈S(fw1/2), gv1/2〉| ≤ 1

2

(
t2C(Ψ1)‖f‖22 + t−2C(Ψ2)‖g‖22

)
.

Taking infimum over all t > 0 and recalling that 2ab = inft>0(t2a + t−2b) for a, b ≥ 0 we

obtain

|〈S(fw1/2), gv1/2〉| ≤ (C(Ψ1)C(Ψ2))1/2‖f‖2‖g‖2,

which is exactly statement 1 of Theorem 2.3.5. For the statement 3 of Theorem 2.3.5

we also need another embedding theorem.
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Theorem 2.3.7. Let Ψ be as above. Then for any normalized Carleson sequence {a
I
}
I∈D

(a
I
≥ 0), i.e. for any sequence satisfying

sup
I∈D
|I|−1

∑
I′∈D:I′⊂I

a
I′
|I ′| ≤ 1

we get ∑
I∈D

〈fw1/2〉2
I

n
Ψ

(Nw
I )

a
I
|I| ≤ C‖f‖2

L2(dx)
,

where again C = C(Ψ).

Let us show that this theorem together with Theorem 2.3.6 implies statement 3 of The-

orem 2.3.5. Let a
I

= ‖∆
I
b‖2∞.

Again, multiplying if necessary the weights v and w by appropriate constants we can

assume (2.31). Then we can write

|〈Πb(fw1/2), gv1/2〉| ≤
∑
I∈D
|〈fw1/2〉

I
| · |〈∆

I
b,∆

I
(gv1/2)〉|

≤
∑
I∈D

|〈fw1/2〉
I
|(a

I
)1/2|I|1/2(

n
Ψ1

(Nw
I )
)1/2

·
‖∆

I
(gv1/2)‖1(

n
Ψ2

(Nv
I )
)1/2

|I|1/2

≤

∑
I∈D

|〈fw1/2〉
I
|2a

I

n
Ψ1

(Nw
I )

|I|

1/2∑
I∈D

‖∆
I
(gv1/2)‖21

n
Ψ2

(Nv
I )|I|

;

1/2

the second inequality holds because of (2.31), and the last one is just the Cauchy–Schwarz

inequality.

Estimating the sums in parentheses by Theorem 2.3.7 and 2.3.6 respectively we get

statement 3 of Theorem 2.3.5.
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2.3.6 Proof of (the Differential Embedding) Theorem 2.3.6: Bellman func-

tion and main differential inequality

Let ϕ(s) := sΨ(s). Multiplying Ψ by an appropriate constant we can assume without loss

of generality that ∫ 1

0

1

ϕ(s)
ds = 1. (2.32)

Define m(s) on [0, 1] by m(0) = m′(0) = 0, m′′(s) = 1/ϕ(s). Identity (2.32) implies that

m is well-defined and 0 ≤ m′(s) ≤ 1, 0 ≤ m(s) ≤ s. For a distribution function N = Nw
I

define

u(N) =

∫ ∞
0

(2N(t)−m(N(t)))dt = 2〈w〉
I
−
∫ ∞

0
m(N(t))dt; (2.33)

Note that the inequality m(s) ≤ s implies that u(Nw
I ) ≥ 〈w〉

I
.

The functional u is defined on the convex set of distribution functions, i.e. on the set of

decreasing functions N : [0,∞)→ [0, 1] such that
∫∞

0 N(t)dt <∞.

In what follows we can consider only finitely supported functions N , and then use

standard approximation reasoning. Consider two distribution functions N and N1 and let

∆N = N1 −N . Denote also

w :=

∫ ∞
0

N(t)dt, w1 :=

∫ ∞
0

N1(t)dt,

and let

∆w := w1 −w =

∫ ∞
0

∆N(t)dt;

the motivation for this notation is that if N and N1 are the distribution functions of the
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weights w and w1, then the integrals are the averages on the corresponding weights. Denote

also

w∆ :=

∫ ∞
0
|∆N(t)|dt; (2.34)

clearly |∆w| ≤ w∆.

Let us compute derivatives of u in the direction of ∆N . The first derivative is given by

u′
∆N

(N) =
d

dτ
u(N + τ∆N)

∣∣∣
τ=0

=

∫ ∞
0

(
2−m′(N(t))

)
∆N(t)dt,

so, in particular

|u′
∆N
| ≤ 2w∆.

Therefore we can write

u′
∆N

= κw∆, κ = κ(∆N), |κ| ≤ 2. (2.35)

The second derivative in the direction ∆N = N1 −N is given by

−u′′
∆N

(N) = − d2

dτ2
u(N + τ∆N)

∣∣∣
τ=0

=

∫ ∞
0

ϕ(N(t))−1(∆N(t))2 dt
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By Cauchy-Schwarz, the integral in the right side is at least

[∫ ∞
0

N(t)Ψ(N(t)) dt
]−1[∫ ∞

0
|∆N(t)| dt

]2
= n(N)−1

[∫ ∞
0
|∆N(t)| dt

]2
= n(N)−1(w∆)2,

so

−u′′
∆N

(N) ≥ (w∆)2

n(N)
(2.36)

For the scalar variable f ∈ R and the distribution function N define the Bellman function

B̃(f,N) = B(f ,u(N)) where

B(f ,u) =
f2

u
.

Computing second derivative of B̃ in the direction ∆ = (∆f ,∆N) we get

B̃′′∆ =

 ∆f

u′∆N


T  Bff Bfu

Bfu Buu


 ∆f

u′∆N

+ Buu′′∆N

In the last formula the derivative of B̃ is evaluated at the point (f,N), and derivatives

of B are evaluated at (f ,u(N)).

The Hessian is easy to compute

 Bff Bfu

Bfu Buu

 =

 2
u − 2f

u2

− 2f
u2

2f2

u3

 ; (2.37)

note that this matrix is positive semidefinite.
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Since Bu = −f2/u2, we get using (2.36)

Buu′′∆N ≥
f2

u2n
(w∆)2.

Thus, gathering everything and using (2.35) we get

B̃′′∆ ≥

 ∆f

κw∆


T  2

u − 2f
u2

− 2f
u2

2f2

u3 (1 + u
2κ2n

)


 ∆f

κw∆

 (2.38)

The matrix here is obtained from the Hessian in (2.37) by multiplying the lower right entry

by 1 + u
2κ2n

≥ 1, so it has more positivity than the Hessian. In particular, if we divide the

upper left entry of the matrix in (2.38) by the same quantity 1 + u
2κ2n

, the matrix still be

positive semidefinite. But our matrix in (2.38) has something bigger in the upper-left corner!

Therefore, since

1−
(

1 +
u

2κ2n

)−1
=

u

2κ2n + u

we get that

B̃′′∆ ≥
2(∆f)2

2κ2n + u
≥ 2(∆f)2

2 · 22n + u
≥ c

(∆f)2

n
; (2.39)

the last inequality holds for some c > 0 because u ≤ 2w ≤ Cn.

Let us explain it. In fact, we want

∫
NI(t)dt = 〈w〉

I
≤ C

∫
NI(t)Ψ(NI(t))dt.

Clearly, it is enough to consider the set B = {t : Ψ(NI(t)) ≤ 1}. Since Ψ is decreasing, for
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t ∈ B we get that NI(t) ≥ Ψ−1(1). Since s 7→ sΨ(s) is increasing, we get NI(t)Ψ(NI(t)) ≥

Ψ−1(1) ≥ Ψ−1(1)NI(t) (the last is because NI is normalized). We are done.

Inequality (2.39) is exactly what we will use to obtain the Main inequality in difference

form in the next section.

2.3.7 Main inequality in the finite difference form

2.3.7.1 Dyadic case

Lemma 2.3.8. Let

f =
f1 + f2

2
, N(t) =

N1(t) +N2(t)

2
.

Then

1

2

(
B(f1,u(N1)) + B(f2,u(N2))

)
− B(f ,u(N)) ≥ c

4
· (f1 − f)2

n(N)
. (2.40)

where c is the constant from (2.39). (Note that f1 − f = f − f2, so we can replace (f1 − f)2

in the right side by (f2 − f)2)

Proof. Notice that

s1 + s2

2
Ψ

(
s1 + s2

2

)
≥ s1 + s2

2
Ψ (s1 + s2) ≥ 1

2
s1Ψ(s1); (2.41)

here the first inequality holds because Ψ is decreasing and the second one because sΨ(s) is

increasing. Of course, we can interchange s1 and s2 in the above inequality.
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Let ∆f := f1 − f , ∆N := N1 −N . Define

F (τ) = B(f + τ∆f ,u(N + τ∆N)) + B(f − τ∆f ,u(N − τ∆N))

Taylor’s formula together with the estimate (2.39) imply that

F (1)− F (0) ≥ c

2
(∆f)2

(
1

n(N + τ∆N)
+

1

n(N − τ∆N)

)
(2.42)

for some τ ∈ (0, 1).

Estimate (2.41) implies that

n(N) ≥ 1

2
n(N ± τ∆N),

so (
1

n(N + τ∆N)
+

1

n(N − τ∆N)

)
≥ 1

n(N)
.

Then it follows from (2.42) that

F (1)− F (0) ≥ c

2
· (∆f)2

n(N)
.

Recalling the definition of F and dividing this inequality by 2 we get (2.40).

2.3.7.2 General case

Let ϕ and B̃ be as above.

Lemma 2.3.9. Let f , fk ∈ R, αk ∈ R+ and the distribution functions N , Nk, k = 1, 2, . . . , n
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satisfy

f =
n∑
k=1

αkfk, N =
n∑
k=1

αkNk,
n∑
k=1

αk = 1.

Then

−B̃(f , N) +
n∑
k=1

αkB̃(fk, Nk) ≥ c

16
· 1

n(N)

(
n∑
k=1

αk|fk − f |

)2

(2.43)

2.3.8 Proof of (the Embedding) Theorem 2.3.7.

2.3.8.1 An auxiliary function

Let Ψ be the function from Theorem 2.3.7. Define ϕ(s) := sΨ(s).

For the numbers A ∈ [1, 2], N ∈ R+ define

T (A,N) := N

∫ N/A

0

1

ϕ(s)
ds

Lemma 2.3.10. The function T is convex and satisfies the differential inequality

−∂T
∂A
≥ 1

4
· N2

ϕ(N)
.

Proof. Differentiating the integral we get

−∂T
∂A

=
N2

A2ϕ(N/A)
≥ 1

4
· N2

ϕ(N)
. (2.44)

since ϕ is increasing and 1 ≤ A ≤ 2.

To prove the convexity notice that T is linear on the lines N = kA, so the Hessian d2T
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degenerates.

Differentiating (2.44) we get

∂2T

∂A2
= N2 2Aϕ(N/A)−Nϕ′(N/A)

(A2ϕ(N/A))2

Note that the right side is positive if sϕ′(s) < 2ϕ(s) (because ϕ(s) > 0).

But for our function even a stronger inequality sϕ′(s) ≤ ϕ(s) is satisfied! Indeed, since

ϕ(s) = sΨ(s) is increasing and Ψ is decreasing, then

0 ≤ (sΨ(s))′ = Ψ(s) + sΨ′(s) ≤ Ψ(s)

(the second inequality holds because Ψ is decreasing). Multiplying this inequality by s we

get sϕ′(s) ≤ ϕ(s).

Therefore, since ϕ(s) > 0, we conclude that ∂2T
∂A2 > 0.

But the Hessian d2T is singular, and it is an easy exercise in linear algebra to show that

a singular Hermitian 2 × 2 matrix with a positive entry on the main diagonal is positive

semidefinite.

2.3.8.2 Bellman function and the main differential inequality.

Let now N be a distribution function, and let

T(A,N) =

∫ ∞
0

T (A,N(t)) dt.
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As in Section 2.3.6 assume, multiplying Ψ by an appropriate constant, that

∫ 1

0

1

ϕ(s)
ds = 1.

Then T (A,N(t)) ≤ N(t), so

T(A,N) ≤
∫ ∞

0
N(t)dt =: w = w(N).

For f ∈ R, M ∈ [0, 1] and for a distribution function N define the function B̃(f , N,M) :=

B(f ,u(M,N)), where

B(f ,u) =
f2

u

and

u = u(M,N) = 2

∫ ∞
0

N(t)dt−T(M + 1, N)

=: 2w(N)−T(M + 1, N).

Note that 2w(N) ≥ u(M,N) ≥ w(N).

We claim that the function B̃ is convex. Indeed, fix a direction ∆ := (∆f ,∆N,∆M)T and

compute the second derivative B̃′′∆ in this direction

B̃′′∆ =
d2

dτ2
B̃(f + τ∆f , N + τ∆N,M + τ∆M)

∣∣∣
τ=0

.
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We get

B̃′′∆ =

 ∆f

u′∆


T  Bff Bfu

Bfu Buu


 ∆f

u′∆

+ Buu′′∆.

The Hessian  Bff Bfu

Bfu Buu

 =

 2
u − 2f

u2

− 2f
u2

2f2

u3


is clearly positive semidefinite, so the first term is nonnegative. For the second term notice

that

Bu = − f2

u2
, u′′∆ = −T′′∆ ≤ 0 (2.45)

because T , and therefore T is convex. Thus B̃′′∆ ≥ 0, so B̃ is convex. Let us compute the

partial derivative

− ∂B̃
∂M

= −Bu
∂u

∂M
=

f2

u2
·
(
− ∂T

∂M

)
(2.46)

By Lemma 2.3.10

− ∂T

∂M
≥ 1

4
·
∫ ∞

0

N(t)2

ϕ(N(t))
dt

≥ 1

4

(∫ ∞
0

N(t)dt

)2(∫ ∞
0

ϕ(N(t))dt

)−1

=
1

4
· w(N)2

n(N)
;

the second inequality here is just the Cauchy–Schwarz inequality. Combining with (2.46)
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and recalling that u ≤ 2w we get

− ∂B̃
∂M

≥ 1

16
· f

2

n
(2.47)

This inequality (together with the convexity of B̃) is the main differential inequality for our

function.

2.3.9 Finite difference form of the main inequality

Let X = (f , N,M), Xk = (fk, Nk,Mk), (f , fk ∈ R, M,Mk ∈ [0, 1], N , Nk are the distribution

functions) satisfy

f =
n∑
k=1

αkfk, N =
n∑
k=1

αkNk, M = a+
n∑
k=1

αkMk, a ≥ 0,

where

n∑
k=1

αk = 1, αk ≥ 0.

Then

−B̃(X) +
n∑
k=1

αkB̃(Xk) ≥ 1

16
· af

2

n
(2.48)

where n = n(N).

Indeed, for M0 :=
∑n
k=1 αkMk the main inequality (2.47) implies

B̃(f , N,M0)− B̃(f , N,M) ≥ 1

16
· af

2

n
.
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The convexity of B̃ implies that

B̃(f , N,M0) ≤
n∑
k=1

αkB̃(Xk)

which together with the previous inequality gives us (2.48).

2.3.9.1 From main inequality (2.48) to Theorem 2.3.7.

The reasoning here is almost verbatim the same as in Section 2.3.10.

For a cube I ∈ L let us denote f
I

= 〈fw1/2〉
I
, NI = Nw

I , M
I

= |I|−1∑
I′⊂I aI′

,

w
I

= 〈w〉
I
, u

I
= u(M

I
, N

I
).

Fix I0 ∈ L, and let Ik be its children. Applying the inequality (2.48) with αk = |Ik|/|I0|,

fk = f
Ik

, Nk = Nw
Ik

, Mk = MIk
we get that

1

16
·
a
I0 f2

I0

n(Nw
I0)
|I0| ≤ −|I0|B̃(X

I0 ) +
∑

I∈ch(I0)

|I|B̃(X
I
)

Writing the corresponding estimates for the children of I0, then for their children, we get

after going n generations down and using the telescoping sum in the right side

1

16

∑
I∈chk(I0)

0≤k<n

a
I
f2
I

n(Nw
I )
|I| ≤ −|I0|B̃(X

I0 ) +
∑

I∈chn(I0)

|I|B̃(X
I
)

≤
∑

I∈chn(I0)

|I|B̃(X
I
);

the last inequality holds because B̃ ≥ 0.
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Since

B̃(X
I
) ≤ f2

I
/u

I
≤ f2

I
/w

I

(the last inequality holds because u ≥ w) and by Cauchy–Schwarz

|〈fw1/2〉
I
|2 ≤ 〈|f |2〉

I
〈w〉

I
,

we conclude, exactly as in Section 2.3.10 that

|I|B̃(X
I
) ≤ |I|〈|f |2〉

I
=

∫
I
|f |2dµ,

so

1

16

∑
I∈chk(I0)

0≤k<n

a
I
f2
I

n(Nw
I )
|I| ≤

∫
I0
|f |2dµ.

Conclusion of the proof is exactly as in Section 2.3.10: we first let n→∞, and then taking

the sum over I0 ∈ L−m and letting m→∞ get the desired estimate.

Proof. The reasoning below is a “baby version” of the reasoning used to prove the main

estimate (Lemma 6.1) in [T].

For a weight α = {αk}nk=1, αk ≥ 0, let `p(α) be the weighted (finite-dimensional) `p

spaces, ‖x‖p
`p(α)

=
∑n
k=1 αk|xk|p (`∞(α) is just the usual finite-dimensional `∞).

Let 〈 · , · 〉α be the standard duality 〈x, y〉α =
∑n
k=1 αkxkyk.

Define e ∈ `p(α), e = (1, 1, . . . , 1).
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Consider the quotient space X = `1(α)/ span{e}. For x ∈ `1(α) let

x0 := x− ‖e‖−1
`1(α)

〈x, e〉αe,

so
∑n
k=1 αkx

0
k = 0. Then

‖x‖X ≤ ‖x
0‖
`1(α)

≤ 2‖x‖X . (2.49)

Indeed, the first inequality is trivial (follows from the definition of the norm in the quotient

space). As for the second one, |〈x, e〉α| ≤ ‖x‖`1(α)
, so it follows from the triangle inequality

that

‖x0‖
`1(α)

≤ ‖x‖
`1(α)

+ ‖e‖−1
`1(α)

|〈x, e〉| · ‖e‖
`1(α)

≤ 2‖x‖
`1(α)

.

This inequality remains true if one replaces x by x− λe, λ ∈ R, so the second inequality in

(2.49) is proved.

The dual space X ∗ can be identified with s subspace of `∞ = `∞(α) consisting of x∗ ∈

`∞(α) such that 〈e, x∗〉α = 0 (with the usual `∞-norm).

So, for the vector x = (x1, x2, . . . xn), xk = fk − f (notice that 〈x, e〉α = 0 there is

β = {βk}nk=1, |βk| ≤ 1 such that
∑n
k=1 αkβk = 0 and

n∑
k=1

αkβk(fk − f) = ‖x‖X ≥
1

2
‖x‖

`1(α)
=

1

2

n∑
k=1

αk|fk − f |.

Define f+, f−, N+, N− by

f± =
n∑
k=1

αk(1± βk)fk, N± :=
n∑
k=1

αk(1± βk)Nk.
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By Lemma 2.3.8

1

2

(
B̃(f+, N+)) + B̃(f−, N−))

)
− B̃(f , N) ≥ c

4
· (f+ − f)2

n(N)
(2.50)

We know that

f+ − f =
n∑
k=1

αkβkfk =
n∑
k=1

αkβk(fk − f) ≥ 1

2

n∑
k=1

αk|fk − f |

(the second equality holds because
∑n
k=1 αkβk = 0), so the right side of (2.50) is estimated

below by

c

16
· 1

n(N)

(
n∑
k=1

αk|fk − f |

)2

Since the function B̃ is convex

B̃(f+, N+) ≤
n∑
k=1

αk(1 + βk)B̃(fk, Nk),

B̃(f−, N−) ≤
n∑
k=1

αk(1− βk)B̃(fk, Nk)

and adding these inequalities we can estimate above the left side of (2.50) by

−B̃(f , N) +
n∑
k=1

αkB̃(fk, Nk).
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2.3.10 From main inequality (2.43) to Theorem 2.3.6.

Fix an interval I0 and let Ik be its children. Applying Lemma 2.3.9 with fk = 〈fw1/2〉
Ik

,

Nk = Nw
Ik

and αk = |Ik|/|I0| we get denoting f̃ := fw1/2

c

16
·
‖∆

I0 f̃‖
2
1

n(Nw
I0) · |I0|

≤ −|I0|B̃(〈f̃〉
I0 , N

w
I0) +

∑
I∈ch(I0)

|I| · B̃(〈f̃〉
I
, Nw

I )

Applying this formula to all children of I0, then to their children and adding up the inequal-

ities we get after going n generations down that

c

16

∑
I∈chk(I0)

0≤k<n

‖∆
I
f̃‖21

n(Nw
I ) · |I|

≤ −|I0|B̃(〈f̃〉
I0 , N

w
I0) +

∑
I∈chn(I0)

|I| · B̃(〈f̃〉
I
, Nw

I )

≤
∑

I∈chn(I0)

|I| · B̃(〈f̃〉
I
, Nw

I ).

We know that B̃(f , N) ≤ C f2

u(N)
, and since (see (2.33)) u(Nw

I ) ≥ 〈w〉
I

we conclude using

the Cauchy–Schwarz estimate |〈fw1/2〉
I
|2 ≤ 〈|f |2〉

I
〈w〉

I
that

|I| · B̃(〈f̃〉
I
, Nw

I ) ≤ C|I|
〈fw1/2〉2

I

〈w〉
I

= C|I|〈|f |2〉
I

= C

∫
I
|f |2dµ.

Therefore, estimating the right side we get

c

16

∑
I∈chk(I0)

0≤k<n

‖∆
I
f̃‖21

n(Nw
I ) · |I|

≤ C

∫
I0
|f |2dµ.
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Since the right side does not depend on n we can make n → ∞, and have the sum in the

left side over all I ∈ L, I ⊂ I0.

Taking the sum over all I0 ∈ L−m and letting m→∞ we get conclusion of the theorem.

2.4 The Bellman function approach to the separated bump conjec-

ture

2.4.1 A quick reminder

We again work with Young functions Φ that satisfy

Φ is convex increasing function such that

∫ ∞
1

dt

Φ(t)
<∞ . (2.51)

As we have seen, in the separated bump conjecture we work with the following quite natural

one-sided bump assumption:

There exists a constant C, such that for any interval I the following holds:

‖u‖
LΦ
I
· ‖v‖

L1(I,dx|I| )
6 C,

and

‖u‖
L1(I,dx|I| )

· ‖v‖
LΦ
I
6 C.

(2.52)

And now one-sided bump conjecture is the following statement: suppose (2.52) holds

for all intervals (cubes), and suppose Φ satisfies integrability condition (2.51), then any
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Calderón–Zygmund operator is bounded from L2(u) into L2(v) in the sense

∀f ∈ C∞0 ‖T (fu)‖
L2(v)

6 C‖f‖
L2(u)

. (2.53)

2.4.2 A construction of function Ψ

To formulate the main result we use a certain language.

For that we need the following construction. Define a function Ψ in the following para-

metric way: 
s = 1

Φ(t)Φ′(t)

Ψ(s) := Φ′(t).

Of course, we define Ψ in this way near s = 0.

We give the following definition.

Definition 19. A function Φ is called regular bump, if for any function u there holds

‖u‖
LΦ
I
> C

∫
NI(t)Ψ(NI(t))dt.

Remark 7. An example of regular bump is the following: Φ(t) = tρ(t), and

t
ρ′(t)
ρ(t)

log ρ(t)→ 0, as t→∞.

The important result is the following.

Lemma 2.4.1. The function s 7→ Ψ(s) is decreasing; the function s 7→ sΨ(s) is increasing;

the function 1
sΨ(s)

is integrable near 0. Moreover, the following inequality is true with a
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uniform constant C (which may depend only on Φ):

C‖u‖
LΦ
I
>
∫
NI(t)Ψ(NI(t))dt,

where

NI(t) =
1

|I|
|{x ∈ I : u(x) > t}|.

Further, for “regular” functions Φ we have that

‖u‖
LΦ
I
∼
∫
NI(t)Ψ(NI(t))dt.

2.4.3 The main results. Boundedness and weak boundedness.

Given a function Φ, satisfying (2.51), build the corresponding function Ψ as in Section 2.4.2.

We prove the following theorems. Regularity conditions are not very important, but the last

condition in the statement of the theorem is actually an important restriction. This is the

restriction one would wish to get rid of. Or to prove that it is actually needed. Lately we

believe that one cannot get rid of it. We give a non-standard definition.

Definition 20. A function f is “weakly concave” on its domain, if for any numbers x1, . . . , xn

and λ1, . . . , λn, such that 0 6 λj 6 1, and
∑
λj = 1, the following inequality holds:

f(
∑

λjxj) > C
∑

λjf(xj),

where the constant C does not depend on n.

Theorem 2.4.2. Suppose there exists a function Φ0 with corresponding Ψ0, such that:
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• Φ0 satisfies (2.51);

• Φ and Φ0 are regular bumps;

• There is a function ε, such that Ψ0(s) 6 CΨ(s)ε(Ψ(s));

• The function t 7→ tε(t) is weakly concave, in the sense of the Definition 20;

• The function t 7→ tε(t) is strictly increasing near ∞;

• The function t 7→ tε(t) is concave near ∞;

• The function t 7→ ε(t)
t is integrable at ∞.

Suppose that there exists a constant C, such that a one-sided bump condition (2.52) holds.

Then any Calderón–Zygmund operator is bounded from L2(u) into L2(v) in the sense of

(2.53).

Theorem 2.4.3. Suppose the function Φ satisfies all conditions from the theorem above.

Suppose that there exists a constant C, such that

‖u‖
L1(I,dx|I| )

· ‖v‖
LΦ
I
6 C.

Then any Calderon-Zygmund operator is weakly bounded from L2(u) into L2,∞(v), i.e. there

exists a constant C, such that for any function f ∈ C∞0 there holds

‖T (fu)‖
L2,∞(v)

6 C‖f‖
L2(u)

. (2.54)
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2.4.4 Examples of Φ satisfying the restrictions of the main results: the cases

from [CURV]

The biggest difference of the above results with those of [CURV] is that here we gave the

integral condition on the corresponding bump function Φ. To compare with [CURV] we

notice that in [CURV] theorems above were proved in two cases:

1. Φ(t) = t log1+σ(t);

2. Φ(t) = t log(t) log log1+σ(t), for sufficiently big σ.

We show that these results are covered by our theorems.

First, suppose Φ(t) = t log1+σ(t). Then Ψ(s) � log1+σ(1
s). We put Φ0(s) = t log1+σ

2 (t),

and then ε(t) = t
− σ

2(1+σ) . Then, clearly, all properties of ε from our theorem are satisfied.

Next, suppose Φ(t) = t log(t) log log1+σ(t). Then Ψ(s) � log(1
s) log log1+σ(1

s). We put

Φ0(t) = t log(t) log log1+δσ(t), δ < 1 which gives ε(t) = log−(1−δ)σ(t). Then, the integral∫∞ ε(t)
t dt converges if σ > 1, and we choose δ to be very small.

Moreover, examining the proof of Theorem 5.1 from [CURV], we get the result from our

paper but with a condition

The function t 7→
√
ε(t)
t is integrable at ∞.

We notice that for regular functions we have ε(t) → 0 when t → ∞, and so ε(t) <
√
ε(t).

Thus, our results work for more function ε and, thus, bumps Φ.
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2.4.5 Self improvements of Orlicz norms.

In this section we prove a technical result, which has the following “hand-waving” explana-

tion: suppose we take a function Φ and a smaller function Φ0. We explain how small can be

the quotient

‖u‖
L

Φ0
I

‖u‖
LΦ
I

in terms of smallness of
Φ0
Φ . In what follows we consider only “regular

bumps” functions in the sense of the Definition 19.

Suppose we have two functions Φ and Φ0, and we have built functions Ψ and Ψ0. We

suppose that

Ψ0(s) 6 CΨ(s)ε(Ψ(s)).

The following theorem holds.

Theorem 2.4.4. Let I be an arbitrary interval (cube). If a function t 7→ tε(t) is weakly

concave, then

‖u‖
L

Φ0
I

6 C‖u‖
LΦ
I
ε
(‖u‖LΦ

I

〈u〉
I

)
.

To do that we need the following easy lemma:

Lemma 2.4.5. For weakly concave functions the Jensen inequality holds with a constant:

∫
f(g(t))dµ(t) 6 Cf(

∫
g(t)dµ(t)).

Proof. This is true since if g is a step function, then this is just a definition. Then we pass

to the limit. Here we essentially used that we can take a convex combination of n points,

and the constant in the definition above does not depend on n.

Proof of the Theorem. In the proof we omit the index I. Since for regular bumps we know
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that

‖u‖
LΦ ∼

∫
Ψ(N(t))N(t)dt,

we simply need to prove that

∫
Ψ0(N(t))N(t)dt 6 C

∫
Ψ(N(t))N(t)dt ε

(∫ Ψ(N(t))N(t)dt∫
N(t)dt

)

Our first step is the obvious estimate of the left-hand side:

∫
Ψ0(N(t))N(t)dt 6 C

∫
Ψ(N(t))ε(Ψ(N(t))N(t)dt .

Denote a(t) = tε(t). Then we need to prove that

∫
a(Ψ(N(t))N(t)dt 6 C

∫
N(t)dt a

(∫ Ψ(N(t))N(t)dt∫
N(t)dt

)
.

We denote

dµ =
N(t)∫
N(t)dt

dt,

it is a probability measure. Moreover, by assumption, t 7→ a(t) is concave. Therefore, by

Jensen’s inequality (from the Lemma),

∫
a(f(t))dµ(t) 6 Ca

(∫
f(t)dµ(t)

)
.

Take f(t) = Ψ(N(t)), and the result follows.
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2.4.6 Examples

2.4.6.1 Example 1: log-bumps

First, if Φ(t) = t log1+σ(t), then Ψ(s) = log1+σ(1/s), and

Ψ0(s)

Ψ(s)
= log−

σ
2 (1/s) = Ψ

− σ
2(1+σ) .

Thus, ε(t) = t
− σ

2(1+σ) , and everything is fine.

2.4.6.2 Example 2: log log-bumps

Next example is with double logs. In fact, when

Ψ(s) = log(1/s)(log log(1/s))1+σ, Ψ0(s) = log(1/s)(log log(1/s))1+σ/2

then

Ψ0(s)

Ψ(s)
= log log−σ/2(1/s) ∼ (log(Ψ(s)))−σ/2.

Thus, ε(t) = (log t)−
σ
2 . Everything would be also fine, except for one little thing: the

function t 7→ tε(t) is concave on infinity, but not near 1. However, t 7→ tε(t) is weakly

concave on [2,∞), and this is enough for our goals as without loss of generality, Ψ(s) > 2.

So let us prove that a(t) = tε(t) is weakly concave on [2,∞).

Let κ := σ
2 . The function a has a local minimum at eκ and its concavity changes at

eκ+1. We now take xj , λj and x =
∑
λjxj . We first notice that if x > eκ+1, the we are

done, because then (x,
∑
λja(xj)) lies under the graph of a.
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If 2 ≤ x < eκ+1, then a(x) > min
[2,eκ+1]

a = c(κ). Moreover, if ` is a line tan-

gent to graph of a, starting at (2, a(2)), and ` “kisses” the graph at a point (r, a(r)), then∑
λja(xj) 6 a(r) = c1(κ). This follows from the picture: a convex combination of a(xj)

can not be higher than this line.

Therefore,

a(
∑

λjxj) > c(κ) > Cc1(κ) >
∑

λja(xj) .

This finishes our proof.

2.4.7 Proof of the main result: notation and the first reduction.

We fix a dyadic grid D. To prove our main results it is enough to show that the following

implication holds:

if for all I ‖u‖
LΦ
I
· ‖v‖

L1(I,dx|I| )
6 Bu,v then ‖χJTD,{aI}(uχJ )‖2

L2(v)
6 C u(J),

where C does not depend neither on the grid, nor on the sequense {aI}. It can, of course,

depend on Bu,v. This will prove the weak bound T : L2(v) → L2,∞(u). For simplicity, we

denote Ta = TD,{aI}. It is an easy calculation that, under the joint A2 condition (which is

definitely satisfied under the bump condition), it is enough to get an estimate of the following

form:

1

|J |
∑
J⊂I

aI · 〈u〉I ·
1

|I|
∑
K⊂I

aK〈u〉K 〈v〉K |K| · |I| 6 C u(J) . (2.55)

Remark 8. By the rescaling argument it is clear that we can assume Bu,v as small as we

need (where “smallness”, of course, depends only on the function Φ). We need this remark,

since all behaviors of our function ε are studied near 0.
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Remark 9. Everything is reduced to (2.55). We concentrate on proving (2.55). Clearly, by

scale invariance, it looks very tempting to make (2.55) a Bellman function statement. This

will be exactly our plan from now on.

2.4.8 Bellman proof of (2.55): introducing the “main inequality”

We start this Section with the following notation. We fix two weights u and v, and a Carleson

sequense {aI}. We denote

uI = 〈u〉
I
, vI = 〈v〉

I
; NI(t) =

1

|I|
|{x : u(x) > t}|;

AI =
1

|I|
∑
J⊂I

aJ |J |;

LI =
1

|I|
∑
J⊂I

aJ 〈u〉J 〈v〉J |J |.

We proceed with two theorems that prove our main result. Everywhere in the future we

use that 〈u〉
I
〈v〉

I
= uIvI 6 δ < 1 for any I. We can do it due to simple rescaling.

Theorem 2.4.6. Suppose that

Ψ0

Ψ
6 ε(Ψ),

where ε satisfies properties of Theorem 2.9, from which the main one is

∫ ∞ ε(t)

t
dt <∞ . (2.56)

Let δ be small enough, and

Ω1 = {(N,A) : 0 6 N 6 1; 0 6 A 6 1}

66



and for some constant P

Ω2 = {(u, v, L,A) : 0 6 A 6 1; u, v, L > 0; uv 6 δ; L 6 P ·
√
uv}.

Suppose we have found a function B1, defined on Ω1, and a function B2, defined on Ω2,

such that:

0 6 B1 6 N ; (2.57)

(B1)′A > 10
N

Ψ0(N)
; (2.58)

− d2B1 > 0; (2.59)

0 6 B2 6 u; (2.60)

(B2)′A > 0 (2.61)

(B2)′A > c · u · L, when P ·
√
uv ≥ L >

uv

ε( 1
uv )

; (2.62)

uv(B2)′L > −δ1uL, for sufficiently small δ1 in the whole of Ω2; (2.63)

− d2B2 > 0. (2.64)

Then for the function of an interval B(I) := B2(uI , vI , LI , AI) +
∞∫
0
B1(NI(t), AI)dt the

following holds:

0 6 B(I) 6 2uI (2.65)

B(I)− B(I+) + B(I−)

2
> C aI · uI · LI . (2.66)

Next, we state
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Theorem 2.4.7. If such two functions B1 and B2 exist, then (2.55) holds, namely

1

|I|
∑
J⊂I

aI · 〈u〉J ·
1

|J |
∑
K⊂J

aK〈u〉K 〈v〉K |K| · |I| 6 R2
∫
I

u.

Proof of the Theorem 2.4.7. This is a standard Green’s formula applied to function B(I) on

the tree of dyadic intervals. Let us explain the details.

Since the function B is non-negative, we have that

2|I|uI > |I|B(I) > |I|B(I)−
2n∑
k=1

|In,k|B(In,k).

Here n is fixed, and In,k are n− th generation descendants of I. Clearly, all |In,k| are equal

to 2−n.

Let us denote ∆(J) = |J |B(J)−|J+|B(J+)−|J−|B(J−), where J± are children of J . By

the property (2.66) we know that ∆(J) > C|J | aJuJLJ . By the telescopic cancellation, we

get that

|I|B(I)−
2n∑
k=1

|In,k|B(In,k) =
n−1∑
m=0

2m∑
k=1

∆(Im,k).

Combining our estimates, we get

2|I|uI > C
n−1∑
m=0

2m∑
k=1

|Im,k|aIm,kuIm,kLIm,k = C
∑

J⊂I,|J |>2−n|I|

|J |aJuJLJ .

This is true for every n, with the constant C independent of n. Thus,

uI > C
1

|I|
∑
J⊂I

aJuJLJ |J |.
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The result follows from the definition of LJ .

In the future we use the following variant of Sylvester criterion of positivity of matrix.

Lemma 2.4.8. Let M = (mij)
3
i,j=1 be a 3 × 3 real symmetric matrix such that m11 < 0,

m11m22 −m12m21 > 0, and det M = 0. Then M is nonpositive definite.

Proof. Let E be a matrix with all entries being 0 except for e33 = 1. Consider t > 0

and A := A(t) := M + tE. It is easy to see that a11 < 0, a11a22 − a12a21 > 0, and

det A = t · (m11m22 − m12m21) > 0 when t > 0. By Sylvester criterion, matrices A(t),

t > 0, are all negatively definite. Therefore, tending t to 0+, we obtain, that M is nonpositive

definite.

We need the following lemma, which is in spirit of [VaVo].

Lemma 2.4.9. Let LI be given by

LI =
1

|I|
∑
J⊂I

aJ 〈u〉J 〈v〉J |J |.

Let AI given by AI = 1
|I|
∑
J⊂I

aJ |J |. Suppose that it is bounded by 1 for any dyadic I

(Carleson condition). If for any dyadic interval I we have that 〈u〉
I
〈v〉

I
6 1, then it holds

that for any dyadic interval I we have LI 6 P
√
〈u〉

I
〈v〉

I
.

Proof. It is true since the function T (u, v, A) = 100
√
uv − uv

A+1 is concave enough in the

domain G := {0 6 A 6 1, uv < 1, u, v > 0}. One can adapt the proof from [VaVo].

First, we need to check that the function T (x, y, A) is concave in G. Clearly, T ′′A,A < 0.

Next,

det

T ′′A,A T ′′A,v

T ′′A,v T ′′v,v

 =
x

y(A+ 1)4
· (50(A+ 1)

√
xy − xy) > 0 . (2.67)
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This expression is non-negative, because A+ 1 > 1, and
√
uv 6 1. Finally,

det


T ′′A,A T ′′A,v T ′′A,u

T ′′A,v T ′′v,v T ′′v,u

T ′′A,u T ′′v,u T ′′u,u

 = 0.

Therefore, by Lemma 2.4.8 we conclude that T (u, v, A) is a concave function.

Next,

T ′A =
uv

(A+ 1)2
>

1

4
uv.

Thus, if we fix three points (u, v, A), (u±, v±, A±), such that u =
u++u−

2 , v =
v++v−

2 ,

and A =
A++A−

2 + a, we get by the Taylor formula:

T (u, v, A)− T (u+, v+, A+) + T (u−, v−, A−)

2
> aT ′A(u, v, A) > C a · uv.

This requires the explanation. The Taylor formula we used has a remainder with the sec-

ond derivative at the intermediate point P± on segments S+ := [(u, v,
A−+A+

2 ), (u, v, A+)],

S− := [(u, v,
A−+A+

2 ), (u, v, A−)]. One of this segments definitely lies inside domain G,

where T is concave, and this remainder will have the right sign. However the second seg-

ment can easily stick out of domain G, because G itself is not convex. But notice that if, for

example, S+ is not inside G, still (x, y, B) ∈ S+ implies that one of the coordinates, say x,

must be smaller than u. Then y can be bigger than v, but not much. In fact,

v+ − v = v − v− ⇒ v+ ≤ 2v − v− ≤ 2v .

Therefore, y ≤ v+ ≤ 2v. Then we have that xy ≤ 2uv ≤ 2. Let us consider G̃ := {(x, y, A) :
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0 ≤ A ≤ 1, x, y ≥ 0, 0 ≤ xy ≤ 2}. Now come back to the proof that T is concave in G.

In (2.67) we used that if (x, y, A) ∈ G, then xy ≤ 1 and the corresponding determinant is

non-negative. But the same non-negativity in (2.67) holds under slightly relaxed assumption

(x, y, A) ∈ G̃.

We notice that our uI = 〈u〉
I
, vI = 〈v〉

I
, and AI = 1

|I|
∑
J⊂I

aI |I| have the dynamics

above. The rest of the proof reads exactly as the proof of the Theorem 2.4.7.

Proof of the Theorem 2.4.6. We start with the following corollary from the Taylor expansion.

Suppose we have three tuples (N,A), (N±, A±), such that:

N =
N+ +N−

2
; A =

A+ + A−
2

+m.

Moreover, suppose there are (u, v, L), (u±, v±, L±), such that

u =
u+ + u−

2
; v =

v+ + v−
2

; L =
L+ + L−

2
+m · uv.

Then, since d2B1 6 0, we write

B1(N+, A+) 6 B1(N,A) + (B1)′N (N,A)(N+ −N) + (B1)′A(N,A)(A+ − A).

Thus,

B1(N,A)−B1(N+, A+) +B1(N−, A−)

2
> (B1)′A(N,A)·(A−A+ + A−

2
) = m·(B1)′A(N,A)

> m
N

Ψ0(N)
.
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Similarly,

B2(u, v, L,A)− B2(u+, v+, L+, A+) +B2(u−, v−, L−, A−)

2
> m · ((B2)′A(u, v, L,A)

+ uv(B2)′L)

First, suppose that LI 6
uIvI

ε( 1
uIvI

)
. Then, using m = aI we get

B(I)− B(I+) + B(I−)

2
>

>
∫ (

B1(NI(t), AI)−
B1(NI+(t), AI+) +B1(NI−(t), AI−)

2

)
dt+

+

(
B2(uI , vI , LI , AI)−

B2(uI+ , vI+ , LI+ , AI+) +B2(uI− , vI− , LI− , AI−)

2

)

> aI
(
(B2)′A(uI , vI , LI , AI) + uIvI(B2)′L(uI , vI , LI , AI)

)
+ aI

(∫
(B1)′A(NI(t), AI)dt

)
>

aI

(∫
NI(t)

Ψ0(NI(t))
dt− δ1uILI

)
. (2.68)

The last inequality is true, since (B2)′A > 0 and uv(B2)′L > −δ1uL on the domain of B2.

We use Hölder’s inequality (and that
∫
NI(t)dt = uI) to get:

∫
NI(t)

Ψ0(NI(t))
dt >

u2
I∫

NI(t)Ψ0(NI(t))dt
> C

u2
I∫

NI(t)Ψ(NI(t))dt ε

(∫
NI (t)Ψ(NI (t))dt

uI

) .
(2.69)
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Last inequality is Theorem 2.4.4. Therefore, we get that

∫
NI(t)

Ψ0(NI(t))
dt > uI ·

uI
‖u‖

LΦ
I

· 1

ε

‖u‖LΦ
I

uI

 = uI
uIvI
‖u‖

LΦ
I
vI
· 1

ε

‖u‖LΦ
I
vI

uIvI

 . (2.70)

We are going to use the one-sided bump condition ‖u‖
LΦ
I
vI 6 Bu,v 6 1. Thus,

uIvI 6
uIvI
‖u‖

LΦ
I
vI
.

Since the function x 7→ x

ε( 1
x )

is increasing near 0 (on [0, cε]) and bounded from below between

cε and 1, we get

uIvI
vI ‖u‖LΦ

I

· 1

ε

vI ‖u‖LΦ
I

uIvI

 > C · uIvI
1

ε( 1
uIvI

)
.

Therefore, ∫
NI(t)

Ψ0(NI(t))
dt > CuI

uIvI

ε( 1
uIvI

)
> CuILI .

The last inequality follows from our assumption that LI 6
uIvI

ε( 1
uIvI

)
. Putting everything

together, we get

B(I)− B(I+) + B(I−)

2
> aIuILI(C − δ1) > C1 · aIuILI .
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We proceed to the case LI >
uIvI

ε( 1
uIvI

)
. Then we write

B(I)− B(I+) + B(I−)

2

> B2(uI , vI , LI , AI)−
B2(uI+ , vI+ , LI+ , AI+) +B2(uI− , vI− , LI− , AI−)

2
.

This is obviously true, since (B1)′A > 0 everywhere and B1 is a concave function. Next, we

use

B2(uI , vI , LI , AI)−
B2(uI+ , vI+ , LI+ , AI+) +B2(uI− , vI− , LI− , AI−)

2
>

aI
(
(B2)′A + uv(B2)′L

)
> caI · uILI , (2.71)

by the property of B2. Therefore, we are done.

2.4.9 Fourth step: building the function B2

In order to finish the proof, we need to build functions B1 and B2. In this section we will

present the function B2. Denote

ϕ(x) =
x

ε( 1
x)
.

This function is increasing (by regularity assumptions on ε in Theorem 2.9), therefore, there

exists ϕ−1. We introduce

B2(u, v, L,A) = Cu− L2

v

∞∫
A+1
L

ϕ−1
(1

x

)
dx.
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Let us explain why the integral is convergent. In fact, using change of variables, we get

∞∫
1

ϕ−1
(1

x

)
dx =

ϕ−1(1)∫
0

ε(1
t )− t

d
dt(ε(

1
t ))

t
dt,

which converges at 0 by assumption (2.56).

Therefore, since LI 6 C
√
uIvI , we get

0 6 B(uI , vI , LI , AI) 6 CuI .

Next,

(B2)′A + uv(B2)′L =
L

v
ϕ−1

( L

A+ 1

)
− u(A+ 1)ϕ−1

( L

A+ 1

)
− 2uL

∞∫
A+1
L

ϕ−1
(1

x

)
dx =

uL ·

 1

uv
ϕ−1

( L

A+ 1

)
− A+ 1

L
ϕ−1

( L

A+ 1

)
− 2

∞∫
A+1
L

ϕ−1
(1

x

)
dx

 (2.72)

We use that L > uv

ε
(

1
uv

) = ϕ(uv). Then ϕ−1(L) > uv, and, since A+ 1 ∼ 1, we get

1

uv
ϕ−1

( L

A+ 1

)
> C1.

Moreover, since uv 6 δ is a small number, we get that L is small enough for the integral

∞∫
A+1
L

ϕ−1( 1
x)dx to be less than a small number c2. Finally, let us compare A+1

L ϕ−1( L
A+1)
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with a small number c3. Since L is small, we can write

ε
( 1

c3L

)
6 c3.

We do it, since c3 is fixed from the beginning (say, c3 = 1
10). Thus,

L 6 ϕ(c3L).

This implies

ϕ−1(L) 6 c3L,

thus

1

L
ϕ−1(L) 6 c3.

Since A+1 ∼ 1, we get the desired. Therefore, if L > uv

ε( 1
uv )

= ϕ(uv) then (B2)′A+uv(B2)′L >

cuL.

Moreover, in the whole domain of B2 we get, since (B2)′A > 0,

(B2)′A + uv(B2)′L > uv(B2)′L > −(c2 + c3)uL

with small c2 + c3. This is a penultimate inequality in the statement of Theorem 2.4.6.

Now we shall prove the concavity of B2. For this it is enough to prove the concavity of

the function of three variables: B(v, L,A) := B2(u, v, L,A)−Cu. Clearly, (B)′′vv < 0, which
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is obvious. Also, it is a calculation that

det


(B)′′vv (B)′′vA (B)′′vL

(B)′′vA (B)′′AA (B)′′AL

(B)′′vL (B)′′AL (B)′′LL

 = 0.

Thus, we need to consider the matrix

 (B)′′vv (B)′′vA

(B)′′vA (B)′′AA



and to prove that its determinant is positive. We denote f(t) = ϕ−1(t), to simplify the next

formula. The calculation shows that the determinant above is equal to

g
( L

A+ 1

)
:= −f

( L

A+ 1

)2
+ 2
( L

A+ 1

)2
· f ′
( L

A+ 1

) ∞∫
A+1
L

f
(1

x

)
dx.

We need to prove that g is positive near 0. First, g(0) = 0. Next,

g′(s) = −2f(s)f ′(s) + 4sf ′(s)

∞∫
1
s

f
(1

x

)
dx+ 2s2f ′′(s)

∞∫
1
s

f
(1

x

)
dx+ 2f ′(s)f(s) =

4sf ′(s)

∞∫
1
s

f
(1

x

)
dx+ 2s2f ′′(s)

∞∫
1
s

f
(1

x

)
dx. (2.73)

We notice that f ′ is positive, since ϕ−1 is increasing near 0. Moreover, by the fact that

ϕ is strictly monotonous, and by concavity of tε(t) (see Theorem 2.4.2), we get that ϕ is

strictly convex, hence ϕ−1 is strictly convex near 0 as well. That is, f ′′ is also positive.
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Therefore, g′(s) > 0, and so g(s) > g(0) = 0. The application of Lemma 2.4.8 finishes

the proof of concavity of B (and therefore of the concavity of B2). We are done.

Remark 10. We can always think that the bump constant Bu,v 6 Cε, where Cε is such

that LI 6 cε. Then we can use the monotonicity and concavity of the function ϕ near 0.

2.4.10 Fifth step: building the function B1

We present the function from 2.3.8.1.

B1(N,A) = CN −N

N
A∫

0

ds

sΨ0(s)
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Chapter 3

One weight estimate for the limiting

case: the A1 conjecture

3.1 The main result

We are on I0 := [0, 1]. As always D denote the dyadic lattice. In this chapter we use the

usual Haar system {hI}:

hI(x) :=


1√
|I|
, x ∈ I+

− 1√
|I|
, x ∈ I−

The weighted weak norm of an operator T is defined by

‖T‖
L1,∞(w)

= sup
t>0,‖f‖

L1(w)
=1
t · w{x : |Tf(x)| > t}

We consider the operator

Tε : ϕ→
∑

I⊆I0,I∈D
εI(ϕ, hI)hI ,

where εI = ±1. Notice that the sum does not contain the constant term.

Our main theorem is the following.

Theorem 3.1.1. For any p < 1
5 and for any large Q there exists a weight w, such that
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[w]1 = Q, and

sup
ε={εI}

‖Tε‖L1,∞(w)
> Q logpQ.

3.2 The Bellman approach

Put

F = 〈|f |w〉I , f = 〈f, 〉I , λ = λ,w = 〈w〉I ,m = inf
I
w .

We are in the domain

Ω := {(F,w,m, f, λ) : F ≥ |f |m, m ≤ w ≤ Qm} . (3.1)

Introduce

B(F,w,m, f, λ) := sup
1

|I|
w{x ∈ I :

∑
J⊆I,J∈D

εJ (ϕ, hJ )hJ (x) > λ} , (3.2)

where the sup is taken over all εJ , |εJ | ≤ 1, J ∈ D, J ⊆ I, and over all f ∈ L1(I, wdx)

such that F := 〈|f |w〉I , f := 〈f〉I , w = 〈w〉I ,m ≤ infI w, and w are dyadic A1 weights,

such that ∀I ∈ D 〈w〉I ≤ Q infI w, and Q being the best such constant. In other words

Q := [w]
dyadic
A1

.

3.2.1 Homogeneity

By definition, it is clear that

sB(F/s, w/s,m/s, f, λ) = B(F,w,m, f, λ) ,
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B(tF, w,m, tf, tλ) = B(F,w,m, f, λ) .

Choosing s = m and t = λ−1, we can see that

B(F,w,m, f, λ) = mB(
F

mλ
,
w

m
,
f

λ
) (3.3)

for a certain function B. Introducing new variables α = F
mλ , β = w

m , γ = f
λ we write that B

is defined in

G := {(α, β, γ) : |γ| ≤ α, 1 ≤ β ≤ Q} . (3.4)

3.2.2 The main inequality

Theorem 3.2.1. Let P, P+, P− ∈ Ω, P = (F,w,min(m+,m−), f, λ), P+ = (F + α,w +

γ,m+, f + β, λ+ β), P− = (F − α,w − γ,m−, f − β, λ− β). Then

B(P )− 1

2
(B(P+) + B(P−)) ≥ 0 . (3.5)

At the same time, if P, P+, P− ∈ Ω, P = (F,w,min(m+,m−), f, λ), P+ = (F + α,w +

γ,m+, f + β, λ− β), P− = (F − α,w + γ,m+, f − β, λ+ β). Then

B(P )− 1

2
(B(P+) + B(P−)) ≥ 0 . (3.6)

In particular, with fixed m, and with all points being inside Ω we get

B(F,w,m, f, λ)−1

4
(B(F−dF,w−dw,m, f−dλ, λ−dλ)+B(F−dF,w−dw,m, f+dλ, λ−dλ)+

B(F + dF,w + dw,m, f − dλ, λ+ dλ) + B(F + dF,w + dw,m, f + dλ, λ+ dλ)) ≥ 0 . (3.7)
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Remark.1) Differential notations dF, dw, dλ just mean small numbers. 2) In (3.7) we loose

a bit of information (in comparison to (3.5),(3.6)), but this is exactly (3.7) that we are going

to use in the future.

Proof. Fix P, P+, P− ∈ Ω. Let ϕ+, ϕ−, w+, w− be functions and weights giving the supre-

mum in B(P+), B(P−) respectively up to a small number η > 0. Using the fact that B does

not depend on I, we think that ϕ+, w+ is on I+ and ϕ−, w− is on I−. Consider

ϕ(x) :=


ϕ+(x) , x ∈ I+

ϕ−(x) , x ∈ I−

ω(x) :=


w+(x) , x ∈ I+

w−(x) , x ∈ I−

Notice that then

(ϕ, hI) ·
1√
|I|

= β . (3.8)

Then it is easy to see that

〈|ϕ|ω〉I = F = P1, 〈ϕ〉I = f = P4 . (3.9)
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Notice that for x ∈ I+ using (3.8), we get if εI = −1

1

|I|
w+{x ∈ I+ :

∑
J⊆I+,J∈D

εJ (ϕ, hJ )hJ (x) > λ} =

1

|I|
w+{x ∈ I+ :

∑
J⊆I+,J∈D

εJ (ϕ, hJ )hJ (x) > λ+ β}

=
1

2|I+|
w+{x ∈ I+ :

∑
J⊆I+,J∈D

εJ (ϕ+, hJ )hJ (x) > P+,3} ≥
1

2
B(P+)− η .

Similarly, for x ∈ I− using (3.8), we get if εI = −1

1

|I|
w−{x ∈ I− :

∑
J⊆I,J∈D

εJ (ϕ, hJ )hJ (x) > λ} =

1

|I|
w−{x ∈ I− :

∑
J⊆I−,J∈D

εJ (ϕ, hJ )hJ (x) > λ− β}

=
1

2|I−|
w−{x ∈ I− :

∑
J⊆I−,J∈D

εJ (ϕ−, hJ )hJ (x) > P−,3} ≥
1

2
B(P−)− η .

Combining the two left hand sides we obtain for εI = −1

1

|I|
ω{x ∈ I+ :

∑
J⊆I,J∈D

εJ (ϕ, hJ )hJ (x) > λ} ≥ 1

2
(B(P+) +B(P−))− 2η .

Let us use now the simple information (3.9): if we take the supremum in the left hand side

over all functions ϕ, such that 〈|ϕ|w〉I = F, 〈ϕ〉I = f, 〈ω〉 = w, and weights ω: 〈ω〉 = w, in

dyadic A1 with A1-norm at most Q, and supremum over all εJ = ±1 (only εI = −1 stays

fixed), we get a quantity smaller or equal than the one, where we have the supremum over

all functions ϕ, such that 〈|ϕ|ω〉 = F, 〈ϕ〉I = f, 〈ω〉 = w, and weights ω: 〈ω〉 = w, in dyadic

A1 with A1-norm at most Q, and an unrestricted supremum over all εJ = ±1 including
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εI = ±1. The latter quantity is of course B(F,w,m, f, λ). So we proved (3.5).

To prove (3.6) we repeat verbatim the same reasoning, only keeping now εI = 1. We are

done.

Remark. This theorem is a sort of “fancy” concavity property, the attentive reader would

see that (3.5), (3.6) represent bi-concavity not unlike demonstrated by the celebrated Burk-

holder’s function. We will use the consequence of bi-concavity encompassed by (3.7). There

is still another concavity if we allow to have |εJ | ≤ 1.

Theorem 3.2.2. In the definition of B we allow now to take supremum over all |εj | ≤ 1.

Let P, P+, P− ∈ Ω, P = (F,w,m, f, λ), P+ = (F + α,w+ γ,m, f + β, λ), P− = (F − α,w−

γ,m, f − β, λ). Then

B(P )− 1

2
(B(P+) + B(P−)) ≥ 0 . (3.10)

Proof. We repeat the proof of (3.5) but with εI = 0.

Theorem 3.2.3. For fixed F,w, f, λ function B is decreasing in m.

Proof. Let m = min(m−,m+) = m−. And let m+ > m. Then (3.5) becomes

B(F,w,m, f, λ)− B(F,w,m+, f, λ) ≥ 0 .

This is what we want.
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3.3 The unweighted estimate: the exact Bellman function

We first deal with the case when there is no weight, i.e. with the case when w = 1 a.e. We

notice that this is the boundary of our domain Ω: w = m.

Introduce a function

B0(λ, f, F ) = sup

∣∣∣∣∣∣
x :

∑
I⊂I0, I∈D

εI(ϕ, hI)hI(x) > λ


∣∣∣∣∣∣ ,

where the supremum is taken over all families {εI} such that |εI | = 1, and all functions ϕ

with 〈|ϕ|〉
I0

= F , 〈ϕ〉
I0

= f .

Let Ω0 = {(λ, f, F ) : F > |f |} be the domain of B0.

Denote

B0(λ, f, F ) =


1, λ 6 F

1− (λ−F )2

λ2−f2 , λ > F,

(F, f, λ) ∈ Ω0.

Our main theorem is the following.

Theorem 3.3.1. For any (λ, f, F ) ∈ Ω0 it holds that B0(F, f, λ) = B0(F, f, λ).

Firstly, it will be more convenient to work with a slightly modified function. We need a

definition.

Definition 21. A function ψ is called a martingale transform of a function ϕ, if for some

family {εI}, with |εI | = 1,

ψ(x) = 〈ψ〉
I0

+
∑

I⊂I0, I∈D
εI(ϕ, hI)hI(x), x ∈ I0.
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Denote

B(g, f, F ) = sup |{x : ψ(x) > 0}| ,

where the supremum is taken over all functions ϕ with 〈|ϕ|〉
I0

= F , 〈ϕ〉
I0

= f , and all

martingale transforms ψ of ϕ with 〈ψ〉
I0

= g. It is easy to see that

B0(λ, f, F ) = B(−g, f, F ).

Denote Ω = {(g, f, F ) : F > |f |} and

B(g, f, F ) =


1, −g 6 F

1− (g+F )2

g2−f2 , −g > F,

(g, f, F ) ∈ Ω.

Then our main theorem is equivalent to the following one.

Theorem 3.3.2. For any (g, f, F ) ∈ Ω it holds B(g, f, F ) = B(g, f, F ).

Corollary 3.3.3. For any function ϕ ∈ L1, any number λ > 0 and any family {εI} with

|εI | = 1 it holds ∣∣∣∣∣∣
x :

∑
I⊂I0, I∈D

εI(ϕ, hI)hI(x) > λ


∣∣∣∣∣∣ 6 2

‖ϕ‖1
λ

Proof. It is easy to verify that

sup

(
B0(λ, f, F ) · λ

F

)
= 2.

Thus, ∣∣∣∣∣∣
x :

∑
I⊂I0, I∈D

εI(ϕ, hI)hI(x) > λ


∣∣∣∣∣∣ 6 2

F

λ
= 2
‖ϕ‖1
λ

.
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Corollary 3.3.4. For any function ϕ ∈ L1, any number λ > 0 and any family {εI} with

|εI | = 1 it holds ∣∣∣∣∣∣
x :

∑
I⊂I0, I∈D

εI(ϕ, hI)hI(x) > λ


∣∣∣∣∣∣ 6 4

‖ϕ‖1
λ

Proof.

∣∣∣∣∣∣
x :

∑
I⊂I0, I∈D

|εI(ϕ, hI)hI(x)| > λ


∣∣∣∣∣∣ =

∣∣∣∣∣∣
x :

∑
I⊂I0, I∈D

εI(ϕ, hI)hI(x) > λ


∣∣∣∣∣∣+∣∣∣∣∣∣

x :
∑

I⊂I0, I∈D
εI(−ϕ, hI)hI(x) > λ


∣∣∣∣∣∣ 6 4

‖ϕ‖1
λ

(3.11)

We start to prove our main theorem.

3.3.1 B > B

We need a technical lemma.

Lemma 3.3.5. Let x± be two points in Ω such tat |f+−f−| = |g+−g−| and x = 1
2(x++x−).

Then

B(x)− B(x+) +B(x−)

2
≥ 0 . (3.12)

Given the lemma, we prove the following theorem.

Theorem 3.3.6. For any point x ∈ Ω it holds B(x) > B(x).

87



Proof. Let us fix a point x ∈ Ω and a pair of admissible functions ϕ, ψ on I0 corresponding

to x. For any I ∈ D by the symbol xI we denote the point (〈ψ〉
I
, 〈ϕ〉

I
, 〈|ϕ|〉

I
, ). We notice

that since ψ is a martingale transform of ϕ, we always have

|fI
+
− fI

−
| = |gI

+
− gI

−
|,

and

xI =
xI

+
+ xI

−

2
.

Using consequently main inequality for the function B we can write down the following chain

of inequalities

B(x) ≥ 1

2

(
B(xI

+
0 ) +B(xI

−
0 )
)
≥

∑
I∈D, |I|=2−n

1

|I|
B(xI) =

∫ 1

0
B(x(n)(t))dt ,

where x(n)(t) = xI , if t ∈ I, |I| = 2−n.

Note that x(n)(t)→ (ψ(t), ϕ(t), |ϕ(t)|) almost everywhere (at any Lebesgue point t), and

therefore, since B is continuous and bounded, we can pass to the limit in the integral. So,

we come to the inequality

B(x) ≥
∫ 1

0
B(ψ(t), ϕ(t), |ϕ(t)|)dt ≥

∫
{t : ψ(t)≥0}

=
∣∣{t ∈ I0 : ψ(t) ≥ 0}

∣∣ (3.13)

where we have used the property B(g, f, |f |) = 1 for g ≥ 0. Now, taking supremum in (3.13)

over all admissible pairs ϕ, ψ, we get the required estimate B(x) ≥ B(x).
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3.3.2 B(g, f, F ) 6 B(g, f, F )

This section is devoted to the following theorem.

Theorem 3.3.7. For any point x ∈ Ω it holds B(x) 6 B(x).

To prove the theorem we need to present two sequences of functions {ϕn}, {ψn}, such

that

• For every n the function ψn is a martingale transform of ϕn;

• For every n: 〈|ϕn|〉I0 = F , 〈ϕn〉I0 = f , 〈ψn〉I0 = g;

• It holds that B(g, f, F ) = lim
n→∞

|{x : ψn(x) > 0}| .

We need the following definition.

Definition 22. We call a pair (ϕ, ψ) admissible for the point (g, f, F ) if ψ is a martingale

transform of ϕ, and 〈|ϕ|〉
I0

= F , 〈ϕ〉
I0

= f , 〈ψ〉
I0

= g.

Definition 23. We call a pair (ϕ, ψ) an ε-extremizer for a point (g, f, F ), if this pair is

admissible for this point and |{x : ψ(x) > 0}| > B(g, f, F )− ε.

The following lemma is almost obvious.

Lemma 3.3.8. 1. For a positive number s: B(sg, sf, sF ) = B(g, f, F ). Moreover, if a

pair (ϕ, ψ) is admissible for a point (g, f, F ) then (sϕ, sψ) is admissible for (sg, sf, sF ).

If a pair (ϕ, ψ) is an ε-extremizer for a point (g, f, F ) then (sϕ, sψ) is an ε-extremizer

for (sg, sf, sF ).

2. B(g, f, F ) = B(g,−f, F ). Moreover, if a pair (ϕ, ψ) is admissible for a point (g, f, F )

then (−ϕ, ψ) is admissible for (g,−f, F ). If a pair (ϕ, ψ) is an ε-extremizer for a point

(g, f, F ) then (−ϕ, ψ) is an ε-extremizer for (g,−f, F ).
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The next lemma is a key to our “splitting” technique.

Lemma 3.3.9. Suppose two pairs (ϕ±, ψ±) are admissible for points (g±, f±, F±) corre-

spondingly. Suppose also that

F =
F+ + F−

2
, f =

f+ + f−

2
, , g =

g+ + g−

2
, |f+ − f−| = |g+ − g−|.

Then a pair (ϕ, ψ) is admissible for the point (g, f, F ), where

ϕ(x) =


ϕ−(2x), x ∈ [0, 1

2)

ϕ+(2x− 1), x ∈ [1
2 , 1],

ψ(x) =


ψ−(2x), x ∈ [0, 1

2)

ψ+(2x− 1), x ∈ [1
2 , 1].

Proof. It is clear that 〈ϕ〉
I0

= f , 〈ψ〉
I0

= g, and 〈|ϕ|〉
I0

= F . All we need to prove is that

for any interval I it is true that

|(ψ, hI)| = |(ϕ, hI)|.

For any interval I 6= I0 it is obvious, since pairs (ϕ±, ψ±) are admissible for corresponding

points. Thus, we need to show that

|(ϕ, hI0)| = |(ψ, hI0)|.

But

(ϕ, hI0) = 〈ϕ〉
[ 12 ,1]

− 〈ϕ〉
[0,12 ]

= 〈ϕ+〉[0,1]
− 〈ϕ−〉[0,1]

= f+ − f−,

(ψ, hI0) = 〈ψ〉
[ 12 ,1]

− 〈ψ〉
[0,12 ]

= 〈ψ+〉[0,1]
− 〈ψ−〉[0,1]

= g+ − g−,
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which finishes our proof.

We generalize this lemma a little.

Lemma 3.3.10. Suppose two pairs (ϕ±, ψ±) are admissible for points (g±, f±, F±) corre-

spondingly. Suppose also that

F =
F+ + F−

2
, f =

f+ + f−

2
, , g =

g+ + g−

2
, |f+ − f−| = |g+ − g−|.

Suppose I is a dyadic interval with “sons” I±. Suppose that a pair (Φ,Ψ) is admissible for

some point (g0, f0, F 0). Suppose that

∀ x ∈ I Φ(x) = ϕI(x), Ψ(x) = ψI(x),

where the pair (ϕ, ψ) is admissible for the point (g, f, F ). Then the pair (Φ1,Ψ1), defined

below, is admissible for the point (g0, f0, F 0):

Φ1(x) =



Φ(x), x 6∈ I

ϕ
I+
+ (x), x ∈ I+

ϕ
I−
− (x), x ∈ I−

, Ψ1(x) =



Ψ(x), x 6∈ I

ψ
I+
+ (x), x ∈ I+

ψ
I−
− (x), x ∈ I−

Essentially this lemma says that if we have pairs (ϕ±, ψ±), and and a pair (ϕ, ψ) defined

in the Lemma 3.3.9, then we can split this pair into (ϕ±, ψ±), defined on I± correspondingly.

The proof of the Lemma 3.3.10 is essentially the same as the proof of the Lemma 3.3.9.
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3.3.2.1 Change of variables

It will be more convenient for us to work in variables

y1 =
f − g

2
, y2 =

−f − g
2

, F.

We define M(y1, y2, F ) = B(g, f, F ). Then all properties of B are easily translated to

properties of M . Moreover, the “splitting” lemmas 3.3.9, 3.3.10 remain true for fixed y1 or

fixed y2.

If we have a point (y1, y2, F ) then by (ϕ(y1,y2,F ), ψ(y1,y2,F )) we denote an admissible

pair for this point. An individual function ϕ(y1,y2,F ) is always such that there is a function

ψ(y1,y2,F ), such that the pair (ϕ(y1,y2,F ), ψ(y1,y2,F )) is admissible for (y1, y2, F ).

3.3.2.2 The proof of B > B

We will work in the y-variables. In these variables it is true that the function M is concave

when y1 or y2 is fixed. This is proved in the Theorem 3.3.4. Analogously to the previous

definition, we define

M(y1, y2, F ) = B(g, f, F ).

We first prove that

M(1, 1, F ) >M(1, 1, F ).
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Fix a large integer r and set δ = 1
2r . We notice the following chain of inequalities:

M(1, 1, F ) >
1

2
(M(1, 1− δ, F + δ(1− F )) +M(1, 1 + δ, F − δ(1− F ))) =

=
1

2
(M(1, 1− δ, F + δ(1− F )) +M(1 + δ, 1, F − δ(1− F ))) . (3.14)

Applying the same concavity we see that

M(1, 1− δ, F + δ(1− F )) > δM(1, 0, 1) + (1− δ)M(1, 1, F ) = δ + (1− δ)M(1, 1, F ).

Moreover, by the concavity

M(1 + δ, 1, F − δ(1− F )) >

(δ − δ2)M(1 + δ, 0, 1 + δ) + (1− δ)M(1 + δ, 1 + δ, (1 + δ)(F − δ(2− F )))+

δ2M(1 + δ, 1, F − δ(1− F )) > δ − δ2 + (1− δ)M(1, 1, F − δ(2− F )) (3.15)

Therefore, we get

M(1, 1, F ) >
1

2

(
δ + (1− δ)M(1, 1, F ) + δ − δ2 + (1− δ)M(1, 1, F − δ(2− F ))

)
,

or

M(1, 1, F ) >
2δ − δ2

1 + δ
+

1− δ
1 + δ

M(1, 1, F − δ(2− F )).

Notice that it is true for any F . We now denote

F k = 2− (2− F )(1 + δ)k.
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Then, clearly, F 0 = F , and F k+1 = F k − δ(2− F k). With this notation we get

M(1, 1, F ) >
2δ − δ2

1 + δ

K∑
k=0

(
1− δ
1 + δ

)k
+

(
1− δ
1 + δ

)K+1

· M(1, 1, FK+1).

3.3.2.3 The case F > 2

In this case we have F k+1 > F k, and therefore the point (1, 1 + δ, F k − δ(1 − F k)) always

lies in Ω. Thus, we can take K as huge as we want. Therefore,

M(1, 1, F ) >
2δ − δ2

1 + δ

∞∑
k=0

(
1− δ
1 + δ

)k
=

2δ − δ2

2δ
.

This is true for arbitrary small δ, and thus M(1, 1, F ) > 1.

3.3.2.4 The case F 6 2

In this case to assure that (1, 1 + δ, F k− δ(1−F k)) ∈ Ω we need F k− δ(1−F k) > δ, which

implies

(1 + δ)K+1 6
2

2− F
.

Take K ∈ [
log 2

2−F
log(1+δ)

− 10,
log 2

2−F
log(1+δ)

+ 10], such that this inequality holds. Then we get

M(1, 1, F ) >
2δ − δ2

1 + δ

K∑
k=0

(
1− δ
1 + δ

)k
=

2δ − δ2

2δ

(
1−

(
1− δ
1 + δ

)K+1
)
.

It is only left to notice that with our choise of K we have

(
1− δ
1 + δ

)K+1

→ (2− F )2

4
, δ → 0,
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and therefore

M(1, 1, F ) > 1− (2− F )2

4
= M(1, 1, F ).

We leave the proof of the general inequality M(y1, y2, F ) > M(y1, y2, F ) to the reader.

In fact, it is a simple use of the concavity of M along the line that connects (y1, 0, y1) with

(y1, y2, F ).

3.3.3 Building the extremal sequense for points (1, 1, F )

The aim of this Section is to prove that B(g, f, F ) 6 B(g, f, F ) by a construction of an

extremal sequense of pairs (ϕn, ψn). For the sake of simplicity, we do it only for the case

f − g = 2.

Due to the homogeneity and symmetry of the function B it is enough to prove that

B(g, f, F ) 6 B(g, f, F )

for f > 0, f − g = 2. In the new variables it means that we consider the case y1 = 1, and

y2 6 y1 = 1. As we have seen, for f > −g we have B(g, f, F ) = B(g, f, F ) = 1, and so we

need to consider the case f 6 −g, i.e. y2 > 0. We first build the ε-extremizer for the point

(F, 1, 1).

Fix a large integer r and let δ = 2−r. As before, denote I0 = [0, 1]. Also denote

Ji = [2−i, 2−i+1), Denote mi(x) = 2ix− 1 — the linear function from Jk onto I0.

We need the following lemma.

Lemma 3.3.11. Suppose δ = 2−r is small enough. Also, fix a small number ε > 0. Suppose

F 1 = F − δ(2 − F ), and the pair (ϕ
(1,1,F1)

, ψ
(1,1,F1)

) is admissible. Then there exists an
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admissible pair (ϕ(1,1,F ), ψ(1,1,F )) such that

|{x : ψ(1,1,F ) > 0}| > 2δ − δ2

1 + δ
+

1− δ
1 + δ

|{x : ψ
(1,1,F1)

> 0}| − ε. (3.16)

Proof. First, we explain our strategy. In what follows, we always assume that functions on

the right-hand side are already defined. We specify their definition later; however, we clearly

indicate points to which the functions are admissible.

We define

ϕ(1,1,F )(x) =


ϕ(1,1−δ,F+δ(1−F ))(m1(x)), x ∈ J1

ϕ(1,1+δ,F−δ(1−F ))(2x), x ∈ [0, 1
2).

ψ(1,1,F )(x) =


ψ(1,1−δ,F+δ(1−F ))(m1(x)), x ∈ J1

ψ(1,1+δ,F−δ(1−F ))(2x), x ∈ [0, 1
2).

By the Lemma 3.3.10 we see that ψ(1,1,F ) is a martingale transform of ϕ(1,1,F ). We define
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next

ϕ(1,1,F )(x) =



ϕ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ϕ(1,1,F )(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

−ϕ(1+δ,1,F−δ(1−F ))(2x), x ∈ [0, 1
2).

ϕ(1,1,F )(x) =



ψ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ψ(1,1,F )(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

ψ(1+δ,1,F−δ(1−F ))(2x), x ∈ [0, 1
2).

(3.17)

By the Lemma 3.3.8 and a multiple application of the Lemma 3.3.10, we still get an

admissible pair for the point (1, 1, F ).

Finally, define

ϕ(1+δ,1,F−δ(1−F ))(x) =



ϕ(1+δ,0,1+δ)(mk(xδ )), x ∈ δ · Jk, k = 1 . . . r

ϕ(1+δ,1,F−δ(1−F ))(
x
δ2

), x ∈ [0, δ2)

(1 + δ)ϕ(1,1,F−δ(2−F ))(mk(x)), x ∈ Jk, k = 1 . . . r

ψ(1+δ,1,F−δ(1−F ))(x) =



ψ(1+δ,0,1+δ)(mk(xδ )), x ∈ δ · Jk, k = 1 . . . r

ψ(1+δ,1,F−δ(1−F ))(
x
δ2

), x ∈ [0, δ2)

(1 + δ)ψ(1,1,F−δ(2−F ))(mk(x)), x ∈ Jk, k = 1 . . . r

(3.18)

Again, the Lemma 3.3.8 and the Lemma 3.3.10 assure that the defined pair is admissible.
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Bringing everything together, we get

ϕ(1,1,F )(x) =



ϕ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ϕ(1,1,F )(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

−ϕ(1+δ,0,1+δ)(mk(2x
δ )), x ∈ δ

2m
−1
k (I0), k = 1 . . . r

−ϕ(1+δ,1,F−δ(1−F ))(
2x
δ2

), x ∈ [0, δ
2

2 )

−(1 + δ)ϕ(1,1,F−δ(2−F ))(mk(2x)), x ∈ 1
2m
−1
k (I0), k = 1 . . . r.

ψ(1,1,F )(x) =



ψ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ψ(1,1,F )(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

ψ(1+δ,0,1+δ)(mk(2x
δ )), x ∈ δ

2m
−1
k (I0), k = 1 . . . r

ψ(1+δ,1,F−δ(1−F ))(
2x
δ2

), x ∈ [0, δ
2

2 )

(1 + δ)ψ(1,1,F−δ(2−F ))(mk(2x)), x ∈ 1
2m
−1
k (I0), k = 1 . . . r.

(3.19)

We now specify definitions of functions on the right-hand side. The pair (ϕ(1,0,1), ψ(1,0,1))

is a ε
2 -extremizer for the point (1, 0, 1). The pair (ϕ(1+δ,0,1+δ), ψ(1+δ,0,1+δ)) is a ε

δ−δ2
-

extremizer for the point (1 + δ, 0, 1 + δ).

The pair (ϕ(1,1,F−δ(2−F )), ψ(1,1,F−δ(2−F ))) is given in the lemma. As for the pair

(ϕ(1+δ,1,F−δ(1−F )), ψ(1+δ,1,F−δ(1−F ))) — we take any admissible pair for this point.

It is an easy calculation that the function ψ(1,1,F ) satisfies the inequality (3.16). More-

over, it is easy to see that for any pair, defined by (3.19) we have 〈ϕ(1,1,F )〉I0−〈ψ(1,1,F )〉I0 =

2. Thus, what we need to show is that there exists an admissible pair (ϕ(1,1,F ), ψ(1,1,F ))
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that satisfies the self-similarity condition (3.19)

To do that, we first take any admissible pair (ϕ̃(1,1,F ), ψ̃(1,1,F )) and define

ϕ0
(1,1,F )(x) =



ϕ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ϕ̃(1,1,F )(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

−ϕ(1+δ,0,1+δ)(mk(2x
δ )), x ∈ δ

2m
−1
k (I0), k = 1 . . . r

−ϕ(1+δ,1,F−δ(1−F ))(
2x
δ2

), x ∈ [0, δ
2

2 )

−(1 + δ)ϕ(1,1,F−δ(2−F ))(mk(2x)), x ∈ 1
2m
−1
k (I0), k = 1 . . . r.

ψ0
(1,1,F )(x) =



ψ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ψ̃(1,1,F )(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

ψ(1+δ,0,1+δ)(mk(2x
δ )), x ∈ δ

2m
−1
k (I0), k = 1 . . . r

ψ(1+δ,1,F−δ(1−F ))(
2x
δ2

), x ∈ [0, δ
2

2 )

(1 + δ)ψ(1,1,F−δ(2−F ))(mk(2x)), x ∈ 1
2m
−1
k (I0), k = 1 . . . r.

(3.20)

Then the pair (ϕ0
(1,1,F )

, ψ0
(1,1,F )

) is admissible to point (1, 1, F ). It is true by the Lemma

3.3.10, and by an easy calculation that shows that all averages are as we need. We now
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define inductively

ϕn+1
(1,1,F )

(x) =



ϕ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ϕn
(1,1,F )

(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

−ϕ(1+δ,0,1+δ)(mk(2x
δ )), x ∈ δ

2m
−1
k (I0), k = 1 . . . r

−ϕ(1+δ,1,F−δ(1−F ))(
2x
δ2

), x ∈ [0, δ
2

2 )

−(1 + δ)ϕ(1,1,F−δ(2−F ))(mk(2x)), x ∈ 1
2m
−1
k (I0), k = 1 . . . r.

ψn+1
(1,1,F )

(x) =



ψ(1,0,1)(
m1(x)
δ )), x ∈ m−1

1 (δI0)

ψn
(1,1,F )

(mk(m1(x))), x ∈ m−1
1 m−1

k (I0), k = 1 . . . r

ψ(1+δ,0,1+δ)(mk(2x
δ )), x ∈ δ

2m
−1
k (I0), k = 1 . . . r

ψ(1+δ,1,F−δ(1−F ))(
2x
δ2

), x ∈ [0, δ
2

2 )

(1 + δ)ψ(1,1,F−δ(2−F ))(mk(2x)), x ∈ 1
2m
−1
k (I0), k = 1 . . . r.

(3.21)

Then for any n we get an admissible pair to the point (1, 1, F ).

We need to notice that

∫
I0

|ϕn+1
(1,1,F )

− ϕn(1,1,F )|
2dx =

∑
k

|Jk|
2

∫
I0

|ϕn(1,1,F ) − ϕ
n−1
(1,1,F )

|2dx =

=
1− δ

2

∫
I0

|ϕn(1,1,F ) − ϕ
n−1
(1,1,F )

|2dx =

= (
1− δ

2
)n
∫
I0

|ϕ1
(1,1,F ) − ϕ

0
(1,1,F )|

2dx. (3.22)
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Thus, we can take

ϕ(1,1,F ) = limϕn+1
(1,1,F )

in L2(I0).

Similarly

ψ(1,1,F ) = limψn+1
(1,1,F )

in L2(I0).

It is clear that the pair (ϕ(1,1,F ), ψ(1,1,F )) satisfies the self-similarity conditions (3.19). More-

over, since the limit in L2 implies the limin in L1, we get that all the averages are as needed.

Moreover, for every interval I:

|(ϕ(1,1,F ), hI)| = lim |(ϕn(1,1,F ), hI)| = |(ψ
n
(1,1,F ), hI)| = |(ψ(1,1,F ), hI)|,

and thus we get an admissible pair. The proof of the lemma is finished.

We are now ready to finish the whole construction. We consider a sequence

F k = 2− (2− F )(1 + δ)k.

Then it is clear the F 0 = F and F k+1 = F k − δ(2− F k).

3.3.3.1 The case F > 2

We take a huge number N and a small number ε. For a point (1, 1, FN ) we take any admis-

sible pair (ϕ
(1,1,FN )

, ψ
(1,1,FN )

). Using the Lemma 3.3.11 N times we build an admissible

pair (ϕ(1,1,F ), ψ(1,1,N)). Moreover, we get

|{x : ψ(1,1,F )(x) > 0}| > 2δ − δ2

1 + δ

N∑
k=0

(
1− δ
1 + δ

)k
−Nε.
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We now specify the choise of δ, N and ε. We first fix a small δ, so that 2δ−δ2
2δ = 1 − σ.

Then fix a huge number N , such that
N∑
k=0

(
1−δ
1+δ

)k
> 1+δ

2δ −σ
1+δ

2δ−δ2
. Finally, fix a very small

number ε, such that Nε < σ. Then we get

|{x : ψ(1,1,F )(x) > 0}| > 2δ − δ2

1 + δ

(
1 + δ

2δ
− σ 1 + δ

2δ − δ2

)
− σ = 1− 3σ.

where σ is an arbitrary small number.

3.3.3.2 The case F < 2

We remind that our very first step requires that the point (1, 1+δ, F −δ(1−F )) to be in our

domain. Thus, the on the N -th iteration we need that the point (1, 1 + δ, FN − δ(1− FN ))

is in the domain Ω = {(y1, y2, F ) : F > |y1 − y2|}. This yields to the inequality

(1 + δ)N+1 <
2

2− F
.

Thus, we should stop at the K-th step with

(1 + δ)N+1 ≈ 2

2− F
.

Here the sign “≈” means that

N ∈ [
log 2

2−F
log(1 + δ)

− 10,
log 2

2−F
log(1 + δ)

+ 10].
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We again apply the Lemma 3.3.11 N times and get

|{x : ψ(1,1,F )(x) > 0}| > 2δ − δ2

1 + δ

N∑
k=0

(
1− δ
1 + δ

)k
−Nε =

2δ − δ2

2δ

(
1−

(
1− δ
1 + δ

)N+1
)
−Nε

Finally, since

N ∈ [
log 2

2−F
log(1 + δ)

− 10,
log 2

2−F
log(1 + δ)

+ 10]

we get that δ → 0 implies 1−
(

1−δ
1+δ

)N+1
→ 1− (2−F )2

4 , which finishes our proof.

3.3.4 How to find the Bellman function B

In this section we explain how did we search for the function B and find it. We start with

the following lemma. Let x± be two points in Ω such tat |f+ − f−| = |g+ − g−| and

x = 1
2(x+ + x−). Then

B(x)− B(x+) + B(x−)

2
≥ 0 . (3.23)

Proof. Fix x± ∈ Ω, and let (ϕ±, ψ±) be two pairs of functions giving the supremum for

B(x+), B(x−) respectively up to a small number η > 0. Write

ϕ± = f± +
∑

I⊆I0, I∈D
(ϕ, hI)hI , ψ± = g± +

∑
I⊆I0, I∈D

ε
I
(ϕ, hI)hI ,

Consider

ϕ(t) :=


ϕ+(2t− 1) , if t ∈ [1

2 , 1]

ϕ−(2t) , if t ∈ [0, 1
2).
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and

ψ(t) :=


ψ+(2t− 1) , if t ∈ [1

2 , 1]

ψ−(2t) , if t ∈ [0, 1
2)

Since |x+
1 − x

−
1 | = |x+

2 − x
−
2 |, the function ψ is a martingale transform of ϕ, and the pair

(ϕ, ψ) is an admissible pair of the test functions corresponding to the point x. Therefore,

B(x) ≥ 1

|I0|
∣∣{t ∈ I0 : ψ(t) ≥ 0}

∣∣
=

1

2|I+
0 |
∣∣{t ∈ [

1

2
, 1] : ψ(t) ≥ 0}

∣∣+
1

2|I−0 |
∣∣{t ∈ [0,

1

2
) : ψ(t) ≥ 0}

∣∣
≥ 1

2
B(x+) +

1

2
B(x−)− 2η.

Since this inequality holds for an arbitrary small η, we can pass to the limit η → 0, what

gives us the required assertion.

Corollary 3.3.12. The lemma means that if we change variables f = y1 − y2, g = −y1 −

y2, and introduce a function M(y1, y2, F ) := B(g, f, F ) defined in the domain G := {y =

(y1, y2, F ) ∈ R3 : |y1 − y2| ≤ F}, then we get that for each fixed y2, M(F, y1, ·) is concave

and for each fixed y1, M(F, · , y2) is concave.

3.3.4.1 The boundary F = y1 − y2

We start with considering a boundary case F = f or, in the y variables, F = y1 − y2. It

means that we consider only non-negative functions ϕ. By the homogeneity of the function

M we need to find a function S of variable s =
y1
y2

, such that

(
S(
y1

y2
)

)′′
y1y1

6 0, and

(
S(
y1

y2
)

)′′
y2y2

6 0. (3.24)
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We notice that when g → 0 we have s → −1 and we must have S → 0. Thus, we get a

condition

S(s)→ 0, as s→ −1. (3.25)

Moreover, we have seen that if f > −g then B(g, f, F ) = 1. In particular, it holds when

f = −g. Therefore, we have M(y1,−y1, 0) = 1. This implies that

S(s)→ 1, as s→ −∞.

From inequalities (3.24) we get that

S′′(s) 6 0, , s2S′′(s) + 2S′(s) 6 0, s ∈ (−∞,−1].

Make the second inequality an equation (we are looking for the best nontrivial S). We get

S(s) = c1 +
c2
s
.

The boundary conditions imply that

S(s) = 1− 1

s
,

and therefore

M(y1, y2, y1 − y2) = 1− y2

y1
=
y1 − y2

y1
,

or

B(g, f, f) =
2f

f − g
.
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Thus, we get an answer

M(y1, y2, y1 − y2) =


1, y2 6 0

y1−y2
y1

, y2 > 0,

(3.26)

or

B(g, f, f) =


1, f > −g

2f
f−g , f 6 −g.

3.3.4.2 The domain Ω

We remind the reader that for a fixed y1 the function M is concave in variables (F, y2). We

also remind the symmetry condition, i.e.

M(y1, y2, F ) = M(y2, y1, F ).

Let us differentiate this equation in y2 and set y2 = y1. Then we get an equation:

My1(y1, y1, F ) = My2(y1, y1, F ).

Moreover, due to the symmetry it is enough to find M for y2 6 y1. As before, we saw that

for f > −g we have B(g, f, F ) = 1, i.e.

for y2 6 0, we have M(y1, y2, F ) = 1. (3.27)
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Thus, it is enough to consider the case 0 6 y2 6 y1. Denote Ωy1 = {(y2, F ) : F > |y2 − y1|}

— the section of Ω for fixed y1. We want to find M satisfying concavity in this hyperplane–we

are going to look for M (and we will check later that it is concave) that solves Monge–Ampère

(MA) equation in Ωy1 with boundary conditions (3.26) and (3.27). In Ωy1 , there is a point

P := (0, y1, y1). Let us make a guess that the characteristics (and we know by Pogorelov’s

theorem that they form the foliation of Ωy1 by straight lines) of our MA equation in Ωy1

form the fan of lines with common point P = (y1, y1, 0). By Pogorelov’s theorem we also

know that there exists functions t1, t2, t constant on characteristics such that

M = t1F + t2y2 + t , (3.28)

such that t1 = t1(t; y1), t2 = t2(t; y1) (we think that y1 is a parameter), that

0 = (t1)′tF + (t2)′ty2 + 1 , (3.29)

that

t1 =
∂M(·, y2, F )

∂F
, t1 =

∂M(·, y2, F )

∂y2
. (3.30)

Let us call characteristics Lt. Extend one of them from P till y2 = y1. We recall another

boundary condition:

If y2 = y1 ⇒
∂M

∂y2
=
∂M

∂y1
. (3.31)

Or if we denote the intersection of Lt with y2 = y1 by (y1, y1, F (t)) we get

t2(t; y1) =
∂M

∂y1
(y1, y1, F (t)) . (3.32)
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We want to prove now that

On the whole Lt we have F (t)t1 + 2y1t2 = 0 . (3.33)

In fact, our M is 0 homogeneous. So everywhere FM ′F + y1M
′
y1

+ y2M
′
y2

= 0. Apply this

to point (y1, y1, F (t)), where we can use (3.32) and get F (t)t1 + t2y1 + t2y1 = 0, which is

(3.33) in one point. But then all entries are constants on Lt, therefore, (3.33) follows.

Now use our guess that Lt fan from P = (y1, y1, 0). Plug this coordinates into 0 =

(t1)′tF + (t2)′ty2 + 1, which is (3.29). Then we get the crucial (and trivial) ODE

t′1(t) = − 1

y1
⇒ t1(t) = − 1

y1
t+ C1(y1) . (3.34)

Let boundary line F = y1 − u corresponds to t = t0. Then we use (3.28) and (3.26):

(− 1

y1
t0 + C1(y1))(y1 − u) + t2u+ t0 = 1− u

y1
.

Using (3.33) we can plug t2 expressed via F (t). But by definition F (t0) = 0. So we get

(− 1

y1
t0 + C1(y1))(y1 − u) + t0 = 1− u

y1
.

Or

C1(y1)y1 − (t0 + C1(y1)y1)
u

y1
= 1− u

y1
.

Varying u we get C1(y1) = 1
y1

, t0 = 0. Now from (3.34) we get

t1(t) =
1

y1
(1− t) . (3.35)
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After that (3.29) and (3.33) become the system of two linear “ODE”s on F (t) and t2(t):


− 1
y1
F (t) + y1t

′
2(t) + 1 = 0

2y1t2(t) + F (t) 1
y1

(1− t) = 0 .

(3.36)

We find t2 = − 1
y1

(1 − t)t. We find the arbitrary constant for t2 by noticing that the

second equation of (3.36) at t0 = 0 implies that t2(0) = 0 as F (t0) = F (0) = 0 by definition.

Hence (3.29) becomes

− 1

y1
F +

1

y1
(2t− 1)y2 + 1 = 0 . (3.37)

Given (y1, y2, F ) ∈ Ωy1 ∩ {0 ≤ y2 ≤ y1}, we find t from (3.37) and plug it into (3.28), in

which we know already t(t) and t2(t). Namely, we know that

M(y1, y2, F ) =
1

y1
F − 1

y1
t(1− t)y2 + t . (3.38)

Plugging t = 1
2
F−(y1−y2)

y2
from (3.37) into this equation we finally obtain

M(y1, y2, F ) = 1− (F − y1 − y2)2

4y1y2
. (3.39)

We notice that on the line F = y2 + y1 we get M = 1. Thus, we get the following answer

for M :

M(y1, y2, F ) =


1− (F−y1−y2)2

4y1y2
, F 6 y1 + y2

1, F > y1 + y2.

(3.40)
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In our initial coordinates we get

B(g, f, F ) =


1− (F+g)2

g2−f2 , F 6 −g

1, F > −g.

3.4 The weighted estimate

3.4.1 Differential properties of B translated to differential properties of B

It is convenient to introduce an auxiliary functions of 4 and 3 variables:

B̃(x, y, f, λ) := B(
x

λ
, y,

f

λ
) .

Of course

B(F,w,m, f, λ) = mB̃(
F

m
,
w

m
, f, λ) = mB(

F

mλ
,
w

m
,
f

λ
) . (3.41)

Lemma 3.4.1. Function B increases in the first and in the second variable.

Proof. We know that by definition the RHS of (3.41) is getting bigger if λ is getting smaller.

So let us consider λ1 > λ2, λ1 = λ2 + δ, and variables F,w,m, f fixed, and choose φ1 (and

a weight ω), 〈φ1〉 = f + ε, 〈|φ1|ω〉 = F , which almost realizes the supremum B(F,w,m, f +

ε, λ1). Consider φ2 such that φ2 = φ1 − h. Function h will be chosen later, however we

say now that h is equal to a certain constant a on a small dyadic interval ` and is zero

otherwise. Constant a and interval ` we will chose later. But ε := 〈h〉 will be chosen very

soon. Function φ2 competes for supremizing B at (〈|φ2|ω〉, w,m, f, λ2). We choose ε in such
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a way that

〈φ1〉
λ1

=
f + ε

λ1
=

f

λ1 − δ
=
〈φ2〉
λ2

. (3.42)

Let us prove that (3.42) implies that

〈|φ1|ω〉
λ1

≤ 〈|φ2|ω〉
λ2

. (3.43)

By (3.42) this is the same as

〈|φ2 + h|ω〉
〈|φ2|ω〉

≤ 〈φ1〉
〈φ2〉

=
〈φ2〉+ ε

〈φ2〉
.

The previous inequality becomes

〈|φ2 + h|ω〉
〈|φ2|ω〉

≤ 1 +
〈h〉
〈φ2〉

.

By triangle inequality the latter inequality would follow from the following one

〈|φ2|ω〉 ≥ 〈φ2〉
〈|h|ω〉
〈h〉

.

We can think that the minimum m of ω is attained on a whole tiny dyadic interval ` (we

are talking about almost supremums). Put h to be a certain a > 0 on this interval and zero

otherwise. Of course we choose a to have 〈h〉 = ε, where ε was chosen before. Now the

previous display inequality becomes

〈|φ2|ω〉 ≥ 〈φ2〉 ·m,
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which is obvious.

Notice that B(〈|φ2|〉, w,m, f, λ2) as a supremum is larger than the ω-measure of the level

set > λ2 of the martingale transform of φ2. But this is also the martingale transform of φ1.

The λ1-level set for any martingale transform of φ1 is smaller, as λ1 > λ2. But recall that we

already said that φ1 (and weight ω) almost realizes its own supremum B(F,w,m, f+ε, λ1) =

B(〈|φ1|〉, w,m, 〈φ1〉, λ1) So

B(〈|φ1|〉, w,m, 〈φ1〉, λ1) ≤ B(〈|φ2|〉, w,m, 〈φ2〉, λ2) .

In other notations we get

B(
〈|φ1|〉
mλ1

,
w

m
,
〈φ1〉
λ1

) ≤ B(
〈|φ2|〉
mλ2

,
w

m
,
〈φ2〉
λ2

) .

Let us denote the argument on the LHS as (x1, y1, z1), and on the RHS as (x2, y2, z2). Notice

that y1 = y2 =: y trivially and z1 = z2 =: z by (3.42). Notice also that x1 < x2 by (3.43).

Moreover by choosing δ very small we can realize any x1 < x2 as close to x2 as we want.

Then the last display inequality reads as

B(x1, y, z) ≤ B(x2, y, z) .

So we proved that function B increases in the first variable.

The increase in the second variable is easy. Choose a dyadic interval I on which infI ω >

m, but 〈ω〉I/ infI ω < Q =: [ω]A1
. For non-constant ω this is always possible, just take a

small interval containing a point x0, where ω(x0) > m. Then augment ω on I slightly to

get ω1 with 〈ω1〉 = w + ε. It is easy to see that as a result we have the new weight with
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the A1 norm at most Q, the same global infimum m but a larger global average 〈ω〉. The

ω1 measure of the level set of the martingale transform will be bigger than ω measure of

the same level set of the same martingale transform, and w/m also grows to (w + ε)/m.

All other variables stay the same. So if the original ω (and some φ) were (almost) realizing

supremum, we would get

B(x, y1, z) ≤ B(x, y2, z)

for y1 = w/m, y2 = (w + ε)/m.

Theorem 3.4.2. Function B from (3.3) satisfies

t→ t−1B(αt, βt, γ) is increasing for
|γ|
α
≤ t ≤ Q

β
. (3.44)

B is concave . (3.45)

B(
x

λ
, y,

f

λ
)− 1

4

[
B(

x− dx
λ− dλ

, y − dy, f − dλ
λ− dλ

) +B(
x− dx
λ− dλ

, y − dy, f + dλ

λ− dλ
)+

B(
x+ dx

λ+ dλ
, y + dy,

f − dλ
λ+ dλ

) +B(
x+ dx

λ+ dλ
, y + dy,

f + dλ

λ+ dλ
)

]
≥ 0 . (3.46)

Proof. These relations follow from Theorem 3.2.3, Theorem 3.2.2, and Theorem 3.2.1 (actu-

ally from (3.7)) correspondingly.

We can choose extremely small ε0 and inside the domain Ω we can mollify B by a

convolution of it with ε0-bell function ψ supported in a ball of radius ε0/10.

Multiplicative convolution can be viewed as the integration with 1
δ5
ψ(

x−x0
δ ), where δ =

ε0/10. Here x0 is a point inside the domain of definition Ω for function B.

This new function we call B again. It is exactly as the initial function B, and it obviously

satisfies all the same relationships, in particular it satisfies Theorems 3.2.1, 3.2.2, 3.2.3. Only
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its domain of definitionΩε0 is smaller (slightly) than Ω. The advantage however is that the

new B is smooth. We build B by this new B. A new function B defined by the new B as

in (3.41) will be smooth. Actually the new B should be denoted Bε0 , where superscript

denotes our operation of mollification, but we drop the superscript for the sake of brevity. In

fact, all these mollifications are for the sake of convenience, the new functions satisfy the old

inequalities in the uniform way, independently of ε0. Property (3.46) can be now rewritten

by the use of Taylor’s formula:

Theorem 3.4.3.

−α2Bαα

(
dx

x
− dλ

λ

)2

− β2Bββ

(
dy

y

)2

− (1 + γ2)Bγγ

(
dλ

λ

)2

−

−2αβBαβ

(
dx

x
− dλ

λ

)
dy

y
+ 2βγBβγ

dy

y

dλ

λ
+ 2αγBαγ

(
dx

x
− dλ

λ

)
dλ

λ
+

+2αBα

(
dx

x
− dλ

λ

)
dλ

λ
− 2γBγ

(
dλ

λ

)2

≥ 0 .

Proof. This is just Taylor’s formula applied to (3.46).

Denoting

ξ =
dx

x
=
dy

y
, η =

dλ

λ

we obtain the following quadratic form inequality

Theorem 3.4.4.

−ξ2 [α2Bαα + β2Bββ + 2αβBαβ ]− η2 [α2Bαα + (1 + γ2)Bγγ + 2αγBαγ + 2αBα + 2γBγ ]+

+2ξη [α2Bαα + αβBαβ + βγBβγ + αγBαγ + αBα] ≥ 0 .
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Now let us combine Theorem 3.4.4 and Theorem 3.2.2. In fact, Theorem 3.2.2 implies

−2αγBαγη
2 ≤ −α2γBααη

2 − γBγγη2 .

We plug it into the second term above. Also Theorem 3.2.2 implies

2αγBαγξη ≤ −α2γBααξ
2 − γBγγη2 ,

2βγBβγξη ≤ −β2γBββξ
2 − γBγγη2 ,

We will plug it into the third term above. Then using the notation

ψ(α, β, γ) := −α2Bαα − 2αβBαβ − β2Bββ

(which is non-negative by the concavity of B in its first two variables by the way) we introduce

the notations

K := ψ(α, β, γ) + (−α2Bαα − β2Bββ)γ ,

L := −ψ(α, β, γ) + (α2Bα)α − β2Bββ ,

N := −(1 + 3γ + γ2)Bγγ − 2γBγ − (α2Bα)α − α2Bααγ .

And we get that the following quadratic form is non-negative:

ξ2K + ξη L+ η2N :=

ξ2 [ψ(α, β, γ) + (−α2Bαα − β2Bββ)γ]+
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ξη [−ψ(α, β, γ) + (α2Bα)α − β2Bββ ]+

η2 [−(1 + 3γ + γ2)Bγγ − 2γBγ − (α2Bα)α − α2Bααγ] ≥ 0 .

Therefore, K is positive, and

N ≥ L2

4K
. (3.47)

Now we will estimate L from below, K from above and as a result we will obtain the

estimate of N from below, which will bring us our proof.

But first we need some a priori estimates, and for that we will need to mollify B = Bε0

in variables α, β. Again we make a multiplicative convolution with a bell-type function. Let

us explain why we need it. Let

Q̂ := sup
G
B/α .

We want to prove that

Q̂/Q→∞ . (3.48)

First we need to notice that

∫ 1

1/2
ψ(αt, βt, γ) dt ≤ C (Q̂γ +

Q̂

Q
α), ψ(α, β, γ) := −α2Bαα − 2αβBαβ − β2Bββ . (3.49)

In fact, consider β ∈ [Q/4, Q/2], b(t) := B(αt, βt, γ) on the interval
|γ|
α =: t0 ≤ t ≤ 1.

Let `(t) = b(1)t ≤ Q̂tα. We saw that b(t)/t is increasing and b is concave, and b is under

`, and so by elementary picture of concave function having property b(·)/· increasing and

b(·) concave on the interval [t′0, 1] we get that the maximum of `(·)− b(·) is attained on the

left end-point. The left end-point t′0 is the maximum of t0 = |γ|/α and 1/β which is c/Q.
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Therefore,

`(t)− b(t)|(t = (max(
γ

α
,
c

Q
)) ≤ `(max(

γ

α
,
c

Q
)) ≤ CQ̂αmax(

γ

α
,

1

Q
) ≤ Q̂γ +

Q̂

Q
α ,

and the above value is maximum of g(t) := `(t)− b(t) on [t′0, 1]. By the same property that

b(t)/t is increasing we get that

g′(1) = `′(1)− b′(1) = b(1)− b′(1) ≤ 0 .

Combining this with Taylor’s formula on [t0, 1] we get for g := `− b (g is convex of course):

−(1− t0)g′(1) +

∫ 1

t0

dt

∫ 1

t
g′′(s)ds = positive +

∫ 1

t0

(s− t0)g′′(s)ds ≤ sup g ≤ Q̂γ +
Q̂

Q
α .

(3.50)

This implies (3.49) because g′′(t) = 1
t2
ψ(αt, βt, γ), t ∈ [1/2, 1].

Consider now function a(t) := B(αt, β, γ) We also have the same type of consideration

applied to convex function Q̂α− a(t) bringing us

∫ 1

1/2
−α2Bαα(αt, β, γ) dt ≤ CQ̂α . (3.51)

Similarly,

∫ 1

1/2
−β2Bββ(α, βt, γ) dt ≤ CQ̂α . (3.52)

We used here that Bα ≥ 0, Bβ ≥ 0, which is not difficult to see.

For the future estimates we want (3.49), (3.51), (3.52) to hold not in average but point-

wise.
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To achieve the replacement of “in-average” estimates (3.49), (3.51), (3.52) by their point-

wise analogs let us consider yet another mollification, now it is of B:

Bnew(α, β, γ) := 2

∫ 1

1/2
B(αt, βt, γ) dt.

The domain of definition of Bnew is only in tiny difference with the domain of definition

of B. In fact, the latter is {(α, β, γ) : |γ| ≤ α, 1 ≤ β ≤ Q}, and the former is just

G := {(α, β, γ) : |γ| ≤ 1
2α, 2 ≤ β ≤ Q}.

If we replace (α, β, γ) by (αt, βt, γ), 1/2 ≤ t ≤ 1, everywhere in the inequality of Theorem

3.4.4, and then integrate the inequality with 2
∫ 1

1/2 . . . dt, we will get Theorem 3.4.4 but for

Bnew.

It is not difficult to see that (3.49) becomes a pointwise estimate for Bnew (just differen-

tiate the formula for Bnew in α, β, γ and multiply by α, β, γ appropriately):

−α2(Bnew)αα − 2αβ(Bnew)αβ − β2(Bnew)ββ ≤ C(Q̂γ +
Q̂

Q
α). (3.53)

This pointwise estimate automatically imply new “average” estimate:

2

∫ 1

1/2

(
− α2s2(Bnew)αα(αs, β, γ)− 2αsβ(Bnew)αβ(., β, .)− β2(Bnew)ββ

)
≤ C(Q̂γ +

Q̂

Q
α).

This means exactly that the function

B̃ := (Bnew)new := 2

∫ 1

1/2
B(αs, β, γ) ds

still satisfies (3.53). It also clearly satisfies the inequality of Theorem 3.4.4 because (as we
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noticed above) Bnew satisfies this inequality. To see this fact just replace all α’s in the

inequality of Theorem 3.4.4 applied to Bnew by αs and integrate 2
∫ 1

1/2 . . . ds.

Now let us see that B̃ = (Bnew)new also satisfies a pointwise analog of (3.51), namely,

that

−α2B̃αα(α, β, γ) ≤ CQ̂α . (3.54)

To show (3.54) we just repeat what has been done above. Let g̃(t) := Q̂α− Bnew(αt, β, γ).

Then we have: 1) 0 ≤ g̃ ≤ Q̂α on [t0, 1], 2) g̃′(1) ≤ 0 (we saw that B, and hence Bnew, are

increasing in the first argument), 3) g̃ is convex. Then we saw in (3.50) that

∫ 1

1/2
s2 g̃′′(s) ds ≤

∫ 1

1/2
g̃′′(s) ds ≤ CQ̂α.

But this is exactly (3.54).

So far we constructed a function B̃ = (Bnew)new that satisfies pointwise inequalities

(3.53), (3.54) and the inequality of Theorem 3.4.4. We are left to see that by introducing

B̂ := 2

∫ 1

1/2
B̃(α, βs, γ) ds

we keep (3.53), (3.54) and the inequality of Theorem 3.4.4 valid and also ensure

−β2B̂ββ(α, β, γ) ≤ CQ̂α . (3.55)

W already just saw that (3.53), (3.54) and the inequality of Theorem 3.4.4 are valid for B̂

just by averaging the same inequalities for B̃. We can see that (3.55) holds by the repetition

of what has been just done. Namely, consider ĝ(t) := Q̂α − B̃(α, βt, γ). Then we have: 1)
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0 ≤ ĝ ≤ Q̂α on [t0, 1], 2) ĝ′(1) ≤ 0 (we saw that B, and hence Bnew, B̃ are increasing in

the first argument), 3) ĝ is convex. Using (3.50) again in exactly the same manner as we did

with proving (3.54) we get

∫ 1

1/2
s2 ĝ′′(s) ds ≤

∫ 1

1/2
ĝ′′(s) ds ≤ CQ̂α.

But this is exactly (3.55).

We drop “hat”, and from now on B̂ is just denoted by B. We can summarize its properties

as follows.

0 ≤ ψ(α, β, γ) ≤ C(Q̂γ +
Q̂

Q
α) . (3.56)

0 ≤ −α2Bαα(α, β, γ) ≤ CQ̂α . (3.57)

0 ≤ −β2Bββ(α, β, γ) ≤ CQ̂α . (3.58)

Recall that (now with this mollified B):

ξ2K + ξη L+ η2N :=

ξ2 [ψ(α, β, γ) + (−α2Bαα − β2Bββ)γ]

ξη [−ψ(α, β, γ) + (α2Bα)α − β2Bββ ]

η2 [−(1 + 3γ + γ2)Bγγ − 2γBγ − (α2Bα)α − α2Bααγ] ≥ 0 .

We will choose soon appropriate α0, α1 ≤ 1
100α0 and γ ≤ τα0 with some small τ . Let us
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introduce

k :=

∫ α0

α1

K dα =

∫ α0

α1

[ψ(α, β, γ) + (−α2Bαα − β2Bββ)γ] dα ,

n :=

∫ α0

α1

N dα =

∫ α0

α1

[−(1 + 3γ + γ2)Bγγ − 2γBγ − (α2Bα)α − α2Bααγ] dα ,

` :=

∫ α0

α1

[−ψ(α, β, γ) + (α2Bα)α − β2Bββ ] dα .

Estimate of k from above. The integrand of k is obviously positive and ψ term dominates

other terms (by (3.56), (3.57), (3.58) and the smallness of γ). Therefore,

0 ≤ k ≤ C1 (Q̂γα0 + C
Q̂

Q
α2

0) + C2 Q̂γα
2
0 ≤ C (Q̂γα0 + C

Q̂

Q
α2

0) , (3.59)

if Q is very large. We choose (we are sorry for a strange way of writing α0, why we do that

will be seen in the next section)

α0 = c

(
Q

Q̂

)ρ
, ρ = 1 , α1 =

1

100

√
Q

Q̂
α0 . (3.60)

Here c is a small positive constant. We also choose to have γ running only on the following

interval

γ ∈ [0, γ0] , γ0 := τ

(
Q

Q̂

)ρ
α0 , ρ = 1 , (3.61)

where τ is a small positive constant.

Estimate of ` from below. Estimating from below we can skip the non-negative term

−β2Bββ . Also ∫ α0

α1

−ψ(α, β, γ) ≥ −CQ̂γα0 − C
Q̂

Q
α2

0 .
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On the other hand, ∫ α0

α1

(α2Bα)α dα ≥ α2
0Bα(α0, β, γ)− α2

1Q̂ ,

as mollification gives a pointwise estimate

Bα ≤ CQ̂ . (3.62)

Recall that β ∈ [Q/4, Q/2]. We also will prove soon the obstacle condition (3.74), which

says that

B(1, β, γ) ≥ β

8
. (3.63)

If Bα(α0, β, γ) would be smaller than Q/40 (and then Bα(s, β, γ) ≤ Q/40 for all s ∈

[α0, 1] by concavity of B in its first variable) we would not be able to reach at least Q
4·8 . In

fact, by our choice of α0 in (3.60) we have

B(α0, β, γ) ≤ Q̂α0 ≤ cQ . (3.64)

If Bα(α0, β, γ) ≤ Q
40 , and so this derivative Bα(s, β, γ) ≤ Q

40 on s ∈ [α0, 1] (concavity), we

cannot reach Q/(4 · 8) for s = 1 if we start with value of B in (3.64) at s = α0. But the fact

that we cannot reach Q/(4 · 8) contradicts to (3.63). Therefore,

Bα(α0, β, γ) ≥ Q

40
, (3.65)

and

` ≥
α2

0

40
Q− α2

1Q̂− C Q̂γα0 − C
Q̂

Q
α2

0 . (3.66)
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As α1 = 1
100α0

√
Q

Q̂
(see (3.60)), the second term is dominated by the first; the third term

is dominated by the first because of the choice of γ0 in (3.61), the fourth term is dominated

by the first one because Q2 >> Q̂, see [P] for a much better estimate.

Finally,

` ≥
α2

0

80
Q ≥ c α2

0Q . (3.67)

And k is

0 ≤ k ≤ C (Q̂γα0 + C
Q̂

Q
α2

0) = α0Q̂ (γ +
1

Q
α0) .

We got

n ≥ `2

4k
≥ c

α4
0Q

2

α0Q̂ (γ + 1
Qα0)

. (3.68)

Estimate of n from above. By (3.65), (3.62) and (3.57) we get

∫ α0

α1

−(α2Bα)α dα− γ
∫ α0

α1

α2Bαα dα ≤ −cQα2
0 + CQ̂α2

1 + cQ̂α2
0γ ≤ 0 .

Negativity is by the choice of α1 in (3.60) and by the fact that

γ ≤ c

√
Q

Q̂
, (3.69)

which is much overdone in (3.61).

Therefore, we get, combining with (3.68) (here η > is an absolute constant and it is at

least the maximum of all our 3γ + γ2)

c
α3

0Q
2

Q̂ (γ + 1
Qα0)

≤ n ≤ −(1 + η)

∫ α0

α1

(e
1

1+η γ
2
Bγ)γ dα ,
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or ∫ α0

α1

(−e
1

1+η γ
2
Bγ)γ dα ≥ C

α3
0Q

3

Q̂ (Qγ + α0)
. (3.70)

Function B is smooth, concave in γ and symmetric in γ (the latter is by definition). In

particular Bγ(α, β, 0) = 0. So after integrating in γ on [0, γ], γ < γ0 we get

∫ α0

α1

(−Bγ) dα ≥ C α3
0
Q2

Q̂
[log(α0 +Qγ)− logα0] = C α3

0
Q2

Q̂
log(1 +

Q

α0
γ) . (3.71)

Integrate again in γ on [0, γ0]. We get the integral over [α1, α0] of the oscillation of B,

which is

∫ α0

α1

[B(α, β, 0)−B(α, β, γ0)] dα ≥ C α3
0
Q2

Q̂
· α0

Q
(1 +Q

γ0

α0
) log(1 +Q

γ0

α0
) .

But this oscillation is smaller than CQ̂α2
0. We get the inequality

C α4
0
Q

Q̂
(1 +Q

γ0

α0
) log(1 +Q

γ0

α0
) ≤ α2

0Q̂ . (3.72)

Notice that α0, γ0, γ0/α0 are all powers of Q
Q̂

, which we expect to be a sort of 1
(logQ)p

.

Then we get the estimate in terms of powers of Q
Q̂

:

C α2
0
Q2

Q̂2

γ0

α0
log(1 +Q

γ0

α0
) ≤ 1 . (3.73)

Let us count the powers of Q
Q̂

: α2
0 brings power 2—by (3.60),

γ0
α0

brings power 1 by (3.61),

so totally we have 1
(logQ)5p

log Q
(logQ)...

in the left hand side.

We can see that if Q̂ ≤ Q logpQ with p < 1
5 , then (3.73) leads to a contradiction. So we
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proved

Theorem 3.4.5. The weighted weak norm of the martingale transform for weights w ∈

A
dyadic
1 can reach c [w]A1

logp[w]A1
for any positive p < 1/5.

3.4.2 Obstacle conditions for B.

Now we want to show the following obstacle condition for B, which we already used:

if |γ| < 1

4
, then B(1, β, γ) ≥ β

8
. (3.74)

Let I := [0, 1]. Given numbers |f | < λ/4, Fm = λ it is enough to construct functions

ϕ, ψ,w on I such that

Put ϕ = −a on I−−, = b on I++, zero otherwise. And w = 1 on I−− ∪ I++, and w = Q

otherwise. Then put

ψ := (ϕ, hI−)hI− − (ϕ, hI+)hI+ .

Let 0 < a < b and a is close to b. Put λ = (a+ b)/4. Then average of ϕ is small with respect

to λ and we can prescribe it. F = (a + b)/4,m = 1. On the other hand, function ψ (which

is a martingale transform of ϕ − 〈ϕ〉) is at least −(ϕ, hI+)hI+ ≥
1
2b ≥ λ on I+−, whose

w-measure is more than 1
3w(I). So

B(1, β, γ) ≥ 1

3
β , (3.75)

for all small γ and β � Q. This is what we wanted to prove.
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Chapter 4

One weight estimates in metric spaces

4.1 Main results

Here we give a proof of the A2 conjecture in geometrically doubling metric spaces (GDMS),

i.e. a metric space where one can fit not more than a fixed amount of disjoint balls of radius

r in a ball of radius 2r.

Our main result is the following.

Theorem 4.1.1 (A2 theorem for a geometrically doubling metric space). Let X be a geo-

metrically doubling metric space, µ and T as above, w ∈ A2,µ. In addition we assume that

µ is a doubling measure. Then

‖T‖
L2(wdµ)→L2(wdµ)

6 C(T )[w]2,µ. (4.1)

The proof is organized as follows:

1. A construction of a probability space of random “dyadic” lattice in a metric space is

given in Section 4.2;

2. Averaging trick of Hytönen [HPTV] (but we think we simplified it) is given in Section

4.4.3;

3. A linear estimate of weighted dyadic shift on metric space from [NV], which uses
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Bellman function technique, is given in Sections 4.4.1 and 4.4.2. For another proof

of the linear estimate for weighted dyadic shifts, which can be easily adjusted to the

metric case, we refer to [T].

4.2 The main construction

4.2.1 First Step

Consider a compact doubling metric space X with metric d and doubling constant A. Instead

of d(x, y) we write |xy|. Precisely, the definition is the following.

Definition 24. Suppose (X, |.|) is a metric space. We call it geometrically doubling with

constant A, if for any x ∈ X and r > 0 we can fit no more than A disjoint balls of radius 2

in the ball B(x, r).

As authors of [HM], we essentially use the idea of Michael Christ [Chr], but randomize

his construction in a different way. Therefore, we want to guard the reader that even though

on the surface the proof below is very close to the proof from [HM], however, our construction

is essentially different, and so the proof of the assertion in our main lemma, which was not

hard in [HM], becomes much more subtle here.

We now proceed to the construction.

For a number k > 0 we say that a set G is a k-grid if G is maximal (with respect to

inclusion) set, such that for any x, y ∈ G we have d(x, y) > k.

Let from now on diamX = 1. Take a small positive number δ � 1 depending on the

doubling constant of X and a large natural number N , and for every M > N fix GM = {zαM},

a certain δM -grid of X. Now take GN and randomly choose a GN−1 = δN−1-grid in GN .
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Then take GN−1 and randomly choose a GN−2 = δN−2-grid in GN−1. Do this N times.

Notice that G0 consists of just one random point of GN .

We explain what is “randomly”. Since X is a compact metric space, all Gk’s are finite.

Therefore, there are finitely many (N − 1)-grids in GN . We choose one of them with a

probability

1

number of (N − 1)-grids in GN
.

Our first lemma is the following.

Lemma 4.2.1. For k = 0, . . . , N

⋃
y∈GN−k

B(y, 3δN−k) = X.

Remark 11. For N + k, k ≥ 0, instead of N − k this is obvious.

Proof. Take x ∈ X. Then, since GN is maximal, there exists a point y0 ∈ GN , such

that |xy0| 6 δN . Since GN−1 is maximal in GN , there is a point y1 ∈ GN−1, such that

|y0y1| 6 δN−1. Similarly we get y2, . . . , yk and then

|xyk| 6 |xy0|+ . . .+ |xyk| 6 δN + . . .+ δN−k = δN−k(1 + δ + . . .+ δk) 6
δN−k

1− δ
6 2δN−k.

Once we have all our sets GN , we introduce a relationship ≺ between points. We follow

[HM] and [Chr].

Take a point yk+1 ∈ Gk+1. There exists at most one yk ∈ Gk, such that |yk+1yk| 6 δk

4 .

128



This is true since if there are two such points y1
k, y

2
k, then

|y1
ky

2
k| 6

δk

2
,

which is a contradiction, since Gk was a δk-grid in Gk+1.

Also there exists at least one zk ∈ Gk such that |yk+1zk| 6 3δk. This is true by the

lemma.

Now, if there exists an yk as above, we set yk+1 ≺ yk. If no, then we pick one of zk as

above and set yk+1 ≺ zk. For all other x ∈ Gk we set yk+1 6≺ x. Then extend by transitivity.

We also assume that yk ≺ yk. This is if yk on the left happened to belong already to

Gk+1.

We do this procedure randomly and independently, and treat same families of Gk’s with

different ≺-law as different families.

Take now a point yk ∈ Gk and define

Qyk =
⋃

z≺yk,z∈G`

B(z,
δ`

100
).

Lemma 4.2.2. For every k we have

X =
⋃

yk∈Gk

clos(Qyk)

Remark 12. There is only one point in G0, and clos(Qy), y ∈ G0, is just X. But for small

δ, X =
⋃

y1∈G1

clos(Qy1) is a genuine (and random) splitting of X.

Proof. Take any x ∈ X. By the previous lemma, for every m > k there exists a point
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xm ∈ Gm, such that |xxm| 6 3δm. In particular, xm → x. Fix for a moment xm. Then

there are points ym−1 ∈ Gm−1, . . . , yk ∈ Gk, such that xm ≺ ym−1 ≺ . . . ≺ yk. In

particular, xm ∈ Qyk , where yk depends on xm. Then

|ykx| 6 |ykxm|+ |xmx| 6 |ykxm|+ 3δm 6 |ykxm|+ 3δk.

Moreover, by the chain of ≺’s, we know that |ykxm| 6 10δk. Therefore,

|ykx| 6 15δk.

We claim that the set {yk} = {yk(xm)}m>k is finite independently on k. This is true since

all yk’s are separated from each other and by the doubling of our space (we are “stuffing”

the ball B(x, 15δk) with balls B(yk, δ
k)).

So, take an infinite subsequence xm that corresponds to one point yk ∈ Gk. Then we get

xm ∈ Qyk , xm → x, so x ∈ closQyk , and we are done.

Remark 13. Since the space X is compact, our random procedure consists of finitely many

steps. Therefore, our probability space is discreet. We suggest to think about all probabilities

just as number of good events divided by number of all events.

However, all our estimates will not depend on number of steps (and, therefore, diameter

of X), which is essential.

Remark 14. We notice that in the Euclidian space, say, R, this procedure does not give a

standard dyadic lattice.
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4.2.2 Second step: technical lemmata

Define

Q̃yk = X \
⋃

zk 6=yk,zk∈Gk

closQzk .

In particular,

Qyk ⊂ Q̃yk ⊂ clos(Qyk).

Lemma 4.2.3 (Lemma 4.5 in [HM]). Let m be a natural number, ε > 0, and δm > 100ε.

Suppose x ∈ closQyk and dist(x,X \ Q̃yk) < εδk. Then for any chain

zk+m ≺ zk+m−1 ≺ . . . ≺ zk+1 ≺ zk,

such that x ∈ closQzk+m
, the following relationships hold

|zizj | >
δj

100
, k 6 j < i 6 k +m.

Proof. Suppose |zizj | < δj

100 . We first consider a case when zk = yk. Since zj ≺ zk = yk, we

have B(zj ,
δj

200) ⊂ Qyk ⊂ Q̃yk . Therefore,

δj

200
6 dist(zj , X \ Q̃yk) 6 dist(x,X \ Q̃yk) + dist(x, zi) + dist(zi, zj) < εδk + 5δi +

δj

100

If δ is less than, say, 1
1000 , then we get a contradiction.

The only not obvious estimate is that dist(x, zi) < 5δi. It is true since x ∈ closQzk+m
.

We have proved the lemma with assumption that zk = yk. Let us get rid of this assump-
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tion. We know that

x ∈ closQzk+m
⊂ closQzk .

Also we have x ∈ closQyk , so, since

Q̃zk = X \
⋃

uk 6=zk

closQuk ⊂ X \ closQyk ,

we get x ∈ X \ Q̃zk . In particular, dist(x,X \ Q̃zk) = 0 < εδk, and we are in the situation

of the first part. This finishes our proof.

Lemma 4.2.4. Fix xk ∈ Gk. Then

P(∃xk−1 ∈ Gk−1 : |xkxk−1| <
δk−1

1000
) > a (4.2)

for some a ∈ (0, 1).

Proof. We remind that we are in a compact metric situation. By rescaling we can think that

we work with G1 and choose G0. We can even think that the metric space consists of finitely

many points, it is X := G2. The finite set G1 ⊂ X consists of points having the following

properties:

1. ∀x, y ∈ G1 we have |xy| ≥ δ;

2. if z ∈ X \G1 then ∃x ∈ G1 such that |zx| < δ.

These two properties are equivalent to saying that the subset G1 of X consists of points

such that ∀x, y ∈ G1 we have |xy| ≥ δ and we cannot add any point from X to G1 without

violating that property. In other words: G1 is a maximal set with property 1.

Recall that here the word “maximal” means maximal with respect to inclusion, not
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maximal in the sense of the number of elements.

Now we consider the new metric space Y = G1 and G0 is any maximal subset such that

∀x, y ∈ G0 , |xy| ≥ 1 . (4.3)

In other words, we have 1. ∀x, y ∈ G0 we have |xy| ≥ 1;

2. if z ∈ Y \G0 then ∃x ∈ G0 such that |zx| < 1.

There are finitely many such maximal subsets G0 of Y . We prescribe for each choice the

same probability. Now we want to prove the claim that is even stronger than (4.2). Namely,

we are going to prove that given y ∈ Y

P(∃x0 ∈ G0 : x0 = y) > a , (4.4)

where a depends only on δ and the constants of geometric doubling of our compact metric

space.

Let Y be any metric space with finitely many elements. We will color the points of Y

into red and green colors. The coloring is called proper if

1. every red point does not have any other red point at distance < 1;

2. every green point has at least one red point at distance < 1.

Given a proper coloring of Y the collection of red points is called 1-lattice. It is a maximal

(by inclusion) collection of points at distance ≥ 1 from each other.

What we need to finish the proof is

Lemma 4.2.5. Let Y be a finite metric space as above. Assume Y has the following property:

In every ball of radius less than 1 there are at most d elements . (4.5)
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Let L be a collection of 1-lattices in Y . Elements of L are called L. Let v ∈ Y . Then

the number of 1-lattices L such that v belongs to L

the total number of 1-lattices L
≥ a > 0 ,

where a depends only on d.

Proof. Given v ∈ Y consider all subsets of B(v, 1) \ v, this collection is called S. Let S ∈ S.

We call WS the collection of all proper colorings such that v is green, all elements of S are

red, and all elements of B(v, 1) \ S are green. We call S̃ all points in Y , which are not in

B(v, 1), but at distance < 1 from some point in S.

All proper colorings of Y such that v is red are called B. Let us show that

cardWS ≤ cardB . (4.6)

Notice that if (4.6) were proved, we would be done with Lemma 4.2.5, a ≥ 2−d+1, and,

consequently, the proof of the main lemma would be finished, a ≥ 2−δ
−D

, where D is a

geometric doubling constant.

To prove (4.6) let us show that we can recolor any proper coloring from WS into the one

from B, and that this map is injective. Let L ∈ WS . We

1. Color v into red;

2. Color S into green;

3. Elements of S̃ were all green before. We leave them green, but we find among them all

those y that now in the open ball B(y, 1) in Y all elements are green. We call them yellow

(temporarily) and denote them Z;

4. We enumerate Z in any way (non-uniqueness is here, but we do not care);
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5. In the order of enumeration color yellow points to red, ensuring that we skip recoloring

of a point in Z if it is at < 1 distance to any previously colored yellow-to-red point from Z.

After several steps all green and yellow elements of S̃ will have the property that at distance

< 1 there is a red point;

6. Color the rest of yellow (if any) into green and stop.

We result in a proper coloring (it is easy to check), which is obviously B. Suppose L1, L2

are two different proper coloring in WS . Notice that the colors of v, S,B(v, 1) \ S, S̃ are the

same for them. So they differ somewhere else. But our procedure does not touch “somewhere

else”. So the modified colorings L′1, L
′
2 that we obtain after the algorithm 1-6 will differ as

well may be even more). So our map WS → B (being not uniquely defined) is however

injective. We proved (4.6).

Thus, the proof of the Lemma 4.2.4 is finished.

Remark. We are grateful to Michael Shapiro and Dapeng Zhan who helped us to prove

Lemma 4.2.4.

4.2.3 Main definition and theorem

Fix a number γ, 0 < γ < 1. Later the choice of γ will be dictated by the Calderón-Zygmund

properties of the operator T . Also fix a sufficiently big r. The coice of r will be made in this

section.

Definition 25 (Bad cubes). Take a “cube” Q = Qxk . We say that Q is good if there exists
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a cube Q1 = Qxn , such that if

δk 6 δrδn (k > n+ r)

then either

dist(Q,Q1) > δkγδn(1−γ)

or

dist(Q,X \Q1) > δkγδn(1−γ).

Remark 15. Notice that δk = `(Q) just by definition.

If Q is not good we call it bad.

Theorem 4.2.6. Fix a cube Qxk . Then

P(Qxk is bad ) 6
1

2
.

Remark 16 (Discussion). This theorem makes sense because when we fix a cube Qk, say,

k > N , so the grid Gk is not even random, we can make big cubes random. And we claim

that for big quantity of choices, our big cubes will have Qk either “in the middle” or far

away, but not close to the boundary.

Definition 26. For Q = Qxk define

δQ(ε) = δQ = {x : dist(x,Q) 6 εδk and dist(x,X \Q) 6 εδk}

Lemma 4.2.7. Let us start with level N by fixing a δN -grid (non-random), and let k < N ,
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xk denoting the points of the (random) grid Gk. Fix a point x ∈ X.

P(∃xk ∈ Gk : x ∈ δQxk ) 6 εη

for some η > 0.

Proof of the theorem. Take the cube Qxk . There is a unique (random!) point xk−s such

that xk ∈ Qxk−s . Then

dist(Qxk , X \Qxk−s) > dist(xk, X \Qxk−s)− diam(Qxk) > dist(xk, X \Qxk−s)− Cδ
k.

Assume that dist(xk, X \ Qxk−s) > 2δkγδ(k−s)(1−γ) and that s > r (this assumption is

obvious, otherwise Qxk−s does not affect goodness of Qxk).

Then, if r is big enough (δr(1−γ) < 1
C ) we get

dist(Qxk , X \Qxk−s) > δkγδ(k−s)(1−γ),

and so Qxk is good. Therefore,

P(Qxk is bad ) 6 C
∑
s>r

P(xk ∈ δQk−s(ε = 2δsγ)) 6 C
∑
s>r

δηγs 6 100Cδηγr.

By the choice of η, for sufficiently large r this is less than 1
2 .

Proof of the lemma. Let xk be such that x ∈ closQxk (see Lemma 4.2.2). We will estimate

P(dist(x,X \ Q̃k) < εδk) |x ∈ closQxk). Fix the largest m such that 500ε 6 δm. Choose a
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point xk+m such that x ∈ closQxk+m
. Then by the main lemma

P(∃xk+m−1 ∈ Gk+m−1 : |xk+mxk+m−1| <
δk+m−1

1000
) > a.

Therefore,

P(∀xk+m−1 ∈ Gk+m−1 : |xk+mxk+m−1| >
δk+m−1

1000
) 6 1− a.

Let now

xk+m ≺ xk+m−1.

Then

P(∀xk+m−2 ∈ Gk+m−2 : |xk+m−1xk+m−2| >
δk+m−2

1000
) 6 1− a.

So by Lemma 4.2.3

P(dist(x,X \ Q̃k) < εδk) 6 P(|xk+jxk+j−1| >
δk+j−1

1000
∀j = 1, . . . ,m) 6 (1− a)m 6 Cεη

for

η =
log (1− a)

log(δ)
.

4.2.4 Probability to be “good” is the same for every cube

We make the last step to make the probability to be “good” not just bounded away from

zero, but the same for all cubes. We use the idea from [M].

Take a cube Q(ω). Take a random variable ξQ(ω
′
), which is equally distributed on [0, 1].
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We know that

P(Q is good) = pQ > a > 0.

We call Q “really good” if

ξQ ∈ [0,
a

pQ
].

Otherwise Q joins bad cubes. Then

P(Q is really good) = a,

and we are done.

4.3 The Haar shift decomposition

Take two step functions, f and g. We first fix an N -grid GN in X, and “cubes” on level

N , such that f and g are constants on every such cube. Then we start our randomization

process.

As we mentioned, this process consists of finitely many steps, so all probabilistic termi-

nology becomes trivial: we have a finite probability space.

Starting fromGN , we go “up” and on each level get dyadic cubes (random Christ’s cubes).

They have the usual structure of being either disjoint or one containing the other. For each

dyadic cube Q we have several dyadic sons, they are denoted by si(Q), i = 1, . . . ,M(Q) ≤M .

The number M here is universal and depends only on geometric doubling constants of the

space X.

Definition 27. By Ek we denote set of all dyadic “cubes” of generation k. We call Qik ⊂

Q
j
k−1, Qik ∈ Ek sons of Q

j
k−1.
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With every cube Q = Qxk we associate Haar functions h
j
Q, j = 1, . . . ,M − 1, with

following properties:

1. h
j
Q is supported on Q;

2. h
j
Q takes constant values on each “son” of Q;

3. For any two cubes Q and R, we have (h
j
Q, h

i
R) = 0, and (h

j
Q, 1) = 0;

4. ‖hjQ‖∞ 6 C√
µ(Q)

.

We notice that the last property implies that ‖hjQ‖2 6 C.

We use angular brackets to denote the average: 〈f〉Q,µ := 1
µ(Q)

∫
Q f dµ. When we average

over the whole space X, we drop the index and write 〈f〉 = 1
µ(X)

∫
X fdµ.

Our main “tool” is going to be the famous “dyadic shifts”. Precisely, we call by Sm,n the

operator given by the kernel

f →
∑
L∈D

∫
L
aL(x, y)f(y)dy ,

where

aL(x, y) =
∑

I⊂L,J⊂L
g(I)=g(L)+m, g(J)=g(L)+n

cL,I,Jh
j
J (x)hiI(y) ,

where hiI , h
j
J are Haar functions normalized in L2(dµ) and satisfying (iv), and |cL,I,J | ≤

√
µ(I)
√
µ(J)

µ(L)
. Often we will skip superscripts i, j.

Definition 28. We call the number m+ n+ 1 the complexity of a shift Sm,n.

Our next aim is to decompose the bilinear form of the operator T into bilinear forms

140



of dyadic shifts, which are estimated in the Section 4.4.2. The rest will be the so-called

“paraproducts”, estimated in the Section 4.4.1.

Functions {χX} ∪ {h
j
Q} form an orthogonal basis in the space L2(X,µ). Therefore, we

can write

f = 〈f〉χX +
∑
Q

∑
j

(f, h
j
Q)h

j
Q, g = 〈g〉χX +

∑
R

∑
i

(g, hiR)hiR.

First, we state and proof the theorem, that says that essential part of bilinear form of T

can be expressed in terms of pair of cubes, where the smallest one is good. We follow the

idea of Hytönen [H]. In fact, the work [H] improved on “good-bad” decomposition of [NTV],

[NTV2], [NTV3] by replacing inequalities by an equality.

Theorem 4.3.1. Let T be any linear operator. Then the following equality holds:

πgoodE
∑

Q,R,i,j
`(Q)>`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) = E

∑
Q,R,i,j

`(Q)>`(R), R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR).

The same is true if we replace > by >.

Proof. We denote

σ1(T ) =
∑

`(Q)>`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR).

σ1(T ) =
∑

`(Q)>`(R)
R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR).

We would like to get a relationship between Eσ1(T ) and Eσ1(T ).
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We fix R and write (using ggood :=
∑

R is good
(g, hiR)hiR)

∑
Q

∑
R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) =

T (f − 〈f〉χX),
∑

R is good

(g, hiR)hiR

 =

(
T (f − 〈f〉χX), ggood

)
.

Taking expectations, we obtain

E
∑
Q,R

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)1R is good =

E(T (f − 〈f〉χX), ggood) = (T (f − 〈f〉χX),E ggood) =

πgood(T (f − 〈f〉χX), g) = πgoodE
∑
Q,R

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR). (4.7)

Next, suppose `(Q) < `(R). Then goodness of R does not depend on Q, and so

πgood(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) = E

(
(Th

j
Q, h

i
R)(f, h

j
Q)(g, hiR)1R is good|Q,R

)
.

Let us explain this equality. The right hand side is conditioned: meaning that the left hand

side involves the fraction of the number of all lattices containing Q,R in this lattice and such

that R (the larger one) is good to the number of lattices containing Q,R in it. This fraction

is exactly πgood. Now we fix a pair of Q,R, `(Q) < `(R), and multiply both sides by the

probability that this pair is in the same dyadic lattice from our family. This probability is

just the ratio of the number of dyadic lattices in our family containing elements Q and R

to the number of all dyadic lattices in our family. After multiplication by this ratio and the
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summation of all terms with `(Q) < `(R) we get finally,

πgoodE
∑

`(Q)<`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) = E

∑
`(Q)<`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)1R is good .

(4.8)

Now we use first (4.7) and then (4.8):

πgoodE
∑
Q,R

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) = E

∑
Q,R

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)1R is good =

= E
∑

`(Q)<`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)1R is good+

E
∑

`(Q)>`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)1R is good =

= πgoodE
∑

`(Q)<`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)+

E
∑

`(Q)>`(R),R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR), (4.9)

and therefore

E
∑

`(Q)>`(R),R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) = πgoodE

∑
`(Q)>`(R)

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR).

(4.10)

This is the main trick. To have the whole sum expressed as the multiple of the sum,

where the smaller in size cube is good, is very useful as we will see. It gives extra

decay on matrix coefficients (Th
j
Q, h

i
R) and allows us to represent our operator as “convex

combination of dyadic shifts”.
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So, we have obtained that

Eσ1(T ) = π−1
good · Eσ1(T ).

Thus, to estimate Eσ1(T ) it is enough to estimate Eσ1(T ). Absolutely the same sym-

metrically holds for σ2(T ).

4.3.1 Paraproducts

In this subsection we take care of the terms 〈f〉χX and 〈g〉χX . These terms will lead to so

called paraproducts. In fact, let us introduce three auxiliary operators:

π(f) := πTχX
(f) :=

∑
Q,j

〈f〉
Q

(TχX , h
j
Q)h

j
Q; (4.11)

π∗(f) :=
∑
Q,j

(f, h
j
Q)(T ∗χX , h

j
Q)

χQ
µ(Q)

= (πT∗χX )∗(f); (4.12)

o(f) := 〈f〉〈TχX〉χX . (4.13)

Recall that 〈ϕ〉 denotes 1
µ(X)

∫
X ϕdµ. These operators depend on the dyadic grid we

chose. We shall need the following technical lemma.

Lemma 4.3.2.

(π(f), g) = 〈f〉(TχX , g − 〈g〉χX) +
∑

(πh
j
Q, h

i
R)(f, h

j
Q)(g, hiR),

(π∗(f), g) = 〈g〉(T ∗χX , f − 〈f〉χX) +
∑

(π∗h
j
Q, h

i
R)(f, h

j
Q)(g, hiR).
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Proof. The second equality follows from the first one and the definition of π∗. We prove the

first equality. We will not write superscripts i and j in Haar functions.

We write

π(f) = 〈f〉π(χX) +
∑

(f, hiQ)π(hiQ).

Notice that

π(χX) =
∑

(TχX , h
i
Q)hiQ = TχX − 〈TχX〉,

and that π(f) is orthogonal to χX . Thus,

(π(f), g) = (π(f), g−〈g〉χX) = 〈f〉(π(χX),
∑

(g, h
j
R)h

j
R)+

∑
(πhiQ, h

j
R)(f, hiQ)(g, h

j
R) =

= 〈f〉(TχX , g − 〈g〉χX) +
∑

(πhiQ, h
j
R)(f, hiQ)(g, h

j
R),

as desired. The last equality is true because 〈TχX〉 is orthogonal to g − 〈g〉χX .

Notice that π, π∗ depend on the random dyadic grid. We introduce a random operator

T̃ = Tf − π(f)− π∗(f).

Now we state the following very useful lemma.

Lemma 4.3.3.

(Tf, g) = π−1
goodE

∑
Q,R

smaller is good

(T̃ hiQ, h
j
R)(f, hiQ)(g, h

j
R)+

E(π(f), g) + E(π∗(f), g) + 〈f〉〈g〉(TχX , χX).
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Proof. First, we write

(Tf, g) =
∑

(ThiQ, h
j
R)(f, hiQ)(g, h

j
R) + 〈f〉(TχX , g) + 〈g〉(T ∗χX , f − 〈f〉χX).

We take expectations now. Notice that only the first term in the right-hand side depends

on a dyadic grid. Therefore,

(Tf, g) = E
∑

(ThiQ, h
j
R)(f, hiQ)(g, h

j
R) + 〈f〉(TχX , g) + 〈g〉(T ∗χX , f − 〈f〉χX).

We focus on the first term. By the Theorem 4.3.1, we know that

E
∑

(ThiQ, h
j
R)(f, hiQ)(g, h

j
R) = π−1

goodE
∑

smaller is good

(ThiQ, h
j
R)(f, hiQ)(g, h

j
R) =

= π−1
goodE

∑
smaller is good

(T̃ hiQ, h
j
R)(f, hiQ)(g, h

j
R)+

+ π−1
goodE

∑
smaller is good

(πhiQ, h
j
R)(f, hiQ)(g, h

j
R)+

π−1
goodE

∑
smaller is good

(π∗hiQ, h
j
R)(f, hiQ)(g, h

j
R). (4.14)

The first term is one of those that we want to get in the right-hand side.

On the other hand, we want to get a result for paraproducts, similar to the Theorem

4.3.1. Indeed, it is clear that

(πhiQ, h
j
R) = 〈hiQ〉R(TχX , h

j
R),
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which is non-zero only if R ⊂ Q, and R 6= Q. So,

E
∑

smaller is good

(πhiQ, h
j
R)(f, hiQ)(g, h

j
R) =

E
∑
R⊂Q
〈hiQ〉R(TχX , h

j
R)(f, hiQ)(g, h

j
R)1R is good =

= E
∑
R

(TχX , h
j
R)(g, h

j
R)1R is good

∑
Q :R(Q

(f, hiQ)〈hiQ〉R . (4.15)

We now see that since f = 〈f〉χX +
∑
Q

(f, hiQ)hiQ, we have

〈f〉
R
− 〈f〉 = (f, µ(R)−1χR)− 〈f〉 =

∑
Q :R(Q

(f, hiQ)〈hiQ〉R =
∑
Q

(f, hiQ)〈hiQ〉R .

Therefore,

E
∑
R

(TχX , h
j
R)(g, h

j
R)1R is good

∑
Q

(f, hiQ)〈hiQ〉R =

E
∑
R

(TχX , h
j
R)(g, h

j
R)1R is good(〈f〉

R
− 〈f〉). (4.16)

Now it is clear that we can take the expectation inside (we have no Q anymore, which was

preventing us from doing that), and so we get

E
∑

smaller is good

(πhiQ, h
j
R)(f, hiQ)(g, h

j
R) = πgoodE

∑
R

(TχX , h
j
R)(g, h

j
R)(〈f〉

R
− 〈f〉).

Making all above steps backwards, we get

E
∑

smaller is good

(πhiQ, h
j
R)(f, hiQ)(g, h

j
R) = πgoodE

∑
(πhiQ, h

j
R)(f, h

j
Q)(g, h

j
R)
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Therefore,

π−1
goodE

∑
smaller is good

(πhiQ, h
j
R)(f, hiQ)(g, h

j
R)+

π−1
goodE

∑
smaller is good

(π∗hiQ, h
j
R)(f, hiQ)(g, h

j
R) =

= E
∑

(πhiQ, h
j
R)(f, hiQ)(g, h

j
R) + E

∑
(π∗hiQ, h

j
R)(f, hiQ)(g, h

j
R) =

= E(π(f), g) + E(π∗(f), g)− E[〈f〉(TχX , g − 〈g〉χX)]− E[〈g〉(T ∗χX , f − 〈f〉χX)]. (4.17)

We now use that last two terms do not depend on the dyadic grid, and so we drop expecta-

tions. Finally,

(Tf, g) = E
∑

smaller is good

(T̃ hiQ, h
j
R)(f, hiQ)(g, h

j
R) + E(π(f), g) + E(π∗(f), g)−

− 〈f〉(TχX , g− 〈g〉χX)− 〈g〉(T ∗χX , f − 〈f〉χX) + 〈f〉(TχX , g) + 〈g〉(T ∗χX , f − 〈f〉χX) =

= E
∑

smaller is good

(T̃ hiQ, h
j
R)(f, hiQ)(g, h

j
R) + E(π(f), g) + E(π∗(f), g) + 〈f〉〈g〉(TχX , χX).

(4.18)

This is what we want to prove.

The following lemma, which will be proved later, takes care of paraproducts.

Lemma 4.3.4. The operators π, π∗ are bounded on L2(X,wdµ), and

‖π‖2,w 6 C · [w]2,µ.

The same is true for π∗.
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We postpone the proof of this lemma. We also notice that the operator

o(f) = 〈f〉〈TχX〉χX

is clearly bounded with desired constant. In fact, as T is bounded in the unweighted L2, we

have 〈TχX〉2 ≤ ‖T‖2L2 =: C0

‖o(f)‖22,w = 〈f〉2〈TχX〉2w(X) 6 C0〈f2w〉〈w−1〉w(X) 6 C0[w]2‖f‖22,w.

We, therefore, should take care only of the first term, with T̃ . We now erase the tilde, and

write T instead of T̃ . Even though T is not a Calderon-Zygmund operator anymore, all

further estimates are true for T (i.e., for a CZO minus paraproducts), see, for example, [HM]

or [HPTV].
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4.3.2 Estimates of σ1

Our next step is to decompose σ1 into random dyadic shifts. We write

σ1(T ) =
∑

`(Q)>`(R)
R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) =

= E
∑

`(Q)>δ−r0`(R),
R⊂Q,

R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)+

+ E
∑

`(R)6`(Q)<δ−r0`(R),
R⊂Q,

R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR)+

+ E
∑

`(R)6`(Q),
R∩Q=∅,
R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR). (4.19)

Essentially, we will prove that the norm of every expectation is bounded by

C(T ) · E
∑
n

δ−ε(T )·n‖Sn‖.

First, we state our choice for γ, which we have seen in the definition of good cubes.

Definition 29. Put

γ =
ε

2 · (ε+ log2(C))
,

where C is the doubling constant of the function λ.

Remark 17. We remark that this choice of γ make Lemmata 4.3.5 and 4.3.6 true.
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The estimate of the second sum is easy. In fact,

E
∑

`(R)6`(Q)<δ−r0`(R),
R⊂Q,

R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR) 6 Cr0 [w]2‖f‖‖g‖.

This is bounded by at most r0 expressions for shifts of bounded complexity, so just see [NV].

For more details, see [HPTV]

We denote

Σin = E
∑

`(Q)>δ−r0`(R),
R⊂Q,

R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR),

Σout = E
∑

`(R)6`(Q),
R∩Q=∅,
R is good

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR).

4.3.3 Estimate of Σin.

We use the following lemma.

Lemma 4.3.5. Let T be as before; suppose `(Q) > δ−r0`(R) and R ⊂ Q. Let Q1 be the son

of Q that contains R. Then

|(ThjQ, h
i
R)| . `(R)

ε
2

`(Q)
ε
2

(
µ(R)

µ(Q1)

)1
2
.

We notice that µ(Q1) � µ(Q).
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We write

Σin =
∑
n>r0

∑
`(Q)=δ−n`(R),R is good,R⊂Q

(Th
j
Q, h

i
R)(f, h

j
Q)(g, hiR),

|Σin| 6
∑
n>r0

∑
`(Q)=δ−n`(R),
R is good,

R⊂Q

|(ThjQ, h
i
R)||(f, hjQ)||(g, hiR)| 6

6 C
∑
n>r0

∑
`(Q)=δ−n`(R),
R is good,

R⊂Q

`(R)
ε
2

`(Q)
ε
2

(
µ(R)

µ(Q)

)1
2
|(f, hjQ)||(g, hiR)| =

= C
∑
n>r0

δ
nε
2

∑
`(Q)=δ−n`(R),
R is good,

R⊂Q

(
µ(R)

µ(Q)

)1
2
|(f, hjQ)||(g, hiR)|. (4.20)

We fix functions f and g and define Sn as an operator with the following quadratic form:

(Snu, v) =
∑

`(Q)=δ−n`(R),
R is good,

R⊂Q

±
(
µ(R)

µ(Q)

)1
2

(u, h
j
Q)(v, hiR),

where ± is chosen so |(f, hjQ)||(g, hiR)| = ±(f, h
j
Q)(g, hiR). Then clearly Sn is a dyadic shift

of complexity n, and so, see Section 4.4.2,

|(Snf, g)| 6 Cna[w]2‖f‖w‖g‖w−1 .
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Therefore,

|Σin| 6
∑
n

Cnaδ
nε
2 [w]2‖f‖w‖g‖w−1 6 C[w]2‖f‖w‖g‖w−1 .

4.3.4 Estimates for Σout

We use the following lemma from [HM].

Lemma 4.3.6. Let T be as before, `(R) 6 `(Q) and R ∩Q = ∅. Then the following holds

|(ThjQ, h
i
R)| . `(Q)

ε
2 `(R)

ε
2

D(Q,R)ε supz∈R λ(z,D(Q,R))
µ(Q)

1
2µ(R)

1
2 ,

where D(Q,R) = `(Q) + `(R) + dist(Q,R).

Remark 18. We should clarify one thing here. If T was a Calderon-Zygmund operator, this

estimate would be standard, see [NTV], [NTV2] or, for metric spaces, [HM]. We, however,

subtracted from T two operators: paraproduct and adjoint to paraproduct. However, an

easy argument (see [HPTV]) shows that if R∩Q = ∅, then (Th
j
Q, h

i
R) = (T̃ h

j
Q, h

i
Q) (for the

definition of T̃ see Lemma 4.3.4 and thereon).

Suppose now that D(Q,R) ∼ δ−s`(Q). We ask the question: what is the probability

P(R ⊂ Q(s+s0+10)|Q,R ∈ Dω),

where s0 is a sufficiently big number. We use the Lemma 4.2.7. Suppose that

R ∩Q(s+s0+10) = ∅.
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Suppose also R = Rx (so x is the “center” of R). Then

dist(x,Q(s+s0+10)) 6 dist(x,Q) 6 dist(Q,R) 6 Cδ−s`(Q) =

= Cδ−sδs+s0+10`(Q(s+s0+10)) = Cδs0+10`(Q(s+s0+10)). (4.21)

So x ∈ δ
Q(s+s0+10)(δs0+10)), and the probability of this is estimated by δη(s0+10) < 1

2 for

sufficiently big s0 (we remind that η = logδ(1− a)). Therefore,

P(R ⊂ Q(s+s0+10)|Q,R ∈ Dω) >
1

2
.
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So

|Σout| 6 2E
∑
t,s

∑
`(Q)=δ−t`(R),

D(Q,R)∼δ−s`(Q),
R∩Q=∅

|(ThjQ, h
i
R)||(f, hjQ)||(g, hiR)|1R is good1

R⊂Q(s+s0+10) 6

2E
∑
t,s

∑
`(Q)=δ−t`(R),

D(Q,R)∼δ−s`(Q),
R∩Q=∅

R,Q⊂Qs+s0+10

`(Q)
ε
2 `(R)

ε
2

D(Q,R)ε supz∈R λ(z,D(Q,R))
µ(Q)

1
2µ(R)

1
2×

|(f, hjQ)||(g, hiR)|1R is good 6

6 2E
∑
t,s

∑
`(Q)=δ−t`(R),

D(Q,R)∼δ−s`(Q),
R∩Q=∅,

R,Q⊂Qs+s0+10

δ
tε
2

(
`(Q)

D(Q,R)

)ε µ(Q)
1
2µ(R)

1
2

supz∈R λ(z,D(Q,R))
×

|(f, hjQ)||(g, hiR)|1R is good 6

6 C2E
∑
t,s

δ
tε
2 δsε

∑
`(Q)=δ−t`(R),

D(Q,R)∼δ−s`(Q),
R∩Q=∅,

R,Q⊂Qs+s0+10

µ(Q)
1
2µ(R)

1
2

supz∈R λ(z,D(Q,R))
|(f, hjQ)||(g, hiR)|1R is good.

(4.22)

We now define Sn as we did before:

(Snu, v) =
∑

`(Q)=δ−t`(R),

D(Q,R)∼δ−s`(Q),
R∩Q=∅,

R,Q⊂Qs+s0+10

± µ(Q)
1
2µ(R)

1
2

supz∈R λ(z,D(Q,R))
(u, h

j
Q)(v, hiR)1R is good.
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We need to estimate the coefficient. We write

λ(z,D(Q,R)) ∼ λ(z, δ−s`(Q)) ∼ λ(z, δ−s−s0−10`(Q)) ∼

∼ λ(z, `(Q(s+s0+10))) ∼ λ(z, diam(Q(s+s0+10))) > µ(B(z, diam(Q(s+s0+20)))) >

> µ(Q(s+s0+10)), (4.23)

and therefore

| ± µ(Q)
1
2µ(R)

1
2

supz∈R λ(z,D(Q,R))
| 6 C

µ(Q)
1
2µ(R)

1
2

µ(Qs+s0+10)
.

We notice that C does not depend on s since we used the doubling property of λ only for

transmission from δ−s`(Q) to δ−s−s0−10`(Q).

We conclude that Sn is a dyadic shift of complexity at most C(s + t). Therefore, see

Section 4.4.2,

|Σout| 6 2CE
∑
t,s

δ
tε
2 δsε(s+ t)a[w]2‖f‖w‖g‖w−1 6 C[w]2‖f‖w‖g‖w−1 ,

and our proof is completed.

4.4 The rest of the proof

4.4.1 Paraproducts and Bellman function

Now we will prove the Lemma 4.3.4.
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We remind that the quadratic form of our paraproduct π is the following:

(π(f), g) :=
∑
R

∑
i

〈f〉µ,R(TχX , h
i
R)(g, hiR) .

Operator T is bounded in L2(µ) and µ is doubling. Therefore, it is well known that

coefficients bR := biR := (TχX , h
i
R) satisfy Carleson condition for any of our lattices of

Christ’s dyadic cubes:

∀Q ∈ D
∑

R∈D, R⊂Q
|bR|2 ≤ B µ(Q) . (4.24)

The best constant B here is called the Carleson constant and it is denoted by ‖b‖C . It

is known that for our bR := (TχX , h
i
R) the Carleson constant is bounded by BT :=

C ‖T‖
L2(µ)→L2(µ)

.

If we would be on the line with Lebesgue measure µ and w would be a usual weight in

A2, then the sum would follow the estimate of O. Beznosova [B]:

|πTχX (f, g)| ≤ C
√
BT [w]A2

. (4.25)

But the same is true in our situation. To prove that, one should analyze the proof in

[B] and see that it used always conditions on w and b separately. They were always split by

Cauchy–Schwarz inequality. The only inequality, where w and b meet was of the type: let

Q be a Christ’s cube of a certain lattice, then

∑
R⊂Q,R∈D

〈w〉µ,Rb2R ≤ [w]A∞‖b‖C
∫
Q
w dµ , (4.26)
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where

[w]A∞ = sup
1

µ(B)

∫
B

wdµ · exp

− 1

µ(B)

∫
B

wdµ

 .

Let us explain the last inequality. We write

〈w〉µ,R 6 [w]A∞ · exp
(
〈w〉µ,R

)
= [w]A∞ · exp

(
2〈w

1
2 〉µ,R

)
6 [w]A∞〈w

1
2 〉2µ,R

6 [w]A∞ inf
x∈R

M(w
1
2χR)2.

Finally, we notice that {b2R} is a Carleson sequence, and finish our explanation with the

following well known theorem.

Theorem 4.4.1. Suppose {αK} is a Carleson sequence. Then for any positive function F

the following inequality holds:

∑
K

αK inf
K
F (x) 6

∫
F (x)dµ(x).

In all other estimates in [B] the sums with ∆Qw (see the definition before Lemma 3.2

of [NV]) and the sums with b are always estimated separately. The sums where the terms

contain the product of ∆Qw and bQ never got estimated by Bellman technique: they got

split first. Then (4.25) follows in our metric situation as well.

4.4.2 Weighted estimates for dyadic shifts via Bellman function

This section is here just for the sake of completeness. In fact, it just repeats the article of

Nazarov–Volberg [NV]. In this section we prove the following theorem.
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Theorem 4.4.2. Let Sm,n be a dyadic shift of complexity m+ n+ 1. Then

‖Sm,n‖wdµ 6 C(m+ n+ 1)a[w]2,µ.

Remark 19. We notice that the best known a is equal to one. It can be gotten using

the technique from [HLM+] or from [T]. However, for the application we made in the

previous sections, namely, the linear A2 bound for an arbitrary Calderón–Zygmund operator

on geometrically doubling metric space, the actual value of a is not important.

We denote σ = w−1. We begin with the following famous lemma.

Lemma 4.4.3.

h
j
I = α

j
Ih
w,j
I + β

j
IχI ,

where

1) |αjI | ≤
√
〈w〉µ,I ,

2)|βjI | ≤
|(hw,jI ,w)µ|

w(I)
, where w(I) :=

∫
I w dµ,

3) {hw,jI }I is supported on I, orthogonal to constants in L2(w dµ),

4) h
w,j
I assumes on each son si(I) a constant value,

5) ‖hw,jI ‖L2(wµ)
= 1.

Definition. Let

∆Iw :=
∑

sons of I

|〈w〉µ,s(I) − 〈w〉µ,I | .

It is a easy to see that the doubling property of measure µ implies

|(hw,jI , w)µ| ≤ C (∆Iw)µ(I)1/2 . (4.27)
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Therefore, the property 2) above can be rewritten as

2’) |βjI | ≤ C
|∆Iw|
〈w〉µ,I

1

µ(I)1/2
.

Fix φ ∈ L2(w dµ), ψ ∈ L2(σdµ). We need to prove

|(Sm,nφw, ψσ)| ≤ C (n+m+ 1)a‖φ‖w‖ψ‖σ . (4.28)

Remark 20. In next calculations we drop the superscript i and j in Haar functions hiI and

h
w,i
I . The reader should always assume that we sum up over all i’s.

We estimate (Sm,nφw, ψσ) as

|
∑
L

∑
I,J

cL,I,J (φw, hI)µ(ψσ, hJ )µ| ≤

∑
L

∑
I,J

|cL,I,J (φw, hwI )µ

√
〈w〉µ,I(ψσ, hσJ )µ|

√
〈σ〉µ,J |+

∑
L

∑
I,J

|cL,I,J 〈φw〉µ,I
∆Iw

〈w〉µ,I
(ψσ, hσJ )µ

√
〈σ〉µ,J

√
I|+

∑
L

∑
I,J

|cL,I,J 〈ψσ〉µ,J
∆Jσ

〈σ〉µ,J
(φw, hwI )µ

√
〈w〉µ,I

√
J |+

∑
L

∑
I,J

|cL,I,J 〈φw〉µ,I〈ψσ〉µ,J
∆Iw

〈w〉µ,I
∆Jσ

〈σ〉µ,J

√
I
√
J | =: I + II + III + IV .

We can notice that because |cL,I,J | ≤
√
µ(I)
√
µ(J)

µ(L)
each sum inside L can be estimated

by a perfect product of S and R terms, where

RL(φw) :=
∑
I⊂L...

〈φw〉µ,I
|∆Iw|
〈w〉µ,I

µ(I)√
µ(L)
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SL(φw) :=
∑
I⊂L...

(φw, hwI )µ

√
〈w〉µ,I

√
µ(I)√
µ(L)

and the corresponding terms for ψσ. So we have

I ≤
∑
L

SL(φw)SL(ψσ), II ≤
∑
L

SL(φw)RL(ψσ),

III ≤
∑
L

RL(φw)SL(ψσ), IV ≤
∑
L

RL(φw)RL(ψσ) .

Now

SL(φw) ≤
√ ∑
I⊂L...

|(φw, hwI )µ|2
√
〈w〉µ,L , SL(ψσ) ≤

√ ∑
J⊂L...

|(ψσ, hσJ )|2
√
〈σ〉µ,L (4.29)

Therefore,

I 6 C[w]
1/2
A2
‖φ‖w‖ψ‖σ . (4.30)

Terms II, III are symmetric, so consider III. Using Bellman function (xy)α one can

prove now

Lemma 4.4.4. Let Q := [w]A2
and α ∈ (0, 1/2).

The sequence

τI := 〈w〉αµ,I〈σ〉
α
µ,I

(
|∆Iw|2

〈w〉2µ,I
+
|∆Iσ|2

〈σ〉2µ,I

)
µ(I)

form a Carleson measure with Carleson constant at most cαQ
α.

Proof. We need a very simple

Sublemma. Let Q > 1, 0 < α < 1
2 . In domain ΩQ := {(x, y) : X > o, y > 0, 1 < xy ≤ Q
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the function BQ(x, y) := xαyα satisfies the following estimate of its Hessian matrix:

−d2BQ(x, y) ≥ α(1− 2α)xαyα
(

(dx)2

x2
+

(dy)2

y2

)
.

The form −d2BQ(x, y) ≥ 0 everywhere in x > 0, y > 0. Also obviously 0 ≤ BQ(x, y) ≤ Qα

in ΩQ.

Proof. Direct calculation.

Fix now a Christ’s cube I and let si(I), i = 1, ...,M , be all its sons. Denote a =

(〈w〉µ,I , 〈σ〉µ,I), bi = (〈w〉µ,si(I), 〈σ〉µ,si(I)), i = 1, . . . ,M , be points–obviously–in ΩQ, where

Q temporarily means [w]A2
. Consider ci(t) = a(1− t)+bit, 0 ≤ t ≤ 1 and qi(t) := BQ(ci(t)).

We want to use Taylor’s formula

qi(0)− qi(1) = −q′i(0)−
∫ 1

0
dx

∫ x

0
q′′i (t) dt . (4.31)

Notice two things: Sublemma shows that −q′′i (t) ≥ 0 everywhere. Moreover, it shows that

if t ∈ [0, 1/2], then the following qualitative estimate holds

−q′′i (t) ≥ c (〈w〉µ,I〈σ〉µ,I)α
((〈w〉µ,si(I) − 〈w〉µ,I)2

〈w〉2µ,I
+

(〈σ〉µ,si(I) − 〈σ〉µ,I)2

〈σ〉2µ,I

)
(4.32)

This requires a small explanation. If we are on the segment [a, bi], then the first coordinate

of such a point cannot be larger than C 〈w〉µ,I , where C depends only on doubling of µ (not

w). This is obvious. The same is true for the second coordinate with the obvious change of w

to σ. But there is no such type of estimate from below on this segment: the first coordinate

cannot be smaller than k 〈w〉µ,I , but k may (and will) depend on the doubling of w (so
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ultimately on its [w]A2
norm. In fact, at the “right” endpoint of [a, bi]. The first coordinate

is 〈w〉µ,si(I) ≤
∫
I w dµ/µ(si(I)) ≤ C

∫
I w dµ/µ(I)) = C 〈w〉µ,I , with C only depending on

the doubling of µ. But the estimate from below will involve the doubling of w, which we

must avoid. But if t ∈ [0, 1/2], and we are on the “left half” of interval [a, bi] then obviously

the first coordinate is ≥ 1
2〈w〉µ,I and the second coordinate is ≥ 1

2〈σ〉µ,I .

We do not need to integrate −q′′i (t) for all t ∈ [0, 1] in (4.31). We can only use integration

over [0, 1/2] noticing that −q′′i (t) ≥ 0 otherwise. Then the chain rule

q′′i (t) = (BQ(ci(t))
′′ = (d2BQ(ci(t)(bi − a), bi − a)

immediately gives us (4.32) with constant c depending on the doubling of µ but independent

of the doubling of w.

Next step is to add all (4.31), with convex coefficients
µ(si(I))
µ(I)

, and to notice that∑M
i=1

µ(si(I))
µ(I)

q′i(0) = ∇BQ(a)
∑M
i=1 ·(a− bi)

µ(si(I))
µ(I)

= 0, because by definition

a =
M∑
i=1

µ(si(I))

µ(I)
bi .

Notice that the addition of all (4.31), with convex coefficients
µ(si(I))
µ(I)

gives us now ( we take

into account (4.32) and positivity of −q′′i (t))

BQ(a)−
M∑
i=1

µ(si(I))

µ(I)
BQ(bi) ≥

c c1 (〈w〉µ,I〈σ〉µ,I)α
M∑
i=1

((〈w〉µ,si(I) − 〈w〉µ,I)2

〈w〉2µ,I
+

(〈σ〉µ,si(I) − 〈σ〉µ,I)2

〈σ〉2µ,I

)
.
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We used here the doubling of µ again, by noticing that
µ(si(I))
µ(I)

≥ c1 (recall that si(I) and I

are almost balls of comparable radii). We rewrite the previous inequality using our definition

of ∆Iw,∆Iσ listed above as follows

µ(I)BQ(a)−
M∑
i=1

µ(si(I))BQ(bi) ≥ c c1 (〈w〉µ,I〈σ〉µ,I)α
(

(∆Iw)2

〈w〉2µ,I
+

(∆Iσ)2

〈σ〉2µ,I

)
µ(I) .

Notice that BQ(a) = 〈
(
w〉µ,I〈σ〉µ,I

)α
. Now we iterate the above inequality and get for any

of Christ’s dyadic I’s:

∑
J⊂I ,J∈D

(〈w〉µ,J 〈σ〉µ,J )α
(

(∆Jw)2

〈w〉2µ,J
+

(∆Jσ)2

〈σ〉2µ,J

)
µ(J) ≤ C Qαµ(I) .

This is exactly the Carleson property of the measure {τI} indicated in our Lemma 4.4.4,

with Carleson constant C Qα. The proof showed that C depended only on α ∈ (0, 1/2) and

on the doubling constant of measure µ.

Now, using this lemma, we start to estimate our SL’s and RL’s. For SL(ψσ) we already

had estimate (4.29).

To estimate RL(φw) let us denote by PL maximal stopping intervals K ∈ D, K ⊂ L,

where the stopping criteria are 1) either
|∆Kw|
〈w〉µ,K

≥ 1
m+n+1 , or

|∆Kσ|
〈σ〉µ,K

≥ 1
m+n+1 , or 2)

g(K) = g(L) +m.
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Lemma 4.4.5. If K is any stopping interval then

∑
I⊂K,`(I)=2−m`(L)

|〈φw〉µ,I |
|∆Iw|
〈w〉µ,I

µ(I)√
µ(L)

≤

2eα(m+ n+ 1)〈|φ|w〉µ,K

√
µ(K)√
µ(L)

√
τK〈w〉

−α/2
µ,L 〈σ〉

−α/2
µ,L . (4.33)

Proof. If we stop by the first criterion, then

∑
I⊂K,`(I)=2−m`(L)

|〈φw〉µ,I |
|∆Iw|
〈w〉µ,I

µ(I)√
µ(L)

≤

2
∑

I⊂K,`(I)=2−m`(L)

|〈φw〉µ,I |µ(I)
1

µ(K)

µ(K)√
µ(L)

≤

≤ 2 〈|φ|w〉µ,K
µ(K)√
µ(L)

≤ 2(m+ n+ 1)〈|φ|w〉µ,K
(
|∆Kw|
〈w〉µ,K

+
|∆Kσ|
〈σ〉µ,K

)
µ(K)√
µ(L)

≤

≤ 2(m+ n+ 1)〈|φ|w〉µ,K

√
µ(K)√
µ(L)

√
τK〈w〉

−α/2
µ,K 〈σ〉

−α/2
µ,K .

Now replacing 〈w〉−α/2µ,K 〈σ〉
−α/2
µ,K by 〈w〉−α/2µ,L 〈σ〉

−α/2
µ,L does not grow the estimate by more

than eα as all pairs of son/father intervals larger than K and smaller than L will have there

averages compared by constant at most 1± 1
m+n+1 . And there are at most m such intervals

between K and L.

If we stop by the second criterion, then K is one of I’s, g(I) = g(L) +m, and

|〈φw〉µ,I |
|∆Iw|
〈w〉µ,I

µ(I)√
µ(L)

≤ |〈φw〉µ,K |
µ(K)√
µ(L)

|∆Kw|
〈w〉µ,K

≤

〈|φ|w〉µ,K

√
µ(K)√
µ(L)

√
τK〈w〉

−α/2
µ,K 〈σ〉

−α/2
µ,K .

Now we replace 〈w〉−α/2µ,K 〈σ〉
−α/2
µ,K by 〈w〉−α/2µ,L 〈σ〉

−α/2
µ,L as before.
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Now

RL(φw) ≤ C(m+ n+ 1)〈w〉−α/2µ,L 〈σ〉
−α/2
µ,L

∑
K ∈PL

〈|φ|w〉µ,K

√
µ(K)√
µ(L)

√
τK

≤ C(m+ n+ 1)〈w〉−α/2µ,L 〈σ〉
−α/2
µ,L

( ∑
K ∈PL

〈|φ|w〉2µ,K
µ(K)

µ(L)

)1/2

(τ̃L)1/2 ,

where

τ̃L =
∑

K ∈PL

τK .

Notice that the sequence {τ̃L}L∈D form a Carleson sequence (measure) with constant at

most C(m+ 1)Qα.

Now we make a trick! We will estimate the right hand side as

RL(φw) ≤ C(m+ n+ 1)〈w〉−α/2µ,L 〈σ〉
−α/2
µ,L

( ∑
K ∈PL

〈|φ|w〉pµ,K
µ(K)

µ(L)

)1/p

(τ̃L)1/2 ,

where p = 2− 1
m+n+1 . In fact,

( ∑
K⊂L,K is maximal

〈|φ|w〉2µ,K
µ(K)

µ(L)

)p/2
≤

∑
K ∈PL

〈|φ|w〉pµ,K

(
µ(K)

µ(L)

)p/2
.

But if if 0 ≤ j ≤ m, then (C−j)−
1

m+n+1 ≤ C, and therefore in the formula above(
µ(K)
µ(L)

)1− 1
2(m+n+1) ≤ C

µ(K)
µ(L)

, and C depends only on the doubling constant of µ. So
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the trick is justified. Therefore, using Cauchy inequality, one gets

RL(φw) ≤ C(m+ n+ 1)〈w〉−α/2µ,L 〈σ〉
−α/2
µ,L

( ∑
K ∈PL

〈|φ|pw〉µ,K〈w〉
p−1
µ,K

µ(K)

µ(L)

)1/p

(τ̃L)1/2 .

We can replace all 〈w〉p−1
µ,K by 〈w〉p−1

µ,L paying the price by constant. This is again because all

intervals larger than K and smaller than L will have there averages compared by constant

at most 1± 1
m+n+1 . And there are at most m such intervals between K and L. Finally,

RL(φw) ≤ C(m+ n+ 1)〈w〉−α/2µ,L 〈σ〉
−α/2
µ,L

( ∑
K ∈PL

〈|φ|pw〉µ,K
µ(K)

µ(L)

)1/p

〈w〉
1−1

p
µ,L (τ̃L)1/2

(4.34)

We need the standard notations: if ν is an arbitrary positive measure we denote

Mνf(x) := sup
r>0

1

ν(B(x, r))

∫
B(x,r)

|f(x)| dν(x) .

In particular Mw will stand for this maximal function with dν = w(x) dµ.

From (4.34) we get

RL(φw) ≤ C(m+ n+ 1)〈w〉1−α/2µ,L 〈σ〉−α/2µ,L inf
L
Mw(|φ|p)1/p(τ̃L)1/2 (4.35)

Now

SL(ψσ)RL(φw) ≤ C(m+ n+ 1)〈w〉1−α/2µ,L 〈σ〉1−α/2µ,L

infL Mw(|φ|p)1/p

〈σ〉1/2µ,L

×

(τ̃L)1/2
√ ∑
J⊂L...

|(ψσ, hσJ )|2 , (4.36)
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RL(ψσ)RL(φw) ≤ C(m+ n+ 1)〈w〉1−αµ,L 〈σ〉
1−α
µ,L inf

L
Mw(|φ|p)1/p inf

L
Mσ(|ψ|p)1/pτ̃L . (4.37)

Now we use the Carleson property of {τ̃L}L∈D. We need a simple folklore Lemma.

Lemma 4.4.6. Let {αL}L∈D define Carleson measure with intensity B related to dyadic

lattice D on metric space X. Let F be a positive function on X. Then

∑
L

(inf
L
F )αL ≤ 2B

∫
X
F dµ . (4.38)

∑
L

infL F

〈σ〉µ,L
αL ≤ C B

∫
X

F

σ
dµ . (4.39)

Now use (4.36). Then the estimate of III ≤
∑
L SL(ψσ)RL(φw) will be reduced to

estimating

(m+ n+ 1)Q1−α/2
(∑

L

infLMw(|φ|p)2/p

〈σ〉µ,L
τ̃L

)1/2

≤

(m+ n+ 1)2Q

(∫
R

(Mw(|φ|p))2/pwdµ

)1/2

≤ (
1

2− p
)1/p(m+ n+ 1)2Q

(∫
R
φ2wdµ

)1/2

≤ (m+ n+ 1)3Q

(∫
R
φ2wdµ

)1/2

.

Here we used (4.39) and the usual estimates of maximal function Mµ in Lq(µ) when q ≈ 1.

Of course for II we use the symmetric reasoning.

Now IV : we use (4.37) first.

∑
L

RL(ψσ)RL(φw) ≤ (m+ n+ 1)Q1−α∑
L

inf
L
Mw(|φ|p)1/p inf

L
Mσ(|ψ|p)1/pτ̃L

≤ C(m+ n+ 1)2Q

∫
R

(Mw(|φ|p))1/p (Mσ(|ψ|p))1/pw1/2σ1/2dµ
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≤ C(m+ n+ 1)2Q

(∫
R

(Mw(|φ|p))2/pwdµ

)1/2(∫
R

(Mσ(|ψ|p))2/p σdµ

)1/2

≤ C(m+ n+ 1)4Q

(∫
R
φ2wdµ

)1/2(∫
R
ψ2 σdµ

)1/2

.

Here we used (4.38) and the usual estimates of maximal function Mµ in L2/p(µ) when

p ≈ 2, p < 2.
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[HP] Hytönen, T. Pérez, C. Sharp weighted bounds involving A∞. Anal. PDE 6
(2013), no. 4, 777–818.
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