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ABSTRACT

THREE ESSAYS ON ECONOMETRICS

By

Seunghwa Rho

This dissertation consists of three chapters on econometrics. The first chapter, “Are all

firms inefficient?”, is related to the stochastic frontier model of Aigner et al. (1977). In

the usual stochastic frontier model, all firms are inefficient, because inefficiency is non-

negative and the probability that inefficiency is exactly zero equals zero. We modify this

model by adding a parameter p which equals the probability that a firm is fully efficient.

This model has also been considered by Kumbhakar et al. (2013). We extend their paper in

several ways. We discuss some identification issues that arise if all firms are inefficient or

no firms are inefficient. We show that the likelihood has a stationary point at parameters

that indicate no inefficiency and that this point is a local maximum if the OLS residuals

are positively skewed. We consider the case that a logit or probit model determines the

probability of full efficiency in terms of some observable variables. Finally, we consider

problems involved in testing the hypothesis that p = 0. We provide some simulations and

an empirical example. The simulation results suggest that the proposed model appears

to be useful when (i) it is reasonable to suppose that some firms are fully efficient, and (ii)

the inefficiency levels of the inefficient firms are not small relative to statistical noise.

The focus of the second and third chapters lies on asymptotic theory for test statistics

in time series that are robust to heteroskedasticity and autocorrelation (HAC) especially

under the fixed-b asymptotic framework proposed by Kiefer and Vogelsang (2005). In the

second chapter, “Serial Correlation Robust Inference with Missing Data”, we investigate the

properties of HAC robust test statistics when there is missing data. We characterize the

time series with missing observations as amplitude modulated series following Parzen

(1963). For estimation and inference this amounts to plugging in zeros for missing ob-



servations. We also investigate an alternative approach where the missing observations

are simply ignored. There are three main theoretical findings. First, when the missing

process is random and satisfies strong mixing conditions, HAC robust t and Wald statis-

tics computed from the amplitude modulated series follow the usual fixed-b limits as in

Kiefer and Vogelsang (2005). Second, when the missing process is non-random, the fixed-

b limits depend on the locations of missing observations but are otherwise pivotal. Third,

when missing observations are ignored we obtain the surprising result that fixed-b limits

of the robust t and Wald statistics have the standard fixed-b limits whether the missing

process is random or non-random. We discuss methods for obtaining fixed-b critical val-

ues with a focus on bootstrap methods. We find that the naive i.i.d. bootstrap is the most

effective and practical way to obtain fixed-b critical values when data is missing especially

when the bootstrap conditions on the locations of the missing data.

In the third chapter, “Inference in time series models using smoothed clustered standard er-

rors”, we propose a long run variance estimator for conducting inference in time series

regression models that combines the traditional nonparametric kernel approach with a

cluster approach. The basic idea is to divide the time periods into non-overlapping clus-

ters and construct the long run variance estimator by first aggregating within clusters and

then kernel smoothing across clusters. We derive asymptotic results holding the number

of clusters fixed and also treating the clusters as increasing with the sample size. We

find that the “fixed number of clusters”asymptotic approximation works well whether

the number of clusters (G) is small or large. Also, we find that the naive i.i.d. bootstrap

mimics the fixed number of clusters critical values regardless of G. Finite sample simu-

lations suggest that clustering before kernel smoothing can reduce over-rejections caused

by strong serial correlation without a great cost in terms of power.
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CHAPTER 1

ARE ALL FIRMS INEFFICIENT?

1.1 INTRODUCTION

In the basic stochastic frontier model of Aigner et al. (1977) and Meeusen and van den

Broeck (1977), all firms are inefficient to some degree. The one-sided error that represents

technical inefficiency has a distribution (for example, half normal) for which zero is in the

support, so that zero is a possible value, but it is still the case that the probability is zero

that a draw from a half normal exactly equals zero. This may be restrictive empirically,

since it is plausible, or at least possible, that an industry may contain a set of firms that

are fully efficient.

In this chapter we allow the possibility that some firms are fully efficient. We intro-

duce a parameter p which represents the probability that a firm is fully efficient. So the

case of p = 0 corresponds to the usual stochastic frontier model and the case of p = 1 cor-

responds to the case of full efficiency (no one-sided error), while if 0 < p < 1 a fraction p

of the firms are fully efficient and a fraction 1− p are inefficient. This may be important

because if some of the firms actually are fully efficient, the usual stochastic frontier model

is misspecified and can be expected to yield biased estimates of the technology and of

firms’ inefficiency levels.

This model is a special form of the latent class model considered by Caudill (2003),

Orea and Kumbhakar (2004), Greene (2005) and others. It has the special feature that the

frontier itself does not vary across the two classes of firms; only the existence or non-

existence of inefficiency differs. Our model has previously been considered by Kumb-

hakar, Parmeter, and Tsionas (2013), hereafter KPT. See also Grassetti (2011). Our results

were derived without knowledge of the KPT paper, but in this chapter we will naturally
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focus on our results which are not in their paper.

The plan of this chapter is as follows. In Section 1.2 we will present the model and

give a brief summary of the basic results that are also in the KPT paper. These include

the likelihood to be maximized, the form of the “posterior” probabilities of full efficiency

for each firm, and the expression for the estimated inefficiencies for each firm. In Section

1.3 we provide some new results. We discuss identification issues. We give the general-

ization of the results of Waldman (1982), which establish that there is a stationary point

of the likelihood at a point of full efficiency and that this point is a local maximum of the

likelihood if the OLS residuals are positively skewed. We propose using logit or probit

models to allow additional explanatory variables to affect the probability of a firm being

fully efficient. We also discuss the problem of testing the hypothesis that p = 0. In Sec-

tion 1.4 we present some simulations, and in Section 1.5 we give an empirical example.

Finally, Section 1.6 gives our conclusions.

1.2 THE MODEL AND BASIC RESULTS

We begin with the standard stochastic frontier model of the form:

yi = x′iβ + εi, εi = vi − ui, ui ≥ 0.

Here i = 1, . . . , n indexes firms. We have in mind a production frontier so that y is typi-

cally log output and x is a vector of functions of inputs. The vi are iid N
(

0, σ2
v
)

, the ui

are iid N+
(

0, σ2
u
)

(i.e., half-normal), and x, v, and u are mutually independent (so x can

be treated as fixed). We will refer to this model as the basic stochastic frontier (or basic

SF) model.

We now define some standard notation. Let φ be the standard normal density, and Φ
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be the standard normal cdf. Let fv and fu represent the densities of v and u :

fv (v) =
1√

2πσv
exp(− v2

2σ2
v
) =

1
σv

φ

(
v

σv

)
, (1.1)

fu (u) =
2√

2πσu
exp(− u2

2σ2
u
) =

2
σu

φ

(
u

σu

)
, u ≥ 0 .

Also define λ = σu/σv and σ2 = σ2
u + σ2

v . This implies that σ2
v = σ2/(1 + λ2) and σ2

u =

σ2λ2/(1 + λ2). Finally, we let fε represent the density of ε = v− u:

fε (ε) =
2
σ

φ
( ε

σ

) [
1−Φ

(
ελ

σ

)]
. (1.2)

Now we define the model of this chapter. Suppose there is an unobservable variable zi

such that

zi = 1
(
ui = 0

)
=


1 if ui = 0

0 if ui > 0 .

Define p = P
(
zi = 1

)
= P

(
ui = 0

)
. We assume that ui

∣∣zi=0 is distributed as N+(0, σ2
u),

that is, half normal. Thus

ui =


0 with probability p

N+
(

0, σ2
u
)

with probability 1− p .

This model contains the parameters β, σ2
u, σ2

v , and p or β, λ, σ2, and p.

We will follow the terminology of KPT and call this model the "zero-inefficiency stochas-

tic frontier" (ZISF) model. The name refers to the fact that, in this model, the event ui = 0

can occur with non-zero frequency. Note that

f (ε|z = 1) = fv (ε) ,

f (ε|z = 0) = fε (ε) ,

(where fv and fε are defined in (1.1) and (1.2) above) and so the marginal (unconditional)

density of ε is

fp (ε) = p fv (ε) + (1− p) fε (ε) .
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Using this density, we can form the (log) likelihood for the model:

ln L
(

β, σ2
u, σ2

v , p
)

=
n
∑

i=1
ln fp

(
yi − x′iβ

)
.

We will estimate the model by MLE; that is, by maximizing ln L with respect to β, σ2
u, σ2

v ,

and p. Or, alternatively, the model may be parameterized in terms of β, λ, σ2, and p,

with maximization over that set of parameters.

When we have estimated the model, we can obtain ε̂i = yi − x′i β̂, an estimate of

εi = yi − x′iβ. Using Bayes rule, we can now update the probability that a particular firm

is fully efficient, because εi is informative about that possibility. That is, we can calculate

P
(
zi = 1|εi

)
=

P
(
zi = 1

)
f
(
εi|zi = 1

)
fp
(
εi
) =

p fv
(
εi
)

fp
(
εi
) =

p fv
(
εi
)

p fv
(
εi
)
+ (1− p) fε

(
εi
) .(1.3)

We will call this the “posterior" probability that firm i is fully efficient. It is evaluated at p̂,

ε̂i and also σ̂2
u and σ̂2

v , which enter into the densities of fv and fε. We put quotes around

"posterior" because it is not truly the posterior probability of zi = 1 in a Bayesian sense.

(A true Bayesian posterior would give P
(
zi = 1|yi, xi

)
and would have started with a

prior distribution for the parameters β, σ2
u, σ2

v , and p.)

We now wish to estimate (predict) ui for each firm. Following the logic of Jondrow

et al. (1982), we define ûi = E
(
ui|εi

)
. Now

E
(
ui|εi

)
= Ez|εE

(
ui|εi, zi

)
= P

(
zi = 1|εi

)
E
(
ui|εi, zi = 1

)
+ P

(
zi = 0|εi

)
E
(
ui|εi, zi = 0

)
= P

(
zi = 0|εi

)
E
(
ui|εi, zi = 0

)
since ui ≡ 0 when zi = 1. But E

(
ui|εi, zi = 0

)
is the usual expression from Jondrow et al.

(1982), and P
(
zi = 0|εi

)
= 1− P

(
zi = 1|εi

)
which can be evaluated using equation (1.3)

above. Therefore,

ûi = E
(
ui|εi

)
=

(1− p) fε
(
εi
)

p fv
(
εi
)
+ (1− p) fε

(
εi
) × σ∗

[
φ
(
ai
)

1−Φ
(
ai
) − ai

]
, (1.4)
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where ai = εiλ/σ and σ∗ = σuσv/σ = λσ/(1 + λ2).

A slight extension of this result, which is not in KPT, is to follow Battese and Coelli

(1988) and define technical efficiency as TE = exp (−u). Correspondingly technical in-

efficiency would be 1− TE = 1− exp (−u), which is only approximately equal to u (for

small u). They provide the expression for E (TE|ε). Using our "posterior" probability

P
(
zi = 1|εi

)
and their expression for E

(
TEi|εi, zi = 0

)
, we obtain

T̂Ei = E
(

e−ui |εi
)

=
(1− p) fε

(
εi
)

p fv
(
εi
)
+ (1− p) fε

(
εi
) × Φ

(
µ∗i
σ∗ − σ∗

)

Φ

(
µ∗i
σ∗

) exp(
σ2∗
2
− µ∗i )

+
p fv

(
εi
)

p fv
(
εi
)
+ (1− p) fε

(
εi
)

,
(1.5)

where µ∗i = −εiσ2
u/σ2, σ∗ = σuσv/σ (as above), and correspondingly µ∗i /σ∗ = −ai where

ai = εiλ/σ (as above).

As in Jondrow et al. (1982), the expression in either (1.4) or (1.5) would need to be

evaluated at the estimated values of the parameters (p, σ2
u, and σ2

v ) and at ε̂i = yi − x′i β̂.

1.3 EXTENSIONS OF THE BASIC MODEL

We now investigate some extensions of the basic results of the previous section. Most of

the results in this section are not in KPT.

1.3.1 Identification Issues

Some of the parameters are not identified under certain circumstances. When p = 1, so

that all firms are fully efficient, σ2
u is not identified. Conversely, when σ2

u = 0, p is not

identified. In fact, the likelihood value is exactly the same when (i) σ2
u = 0, p = anything

as when (ii) p = 1, σ2
u = anything. More generally, we might suppose that σ2

u and p will
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be estimated imprecisely when a data set contains little inefficiency, since it will be hard

to determine whether there is little inefficiency because σ2
u is small or because p is close

to one.

This issue of identification is relevant to the problem of testing the null hypothesis

that p = 1 against the alternative that p < 1. This is a test of the null hypothesis that

all firms are efficient against the alternative that some fraction (possibly all) of them are

inefficient, and that is an economically interesting hypothesis. KPT suggest a likelihood

ratio test of this hypothesis. As they note, the null distribution of their statistic is affected

by the fact that the null hypothesis is on the boundary of the parameter space. They refer

to Chen and Liang (2010), p. 608 to justify an asymptotic distribution of 1/2χ2
0 + 1/2χ2

1 for

the likelihood ratio statistic. However, it is not clear that this result applies, given that

one of the parameters (σ2
u) is not identified under the null that p = 1. Specifically, the

argument of Chen and Liang (2010) depends on the existence and asymptotic normality

of the estimator η̂(γ0) [see p. 606, line 4] where γ0 corresponds to p0(= 1), and where η

corresponds to the other parameters of our model, including σ2
u.

A more relevant reference, which KPT note but do not pursue, is Andrews (2001). This

chapter explicitly allows the case in which the parameter vector under the null may lie on

the boundary of the maintained hypothesis and there may be a nuisance parameter that

appears under the alternative hypothesis, but not under the null. See his Theorem 4, p.

707, for the relevant asymptotic distribution result, which unfortunately is considerably

more complicated than the simple result (50-50 mixture of chi-squareds) of Chen and

Liang (2010).

1.3.2 A Stationary Point for the Likelihood

For the basic stochastic frontier model, let the parameter vector be θ = (β′, λ, σ2)′. Then

Waldman (1982) established the following results. First, the log likelihood always has

a stationary point at θ∗ = (β̂′, 0, σ̂2)′, where β̂ =OLS and σ̂2 =(OLS sum of squared
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residuals)/n. Note that these parameter values correspond to σ̂2
u = 0, that is, to full ef-

ficiency of each firm. Second, the Hessian matrix is singular at this point. It is negative

semi-definite with one zero eigenvalue. Third, these parameter values are a local maxi-

mizer of the log likelihood if the OLS residuals are positively skewed. This is the so-called

"wrong skew problem".

The log likelihood for the ZISF model has a stationary point very similar to that for

the basic stochastic frontier model. This stationary point is also a local maximum of the

log likelihood if the least squares residuals are positively skewed.

Theorem 1.1. Let θ = (β′, λ, σ2, p)′ and let θ∗∗ = (β̂′, 0, σ̂2, p̂)′, where β̂ =OLS, σ̂2 =(OLS

sum of squared residuals)/n, and where p̂ is any value in [0, 1]. Then

1. θ∗∗ is a stationary point of the log likelihood.

2. The Hessian matrix is singular at this point. It is negative semi-definite with two zero

eigenvalues.

3. θ∗∗ with p̂ ∈ [0, 1) is a local maximizer of the log likelihood function if and only if

∑n
i=1 ε̂3

i> 0, where ε̂i = yi − x′i β̂ is the OLS residual.

4. θ∗∗ with p̂ = 1 is a local maximizer of the log likelihood function if ∑n
i=1 ε̂3

i> 0.

Proof. See Appendix A.

As is typically done for the basic stochastic frontier model, we will presume that θ∗∗

is the global maximizer of the log likelihood when the residuals have positive ("wrong")

skew. Note that at θ∗∗, we have λ̂ = 0 or equivalently σ̂2
u = 0, and p is not identified

when σ2
u = 0. We get the same likelihood value for any value of p. In our simulations

(in Section 1.4) we will set p̂ = 1 in the case of wrong skew, since p̂ = 1 is another way

of reflecting full efficiency. However, for a given data set, the value of p̂ does not matter

when θ = θ∗∗.
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Since for any p ∈ [0, 1],

plim
n→∞

1
n ∑ ε̂3

i = E
(
εi − E

(
εi
))3

= σ3
u
√

2/π(1− p)
(
−4p2 + (8− 3π)p + π − 4

)
/π ≤ 0

as the number of observations increases, the probability of a positive third moment of the

OLS residuals goes to zero asymptotically. In a finite sample, the probability of a positive

third moment increases when λ is small and/or p is near 0 or 1. See Table 1.1. The

entries in Table 1.1 are based on simulations with 100, 000 replications, with σu = 1, λ =

σu/σv, λ ∈ {0.5, 1, 2}, and p ∈ {0, 0.1, . . . , 0.9}, for sample sizes 50, 100, 200, and 400.

1.3.3 Models for the Distribution of ui

The ZISF model can be extended by allowing the distribution of ui to depend on some

observable variables wi. For example, in our empirical analysis of Section 1.5, the wi will

include variables like the age and education of the farmer and the size of his household.

These variables can be assumed to affect either P(zi = 1) or f (ui|zi = 0) or both.

First consider the case in which we assume that wi affects the distribution of ui for the

inefficient firms. A general assumption would be that the distribution of ui conditional on

wi and on zi = 0 is N+(µi, σ2
i ) where µi and/or σ2

i depend on wi. For example, in Section

1.5 we will assume the RSCFG model of Reifschneider and Stevenson (1991), Caudill and

Ford (1993) and Caudill et al. (1995), under the specific assumptions that µi = 0 and

σ2
i = exp (w′iγ). Another possible model is the KGMHLBC model of Kumbhakar et al.

(1991), Huang and Liu (1994) and Battese and Coelli (1995), with σ2
i = σ2

u constant and

with µi = w′iψ or µi = c exp (w′iψ). Wang (2002) proposes parameterizing both µi and

σ2
i . See also Alvarez et al. (2006).

A second and more novel case is the one in which we assume that wi affects P(zi = 1).
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For example, we could assume a logit model:

P
(
zi = 1|wi

)
=

exp (w′iδ)
1 + exp (w′iδ)

. (1.6)

A probit model would be another obvious possibility.

Finally, we can consider a more general model in which both P(zi = 1|wi) and f (ui|zi =

0, wi) depend on wi, as above. We will estimate such a model in our empirical section.

1.3.4 Testing the Hypothesis That p = 0

In this section, we discuss the problem of testing the null hypothesis H0 : p = 0 against

the alternative HA : p > 0. The null hypothesis is that all firms are inefficient, so the basic

stochastic frontier model applies. The alternative is that some firms are fully efficient and

so the ZISF model is needed.

It is a standard result that, under certain regularity conditions, notably that the pa-

rameter value specified by the null hypothesis is an interior point of the parameter space,

the likelihood (LR), Lagrange multiplier (LM), and Wald tests all have the same asymp-

totic χ2 distribution. However, in our case p cannot be negative, and therefore the null

hypothesis that p = 0 lies on the boundary of the parameter space. This is therefore a

non-standard problem. Unlike the case of testing the hypothesis that p = 1, however,

there is no problem with the identification of the other parameters (nuisance parameters)

β, σ2
u, and σ2

v , or β, λ, and σ2. We need to restrict σ2
u > 0 and σ2

v > 0 so that the nuisance

parameters are in the interior of the parameter space, and also because p would not be

identified if σ2
u = 0. However, with these modest restrictions, this is only a mildly non-

standard problem, which has been discussed by Rogers (1986), Self and Liang (1987), and

Gouriéroux and Monfort (1995) chapter 21, for example.

We consider five test statistics: the likelihood ratio (LR), Wald, Lagrange multiplier

(LM), modified Lagrange multiplier (modified LM), and Kuhn-Tucker (KT) tests. All of
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these except the LM test will have asymptotic distributions that are different from the

usual (χ2
1) distribution.

We will assume that the likelihood function Ln(θ) satisfies the usual conditions,

1√
n

∂Ln(θ0)
∂θ

d→ N
(
0, I0

)
,

1
n

∂2Ln(θ0)
∂θ∂θ

p
→ H0 = −I0,

where θ = (β
′
, σu, σv, p)′, and the parameters other than p are away from the boundary

of their parameter spaces. Define the restricted estimator (θ̃) and the unrestricted estima-

tor (θ̂):

θ̃ = argmax
σu≥0, σv≥0, p=0

ln Ln(θ),

θ̂ = argmax
σu≥0, σv≥0, 0≤p≤1

ln Ln(θ) .

We also define li = ln f (εi), ŝi = ∂li(θ̂)/∂θ, s̃i = ∂li(θ̃)/∂θ, ĥi = ∂2li(θ̂)/∂θ∂θ′, and

h̃i = ∂2li(θ̃)/∂θ∂θ′. Finally, we consider the "unconstrained" estimator (θ̌) that ignores

the logical restriction 0 ≤ p ≤ 1 :

θ̌ = argmax
σu≥0, σv≥0

ln Ln(θ) .

1.3.4.1 LR test

The LR statistic when testing H0 : p = 0 is ξLR = 2(ln Ln(θ̂)− ln Ln(θ̃)). Under stan-

dard regularity conditions, the asymptotic distribution of ξLR is a mixture of χ2
0 and χ2

1,

with mixing weights 1/2, where χ2
0 is defined as the point mass distribution at zero. That

is ξLR d→ 1/2χ2
0 + 1/2χ2

1. This follows, for example, from Chen and Liang (2010), as cited

by KPT.
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1.3.4.2 Wald test

The Wald statistic for H0 : p = 0 is

ξW =
p̂2

se ( p̂)2
.

Note that se( p̂)2 can be computed using the outer product of the score form of the vari-

ance matrix of θ̂, [(∑n
i=1 ŝi ŝ

′
i)
−1], the Hessian form, [(∑n

i=1−ĥi)
−1], or the Robust form,

[(∑n
i=1−ĥi)

−1(∑n
i=1 ŝi ŝ

′
i)(∑

n
i=1−ĥi)

−1]. As with the LR statistic, ξW d→ 1/2χ2
0 +

1/2χ2
1. Note that the non-standard nature of this result means that the "significance" of

an estimated p̂ from the ZISF model cannot be assessed using standard results.

1.3.4.3 LM test

The LM statistic for H0 : p = 0 is

ξLM =

(
n
∑

i=1
s̃i

)′
M̃−1

(
n
∑

i=1
s̃i

)
.

M̃ can be either [(∑n
i=1 s̃i s̃

′
i)] or [(∑n

i=1−h̃i)], in either case evaluated at θ̃. Unlike the

other statistics considered here, the LM statistic has the usual χ2
1 distribution. It ignores

the one-sided nature of the alternative, because it rejects for a large (in absolute value)

positive or negative value of s̃i. As pointed out by Rogers (1986), this may result in a loss

in power relative to tests that take the one-sided nature of the alternative into account.

1.3.4.4 Modified LM test

The LM statistic has the usual χ2
1 distribution because it does not take account of the

one-sided nature of the alternative. By taking account of the one-sided nature of the

alternative, the LM test might have better power. The Modified LM statistic proposed by
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Rogers (1986) is motivated by this point. The modified LM statistic is :

ξmodified LM =


ξLM, if ∑n

i=1 s̃i > 0

0 , otherwise .

In the modified LM statistic, a positive score is taken as evidence against the null and

in favor of the alternative p > 0, whereas a negative score is not. So a negative score is

simply set to zero. The asymptotic distribution of ξmodified LM is 1/2χ2
0 + 1/2χ2

1.

1.3.4.5 KT test

Another form of score test statistic that takes account of the one-sided nature of the al-

ternative is the KT statistic proposed by Gouriéroux et al. (1982). The KT statistic for

H0 : p = 0 is

ξKT =

(
n
∑

i=1
s̃i −

n
∑

i=1
ŝi

)′
M̃−1

(
n
∑

i=1
s̃i −

n
∑

i=1
ŝi

)
,

where M̃ can be either ∑n
i=1 s̃i s̃

′
i or ∑n

i=1−h̃i. When p̂ = 0 , ∑n
i=1 s̃i = ∑n

i=1 ŝi. Since

p̂ = 0 when p̌ ≤ 0, the test statistic will have a degenerate distribution at zero when p̌ ≤ 0.

Otherwise, ∑n
i=1 ŝi = 0 and the test statistic has the usual χ2

1 distribution. Therefore,

ξKT d→ 1/2χ2
0 + 1/2χ2

1.

1.3.4.6 The Wrong Skew Problem, Revisited

When the OLS residuals are positively skewed (∑n
i=1 ε̂3

i > 0), we have σ̂2
u = 0 (or equiv-

alently, λ̂ = 0) and p̂ is not well defined. Also the information matrix, whether evaluated
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at θ̂ or θ̃, is singular. Specifically,
n
∑

i=1
ŝi ŝ
′
i =

1
σ̂2

v

n
∑

i=1
ε̂2
i xix
′
i − (1− p̂)

√
2
π

1
σ̂2

v

n
∑

i=1
ε̂2
i xi

1
σ̂5

v

n
∑

i=1
ε̂3
i xi 0

− (1− p̂)
√

2
π

1
σ̂2

v

n
∑

i=1
ε̂2
i x′i

2
π (1− p̂)2 n

σ̂2
v

− (1− p̂)
√

2
π

1
σ̂5

v

n
∑

i=1
ε̂3
i 0

1
σ̂5

v

n
∑

i=1
ε̂3
i x′i − (1− p̂)

√
2
π

1
σ̂5

v

n
∑

i=1
ε̂3
i

1
σ̂6

v

n
∑

i=1
ε̂4
i −

n
σ̂2

v
0

0 0 0 0



n
∑

i=1
s̃i s̃
′
i =



1
σ̃2

v

n
∑

i=1
ε̃2
i xix
′
i −

√
2
π

1
σ̃2

v

n
∑

i=1
ε̃2
i xi

1
σ̃5

v

n
∑

i=1
ε̃3
i xi 0

−
√

2
π

1
σ̃2

v

n
∑

i=1
ε̃2
i x′i

2
π

n
σ̃2

v
−
√

2
π

1
σ̃5

v

n
∑

i=1
ε̃3
i 0

1
σ̃5

v

n
∑

i=1
ε̃3
i x′i −

√
2
π

1
σ̃5

v

n
∑

i=1
ε̃3
i

1
σ̃6

v

n
∑

i=1
ε̃4
i −

n
σ̃2

v
0

0 0 0 0



n
∑

i=1
ĥi =



−
n
∑

i=1

xix
′
i

σ̂2
v

(1− p̂)
√

2
π

1
σ̂2

v

n
∑

i=1
xi 0 0

(1− p̂)
√

2
π

1
σ̂2

v

n
∑

i=1
x′i − (1− p̂)2 2

π
n

σ̂2
v

0 0

0 0 −2n
σ̂2

v
0

0 0 0 0



n
∑

i=1
h̃i =



−
n
∑

i=1

xix
′
i

σ̃2
v

√
2
π

1
σ̃2

v

n
∑

i=1
xi 0 0√

2
π

1
σ̃2

v

n
∑

i=1
x′i − 2

π
n

σ̃2
v

0 0

0 0 −2n
σ̃2

v
0

0 0 0 0


.

All the matrices above are singular for any p̂ ∈ [0, 1]. Therefore, when the third mo-

ment of the OLS residuals is positive, only the LR statistic can be defined, and equals zero.

It remains to decide if we should reject the null hypothesis or not when the OLS residuals

have wrong skew. Clearly, the LR test will not reject the null hypothesis, since the statistic
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equals zero under wrong skew. But for the other tests, the statistic is undefined and it

is not clear what to conclude. If we consider the wrong skew cases as indicating that all

firms are efficient, then it would be reasonable to reject the null hypothesis. However, as

a practical matter, whether we reject the null hypothesis or not does not affect anything,

because the estimated model whether p = 0 or not collapses to the same model. It might

be reasonable to simply say that p is not identified with incorrectly skewed OLS residu-

als. For a given data set, both the null and the alternative hypothesis would lead to same

results.

Assuming that σ2
u > 0, the wrong skew problem occurs with a probability that goes

to zero asymptotically. However, as shown in Table 1.1, it can occur with non-trivial

probability in finite samples. Also, the discussion above may be relevant even when the

data do not have the wrong skew problem. The log likelihood has a stationary point at

θ∗∗ regardless of the skew of the residuals. In the wrong skew case, the likelihood is

perfectly flat in the p direction with β̂ =OLS, λ̂ = 0, and σ̂2 = 1/nSSE. In the correct

skew case, this is not true, but when λ is small, we expect that the partial of log likelihood

with respect to p (evaluated at the MLE of the other parameters) would often be small in

the vicinity of p = 0, so that the LM test and its variants might have low power. We will

investigate this issue in the simulations of the next section.

1.4 SIMULATIONS

We conducted simulations in order to investigate the finite sample performance of the

ZISF model, and to compare it to the performance of the basic stochastic frontier model.

We are interested both in parameter estimation and in the performance of tests of the

hypothesis p = 0.

We consider a very simple data generating process: yi = β + εi, where as in Section

1.2 above, εi = vi − ui and ui is half-normal with probability 1 − p and ui = 0 with

probability p. We pick n = 200 and 500, β = 1, and σu = 1. We consider p = 0, 0.25, 0.5,
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and 0.75, and λ = 1, 2, and 5 (i.e., σv = 1, 0.5, and 0.2). Our simulations are based on

1000 replications. Because the MLE’s were sensitive to the starting values used, we used

several sets of starting values and chose the results with the highest maximized likelihood

value.

Our experimental design was similar to that in KPT. They included a non-constant

regressor, but in our experiments that made little difference. A more substantial difference

is that we used n = 200 and 500 whereas they used n = 500 and 1000.

There were some technical problems related to the facts that σ2
u is not identified when

p = 1, and p is not identified when σ2
u = 0. We define p̂ = 1 when σ̂u = 0 and σ̂u = 0

when p̂ = 1. This would imply that when the OLS residuals have incorrect skew, the

MLE would be θ∗∗ with p̂ = 1. It was very seldom the case that σ̂2
u = 0 or p̂ = 1 other

than in the wrong skew cases.

1.4.1 Parameter Estimation

Table 1.2 contains the mean, bias, and MSE of the various parameter estimates, for the

basic stochastic frontier model and for the ZISF model, for the case that n = 200. We also

present the mean, bias, and MSE of the technical inefficiency estimates, and the mean of

the "posterior" probabilities of full efficiency.

Unsurprisingly, the basic stochastic frontier model performs poorly except when p = 0

(in which case it is correctly specified). This is true for all three values of λ. We over-

estimate technical inefficiency, because we act as if all firms are inefficient, whereas in fact

they are not. This bias is naturally bigger when p is bigger.

For the ZISF model, the results depend strongly on the value of λ. When λ = 1, the

results are not very good. Note in particular the mean values of p̂, which are 0.53, 0.49,

0.51, and 0.57 for p = 0, 0.25, 0.50, and 0.75, respectively. It is disturbing that the mean

estimate of p does not appear to depend on the true value of p.

These problems are less severe for larger values of λ. The mean value of p̂ when p = 0
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is 0.33 for λ = 2 and 0.16 for λ = 5. The estimates are considerably better for the other

values of p. So basically the model performs reasonably well when λ is large enough and

p is not too close to zero.

Table 1.3 is similar to Table 1.2 except that it reports the results only for the cases of

correct skew (i.e., wrong skew cases are not included). This makes almost no difference

for λ = 2 or 5, because there are very few wrong skew cases when λ = 2 or 5. For λ = 1,

it matters more. However, the conclusions given above really do not change.

Table 1.4 contains the same information as Table 1.2, except that now we have n = 500

rather than n = 200. The results are better for n = 500 than for n = 200, but a larger

sample size does not really solve the problems that the ZISF model has in estimating p

when p = 0 and/or λ = 1. For example, when p = 0, the mean p̂ for λ = 1, 2, 5 is

0.53, 0.33, 0.16 when n = 200 and 0.50, 0.30, 0.12 when n = 500. Reading the table in the

other direction, when λ = 1, the mean p̂ for p = 0, 0.25, 0.5, 0.75 is 0.53, 0.49, 0.51, 0.57

when n = 200 and 0.50, 0.46, 0.48, 0.58 when n = 500. So again there are problems in

estimating p when p = 0 or when λ is small.

It is perhaps not surprising that we encounter problems when we estimate the ZISF

model when the true value of p is zero. Essentially, we are estimating a latent-class model

with more classes than there really are. It is true that the class with zero probability

contains no new parameters. If it did, they would not be identified and the results would

presumably be much worse.

These results do not always agree with the summary of the results in KPT. KPT con-

centrate on the technical inefficiency estimates, and the only results they show explicitly

for the parameter estimates (their Figure 3) are for n = 1000, and λ = 5 and p = 0.25.

We did successfully replicate their results, but n = 1000 and λ = 5 is a very favorable pa-

rameter configuration. In their Section 1.3.1, they say the following about the case when

the true p equals zero: "The ML estimator from the ZISF model is found to perform quite

well. . . . Estimates of p were close to zero." It is not clear what parameter configuration
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this refers to, but in our simulations this is not true except when λ = 5. For smaller values

of λ, the ZISF estimates of p when the true p = 0 are not very close to zero.

1.4.2 Testing the Hypothesis p = 0

We now turn to the results of our simulations that are designed to investigate the size and

power properties of the tests of the hypothesis p = 0, as discussed in Section 1.3.4 above.

This hypothesis is economically interesting, and it is also practically important to know

whether p = 0, since our model does not appear to perform well in that case. We would

like to be able to recognize cases when p = 0 and just use the basic SF model in these

cases.

The data generating process and parameter values for these simulations are as dis-

cussed above (in the beginning of Section 1.4). Specifically, the simulations are for n = 200

and n = 500.

We begin with the likelihood ratio (LR) test, which is the test that we believed ex ante

would be most reliable. The results for n = 200 are given in Table 1.5. For each value of λ

and p, we give the mean of the statistic (over the full set of 1000 replications), the number

of rejections and the frequency of rejection. The rejection rates in the rows corresponding

to p = 0 are the size of the test, whereas the rejection rates in the rows corresponding to

the positive values of p represent power.

Look first at the set of results for all replications. The size of the test is reasonable. It

is undersized for λ = 1 and approximately correctly sized for λ = 2 and 5. However,

the power is disappointing, except when λ is large. There is essentially no power, even

against the alternative p = 0.75, when λ = 1. When λ = 2, power is 0.60 against p = 0.75,

but only 0.24 against p = 0.50 and 0.06 against p = 0.25. Power is more reasonable when

λ = 5.

Table 1.6 gives the same results for n = 500. Increasing n has little effect on the size of

the test, but it improves the power. Power is still low when λ = 1 or when λ = 2 and p is
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not large.

In either case (n = 200 or 500), looking separately at the correct-skew cases does not

change our conclusions.

In Tables 1.7 and 1.8, we give results for the Wald test, for n = 200 and 500, respec-

tively. Since the Wald test is undefined in wrong-skew cases, we show the results only

for the correct-skew cases. We consider separately the OPG, Hessian, and Robust forms

of the test, as defined in Section 1.3.4 above. Regardless of which form of the test is used,

the test is considerably over-sized. This is true for both sample sizes. The problem is

worst for the Robust form and least serious for the OPG form, but there are serious size

distortions in all three cases. Based on these results, the Wald test is not recommended.

In Tables 1.9 and 1.10, we give the results for the score-based tests (LM, modified LM,

and KT). Once again the tests are undefined for wrong-skew cases so we report results

only for the correct-skew cases. The (two-sided) LM test is the best of the three. It shows

moderate size distortions and no power when λ = 1, but only modest size distortions

when λ = 2 or 5. The modified LM test has bigger size distortions and less power when

λ = 2 or 5. The KT test has the largest size distortions and is therefore not recommended.

Our results are easy to summarize. The likelihood ratio test is the best of the five tests

we have considered, at least for these parameter values. It is the only one of the tests that

does not over-reject the true null that p = 0. However, it does not have much power.

That is, we will have trouble rejecting the hypothesis that the basic SF model is correctly

specified, even if the ZISF model is needed and p is not close to zero. The exception to this

pessimistic conclusion is the case when both p and λ are large, in which case the power

of the test is satisfactory.

1.5 EMPIRICAL EXAMPLE

We apply the models defined in Sections 1.2 and 1.3 to the Philippine rice data used in the

empirical examples of Coelli et al. (2005), chapters 8-9. The Philippine data are composed
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of 43 farmers over eight years and Coelli et al. (2005) estimate the basic stochastic frontier

model with a trans-log production function, ignoring the panel nature of the observa-

tions. Their output variable is tonnes of freshly threshed rice, and the input variables are

planted area (in hectares), labor, and fertilizer used (in kilograms). These variables are

scaled to have unit means so the first-order coefficients of the trans-log function can be

interpreted as elasticities of output with respect to inputs evaluated at the variable means.

We follow the basic setup of Coelli et al. (2005) but estimate the extended models where

some farms are allowed to be efficient, and the probability of farm i being efficient and/or

the distribution of ui depend on farm characteristics. Data on age of household head, ed-

ucation of household head, household size, number of adults in the household, and the

percentage of area classified as bantog (upland) fields are used as farm characteristics

that influence the probability of a farm begin fully efficient and/or the distribution of the

inefficiency. See Coelli et al. (2005) Appendix 2 for a detailed description of the data.

1.5.1 Model

We consider models based on the following specification:

ln yi = β0 + θt + β1 ln areai + β2 ln labori + β3 ln npki +
1
2

β11(ln areai)
2

+ β12 ln areai ln labori + β13 ln areai ln npki +
1
2

β22(ln labori)
2 + β23 ln labori ln npki

+
1
2

β33(ln npki)
2 + vi − ui, (1.7)

ui ∼ N+(0, σ2
i ), σ2

i = exp (γ0 + ageiγ1 + edyrsiγ2 + hhsizeiγ3 + nadultiγ4 + banratiγ5),

(1.8)

P(zi = 1|wi) =
exp (δ0 + ageiδ1 + edyrsiδ2 + hhsizeiδ3 + nadultiδ4 + banratiδ5)

1 + exp (δ0 + ageiδ1 + edyrsiδ2 + hhsizeiδ3 + nadultiδ4 + banratiδ5)
,

(1.9)

where areai is the size of planted area in hectares, labori is a measure of labor, npki is

fertilizer in kilograms, agei is the age of household head, edyrsi is the years of education
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of the household head, hhsizei is the household size, nadulti is the number of adults in

the household, and banrati is the percentage of area classified as bantog (upland) fields.

We assume a trans-log production function with time trend as in (1.7). We estimate

the following models:

[a] the basic stochastic frontier model, in which σ2
i is constant (≡ σ2

u) and P(zi =

1|wi) = 0;

[b] the ZISF model in which σ2
u is constant and P(zi = 1|wi) is constant (≡ p) but not

necessarily equal to zero;

[c] the "heteroskedasticity" model in which p = 0 but σ2
i is as given in (1.8);

[d] the "logit" model in which σ2
u is constant but P(zi = 1|wi) is as given in (1.9);

[e] the "logit+heteroskedasticity" model in which σ2
i is as given in (1.8) and P(zi = 1|wi)

is as given in (1.9).

1.5.2 The Estimates

The MLEs and their OPG standard errors are reported in Table 1.11.

Consider first the results for the basic stochastic frontier model (first column of results

in the table). The inputs are productive and there are roughly constant returns to scale.

Average technical efficiency is about 70%. The estimated value of λ is 2.75, and both that

value and the sample size (n = 344) are big enough to feel confident about proceeding to

the ZISF model and its extensions.

The next block of column of results is for the ZISF model. Here we have p̂ = 0.58,

so a substantial fraction of the observations (farm - time period combinations) are char-

acterized by full efficiency. The technology (effect of inputs on output) is not changed

much from the basic SF model, but the intercept is lower and the level of technical effi-
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ciency is higher (between 85% and 90%). Based on our simulations, this is a predictable

consequence of finding that a substantial number of observations are fully efficient.

The next block of columns of results is for the heteroskedasticity model in which all

farms are inefficient but the level of inefficiency depends on farm characteristics. A num-

ber of farm characteristics (age of the farmer, education of the farmer and percentage of

bantog fields) have significant effects on the level of inefficiency. In this parameteriza-

tion, a positive coefficient indicates that an increase in the corresponding variable makes

a farm more inefficient. The model implies that farms where the farmer is older and more

educated, and where the percentage of bantog fields is lower, tend to be more inefficient

(less efficient). Or, saying the same thing the other way around, farms are more efficient

on average if the farmer is younger and less educated and the percentage of bantog fields

is higher. The effect of education is perhaps surprising. Because this model does not al-

low any farms to be fully efficient, we once again have a low level of average technical

efficiency, about 72%, which is similar to that for the basic SF model.

Next we consider the logit model in which the distribution of inefficiency is the same

for all firms that are not fully efficient, but the probability of being fully efficient depends

on farm characteristics according to a logit model. Now age of the farmer and percentage

of bantog fields have significant effects on the probability of full efficiency, and the coeffi-

cient of household size is almost significant at the 5% level (t statistic=-1.93). The results

indicate that farms with younger farmers, smaller household size, and a larger proportion

of bantog fields are more likely to be fully efficient. The results for age of the farmer and

percentage of bantog fields are similar in nature to those for the heteroskedasticity model.

The average level of inefficiency is once again higher, about 86%, which is very similar to

the result for the ZISF model with constant p.

Finally, the last set of results are for the logit+heteroskedasticity model in which farm

characteristics influence both the probability of being fully efficient and the distribution

of inefficiency for those farms that are not fully efficient. Now none of the farm char-
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acteristics considered have significant effects on the distribution of inefficiency for the

inefficient farms, but three of them (age of the farmer, household size and proportion of

bantog fields) do have significant effects on the probability of being fully efficient. The

coefficients for these three variables have the same signs as in the logit model without

heteroskedasticity. It is interesting that we can estimate a model this complicated and still

get significant results. Also, we note that, because this model allows the probability of

full efficiency, we are back to a high average level of technical inefficiency, between 85%

and 90%.

1.5.3 Model Comparison and Selection

We will now test the restrictions that distinguish the various models we have estimated.

Based on the results of our simulations, we will use the likelihood ratio (LR) test. We

immediately encounter some difficulties because, to use the LR test (or the other tests

we considered in Section 1.3.4), the hypotheses should be nested, whereas not all of our

models are nested. There are two possible nested hierarchies of models: (a) basic SF⊂

ZISF⊂logit⊂logit-heteroskedasticity, and (b) basic SF⊂heteroskedasticity.

We begin with hierarchy (a). When we test the hypothesis that p = 0 in the ZISF

model, we obtain LR= 5.07, which exceeds the 5% critical value of 2.71 for the distribution

(1/2χ2
0 + 1/2χ2

1). So we reject the basic SF model in favor of the ZISF model. Next we test

the ZISF model against the logit model. This is a standard test of the hypothesis that

δ1 = δ2 = δ3 = δ4 = δ5 = 0 in the logit model. The LR statistic of 23.96 exceeds the 5%

critical value for the χ2
5 distribution (11.07), so we reject the ZISF model in favor of the

logit model. Finally, we test the logit model against the logit-heteroskedasticity model.

This is a standard test of the hypothesis that γ1 = γ2 = γ3 = γ4 = γ5 = 0 in the logit-

heteroskedasticity model. The LR test statistic of 11.12 very marginally exceeds the 5%

critical value, so we reject the logit model in favor of the logit-heteroskedasticity model,

but not overwhelmingly. Note that the logit model is rejected even though, in the logit-
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heteroskedasticity model, none of the individual γj in the heteroskedasticity portion of

the model is individually significant.

Now consider hierarchy (b). We test the basic SF model against the heteroskedasticity

model. This is a standard test of the hypothesis that γ1 = γ2 = γ3 = γ4 = γ5 = 0 in

the heteroskedasticity model. The LR statistic of 17.04 exceeds the 5% critical value, so

we reject the basic SF model in favor of the heteroskedasticity model.

We cannot test the heteroskedasticity model against the logit-heteroskedasticity model,

at least not by standard methods, since the restriction that would convert the logit-heteros-

kedasticity model into the heteroskedasticity model is δ0 = −∞ and under this null the

other δj are unidentified. Still, the difference in log-likelihoods, which is 11.56, would

appear to argue in favor of the logit-heteroskedasticity model.

In order to compare the models in a slightly different way, and to amplify on the com-

ment at the end of the preceding paragraph, we will also consider some standard model

selection criteria. We consider AIC= −2LF + 2d (Akaike (1974)), BIC= −2LF + d ln n

(Schwarz (1978)) and HQIC= −2LF + 2d ln (ln n) (Hannan and Quinn (1979)), where d

is the number of estimated parameters, n is the number of observations, and LF is the

log-likelihood value. Smaller values of these criteria indicate a “better” model. We note

that all three criteria favor the logit model over the heteroskedasticity model, two of the

three favor the logit-heteroskedasticity model over the heteroskedasticity model, and two

of the three favor the logit model over the logit-heteroskedasticity model.

Based on the results of our hypothesis tests and the comparison of the model selec-

tion procedures, we conclude that a case could be made for either the logit model or the

logit-heteroskedasticity model as the preferred model. As we saw above, the substantive

conclusions from these two models were basically the same.
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1.6 CONCLUDING REMARKS

In this chapter we considered a generalization of the usual stochastic frontier model. In

this new "ZISF" model, there is a probability p that a firm is fully efficient. This model was

proposed by Kumbhakar, Parmeter, and Tsionas (2013), who showed how to estimate the

model by MLE, how to update the probability of a firm being fully efficient on the basis

of the data, and how to estimate the inefficiency level of a specific firm.

We extend their analysis in a number of ways. We show that a result similar to that of

Waldman (1982) holds in the ZISF model, namely, that there is always a stationary point

of the likelihood at parameter values that indicate no inefficiency, and that this point is a

local maximum if the OLS residuals are positively skewed. We propose a model in which

the probability of a firm being fully efficient is not constant, but rather is determined by

a logit or probit model based on observable characteristics. We show how to test the

hypothesis that p = 0. We also provide a more comprehensive set of simulations than

Kumbhakar, Parmeter, and Tsionas (2013) did, and we include an empirical example.

Let λ = σu/σv, a standard measure in the stochastic frontier literature of the relative

size of technical inefficiency and statistical noise. The main practical implication of our

simulations is that the ZISF model works well when neither λ nor p is small. However,

we have trouble estimating p reliably, or testing whether it equals zero, when λ is small.

And if the true p equals zero, we have trouble estimating it reliably unless λ is larger than

is empirically plausible (e.g., λ = 5). Larger sample size obviously helps, but the above

conclusions do not depend strongly on sample size in our simulations. Situations where

the ZISF model may be useful therefore have the characteristics that (i) it is reasonable to

suppose that some firms are fully efficient, and (ii) the inefficiency levels of the inefficient

firms are not small relative to statistical noise. Such situations do not seem implausible,

and it is an empirical question as to how common they are.
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Table 1.1: Frequency of a positive third moment of the OLS residuals

n = 50 n = 100 n = 200 n = 400

λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2

p = 0 0.476 0.363 0.114 0.463 0.300 0.038 0.447 0.224 0.006 0.421 0.139 0.000
p = 0.1 0.475 0.352 0.102 0.460 0.286 0.031 0.443 0.210 0.003 0.416 0.123 0.000
p = 0.2 0.472 0.338 0.080 0.456 0.266 0.019 0.438 0.185 0.001 0.407 0.101 0.000
p = 0.3 0.469 0.322 0.058 0.451 0.245 0.011 0.431 0.161 0.000 0.398 0.079 0.000
p = 0.4 0.466 0.308 0.042 0.447 0.226 0.006 0.424 0.141 0.000 0.391 0.062 0.000
p = 0.5 0.465 0.300 0.034 0.444 0.215 0.004 0.421 0.129 0.000 0.386 0.053 0.000
p = 0.6 0.466 0.299 0.033 0.445 0.215 0.004 0.420 0.128 0.000 0.387 0.052 0.000
p = 0.7 0.468 0.311 0.043 0.449 0.229 0.006 0.427 0.143 0.000 0.394 0.063 0.000
p = 0.8 0.474 0.342 0.076 0.458 0.268 0.017 0.439 0.185 0.001 0.414 0.098 0.000
p = 0.9 0.485 0.399 0.178 0.474 0.348 0.079 0.463 0.280 0.019 0.446 0.200 0.001
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Table 1.2: Basic SF Model vs. ZISF Model, all replications : n = 200

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 1 (σu = 1, σv = 1) , p = 0 λ = 1 (σu = 1, σv = 1) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 0.87 −0.13 0.20 0.60 −0.40 0.29 1.16 0.16 0.19 0.85 −0.15 0.15
σu 0.84 −0.16 0.30 0.91 −0.09 0.40 0.95 −0.05 0.26 1.00 0.00 0.33
σv 0.99 −0.01 0.02 1.02 0.02 0.02 0.97 −0.03 0.02 1.01 0.01 0.02
p – 0.53 0.53 0.43 – 0.49 0.24 0.19
λ 0.93 −0.07 0.44 0.95 −0.05 0.45 1.07 0.07 0.45 1.06 0.06 0.43
σ 1.39 −0.02 0.04 1.47 0.06 0.12 1.44 0.03 0.04 1.51 0.09 0.11
log L −313.00 −312.85 −314.71 −314.55

Ê
[
ui|ε̂i

]
0.67 −0.13 0.50 0.40 −0.40 0.60 0.76 0.16 0.51 0.45 −0.15 0.47

p̂
(
zi = 1|ε̂i

)
0.53 0.49

λ = 1 (σu = 1, σv = 1) , p = 0.5 λ = 1 (σu = 1, σv = 1) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.40 0.40 0.30 1.04 0.04 0.12 1.51 0.51 0.40 1.16 0.16 0.13
σu 1.00 0.00 0.22 1.07 0.07 0.31 0.89 −0.11 0.23 1.01 0.01 0.34
σv 0.93 −0.07 0.02 0.98 −0.02 0.02 0.90 −0.10 0.03 0.95 −0.05 0.02
p – 0.51 0.01 0.12 – 0.57 −0.18 0.16
λ 1.16 0.16 0.45 1.15 0.15 0.43 1.08 0.08 0.43 1.12 0.12 0.44
σ 1.44 0.03 0.04 1.52 0.11 0.12 1.35 −0.07 0.04 1.47 0.06 0.13
log L −311.00 −310.77 −300.69 −300.40

Ê
[
ui|ε̂i

]
0.80 0.40 0.59 0.44 0.05 0.40 0.71 0.51 0.62 0.36 0.16 0.33

p̂
(
zi = 1|ε̂i

)
0.51 0.57
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Table 1.2: (cont’d)

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 2 (σu = 1, σv = 0.5) , p = 0 λ = 2 (σu = 1, σv = 0.5) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 0.98 −0.02 0.02 0.71 −0.29 0.14 1.26 0.26 0.08 0.98 −0.02 0.05
σu 0.98 −0.02 0.03 0.97 −0.03 0.05 1.08 0.08 0.03 1.04 0.04 0.03
σv 0.50 0.00 0.01 0.54 0.04 0.01 0.45 −0.05 0.01 0.50 0.00 0.01
p – 0.33 0.33 0.19 – 0.30 0.05 0.06
λ 2.08 0.08 0.48 1.89 −0.11 0.41 2.53 0.53 0.88 2.21 0.21 0.55
σ 1.11 −0.01 0.01 1.12 0.00 0.03 1.18 0.06 0.01 1.16 0.05 0.02
log L −229.93 −229.65 −232.55 −232.22

Ê
[
ui|ε̂i

]
0.78 −0.02 0.17 0.51 −0.29 0.30 0.86 0.26 0.23 0.58 −0.02 0.20

p̂
(
zi = 1|ε̂i

)
0.33 0.30

λ = 2 (σu = 1, σv = 0.5) , p = 0.5 λ = 2 (σu = 1, σv = 0.5) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.45 0.45 0.21 1.07 0.07 0.05 1.52 0.52 0.28 1.05 0.05 0.03
σu 1.07 0.07 0.02 1.06 0.06 0.02 0.91 −0.09 0.02 1.03 0.03 0.04
σv 0.39 −0.11 0.02 0.47 −0.03 0.01 0.37 −0.13 0.02 0.48 −0.02 0.00
p – 0.44 −0.06 0.06 – 0.67 −0.08 0.05
λ 2.83 0.83 1.29 2.34 0.34 0.57 2.54 0.54 0.72 2.18 0.18 0.28
σ 1.15 0.03 0.01 1.16 0.04 0.02 0.99 −0.13 0.03 1.14 0.02 0.03
log L −221.64 −220.71 −196.18 −193.77

Ê
[
ui|ε̂i

]
0.85 0.45 0.35 0.47 0.08 0.18 0.72 0.52 0.39 0.25 0.05 0.11

p̂
(
zi = 1|ε̂i

)
0.44 0.67
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Table 1.2: (cont’d)

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 5 (σu = 1, σv = 0.2) , p = 0 λ = 5 (σu = 1, σv = 0.2) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.00 0.00 0.00 0.85 −0.15 0.04 1.23 0.23 0.05 1.03 0.03 0.01
σu 1.00 0.00 0.01 0.97 −0.03 0.01 1.05 0.05 0.01 1.02 0.02 0.00
σv 0.19 −0.01 0.00 0.23 0.03 0.00 0.14 −0.06 0.01 0.19 −0.01 0.00
p – 0.16 0.16 0.05 – 0.23 −0.02 0.02
λ 5.61 0.61 7.04 4.79 −0.21 6.21 8.32 3.32 21.81 6.06 1.06 10.77
σ 1.02 0.00 0.00 1.00 −0.02 0.01 1.05 0.03 0.01 1.04 0.02 0.00
log L −176.43 −176.06 −174.14 −172.76

Ê
[
ui|ε̂i

]
0.80 0.00 0.04 0.65 −0.15 0.08 0.82 0.23 0.09 0.63 0.03 0.04

p̂
(
zi = 1|ε̂i

)
0.16 0.23

λ = 5 (σu = 1, σv = 0.2) , p = 0.5 λ = 5 (σu = 1, σv = 0.2) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.30 0.30 0.09 1.00 0.00 0.00 1.32 0.32 0.10 1.00 0.00 0.00
σu 0.93 −0.07 0.01 1.01 0.01 0.01 0.71 −0.29 0.09 1.00 0.00 0.02
σv 0.11 −0.09 0.01 0.20 0.00 0.00 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.50 0.00 0.01 – 0.75 0.00 0.00
λ 8.96 3.96 36.70 5.17 0.17 0.61 6.96 1.96 19.52 5.05 0.06 0.43
σ 0.94 −0.08 0.01 1.03 0.01 0.01 0.72 −0.30 0.09 1.02 0.00 0.02
log L −148.06 −138.15 −99.12 −74.13

Ê
[
ui|ε̂i

]
0.70 0.30 0.13 0.40 0.00 0.03 0.52 0.32 0.13 0.20 0.00 0.02

p̂
(
zi = 1|ε̂i

)
0.50 0.75
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Table 1.3: Basic SF Model vs. ZISF Model, correct skew replications : n = 200

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 1 (σu = 1, σv = 1) , p = 0 λ = 1 (σu = 1, σv = 1) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.06 0.06 0.07 0.71 −0.29 0.20 1.29 0.29 0.16 0.93 −0.07 0.12
σu 1.08 0.08 0.10 1.17 0.17 0.22 1.13 0.13 0.12 1.19 0.19 0.20
σv 0.94 −0.06 0.02 0.98 −0.02 0.02 0.94 −0.06 0.02 0.98 −0.02 0.02
p – 0.40 0.40 0.26 – 0.39 0.14 0.12
λ 1.20 0.20 0.28 1.23 0.23 0.30 1.27 0.27 0.35 1.26 0.26 0.32
σ 1.46 0.05 0.03 1.56 0.15 0.13 1.50 0.08 0.03 1.57 0.16 0.11
log L −313.16 −312.97 −315.09 −314.90

Ê
[
ui|ε̂i

]
0.86 0.06 0.36 0.51 −0.29 0.49 0.90 0.30 0.47 0.54 −0.06 0.43

p̂
(
zi = 1|ε̂i

)
0.40 0.39

λ = 1 (σu = 1, σv = 1) , p = 0.5 λ = 1 (σu = 1, σv = 1) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.51 0.51 0.32 1.10 0.10 0.12 1.64 0.64 0.46 1.22 0.22 0.15
σu 1.14 0.14 0.11 1.22 0.22 0.21 1.05 0.05 0.09 1.19 0.19 0.23
σv 0.91 −0.09 0.02 0.96 −0.04 0.02 0.87 −0.13 0.03 0.93 −0.07 0.02
p – 0.44 −0.06 0.11 – 0.49 −0.26 0.18
λ 1.33 0.33 0.38 1.31 0.31 0.35 1.27 0.27 0.33 1.31 0.31 0.35
σ 1.48 0.07 0.03 1.58 0.16 0.12 1.40 −0.02 0.03 1.54 0.13 0.13
log L −311.17 −310.91 −301.06 −300.72

Ê
[
ui|ε̂i

]
0.91 0.51 0.61 0.51 0.11 0.40 0.84 0.64 0.69 0.42 0.22 0.34

p̂
(
zi = 1|ε̂i

)
0.44 0.49
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Table 1.3: (cont’d)

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 2 (σu = 1, σv = 0.5) , p = 0 λ = 2 (σu = 1, σv = 0.5) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 0.99 −0.01 0.02 0.72 −0.28 0.14 1.26 0.26 0.08 0.98 −0.02 0.05
σu 0.98 −0.02 0.03 0.97 −0.03 0.04 1.08 0.08 0.03 1.04 0.04 0.03
σv 0.49 −0.01 0.01 0.54 0.04 0.01 0.45 −0.05 0.01 0.50 0.00 0.01
p – 0.32 0.32 0.18 – 0.30 0.05 0.06
λ 2.10 0.10 0.46 1.90 −0.10 0.39 2.53 0.53 0.88 2.21 0.21 0.55
σ 1.11 −0.01 0.01 1.12 0.00 0.03 1.18 0.06 0.01 1.16 0.05 0.02
log L −229.94 −229.66 −232.57 −232.24

Ê
[
ui|ε̂i

]
0.78 −0.01 0.16 0.52 −0.28 0.29 0.86 0.26 0.23 0.58 −0.02 0.20

p̂
(
zi = 1|ε̂i

)
0.32 0.30

λ = 2 (σu = 1, σv = 0.5) , p = 0.5 λ = 2 (σu = 1, σv = 0.5) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.45 0.45 0.21 1.07 0.07 0.05 1.52 0.52 0.28 1.05 0.05 0.03
σu 1.07 0.07 0.02 1.06 0.06 0.02 0.91 −0.09 0.02 1.03 0.03 0.04
σv 0.39 −0.11 0.02 0.47 −0.03 0.01 0.37 −0.13 0.02 0.48 −0.02 0.00
p – 0.44 −0.06 0.06 – 0.67 −0.08 0.05
λ 2.83 0.83 1.29 2.34 0.34 0.57 2.54 0.54 0.72 2.19 0.19 0.28
σ 1.15 0.03 0.01 1.16 0.04 0.02 0.99 −0.13 0.03 1.14 0.02 0.03
log L −221.64 −220.71 −196.20 −193.79

Ê
[
ui|ε̂i

]
0.85 0.45 0.35 0.47 0.08 0.18 0.72 0.52 0.39 0.25 0.05 0.11

p̂
(
zi = 1|ε̂i

)
0.44 0.67
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Table 1.3: (cont’d)

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 5 (σu = 1, σv = 0.2) , p = 0 λ = 5 (σu = 1, σv = 0.2) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.00 0.00 0.00 0.85 −0.15 0.04 1.23 0.23 0.05 1.03 0.03 0.01
σu 1.00 0.00 0.01 0.97 −0.03 0.01 1.04 0.04 0.01 1.02 0.02 0.00
σv 0.19 −0.01 0.00 0.23 0.03 0.00 0.14 −0.06 0.01 0.19 −0.01 0.00
p – 0.16 0.16 0.05 – 0.23 −0.02 0.02
λ 5.61 0.61 7.04 4.79 −0.21 6.21 8.32 3.32 21.81 6.06 1.06 10.77
σ 1.02 0.00 0.00 1.00 −0.02 0.01 1.05 0.03 0.01 1.04 0.02 0.00
log L −176.43 −176.06 −174.14 −172.76

Ê
[
ui|ε̂i

]
0.80 0.00 0.04 0.65 −0.15 0.08 0.82 0.23 0.09 0.63 0.03 0.04

p̂
(
zi = 1|ε̂i

)
0.16 0.23

λ = 5 (σu = 1, σv = 0.2) , p = 0.5 λ = 5 (σu = 1, σv = 0.2) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.30 0.30 0.09 1.00 0.00 0.00 1.32 0.32 0.10 1.00 0.00 0.00
σu 0.93 −0.07 0.01 1.01 0.01 0.01 0.71 −0.29 0.09 1.00 0.00 0.02
σv 0.11 −0.09 0.01 0.20 0.00 0.00 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.50 0.00 0.01 – 0.75 0.00 0.00
λ 8.96 3.96 36.70 5.17 0.17 0.61 6.96 1.96 19.52 5.05 0.06 0.43
σ 0.94 −0.08 0.01 1.03 0.01 0.01 0.72 −0.30 0.09 1.02 0.00 0.02
log L −148.06 −138.15 −99.12 −74.13

Ê
[
ui|ε̂i

]
0.70 0.30 0.13 0.40 0.00 0.03 0.52 0.32 0.13 0.20 0.00 0.02

p̂
(
zi = 1|ε̂i

)
0.50 0.75
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Table 1.4: Basic SF Model vs. ZISF Model, all replications : n = 500

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 1 (σu = 1, σv = 1) , p = 0 λ = 1 (σu = 1, σv = 1) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 0.90 −0.10 0.11 0.59 −0.41 0.26 1.19 0.19 0.13 0.85 −0.15 0.12
σu 0.88 −0.12 0.17 0.94 −0.06 0.24 0.99 −0.01 0.13 1.03 0.03 0.19
σv 1.01 0.01 0.01 1.04 0.04 0.01 0.99 −0.01 0.01 1.03 0.03 0.01
p – 0.50 0.50 0.38 – 0.46 0.21 0.16
λ 0.91 −0.09 0.21 0.93 −0.07 0.23 1.04 0.04 0.19 1.03 0.03 0.19
σ 1.39 −0.02 0.02 1.46 0.05 0.08 1.44 0.03 0.02 1.50 0.09 0.07
log L −785.23 −785.03 −790.14 −789.94

Ê
[
ui|ε̂i

]
0.70 −0.10 0.40 0.39 −0.41 0.55 0.79 0.19 0.42 0.45 −0.15 0.42

p̂
(
zi = 1|ε̂i

)
0.50 0.46

λ = 1 (σu = 1, σv = 1) , p = 0.5 λ = 1 (σu = 1, σv = 1) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.45 0.45 0.26 1.05 0.05 0.09 1.56 0.56 0.38 1.14 0.14 0.09
σu 1.06 0.06 0.10 1.10 0.10 0.14 0.95 −0.05 0.11 1.05 0.05 0.19
σv 0.94 −0.06 0.01 0.99 −0.01 0.01 0.91 −0.09 0.02 0.97 −0.03 0.01
p – 0.48 −0.02 0.10 – 0.58 −0.17 0.14
λ 1.17 0.17 0.19 1.13 0.13 0.16 1.08 0.08 0.19 1.10 0.10 0.21
σ 1.45 0.04 0.02 1.51 0.10 0.06 1.35 −0.06 0.02 1.47 0.06 0.08
log L −779.58 −779.28 −754.00 −753.53

Ê
[
ui|ε̂i

]
0.85 0.45 0.53 0.45 0.05 0.36 0.76 0.56 0.58 0.34 0.14 0.27

p̂
(
zi = 1|ε̂i

)
0.48 0.58
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Table 1.4: (cont’d)

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 2 (σu = 1, σv = 0.5) , p = 0 λ = 2 (σu = 1, σv = 0.5) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse
β0 0.99 −0.01 0.01 0.74 −0.26 0.11 1.26 0.26 0.07 1.00 0.00 0.04
σu 0.99 −0.01 0.01 0.95 −0.05 0.01 1.08 0.08 0.01 1.02 0.02 0.01
σv 0.50 0.00 0.00 0.54 0.04 0.01 0.46 −0.04 0.00 0.50 0.00 0.00
p – 0.30 0.30 0.15 – 0.27 0.02 0.04
λ 2.02 0.02 0.15 1.79 −0.21 0.19 2.39 0.39 0.32 2.08 0.08 0.18
σ 1.11 0.00 0.00 1.10 −0.02 0.01 1.18 0.06 0.01 1.15 0.03 0.00
log L −577.71 −577.38 −584.97 −584.58

Ê
[
ui|ε̂i

]
0.79 −0.01 0.15 0.54 −0.26 0.26 0.86 0.26 0.22 0.60 0.00 0.18

p̂
(
zi = 1|ε̂i

)
0.30 0.27

λ = 2 (σu = 1, σv = 0.5) , p = 0.5 λ = 2 (σu = 1, σv = 0.5) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.45 0.45 0.21 1.05 0.05 0.03 1.52 0.52 0.27 1.02 0.02 0.01
σu 1.07 0.07 0.01 1.02 0.02 0.01 0.91 −0.09 0.01 1.00 0.00 0.02
σv 0.40 −0.10 0.01 0.49 −0.01 0.00 0.38 −0.12 0.02 0.49 −0.01 0.00
p – 0.46 −0.04 0.04 – 0.72 −0.03 0.02
λ 2.72 0.72 0.68 2.14 0.14 0.15 2.43 0.43 0.32 2.04 0.04 0.07
σ 1.15 0.03 0.00 1.14 0.02 0.01 0.99 −0.13 0.02 1.12 0.00 0.01
log L −556.16 −554.57 −492.83 −487.45

Ê
[
ui|ε̂i

]
0.85 0.45 0.34 0.45 0.05 0.15 0.72 0.52 0.39 0.21 0.02 0.09

p̂
(
zi = 1|ε̂i

)
0.46 0.72
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Table 1.4: (cont’d)

Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 5 (σu = 1, σv = 0.2) , p = 0 λ = 5 (σu = 1, σv = 0.2) , p = 0.25

β0 1.00 0.00 0.00 0.88 −0.12 0.03 1.22 0.22 0.05 1.01 0.01 0.01
σu 1.00 0.00 0.00 0.97 −0.03 0.00 1.04 0.04 0.00 1.01 0.01 0.00
σv 0.20 0.00 0.00 0.22 0.02 0.00 0.14 −0.06 0.00 0.19 −0.01 0.00
p – 0.12 0.12 0.03 – 0.24 −0.01 0.01
λ 5.18 0.18 0.99 4.55 −0.45 1.35 7.55 2.55 8.46 5.36 0.36 1.87
σ 1.02 0.00 0.00 0.99 −0.03 0.00 1.05 0.03 0.00 1.03 0.01 0.00
log L −442.32 −441.94 −436.65 −433.87

Ê
[
ui|ε̂i

]
0.80 0.00 0.03 0.68 −0.12 0.06 0.82 0.22 0.08 0.61 0.01 0.04

p̂
(
zi = 1|ε̂i

)
0.12 0.24

λ = 5 (σu = 1, σv = 0.2) , p = 0.5 λ = 5 (σu = 1, σv = 0.2) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse

β0 1.30 0.30 0.09 1.00 0.00 0.00 1.32 0.32 0.10 1.00 0.00 0.00
σu 0.93 −0.07 0.01 1.00 0.00 0.00 0.71 −0.29 0.09 1.00 0.00 0.01
σv 0.12 −0.08 0.01 0.20 0.00 0.00 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.50 0.00 0.00 – 0.75 0.00 0.00
λ 8.01 3.01 10.75 5.03 0.03 0.17 6.36 1.36 2.77 5.00 0.00 0.16
σ 0.93 −0.09 0.01 1.02 0.00 0.00 0.72 −0.30 0.09 1.02 0.00 0.01
log L −371.51 −347.55 −250.31 −188.10

Ê
[
ui|ε̂i

]
0.70 0.30 0.12 0.40 0.00 0.02 0.52 0.32 0.13 0.20 0.00 0.01

p̂
(
zi = 1|ε̂i

)
0.50 0.75
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Table 1.5: Likelihood Ratio Test, n = 200

All Correct Skew Incorrect Skew
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 0.29 21 (0.02) 1000 0.38 21 (0.03) 776 0.00 0 (0.00) 224
p = 0.25 0.32 20 (0.02) 1000 0.37 20 (0.02) 842 0.00 0 (0.00) 158
p = 0.5 0.46 40 (0.04) 1000 0.53 40 (0.05) 878 0.00 0 (0.00) 122
p = 0.75 0.57 53 (0.05) 1000 0.67 53 (0.06) 850 0.00 0 (0.00) 150

λ = 2 p = 0 0.56 42 (0.04) 1000 0.56 42 (0.04) 994 0.00 0 (0.00) 6
p = 0.25 0.66 63 (0.06) 1000 0.66 63 (0.06) 999 0.00 0 (0.00) 1
p = 0.5 1.87 244 (0.24) 1000 1.87 244 (0.24) 1000 – 0
p = 0.75 4.81 596 (0.60) 1000 4.81 596 (0.60) 999 0.00 0 (0.00) 1

λ = 5 p = 0 0.73 60 (0.06) 999+ 0.73 61 (0.06) 999+ – 0
p = 0.25 2.76 393 (0.39) 996+ 2.76 395 (0.40) 996+ – 0
p = 0.5 19.82 988 (0.99) 997+ 19.82 988 (0.99) 997+ – 0
p = 0.75 49.98 997 (1.00) 997+ 49.98 997 (1.00) 997+ – 0

1. + Some iterations dropped due to σ̂v being too small such that λ̂ is not well defined.
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Table 1.6: Likelihood Ratio Test, n = 500

All Correct Skew Incorrect Skew
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 0.39 30 (0.03) 1000 0.45 30 (0.03) 879 0.00 0 (0.00) 121
p = 0.25 0.41 28 (0.03) 1000 0.45 28 (0.03) 921 0.00 0 (0.00) 79
p = 0.5 0.60 48 (0.05) 1000 0.62 48 (0.05) 964 0.00 0 (0.00) 36
p = 0.75 0.95 102 (0.10) 1000 1.01 102 (0.11) 939 0.00 0 (0.00) 61

λ = 2 p = 0 0.66 56 (0.06) 1000 0.66 56 (0.06) 1000 – 0
p = 0.25 0.77 63 (0.06) 1000 0.77 63 (0.06) 1000 – 0
p = 0.5 3.19 461 (0.46) 1000 3.19 461 (0.46) 1000 – 0
p = 0.75 10.76 911 (0.91) 1000 10.76 911 (0.91) 1000 – 0

λ = 5 p = 0 0.75 70 (0.07) 1000 0.75 70 (0.07) 1000 – 0
p = 0.25 5.55 689 (0.69) 1000 5.55 689 (0.69) 1000 – 0
p = 0.5 47.94 1000 (1.00) 1000 47.94 1000 (1.00) 1000 – 0
p = 0.75 124.42 1000 (1.00) 1000 124.42 1000 (1.00) 1000 – 0
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Table 1.7: Wald Test, n = 200

OPG Hessian Robust
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 5.92 128 (0.17) 773∗ 57.97 189 (0.24) 776 143.75 546 (0.70) 776
p = 0.25 4.42 147 (0.18) 838∗ 36.90 215 (0.26) 842 104.61 592 (0.70) 842
p = 0.5 6.98 179 (0.21) 873∗ 40.61 270 (0.31) 878 135.57 629 (0.72) 878
p = 0.75 9.74 247 (0.29) 849∗ 63.53 334 (0.39) 850 146.11 607 (0.71) 850

λ = 2 p = 0 6.18 215 (0.22) 994 21.23 290 (0.29) 994 45.46 620 (0.62) 994
p = 0.25 4.26 264 (0.26) 999 10.21 320 (0.32) 997� 19.28 618 (0.62) 999
p = 0.5 10.91 580 (0.58) 1000 14.37 639 (0.64) 1000 19.46 735 (0.73) 1000
p = 0.75 45.72 856 (0.86) 999 61.79 883 (0.88) 998� 80.71 906 (0.91) 999

λ = 5 p = 0 3.25 266 (0.27) 999+ 3.58 315 (0.32) 996�+ 5.03 490 (0.49) 999+

p = 0.25 8.63 696 (0.70) 998+ 9.16 725 (0.73) 997�+ 9.90 727 (0.73) 998+

p = 0.5 59.73 997 (1.00) 998+ 60.75 997 (1.00) 998+ 61.12 996 (1.00) 998+

p = 0.75 247.62 1000 (1.00) 1000 254.99 1000 (1.00) 1000 257.77 1000 (1.00) 1000

1. ∗ Some iterations are dropped due to a singular OPG variance matrix.
2. �Some of the iterations where MLE is at the boundary (p̂ = 0) are dropped due to not negative definite Hessian.
3. + Some iterations dropped due to σ̂v being too small such that λ̂ is not well defined.
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Table 1.8: Wald Test, n = 500

OPG Hessian Robust
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 12.05 201 (0.23) 878∗ 112.28 250 (0.29) 877� 286.90 620 (0.71) 878◦
p = 0.25 10.34 203 (0.22) 921 94.59 264 (0.29) 921 215.21 639 (0.69) 921
p = 0.5 12.69 275 (0.29) 963∗ 47.99 347 (0.36) 964 121.96 661 (0.69) 964
p = 0.75 24.74 368 (0.39) 938∗ 120.86 447 (0.48) 937� 258.85 678 (0.72) 939

λ = 2 p = 0 5.32 262 (0.26) 1000 26.94 310 (0.31) 1000 47.13 618 (0.62) 1000
p = 0.25 3.94 306 (0.31) 1000 0.47 373 (0.37) 999� 8.46 642 (0.64) 1000
p = 0.5 17.10 800 (0.80) 1000 19.10 831 (0.83) 1000 22.49 837 (0.84) 1000
p = 0.75 93.38 988 (0.99) 1000 105.45 987 (0.99) 1000 121.46 983 (0.98) 1000

λ = 5 p = 0 3.02 282 (0.28) 1000 3.24 311 (0.31) 1000 4.79 496 (0.50) 1000
p = 0.25 17.87 890 (0.89) 1000 18.79 894 (0.89) 1000 20.02 893 (0.89) 1000
p = 0.5 142.55 1000 (1.00) 1000 143.99 1000 (1.00) 1000 144.73 1000 (1.00) 1000
p = 0.75 609.81 1000 (1.00) 1000 618.15 1000 (1.00) 1000 621.49 1000 (1.00) 1000

1. ∗ Some iterations are dropped due to a singular OPG variance matrix.
2. �Some of the iterations where MLE is at the boundary (p̂ = 0 or p̂ = 1) are dropped due to not negative
definite Hessian.
3. ◦ One iteration dropped due to p̂ = 1
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Table 1.9: Score-Based Tests, n = 200

LM Modified LM KT
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 1.83 99 (0.13) 776 1.47 122 (0.16) 776 1.82 146 (0.19) 776
p = 0.25 1.83 101 (0.12) 840∗ 1.48 135 (0.16) 840∗ 1.83 160 (0.19) 840∗
p = 0.5 1.74 112 (0.13) 878 1.24 116 (0.13) 878 1.74 161 (0.18) 878
p = 0.75 1.74 100 (0.12) 849∗ 1.07 88 (0.10) 849∗ 1.74 152 (0.18) 849∗

λ = 2 p = 0 1.30 73 (0.07) 994 0.94 105 (0.11) 994 1.29 135 (0.14) 994
p = 0.25 1.20 75 (0.08) 999 0.77 96 (0.10) 999 1.19 130 (0.13) 999
p = 0.5 1.69 140 (0.14) 1000 0.18 16 (0.02) 1000 1.68 222 (0.22) 1000
p = 0.75 3.82 422 (0.42) 999 0.04 3 (0.00) 999 3.82 531 (0.53) 999

λ = 5 p = 0 1.16 58 (0.06) 999+ 0.71 79 (0.08) 999+ 1.11 113 (0.11) 999+

p = 0.25 1.78 139 (0.14) 996+ 0.12 7 (0.01) 996+ 1.73 216 (0.22) 996+

p = 0.5 13.10 961 (0.96) 997+ 0.00 0 (0.00) 997+ 13.10 978 (0.98) 997+

p = 0.75 29.46 996 (1.00) 997+ 0.00 0 (0.00) 997+ 29.46 996 (1.00) 997+

1. ∗ Some iterations are dropped due to a singular OPG variance matrix.
2. + Some iterations dropped due to σ̂v being too small such that λ̂ is not well defined.
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Table 1.10: Score-Based Tests, n = 500

LM Modified LM KT
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 1.39 84 (0.10) 878∗ 0.99 104 (0.12) 878∗ 1.39 130 (0.15) 878∗
p = 0.25 1.36 81 (0.09) 921 0.98 100 (0.11) 921 1.36 127 (0.14) 921
p = 0.5 1.26 73 (0.08) 964 0.70 79 (0.08) 964 1.26 125 (0.13) 964
p = 0.75 1.37 86 (0.09) 939 0.45 50 (0.05) 939 1.37 151 (0.16) 939

λ = 2 p = 0 1.21 76 (0.08) 1000 0.79 89 (0.09) 1000 1.20 127 (0.13) 1000
p = 0.25 1.07 48 (0.05) 1000 0.62 68 (0.07) 1000 1.06 107 (0.11) 1000
p = 0.5 2.59 249 (0.25) 1000 0.03 2 (0.00) 1000 2.57 370 (0.37) 1000
p = 0.75 8.14 795 (0.80) 1000 0.00 0 (0.00) 1000 8.14 887 (0.89) 1000

λ = 5 p = 0 1.06 56 (0.06) 1000 0.62 69 (0.07) 1000 0.97 109 (0.11) 1000
p = 0.25 2.97 280 (0.28) 1000 0.03 1 (0.00) 1000 2.92 415 (0.41) 1000
p = 0.5 30.94 1000 (1.00) 1000 0.00 0 (0.00) 1000 30.94 1000 (1.00) 1000
p = 0.75 69.77 1000 (1.00) 1000 0.00 0 (0.00) 1000 69.77 1000 (1.00) 1000

1. ∗ Some iterations are dropped due to a singular OPG variance matrix.
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Table 1.11: Model Comparison

Basic SF ZISF Heteroskedasticity

Variable Coef SE t-stat Coef SE t-stat Coef SE t-stat
cons

(
β0
)

0.27 0.04 6.68 0.08 0.05 1.67 0.25 0.04 5.50
time period (θ) 0.02 0.01 2.27 0.01 0.01 2.19 0.02 0.01 2.60
area (β1) 0.53 0.08 6.38 0.52 0.08 6.58 0.57 0.09 6.43
labor (β2) 0.23 0.09 2.71 0.25 0.08 3.07 0.21 0.09 2.46
fertilizer (β3) 0.20 0.05 3.95 0.21 0.05 4.54 0.19 0.05 3.83
β11 −0.48 0.21 −2.27 −0.45 0.20 −2.26 −0.35 0.25 −1.39
β12 0.61 0.17 3.60 0.55 0.17 3.21 0.58 0.20 2.87
β13 0.06 0.15 0.43 0.08 0.13 0.62 0.01 0.15 0.07
β22 −0.56 0.24 −2.33 −0.50 0.25 −2.04 −0.60 0.27 −2.21
β23 −0.14 0.13 −1.04 −0.12 0.12 −1.02 −0.11 0.15 −0.78
β33 −0.01 0.09 −0.08 −0.03 0.08 −0.45 0.01 0.09 0.15

σu 0.44 0.03 13.86 0.44 0.04 10.87
σui 0.42
cons

(
γ0
)

−3.05 0.93 −3.27
age

(
γ1
)

0.03 0.01 2.06
edyrs

(
γ2
)

0.11 0.03 3.36
hhsize

(
γ3
)

0.08 0.09 0.99
nadult

(
γ4
)

−0.10 0.11 −0.98
banrat

(
γ5
)

−1.30 0.43 −2.98
σv 0.16 0.02 8.23 0.20 0.02 12.22 0.17 0.02 8.34
λ 2.75 2.18 2.43

p 0.58 0.11 5.42
pi
p̂r
[
zi = 1|ε̂

]
0.58

cons
(
δ0
)

age
(
δ1
)

edyrs
(
δ2
)

hhsize
(
δ3
)

nadult
(
δ4
)

banrat
(
δ5
)

Ê
[

ui
∣∣ ε̂i
]

0.35 0.15 0.33
exp

(
−Ê

[
ui
∣∣ ε̂i
])

0.70 0.86 0.72

Ê
[
exp

(
−ui

)
|ε̂i
]

0.73 0.89 0.74

ln L −74.41 −71.88 −65.89
# of parameter 13 14 18
AIC 174.82 171.75 167.78
BIC 224.75 225.52 236.91
HQIC 194.70 193.17 195.31
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Table 1.11: (cont’d)

Logit Logit+Hetero.

Variable Coef SE t-stat Coef SE t-stat
cons

(
β0
)

0.07 0.04 1.80 0.05 0.04 1.38
time period (θ) 0.02 0.01 2.57 0.02 0.01 2.60
area (β1) 0.59 0.09 6.85 0.56 0.08 7.04
labor (β2) 0.22 0.08 2.65 0.24 0.08 3.07
fertilizer (β3) 0.18 0.05 3.82 0.18 0.04 3.96
β11 −0.29 0.25 −1.13 −0.31 0.26 −1.19
β12 0.53 0.21 2.60 0.50 0.21 2.35
β13 0.00 0.14 0.02 0.02 0.14 0.16
β22 −0.56 0.27 −2.08 −0.47 0.27 −1.73
β23 −0.11 0.13 −0.80 −0.12 0.13 −0.91
β33 0.00 0.09 −0.03 −0.01 0.09 −0.13

σu 0.42 0.04 10.43
σui 0.53
cons

(
γ0
)

2.61 3.11 0.84
age

(
γ1
)

−0.07 0.04 −1.60
edyrs

(
γ2
)

−0.03 0.12 −0.28
hhsize

(
γ3
)

−0.28 0.22 −1.26
nadult

(
γ4
)

−0.02 0.23 −0.08
banrat

(
γ5
)

1.32 1.20 1.10
σv 0.20 0.01 14.15 0.21 0.01 15.84
λ 2.06 2.49

p
pi 0.55 0.57
p̂r
[
zi = 1|ε̂

]
0.55 0.57

cons
(
δ0
)

3.88 2.29 1.69 8.80 3.42 2.57
age

(
δ1
)

−0.10 0.03 −2.88 −0.16 0.05 −3.36
edyrs

(
δ2
)

−0.14 0.15 −0.93 −0.27 0.21 −1.30
hhsize

(
δ3
)

−0.44 0.23 −1.93 −0.81 0.32 −2.56
nadult

(
δ4
)

0.35 0.27 1.30 0.44 0.35 1.25
banrat

(
δ5
)

4.22 1.31 3.23 5.46 1.55 3.53

Ê
[

ui
∣∣ ε̂i
]

0.15 0.14
exp

(
−Ê

[
ui
∣∣ ε̂i
])

0.86 0.87

Ê
[
exp

(
−ui

)
|ε̂i
]

0.88 0.89

ln L −59.90 −54.33
# of parameter 19 24
AIC 157.79 156.67
BIC 230.76 248.84
HQIC 186.86 193.38
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CHAPTER 2

HETEROSKEDASTICITY AUTOCORRELATION ROBUST INFERENCE IN TIME
SERIES REGRESSIONS WITH MISSING DATA

2.1 INTRODUCTION

It is not unusual to encounter a time series data set with missing observations. Most of the

times series literature in dealing with missing data focuses on the estimation of dynamic

models where the goal is to forecast missing observations. However, in the relatively

simple context of time series regression, there appears to be a sparsity of work related to

missing data issues. In particular, little appears to be known about the impact of missing

data on heteroskedasticity autocorrelation (HAC) robust tests in regression settings. This

chapter attempts to fill this void by analyzing the impact of missing data on robust tests

based on nonparametric kernel estimators of long run variances. Following Kiefer and

Vogelsang (2005) we focus on obtaining fixed-b results for the robust tests. In addition to

capturing the impact of the long run variance estimator’s kernel and bandwidth on the ro-

bust test statistics, the fixed-b limits also capture the impact of the locations of the missing

data on the robust test statistics when either the missing process is non-random or one

conditions on the missing locations. In situations where the more traditional approach

that seeks to obtain consistency results for variance estimators would be problematic,

fixed-b theory delivers useful approximations.

Following Parzen (1963) we characterize missing observations as being driven by a

missing process that is a 0-1 binary variable. In terms of a regression model, the Parzen

(1963) approach amounts to plugging in zeros for missing observations. Time series with

zeros in place of missing data have been labeled amplitude modulated series by Parzen

(1963) which we adopt throughout this chapter. Because of the zeros, amplitude modu-

lated series are intuitively sensible because the time distances between the observations
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remain preserved. This would seem particularly relevant for HAC robust testing based

on nonparametric kernel estimator (Newey and West (1987) and Andrews (1991)) given

that those estimators employ quadratic forms with weights that depend on the time dis-

tances of pairs of observations.

Soon after Parzen (1963) introduced the notion of modeling missing data with the

amplitude modulated series approach, many authors investigated the impact of missing

data on the consistent estimation of spectral density functions. For example, Scheinok

(1965) and Bloomfield (1970) consider estimating a spectral density function of the ob-

served process (with missing data) with independent Bernoulli and dependent Bernoulli

missing processes respectively. Neave (1970) estimates a spectral density function with

initially scarce data. Later work by Dunsmuir and Robinson (1981) investigated the con-

sistent estimation of the spectral density of the underlying latent process. While HAC

robust inference makes use of spectral estimation method, with the exception of a recent

working paper by Datta and Du (2012), there appears to be no attempt in the literature to

link this earlier literature on spectral density estimation with regression inference in the

case of missing data.

Datta and Du (2012) used the amplitude modulated series approach to investigate ro-

bust inference in time series regression settings. Their approach is based on traditional

asymptotic theory for HAC robust tests which appeals to the consistency of the HAC es-

timators. In the case of non-random missing locations, the traditional approach becomes

complicated because of the need to consistently estimate the long run variance of the la-

tent process. While this is possible using results in Dunsmuir and Robinson (1981), it is

not clear how to obtain a positive definite variance estimator. In any case, given that it

is now well established that fixed-b theory provides better approximations than the tra-

ditional approach (see Jansson (2002), Sun, Phillips, and Jin (2008), and Gonçalves and

Vogelsang (2011)), obtaining fixed-b results for the missing data case is prudent.

There are three main theoretical findings in this chapter. First, when the missing pro-
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cess is random and satisfies strong mixing conditions, HAC robust t and Wald statistics

computed from the amplitude modulated series follow the usual fixed-b limits as in Kiefer

and Vogelsang (2005). Second, when the missing process is non-random, the fixed-b limits

depend on the locations of missing observations but are otherwise pivotal. Therefore, the

fixed-b critical values that one would use in the amplitude modulated series approach de-

pends on whether the missing process is best viewed as random or non-random. Third,

a seemingly naive alternative to the amplitude modulated series approach is to simply

ignore the missing data. One might reasonably conjecture that ignoring the missing data

would be problematic for robust inference. Surprisingly we find that the fixed-b limits of

the robust t and Wald statistics have the standard fixed-b random variable whether the

missing process is random or non-random. Here, ignoring the problem (missing data)

has no negative consequences and generates the advantage of robustness to whether the

missing process is random or non-random.

The rest of this chapter is organized as follows. Section 2.2 defines the model and

the amplitude modulated series test statistics in the presence of missing data. Section 2.3

develops fixed-b asymptotic results for the amplitude modulated series test statistics for

both random and non-random missing processes. Because the random and non-random

missing processes require different regularity conditions they are treated separately. Sim-

ulation of the asymptotic critical values is discussed with a focus on bootstrap methods.

Following Gonçalves and Vogelsang (2011), we find that the naive i.i.d. bootstrap is a

particularly good option for obtaining valid fixed-b critical values. Finite sample perfor-

mance of the amplitude modulated series tests for both random and non-random missing

processes are examined in Section 2.4 by Monte Carlo simulations. Attention is focused

on the relative performance of simulated asymptotic critical values with bootstrap critical

values. Section 2.5 analyzes the approach of ignoring missing observations and makes

some comparisons with the amplitude modulated series approach. Section 2.6 concludes

and formal proofs are given in the Appendices B-D.
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2.2 MODEL AND TEST STATISTICS

Consider a regression model without missing observations,

y∗t = x∗
′

t β + u∗t (t = 1, 2, . . . , T) , (2.1)

where β is a (k× 1) vector of regression parameters, x∗t is a (k× 1) vector of regressors,

and u∗t is a mean zero random process. When there are missing observations, (2.1) is the

underlying latent process.

In the presence of missing observations, we characterize the missing process as a bi-

nary variable. Let {at} be a missing process where

at =


1 data is observed at time t

0 data is missing at time t.

Whether we treat the missing process as non-random or random depends on the structure

of the data and the reason why the observations are missing. We consider both stochastic

and non-stochastic missing processes.

With the missing process, {at}, we define the regression model with missing observa-

tions as1

yt = x′tβ + ut, yt = aty∗t , xt = atx∗t , ut = atu∗t , (t = 1, 2, . . . , T) . (2.2)

Characterizing the missing process as a 0-1 binary variable and constructing regression

model as (2.2) is one of the standard approaches of treating missing observations in panel

data regression models. In time series, Parzen (1963) first characterized time series with

missing data using a dummy variable and modeled observed process as (2.2). However

this approach has not become standard in time series which is surprising because (2.2)

can be thought of as a natural way of formulating a regression model with missing obser-

vations when there is no particular interest in forecasting the missing data. Model (2.2) is

1For simplicity, we assume that the dependent variable and the independent variables
are missing at the same time points.
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intuitively sensible. Because the zeros are plugged in for missing observations, the true

time distances between observations are preserved. At a conceptual level this would ap-

pear important when we are using nonparametric kernel covariance matrix estimators.

Parzen (1963) labelled the time series in model (2.2) as amplitude modulated (AM) series be-

cause the original time series are amplitude modulated by the missing process {at}. We

adopt the same language here.

Throughout our analysis we assume that the latent regression model satisfies exogene-

ity, E(x∗t u∗t ) = 0, and we assume that the mechanism generating the missing data does

not generate an endogeneity problem, i.e. we assume that E(xtut) = 0 or equivalently

E(atxtu∗t ) = 0. This allows us to focus on the impact of missing data on robust inference

assuming that β is identified by the observed data.

The focus of this chapter is on inference regarding β based on the ordinary least

squares (OLS) estimator of β. Inference is carried out to be robust to the form of the

heteroskedasticity and serial (auto) correlation. The OLS estimator of β is given by

β̂ =

(
T
∑

t=1
xtx
′
t

)−1 T
∑

t=1
xtyt.

Plugging in for yt gives the well known expression

β̂− β =

(
T
∑

t=1
xtx
′
t

)−1 T
∑

t=1
xtut

=

(
T
∑

t=1
xtx
′
t

)−1 T
∑

t=1
vt

where vt = xtut. The impact of serial correlation on β̂ comes through vt and robust

standard errors can be obtained using a nonparametric kernel estimator of the asymptotic

variance of T−1/2 ∑T
t=1 vt of the form

Ω̂ = Γ̂0 +
T−1
∑

j=1
k
(

j
M

)(
Γ̂j + Γ̂′j

)
,
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where Γ̂j = T−1 ∑T
t=j+1 v̂tv̂′t−j are the sample autocovariances of v̂t = xtût with ût =

yt − x′t β̂ the OLS residuals of the AM series, and Γ̂j = Γ̂′−j for j < 0. Here, k(x) is a

kernel function such that k(x) = k(−x), k(0) = 1, |k(x)| ≤ 1, k(x) is continuous at x = 0,∫∞
−∞ k2(x) < ∞, and M is the bandwidth parameter. Notice that Ω̂ is the usual long run

variance estimator that is obtained after simply setting v̂t = 0 for any dates for which

data is missing. This can be seen mechanically by noting that v̂t = xtût = atx∗t ût. Using

well known algebra, we can rewrite Ω̂ as

Ω̂ = T−1
T
∑

t=1

T
∑

s=1
k
(

t− s
M

)
v̂tv̂
′
s. (2.3)

Because Ω̂ is computed using the AM series, the time distances, |t− s|, between observed

data points are preserved which is conceptually sensible. In addition, Ω̂ will be posi-

tive definite with appropriate choices of the kernel function, e.g. the Bartlett, Parzen or

quadratic spectral (QS) kernels.

Suppose we are interested in testing the null hypothesis, H0 : r (βo) = 0 against

HA : r (βo) 6= 0, where r (β) is a q × 1 vector (q ≤ k) of continuously differentiable

functions with a first derivative matrix R (β) = ∂r (β) /∂β′. We analyze the following

Wald statistic,

WT = Tr
(

β̂
)′ [R

(
β̂
)

Q̂−1Ω̂Q̂−1R
(

β̂
)′]−1

r
(

β̂
)

,

where Q̂ = T−1 ∑T
t=1 xtx

′
t. The case where one restriction is being tested, q = 1, we can

also use a t-statistic of the form

tT =

√
Tr
(

β̂
)√

R
(

β̂
)

Q̂−1Ω̂Q̂−1R
(

β̂
)′ .

2.3 ASSUMPTIONS AND ASYMPTOTIC THEORY

In this section we derive the asymptotic behavior of the OLS estimator, β̂, the HAC es-

timator, Ω̂, and the HAC robust wald test, WT , defined in Section 2.2 for the case of
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weakly dependent covariance stationary time series. We present results for both random

and non-random missing processes. Results for random and non-random missing pro-

cesses are treated separately as they require different regularity conditions. We first state

results for the random missing process followed by results for the non-random missing

process. Although we briefly discuss traditional asymptotic theory for HAC robust tests

based on consistency of the HAC estimators, we are mainly interested in obtaining fixed-

b asymptotic approximations as proposed by Kiefer and Vogelsang (2005). In the fixed-b

asymptotic framework the bandwidth of the covariance matrix estimator is modeled as

a fixed proportion, b, of the sample size. This is in contrast to the traditional approach

where the bandwidth is modeled as increasing slower than the sample size. The advan-

tage of the fixed-b approach is that the resulting asymptotic approximations for the test

statistics depend on the choice of kernel and bandwidth. In the traditional approach the

kernel and bandwidth choice do not appear in the asymptotic approximation. The fixed-

b approach is therefore more accurate than the traditional approach because the fixed-b

approach captures much of the impact of the sampling distribution of the HAC estimator

on the test statistic. For theoretical evidence on the superior performance of the fixed-b

approach see Jansson (2002), Sun, Phillips, and Jin (2008), and Gonçalves and Vogelsang

(2011).

Because the fixed-b asymptotic distributions depend on the kernels used to compute

the HAC estimators, some random matrices that appear in the asymptotic results need to

be defined. Here we follow the notation of Kiefer and Vogelsang (2005).

Definition 1. Let h > 0 be an integer and Bh(r) denote a generic h × 1 vector of stochastic

processes. Let the random matrix, P(b, Bh), be defined as follows for b ∈ (0, 1].

Case (i) : if k (x) is twice continuously differentiable everywhere,

P
(
b, Bh

)
≡
∫ 1

0
∫ 1

0
1

b2 k′′
(

r−s
b

)
Bh (r) Bh (s)′ drds,

Case (ii) : if k (x) is continuous, k (x) = 0 for |x| ≥ 1 and k (x) is twice continuously

differentiable everywhere except for |x| = 1,
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P
(
b, Bh

)
≡
∫ ∫
|r−s|<b

1
b2 k′′

(
r−s

b

)
Bh (r) Bh (s)′ drds

+
k−(1)

′

b
∫ 1−b

0

(
Bh (r + b) Bh (r)′ + Bh (r) Bh (r + b)′

)
dr ,

where k− (1)
′
= limh→0 [(k (1)− k (1− h)) /h],

Case(iii) : if k (x) is the Bartlett kernel,

P
(
b, Bh

)
≡ 2

b
∫ 1

0 Bh (r) Bh (r)′ dr− 1
b
∫ 1−b

0

(
Bh (r + b) Bh (r)′ + Bh (r) Bh (r + b)′

)
dr.

Throughout, the symbol “⇒” denotes weak convergence of a sequence of stochastic

processes to a limiting stochastic process and
p
→ denotes convergence in probability. We

also use the following notation. Let Q = E(xtx′t) and Q∗ = E(x∗t x∗′t ). Let v∗t = x∗t u∗t
and define Ω∗ = Λ∗Λ∗′ = Γ∗0 + ∑∞

j=1(Γ
∗
j + Γ∗′j ), where Γ∗j = E(v∗t v∗′t−j) and Λ∗ is the

lower triangular matrix based on the Cholesky decomposition of Ω∗. Similarly, let and

vt = atv∗t and define Ω = ΛΛ′ = Γ0 + ∑∞
j=1(Γj + Γ′j), where Γj = E(vtv′t−j) and Λ is

the lower triangular matrix based on the Cholesky decomposition of Ω. The matrix Ω∗

is the long run variance matrix of the latent vector v∗t whereas Ω is the long run variance

matrix of the AM series vector vt.

We derive results under the assumptions that the latent processes are near epoch de-

pendent (NED) on some underlying mixing process and that the missing process is strong

mixing. We follow the definitions in Davidson (2002). Let the Lp norm of x be defined

as ‖x‖p = (E|x|p)
1
p . Also, let | • | denote the Euclidean norm of the corresponding

vector or matrix. For a stochastic sequence {εt}∞−∞, on a probability space (Ω,F , P),

let F t+m
t−m = σ(εt−m, . . . , εt+m), such that {F t+m

t−m }
∞
m=0 is an increasing sequence of

σ-fields. We say that a sequence of integrable random variables {wt}∞−∞ is Lp-NED on

{εt}∞−∞ if, for p > 0, ‖wt − E(wt|F
t+m
t−m )‖p < dtνm, where νm → 0 and {dt}∞−∞ is a

sequence of positive constants. For a sequence {at}∞−∞, let F t
−∞ = σ(. . . , at−1, at), and

similarly define F∞
t+m = σ(at+m, at+m+1, . . . ). The sequence is said to be α-mixing if

limm→∞ αm = 0, where αm = supt sup
G∈F t

−∞,H∈F∞
t+m

|P(G ∩ H)− P(G)P(H)|. A

sequence is α-mixing of size −ψ0 if αm = O(mψ) for some ψ > ψ0. Similarly, a sequence
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is Lp-NED of size −φ0 if νm = O(mφ) for some φ > φ0.

2.3.1 Random Missing Process

When the missing process is random, the asymptotic theory is driven by the observed

AM series. If the AM series satisfies conditions required for fixed-b asymptotic theory,

then the HAC estimator and the robust Wald test of the null hypothesis follow the usual

fixed-b asymptotic limits as obtained by Kiefer and Vogelsang (2005).

The following high-level assumptions are sufficient for this purpose.

Assumption R.

1. T−1
[rT]
∑

t=1
xtx′t ⇒ rQ, ∀r ∈ [0, 1] .

2. T−1/2
[rT]
∑

t=1
vt ⇒ ΛWk (r) , ∀r ∈ [0, 1] .

Assumption R1 states that a uniform (in r) law of large numbers (LLN) holds for

{xtx′t}. As long as {xt} is covariance stationary and weakly dependent, this assumption

is a fairly general condition. Assumption R2 states that a functional central limit theorem

(FCLT) holds for the normalized partial sum of the AM series {vt}. Below Assumption

R′, which is in terms of the latent process and the missing process rather than the AM

series itself, is sufficient for Assumption R.

Assumption R′.

1. For some r > 2,
∥∥∥x∗t

∥∥∥
2r
≤ ∆ < ∞ for all t = 1, . . . .

2.
{

x∗t
}

is a weakly stationary sequence L2−NED on {εt} with NED coefficient of size

−2(r−1)
r−2 .

3.
∥∥∥v∗t

∥∥∥
r
≤ ∆ < ∞, and E(v∗t ) = 0 for all t = 1, 2, . . . .

4.
{

v∗t
}

is a mean zero weakly stationary sequence L2-NED on {εt} with NED coefficient of

size −1
2 .
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5. {(at, εt)} is a α-mixing sequence with α−mixing coefficient of size − 2r
r−2 .

6. {at} is a weakly stationary process that is independent of
{(

x∗t , u∗t
)}

.

7. Ω = limT→∞ Var
(

T−1/2 ∑T
t=1 atv∗t

)
is positive definite.

Under Assumption R′, the latent process satisfies conditions sufficient for the fixed-b

asymptotic theory to go through. In particular, under Assumption R′, for all r ∈ (0, 1],

T−1 ∑
[rT]
t=1 x∗t x∗′t ⇒ rQ∗ and T−1/2 ∑

[rT]
t=1 v∗t ⇒ Λ∗Wk (r). In terms of the latent pro-

cess, Assumptions R′ are relatively weak. For example, Phillips and Durlauf (1986) states

that if {v∗t } is L2+δ bounded stationary process (δ > 0) and strong mixing then the par-

tial sums of {v∗t } satisfies the FCLT. The L2-NED condition in Assumption R′4 is actually

weaker than this condition. Hence, the presence of the missing observations generally

does not require additional assumptions on the latent process. Assumption R′6 is rel-

atively strong and states that the missing locations are not related to the latent process.

This assumption is sufficient for β̂ to be consistent for β because it implies if E(x∗t u∗t ) = 0,

then E(xtut) = E(atx∗t u∗t ) = E(at)E(x∗t u∗t ) = 0. In addition, Assumptions R′5 and R′6

ensure that the LLN and FCLT that hold for the latent processes extend to the observed

AM series, i.e. Assumptions R′5 and R′6 ensure that Assumptions R hold.

With these assumptions we can state our main result for the estimator and statistics

based on the AM series when the missing process is random.

Theorem 2.1. Under Assumption R′ the following hold as T → ∞.

(a). (Asymptotic Behavior of OLS)

√
T
(

β̂− β
)
⇒ Q−1ΛWk (1) = N(0, Q−1ΩQ−1).

(b). (Fixed-b approximation of HAC estimator) Let B̃k (r) denote a k × 1 vector of stochastic

processes defined as B̃k (r) ≡ Wk (r)− rWk (1), for all r ∈ (0, 1]. Assume M = bT where

b ∈ (0, 1] is fixed. Then,

Ω̂⇒ ΛP
(
b, B̃k

)
Λ′,
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where the form of P(b, B̃k) depends on the type of kernel via Definition 1.

(c). (Fixed-b asymptotic distribution of tests) Under H0,

WT ⇒Wq (1)′ P
(

b, B̃q
)−1

Wq (1)

and when q = 1,

tT ⇒
W1 (1)√
P
(
b, B̃1

) .

Because Assumptions R′ imply Assumptions R, Theorem 2.1 directly follows from Kiefer

and Vogelsang (2005) although directly establishing Theorem 2.1 (a) is easy. If we plug in

yt = x′tβ + ut to the OLS estimator β̂, then β̂ = β +
(

∑T
t=1 xtx′t

)−1
∑T

t=1 vt. Therefore

we can write
√

T(β̂− β) =

(
T−1

T
∑

t=1
xtx′t

)−1
T−1/2

T
∑

t=1
vt.

and the limit is obtained by using Assumptions R with r = 1. While the fixed-b approx-

imation is more useful than the traditional result that relies on a consistency result for

Ω̂, one could easily obtain traditional results for the Wald and t-statistics under similar

regularity conditions.2

Theorem 2.1 shows that when the missing process is random, one can simply plug

in zeros for the missing observations and conduct standard fixed-b inference treating the

zeros as though they were observed data. Given a particular sample with T time periods

of data (including the zeros), rejections would be computed relative to fixed-b critical

values obtained by Kiefer and Vogelsang (2005). The critical values are functions of the

kernel and the value of b = M/T where M is the bandwidth used to compute Ω̂.

The fixed-b asymptotic distributions in Kiefer and Vogelsang (2005) are non-standard.

While it is relatively easy to simulate from the asymptotic distributions, more user-friendly

2Consistetncy of Ω̂ requires a slightly stronger assumption than Assumption R′. For
example, Andrews (1991) requires {v∗t } to be a fourth order stationary process, and
Hansen (1992) requires {v∗t } to be mixing with size −(2 + δ)(r + δ)/2(r− 2). Assumption R′′
in this section is sufficient for Hansen (1992). See Appendix B for the proof.
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methods are available for the computation of critical values and p-values. For the case of

the Bartlett kernel, Vogelsang (2012) has developed a numerical method for the easy com-

putation of standard fixed-b critical values and p-values for any significance level. For

other kernels comprehensive numerical approaches have not been developed. Kiefer and

Vogelsang (2005) do provide critical value functions for popular significance levels but

their functions do not allow the computation of p-values. A good alternative for the com-

putation of fixed-b critical values and p-values is the bootstrap. Gonçalves and Vogelsang

(2011) showed that the naive moving block bootstrap has the same limiting distribution

as the fixed-b asymptotic distribution under regularity conditions similar to those used

here. The bootstrap works with both a fixed block length (l) or a block length that in-

creases with the sample size but at a slower rate (l2/T → 0). In particular, for the case of

l = 1 the block bootstrap becomes an i.i.d. bootstrap. Therefore, the results of Gonçalves

and Vogelsang (2011) indicate that valid fixed-b critical values can be obtained via a sim-

ple i.i.d. bootstrap method.

As shown in the next subsection, the fixed-b limit of the robust statistics becomes more

complicated under the assumption that the missing locations are non-random. In this case

the bootstrap becomes the ideal tool for obtaining fixed-b critical values on a case by case

basis in practice. Therefore, it is useful to provide some details on the implementation of

the bootstrap. Define the vector ωt = (yt, x′t)
′ that collects dependent and explanatory

variables. Let l ∈ N(1 ≤ l ≤ T) be a block length and let Bt,l = {ωt, ωt+1, . . . , ωt+l−1}

be the block of l consecutive observations starting at ωt. Draw k0 = T/l blocks randomly

with replacement from the set of overlapping blocks {B1,l , . . . , BT−l+1,l} to obtain a

bootstrap resample denoted as ω•t = (y•t , x•′t )′, t = 1, . . . , T. Notice that we are resam-

pling from the AM series (the zeros are included). The bootstrap test statistics, W•T and

t•T , are defined as

W•T =
(
r(β̂•)− r(β̂)

)′
[TR(β̂•)Q̂•−1Ω̂•Q̂•−1R(β̂•)′]−1 (r(β̂•)− r(β̂)

)
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and

t•T =

√
T
(
r(β̂•)− r(β̂)

)√
R(β̂•)Q̂•−1Ω̂•Q̂•−1R(β̂•)′

,

where

Q̂• = T−1
T
∑

t=1
x•t x•′t ,

Ω̂• = T−1
T
∑

t=1

T
∑

t=1
k (t− s/M) v̂•t v̂•′s ,

and β̂• is the OLS estimate from the regression of y•t on x•t , and v̂•t = x•t
(

y•t − x•′t β̂•
)

.

Notice that bootstrap statistics use the same formula as WT and tT and this is what

makes this bootstrap approach “naive”. Let p• denote the probability measure induced

by the bootstrap resampling conditional on a realization of the original time series. If

T−1 ∑
[rT]
t=1 x•t x•′t ⇒

p• rQ• for some Q• and T−1/2 ∑
[rT]
t=1 v•t ⇒

p• Λ•Wk(r) for some

Λ•, then because the fixed-b asymptotic distribution of the Wald test statistics is pivotal,

the limiting distribution of W•T coincides with the limiting distribution of WT , indepen-

dently of Λ• and Q•. We show that strengthening Assumption R′3-5 to R′′3-5 is sufficient

for this purpose.

Assumption R′′.

3.
∥∥∥v∗t

∥∥∥
r+δ

< ∞, r > 2.

4.
{

v∗t
}

is a weakly stationary L2+δ−NED on {εt} with νm of size −1.

5. {(at, εt)} is a α-mixing sequence with αm of size − (2+r)(r+δ)
r−2 .

This strengthening is necessary for bootstrap resamples to satisfy conditions required

for the FCLT. Also note that except for the assumptions related to the missing process, the

other assumptions are identical to the those in Gonçalves and Vogelsang (2011), which im-

plies that the existence of missing observations does not change the assumptions required

for the latent process for the bootstrap to provide valid critical values. (See Gonçalves and
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Vogelsang (2011, p764-766) for details.) Hence, in general, as long as the missing process

satisfies the strong mixing condition, the naive moving block bootstrap provides valid

critical values. We formally state the result below. Proofs are provided in the Appendix

B.

Theorem 2.2. Let W•T and t•T be naive bootstrap test statistics obtained from the moving block

bootstrap resamples. Suppose that the block size l is either fixed as T → ∞ or l → ∞ as T → ∞

such that l2/T → 0. Let b ∈ (0, 1] be fixed and suppose M = bT. Then, under Assumption R′

with Assumption R′3-5 strengthened to Assumption R′′3-5, as T → ∞,

W•T
p•
⇒ W′q(1)P(b, B̃q(r))−1Wq(1)

and

t•T
p•
⇒

W1(1)√
P(b, B̃1(r))

.

2.3.2 Non-random Missing Process

When the missing process is non-random, missing locations are fixed and hence the

asymptotic behavior of the estimators and statistics depend on the locations of missing

observations. We first define the structure of the timing of the missing observations.

Definition 2. We characterize an arbitrary data set with missing observations as follows. From

t = 1 to t = T1 we observe data, from t = T1 + 1 to t = T2 data are missing, from t = T2 + 1 to

t = T3 we observe data and so forth. Let the number of missing clusters be C < ∞. For simplicity,

we assume that data are observed at t = 1 and t = T.3 Thus, in general for n = 1, . . . , C, from

t = T2n−1 + 1 to t = T2n data are missing whereas from t = T2n + 1 to t = T2n+2 data are

observed (see Figure 2.1). For notational purposes, let T0 = 0 and T2C+1 = T.

3This assumption is only for notational simplicity. The results of this chapter go
through without this assumption.
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Figure 2.1: Data with missing observations

data←−−−−−−−−−−→v v v v v f f f f v v v f
t = 1

missing←−−−−−−−→

t = T1

data←−−−→

t = T2 t = T3

. . .
data←−−−−−−−→f v v v v

t = T2C t = T
When the missing process is non-random, the asymptotic theory is driven by the latent

process. This is because the latent process is the only random process and what matters

is whether the latent process satisfies conditions required for fixed-b asymptotic theory.

The following assumptions are sufficient for us to obtain a fixed-b result.

Assumption NR.

1. The missing/observed cutoffs satisfy limT→∞
Tn
T = λn, n = 0, 1, . . . , 2C + 1, where the

number of cutoffs is non-random and finite, i.e., C < ∞.

2. T
[rT]
∑

t=1
x∗t x∗

′
t ⇒ rQ∗, ∀r ∈ [0, 1] .

3. T−1/2
[rT]
∑

t=1
v∗t ⇒ Λ∗Wk (r) , ∀r ∈ [0, 1] .

Assumption NR1 treats the number of observations in a missing or observed block as

a fixed proportion of the sample size with the number of missing blocks also fixed. This

is not meant to be a description of the way data is gathered but is simply a natural mathe-

matical tool for obtaining approximations that depend on the locations of the missing and

observed data. The total number of observed time periods is given by ∑T
t=1 at and using

Assumption NR1 we can quantify the proportion of the time periods that have observed

data as

λ = lim
T→∞

T−1
T
∑

t=1
at =

2C+1
∑

i=1
(−1)i+1λi. (2.4)

Assumption NR2 states that a uniform (in r) LLN holds for {x∗t x∗′t }. Assumption NR3

states that the FCLT holds for the scaled partial sums of {v∗t }. We now state more primi-

tive conditions that are sufficient for Assumptions NR to hold:

Assumption NR′.
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1. For some r > 2,
∥∥∥x∗t

∥∥∥
2r
≤ ∆ < ∞ for all t = 1, . . . .

2.
{

x∗t
}

is a weakly stationary sequence L2−NED on {εt} with NED coefficient of size

−2(r−1)
r−2 .

3.
∥∥∥v∗t

∥∥∥
r
≤ ∆ < ∞, and E(v∗t ) = 0 for all t = 1, 2, . . . .

4.
{

v∗t
}

is a mean zero weakly stationary sequence L2-NED on {εt} with NED coefficient of

size −1
2 .

5. {εt} is a α-mixing sequence with α−mixing coefficient of size − 2r
r−2 .

6. {at} is a non-random process.

7. Ω∗ = limT→∞ Var
(

T−1/2 ∑T
t=1 v∗t

)
is positive definite.

Assumption NR′ is the same as Assumption R′ except for the properties related to the

missing process {at}. Recalling that in terms of the latent process, all that Assumption R′

required was the conditions sufficient for the latent process to satisfy fixed-b asymptotic

theory, this is natural.

We now state our main results when the missing process is non-random. Note that for

two numbers r and s, r ∧ s denotes the minimum of r and s. The proof of Theorem 2.3 is

given in Appendix C.

Theorem 2.3. LetWk ≡ ∑2C+1
j=1 (−1)j+1Wk

(
λj
)

and let B̆k
(
r, {λi}

)
be a k× 1 vector of

stochastic processes defined as B̆k
(
r, {λi}

)
≡ ∑C

n=0 1
{

λ2n < r ≤ λ2(n+1)

}
∑2n+1

j=1 (−1)j+1(
Wk

(
r ∧ λj

)
−
(

r ∧ λj
)

λ−1Wk
)

, for r ∈ (0, 1]. Under Assumption NR′, as T → ∞,

(a). (Asymptotic Behavior of β̂)

√
T
(

β̂− β
)
⇒
(
λQ∗

)−1 Λ∗Wk = N
(

0, λ−1Q∗−1Ω∗Q∗−1
)

(b). (Fixed-b asymptotic approximation of Ω̂) Assume M = bT where b ∈ (0, 1] is fixed; then

Ω̂⇒ Λ∗P
(
b, B̆k({λi})

)
Λ∗′.
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(c). (Fixed-b asymptotic distribution of WT) Under H0,

WT ⇒W
′
qP
(

b, B̆q({λi})
)−1

Wq

and when q = 1,

tT ⇒
W1√

P
(
b, B̆1({λi})

) .

Using the asymptotic normality result in Theorem 2.3 (a), one could pursue a tradi-

tional inference approach which would require a consistent estimator of the asymptotic

variance. The challenge would be constructing a consistent estimator of the latent pro-

cess long run variance matrix, Ω∗. Using results from Dunsmuir and Robinson (1981) a

consistent estimator of Ω∗ can be constructed as

Ω̂∗ = Γ̂∗0 +
T−1
∑

j=1
k
(

j
M

)(
Γ̂∗j + Γ̂∗′j

)
where Γ̂∗j = ∑T

t=j+1 v̂t v̂′t−j/∑T
t=j+1 atat−j. Because Γ̂∗j is constructed using the effective sample

size of the sequence {v̂tv̂t−j} there is no guarantee that Ω̂∗ will be positive definite even

if kernels like the Bartlett, Parzen and QS are used. Besides only providing a relatively

crude approximation for test statistics, the difficulty in constructing a positive definite

estimator of Ω̂∗ makes the traditional approach even less appealing in practice.

In contrast the fixed-b approach shows that one can simply use Ω̂ to construct valid

test statistics because under fixed-b theory, Ω̂ is asymptotically proportional to Ω∗ when

the locations of missing data are non-random. Even though Ω̂ is not an estimator of Ω∗, it

can still be used to construct test statistics because fixed-b theory shows that Ω̂ scales out

Ω∗. Looking closely at the result given by Theorem 2.3 (b) we see that the fixed-b limit

of Ω̂ is similar but is noticeably different from the limit obtained for the case of missing

at random. The stochastic process B̆k
(
r, {λi}

)
is different than the Brownian bridge B̃(r)

and depends on the locations of the missing/observed data. Therefore, critical values

for the limiting random variables given by Theorem 2.3 (c) are different from the critical

values given by the standard fixed-b limits given by Theorem 2.1 (c).
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Given the locations of the missing data, the non-standard distribution in Theorem 2.3

(c) can be computed by simulation methods because the limiting distributions are still

functions of Brownian motions. Although this method is feasible, it can be practically

inconvenient because asymptotic critical values would have to be simulated on a case by

case basis depending on the locations of the missing data. In this situation the bootstrap

is a more convenient method for obtaining fixed-b critical values. Because the locations

of missing data are treated as non-random, we need the bootstrap resampling scheme to

preserve the missing locations. This means that blocking is not practical because blocks

will shuffle the locations of the missing data upon resampling. Instead the i.i.d. bootstrap

is more appropriate where bootstrap samples are created by first sampling with replace-

ment from the observed data and creating a bootstrap sample with the same missing

locations as the original data.

Specific details are as follows. Define ωt = (yt, x′t)
′, t = 1, . . . , T, that collects the

dependent and independent variables of the AM series. Among those T observations

collect only the observed data, which we denote ω̃t, t = 1, . . . , T̃, T̃ = ∑T
t=1 at. Resample

T̃ observations with replacement from ω̃t and get bootstrap resample which we denote

ω̃•t , t = 1, . . . , T̃. Fill in the observed locations with resampled data ω̃•t and leave the

missing locations as zeros. This way we construct an i.i.d. resample with missing locations

fixed. Denote this i.i.d. resample as ω•t = (y•t , x•′t )′, t = 1, . . . , T. The naive bootstrap test

statistics W•T and t•T are computed as

W•T = T
(
r(β̂•)− r(β̂)

)′
[R(β̂•)Q̂•−1Ω̂•Q̂•−1R(β̂•)′]−1 (r(β̂•)− r(β̂)

)
and

t•T =

√
T
(
r(β̂•)− r(β̂)

)√
R(β̂•)Q̂•−1Ω̂•Q̂•−1R(β̂•)′

,

where β̂• is the OLS estimate from the regression of y•t on x•t , Q̂• = 1/T ∑T
t=1 x•t x•′t , and

Ω̂• = 1/T ∑T
t=1 ∑T

t=1 k (t− s/M) v̂•t v̂•′s , where v̂•t = x•t (y
•
t − x•′t β̂•).
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Because we resample from observed time periods only, this resampling can be thought

of as resampling from the latent process ω∗t ≡ (y∗t , x∗′t )′. We do not know the value of

ω∗t when at = 0 and thus we are resampling from T̃ observations not the full number of

time periods T. However, because the resampling is based on i.i.d. draws, this bootstrap

resample has essentially the same properties as an i.i.d. resample of the latent process.

We could take another T− T̃ independent draws from ω̃t and fill in the missing locations

of ω̃•t . Call this “filled-in” resample ω∗•t . Then by construction ω•t = atω∗•t where

ω∗•t can be viewed as a sample from the latent process given the i.i.d. resampling. If the

bootstrap process, ω∗•t , satisfies (a) T−1 ∑T
t=1 x∗•t x∗•′t ⇒ rQ∗• for some Q∗• and (b)

T−1/2 ∑T
t=1 v∗•t ⇒ Λ∗•Wk(r) for some Λ∗•, then using Theorem 2.3 (c) it follows that

W•T
p•
⇒ W•′q P(b, B̆q({λ•i }))W

•
q ,

with W•q = ∑2C•+1
j=1 (−1)j+1Wq(λ•j ) where {λ•m}2C•+1

m=0 are the missing locations in

the bootstrap resample, C• is the number of missing clusters in the bootstrap resample,

and p• denotes the probability measure induced by the bootstrap resampling conditional

on a realization of the original time series. Because the missing locations of the bootstrap

resamples are configured to be identical to the missing locations of the data, it follows

that λ•j = λj and C• = C. Therefore,

WT
p•
⇒ W′qP(b, B̆q({λi}))Wq,

which is the same fixed-b limit of WT as in Theorem 2.3 (c). This asymptotic equivalence

is mainly due to the fact that the limiting distribution in Theorem 2.3 (c) is pivotal with

respect to Λ∗ and Q∗ so that W•T has an asymptotic distribution equivalent to WT even

though Λ∗• and Q∗• are potentially different from Λ∗ and Q∗. Obviously, t•T and tT

have equivalent asymptotic approximations as well. Strengthening Assumption NR′3-5

to NR′′3-5 is sufficient for ω∗•t to satisfy conditions (a) and (b) above.

Assumption NR′′.
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3.
∥∥∥v∗t

∥∥∥
r+δ

< ∞, r > 2.

4.
{

v∗t
}

is a weakly stationary L2+δ−NED on {εt} with νm of size −1.

5. {εt} is a α-mixing sequence with αm of size − (2+r)(r+δ)
r−2 .

See Gonçalves and Vogelsang (2011) for the proofs. Here the result of Gonçalves and

Vogelsang (2011) directly applies because these assumptions are made about the latent

process which has nothing to do with the missing process when the missing locations are

non-random. A formal statement of this bootstrap result is in the following theorem.

Theorem 2.4. Let W•T and t•T be naive bootstrap test statistics computed from the i.i.d. bootstrap

resample with the locations of missing observations fixed and identical to the missing locations of

the real data. Let b ∈ (0, 1] be fixed and suppose M = bT. Then, under Assumption NR′ with

Assumption NR′3-5 strengthened to Assumption NR′′3-5, as T → ∞,

W•T
p•
⇒ W′qP(b, B̆q(r, {λi}))

−1Wq

and

t•T
p•
⇒

W1√
P(b, B̆1(r, {λi}))

.

2.4 FINITE SAMPLE PERFORMANCE

In this section we use Motel Carlo simulations to evaluate the finite sample performance

of the fixed-b asymptotic approximation of the HAC robust Wald test defined in Section

2.3.
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2.4.1 Data Generating Process

We consider a simple location model for the latent process given by,

y∗t = β + u∗t ,

u∗t = ρu∗t−1 +
√

1− ρ2ε∗t ,

ε∗t ∼ i.i.d.N (0, 1) ,

u∗1 = 0,

with t = 1, 2, ..., T so that T is the time span T. We set β = 0 and ρ ∈ {0, 0.3, 0.6, 0.9}. The

time series with missing observations is characterized as an AM series

yt = xtβ + ut,

where yt = aty∗t , xt = at, ut = atu∗t . We use several specifications of the missing process,

{at}, as follows.

1. For the random missing process we model {at} as a Bernoulli(p) process, i.e. P(at =

1) = p, with p ∈ {0.3, 0.5, 0.7}. We provide results for the time span T ∈ {50, 100, 200}.

2. We consider three types of non-random missing processes.

(a) First, we consider what we call missing in clusters. There are cases where obser-

vations are missing in large clusters with a small number of clusters. Specifically,

we consider cases where data are missing in two clusters (C = 2) due to World

War I (from 1914 to 1918) and World War II (from 1939 to 1945). We generate data

both yearly and quarterly where time spans from 1911 to Y, Y ∈ {1946, 1958, 1970}.

For yearly data, this means that 12 observations are missing out of T observations,

T ∈ {36, 48, 60}, and the missing process is a[rT] = 0 when r ∈ (λ1, λ2] ∪ (λ3, λ4]

and a[rT] = 1 otherwise, with λ1 = 3/T, λ2 = 8/T, λ3 = 28/T, and λ4 = 35/T (See

Figure 2.3). For quarterly data, this implies that 48 observations are missing out of

T time periods, T ∈ {144, 192, 240}, and a[rT] = 0 when r ∈ (λ1, λ2] ∪ (λ3, λ4]
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and a[rT] = 1 otherwise, with λ1 = 12/T, λ2 = 32/T, λ3 = 112/T, and λ4 = 140/T.

Missing locations are fixed across iterations in the simulations.

(b) Second, we consider initially scarce data following the simulation setup in Neave

(1970) where the sampling point is shortened at some point during the period of

observations. Specifically, we think about a case where at first only the quarterly

data (NQ observations) were available but later monthly data (NM observations)

became available. Hence the latent process is monthly data, and during the periods

when only the quarterly data are available, every two observations out of three are

missing. (See Figure 2.4.) We set the number of observations available monthly

to beNM = {12, 24, 48}, and the number of observations available quarterly to be

NQ ∈ {12, 24}. Under this setting, the number of missing clusters is C ∈ {11, 23},

the total time span T ∈ {46, 58, 82, 94, 118}, and {22, 46} observations are missing.4

The missing process is a[rT] = 0 when r ∈ ∪
NQ−1
n=1 (λ2n−1, λ2n] and a[rT] = 1

otherwise with λ2n−1 = (3n− 2)/T and λ2n = 3n/T. The missing locations are fixed

across iterations.

(c) Third, we consider a conditional Bernoulli(p) missing process to compare to the

random Bernoulli(p) missing process. The conditional Bernoulli(p) missing pro-

cess differs from random Bernoulli(p) missing process in the way in which it is

simulated. Once the missing process, {at}, is generated from the corresponding

Bernoulli(p) process for the first iteration, the missing locations are then fixed for

subsequent iterations. Hence, all the iterations have the same missing locations in

contrast to the random Bernoulli(p) process where missing locations change for each

iteration. As for the random Bernoulli process, we consider p ∈ {0.3, 0.5, 0.7} and

the total time span T ∈ {50, 100, 200}.

4The number of missing clusters is C = NQ − 1. The total time span is T = (NQ −
1)× 3 + 1 + NM. The number of missing observations is 2× (NQ − 1).
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2.4.2 Test statistics and Critical Values

With the data generating process defined in Section 2.4.1, we consider testing the null

hypothesis that β = 0 against the alternative β 6= 0 at a nominal level of 5%. When

computing the HAC estimator, we use b ∈ {0.1, 0.15, . . . , 0.95, 1} throughout. The HAC

robust t-statistic for β is

tT =
β̂√

T
(

∑T
t=1 x2

t

)−1
Ω̂
(

∑T
t=1 x2

t

)−1

=
β̂√

T
(

∑T
t=1 a2

t

)−1
Ω̂
(

∑T
t=1 a2

t

)−1

=
β̂√

T
(

∑T
t=1 at

)−2
Ω̂

,

where

β̂ =

(
T
∑

t=1
x2

t

)−1 T
∑

t=1
xtyt =

(
T
∑

t=1
at

)−1 T
∑

t=1
atyt =

(
T
∑

t=1
at

)−1 T
∑

t=1
yt,

and Ω̂ = T−1 ∑T
i=1 ∑T

j=1 k ( |i− j|/[bT]) v̂iv̂j with v̂t = at
(
yt − β̂

)
. We reject the null hy-

pothesis whenever
∣∣tT∣∣ > tc (or reject the null whenever tT < tlc or tT > trc if −tlc 6= trc)

where tc is a critical value. Using 10, 000 replications, we compute empirical rejection

probabilities. As shown from Theorems 2.1(c) and 2.3(c), the test statistics have different

asymptotic distributions depending on whether the missing process is random or non-

random. Hence critical values are calculated differently for the two cases.

When the missing process is random, tc is the 97.5% percentile of the standard fixed-

b asymptotic distribution derived by Kiefer and Vogelsang (2005) (See Theorem 2.1 (c)).

From Section 2.3.1 we know that we can compute the asymptotic critical values by either

simulating the distribution itself or by the naive moving block bootstrap which we denote

as ({tR−boot,l
c , tR−boot,r

c }). To evaluate the finite sample performance we use both of

the methods to get the critical values. For the naive moving block bootstrap, we use block
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length l = 1 (the i.i.d. bootstrap). From the original random sample of T observations,

y1, . . . , yT , we get 999 bootstrap resamples, (y•B1 , a•B1 ) . . . , (y•BT , a•BT ),B = 1, . . . , 999. For

each bootstrap resample we compute the bootstrap t-statistic as

tB
T =

(β̂B − β̂)√
T(∑T

t=1 a•Bt )−2Ω̂B
,

where β̂B =
(

∑T
t=1 a•Bt

)−1
∑T

t=1 y•Bt , and Ω̂B = T−1 ∑T
t=1 ∑T

s=1 k(|t− s|/[bT])v̂•Bt v̂•Bs ,

where v̂•Bt = a•Bt (y•Bt − β̂B). Then tR−boot,l
c is the 0.025 quantile and tR−boot,r

c is the

0.975 quantile of tB
T , B = 1, . . . , 999.

When the missing process is non-random, tc is the 97.5% percentile of the distribu-

tion derived in Theorem 2.3 (c). From Section 2.3.2 we know that critical values can be

computed either by simulating the limiting distribution or by naive i.i.d. bootstrap (see

Theorem 2.4) which we denote as ({tNR−boot,l
c , tNR−boot,r

c }). Because the limiting dis-

tribution depends on missing locations, the naive i.i.d. bootstrap is more convenient in

practice. However, to illustrate the relative finite performance, we compute the critical

values using both methods. From the original sample of T observations, y1, . . . , yT , we

pull out the data from the observed time periods, ỹ1, . . . , ỹT̃ , T̃ = ∑T
t=1 at. From these

T̃ observations, we resample T̃ observations with replacement. Repeating this procedure

999 times we obtain resamples which we denote ỹ•B1 , . . . , ỹ•B
T̃

, B = 1, . . . , 999. By filling

observed locations with resampled data, ỹ•t , and filling missing locations with zeros, we

obtain the i.i.d. bootstrap resamples, which we denote y•B1 , . . . , y•BT , for B = 1, . . . , 999.

We compute the naive bootstrap t-statistic as

tB
T =

(β̂B − β̂)√
T
(

∑T
t=1 at

)−2
Ω̂B

where β̂B =
(

∑T
t=1 aB

t

)−1
∑T

t=1 y•Bt and Ω̂B = T−1 ∑T
t=1 ∑T

s=1 k(|t− s|/[bT])v̂•Bt v̂•Bs ,

where v̂•Bt = at(y
•B
t − β̂B). Then tNR−boot,l

c is the 0.025 and tNR−boot,r
c is the 0.975

quantile of tB
T , B = 1, . . . , 999. Note that we are using at rather than a•t in this case because

we are conditioning on the locations of the missing data when resampling.
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2.4.3 Finite Sample Performance

We illustrate the non-random missing process case first. Figures 2.5-2.34 show empirical

rejection probabilities computed from 10, 000 replications using AM series for the four

missing processes defined in Section 2.4.1. Since the missing process is non-random, by

Theorem 2.3 (c) the HAC robust test statistics have a fixed-b asymptotic distribution that

depends on the missing locations. Critical values are obtained by the naive i.i.d. bootstrap

with locations of missing observations fixed (labeled L-bootstrap) or by directly simulating

the limiting fixed-b distributions (labeled L-fixed-b). In addition to these two critical values

we consider critical values obtained by the naive i.i.d. bootstrap that does not condition

on missing locations (labeled bootstrap) and by simulating the standard fixed-b limit in

Kiefer and Vogelsang (2005) (labeled fixed-b) for comparison although these two critical

values are not theoretically valid.

The first thing we can notice is that the fixed-b critical values that treat missing lo-

cations fixed has less size distortions than the standard fixed-b critical values when the

sample size is small and/or serial correlation is high. This difference tends to increase as

the number of missing observations increase. For the World War missing process, when

T = 36 and ρ ∈ {0.6, 0.9} (Figure 2.5), empirical rejection probabilities by the fixed-b

limit that depends on locations of missing observations has less size distortion than the

usual fixed-b limit, and this size difference is bigger when ρ = 0.9 than when ρ = 0.6.

Comparing the World War missing process with T = 36 to that of T = 144 (Figures 2.5

and 2.8), we see that while for both cases one third of the data are missing, the difference

in rejection probabilities between the usual fixed-b and the fixed-b conditional on the lo-

cations is bigger when T = 36, the smaller sample size. Similar tendency can be found

in conditional Bernoulli missing process. Consider the simulation with T = 50, ρ = 0.9,

and p = 0.3 (70% missing) as a base case (Figure 2.17). If we compare this base case to

the simulations where (i) T = 100, ρ = 0.9, and p = 0.3 (70% missing) (Figure 2.20), (ii)

T = 50, ρ = 0.6, and p = 0.3 (70% missing)(Figure 2.17), and (iii) T = 50, ρ = 0.9, and
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p = 0.5 (50% missing) (Figure 2.18), it is always the base case that has a bigger difference

in rejection probabilities between the usual fixed-b and the fixed-b that depends on the

locations of missing observations. Relative to the base case, these three cases have one of

three features: a bigger sample size (i), less serial correlation (ii), and a smaller missing

proportion (iii). Even though rejection rates based on the standard fixed-b critical values

and the conditional fixed-b critical values are sometimes similar, the simulations show the

more prudent approach is to use the conditional fixed-b critical values as was predicted

by the theoretical results.

The simulation results also suggest that one may gain by bootstrapping rather than

simulating the fixed-b distribution especially when the serial correlation is high, the sam-

ple size is small, or the missing proportion is large. This tendency holds regardless of

missing locations being treated as fixed or not in the bootstrap resampling scheme. The

empirical rejection probabilities from naive i.i.d. bootstrap with missing locations fixed

have less size distortion than the empirical rejection probabilities obtained by simulating

the fixed-b distribution in Theorem 2.3 (c). The same thing holds between the standard

fixed-b limit and the naive i.i.d bootstrap that does not condition on missing locations. For

example, if we look at the T = 50 Bernoulli (Figures 2.17-2.19), (NQ = 12, NM = 12) ini-

tially scarce (Figure 2.11), and T = 36 World War missing (Figure 2.5) cases, all of which

have a small time span, we see differences between the rejection rates from bootstrap-

ping and by simulating the fixed-b distribution especially when ρ = 0.9. Comparing the

World War missing process with T = 48 (Figure 2.6) and T = 144 (Figure 2.8), we see that

even though T = 144 has a bigger time span, there is still a bigger bootstrap gain with

T = 144 because when T = 48 around one fourth of the data are missing whereas for

T = 144 around one third of the observations are missing. Overall, the simulations indi-

cate that the naive i.i.d. bootstrap with locations fixed seems most robust to the stationary

asymptotic breakdowns.

In addition it appears that the pattern of missing locations matters as well. For the
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conditional Bernoulli missing process with p = 0.5 and T = 50 (Figure 2.18) we see

a difference between the fixed-b critical value conditional on missing locations and the

usual fixed-b critical value. On the other hand, for initially scarce data with NQ = 12

and NM = 12 (Figure 2.11) or NQ = 12 and NM = 24 (Figure 2.12), where both have

time span of around 50 and around half of the observations are missing (24/46 and 24/58

respectively), the difference between the usual fixed-b critical value and the conditional

fixed-b critical value is quite small. For initially scarce data, the maximum length of the

missing cluster is 2 and the observations are missing only at the beginning of the sample.

When the missing process is random, the usual fixed-b limit in Kiefer and Vogelsang

(2005) is valid. Hence critical values can be obtained by simulating this distribution or

by the naive i.i.d. bootstrap. As with the non-random missing process, for comparison,

we also consider critical values obtained from the naive i.i.d. bootstrap conditional on

the missing locations. Figures 2.26-2.34 show empirical rejection probabilities computed

from 10, 000 replications using the AM series. Results for the random missing process are

similar to the non-random missing case. The conditional fixed-b limit in general performs

no worse than the usual fixed-b limit and the conditional fixed-b limit becomes advanta-

geous when the data is not well-behaved. However this tendency is less strong than the

non-random Bernoulli missing process. Starting with the T = 100 and p = 0.5 (50%

missing) case and moving to cases where either p or T increase (less missing proportion

or increased time span), the difference between the conditional and unconditional fixed-b

rejection rates disappears for the random Bernoulli missing process. When T = 200, even

with p = 0.3 (70% missing) and ρ = 0.9 (Figure 2.32) there is no difference between the

two rejection probabilities. Given that it is better to conditional on locations critical val-

ues when the missing process is non-random and given that it appears conditioning on

locations causes no harm when the missing process is random, our simulations suggest

the use of conditional on locations critical values in practice. The bootstrap is the most

convenient way to obtain these critical values given that each application with missing
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data will have application specific missing locations.

2.5 WHEN MISSING OBSERVATIONS ARE IGNORED

In practice an empirical researcher might be tempted to simply ignore any missing data

problems and estimate the time series regression with the data that is observed. From

the perspective of estimating β this has no consequences because one obtains the same

estimator of β as is obtained when missing observations are replaced with zeros. For the

computation of long run variance estimators, ignoring missing data matters because the

time distances between observations is skewed for many pairs of time periods. Thus,

robust test statistics are computationally different when ignoring missing data verses re-

placing missing data with zeros. A reasonable conjecture is that ignoring missing data

invalidates inference using HAC robust test statistics. Surprisingly, fixed-b asymptotic

theory suggests otherwise. As we show in this section, ignoring the missing data leads

to HAC robust tests that have standard fixed-b limits. This is true whether the missing

process is random or non-random. In contrast to the AM series approach, the empirical

researcher does not have to worry about robustness to whether missing dates are best

viewed as random or non-random.

2.5.1 Models and Test statistics

In terms of the regression model, ignoring missing observations amounts to stacking only

the observed observations as if they are equally spaced in time. (See Figure 2.2.) Taking

out the missing observations from the latent process and relabeling observed observa-

tions, the regression model becomes

yES
t = xES′

t β + uES
t

(
t = 1, 2, . . . , TES

)
, (2.5)

where TES = ∑T
t=1 at is the number of non-missing observations. Following Datta and

Du (2012) we call this model the equal space (ES) regression model.

70



Figure 2.2: Equal Space Regression Model

data←−−−−−−−−−−→v v v v v f f f f v v v f
yES

1
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yES
5
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6 yES

8

. . .
data←−−−−−−→f v v v v

yES
TES−3 yES

TES

As with the AM series, the ES regression model uses only the observed data. No at-

tempt is made to forecast or proxy missing observations. However unlike the AM series,

the original time distances between observations are not preserved in the ES regression

model. The distance between the tth and sth observations (in terms of the latent process)

is not necessarily |t− s| but is instead equal to |∑t
i=1 ai −∑s

i=1 ai| which is the number

of observed data points between time periods t and s. Only when there are no missing

observations between time periods t and s will the time distance remain |t− s| in (2.5).

The OLS estimator of the ES regression model is defined as

β̂ES =

TES
∑

t=1
xES

t xES′
t

−1 TES
∑

t=1
xES

t yES
t .

Recall that missing observations are replaced with zeros in the AM series and missing

observations are deleted in the ES regression model. Because the only difference between

∑T
t=1 xtx′t and ∑

TES
t=1 xES

t xES′
t comes from the missing observations which are set to ze-

ros, it follows that ∑T
t=1 xtx

′
t = ∑

TES
t=1 xES

t xES′
t . By the same reasoning, ∑T

t=1 xtyt =

∑
TES
t=1 xES

t yES
t . Therefore, it follows that

β̂ = β̂ES.

Hence, in terms of the OLS estimator, the ES regression model provides the same estimate

of β as the AM series.

Let ΩES = limT→∞ Var
(

T−1/2 ∑
TES
t=1 vES

t

)
, where vES

t = xES
t uES

t . Then, the

usual kernel based HAC estimator for ΩES is defined as

Ω̂ES = Γ̂ES
0 +

TES−1

∑
j=1

k
(

j
MES

)(
Γ̂ES

j + Γ̂ES′
j

)
,
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where Γ̂ES
j = T−1

ES ∑
TES
t=j+1 v̂ES

t v̂ES′
t−j are the sample autocovariances of v̂ES

t = xES
t ûES

t
and ûES

t = yES
t − xES′

t β̂ES are OLS residuals from the ES regression model. As before,

k(x) is a kernel function such that k(x) = k(−x), k(0) = 1, |k(x)| ≤ 1, continuous at

x = 0, and
∫∞
−∞ k2(x) < ∞ and MES is the bandwidth.5

By well known algebra we can rewrite Ω̂ES as

Ω̂ES = T−1
ES

TES
∑

n=1

TES
∑

m=1
k
(

n−m
MES

)
v̂ES

n v̂ES′
m .

Recall that v̂t = xtût where ût are the OLS residuals from the AM series. Therefore, by

construction v̂t = xtût = atxt(yt − x′t β̂) which implies that v̂t = 0 at missing dates.

Because the ES regression model and the AM series share the same β̂, v̂ES
t is obtained by

dropping missing observations from v̂t.6 Using these facts, we can recast Ω̂ES, which is a

weighted sum of v̂ES
n v̂ES′

m , instead as a weighted sum of v̂tv̂′s because all the elements of

v̂ES
t v̂ES′

s are found among those of v̂tv̂′s with the remaining elements of v̂tv̂′s being zeros.

The only complication that arises when rewriting Ω̂ES in terms of v̂tv̂′s lies in matching

the kernel weights used on v̂tv̂s to those that are used by Ω̂ES which are different from

the weights used by Ω̂.

The time distance between v̂t and v̂s in the ES regression model is |∑t
i=1 ai−∑s

i=1 ai|

and we can rewrite Ω̂ES as

Ω̂ES = T−1
ES

T
∑

t=1

T
∑

s=1
k

∑t
i=1 ai −∑s

i=1 ai
MES

 v̂tv̂′s.

Recall that the HAC estimator of the AM series is given by (2.3). Both Ω̂ES and Ω̂ are

weighted sums of v̂tv̂′s, t, s = 1, . . . , T, but with different weights. For the ES regression

5We denote the bandwidth of the ES regression model as M with subscript ES because
if we fix b = MES/TES, then MES depends on the time span of the ES regression model
(TES).

6To be more specific, v̂t = v̂ES
g with g = ∑t

i=1 ai whenever at = 1. v̂ES
g for all

g = 1, . . . , TES can be defined this way. When ai = 0, there is no term in the ES regression
model that matches v̂i (which is zero) because missing observations are dropped in the
ES regression model.
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model, by taking out the missing observations, the time distances between observations

become shorter than the true time distances, |t− s|, unless there are no missing observa-

tions between t and s. Therefore, Ω̂ES gives v̂tv̂′s weights at least as big as Ω̂ if the same

bandwidth is used: k ((∑t
i=1 ai −∑s

i=1 ai)/MES) ≥ k ((t− s)/M) if M = MES.

We now revisit testing the null hypothesis H0 : r
(

β0
)
= 0 against HA : r

(
β0
)
6= 0.

We define the ES HAC robust Wald statistic as

WES
T = TESr

(
β̂
)′ [R

(
β̂
)

Q̂ES−1Ω̂ESQ̂ES−1R
(

β̂
)′]−1

r
(

β̂
)

,

and when q = 1, t-statistics of the form

tES
T =

√
TESr

(
β̂
)√

R
(

β̂
)

Q̂ES−1Ω̂ESQ̂ES−1R
(

β̂
)′ ,

where Q̂ES = T−1
ES ∑

TES
t=1 xES

t xES′
t . Note that ∑T

t=1 xtx′t = ∑
TES
t=1 xES

t xES′
t implies

Q̂ES = (T/TES) Q̂. We therefore can write WES
T as

WES
T = Tr

(
β̂
)′ [(TES

T

)
R
(

β̂
)

Q̂−1Ω̂ESQ̂−1R
(

β̂
)′]−1

r
(

β̂
)

.

Other than the scaling factor TES/T and Ω̂ES, the other terms in WES
T are identical to WT .

Therefore, in terms of test statistics, choosing between the AM series statistics and the ES

statistic boils down to choosing the kernel weights when computing the HAC estimator.

2.5.2 Asymptotic Theory

As with the AM series, we are mainly interested in the fixed-b asymptotic limits of WES
T

and tES
T under the null hypothesis H0 defined in Section 2.5.1.

2.5.2.1 Non-random missing process

We first consider the non-random missing process case. Because the fixed-b asymptotic

distributions depend on the kernels used to compute the HAC estimators, we need to
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define some random matrices that appear in the asymptotic results. The random matri-

ces in Definition 1 no longer work here because the kernel weights in Ω̂ES are different

from those of Ω̂. In fact because the kernel weight for v̂tv̂′s depends on the number of

missing observations between t and s, unlike the random matrices defined in Definition

1, the random matrices that appear in the asymptotic approximation of Ω̂ES depend on

the missing locations {λi}
2C+1
i=0 . Note that for two numbers r and s, r ∧ s denotes the

minimum of r and s and r ∨ s denote the maximum of r and s.

Definition 3. Let h > 0 be an integer. Let {λi}
2C+1
i=0 be given by Assumption NR.1 and let λ

be given by (2.4). Let Bh(r, {λi}) denote a generic h× 1 vector of stochastic process that depends

on {λi}. Let the random matrix, PES(b, Bh({λi})), be defined as follows for b ∈ (0, 1]:

Case (i) : if k (x) is twice continuously differentiable everywhere,

PES (b, Bh({λi})
)
≡ − 1

b2λ3 ∑C
n=0 ∑C

l=0
∫ λ2n+1

λ2n

∫ λ2l+1
λ2l[

k′′
(
(λb)−1

[
∑2n+1

j=1 (−1)j+1(r ∧ λj)−∑2l+1
j=1 (−1)j+1(u ∧ λj)

])
× Bh(r, {λi})Bh(u, {λi})

′
]

dudr

Case (ii) : if k (x) is continuous, k (x) = 0 for |x| ≥ 1 and k (x) is twice continuously

differentiable everywhere except for |x| = 1,

PES (b, Bh({λi})
)
≡ − 1

b2λ3 ∑C
n=0 ∑C

l=0
∫ λ2n+1

λ2n

∫ λ2l+1
λ2l[

1

{
|r− u| < bλ + ∑

2(n∨l)
j=2(n∧l)+1(−1)jλj

}
k′′
(
(λb)−1

[
∑2n+1

j=1 (−1)j+1
(

r ∧ λj
)
−∑2l+1

j=1 (−1)j+1
(

u ∧ λj
)])

Bh(r, {λi})Bh(u, {λi})
′
]

drdu

+
k′(1)−

bλ2 ∑C
n=0 ∑n

l=0
∫ λ2l+1

λ2l[
1

{
λ2n − bλ−∑2n

j=2l+1(−1)jλj < u ≤ λ2n+1 − bλ−∑2n
j=2l+1(−1)jλj

}
×
{

Bh

(
u + bλ + ∑2n

j=2l+1(−1)jλj, {λi}
)

Bh(u, {λi})
′

+Bh(u, {λi})Bh

(
u + bλ + ∑2n

j=2l+1(−1)jλj, {λi}
)′}]

du,

where k− (1)
′
= limh→0 [(k (1)− k (1− h)) /h],
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Case (iii) : if k (x) is the Bartlett kernel,

PES (b, Bh({λi})
)
≡ 2

bλ2 ∑C
n=0

∫ λ2n+1
λ2n

Bh
(
r, {λi}

)
Bh
(
r, {λi}

)′ dr

− 1
bλ2 ∑C

n=0 ∑n
l=0

∫ λ2l+1
λ2l[

1
{

λ2n − bλ−∑2n
k=2l+1(−1)kλk ≤ u ≤ λ2n+1 − bλ−∑2n

k=2l+1(−1)kλk
}

×
{

Bh
(
u, {λi}

)
Bh
(

u + bλ + ∑2n
k=2l+1 λk(−1)k, {λi}

)′
+Bh

(
u + bλ + ∑2n

k=2l+1 λk(−1)k, {λi}
)

Bh
(
u, {λi}

)′}] du.

When the missing process is non-random, the asymptotic theory for the ES regression

model is based on Assumption NR′ which is the same assumption that the AM series

results are based on. Theorem 2.5 below provides the asymptotic limits of Ω̂ES and WES
T

(tES
T when q = 1 ) when the missing process is non-random. Because the ES regression

model and the AM series model have the same OLS estimator, we do not restate the

asymptotic result of the OLS estimator given by Theorem 2.3 (a). The proof for Theorem

2.5 is provided in Appendix D.

Theorem 2.5. LetWk be defined as in Theorem 2.3. Let B̆k
(
r, {λi}

)
be a k× 1 vector of stochas-

tic processes defined as

B̆k
(
r, {λi}

)
≡

C
∑

n=0
1
{

λ2n < r ≤ λ2(n+1)

} 2n+1
∑

j=1
(−1)j+1

(
Wk

(
r ∧ λj

)
−
(

r ∧ λj
)

λ−1Wk
)

,

for r ∈ (0, 1]. Assume MES = bTES where b ∈ (0, 1] is fixed. Then under Assumption NR′, as

T → ∞,

(a). (Fixed-b asymptotic approximation of Ω̂ES)

Ω̂ES ⇒ Λ∗PES (b, B̆k({λi})
)

Λ∗′,

(b). (Fixed-b asymptotic distribution of WES
T ) under H0,

WES
T ⇒W′q

[
λPES

(
b, B̆q({λi})

)]−1
Wq
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and when q = 1,

tES
T ⇒

W1√
λPES (b, B̆1({λi})

) .

Although the difference of the limits of Ω̂ and Ω̂ES is in the form of the functions

P(·) and PES(·) because of the different relative distances between observations, it is

proportional to Ω∗ and is a function of B̆q(r, {λi}) like Ω̂. Similar to WT , WES
T has a

limiting distribution that is non-standard and depends on the locations of the missing

data but remains pivotal with respect to Ω∗ and Q∗.

Surprisingly, it turns out that the asymptotic distribution in Theorem 2.5 (b) is equiv-

alent to the standard fixed-b asymptotic distribution in Kiefer and Vogelsang (2005) with

b = MES/TES. To establish this result we first consider the special case where the latent

process is i.i.d. When the latent process is i.i.d., the ES regression model is a time series

regression with TES observations and there is no serial correlation in the data. Therefore,

WES
T is the usual HAC statistic computed with TES observations. For MES = bTES,

WES
T has the usual fixed-b limit because the results of Kiefer and Vogelsang (2005) directly

apply. Intuitively speaking, when the data is i.i.d., the time distances between observa-

tions do not matter and missing observations only reduce the sample size. Therefore, the

fixed-b theory goes through as usual. This result for the i.i.d. case is formally stated in the

following Lemma.

Lemma 1. Let the missing process {at} be non-random. The latent process is given by (2.1).

Suppose that {(x∗t , u∗t )} is i.i.d. Assume MES = bTES where b ∈ (0, 1] is fixed. Then under

H0 as T → ∞,

WES
T ⇒W′qP

(
b, B̃q

)−1
Wq

and when q = 1,

tES
T ⇒

W1√
P
(

b, B̃q
) .
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Because the i.i.d. assumption needed for Lemma 1 is a special case of the conditions

needed for Theorem 2.5, the fixed-b limits given by Theorem 2.5 (b) and Lemma 1 are

distributionally equivalent. Because the limits in Theorem 2.5(b) continue to hold when

the data is not i.i.d., the following Theorem holds as a direct consequence of Lemma 1:

Theorem 2.6. Assume MES = bTES where b ∈ (0, 1] is fixed. Then under Assumption NR′

and H0, as T → ∞,

WES
T ⇒W′qP(b, B̃q)−1Wq

and when q = 1,

tES
T ⇒

W1√
P(b, B̃1)

.

2.5.2.2 Random missing process

Now we consider the case where the missing process is random and explore the asymp-

totic properties of WES
T (tES

T when q = 1). From Theorem 2.6 we can easily deduce the

asymptotic limit of WES
T in the missing at random case. Suppose that Assumption R′

holds. Suppose we condition on the missing process {at}. Conceptually this is the same

as treating the missing process as non-random. Recall that Assumption R′ and Assump-

tion NR′ are identical in terms of the latent process. Thus the fixed-b limiting distribution

of WES
T conditional on the missing process is given by Theorem 2.6. Because the conditional

distribution in Theorem 2.6 is the standard fixed-b distribution in Kiefer and Vogelsang

(2005) and does not depend on the conditioning process {at} (does not depend on {λi}),

it directly follows that the unconditional limiting distribution of WES
T must also be the

distribution in Theorem 2.6. Formally, we have the following result.

Theorem 2.7. Assume MES = bTES where b ∈ (0, 1] is fixed. Then under Assumption R′ and

H0, as T → ∞,

WES
T ⇒W′qP(b, B̃q)−1Wq
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and when q = 1,

tES
T ⇒

W1√
P(b, B̃1)

.

Remarkably for the ES regression model, regardless of whether the missing process

is random or non-random, the HAC robust wald statistic and the t-statistic have usual

fixed-b asymptotic distribution as in Kiefer and Vogelsang (2005). As discussed for the

AM series case with a random missing process, the standard fixed-b critical values can

be obtained using various simulation and numerical methods. It is worth noting that for

the equally spaced case, the i.i.d. bootstrap can be applied to the equally spaced data as

the results of Gonçalves and Vogelsang (2011) directly apply under the assumptions of

Theorem 2.4.

2.5.3 Finite Sample Properties

In this section we analyze the finite sample performance of WES
T using Monte Carlo sim-

ulations. We use the same data generating process defined in Section 2.4.1. From the

simple location model in Section 2.4.1 that lies on the time span T we construct the ES

regression model

yES
t = β + uES

t , t = 1, . . . , TES,

with TES = ∑T
t=1 at. We set β = 0 and ρ ∈ {0, 0.3, 0.6, 0.9} as for the AM series. The

HAC robust t-statistic for β is

tES
T =

√
TES β̂√
Ω̂ES

,

where β̂ = ∑T
t=1 yt/TES and Ω̂ES = T−1

ES ∑
TES
i=1 ∑

TES
j=1 k ( |i− j|/[bTES]) v̂ES

i v̂ES
j with v̂ES

t =

yES
t − β̂. As with the AM series, we use b ∈ {0.1, 0.15, . . . , 1}. We reject the null hypoth-

esis whenever
∣∣∣tES

T

∣∣∣ > tc (or reject the null whenever tES
T < tlc or tES

T > trc if −tlc 6= trc)

where tc is a critical value. From Section 2.5.2, we know that tES
T has the standard fixed-

b limiting distribution in Kiefer and Vogelsang (2005) whether the missing process is
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random or non-random. Therefore tc is the 97.5% percentile of the fixed-b asymptotic

distribution in Kiefer and Vogelsang (2005). Critical values can be computed either by

directly simulating the limiting distribution (tES
c ) or by using the naive i.i.d. bootstrap

({tES−boot,l
c , tES−boot,r

c }). We compute critical values using both methods. From the

original sample of TES observed observations, yES
1 , . . . , yES

TES
, we resample TES obser-

vations with replacement. Repeating this procedure 999 times we obtain i.i.d. bootstrap

resamples for ES regression model which we denote yES•B
1 , . . . , yES•B

TES
, B = 1, . . . , 999.

We compute the naive bootstrap t-statistic

tES,B
T =

√
TES(β̂B − β̂)√

Ω̂B
ES

,

where β̂B = ∑T
t=1 y•Bt /TES and Ω̂B

ES = 1/TES ∑
TES
t=1 ∑

TES
s=1 k(|t− s|/[bTES])v̂ES•B

t v̂ES•B
s with

v̂ES•B
t = yES•B

t − β̂B. Then tES−boot,l
c is the 0.025 quantile and tES−boot,r

c is the 0.975

quantile of tES,B
T for B = 1, . . . , 999.

Figures 2.35-2.64 show the empirical rejection probabilities computed from 10, 000

replications using the ES regression model. For all four cases of missing processes de-

fined in Section 2.4.1, the empirical rejection probabilities are computed using critical

values obtained by the naive i.i.d. bootstrap and by simulating the fixed-b limiting dis-

tribution in Kiefer and Vogelsang (2005). We can see that ES regression model works

reasonably well regardless of the methods used to compute the critical values even when

a large portion of the data are missing. For example consider the World Wars missing

process. When T = 36 (yearly case, Figure 2.35) and T = 144 (monthly case, Figure 2.38),

one third of the data are missing. In these two cases for ρ = 0, 0.3, there are mild over-

rejection problems if any. For T = 36 some over-rejection problems appear with ρ = 0.6

and become severe with ρ = 0.9. For T = 144 over-rejection problems are much less

severe for ρ = 0.6, 0.9. Similar patterns hold for initially scarce and Bernoulli missing

processes. This over-rejection tendency when the data is highly correlated is something

that is routinely found when no observations are missing.
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In addition we see in all Figures 2.35-2.64 that rejection rates from the two critical

values are close together nearly all the time. Minor exceptions occur when the sample

size is small and the latent process is highly correlated in which case the two rejection

rates show some differences. For the World War missing process with T = 36 (Figure

2.35), one third of data are missing and thus we only have TES = 24. For initially scarce

data with NQ = 12 and NM = 12 (Figure 2.41), we have 24 observations missing out

of 46 (TES = 22). For the random and non-random Bernoulli(0.3) missing process with

T = 50 (Figure 2.47) we have TES ≈ 15. It is when TES is very small that we can see

some difference between the two empirical rejection rates but only when ρ = 0.9. This

is not surprising because with small TES and ρ close to 1 the asymptotic approximation

provided fixed-b is likely to be inaccurate. When there is a difference between the two

rejection probabilities, it is always the case that the naive i.i.d. bootstrap has the better

size properties. See Figures 2.35,2.41,2.47 and 2.56. Ultimately, our simulation results

suggest that in the presence of missing observations, one does well by ignoring missing

observations and computing critical values using the naive i.i.d. bootstrap.

2.5.4 Comparison of AM and ES Statistics

Figures 2.65-2.94 compare empirical rejection probabilities of the AM series approach to

those of the ES regression approach. In Section 2.4.3 we found that for the AM series

approach the naive i.i.d. bootstrap conditional on the locations of missing observations

always performs no worse than directly simulating the asymptotic fixed-b critical values.

This is true whether the missing process is random or non-random. Similarly, we found in

Section 2.5.3 that the naive i.i.d. bootstrap always performs no worse than simulating the

standard fixed-b critical values for the ES regression approach as well. Hence, to make

comparisons between the AM series approach and the ES regression approach, critical

values are computed by the naive i.i.d. bootstrap conditional on the locations of missing

observations. For the most part the two approaches give similar rejections. However, the
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AM series approach has a tendency to outperform the ES regression approach when the

latent process is highly serially correlated and this tendency is stronger when the sample

size is small. In other words, when the stationarity asymptotic theory is more likely to

break down, it is more likely that the AM series approach outperforms the ES regression

approach.

2.6 CONCLUSION

In this chapter we discussed the properties of HAC robust test statistics in time series

regression setting when there is missing data. We considered two regression models, AM

series and ES regression model, both for the random and non-random missing processes.

Depending on the regression model used and the missing process being random or non-

random, HAC robust tests have different asymptotic limits. From simulation studies we

find that the naive i.i.d. bootstrap is the most effective and practical way to obtain fixed-

b critical values in the presence of missing observations especially when the bootstrap

conditions on the locations of the missing data.
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Figure 2.3: Missing due to World War I and World War II : Yearly data
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Figure 2.4: Initially Scarce Data
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Figure 2.5: AM Series - World War (yearly), Bartlett, T = 36
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Figure 2.5: (cont’d)
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Figure 2.5: (cont’d)
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Figure 2.5: (cont’d)
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Figure 2.6: AM Series - World War (yearly), Bartlett, T = 48
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Figure 2.6: (cont’d)
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Figure 2.6: (cont’d)
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Figure 2.6: (cont’d)
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Figure 2.7: AM Series - World War (yearly), Bartlett, T = 60
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Figure 2.7: (cont’d)
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Figure 2.7: (cont’d)
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Figure 2.7: (cont’d)
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Figure 2.8: AM Series - World War (quarterly), Bartlett, T = 144
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Figure 2.8: (cont’d)
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Figure 2.8: (cont’d)
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Figure 2.8: (cont’d)

98



Figure 2.9: AM Series - World War (quarterly), Bartlett, T = 192
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Figure 2.9: (cont’d)
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Figure 2.9: (cont’d)
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Figure 2.9: (cont’d)
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Figure 2.10: AM Series - World War (quarterly), Bartlett, T = 240
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Figure 2.10: (cont’d)
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Figure 2.10: (cont’d)
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Figure 2.10: (cont’d)
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Figure 2.11: AM Series - Initially Scarce Data, Bartlett, NQ = 12 NM = 12
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Figure 2.11: (cont’d)
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Figure 2.11: (cont’d)
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Figure 2.11: (cont’d)
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Figure 2.12: AM Series - Initially Scarce Data, Bartlett, NQ = 12 NM = 24

111



Figure 2.12: (cont’d)

112



Figure 2.12: (cont’d)
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Figure 2.12: (cont’d)
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Figure 2.13: AM Series - Initially Scarce Data, Bartlett, NQ = 12 NM = 48
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Figure 2.13: (cont’d)
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Figure 2.13: (cont’d)
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Figure 2.13: (cont’d)
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Figure 2.14: AM Series - Initially Scarce Data, Bartlett, NQ = 24 NM = 12
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Figure 2.14: (cont’d)
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Figure 2.14: (cont’d)
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Figure 2.14: (cont’d)
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Figure 2.15: AM Series - Initially Scarce Data, Bartlett, NQ = 24 NM = 24
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Figure 2.15: (cont’d)
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Figure 2.15: (cont’d)
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Figure 2.15: (cont’d)
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Figure 2.16: AM Series - Initially Scarce Data, Bartlett, NQ = 24 NM = 48
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Figure 2.16: (cont’d)
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Figure 2.16: (cont’d)
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Figure 2.16: (cont’d)
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Figure 2.17: AM Series - Conditional Bernoulli (p = 0.3), Bartlett, T = 50
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Figure 2.17: (cont’d)
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Figure 2.17: (cont’d)
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Figure 2.17: (cont’d)
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Figure 2.18: AM Series - Conditional Bernoulli (p = 0.5), Bartlett, T = 50
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Figure 2.18: (cont’d)
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Figure 2.18: (cont’d)
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Figure 2.18: (cont’d)
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Figure 2.19: AM Series - Conditional Bernoulli (p = 0.7), Bartlett, T = 50
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Figure 2.19: (cont’d)
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Figure 2.19: (cont’d)
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Figure 2.19: (cont’d)
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Figure 2.20: AM Series - Conditional Bernoulli (p = 0.3), Bartlett, T = 100
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Figure 2.20: (cont’d)
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Figure 2.20: (cont’d)
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Figure 2.20: (cont’d)
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Figure 2.21: AM Series - Conditional Bernoulli (p = 0.5), Bartlett, T = 100
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Figure 2.21: (cont’d)
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Figure 2.21: (cont’d)
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Figure 2.21: (cont’d)
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Figure 2.22: AM Series - Conditional Bernoulli (p = 0.7), Bartlett, T = 100
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Figure 2.22: (cont’d)
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Figure 2.22: (cont’d)
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Figure 2.22: (cont’d)
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Figure 2.23: AM Series - Conditional Bernoulli (p = 0.3), Bartlett, T = 200
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Figure 2.23: (cont’d)
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Figure 2.23: (cont’d)
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Figure 2.23: (cont’d)
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Figure 2.24: AM Series - Conditional Bernoulli (p = 0.5), Bartlett, T = 200
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Figure 2.24: (cont’d)
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Figure 2.24: (cont’d)
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Figure 2.24: (cont’d)
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Figure 2.25: AM Series - Conditional Bernoulli (p = 0.7), Bartlett, T = 200
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Figure 2.25: (cont’d)

164



Figure 2.25: (cont’d)
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Figure 2.25: (cont’d)
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Figure 2.26: AM Series - Random Bernoulli (p = 0.3), Bartlett, T = 50
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Figure 2.26: (cont’d)
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Figure 2.26: (cont’d)
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Figure 2.26: (cont’d)
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Figure 2.27: AM Series - Random Bernoulli (p = 0.5), Bartlett, T = 50
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Figure 2.28: AM Series - Random Bernoulli (p = 0.7), Bartlett, T = 50
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Figure 2.29: AM Series - Random Bernoulli (p = 0.3), Bartlett, T = 100
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Figure 2.30: AM Series - Random Bernoulli (p = 0.5), Bartlett, T = 100

183



Figure 2.30: (cont’d)

184



Figure 2.30: (cont’d)

185



Figure 2.30: (cont’d)

186



Figure 2.31: AM Series - Random Bernoulli (p = 0.7), Bartlett, T = 100
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Figure 2.32: AM Series - Random Bernoulli (p = 0.3), Bartlett, T = 200
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Figure 2.33: AM Series - Random Bernoulli (p = 0.5), Bartlett, T = 200
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Figure 2.34: AM Series - Random Bernoulli (p = 0.7), Bartlett, T = 200
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Figure 2.35: ES - World War (yearly), Bartlett, T = 36
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Figure 2.36: ES - World War (yearly), Bartlett, T = 48
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Figure 2.37: ES - World War (yearly), Bartlett, T = 60
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Figure 2.38: ES - World War (quarterly), Bartlett, T = 144
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Figure 2.39: ES - World War (quarterly), Bartlett, T = 192

219



Figure 2.39: (cont’d)

220



Figure 2.39: (cont’d)

221



Figure 2.39: (cont’d)

222



Figure 2.40: ES - World War (quarterly), Bartlett, T = 240
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Figure 2.41: ES - Initially Scarce Data, Bartlett, NQ = 12 NM = 12

227



Figure 2.41: (cont’d)

228



Figure 2.41: (cont’d)

229



Figure 2.41: (cont’d)

230



Figure 2.42: ES - Initially Scarce Data, Bartlett, NQ = 12 NM = 24
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Figure 2.43: ES - Initially Scarce Data, Bartlett, NQ = 12 NM = 48
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Figure 2.44: ES - Initially Scarce Data, Bartlett, NQ = 24 NM = 12
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Figure 2.45: ES - Initially Scarce Data, Bartlett, NQ = 24 NM = 24
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Figure 2.46: ES - Initially Scarce Data, Bartlett, NQ = 24 NM = 48
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Figure 2.47: ES - Conditional Bernoulli (p = 0.3), Bartlett, T = 50
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Figure 2.48: ES - Conditional Bernoulli (p = 0.5), Bartlett, T = 50
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Figure 2.49: ES - Conditional Bernoulli (p = 0.7), Bartlett, T = 50
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Figure 2.50: ES - Conditional Bernoulli (p = 0.3), Bartlett, T = 100
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Figure 2.51: ES - Conditional Bernoulli (p = 0.5), Bartlett, T = 100
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Figure 2.52: ES - Conditional Bernoulli (p = 0.7), Bartlett, T = 100

271



Figure 2.52: (cont’d)

272



Figure 2.52: (cont’d)

273



Figure 2.52: (cont’d)

274



Figure 2.53: ES - Conditional Bernoulli (p = 0.3), Bartlett, T = 200

275



Figure 2.53: (cont’d)

276



Figure 2.53: (cont’d)

277



Figure 2.53: (cont’d)

278



Figure 2.54: ES - Conditional Bernoulli (p = 0.5), Bartlett, T = 200
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Figure 2.55: ES - Conditional Bernoulli (p = 0.7), Bartlett, T = 200
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Figure 2.56: ES - Random Bernoulli (p = 0.3), Bartlett, T = 50
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Figure 2.57: ES - Random Bernoulli (p = 0.5), Bartlett, T = 50
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Figure 2.58: ES - Random Bernoulli (p = 0.7), Bartlett, T = 50
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Figure 2.59: ES - Random Bernoulli (p = 0.3), Bartlett, T = 100
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Figure 2.60: ES - Random Bernoulli (p = 0.5), Bartlett, T = 100
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Figure 2.61: ES - Random Bernoulli (p = 0.7), Bartlett, T = 100
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Figure 2.62: ES - Random Bernoulli (p = 0.3), Bartlett, T = 200
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Figure 2.63: ES - Random Bernoulli (p = 0.5), Bartlett, T = 200
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Figure 2.64: ES - Random Bernoulli (p = 0.7), Bartlett, T = 200
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Figure 2.65: AM and ES - World War (quarterly), Bartlett, T = 36
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Figure 2.66: AM and ES - World War (quarterly), Bartlett, T = 48
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Figure 2.67: AM and ES - World War (quarterly), Bartlett, T = 60
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Figure 2.68: AM and ES - World War (quarterly), Bartlett, T = 144
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Figure 2.69: AM and ES - World War (quarterly), Bartlett, T = 192
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Figure 2.70: AM and ES - World War (quarterly), Bartlett, T = 240
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Figure 2.71: AM and ES - Initially Scarce Data, Bartlett, NQ = 12 NM = 12
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Figure 2.72: AM and ES - Initially Scarce Data, Bartlett, NQ = 12 NM = 24
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Figure 2.73: AM and ES - Initially Scarce Data, Bartlett, NQ = 12 NM = 48
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Figure 2.74: AM and ES - Initially Scarce Data, Bartlett, NQ = 24 NM = 12
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Figure 2.75: AM and ES - Initially Scarce Data, Bartlett, NQ = 24 NM = 24
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Figure 2.76: AM and ES - Initially Scarce Data, Bartlett, NQ = 24 NM = 48
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Figure 2.77: AM and ES - Conditional Bernoulli (p = 0.3), Bartlett, T = 50
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Figure 2.78: AM and ES - Conditional Bernoulli (p = 0.5), Bartlett, T = 50
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Figure 2.79: AM and ES - Conditional Bernoulli (p = 0.7), Bartlett, T = 50
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Figure 2.80: AM and ES - Conditional Bernoulli (p = 0.3), Bartlett, T = 100
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Figure 2.81: AM and ES - Conditional Bernoulli (p = 0.5), Bartlett, T = 100
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Figure 2.82: AM and ES - Conditional Bernoulli (p = 0.7), Bartlett, T = 100
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Figure 2.83: AM and ES - Conditional Bernoulli (p = 0.3), Bartlett, T = 200
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Figure 2.84: AM and ES - Conditional Bernoulli (p = 0.5), Bartlett, T = 200
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Figure 2.85: AM and ES - Conditional Bernoulli (p = 0.7), Bartlett, T = 200
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Figure 2.86: AM and ES - Random Bernoulli (p = 0.3), Bartlett, T = 50
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Figure 2.87: AM and ES - Random Bernoulli (p = 0.5), Bartlett, T = 50
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Figure 2.88: AM and ES - Random Bernoulli (p = 0.7), Bartlett, T = 50
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Figure 2.91: AM and ES - Random Bernoulli (p = 0.7), Bartlett, T = 100
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Figure 2.92: AM and ES - Random Bernoulli (p = 0.3), Bartlett, T = 200
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Figure 2.93: AM and ES - Random Bernoulli (p = 0.5), Bartlett, T = 200

435



Figure 2.93: (cont’d)

436



Figure 2.93: (cont’d)

437



Figure 2.93: (cont’d)

438



Figure 2.94: AM and ES - Random Bernoulli (p = 0.7), Bartlett, T = 200
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CHAPTER 3

INFERENCE IN TIME SERIES MODELS USING SMOOTHED CLUSTERED
STANDARD ERRORS

3.1 INTRODUCTION

This chapter proposes a long run variance estimator for conducting inference in time

series regression models that combines the traditional nonparametric kernel approach,

Newey and West (1987) and Andrews (1991), with a cluster approach, Bester et al. (2011).

The basic idea is to divide the time periods into non-overlapping clusters with equal num-

bers of observations. The long run variance estimator is constructed by first aggregating

within clusters and then kernel smoothing across clusters. This approach is similar in

spirit to the approach proposed by Driscoll and Kraay (1998) in panel settings. Under

the assumption that the time series data is weakly dependent and covariance stationary,

we develop an asymptotic theory for test statistics based on this "smoothed clustered"

long run variance estimator. We derive asymptotic results holding the number of clusters

fixed and also treating the clusters as increasing with the sample size. Our large number

of clusters results are closely linked to the fixed-b results obtained by Vogelsang (2012) for

Driscoll and Kraay (1998) statistics in panel settings. We show that in the large number of

clusters setting robust test statistics follow the standard fixed-b limits obtained by Kiefer

and Vogelsang (2005) assuming that the kernel bandwidth is treated as a fixed proportion

of the sample size. In contrast, for the fixed number of clusters case, we obtain a different

asymptotic limit. While one might expect the relative accuracy of the two asymptotic ap-

proximations to depend on the number of clusters relative to the sample size, we find in

a simulation study that the “fixed number of cluster” asymptotic approximation works

well whether the number of clusters is small or large. The simulations also suggest that

the naive i.i.d. bootstrap mimics the fixed number of clusters critical values.
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The motivation for clustering before kernel smoothing is as follows. Averaging within

clusters works well even when serial correlation is relatively strong within clusters. Given

our weak dependence and covariance stationarity assumption, within cluster averages

will be asymptotically independent. But, in finite samples the cluster averages will be

correlated and kernel smoothing can help to reduce finite sample over-rejection problems.

In fact, we find in our finite sample simulations that clustering before kernel smoothing

does reduce over-rejections caused by strong serial correlation without a great cost in

terms of power.

The rest of the chapter is organized as follows. In the next section the model is given

and the long run variance is defined. Section 3.3 lays out the inference problem and

provides asymptotic results for test statistics based on the smoothed clustered long run

variance estimator. Section 3.4 explores the finite sample properties of the test statistics in

a simple location model. Proofs are given in Appendix E. The case where the number of

groups does not evenly divide the sample is discussed in Appendix F.

3.2 MODEL AND CLUSTERED SMOOTHED STANDARD ERRORS

Consider the time series regression model,

yt = x′tβ + ut, t = 1, . . . , T,

where β is a (k× 1) vector of regression parameters, xt is a (k× 1) vector of regressors,

and ut is a mean zero error process. The ordinary least squares (OLS) estimator of β is

β̂ =

(
T
∑

t=1
xtx′t

)−1 T
∑

t=1
xtyt.
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Divide the time periods into G contiguous, non-overlapping groups of equal size nG such

that T = nGG.1 Rewriting the OLS estimator, β̂, using group notation as

β̂ =

 G
∑

g=1

g nG
∑

t=(g−1)nG+1
xtx′t


−1

G
∑

g=1

g nG
∑

t=(g−1)nG+1
xtyt. (3.1)

Conceptually, this way of rewriting β̂ can be viewed as the outcome of rearranging the

data into G time periods with nG "cross-section" units per time period resulting in an

artificial panel data structure. From this artificial panel perspective β̂ in (3.1) is exactly

the pooled OLS estimator of β. Plugging in for yt gives

β̂− β =

 G
∑

g=1

gnG
∑

t=(g−1)nG+1
xtx′t


−1

G
∑

g=1

gnG
∑

t=(g−1)nG+1
xtut

=

 G
∑

g=1

gnG
∑

t=(g−1)nG+1
xtx′t


−1

G
∑

g=1

gnG
∑

t=(g−1)nG+1
vt, (3.2)

where vt = xtut. Using the panel perspective, we can directly apply the variance-

covariance matrix estimator proposed by Driscoll and Kraay (1998) as follows. Let v̂t =

xtût, where ût = yt − x′t β̂ are the OLS residuals. Define

v̂g =

gnG
∑

t=(g−1)nG+1
v̂t, g = 1, . . . , G,

which is the sum of v̂t within group g. Compute the nonparametric kernel HAC estimator

using v̂g for g = 1, 2, ..., G as

Ω̂ = Γ̂0 +
G−1
∑

j=1
k
(

j
M

)(
Γ̂j + Γ̂

′
j

)
,

where Γ̂j = G−1 ∑G
g=j+1 v̂gv̂′g−j are the sample autocovariaces of v̂g. Here, k(x) is a

kernel function such that k(x) = k(−x), k(0) = 1, |k(x)| ≤ 1, k(x) is continuous at x = 0,

1Cases where G does not evenly divide T is easily handled but the notation is more
tedious. See Appendix F.
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∫∞
−∞ k2(x) < ∞, and M is the bandwidth parameter. Using well known algebra we can

rewrite Ω̂ as

Ω̂ =
1
G

G
∑

g=1

G
∑

h=1
k
(
|g− h|

M

) ̂̂vĝ̂v′h,

which we call the “cluster then HAC” variance-covariance matrix estimator or CHAC for

short. Notice that the CHAC estimator gives full weight for observations within clusters,

a feature that the usual nonparametric kernel HAC estimator does not have. Smoothing

across clusters accounts for finite sample serial correlation across clusters which is a gen-

eralization of the cluster estimator proposed by Bester, Conley, and Hansen (2011). Note

that the Bester, Conley, and Hansen (2011) estimator is a special case of Ω̂ obtained when

Ω̂ = Γ̂0, i.e. when zero weights is imposed across clusters. Also note that when G = T

and nG = 1, the CHAC estimator becomes the usual kernel HAC estimator. Therefore,

the CHAC estimator is more general and nests the traditional approach and the time se-

ries cluster approach.

Using Ω̂ as the middle term of a sandwich variance for β̂, we obtain the sample

variance-covariance matrix

V̂CHAC = G

 G
∑

g=1

g nG
∑

t=(g−1)nG+1
xtx′t


−1

Ω̂

 G
∑

g=1

g nG
∑

t=(g−1)nG+1
xtx′t


−1

.

3.3 INFERENCE AND ASYMPTOTIC THEORY

This section defines test statistics for testing linear restrictions on the β vector and derives

the asymptotic null behavior of the tests. Results for large-G, fixed-nG and large-nG,

fixed-G are treated separately as they require different regularity conditions. Through-

out, the symbol “⇒”denotes weak convergence of a sequence of stochastic processes to a

limiting stochastic process.

We consider testing the null hypothesis H0 : Rβ = r against H0 : Rβ 6= r, where R

is a q× k matrix of known constants with full rank with q ≤ k and r is a q× 1 vector of
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known constants. Define the Wald statistic as

WCHAC =
(

Rβ̂− r
)′ [RV̂CHACR′

]−1 (
Rβ̂− r

)
,

or with the single restriction (q = 1) the t-statistic as

tCHAC =

(
Rβ̂− r

)√
RV̂CHACR′

.

3.3.1 Large-G, Fixed-nG

Vogelsang (2012) developed fixed-b results for the panel analogues to WCHAC and tCHAC

for the cases of a large number of time periods and a fixed number of cross-section units.

Vogelsang (2012) provided conditions under which the fixed-b limits are equivalent to the

standard fixed-b limits obtained by Kiefer and Vogelsang (2005) in pure time series set-

tings. Given the natural similarities between WCHAC and tCHAC and the panel statis-

tics, it is not surprising that the large-G, fixed-nG limits of WCHAC and tCHAC follow

the standard fixed-b limits under suitable regularity conditions. The asymptotic theory in

Vogelsang (2012) mainly relies on weak dependence and covariance stationarity in time

dimension. In our model because we divide the pure time series into non-overlapping

clusters, as long as the original time series satisfies weak dependence and covariance sta-

tionarity, the regularity conditions used by Vogelsang (2012) hold in our model as well.

Define vg = ∑
gnG
t=(g−1)nG+1 vt. We make the following assumptions.

Assumption A.

1. nG is a fixed number and G = nGT.

2. For r ∈ (0, 1], G−1 ∑
[rG]
g=1 ∑

gnG
t=(g−1)nG+1 xtx′t ⇒ rQc. Qc is non-singular.

3. E(vg) = 0 and G−1/2 ∑
[rG]
g=1 vg ⇒ ΛcWk(r), where Wk(r) is an k× 1 vector of inde-

pendent standard Wiener processes and ΛcΛ′c = Ωc is the k× k long run variance matrix

(2π times the zero frequency spectral density matrix) of vg.
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Assumption A1 is stating that we are considering the large-G, fixed-nG case. As-

sumptions A2-A3 are the usual high level assumptions used to obtain fixed-b asymptotic

results. Note that

1
G

[rG]

∑
g=1

gnG
∑

t=(g−1)nG+1
xtx′t =

1
G

[rG]nG
∑

t=1
xtx′t =

nG
T

[ r
nG

T]nG

∑
t=1

xtx′t,

where the second equality is obtained by plugging in G = T/nG. If the second moment of

xt satisfies a law of large numbers (LLN) uniformly in r, i.e. T−1 ∑
[rT]
t=1 xtx′t ⇒ rQ, then

Assumption A2 is satisfied with Qc = nGQ because (nG/T)∑
[r/nGT]nG
t=1 xtx′t is asymptot-

ically equivalent to (nG/T)∑
[rT]
t=1 xtx′t. Assumption A3 states that the functional central

limit theorem (FCLT) holds for the scaled partial sums of vg. As with assumption A2, we

can write

G−1/2
[rG]

∑
g=1

vg =
1
G

[rG]

∑
g=1

gnG
∑

t=(g−1)nG+1
vt = nG

1/2T−1/2

[ r
nG

T]nG

∑
t=1

vt.

If vt itself follows a FCLT so that T−1/2 ∑
[rT]
t=1 vt ⇒ ΛWk(r), then Assumption A3 is sat-

isfied with ΛcΛ′c = nGΛΛ′ because nG
1/2T−1/2 ∑

[r/nGT]nG
t=1 vt is asymptotically equiva-

lent to n
1/2
G T−1/2 ∑

[rT]
t=1 vt. If we are making primitive assumptions for a FCLT such as vt

being a mean zero δ-order (for some δ > 2) covariance stationary process that is α-mixing

of size−β/(β− 2),2 then vg is also a mean zero δ-order (for some δ > 2) covariance station-

ary process that is α-mixing of the same size because finite sums (nG < ∞) of α-mixing

processes are also α-mixing with the same size.3 Therefore, if a FCLT holds for vt then

it will hold for vg. In general Assumptions A2-A3 are slightly weaker than assumptions

usually used to obtain fixed-b results and are sufficient for the following theorem. The

proof follows directly from Vogelsang (2012, Theorem 1).

2Phillips and Durlauf (1986) provide sufficient conditions for vt to satisfy a FCLT.
3See White (2001).
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Theorem 3.1. Let h > 0 be an integer and let Bh(r) denote a generic h× 1 vector of stochastic

processes. Let the random matrix, P(b, Bh), be defined as follows for b ∈ (0, 1].

Case (i) : if k (x) is twice continuously differentiable everywhere,

P
(
b, Bh

)
≡
∫ 1

0
∫ 1

0
1

b2 k′′
(

r−s
b

)
Bh (r) Bh (s)′ drds,

Case (ii) : if k (x) is continuous, k (x) = 0 for |x| ≥ 1 and k (x) is twice continuously

differentiable everywhere except for |x| = 1,

P
(
b, Bh

)
≡
∫ ∫
|r−s|<b

1
b2 k′′

(
r−s

b

)
Bh (r) Bh (s)′ drds

+
k−(1)

′

b
∫ 1−b

0

(
Bh (r + b) Bh (r)′ + Bh (r) Bh (r + b)′

)
dr ,

where k− (1)
′
= limh→0 [(k (1)− k (1− h)) /h],

Case(iii) : if k (x) is the Bartlett kernel,

P
(
b, Bh

)
≡ 2

b
∫ 1

0 Bh (r) Bh (r)′ dr− 1
b
∫ 1−b

0

(
Bh (r + b) Bh (r)′ + Bh (r) Bh (r + b)′

)
dr.

(a) Then under Assumption A, as G → ∞,

√
G
(

β̂− β
)
⇒ Q−1

c ΛcWk(1).

(b) Let W̃k (r) denote a k × 1 vector of stochastic processes defined as W̃k (r) ≡ Wk (r) −

rWk (1), for all r ∈ (0, 1]. Assume M = bG where b ∈ (0, 1] is fixed. Then, under

Assumption A and H0, for G → ∞, nG fixed,

WCHAC ⇒Wq(1)′
[

P(b, W̃q)
]−1
Wq(1)

or if there is one restriction (q = 1),

tCHAC ⇒
W1(1)√
P(b, W̃1)

.

3.3.2 Fixed-G, Large-nG results

When the number of clusters is fixed, the LLN and FCLT work within the clusters rather

than across the clusters. To obtain an asymptotically pivotal result, it is sufficient for the

LLN and FCLT to hold for the original time series. Consider the assumption:
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Assumption B.

1. G is fixed. nG = G−1T.

2. For r ∈ (0, 1], T−1 ∑
[rT]
t=1 xtx′t ⇒ rQ and Q is non-singular.

3. For r ∈ (0, 1], T−1/2 ∑
[rT]
t=1 vt ⇒ ΛWk(r), whereWk(r) is an k× 1 vector of independent

standard Wiener processes and Ω = ΛΛ′ is the k× k long run variance matrix (2π times

the zero frequency spectral density matrix) of vt.

Assumption B1 restates that we are considering the case where the number of clusters

is fixed and the size of each cluster is increasing with T. Assumptions B2-B3 state that

a law of large numbers applies to T−1 ∑
[rT]
t=1 xtx′t uniformly in r and a FCLT applies to

the scaled partial sum of vt. These two assumptions are sufficient for fixed-b asymptotic

theory to go through when G is fixed and nG → ∞. The following theorem states asymp-

totic behavior of OLS, CHAC, and WCHAC (tCHAC when q = 1) when G is fixed and

nG → ∞. The proof is provided in Appendix E.

Theorem 3.2. Let k > 0 be an integer and let Bk(r) denote a generic k× 1 vector of stochastic

processes. Let the random matrix, P(G, M, Bk), be defined as follows:

P(G, M, Bk) =
G−1
∑

g=1

G−1
∑

h=1
Bk
( g

G

)(
2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

))

× Bk

(
h
G

)′
,

and when k(·) is Bartlett kernel P(G, M, Bk) can be further simplified as

P(G, M, Bk) =
2
M

G−1
∑

g=1
Bk
( g

G

)
Bk
( g

G

)′
− 1

M

G−M−1
∑

g=1

(
Bk
( g

G

)
Bk

(
g + M

G

)′
+ Bk

(
g + M

G

)
Bk
( g

G

)′)
.

(a) Then under Assumption B, as T → ∞ and nG → ∞,

√
T
(

β̂− β
)
⇒ Q−1ΛWk(1),
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(b) Let W̃k (r) denote a k × 1 vector of stochastic processes defined as W̃k (r) ≡ Wk (r) −

rWk (1), for all r ∈ (0, 1]. Under Assumption B, for G fixed, nG → ∞,

G
T

Ω̂⇒ ΛP(G, M, W̃k)Λ
′,

(c) and under H0, as T → ∞ and nG → ∞,

WCHAC ⇒Wq(1)′P(G, M, W̃q)−1Wq(1)

and when q = 1,

tCHAC ⇒
W1(1)√

P(G, M, W̃1)
.

The fixed-G asymptotic approximation of WCHAC in Theorem 3.2 (c) is different from

the fixed-b asymptotic approximation found in Theorem 3.1 (b) which is the usual fixed-

b limit in Kiefer and Vogelsang (2005). In fact from Bester et al. (2011) we know that

when M = 1 and a truncating kernel is used, the fixed-G limit of WCHAC in Theorem

3.2 (c) simplifies to Gq/(G− q)Fq,G−q and when q = 1 the limit of tCHAC simplifies to
√

G/(G− 1)tG−1.

Table 3.1 tabulates the asymptotic critical values for the fixed-G limit for the case of

the Bartlett kernel. The critical values were obtained via simulation methods. The Wiener

processes in the limits were approximated by scaled partial sums of 1, 000 independent

standard normal random variables. 50, 000 replications were used. We see from Table

3.1 that as the number of clusters, G, gets smaller and/or the bandwidth, M, gets larger,

the tail of the distribution becomes fatter. As G decreases and/or M increases, less down-

weighting is used when calculating CHAC and it is well known from the fixed-b literature

that less down-weighting leads to fatter tails of test statistics because of systematic down-

ward bias in the variance estimator.

Generally speaking, it is well known that using less down-weighting in conjunction

with fixed-b critical values tends to alleviate over-rejection problems caused by strong
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serial correlation. The standard HAC estimator can only reduce down-weighting by in-

creasing M (for a given kernel). CHAC can reduce down-weighting by not only increas-

ing M but also by increasing the number of observations per cluster, i.e. by decreasing

G. This additional flexibility in down-weighting gives the CHAC approach the ability to

reduce size distortions with less loss in power than the original HAC approach. We com-

pare the relative performance of two different weighting schemes, i.e. to choose HAC or

CHAC, using a simulation study in the next section.

3.4 FINITE SAMPLE PERFORMANCE

3.4.1 Empirical Rejection Probabilities

In this section we examine the finite sample performance of the robust test statistics based

on the CHAC estimator using both the fixed-G, large-nG approximation and large-G,

fixed-nG approximation. Here we focus on the Bartlett kernel. When G = T, it follows

that nG = 1 and the CHAC estimator simplifies to the usual HAC estimator without

clustering, and when we use M = 1, the CHAC estimator simplifies to the pure clustering

approach of Bester et al. (2011). Therefore, we can make direct comparisons of those two

existing approaches in our results.

We focus on the simple location model

yt = β + ut, (3.3)

ut = ρut−1 + εt + θεt−1,

where u0 = ε0 = 0, εt ∼ i.i.d. N(0, 1) with ρ ∈ {−0.5, 0, 0.5, 0.8, 0.9}, θ ∈ {−0.5, 0, 0.5}.

We set β = 0. Results are given for sample size T = 60 and the number of clusters G ∈

{2, 3, 4, 5, 6, 10, 12, 15, 60}. Note that these values of G are factors of 60 and so the clusters

evenly divide the sample. With this data generating process we test the null hypothesis
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that β = 0 against the alternative β 6= 0 at a nominal level of 5%. When computing the

CHAC estimator, we use the Bartlett kernel with M ∈ {1, 2, . . . , 9, 10, 12, 15, 30, 40, 50, 60}.

For the simple location model the CHAC based t-test is computed as

tCHAC =
β̂√

G
(

∑T
t=1 x2

t

)−1
Ω̂
(

∑T
t=1 x2

t

)−1
=

β̂√
G
T2 Ω̂

where

β̂ =

(
T
∑

t=1
x2

t

)−1 T
∑

t=1
xtyt = T−1

T
∑

t=1
yt

and

Ω̂ =
1
G

G
∑

g=1

G
∑

h=1
k
(
|g− h|

M

)
v̂gv̂h

where v̂g = ∑
gnG
t=(g−1)nG+1 v̂t with v̂t = yt − β̂.

We reject the null hypothesis whenever
∣∣tT∣∣ > tc (or reject the null whenever tT < tlc

or tT > trc if −tlc 6= trc) where tc is a critical value. Using 10, 000 replications, we compute

empirical rejection probabilities. From Theorem 3.1 (b), we know that under large-G,

fixed-nG asymptotic theory, tc = tlarge−G
c is the 97.5% percentile of the standard fixed-

b asymptotic distribution with b = M/G. Under fixed-G, large-nG asymptotic theory

tc = t f ixed−G
c is the 97.5% percentile of the distribution derived in Theorem 3.2 (c). We

obtain tlarge−G
c and t f ixed−G

c by simulating the corresponding distribution which is

possible because both of the distributions are functions of Brownian motion.

In addition we use the bootstrap to obtain critical values. We consider the naive mov-

ing block bootstrap with block size l = nG so that the block lengths used in the resam-

pling match the cluster sizes used to compute Ω̂. We also use block size l = 1 (the i.i.d.

bootstrap). Specific details about computing bootstrap critical values are as follows. Let

the vector ωt = (yt, x′t)
′ collect the dependent and explanatory variables (here xt = 1).

Let Bt,nG
= {ωt, ωt+1, . . . , ωt+nG−1} be the block of nG consecutive observations

starting at ωt. Draw G blocks randomly with replacement from the set of overlapping

blocks {B1,nG
, . . . , BT−nG+1,nG

} and obtain a bootstrap resample of size T. Repeating
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this 999 times we obtain 999 bootstrap resamples which we denote ω•Bt = (y•Bt , x•B′t )′,

t = 1, . . . , T, B = 1, . . . , 999. For the i.i.d. bootstrap we resample T observations from the

original observations with replacement and repeating this 999 times we again obtain 999

bootstrap resamples. For each bootstrap resample we compute the naive bootstrap test

statistic

tB
CHAC =

β̂B − β̂√
G
T2 Ω̂B

where

β̂B =

T
∑

t=1
y•Bt

T

is the OLS estimator of the Bth bootstrap resample and

Ω̂B =
1
G

G
∑

g=1

G
∑

h=1
k
(
|g− h|

M

)
v̂•Bg v̂•Bh

where v̂•Bg = ∑
gnG
t=(g−1)nG+1 v̂•Bt with v̂•Bt = y•Bt − β̂B. Then the bootstrap critical val-

ues {tlc, trc} are the 0.025 and 0.975 quantile of the tB
CHAC, B = 1, . . . , 999 respectively. We

denote the critical values obtained from the nG block bootstrap as {tl−block
c , tr−block

c }

and from the i.i.d. bootstrap as {tl−i.i.d.
c , tr−i.i.d.

c }.

Gonçalves and Vogelsang (2011) showed that the naive moving block bootstrap with

block length fixed or increasing but slower than the sample size (l2/T → 0) has the same

limiting distribution as the fixed-b asymptotic distribution. This equivalence is mainly

due to the fact that bootstrap resamples generated from the moving block bootstrap,

which we denote (y•t , x•′t ), satisfy (a)• T−1∑
[rT]
t=1 x•t x•t ⇒ rQ• and (b)• T−1/2 ∑

[rT]
t=1 v•t ⇒

Λ•Wk(r) for some Q• and Λ• where p• denotes the probability measure induced by

the bootstrap resampling, conditional on a realization of the original time series. Our

asymptotic theory framework and the test statistics are not exactly the same as the ones

considered in Gonçalves and Vogelsang (2011). However the results in Gonçalves and

Vogelsang (2011) can still be applied. Recall that in Section 3.3.1 (large-G), we pointed
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out that the original time series satisfying conditions (a) T−1 ∑
[rT]
t=1 xtxt ⇒ rQ and (b)

T−1/2 ∑
[rT]
t=1 vt ⇒ ΛWk(r) is sufficient for Assumption A2 and A3. Then, if bootstrap

resamples satisfy (a)• and (b)•, then from Theorem 3.1 (b), the asymptotic distribution

of tB
CHAC is the standard fixed-b limit evaluated at M/G. Because the asymptotic distri-

bution in Theorem 3.1 (b) is pivotal with respect to Λ and Q, tB
CHAC and tCHAC have

the same limiting distributions. Similarly for Theorem 3.2, because the conditions (a)•

and (b)• are the same as Assumptions B2 and B3, when we treat G as fixed, tB
CHAC will

have the fixed-G distribution as in Theorem 3.2 (c) because fixed-G asymptotic distribu-

tions are pivotal with respect to Q,Λ and Q•,Λ• respectively. Therefore, if the bootstrap

resamples satisfy (a)• and (b)•, then the critical values computed from the bootstrap will

be first order asymptotically equivalent to tCHAC in the fixed-b sense. See Gonçalves

and Vogelsang (2011) for sufficient conditions on the original time series for the bootstrap

resamples to satisfy (a)• and (b)•. The required conditions are similar to the usual weak

dependence assumptions required for fixed-b asymptotic theory in Kiefer and Vogelsang

(2005) to go through. Therefore, we can conjecture that when G is small, the bootstrap will

mimic the fixed-G, large-nG critical values and when G is large it will mimic the large-G

fixed-nG critical values.

Tables 3.2-3.3 reports empirical null rejection probabilities for the tCHAC. Table 3.2

reports rejections using large-G, fixed-nG critical values. Table 3.3 reports the rejection

probabilities using fixed-G, large-nG critical values. Because we are using the Bartlett

kernel (which truncates), when M = 1, tCHAC
d→
√

G/G− 1tG−1 if G is fixed following

Bester et al. (2011).

Examining the rejections in Tables 3.2-3.3, it is clear that the fixed-G asymptotic ap-

proximation has better size properties than the large-G asymptotic approximation regard-

less of G. When G is small , the fixed-G asymptotic approximation works well in terms

of size across all ρ, θ combinations and M. When ρ = 0.9 and θ = 0.5, using G = 2, the

fixed-G critical value delivers empirical rejection probabilities of 0.06 for both bandwidth
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values of M = 1, 2. A null rejection of 0.06, which is very close to the nominal level 0.05,

is impressive given the strong serial correlation and relatively small value of T. When G

is large, the fixed-G and large-G asymptotic approximations have similar performance.

Therefore, the use of fixed-G critical values is a good idea for all values of G.

Tables 3.4-3.5 reports empirical null rejection probabilities for the tCHAC using the

bootstrap critical values. Table 3.4 reports rejection probabilities using the overlapping

nG block bootstrap. Table 3.5 reports rejection probabilities using the i.i.d bootstrap. The

first obvious pattern is that the i.i.d. bootstrap and the fixed-G rejection probabilities are

nearly identical in all cases. This is true regardless of the value G. In contrast the large-G

critical values and the i.i.d bootstrap only have similar finite sample performance once

G becomes large, G = 30 to 60. The performance of the block bootstrap depends on

the strength of the serial correlation. Using middle sized blocks can result in less size

distortion than either the i.i.d. bootstrap or the fixed-G critical values when the serial

correlation is strong. When serial correlation is weak, then use of the block bootstrap

can result in over-rejections that do not occur with the i.i.d. bootstrap (see the ρ = 0,

θ = 0 case). Similar comparisons between the block bootstrap and the i.i.d. bootstrap

were found by Gonçalves and Vogelsang (2011) for the non-clustered HAC case.

It may seem surprising at first that i) even when G is large, the fixed-G approximation

works well and ii) the i.i.d. bootstrap mimics the fixed-G limit even when when G is large

including the G = T case. However, a closer look at the tabulated fixed-G critical values in

Table 3.1 indicates these results are not surprising. If we took G = 60 critical values from

Table 3.1 and compared them to the critical values tabulated by Kiefer and Vogelsang

(2005), we would see that the critical values are very close to each other. This suggests

that the critical values of the fixed-G random variable approaches that of the large-G (i.e.

standard fixed-b) random variable as G increases. It is this apparent continuity in G that

explains the patterns in the finite sample simulations. The patterns are not so surprising

upon closer examination of the theory.
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The simulation study shows that using a relatively small value of G can substantially

reduce size distortions. In the next subsection we investigate the impact of the choice of G

and M on power to assess the power loss that is expected to be incurred when controlling

over-rejection problems.

3.4.2 Size Adjusted Power

We now report some power calculations to investigate the impact of G and M on power.

We compute size-adjusted power so that we can make power comparisons independent

of over-rejection problems. The size-corrections we employ obviously cannot be used in

empirical applications. We use the same data generating process as in Section 3.4.1. We

set θ = 0 and focus on AR(1) errors with ρ ∈ {0, 0.5, 0.8, 0.9}. As with Section 3.4.1, the

null is β = 0, and the sample size is T = 60. Again we use G ∈ {2, 3, 4, 5, 6, 10, 12, 15, 60}.

For a given value of ρ and combination of G, M we first simulate the finite sample null

critical values of tCHAC using 10, 000 replications and then compute size-adjusted power

by obtaining the rejection probabilities for a grid of values of β ∈ (0, 7] again using 10, 000

replications.

Table 3.6 reports the area above the size adjusted power curve which is conceptually

the average of Type II error across alternatives. The area is divided by max β so that the

total square area is normalized to 1. From Table 3.6 we can see the general power-size

trade-off. Decreasing G, with M fixed, or increasing M, with G fixed, always increases

type II error, and we know from Tables 3.2-3.5 that over-rejection problems are decreasing

in these scenarios. When M and G change together, it is more difficult to see clear patterns

in the size-power trade-off. For example, if we want to compare the G = 60, M = 30 case

(i.e. the usual HAC estimator with bandwidth equal to half the sample size) with the

G = 30, M = 9 case, when ρ = 0.5, the change in the power-size trade-off it is not

so obvious because decreasing G will increase size while decreasing power whereas the

decrease in M has the opposite effect. From Table 3.6 we see that between these two cases,
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the G = 30, M = 9 case has higher average power. More specifically, the Type II error for

G = 30, M = 9 is 0.60 while for G = 60, M = 30 the type II error is 0.63. Referring

back to Table 3.5 for these two cases, notice that G = 30, M = 9 has size of 0.069 while

G = 60, M = 30 has size of 0.070. Although the difference in size is small, there are

improvements in both size and power by dividing the sample into 30 clusters. By further

decreasing G to 15 and M to 3, the type II error decreases to 0.595, but the size remains

at 0.069. So, we have cases where dividing time series into clusters and smoothing can

reduce the over-rejection problem without a great cost in terms of power and sometimes

it is possible to increase power without inducing more over-rejections. Compared to the

usual HAC approach, clustering with smoothing is usually a better option than simply

moving around the bandwidth.

Figure 3.1 depicts power for some interesting cases where clustering and smoothing

provides greater power while not increasing over-rejections for ρ ∈ {0.5, 0.8, 0.9} . The

benchmark case is the size-adjusted power curve for the G = 60, M = 30 case. The other

combinations of G and M give tests with similar size to the G = 60, M = 30. We see

that there indeed is room for improvement in power while holding size constant through

clustering and smoothing. For all ρ, the G = 60 case (the usual HAC estimator), has the

lowest power compared to other combinations of G and M which have similar size.

Figures 3.2-3.27 also compare the power-size trade off between the usual HAC esti-

mator (G = 60) for a range of bandwidths with the CHAC estimator. The label for each

power curve indicates the size of that test. Figure 3.2 considers the case of ρ = 0.5 and

CHAC implemented with a range of values of G but always with M = 1. The case where

no clustering or smoothing is being used is the G = 60, M = 1 which serves as the bench-

mark (see the light blue line). Size is quite inflated in this case: 0.267. If a researcher

wants to reduce this over-rejection, then using the usual HAC estimator would need to

increase M, which are depicted by the grey lines. On the other hand, with CHAC the

researcher can choose to divide the time series into clusters (while still using M = 1) to
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reduce the over-rejection problem (see the pink lines). In the second graph of Figure 3.2,

we can see that by increasing M to 20 or larger the researcher reduces size to about 0.069

for the HAC test. All of these HAC tests are dominated by using CHAC with G = 6 and

M = 1 in terms of both size and power. Cases where the CHAC approach dominates the

usual HAC approach are found regularly when CHAC is implemented with other values

of M and for ρ = 0.8, 0.9. For example, in Figure 3.3, we see that when we match the

size between HAC and CHAC, then there exists a value of g such that CHAC with that

G = g, M = 2 has better power than HAC. If we match the power of the HAC and CHAC

tests, there is always some value of g such that CHAC with G = g, M = 2 has better

size. As the remaining power figures show, there rarely are situations where there is not a

CHAC estimator that is either better in size when holding power fixed or has more power

when holding size distortions fixed.

3.5 CONCLUSION AND REMAINING WORK

In this chapter we analyzed smoothed clustered standard errors in time series regression

models. We find that asymptotic approximation generated under the assumption of a

fixed number of clusters, G, works well even for the large values of G. Even under strong

serial correlation, the over-rejection problem is relatively small when a small number of

clusters is used. Also because fixed-G asymptotic approximation can be simply obtained

by the i.i.d. naive bootstrap in practice, in empirical work with strong serial correlation,

smoothed clustered standard errors can be useful. A simulation study shows that in gen-

eral, there rarely are situations where there is not a CHAC estimator that is either better

in size when holding power fixed or has more power when holding size distortions fixed

compared to the usual HAC estimators. What this chapter does not address is a system-

atic method for choosing the number of clusters and the bandwidth used to implement

the CHAC estimator. Developing a data-dependent method to choose G and M remains

as an important topic of ongoing research.
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For certain applications clustering and smoothing can be natural given the structure of

the data. For example, for a financial market that is not open on weekends it is natural to

cluster within the week and smooth across weeks. Tables 3.7-3.8 shows a small simulation

study with three months of daily data generated from the DGP in Section 3.4.1 where

every weekend is missing resulting in T = 60 observations. The regression model is

estimated by deleting the missing observations. This can be considered as constructing

AM series or ES regression model in Chapter 2 and then calculating the test statistic based

on CHAC standard error. Many of the patterns exhibited in the simulations without

missing data are seen in Tables 3.7-3.8. There is one interesting pattern that is surprising.

When G = 12, i.e. each cluster has length 5, the rejection rates are smaller than those of

G = 10 when ρ ≥ 0. In the other tables of results we always see higher rejection rates

using G = 12 compared to G = 10 when ρ ≥ 0. It seems reasonable to conjecture that the

exact match of 5 observations per cluster with the number of observations per week has

something to do with this pattern. The application of clustered standard errors to times

series with missing observations remains as an interesting topic for future work.
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Table 3.1: Critical Values : Fixed G

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

2 1 −45.991 −17.920 −8.992 −4.390 −0.010 4.375 8.874 17.942 46.230
2 2 −65.041 −25.342 −12.716 −6.208 −0.014 6.187 12.550 25.374 65.379

3 1 −8.710 −5.323 −3.605 −2.325 −0.008 2.305 3.563 5.227 8.680
3 2 −11.315 −7.057 −4.702 −2.997 −0.009 2.980 4.618 6.805 11.286
3 3 −13.858 −8.642 −5.759 −3.671 −0.012 3.650 5.656 8.334 13.823

4 1 −5.303 −3.670 −2.724 −1.917 −0.008 1.896 2.723 3.676 5.214
4 2 −6.945 −4.716 −3.428 −2.349 −0.008 2.346 3.409 4.679 6.769
4 3 −8.005 −5.603 −4.038 −2.782 −0.010 2.764 4.045 5.518 7.931
4 4 −9.243 −6.470 −4.663 −3.212 −0.012 3.191 4.671 6.371 9.158

5 1 −4.143 −3.120 −2.407 −1.732 −0.007 1.720 2.381 3.124 4.240
5 2 −5.272 −3.857 −2.907 −2.056 −0.008 2.050 2.886 3.829 5.322
5 3 −6.288 −4.540 −3.407 −2.403 −0.009 2.390 3.397 4.492 6.246
5 4 −7.010 −5.136 −3.874 −2.720 −0.010 2.710 3.847 5.092 7.069
5 5 −7.837 −5.742 −4.331 −3.041 −0.011 3.029 4.301 5.693 7.903

6 1 −3.693 −2.837 −2.230 −1.628 −0.007 1.623 2.209 2.805 3.641
6 2 −4.526 −3.396 −2.615 −1.887 −0.007 1.872 2.598 3.349 4.514
6 3 −5.356 −3.980 −3.022 −2.159 −0.008 2.152 3.026 3.915 5.301
6 4 −6.006 −4.507 −3.430 −2.434 −0.009 2.410 3.400 4.427 5.945
6 5 −6.619 −4.942 −3.775 −2.684 −0.010 2.671 3.754 4.883 6.564
6 6 −7.251 −5.414 −4.136 −2.940 −0.011 2.926 4.112 5.349 7.190

7 1 −3.405 −2.658 −2.114 −1.569 −0.006 1.554 2.108 2.651 3.401
7 2 −4.057 −3.114 −2.431 −1.778 −0.007 1.768 2.413 3.089 4.110
7 3 −4.752 −3.576 −2.779 −2.004 −0.008 1.992 2.764 3.570 4.770
7 4 −5.401 −4.032 −3.128 −2.239 −0.009 2.225 3.099 4.003 5.358
7 5 −5.949 −4.436 −3.461 −2.470 −0.009 2.448 3.409 4.436 5.913
7 6 −6.394 −4.823 −3.749 −2.681 −0.010 2.666 3.709 4.816 6.358
7 7 −6.906 −5.209 −4.050 −2.896 −0.011 2.879 4.006 5.202 6.868
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

8 1 −3.210 −2.526 −2.048 −1.522 −0.006 1.516 2.035 2.530 3.208
8 2 −3.749 −2.915 −2.311 −1.704 −0.007 1.693 2.298 2.908 3.746
8 3 −4.346 −3.324 −2.611 −1.899 −0.007 1.895 2.593 3.324 4.351
8 4 −4.945 −3.739 −2.907 −2.100 −0.008 2.095 2.893 3.720 4.878
8 5 −5.457 −4.109 −3.205 −2.300 −0.009 2.289 3.185 4.082 5.364
8 6 −5.876 −4.454 −3.474 −2.485 −0.009 2.484 3.452 4.445 5.799
8 7 −6.279 −4.788 −3.731 −2.673 −0.010 2.675 3.698 4.767 6.228
8 8 −6.712 −5.118 −3.989 −2.857 −0.011 2.860 3.954 5.096 6.658

9 1 −3.099 −2.467 −1.997 −1.498 −0.006 1.482 1.980 2.465 3.084
9 2 −3.559 −2.779 −2.222 −1.648 −0.007 1.630 2.212 2.773 3.553
9 3 −4.079 −3.138 −2.491 −1.820 −0.007 1.808 2.462 3.137 4.057
9 4 −4.630 −3.513 −2.743 −1.994 −0.008 1.988 2.723 3.512 4.554
9 5 −5.091 −3.880 −3.015 −2.167 −0.008 2.156 2.988 3.859 5.017
9 6 −5.493 −4.196 −3.268 −2.342 −0.009 2.332 3.223 4.165 5.439
9 7 −5.878 −4.481 −3.496 −2.510 −0.009 2.498 3.470 4.456 5.801
9 8 −6.227 −4.769 −3.716 −2.674 −0.010 2.662 3.692 4.743 6.137
9 9 −6.605 −5.058 −3.941 −2.836 −0.010 2.823 3.916 5.031 6.509

10 1 −2.989 −2.401 −1.954 −1.470 −0.006 1.463 1.951 2.394 2.986
10 2 −3.383 −2.692 −2.149 −1.606 −0.007 1.594 2.144 2.680 3.434
10 3 −3.876 −3.000 −2.382 −1.749 −0.007 1.749 2.371 3.021 3.883
10 4 −4.310 −3.325 −2.613 −1.911 −0.007 1.908 2.606 3.358 4.348
10 5 −4.761 −3.655 −2.849 −2.069 −0.008 2.063 2.839 3.663 4.733
10 6 −5.156 −3.943 −3.072 −2.237 −0.008 2.223 3.065 3.948 5.144
10 7 −5.497 −4.222 −3.296 −2.391 −0.009 2.369 3.289 4.231 5.520
10 8 −5.827 −4.472 −3.498 −2.538 −0.010 2.520 3.491 4.494 5.868
10 9 −6.134 −4.730 −3.698 −2.685 −0.010 2.673 3.690 4.747 6.178
10 10 −6.465 −4.986 −3.898 −2.830 −0.011 2.818 3.889 5.004 6.512
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

11 1 −2.910 −2.350 −1.913 −1.447 −0.006 1.442 1.904 2.333 2.916
11 2 −3.314 −2.612 −2.101 −1.565 −0.007 1.563 2.081 2.581 3.267
11 3 −3.724 −2.899 −2.303 −1.708 −0.007 1.690 2.284 2.868 3.669
11 4 −4.112 −3.198 −2.519 −1.846 −0.007 1.839 2.491 3.193 4.068
11 5 −4.536 −3.470 −2.746 −1.995 −0.008 1.983 2.711 3.469 4.485
11 6 −4.899 −3.750 −2.959 −2.137 −0.008 2.121 2.919 3.741 4.868
11 7 −5.240 −4.017 −3.157 −2.285 −0.009 2.264 3.112 4.000 5.171
11 8 −5.548 −4.260 −3.346 −2.422 −0.009 2.402 3.307 4.259 5.488
11 9 −5.842 −4.495 −3.524 −2.553 −0.010 2.534 3.495 4.469 5.789
11 10 −6.143 −4.713 −3.710 −2.688 −0.010 2.666 3.675 4.708 6.055
11 11 −6.443 −4.943 −3.892 −2.819 −0.011 2.796 3.855 4.937 6.351

12 1 −2.867 −2.311 −1.889 −1.428 −0.006 1.427 1.884 2.304 2.840
12 2 −3.173 −2.541 −2.057 −1.537 −0.007 1.538 2.044 2.526 3.167
12 3 −3.553 −2.806 −2.236 −1.662 −0.007 1.661 2.226 2.800 3.533
12 4 −3.932 −3.066 −2.426 −1.793 −0.007 1.785 2.420 3.057 3.899
12 5 −4.325 −3.328 −2.621 −1.923 −0.007 1.921 2.613 3.321 4.271
12 6 −4.667 −3.609 −2.814 −2.055 −0.008 2.053 2.804 3.586 4.617
12 7 −5.003 −3.854 −3.008 −2.188 −0.008 2.175 3.000 3.826 4.935
12 8 −5.300 −4.096 −3.188 −2.321 −0.009 2.309 3.174 4.037 5.230
12 9 −5.587 −4.289 −3.365 −2.446 −0.010 2.426 3.349 4.266 5.512
12 10 −5.862 −4.509 −3.541 −2.563 −0.010 2.548 3.508 4.467 5.819
12 11 −6.129 −4.720 −3.703 −2.684 −0.010 2.664 3.682 4.676 6.097
12 12 −6.402 −4.930 −3.868 −2.803 −0.011 2.783 3.846 4.884 6.368
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

13 1 −2.795 −2.281 −1.869 −1.424 −0.006 1.415 1.864 2.273 2.811
13 2 −3.100 −2.499 −2.018 −1.521 −0.007 1.516 2.016 2.496 3.095
13 3 −3.444 −2.726 −2.191 −1.630 −0.007 1.624 2.184 2.724 3.416
13 4 −3.797 −2.975 −2.370 −1.751 −0.007 1.743 2.354 2.971 3.801
13 5 −4.168 −3.216 −2.556 −1.874 −0.007 1.860 2.532 3.217 4.132
13 6 −4.481 −3.460 −2.724 −1.992 −0.008 1.984 2.721 3.448 4.446
13 7 −4.790 −3.686 −2.913 −2.117 −0.008 2.100 2.891 3.684 4.775
13 8 −5.094 −3.915 −3.090 −2.236 −0.009 2.214 3.064 3.894 5.053
13 9 −5.350 −4.128 −3.248 −2.355 −0.009 2.332 3.230 4.123 5.300
13 10 −5.612 −4.328 −3.408 −2.473 −0.009 2.448 3.393 4.315 5.586
13 11 −5.859 −4.528 −3.559 −2.584 −0.010 2.563 3.540 4.511 5.828
13 12 −6.107 −4.706 −3.717 −2.694 −0.010 2.675 3.690 4.705 6.084
13 13 −6.356 −4.898 −3.869 −2.804 −0.011 2.784 3.841 4.897 6.333

14 1 −2.765 −2.265 −1.846 −1.413 −0.006 1.405 1.843 2.250 2.748
14 2 −3.030 −2.447 −1.995 −1.500 −0.006 1.495 1.979 2.437 3.046
14 3 −3.345 −2.657 −2.151 −1.605 −0.007 1.591 2.140 2.653 3.358
14 4 −3.683 −2.893 −2.315 −1.715 −0.007 1.701 2.289 2.886 3.665
14 5 −3.994 −3.121 −2.477 −1.827 −0.007 1.814 2.451 3.114 4.003
14 6 −4.314 −3.341 −2.640 −1.934 −0.007 1.922 2.624 3.344 4.298
14 7 −4.609 −3.574 −2.817 −2.048 −0.008 2.031 2.787 3.551 4.587
14 8 −4.906 −3.783 −2.982 −2.158 −0.008 2.146 2.959 3.769 4.844
14 9 −5.176 −3.972 −3.128 −2.275 −0.009 2.262 3.103 3.970 5.096
14 10 −5.383 −4.154 −3.278 −2.387 −0.009 2.365 3.249 4.173 5.358
14 11 −5.611 −4.340 −3.423 −2.488 −0.009 2.473 3.402 4.350 5.603
14 12 −5.865 −4.522 −3.566 −2.587 −0.010 2.573 3.546 4.528 5.857
14 13 −6.095 −4.707 −3.715 −2.694 −0.010 2.677 3.683 4.703 6.091
14 14 −6.325 −4.885 −3.856 −2.795 −0.010 2.778 3.822 4.881 6.321
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

15 1 −2.717 −2.230 −1.834 −1.401 −0.006 1.393 1.834 2.235 2.723
15 2 −2.965 −2.420 −1.965 −1.488 −0.006 1.475 1.952 2.410 2.971
15 3 −3.255 −2.613 −2.106 −1.577 −0.007 1.574 2.089 2.601 3.249
15 4 −3.558 −2.822 −2.257 −1.679 −0.007 1.675 2.241 2.811 3.564
15 5 −3.875 −3.021 −2.417 −1.786 −0.007 1.777 2.394 3.029 3.847
15 6 −4.177 −3.245 −2.570 −1.889 −0.007 1.881 2.551 3.237 4.155
15 7 −4.430 −3.445 −2.733 −1.991 −0.008 1.990 2.711 3.433 4.424
15 8 −4.727 −3.656 −2.887 −2.097 −0.008 2.086 2.863 3.638 4.681
15 9 −4.980 −3.851 −3.023 −2.208 −0.009 2.192 3.010 3.834 4.949
15 10 −5.205 −4.010 −3.171 −2.315 −0.009 2.299 3.159 4.004 5.176
15 11 −5.416 −4.196 −3.312 −2.412 −0.009 2.397 3.293 4.167 5.422
15 12 −5.618 −4.372 −3.443 −2.511 −0.010 2.498 3.428 4.339 5.619
15 13 −5.826 −4.531 −3.578 −2.606 −0.010 2.596 3.555 4.510 5.844
15 14 −6.036 −4.702 −3.704 −2.704 −0.010 2.691 3.688 4.665 6.059
15 15 −6.248 −4.867 −3.834 −2.799 −0.011 2.785 3.817 4.829 6.271

20 1 −2.606 −2.160 −1.780 −1.369 −0.006 1.360 1.781 2.156 2.604
20 2 −2.786 −2.290 −1.875 −1.433 −0.006 1.426 1.871 2.289 2.780
20 3 −2.998 −2.443 −1.986 −1.499 −0.006 1.492 1.969 2.431 2.990
20 4 −3.227 −2.590 −2.099 −1.572 −0.006 1.565 2.080 2.577 3.221
20 5 −3.446 −2.747 −2.209 −1.642 −0.007 1.640 2.197 2.732 3.440
20 6 −3.686 −2.895 −2.320 −1.722 −0.007 1.718 2.300 2.903 3.642
20 7 −3.900 −3.050 −2.438 −1.802 −0.007 1.795 2.420 3.068 3.880
20 8 −4.138 −3.211 −2.551 −1.881 −0.007 1.875 2.538 3.221 4.101
20 9 −4.343 −3.357 −2.666 −1.959 −0.008 1.950 2.651 3.370 4.327
20 10 −4.530 −3.514 −2.788 −2.036 −0.008 2.025 2.769 3.520 4.520
20 11 −4.724 −3.661 −2.905 −2.118 −0.008 2.101 2.880 3.668 4.723
20 12 −4.943 −3.793 −3.013 −2.197 −0.009 2.177 2.994 3.800 4.890
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

20 13 −5.093 −3.927 −3.126 −2.273 −0.009 2.254 3.096 3.944 5.061
20 14 −5.305 −4.063 −3.230 −2.347 −0.009 2.329 3.195 4.071 5.256
20 15 −5.441 −4.196 −3.328 −2.422 −0.009 2.405 3.296 4.202 5.403
20 20 −6.235 −4.801 −3.823 −2.779 −0.011 2.762 3.785 4.815 6.221

30 1 −2.490 −2.088 −1.731 −1.343 −0.006 1.332 1.732 2.089 2.501
30 2 −2.615 −2.166 −1.794 −1.381 −0.006 1.373 1.796 2.172 2.618
30 3 −2.745 −2.266 −1.867 −1.422 −0.006 1.416 1.857 2.267 2.749
30 4 −2.892 −2.368 −1.936 −1.469 −0.006 1.463 1.925 2.365 2.895
30 5 −3.035 −2.464 −2.013 −1.516 −0.006 1.511 1.992 2.457 3.041
30 6 −3.192 −2.571 −2.087 −1.563 −0.007 1.560 2.069 2.555 3.193
30 7 −3.355 −2.673 −2.163 −1.614 −0.007 1.610 2.150 2.661 3.349
30 8 −3.491 −2.766 −2.238 −1.669 −0.007 1.657 2.223 2.767 3.474
30 9 −3.651 −2.880 −2.312 −1.718 −0.007 1.711 2.293 2.881 3.624
30 10 −3.795 −2.985 −2.392 −1.768 −0.007 1.763 2.366 2.994 3.770
30 11 −3.945 −3.087 −2.464 −1.822 −0.007 1.815 2.441 3.101 3.918
30 12 −4.083 −3.194 −2.545 −1.875 −0.007 1.866 2.520 3.189 4.075
30 13 −4.228 −3.293 −2.622 −1.923 −0.008 1.917 2.598 3.289 4.224
30 14 −4.357 −3.404 −2.701 −1.974 −0.008 1.973 2.683 3.383 4.358
30 15 −4.482 −3.508 −2.779 −2.026 −0.008 2.022 2.762 3.480 4.488
30 20 −5.104 −3.968 −3.140 −2.292 −0.009 2.273 3.115 3.954 5.070
30 25 −5.617 −4.397 −3.480 −2.534 −0.010 2.519 3.453 4.372 5.634
30 30 −6.138 −4.799 −3.804 −2.771 −0.010 2.752 3.780 4.782 6.170
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

40 1 −2.462 −2.055 −1.709 −1.330 −0.006 1.320 1.711 2.067 2.450
40 2 −2.546 −2.121 −1.756 −1.359 −0.006 1.347 1.754 2.127 2.525
40 3 −2.630 −2.189 −1.802 −1.390 −0.006 1.382 1.798 2.194 2.635
40 4 −2.741 −2.267 −1.859 −1.421 −0.006 1.418 1.854 2.266 2.728
40 5 −2.854 −2.342 −1.914 −1.453 −0.006 1.448 1.907 2.328 2.836
40 6 −2.951 −2.415 −1.972 −1.490 −0.006 1.485 1.958 2.399 2.946
40 7 −3.059 −2.489 −2.028 −1.525 −0.006 1.521 2.013 2.475 3.058
40 8 −3.184 −2.564 −2.085 −1.564 −0.006 1.557 2.063 2.551 3.173
40 9 −3.291 −2.644 −2.140 −1.601 −0.006 1.596 2.120 2.630 3.283
40 10 −3.400 −2.715 −2.195 −1.639 −0.007 1.631 2.177 2.707 3.402
40 11 −3.520 −2.806 −2.249 −1.678 −0.007 1.667 2.232 2.787 3.505
40 12 −3.635 −2.879 −2.310 −1.716 −0.007 1.708 2.289 2.873 3.619
40 13 −3.728 −2.960 −2.368 −1.755 −0.007 1.747 2.339 2.955 3.716
40 14 −3.848 −3.037 −2.423 −1.794 −0.007 1.785 2.399 3.035 3.828
40 15 −3.970 −3.111 −2.481 −1.832 −0.007 1.824 2.456 3.114 3.929
40 20 −4.486 −3.494 −2.773 −2.029 −0.008 2.018 2.747 3.481 4.447
40 25 −4.953 −3.840 −3.054 −2.222 −0.009 2.210 3.014 3.838 4.913
40 30 −5.373 −4.167 −3.310 −2.413 −0.009 2.394 3.277 4.160 5.340
40 35 −5.753 −4.478 −3.557 −2.590 −0.010 2.575 3.523 4.462 5.754
40 40 −6.167 −4.784 −3.805 −2.768 −0.011 2.749 3.762 4.772 6.150
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

60 1 −2.410 −2.026 −1.697 −1.316 −0.006 1.309 1.686 2.025 2.416
60 2 −2.473 −2.067 −1.719 −1.334 −0.006 1.323 1.714 2.069 2.450
60 3 −2.538 −2.113 −1.751 −1.355 −0.006 1.344 1.746 2.113 2.513
60 4 −2.596 −2.161 −1.784 −1.377 −0.006 1.368 1.780 2.160 2.580
60 5 −2.663 −2.209 −1.817 −1.399 −0.006 1.390 1.814 2.203 2.650
60 6 −2.734 −2.256 −1.855 −1.421 −0.006 1.413 1.850 2.255 2.722
60 7 −2.806 −2.304 −1.890 −1.441 −0.006 1.435 1.882 2.309 2.792
60 8 −2.876 −2.353 −1.927 −1.465 −0.006 1.458 1.920 2.348 2.857
60 9 −2.943 −2.407 −1.965 −1.488 −0.006 1.483 1.953 2.391 2.928
60 10 −3.017 −2.456 −2.005 −1.513 −0.006 1.507 1.992 2.441 3.011
60 11 −3.094 −2.506 −2.039 −1.536 −0.007 1.532 2.029 2.495 3.083
60 12 −3.171 −2.555 −2.078 −1.560 −0.007 1.555 2.062 2.548 3.166
60 13 −3.248 −2.612 −2.114 −1.585 −0.007 1.581 2.101 2.595 3.242
60 14 −3.333 −2.660 −2.154 −1.611 −0.007 1.605 2.139 2.653 3.314
60 15 −3.403 −2.707 −2.189 −1.638 −0.007 1.630 2.178 2.700 3.386
60 20 −3.770 −2.963 −2.379 −1.765 −0.007 1.759 2.363 2.975 3.740
60 25 −4.155 −3.229 −2.570 −1.897 −0.007 1.884 2.555 3.234 4.105
60 30 −4.481 −3.491 −2.776 −2.026 −0.008 2.015 2.748 3.467 4.447
60 35 −4.791 −3.714 −2.957 −2.155 −0.008 2.144 2.931 3.703 4.767
60 40 −5.080 −3.943 −3.137 −2.288 −0.009 2.270 3.098 3.927 5.037
60 45 −5.357 −4.164 −3.308 −2.412 −0.009 2.391 3.271 4.147 5.324
60 50 −5.613 −4.363 −3.468 −2.531 −0.010 2.517 3.441 4.351 5.590
60 55 −5.883 −4.565 −3.636 −2.653 −0.010 2.634 3.601 4.558 5.857
60 60 −6.136 −4.771 −3.798 −2.772 −0.011 2.749 3.760 4.765 6.118
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

80 1 −2.386 −2.009 −1.684 −1.313 −0.006 1.299 1.678 2.014 2.397
80 2 −2.437 −2.042 −1.705 −1.325 −0.006 1.314 1.698 2.049 2.428
80 3 −2.472 −2.077 −1.725 −1.338 −0.006 1.327 1.723 2.079 2.467
80 4 −2.520 −2.106 −1.750 −1.354 −0.006 1.342 1.748 2.117 2.515
80 5 −2.567 −2.146 −1.776 −1.372 −0.006 1.359 1.773 2.145 2.560
80 6 −2.621 −2.179 −1.800 −1.390 −0.006 1.378 1.796 2.184 2.613
80 7 −2.670 −2.215 −1.824 −1.406 −0.006 1.396 1.821 2.218 2.670
80 8 −2.731 −2.255 −1.854 −1.421 −0.006 1.412 1.848 2.256 2.729
80 9 −2.785 −2.294 −1.881 −1.437 −0.006 1.430 1.873 2.290 2.777
80 10 −2.836 −2.330 −1.907 −1.454 −0.006 1.448 1.898 2.327 2.831
80 11 −2.893 −2.366 −1.934 −1.471 −0.006 1.465 1.922 2.360 2.878
80 12 −2.939 −2.403 −1.960 −1.487 −0.006 1.482 1.953 2.390 2.935
80 13 −2.991 −2.443 −1.989 −1.507 −0.006 1.502 1.980 2.428 2.998
80 14 −3.040 −2.483 −2.020 −1.524 −0.006 1.518 2.006 2.467 3.055
80 15 −3.105 −2.517 −2.047 −1.542 −0.007 1.536 2.035 2.504 3.110
80 20 −3.394 −2.709 −2.189 −1.638 −0.007 1.628 2.174 2.700 3.391
80 25 −3.674 −2.904 −2.332 −1.733 −0.007 1.729 2.306 2.904 3.658
80 30 −3.943 −3.095 −2.474 −1.830 −0.007 1.822 2.456 3.103 3.939
80 35 −4.204 −3.297 −2.621 −1.927 −0.008 1.922 2.600 3.293 4.178
80 40 −4.485 −3.490 −2.776 −2.025 −0.008 2.016 2.742 3.476 4.443
80 45 −4.714 −3.661 −2.912 −2.125 −0.008 2.110 2.882 3.652 4.681
80 50 −4.929 −3.833 −3.043 −2.222 −0.009 2.206 3.011 3.823 4.901
80 55 −5.140 −3.997 −3.186 −2.317 −0.009 2.299 3.143 3.989 5.130
80 60 −5.342 −4.168 −3.307 −2.409 −0.009 2.390 3.269 4.148 5.323
80 65 −5.544 −4.320 −3.425 −2.500 −0.010 2.485 3.390 4.296 5.523
80 70 −5.753 −4.464 −3.554 −2.591 −0.010 2.571 3.515 4.452 5.732
80 75 −5.940 −4.618 −3.673 −2.679 −0.010 2.658 3.638 4.614 5.954
80 80 −6.131 −4.766 −3.795 −2.768 −0.010 2.748 3.757 4.763 6.148
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

120 1 −2.362 −1.996 −1.675 −1.304 −0.006 1.293 1.667 2.004 2.367
120 2 −2.392 −2.012 −1.685 −1.312 −0.006 1.301 1.678 2.020 2.398
120 3 −2.426 −2.038 −1.702 −1.321 −0.006 1.311 1.693 2.044 2.419
120 4 −2.457 −2.058 −1.715 −1.331 −0.006 1.319 1.710 2.063 2.449
120 5 −2.491 −2.086 −1.733 −1.343 −0.006 1.332 1.729 2.087 2.475
120 6 −2.518 −2.108 −1.749 −1.354 −0.006 1.343 1.746 2.113 2.502
120 7 −2.554 −2.135 −1.764 −1.365 −0.006 1.354 1.765 2.133 2.536
120 8 −2.587 −2.156 −1.783 −1.378 −0.006 1.367 1.780 2.155 2.572
120 9 −2.622 −2.179 −1.798 −1.389 −0.006 1.379 1.793 2.177 2.606
120 10 −2.653 −2.204 −1.818 −1.399 −0.006 1.390 1.810 2.199 2.643
120 11 −2.693 −2.227 −1.834 −1.411 −0.006 1.401 1.829 2.226 2.680
120 12 −2.730 −2.254 −1.853 −1.420 −0.006 1.411 1.847 2.251 2.713
120 13 −2.767 −2.277 −1.873 −1.429 −0.006 1.424 1.865 2.276 2.752
120 14 −2.797 −2.304 −1.889 −1.441 −0.006 1.435 1.880 2.296 2.790
120 15 −2.836 −2.327 −1.908 −1.452 −0.006 1.447 1.901 2.323 2.827
120 20 −3.011 −2.456 −2.002 −1.511 −0.006 1.507 1.991 2.440 3.012
120 25 −3.199 −2.579 −2.097 −1.571 −0.007 1.567 2.082 2.565 3.202
120 30 −3.395 −2.706 −2.190 −1.638 −0.007 1.628 2.175 2.701 3.378
120 35 −3.585 −2.836 −2.283 −1.701 −0.007 1.694 2.266 2.834 3.559
120 40 −3.764 −2.961 −2.379 −1.765 −0.007 1.758 2.357 2.970 3.735
120 45 −3.951 −3.098 −2.475 −1.831 −0.007 1.823 2.452 3.101 3.911
120 50 −4.142 −3.224 −2.569 −1.895 −0.007 1.887 2.550 3.224 4.096
120 55 −4.307 −3.358 −2.671 −1.961 −0.008 1.953 2.648 3.344 4.266
120 60 −4.471 −3.493 −2.772 −2.026 −0.008 2.016 2.740 3.471 4.427
120 65 −4.617 −3.599 −2.862 −2.092 −0.008 2.079 2.835 3.595 4.597
120 70 −4.790 −3.720 −2.952 −2.158 −0.008 2.142 2.923 3.709 4.743
120 75 −4.934 −3.835 −3.044 −2.222 −0.009 2.208 3.008 3.830 4.899
120 80 −5.090 −3.944 −3.132 −2.286 −0.009 2.268 3.097 3.929 5.043
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Table 3.1: (cont’d)

G M 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

120 85 −5.224 −4.052 −3.227 −2.349 −0.009 2.327 3.181 4.035 5.193
120 90 −5.353 −4.164 −3.308 −2.409 −0.009 2.390 3.266 4.141 5.328
120 95 −5.480 −4.268 −3.387 −2.470 −0.010 2.452 3.358 4.248 5.441
120 100 −5.599 −4.355 −3.465 −2.531 −0.010 2.512 3.438 4.343 5.575
120 105 −5.741 −4.461 −3.550 −2.593 −0.010 2.571 3.518 4.457 5.722
120 110 −5.871 −4.568 −3.631 −2.651 −0.010 2.629 3.600 4.562 5.866
120 115 −6.006 −4.665 −3.709 −2.709 −0.010 2.687 3.679 4.664 5.996
120 120 −6.131 −4.765 −3.789 −2.769 −0.010 2.743 3.760 4.768 6.127
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Table 3.2: Large G, Empirical null rejection probabilities, 5% level, T = 60

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 −0.5 1 0.212 0.094 0.055 0.034 0.021 0.006 0.003 0.001 0.000 0.000
2 0.217 0.093 0.056 0.037 0.026 0.010 0.006 0.004 0.001 0.000
3 0.094 0.054 0.037 0.025 0.013 0.008 0.005 0.001 0.000
4 0.055 0.035 0.025 0.014 0.010 0.008 0.002 0.000
5 0.036 0.023 0.013 0.009 0.008 0.003 0.000
6 0.023 0.013 0.009 0.008 0.004 0.000
7 0.012 0.009 0.008 0.004 0.000
8 0.012 0.010 0.008 0.005 0.001
9 0.012 0.009 0.008 0.006 0.001
10 0.012 0.009 0.008 0.005 0.001
12 0.009 0.008 0.006 0.001
15 0.008 0.006 0.002
20 0.006 0.003
25 0.005 0.003
30 0.006 0.003
40 0.004
50 0.003
60 0.003
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0 1 0.239 0.125 0.094 0.076 0.061 0.043 0.035 0.031 0.018 0.002
2 0.245 0.123 0.090 0.075 0.059 0.046 0.040 0.037 0.025 0.016
3 0.124 0.086 0.072 0.060 0.049 0.041 0.040 0.029 0.015
4 0.087 0.068 0.059 0.050 0.042 0.041 0.033 0.021
5 0.069 0.057 0.048 0.043 0.040 0.034 0.022
6 0.057 0.048 0.043 0.041 0.035 0.025
7 0.047 0.044 0.043 0.035 0.026
8 0.046 0.043 0.041 0.036 0.029
9 0.047 0.042 0.042 0.037 0.030
10 0.047 0.041 0.040 0.036 0.031
12 0.042 0.041 0.038 0.032
15 0.041 0.039 0.032
20 0.038 0.034
25 0.037 0.036
30 0.037 0.037
40 0.035
50 0.034
60 0.034
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0.5 1 0.242 0.135 0.101 0.088 0.071 0.063 0.058 0.057 0.054 0.053
2 0.246 0.130 0.097 0.082 0.071 0.057 0.056 0.053 0.051 0.051
3 0.132 0.092 0.079 0.072 0.057 0.052 0.052 0.049 0.051
4 0.093 0.076 0.069 0.059 0.055 0.051 0.049 0.049
5 0.077 0.067 0.058 0.054 0.052 0.049 0.049
6 0.067 0.057 0.056 0.053 0.048 0.049
7 0.056 0.054 0.051 0.047 0.049
8 0.055 0.053 0.051 0.048 0.049
9 0.055 0.052 0.050 0.047 0.049
10 0.055 0.052 0.051 0.048 0.048
12 0.052 0.049 0.049 0.047
15 0.049 0.051 0.048
20 0.049 0.048
25 0.046 0.049
30 0.048 0.050
40 0.049
50 0.048
60 0.047
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 −0.5 1 0.226 0.115 0.081 0.059 0.044 0.026 0.018 0.011 0.002 0.000
2 0.232 0.112 0.081 0.064 0.046 0.032 0.023 0.020 0.006 0.001
3 0.115 0.076 0.062 0.048 0.033 0.027 0.025 0.011 0.003
4 0.077 0.059 0.049 0.034 0.028 0.026 0.013 0.004
5 0.060 0.046 0.034 0.028 0.026 0.016 0.006
6 0.046 0.034 0.028 0.028 0.019 0.009
7 0.035 0.029 0.027 0.019 0.010
8 0.034 0.027 0.028 0.020 0.010
9 0.033 0.028 0.029 0.022 0.012
10 0.033 0.027 0.028 0.021 0.013
12 0.027 0.027 0.023 0.016
15 0.027 0.024 0.017
20 0.023 0.019
25 0.022 0.021
30 0.023 0.021
40 0.020
50 0.020
60 0.019
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0 1 0.242 0.135 0.101 0.088 0.071 0.063 0.058 0.057 0.054 0.053
2 0.246 0.130 0.097 0.082 0.071 0.057 0.056 0.053 0.051 0.051
3 0.132 0.092 0.079 0.072 0.057 0.052 0.052 0.049 0.051
4 0.093 0.076 0.069 0.059 0.055 0.051 0.049 0.049
5 0.077 0.067 0.058 0.054 0.052 0.049 0.049
6 0.067 0.057 0.056 0.053 0.048 0.049
7 0.056 0.054 0.051 0.047 0.049
8 0.055 0.053 0.051 0.048 0.049
9 0.055 0.052 0.050 0.047 0.049
10 0.055 0.052 0.051 0.048 0.048
12 0.052 0.049 0.049 0.047
15 0.049 0.051 0.048
20 0.049 0.048
25 0.046 0.049
30 0.048 0.050
40 0.049
50 0.048
60 0.047
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0.5 1 0.242 0.136 0.104 0.090 0.079 0.071 0.070 0.071 0.090 0.152
2 0.248 0.132 0.100 0.083 0.076 0.064 0.062 0.060 0.068 0.090
3 0.136 0.097 0.079 0.076 0.061 0.058 0.058 0.061 0.072
4 0.099 0.078 0.071 0.062 0.060 0.057 0.059 0.067
5 0.079 0.070 0.062 0.059 0.057 0.056 0.064
6 0.070 0.060 0.059 0.058 0.056 0.061
7 0.058 0.059 0.058 0.055 0.060
8 0.059 0.057 0.057 0.055 0.059
9 0.059 0.057 0.056 0.055 0.057
10 0.060 0.057 0.056 0.054 0.057
12 0.056 0.056 0.056 0.056
15 0.055 0.056 0.056
20 0.054 0.055
25 0.054 0.056
30 0.054 0.056
40 0.055
50 0.054
60 0.055
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 −0.5 1 0.242 0.135 0.101 0.088 0.071 0.063 0.058 0.057 0.054 0.053
2 0.246 0.130 0.097 0.082 0.071 0.057 0.056 0.053 0.051 0.051
3 0.132 0.092 0.079 0.072 0.057 0.052 0.052 0.049 0.051
4 0.093 0.076 0.069 0.059 0.055 0.051 0.049 0.049
5 0.077 0.067 0.058 0.054 0.052 0.049 0.049
6 0.067 0.057 0.056 0.053 0.048 0.049
7 0.056 0.054 0.051 0.047 0.049
8 0.055 0.053 0.051 0.048 0.049
9 0.055 0.052 0.050 0.047 0.049
10 0.055 0.052 0.051 0.048 0.048
12 0.052 0.049 0.049 0.047
15 0.049 0.051 0.048
20 0.049 0.048
25 0.046 0.049
30 0.048 0.050
40 0.049
50 0.048
60 0.047
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0 1 0.248 0.145 0.111 0.101 0.092 0.096 0.099 0.110 0.177 0.269
2 0.254 0.141 0.105 0.090 0.086 0.077 0.074 0.079 0.110 0.178
3 0.142 0.101 0.089 0.083 0.074 0.073 0.072 0.088 0.134
4 0.102 0.086 0.083 0.073 0.069 0.070 0.080 0.110
5 0.087 0.079 0.073 0.071 0.070 0.075 0.097
6 0.080 0.070 0.070 0.070 0.072 0.088
7 0.070 0.069 0.070 0.071 0.084
8 0.070 0.068 0.069 0.070 0.079
9 0.070 0.068 0.067 0.069 0.077
10 0.071 0.067 0.068 0.068 0.075
12 0.068 0.067 0.069 0.072
15 0.068 0.070 0.071
20 0.066 0.068
25 0.067 0.070
30 0.068 0.069
40 0.066
50 0.067
60 0.068
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0.5 1 0.250 0.146 0.113 0.101 0.097 0.100 0.105 0.122 0.203 0.338
2 0.256 0.143 0.105 0.093 0.087 0.079 0.080 0.083 0.121 0.204
3 0.144 0.102 0.091 0.086 0.075 0.074 0.076 0.095 0.149
4 0.104 0.089 0.083 0.076 0.073 0.073 0.084 0.121
5 0.090 0.081 0.074 0.074 0.073 0.079 0.105
6 0.083 0.072 0.072 0.073 0.077 0.095
7 0.072 0.070 0.074 0.073 0.089
8 0.072 0.070 0.072 0.072 0.084
9 0.072 0.072 0.070 0.072 0.082
10 0.073 0.070 0.070 0.072 0.080
12 0.072 0.070 0.073 0.077
15 0.072 0.072 0.073
20 0.069 0.072
25 0.070 0.073
30 0.071 0.072
40 0.069
50 0.070
60 0.071
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 −0.5 1 0.265 0.168 0.143 0.137 0.142 0.180 0.199 0.226 0.310 0.385
2 0.271 0.158 0.130 0.119 0.115 0.125 0.134 0.150 0.227 0.311
3 0.160 0.127 0.117 0.113 0.111 0.113 0.124 0.178 0.262
4 0.129 0.115 0.109 0.107 0.109 0.112 0.150 0.227
5 0.116 0.109 0.105 0.106 0.106 0.134 0.201
6 0.110 0.105 0.104 0.106 0.123 0.178
7 0.103 0.103 0.104 0.118 0.162
8 0.102 0.102 0.102 0.112 0.148
9 0.105 0.101 0.101 0.109 0.140
10 0.106 0.101 0.100 0.107 0.134
12 0.103 0.101 0.105 0.123
15 0.103 0.102 0.113
20 0.102 0.106
25 0.101 0.104
30 0.102 0.102
40 0.101
50 0.101
60 0.101
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0 1 0.266 0.171 0.152 0.146 0.158 0.210 0.237 0.277 0.407 0.540
2 0.273 0.163 0.137 0.127 0.125 0.138 0.151 0.175 0.277 0.408
3 0.166 0.131 0.122 0.122 0.121 0.128 0.139 0.215 0.329
4 0.133 0.121 0.119 0.117 0.120 0.124 0.175 0.279
5 0.122 0.118 0.115 0.118 0.120 0.153 0.243
6 0.119 0.115 0.115 0.117 0.139 0.215
7 0.113 0.115 0.116 0.130 0.192
8 0.113 0.113 0.114 0.124 0.175
9 0.115 0.114 0.114 0.122 0.163
10 0.116 0.113 0.113 0.119 0.153
12 0.114 0.112 0.117 0.140
15 0.114 0.115 0.127
20 0.114 0.119
25 0.112 0.117
30 0.114 0.115
40 0.113
50 0.112
60 0.114
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0.5 1 0.266 0.172 0.153 0.148 0.159 0.215 0.242 0.281 0.422 0.563
2 0.273 0.163 0.137 0.128 0.126 0.139 0.154 0.178 0.284 0.424
3 0.166 0.132 0.123 0.123 0.123 0.130 0.141 0.220 0.339
4 0.134 0.121 0.119 0.120 0.122 0.126 0.178 0.285
5 0.123 0.118 0.117 0.119 0.121 0.155 0.247
6 0.119 0.116 0.118 0.118 0.141 0.219
7 0.114 0.117 0.117 0.133 0.196
8 0.114 0.115 0.116 0.127 0.179
9 0.116 0.115 0.116 0.123 0.165
10 0.117 0.114 0.115 0.121 0.155
12 0.116 0.114 0.119 0.141
15 0.116 0.116 0.130
20 0.115 0.121
25 0.114 0.118
30 0.117 0.117
40 0.115
50 0.115
60 0.117
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 −0.5 1 0.295 0.218 0.211 0.226 0.249 0.330 0.367 0.402 0.519 0.605
2 0.301 0.202 0.182 0.181 0.186 0.226 0.252 0.286 0.407 0.520
3 0.204 0.181 0.172 0.174 0.190 0.203 0.227 0.334 0.458
4 0.182 0.173 0.169 0.176 0.184 0.199 0.287 0.408
5 0.175 0.171 0.171 0.175 0.184 0.254 0.369
6 0.172 0.167 0.172 0.175 0.229 0.335
7 0.166 0.167 0.172 0.210 0.309
8 0.167 0.166 0.170 0.199 0.288
9 0.167 0.166 0.166 0.191 0.270
10 0.168 0.166 0.165 0.183 0.255
12 0.168 0.166 0.175 0.228
15 0.168 0.172 0.204
20 0.165 0.183
25 0.166 0.174
30 0.168 0.172
40 0.165
50 0.166
60 0.168
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0 1 0.298 0.222 0.216 0.238 0.263 0.355 0.397 0.439 0.574 0.688
2 0.305 0.208 0.184 0.183 0.192 0.237 0.266 0.306 0.442 0.575
3 0.211 0.184 0.177 0.178 0.199 0.213 0.239 0.360 0.501
4 0.186 0.176 0.176 0.180 0.190 0.207 0.306 0.442
5 0.178 0.176 0.176 0.179 0.190 0.268 0.399
6 0.178 0.172 0.177 0.181 0.239 0.361
7 0.173 0.174 0.177 0.221 0.333
8 0.173 0.173 0.174 0.208 0.307
9 0.174 0.174 0.173 0.199 0.288
10 0.175 0.174 0.173 0.191 0.269
12 0.176 0.174 0.181 0.241
15 0.175 0.176 0.214
20 0.173 0.192
25 0.174 0.180
30 0.175 0.176
40 0.173
50 0.174
60 0.175
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Table 3.2: (cont’d)

G → ∞ critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0.5 1 0.300 0.225 0.218 0.238 0.263 0.357 0.399 0.443 0.582 0.700
2 0.305 0.209 0.183 0.183 0.193 0.239 0.269 0.308 0.446 0.584
3 0.212 0.185 0.177 0.178 0.200 0.214 0.241 0.364 0.506
4 0.186 0.177 0.177 0.182 0.192 0.208 0.309 0.447
5 0.179 0.177 0.177 0.180 0.194 0.270 0.402
6 0.179 0.174 0.176 0.182 0.242 0.365
7 0.174 0.174 0.178 0.222 0.335
8 0.173 0.174 0.176 0.209 0.310
9 0.176 0.175 0.173 0.200 0.290
10 0.177 0.175 0.174 0.194 0.270
12 0.177 0.175 0.182 0.242
15 0.176 0.177 0.215
20 0.174 0.194
25 0.175 0.180
30 0.177 0.177
40 0.174
50 0.174
60 0.177
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Table 3.3: Fixed G, Empirical null rejection probabilities, 5% level, T = 60

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 −0.5 1 0.041 0.033 0.027 0.018 0.012 0.004 0.002 0.001 0.000 0.000
2 0.041 0.032 0.029 0.020 0.016 0.008 0.005 0.003 0.001 0.000
3 0.032 0.027 0.021 0.015 0.011 0.007 0.005 0.001 0.000
4 0.027 0.020 0.016 0.011 0.009 0.006 0.002 0.000
5 0.020 0.016 0.011 0.009 0.007 0.003 0.000
6 0.016 0.011 0.008 0.007 0.004 0.000
7 0.010 0.008 0.007 0.004 0.000
8 0.010 0.008 0.007 0.005 0.001
9 0.010 0.009 0.007 0.006 0.001
10 0.010 0.009 0.008 0.005 0.002
12 0.009 0.008 0.006 0.001
15 0.007 0.006 0.003
20 0.006 0.003
25 0.005 0.003
30 0.006 0.003
40 0.004
50 0.003
60 0.004
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0 1 0.050 0.045 0.047 0.043 0.038 0.034 0.030 0.028 0.017 0.001
2 0.050 0.044 0.046 0.044 0.041 0.039 0.034 0.033 0.025 0.015
3 0.044 0.046 0.046 0.043 0.042 0.037 0.038 0.029 0.015
4 0.046 0.045 0.042 0.042 0.038 0.037 0.033 0.021
5 0.045 0.041 0.040 0.039 0.038 0.034 0.022
6 0.041 0.041 0.038 0.039 0.036 0.026
7 0.041 0.040 0.040 0.036 0.027
8 0.041 0.038 0.039 0.037 0.030
9 0.040 0.039 0.040 0.036 0.031
10 0.040 0.039 0.038 0.036 0.031
12 0.039 0.040 0.037 0.032
15 0.040 0.038 0.033
20 0.038 0.035
25 0.037 0.036
30 0.037 0.037
40 0.037
50 0.037
60 0.035
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0.5 1 0.050 0.050 0.051 0.050 0.049 0.050 0.049 0.050 0.051 0.052
2 0.050 0.048 0.051 0.051 0.049 0.048 0.050 0.050 0.050 0.050
3 0.048 0.049 0.050 0.048 0.049 0.047 0.050 0.049 0.051
4 0.049 0.050 0.049 0.049 0.050 0.049 0.048 0.049
5 0.050 0.050 0.049 0.049 0.049 0.049 0.050
6 0.050 0.051 0.050 0.050 0.048 0.049
7 0.049 0.050 0.049 0.048 0.049
8 0.050 0.050 0.047 0.048 0.050
9 0.049 0.050 0.048 0.047 0.050
10 0.049 0.050 0.048 0.047 0.049
12 0.049 0.047 0.048 0.048
15 0.048 0.051 0.049
20 0.049 0.048
25 0.048 0.049
30 0.048 0.051
40 0.051
50 0.050
60 0.048
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 −0.5 1 0.044 0.041 0.038 0.034 0.030 0.020 0.015 0.009 0.002 0.000
2 0.044 0.040 0.041 0.037 0.033 0.026 0.021 0.017 0.005 0.001
3 0.040 0.040 0.038 0.033 0.028 0.023 0.023 0.010 0.003
4 0.040 0.038 0.033 0.029 0.024 0.024 0.013 0.004
5 0.038 0.032 0.029 0.025 0.025 0.016 0.007
6 0.032 0.029 0.024 0.025 0.019 0.009
7 0.030 0.025 0.026 0.019 0.010
8 0.029 0.025 0.026 0.021 0.011
9 0.029 0.026 0.027 0.021 0.012
10 0.029 0.025 0.027 0.021 0.014
12 0.025 0.027 0.023 0.016
15 0.026 0.023 0.018
20 0.023 0.019
25 0.023 0.021
30 0.023 0.021
40 0.021
50 0.021
60 0.020
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0 1 0.050 0.050 0.051 0.050 0.049 0.050 0.049 0.050 0.051 0.052
2 0.050 0.048 0.051 0.051 0.049 0.048 0.050 0.050 0.050 0.050
3 0.048 0.049 0.050 0.048 0.049 0.047 0.050 0.049 0.051
4 0.049 0.050 0.049 0.049 0.050 0.049 0.048 0.049
5 0.050 0.050 0.049 0.049 0.049 0.049 0.050
6 0.050 0.051 0.050 0.050 0.048 0.049
7 0.049 0.050 0.049 0.048 0.049
8 0.050 0.050 0.047 0.048 0.050
9 0.049 0.050 0.048 0.047 0.050
10 0.049 0.050 0.048 0.047 0.049
12 0.049 0.047 0.048 0.048
15 0.048 0.051 0.049
20 0.049 0.048
25 0.048 0.049
30 0.048 0.051
40 0.051
50 0.050
60 0.048
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0.5 1 0.049 0.050 0.052 0.054 0.053 0.057 0.058 0.064 0.085 0.148
2 0.049 0.046 0.053 0.052 0.052 0.053 0.056 0.056 0.065 0.089
3 0.046 0.051 0.051 0.053 0.053 0.053 0.055 0.060 0.072
4 0.051 0.050 0.053 0.052 0.055 0.054 0.059 0.067
5 0.050 0.053 0.054 0.055 0.054 0.056 0.065
6 0.053 0.054 0.054 0.055 0.056 0.062
7 0.052 0.053 0.054 0.055 0.060
8 0.052 0.053 0.054 0.055 0.061
9 0.053 0.054 0.053 0.054 0.059
10 0.053 0.054 0.054 0.054 0.058
12 0.053 0.055 0.056 0.057
15 0.054 0.056 0.057
20 0.055 0.056
25 0.056 0.056
30 0.055 0.056
40 0.056
50 0.056
60 0.056
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 −0.5 1 0.050 0.050 0.051 0.050 0.049 0.050 0.049 0.050 0.051 0.052
2 0.050 0.048 0.051 0.051 0.049 0.048 0.050 0.050 0.050 0.050
3 0.048 0.049 0.050 0.048 0.049 0.047 0.050 0.049 0.051
4 0.049 0.050 0.049 0.049 0.050 0.049 0.048 0.049
5 0.050 0.050 0.049 0.049 0.049 0.049 0.050
6 0.050 0.051 0.050 0.050 0.048 0.049
7 0.049 0.050 0.049 0.048 0.049
8 0.050 0.050 0.047 0.048 0.050
9 0.049 0.050 0.048 0.047 0.050
10 0.049 0.050 0.048 0.047 0.049
12 0.049 0.047 0.048 0.048
15 0.048 0.051 0.049
20 0.049 0.048
25 0.048 0.049
30 0.048 0.051
40 0.051
50 0.050
60 0.048
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0 1 0.049 0.054 0.055 0.060 0.062 0.078 0.086 0.100 0.171 0.265
2 0.049 0.052 0.056 0.058 0.060 0.066 0.069 0.073 0.108 0.176
3 0.052 0.054 0.058 0.058 0.064 0.066 0.069 0.087 0.134
4 0.054 0.057 0.058 0.063 0.064 0.067 0.079 0.110
5 0.057 0.057 0.062 0.066 0.066 0.075 0.098
6 0.057 0.061 0.065 0.065 0.073 0.089
7 0.061 0.063 0.066 0.071 0.084
8 0.063 0.064 0.066 0.070 0.080
9 0.064 0.065 0.064 0.068 0.078
10 0.064 0.065 0.066 0.068 0.077
12 0.065 0.066 0.069 0.074
15 0.067 0.068 0.072
20 0.067 0.068
25 0.069 0.070
30 0.069 0.069
40 0.068
50 0.070
60 0.070
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0.5 1 0.049 0.056 0.057 0.060 0.065 0.083 0.093 0.110 0.198 0.335
2 0.049 0.054 0.056 0.059 0.061 0.069 0.073 0.078 0.119 0.202
3 0.054 0.054 0.058 0.059 0.065 0.068 0.073 0.094 0.148
4 0.054 0.058 0.059 0.065 0.067 0.069 0.083 0.121
5 0.058 0.060 0.064 0.068 0.069 0.080 0.105
6 0.060 0.063 0.066 0.068 0.077 0.096
7 0.065 0.065 0.070 0.074 0.090
8 0.065 0.066 0.069 0.073 0.086
9 0.065 0.068 0.067 0.072 0.083
10 0.065 0.068 0.068 0.071 0.082
12 0.069 0.069 0.072 0.078
15 0.070 0.071 0.075
20 0.069 0.072
25 0.071 0.073
30 0.072 0.072
40 0.071
50 0.073
60 0.073
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 −0.5 1 0.053 0.062 0.075 0.084 0.101 0.157 0.180 0.212 0.305 0.382
2 0.053 0.060 0.070 0.076 0.085 0.112 0.126 0.142 0.225 0.309
3 0.060 0.070 0.076 0.083 0.099 0.105 0.119 0.176 0.261
4 0.070 0.077 0.084 0.095 0.100 0.107 0.149 0.226
5 0.077 0.086 0.093 0.099 0.102 0.135 0.202
6 0.086 0.093 0.097 0.101 0.124 0.178
7 0.092 0.096 0.100 0.118 0.163
8 0.094 0.096 0.098 0.112 0.151
9 0.096 0.097 0.098 0.108 0.142
10 0.096 0.098 0.098 0.106 0.136
12 0.099 0.100 0.104 0.125
15 0.101 0.101 0.115
20 0.102 0.107
25 0.103 0.104
30 0.103 0.102
40 0.103
50 0.103
60 0.104
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0 1 0.054 0.064 0.080 0.091 0.113 0.184 0.220 0.261 0.400 0.537
2 0.054 0.063 0.074 0.081 0.093 0.124 0.141 0.167 0.275 0.406
3 0.063 0.077 0.082 0.089 0.111 0.119 0.134 0.214 0.328
4 0.077 0.083 0.091 0.105 0.113 0.120 0.175 0.278
5 0.083 0.094 0.102 0.110 0.114 0.153 0.243
6 0.094 0.105 0.107 0.112 0.140 0.216
7 0.103 0.107 0.111 0.131 0.193
8 0.102 0.108 0.109 0.125 0.178
9 0.105 0.108 0.110 0.121 0.165
10 0.105 0.109 0.110 0.118 0.155
12 0.110 0.111 0.116 0.141
15 0.112 0.114 0.130
20 0.114 0.120
25 0.114 0.117
30 0.115 0.115
40 0.116
50 0.116
60 0.116
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0.5 1 0.054 0.064 0.081 0.093 0.117 0.188 0.225 0.268 0.416 0.560
2 0.054 0.064 0.075 0.080 0.093 0.124 0.144 0.170 0.282 0.422
3 0.064 0.076 0.083 0.090 0.112 0.121 0.136 0.218 0.338
4 0.076 0.084 0.092 0.107 0.114 0.121 0.178 0.285
5 0.084 0.095 0.103 0.111 0.116 0.155 0.248
6 0.095 0.106 0.108 0.114 0.142 0.220
7 0.104 0.109 0.113 0.133 0.196
8 0.104 0.110 0.110 0.127 0.180
9 0.107 0.109 0.111 0.122 0.168
10 0.107 0.111 0.112 0.120 0.157
12 0.111 0.113 0.118 0.144
15 0.115 0.116 0.132
20 0.116 0.122
25 0.116 0.118
30 0.118 0.117
40 0.117
50 0.118
60 0.119
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 −0.5 1 0.060 0.086 0.125 0.155 0.196 0.304 0.346 0.390 0.515 0.601
2 0.060 0.083 0.106 0.127 0.148 0.209 0.240 0.276 0.404 0.518
3 0.083 0.110 0.124 0.136 0.173 0.193 0.220 0.333 0.457
4 0.110 0.128 0.136 0.161 0.175 0.193 0.286 0.408
5 0.128 0.142 0.156 0.167 0.179 0.254 0.370
6 0.142 0.153 0.161 0.170 0.230 0.336
7 0.154 0.159 0.168 0.211 0.310
8 0.156 0.159 0.165 0.199 0.289
9 0.158 0.160 0.161 0.190 0.272
10 0.158 0.162 0.162 0.182 0.257
12 0.162 0.165 0.174 0.231
15 0.166 0.171 0.206
20 0.166 0.184
25 0.168 0.175
30 0.169 0.172
40 0.168
50 0.170
60 0.171

499



Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0 1 0.060 0.088 0.127 0.164 0.205 0.327 0.376 0.425 0.568 0.686
2 0.060 0.083 0.109 0.129 0.152 0.220 0.255 0.296 0.440 0.573
3 0.083 0.113 0.128 0.142 0.182 0.201 0.231 0.360 0.500
4 0.113 0.133 0.140 0.166 0.181 0.202 0.306 0.442
5 0.133 0.146 0.161 0.172 0.186 0.269 0.400
6 0.146 0.160 0.167 0.175 0.241 0.362
7 0.161 0.165 0.173 0.222 0.334
8 0.164 0.165 0.170 0.208 0.309
9 0.165 0.168 0.167 0.198 0.291
10 0.165 0.170 0.170 0.190 0.272
12 0.171 0.172 0.180 0.243
15 0.173 0.176 0.216
20 0.173 0.192
25 0.175 0.180
30 0.176 0.176
40 0.175
50 0.177
60 0.177
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Table 3.3: (cont’d)

fixed G critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0.5 1 0.060 0.088 0.126 0.165 0.206 0.331 0.379 0.429 0.577 0.697
2 0.060 0.084 0.108 0.131 0.153 0.221 0.256 0.299 0.444 0.582
3 0.084 0.112 0.128 0.142 0.182 0.202 0.234 0.363 0.505
4 0.112 0.133 0.141 0.166 0.181 0.202 0.308 0.447
5 0.133 0.147 0.162 0.173 0.187 0.270 0.403
6 0.147 0.161 0.168 0.176 0.243 0.365
7 0.161 0.165 0.174 0.222 0.336
8 0.164 0.167 0.170 0.209 0.311
9 0.165 0.170 0.168 0.199 0.293
10 0.165 0.171 0.171 0.192 0.273
12 0.171 0.173 0.180 0.245
15 0.175 0.177 0.217
20 0.174 0.194
25 0.177 0.180
30 0.178 0.177
40 0.176
50 0.179
60 0.179
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Table 3.4: Empirical null rejection probabilities with block bootstrap critical values, 5% level, T = 60

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 −0.5 1 0.087 0.065 0.046 0.034 0.023 0.009 0.005 0.003 0.000 0.000
2 0.087 0.067 0.049 0.038 0.029 0.014 0.010 0.007 0.001 0.000
3 0.067 0.050 0.037 0.030 0.018 0.013 0.010 0.002 0.000
4 0.050 0.038 0.029 0.018 0.015 0.011 0.004 0.000
5 0.038 0.028 0.018 0.015 0.013 0.005 0.000
6 0.028 0.018 0.015 0.014 0.006 0.000
7 0.018 0.015 0.014 0.007 0.001
8 0.018 0.014 0.013 0.009 0.001
9 0.018 0.015 0.014 0.009 0.002
10 0.018 0.015 0.014 0.010 0.002
12 0.015 0.013 0.010 0.002
15 0.013 0.010 0.003
20 0.010 0.003
25 0.009 0.003
30 0.009 0.003
40 0.004
50 0.004
60 0.004
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0 1 0.115 0.082 0.072 0.064 0.054 0.045 0.040 0.035 0.021 0.002
2 0.115 0.081 0.069 0.064 0.055 0.051 0.044 0.042 0.029 0.016
3 0.081 0.070 0.063 0.057 0.051 0.044 0.045 0.034 0.016
4 0.070 0.066 0.055 0.052 0.047 0.044 0.036 0.023
5 0.066 0.057 0.050 0.047 0.045 0.039 0.025
6 0.057 0.052 0.047 0.045 0.040 0.027
7 0.053 0.047 0.046 0.041 0.029
8 0.052 0.047 0.046 0.040 0.030
9 0.052 0.046 0.046 0.040 0.031
10 0.052 0.047 0.045 0.041 0.031
12 0.046 0.045 0.042 0.032
15 0.046 0.042 0.034
20 0.041 0.036
25 0.043 0.037
30 0.042 0.037
40 0.038
50 0.037
60 0.036
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0.5 1 0.120 0.083 0.078 0.071 0.063 0.059 0.056 0.055 0.053 0.054
2 0.120 0.082 0.075 0.072 0.063 0.059 0.056 0.055 0.051 0.053
3 0.082 0.075 0.068 0.065 0.057 0.053 0.055 0.052 0.052
4 0.075 0.069 0.064 0.060 0.054 0.052 0.052 0.051
5 0.069 0.064 0.057 0.055 0.052 0.051 0.051
6 0.064 0.059 0.055 0.052 0.052 0.051
7 0.059 0.056 0.052 0.051 0.051
8 0.058 0.055 0.054 0.051 0.050
9 0.057 0.053 0.052 0.051 0.051
10 0.057 0.054 0.053 0.051 0.050
12 0.055 0.054 0.049 0.049
15 0.053 0.051 0.049
20 0.050 0.050
25 0.051 0.050
30 0.049 0.050
40 0.049
50 0.050
60 0.050
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 −0.5 1 0.105 0.076 0.064 0.053 0.044 0.028 0.023 0.015 0.003 0.000
2 0.105 0.078 0.065 0.057 0.048 0.038 0.030 0.025 0.009 0.001
3 0.078 0.066 0.057 0.048 0.037 0.032 0.031 0.014 0.003
4 0.066 0.057 0.047 0.041 0.033 0.030 0.019 0.005
5 0.057 0.048 0.040 0.035 0.032 0.020 0.007
6 0.048 0.039 0.035 0.032 0.022 0.009
7 0.039 0.035 0.031 0.022 0.010
8 0.039 0.035 0.032 0.024 0.012
9 0.039 0.034 0.032 0.024 0.013
10 0.039 0.034 0.032 0.025 0.014
12 0.034 0.033 0.026 0.017
15 0.032 0.025 0.019
20 0.025 0.019
25 0.025 0.020
30 0.025 0.021
40 0.021
50 0.022
60 0.022
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0 1 0.120 0.083 0.078 0.071 0.063 0.059 0.056 0.055 0.053 0.054
2 0.120 0.082 0.075 0.072 0.063 0.059 0.056 0.055 0.051 0.053
3 0.082 0.075 0.068 0.065 0.057 0.053 0.055 0.052 0.052
4 0.075 0.069 0.064 0.060 0.054 0.052 0.052 0.051
5 0.069 0.064 0.057 0.055 0.052 0.051 0.051
6 0.064 0.059 0.055 0.052 0.052 0.051
7 0.059 0.056 0.052 0.051 0.051
8 0.058 0.055 0.054 0.051 0.050
9 0.057 0.053 0.052 0.051 0.051
10 0.057 0.054 0.053 0.051 0.050
12 0.055 0.054 0.049 0.049
15 0.053 0.051 0.049
20 0.050 0.050
25 0.051 0.050
30 0.049 0.050
40 0.049
50 0.050
60 0.050
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0.5 1 0.121 0.084 0.076 0.074 0.066 0.064 0.062 0.066 0.086 0.150
2 0.121 0.083 0.073 0.073 0.064 0.060 0.060 0.059 0.068 0.091
3 0.083 0.073 0.071 0.065 0.060 0.057 0.058 0.062 0.076
4 0.073 0.071 0.065 0.061 0.057 0.056 0.059 0.070
5 0.071 0.066 0.059 0.057 0.055 0.058 0.067
6 0.066 0.061 0.056 0.055 0.057 0.064
7 0.061 0.056 0.057 0.056 0.062
8 0.061 0.056 0.055 0.055 0.061
9 0.060 0.056 0.056 0.055 0.060
10 0.060 0.055 0.057 0.054 0.059
12 0.056 0.055 0.055 0.059
15 0.054 0.057 0.057
20 0.056 0.057
25 0.055 0.058
30 0.055 0.058
40 0.055
50 0.056
60 0.057
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 −0.5 1 0.120 0.083 0.078 0.071 0.063 0.059 0.056 0.055 0.053 0.054
2 0.120 0.082 0.075 0.072 0.063 0.059 0.056 0.055 0.051 0.053
3 0.082 0.075 0.068 0.065 0.057 0.053 0.055 0.052 0.052
4 0.075 0.069 0.064 0.060 0.054 0.052 0.052 0.051
5 0.069 0.064 0.057 0.055 0.052 0.051 0.051
6 0.064 0.059 0.055 0.052 0.052 0.051
7 0.059 0.056 0.052 0.051 0.051
8 0.058 0.055 0.054 0.051 0.050
9 0.057 0.053 0.052 0.051 0.051
10 0.057 0.054 0.053 0.051 0.050
12 0.055 0.054 0.049 0.049
15 0.053 0.051 0.049
20 0.050 0.050
25 0.051 0.050
30 0.049 0.050
40 0.049
50 0.050
60 0.050
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0 1 0.120 0.083 0.076 0.075 0.073 0.083 0.087 0.101 0.168 0.265
2 0.120 0.080 0.071 0.072 0.066 0.070 0.070 0.073 0.109 0.177
3 0.080 0.071 0.072 0.069 0.066 0.066 0.068 0.089 0.135
4 0.071 0.072 0.068 0.067 0.067 0.065 0.078 0.114
5 0.072 0.068 0.068 0.067 0.065 0.075 0.100
6 0.068 0.067 0.064 0.065 0.073 0.092
7 0.066 0.067 0.065 0.071 0.087
8 0.066 0.065 0.066 0.070 0.083
9 0.066 0.065 0.064 0.069 0.080
10 0.066 0.064 0.064 0.069 0.078
12 0.063 0.065 0.069 0.076
15 0.064 0.067 0.073
20 0.066 0.071
25 0.067 0.071
30 0.067 0.070
40 0.068
50 0.069
60 0.070
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0.5 1 0.120 0.082 0.074 0.073 0.072 0.085 0.091 0.108 0.196 0.332
2 0.120 0.080 0.068 0.070 0.067 0.070 0.072 0.076 0.117 0.205
3 0.080 0.070 0.070 0.068 0.068 0.068 0.069 0.094 0.153
4 0.070 0.070 0.068 0.068 0.066 0.067 0.082 0.126
5 0.070 0.068 0.067 0.067 0.065 0.077 0.110
6 0.068 0.067 0.066 0.065 0.076 0.101
7 0.067 0.068 0.066 0.073 0.094
8 0.066 0.067 0.066 0.072 0.089
9 0.067 0.067 0.066 0.072 0.083
10 0.067 0.066 0.065 0.072 0.082
12 0.066 0.065 0.071 0.080
15 0.065 0.070 0.077
20 0.068 0.072
25 0.070 0.074
30 0.069 0.072
40 0.073
50 0.072
60 0.074
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 −0.5 1 0.115 0.081 0.082 0.087 0.100 0.145 0.168 0.203 0.301 0.379
2 0.115 0.078 0.073 0.081 0.083 0.106 0.117 0.134 0.222 0.309
3 0.078 0.075 0.079 0.083 0.094 0.099 0.111 0.175 0.262
4 0.075 0.081 0.084 0.091 0.094 0.102 0.148 0.230
5 0.081 0.085 0.092 0.093 0.098 0.131 0.202
6 0.085 0.091 0.094 0.098 0.120 0.182
7 0.092 0.093 0.096 0.114 0.165
8 0.092 0.093 0.095 0.109 0.153
9 0.091 0.094 0.095 0.107 0.144
10 0.091 0.093 0.095 0.106 0.137
12 0.094 0.095 0.102 0.126
15 0.095 0.100 0.115
20 0.098 0.107
25 0.099 0.105
30 0.100 0.103
40 0.100
50 0.102
60 0.103
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0 1 0.108 0.076 0.080 0.087 0.102 0.164 0.201 0.244 0.394 0.537
2 0.108 0.072 0.071 0.077 0.082 0.110 0.127 0.153 0.269 0.407
3 0.072 0.071 0.074 0.082 0.098 0.107 0.121 0.206 0.330
4 0.071 0.076 0.082 0.092 0.100 0.110 0.170 0.278
5 0.076 0.083 0.092 0.097 0.104 0.149 0.243
6 0.083 0.093 0.098 0.102 0.134 0.217
7 0.094 0.097 0.103 0.127 0.197
8 0.096 0.097 0.102 0.122 0.180
9 0.095 0.098 0.101 0.116 0.165
10 0.095 0.098 0.102 0.114 0.156
12 0.098 0.102 0.111 0.143
15 0.102 0.107 0.132
20 0.107 0.121
25 0.110 0.118
30 0.110 0.115
40 0.115
50 0.116
60 0.117
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0.5 1 0.106 0.073 0.080 0.085 0.101 0.167 0.201 0.251 0.409 0.559
2 0.106 0.071 0.068 0.075 0.081 0.109 0.126 0.155 0.276 0.421
3 0.071 0.071 0.073 0.080 0.098 0.108 0.122 0.209 0.341
4 0.071 0.073 0.081 0.091 0.099 0.110 0.173 0.286
5 0.073 0.083 0.092 0.098 0.105 0.150 0.249
6 0.083 0.093 0.099 0.103 0.136 0.221
7 0.094 0.098 0.103 0.129 0.200
8 0.095 0.097 0.101 0.123 0.182
9 0.096 0.098 0.102 0.118 0.170
10 0.096 0.098 0.101 0.115 0.161
12 0.098 0.103 0.112 0.147
15 0.103 0.110 0.132
20 0.110 0.122
25 0.110 0.119
30 0.112 0.117
40 0.118
50 0.118
60 0.118
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 −0.5 1 0.099 0.083 0.101 0.126 0.159 0.264 0.313 0.367 0.505 0.601
2 0.099 0.077 0.091 0.106 0.119 0.182 0.210 0.256 0.397 0.518
3 0.077 0.092 0.104 0.114 0.150 0.168 0.200 0.327 0.456
4 0.092 0.106 0.114 0.139 0.150 0.175 0.281 0.408
5 0.106 0.117 0.136 0.143 0.160 0.245 0.369
6 0.117 0.134 0.140 0.153 0.219 0.338
7 0.136 0.139 0.149 0.203 0.313
8 0.138 0.140 0.146 0.189 0.291
9 0.138 0.141 0.148 0.180 0.272
10 0.138 0.142 0.147 0.174 0.257
12 0.143 0.148 0.164 0.232
15 0.150 0.158 0.206
20 0.157 0.183
25 0.160 0.173
30 0.161 0.169
40 0.167
50 0.168
60 0.170
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Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0 1 0.095 0.074 0.099 0.126 0.160 0.282 0.339 0.399 0.564 0.687
2 0.095 0.071 0.085 0.101 0.117 0.184 0.219 0.270 0.432 0.573
3 0.071 0.085 0.102 0.112 0.150 0.172 0.206 0.350 0.499
4 0.085 0.103 0.113 0.137 0.152 0.177 0.298 0.445
5 0.103 0.115 0.136 0.145 0.162 0.260 0.399
6 0.115 0.134 0.141 0.154 0.232 0.364
7 0.135 0.140 0.151 0.210 0.333
8 0.137 0.140 0.148 0.195 0.308
9 0.139 0.142 0.147 0.186 0.291
10 0.139 0.143 0.148 0.178 0.272
12 0.144 0.149 0.169 0.245
15 0.151 0.161 0.217
20 0.162 0.192
25 0.166 0.181
30 0.167 0.176
40 0.174
50 0.177
60 0.177

515



Table 3.4: (cont’d)

block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0.5 1 0.093 0.071 0.099 0.124 0.158 0.285 0.341 0.406 0.570 0.697
2 0.093 0.068 0.084 0.099 0.116 0.183 0.220 0.271 0.437 0.582
3 0.068 0.085 0.098 0.110 0.149 0.171 0.207 0.353 0.504
4 0.085 0.101 0.110 0.137 0.153 0.178 0.301 0.447
5 0.101 0.114 0.134 0.145 0.161 0.261 0.405
6 0.114 0.134 0.140 0.154 0.232 0.366
7 0.134 0.139 0.149 0.211 0.337
8 0.136 0.139 0.147 0.196 0.311
9 0.137 0.141 0.146 0.187 0.291
10 0.137 0.142 0.146 0.178 0.275
12 0.144 0.149 0.170 0.247
15 0.151 0.164 0.218
20 0.163 0.193
25 0.167 0.182
30 0.168 0.176
40 0.176
50 0.178
60 0.180
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Table 3.5: Empirical null rejection probabilities with i.i.d. bootstrap critical values, 5% level, T = 60

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 −0.5 1 0.041 0.035 0.026 0.019 0.013 0.004 0.002 0.001 0.000 0.000
2 0.041 0.033 0.029 0.021 0.017 0.009 0.005 0.004 0.001 0.000
3 0.033 0.029 0.021 0.016 0.012 0.007 0.005 0.001 0.000
4 0.029 0.021 0.017 0.011 0.009 0.007 0.003 0.000
5 0.021 0.017 0.012 0.009 0.008 0.003 0.000
6 0.017 0.011 0.008 0.008 0.004 0.000
7 0.012 0.009 0.007 0.005 0.001
8 0.011 0.009 0.007 0.006 0.001
9 0.011 0.008 0.008 0.006 0.002
10 0.011 0.009 0.008 0.005 0.002
12 0.008 0.009 0.006 0.002
15 0.008 0.006 0.003
20 0.006 0.003
25 0.006 0.003
30 0.006 0.003
40 0.004
50 0.004
60 0.004
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0 1 0.048 0.045 0.048 0.044 0.039 0.034 0.030 0.028 0.018 0.002
2 0.048 0.046 0.047 0.045 0.040 0.040 0.036 0.035 0.025 0.016
3 0.046 0.046 0.045 0.044 0.042 0.039 0.039 0.030 0.016
4 0.046 0.045 0.042 0.043 0.039 0.039 0.033 0.023
5 0.045 0.041 0.041 0.040 0.038 0.035 0.025
6 0.041 0.042 0.040 0.040 0.036 0.027
7 0.042 0.040 0.041 0.036 0.029
8 0.042 0.039 0.040 0.036 0.030
9 0.041 0.040 0.040 0.037 0.031
10 0.041 0.040 0.039 0.037 0.031
12 0.039 0.040 0.038 0.032
15 0.040 0.039 0.034
20 0.039 0.036
25 0.039 0.037
30 0.039 0.037
40 0.038
50 0.037
60 0.036
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0.5 1 0.050 0.051 0.051 0.051 0.049 0.051 0.050 0.052 0.052 0.054
2 0.050 0.050 0.050 0.051 0.049 0.051 0.051 0.052 0.052 0.053
3 0.050 0.051 0.048 0.049 0.052 0.049 0.051 0.051 0.052
4 0.051 0.049 0.048 0.051 0.050 0.049 0.051 0.051
5 0.049 0.048 0.051 0.049 0.050 0.050 0.051
6 0.048 0.051 0.050 0.051 0.048 0.051
7 0.051 0.050 0.049 0.049 0.051
8 0.051 0.050 0.047 0.049 0.050
9 0.050 0.049 0.047 0.050 0.051
10 0.050 0.050 0.048 0.050 0.050
12 0.049 0.048 0.050 0.049
15 0.047 0.049 0.049
20 0.049 0.050
25 0.049 0.050
30 0.049 0.050
40 0.049
50 0.050
60 0.050
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 −0.5 1 0.043 0.041 0.040 0.035 0.029 0.020 0.014 0.010 0.002 0.000
2 0.043 0.041 0.039 0.039 0.033 0.027 0.021 0.018 0.006 0.001
3 0.041 0.039 0.038 0.032 0.029 0.024 0.023 0.012 0.003
4 0.039 0.038 0.035 0.030 0.026 0.025 0.013 0.005
5 0.038 0.032 0.029 0.026 0.025 0.015 0.007
6 0.032 0.031 0.025 0.026 0.018 0.009
7 0.030 0.026 0.026 0.019 0.010
8 0.030 0.026 0.027 0.020 0.012
9 0.030 0.026 0.026 0.021 0.013
10 0.030 0.026 0.026 0.022 0.014
12 0.026 0.026 0.022 0.017
15 0.026 0.024 0.019
20 0.025 0.019
25 0.024 0.020
30 0.024 0.021
40 0.021
50 0.022
60 0.022
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0 1 0.050 0.051 0.051 0.051 0.049 0.051 0.050 0.052 0.052 0.054
2 0.050 0.050 0.050 0.051 0.049 0.051 0.051 0.052 0.052 0.053
3 0.050 0.051 0.048 0.049 0.052 0.049 0.051 0.051 0.052
4 0.051 0.049 0.048 0.051 0.050 0.049 0.051 0.051
5 0.049 0.048 0.051 0.049 0.050 0.050 0.051
6 0.048 0.051 0.050 0.051 0.048 0.051
7 0.051 0.050 0.049 0.049 0.051
8 0.051 0.050 0.047 0.049 0.050
9 0.050 0.049 0.047 0.050 0.051
10 0.050 0.050 0.048 0.050 0.050
12 0.049 0.048 0.050 0.049
15 0.047 0.049 0.049
20 0.049 0.050
25 0.049 0.050
30 0.049 0.050
40 0.049
50 0.050
60 0.050

521



Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0.5 1 0.048 0.050 0.053 0.055 0.056 0.059 0.061 0.064 0.087 0.150
2 0.048 0.049 0.052 0.052 0.052 0.056 0.057 0.058 0.069 0.091
3 0.049 0.052 0.051 0.054 0.055 0.055 0.057 0.062 0.076
4 0.052 0.053 0.053 0.053 0.055 0.054 0.059 0.070
5 0.053 0.053 0.055 0.054 0.055 0.058 0.067
6 0.053 0.055 0.055 0.055 0.058 0.064
7 0.053 0.054 0.055 0.057 0.062
8 0.053 0.054 0.054 0.056 0.061
9 0.055 0.053 0.054 0.056 0.060
10 0.055 0.054 0.056 0.055 0.059
12 0.054 0.055 0.057 0.059
15 0.055 0.057 0.057
20 0.055 0.057
25 0.055 0.058
30 0.056 0.058
40 0.055
50 0.056
60 0.057
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 −0.5 1 0.050 0.051 0.051 0.051 0.049 0.051 0.050 0.052 0.052 0.054
2 0.050 0.050 0.050 0.051 0.049 0.051 0.051 0.052 0.052 0.053
3 0.050 0.051 0.048 0.049 0.052 0.049 0.051 0.051 0.052
4 0.051 0.049 0.048 0.051 0.050 0.049 0.051 0.051
5 0.049 0.048 0.051 0.049 0.050 0.050 0.051
6 0.048 0.051 0.050 0.051 0.048 0.051
7 0.051 0.050 0.049 0.049 0.051
8 0.051 0.050 0.047 0.049 0.050
9 0.050 0.049 0.047 0.050 0.051
10 0.050 0.050 0.048 0.050 0.050
12 0.049 0.048 0.050 0.049
15 0.047 0.049 0.049
20 0.049 0.050
25 0.049 0.050
30 0.049 0.050
40 0.049
50 0.050
60 0.050

523



Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0 1 0.050 0.055 0.055 0.060 0.065 0.080 0.085 0.102 0.173 0.265
2 0.050 0.053 0.055 0.058 0.060 0.068 0.071 0.075 0.110 0.177
3 0.053 0.055 0.057 0.059 0.065 0.066 0.070 0.090 0.135
4 0.055 0.058 0.059 0.065 0.065 0.069 0.081 0.114
5 0.058 0.058 0.065 0.067 0.067 0.077 0.100
6 0.058 0.063 0.065 0.067 0.075 0.092
7 0.063 0.064 0.067 0.074 0.087
8 0.065 0.063 0.065 0.072 0.083
9 0.066 0.064 0.064 0.070 0.080
10 0.066 0.065 0.066 0.071 0.078
12 0.066 0.065 0.071 0.076
15 0.065 0.069 0.073
20 0.068 0.071
25 0.068 0.071
30 0.068 0.070
40 0.068
50 0.069
60 0.070
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0.5 1 0.050 0.056 0.057 0.061 0.067 0.086 0.095 0.115 0.201 0.332
2 0.050 0.055 0.056 0.059 0.060 0.072 0.074 0.081 0.122 0.205
3 0.055 0.056 0.060 0.060 0.066 0.071 0.074 0.098 0.153
4 0.056 0.059 0.062 0.067 0.068 0.070 0.087 0.126
5 0.059 0.060 0.066 0.067 0.069 0.080 0.110
6 0.060 0.064 0.067 0.070 0.079 0.101
7 0.066 0.066 0.069 0.076 0.094
8 0.068 0.067 0.068 0.075 0.089
9 0.068 0.067 0.068 0.074 0.083
10 0.068 0.068 0.070 0.072 0.082
12 0.068 0.068 0.072 0.080
15 0.070 0.071 0.077
20 0.071 0.072
25 0.072 0.074
30 0.072 0.072
40 0.073
50 0.072
60 0.074
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 −0.5 1 0.052 0.063 0.073 0.088 0.101 0.157 0.181 0.212 0.303 0.379
2 0.052 0.061 0.068 0.076 0.084 0.112 0.126 0.145 0.226 0.309
3 0.061 0.071 0.076 0.084 0.100 0.106 0.120 0.178 0.262
4 0.071 0.077 0.084 0.097 0.099 0.106 0.151 0.230
5 0.077 0.084 0.093 0.096 0.102 0.135 0.202
6 0.084 0.094 0.096 0.101 0.123 0.182
7 0.094 0.095 0.099 0.116 0.165
8 0.094 0.095 0.098 0.112 0.153
9 0.096 0.094 0.098 0.107 0.144
10 0.096 0.095 0.097 0.106 0.137
12 0.097 0.097 0.106 0.126
15 0.099 0.102 0.115
20 0.099 0.107
25 0.101 0.105
30 0.102 0.103
40 0.100
50 0.102
60 0.103
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0 1 0.054 0.064 0.079 0.095 0.117 0.186 0.220 0.261 0.400 0.537
2 0.054 0.064 0.073 0.083 0.092 0.126 0.143 0.169 0.276 0.407
3 0.064 0.077 0.083 0.092 0.111 0.119 0.135 0.215 0.330
4 0.077 0.084 0.093 0.106 0.111 0.121 0.179 0.278
5 0.084 0.094 0.105 0.110 0.114 0.154 0.243
6 0.094 0.105 0.108 0.113 0.142 0.217
7 0.105 0.107 0.112 0.134 0.197
8 0.105 0.106 0.109 0.127 0.180
9 0.108 0.108 0.109 0.123 0.165
10 0.108 0.110 0.110 0.120 0.156
12 0.111 0.111 0.118 0.143
15 0.112 0.113 0.132
20 0.113 0.121
25 0.116 0.118
30 0.116 0.115
40 0.115
50 0.116
60 0.117
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0.5 1 0.053 0.066 0.080 0.097 0.118 0.190 0.225 0.269 0.414 0.559
2 0.053 0.063 0.074 0.083 0.094 0.128 0.147 0.172 0.283 0.421
3 0.063 0.077 0.085 0.092 0.112 0.124 0.138 0.218 0.341
4 0.077 0.085 0.092 0.107 0.114 0.122 0.180 0.286
5 0.085 0.094 0.108 0.110 0.115 0.158 0.249
6 0.094 0.106 0.111 0.115 0.146 0.221
7 0.108 0.110 0.111 0.136 0.200
8 0.108 0.109 0.113 0.130 0.182
9 0.109 0.110 0.113 0.124 0.170
10 0.109 0.113 0.113 0.121 0.161
12 0.112 0.113 0.118 0.147
15 0.115 0.116 0.132
20 0.116 0.122
25 0.116 0.119
30 0.117 0.117
40 0.118
50 0.118
60 0.118
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 −0.5 1 0.060 0.085 0.123 0.157 0.195 0.306 0.344 0.388 0.512 0.601
2 0.060 0.083 0.106 0.126 0.146 0.209 0.241 0.278 0.404 0.518
3 0.083 0.109 0.122 0.138 0.173 0.193 0.222 0.335 0.456
4 0.109 0.126 0.135 0.160 0.174 0.191 0.288 0.408
5 0.126 0.141 0.156 0.165 0.177 0.254 0.369
6 0.141 0.154 0.160 0.169 0.230 0.338
7 0.155 0.158 0.165 0.213 0.313
8 0.157 0.157 0.162 0.198 0.291
9 0.157 0.160 0.161 0.188 0.272
10 0.157 0.161 0.162 0.182 0.257
12 0.162 0.164 0.173 0.232
15 0.166 0.168 0.206
20 0.165 0.183
25 0.167 0.173
30 0.169 0.169
40 0.167
50 0.168
60 0.170
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0 1 0.060 0.089 0.127 0.164 0.205 0.329 0.374 0.426 0.568 0.687
2 0.060 0.085 0.108 0.131 0.152 0.221 0.253 0.297 0.440 0.573
3 0.085 0.113 0.127 0.142 0.181 0.202 0.235 0.361 0.499
4 0.113 0.131 0.141 0.168 0.181 0.200 0.307 0.445
5 0.131 0.146 0.163 0.171 0.185 0.270 0.399
6 0.146 0.159 0.167 0.177 0.242 0.364
7 0.161 0.166 0.172 0.223 0.333
8 0.164 0.165 0.170 0.207 0.308
9 0.166 0.167 0.169 0.196 0.291
10 0.166 0.168 0.170 0.190 0.272
12 0.169 0.171 0.180 0.245
15 0.174 0.175 0.217
20 0.173 0.192
25 0.176 0.181
30 0.176 0.176
40 0.174
50 0.177
60 0.177
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Table 3.5: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0.5 1 0.060 0.087 0.127 0.166 0.205 0.332 0.378 0.432 0.575 0.697
2 0.060 0.086 0.110 0.130 0.153 0.224 0.255 0.299 0.445 0.582
3 0.086 0.115 0.127 0.141 0.183 0.203 0.235 0.364 0.504
4 0.115 0.133 0.141 0.167 0.181 0.203 0.309 0.447
5 0.133 0.146 0.164 0.173 0.187 0.272 0.405
6 0.146 0.161 0.168 0.177 0.245 0.366
7 0.162 0.165 0.173 0.224 0.337
8 0.166 0.165 0.170 0.209 0.311
9 0.167 0.167 0.168 0.198 0.291
10 0.167 0.169 0.169 0.191 0.275
12 0.170 0.172 0.181 0.247
15 0.174 0.175 0.218
20 0.175 0.193
25 0.177 0.182
30 0.178 0.176
40 0.176
50 0.178
60 0.180
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Table 3.6: Average Type II Error, 5% level, T = 60

ρ M Values of G

2 3 4 5 6 10 12 15 30 60

0 1 0.878 0.783 0.704 0.658 0.630 0.576 0.567 0.557 0.546 0.539
2 0.878 0.783 0.719 0.683 0.656 0.595 0.586 0.578 0.550 0.538
3 0.783 0.713 0.684 0.668 0.615 0.597 0.588 0.556 0.544
4 0.713 0.678 0.672 0.633 0.616 0.597 0.565 0.549
5 0.678 0.669 0.638 0.625 0.608 0.571 0.550
6 0.669 0.643 0.638 0.619 0.579 0.557
7 0.643 0.633 0.623 0.582 0.560
8 0.646 0.635 0.625 0.589 0.564
9 0.641 0.638 0.626 0.596 0.571
10 0.641 0.634 0.626 0.601 0.570
12 0.630 0.628 0.614 0.577
15 0.631 0.626 0.585
20 0.626 0.600
25 0.627 0.614
30 0.627 0.623
40 0.627
50 0.627
60 0.625
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Table 3.6: (cont’d)

ρ M Values of G

2 3 4 5 6 10 12 15 30 60

0.5 1 0.875 0.770 0.692 0.650 0.631 0.572 0.563 0.558 0.540 0.537
2 0.875 0.784 0.712 0.671 0.656 0.598 0.586 0.576 0.552 0.542
3 0.784 0.713 0.677 0.665 0.611 0.604 0.595 0.563 0.545
4 0.713 0.674 0.671 0.634 0.621 0.603 0.573 0.550
5 0.674 0.667 0.638 0.629 0.611 0.580 0.556
6 0.667 0.647 0.639 0.627 0.585 0.564
7 0.648 0.641 0.633 0.592 0.567
8 0.648 0.649 0.633 0.601 0.572
9 0.644 0.646 0.633 0.600 0.576
10 0.644 0.644 0.642 0.611 0.579
12 0.643 0.644 0.621 0.585
15 0.642 0.634 0.597
20 0.640 0.611
25 0.638 0.621
30 0.637 0.630
40 0.639
50 0.638
60 0.636
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Table 3.6: (cont’d)

ρ M Values of G

2 3 4 5 6 10 12 15 30 60

0.8 1 0.869 0.748 0.681 0.640 0.611 0.564 0.556 0.555 0.538 0.527
2 0.869 0.758 0.705 0.658 0.646 0.603 0.583 0.573 0.548 0.537
3 0.758 0.697 0.670 0.666 0.625 0.612 0.597 0.560 0.543
4 0.697 0.675 0.676 0.636 0.631 0.613 0.572 0.549
5 0.675 0.673 0.645 0.639 0.629 0.588 0.554
6 0.673 0.655 0.652 0.637 0.597 0.561
7 0.659 0.652 0.645 0.605 0.566
8 0.656 0.654 0.646 0.613 0.572
9 0.659 0.659 0.651 0.623 0.577
10 0.659 0.661 0.655 0.631 0.587
12 0.661 0.657 0.635 0.595
15 0.657 0.646 0.610
20 0.651 0.629
25 0.656 0.639
30 0.656 0.644
40 0.651
50 0.655
60 0.655
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Table 3.6: (cont’d)

ρ M Values of G

2 3 4 5 6 10 12 15 30 60

0.9 1 0.867 0.739 0.659 0.613 0.580 0.550 0.542 0.536 0.526 0.515
2 0.867 0.752 0.689 0.656 0.637 0.586 0.571 0.558 0.539 0.525
3 0.752 0.688 0.670 0.653 0.622 0.597 0.584 0.548 0.535
4 0.688 0.669 0.654 0.636 0.626 0.607 0.559 0.540
5 0.669 0.661 0.648 0.638 0.624 0.571 0.546
6 0.661 0.652 0.644 0.637 0.584 0.549
7 0.654 0.650 0.644 0.594 0.554
8 0.655 0.648 0.652 0.606 0.560
9 0.657 0.652 0.652 0.617 0.565
10 0.657 0.654 0.649 0.625 0.570
12 0.654 0.652 0.636 0.583
15 0.653 0.647 0.602
20 0.647 0.626
25 0.653 0.638
30 0.654 0.646
40 0.647
50 0.653
60 0.654
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Table 3.7: Daily Data, Weekends Missing, G Block Bootstrap, 5% level

overlapping G block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0 1 0.115 0.084 0.069 0.061 0.061 0.042 0.051 0.035 0.025 0.004
2 0.115 0.082 0.069 0.061 0.061 0.044 0.052 0.043 0.034 0.019
3 0.082 0.070 0.062 0.061 0.046 0.053 0.044 0.038 0.021
4 0.070 0.061 0.061 0.046 0.051 0.045 0.041 0.029
5 0.061 0.059 0.046 0.053 0.047 0.042 0.030
6 0.059 0.046 0.053 0.046 0.043 0.032
7 0.046 0.054 0.046 0.044 0.033
8 0.046 0.054 0.048 0.043 0.034
9 0.045 0.053 0.047 0.043 0.036

10 0.045 0.052 0.047 0.046 0.035
12 0.053 0.047 0.043 0.038
15 0.046 0.043 0.037
20 0.044 0.040
25 0.043 0.041
30 0.044 0.040
40 0.040
50 0.039
60 0.040
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Table 3.7: (cont’d)

overlapping G block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0 1 0.123 0.085 0.076 0.069 0.065 0.059 0.057 0.057 0.055 0.052
2 0.123 0.084 0.075 0.068 0.064 0.057 0.056 0.055 0.055 0.050
3 0.084 0.076 0.068 0.064 0.060 0.055 0.053 0.055 0.053
4 0.076 0.067 0.065 0.058 0.055 0.053 0.053 0.053
5 0.067 0.063 0.058 0.057 0.053 0.052 0.052
6 0.063 0.058 0.058 0.054 0.051 0.053
7 0.058 0.058 0.055 0.052 0.052
8 0.058 0.057 0.055 0.052 0.053
9 0.058 0.057 0.054 0.053 0.053
10 0.058 0.057 0.054 0.054 0.051
12 0.058 0.053 0.053 0.051
15 0.054 0.055 0.053
20 0.053 0.051
25 0.052 0.053
30 0.052 0.052
40 0.053
50 0.052
60 0.051
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Table 3.7: (cont’d)

overlapping G block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.1 0 1 0.126 0.083 0.077 0.070 0.066 0.061 0.056 0.062 0.063 0.071
2 0.126 0.082 0.074 0.069 0.065 0.060 0.056 0.056 0.059 0.061
3 0.082 0.075 0.070 0.064 0.060 0.056 0.055 0.057 0.059
4 0.075 0.070 0.065 0.060 0.056 0.055 0.054 0.058
5 0.070 0.064 0.059 0.058 0.055 0.055 0.056
6 0.064 0.059 0.059 0.056 0.054 0.057
7 0.059 0.059 0.056 0.055 0.055
8 0.059 0.057 0.056 0.056 0.055
9 0.060 0.057 0.054 0.055 0.055

10 0.060 0.057 0.055 0.055 0.054
12 0.058 0.055 0.056 0.054
15 0.055 0.057 0.055
20 0.055 0.054
25 0.054 0.055
30 0.053 0.055
40 0.054
50 0.054
60 0.053
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Table 3.7: (cont’d)

overlapping G block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.3 0 1 0.126 0.083 0.076 0.074 0.067 0.068 0.056 0.073 0.086 0.124
2 0.126 0.083 0.074 0.071 0.065 0.063 0.055 0.061 0.069 0.089
3 0.083 0.074 0.071 0.064 0.061 0.055 0.060 0.063 0.075
4 0.074 0.071 0.064 0.063 0.056 0.059 0.060 0.068
5 0.071 0.064 0.062 0.056 0.059 0.059 0.064
6 0.064 0.063 0.057 0.058 0.059 0.063
7 0.063 0.056 0.059 0.059 0.061
8 0.061 0.056 0.058 0.059 0.060
9 0.063 0.057 0.058 0.058 0.059

10 0.063 0.058 0.058 0.057 0.057
12 0.057 0.058 0.057 0.057
15 0.059 0.058 0.058
20 0.057 0.061
25 0.057 0.060
30 0.058 0.059
40 0.058
50 0.059
60 0.057
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Table 3.7: (cont’d)

overlapping G block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0 1 0.123 0.085 0.074 0.075 0.066 0.075 0.059 0.084 0.129 0.206
2 0.123 0.082 0.070 0.073 0.065 0.066 0.058 0.067 0.088 0.135
3 0.082 0.071 0.071 0.064 0.063 0.056 0.064 0.075 0.105
4 0.071 0.072 0.063 0.063 0.057 0.063 0.066 0.091
5 0.072 0.063 0.064 0.057 0.061 0.065 0.082
6 0.063 0.066 0.056 0.062 0.063 0.077
7 0.066 0.057 0.062 0.063 0.072
8 0.067 0.057 0.061 0.063 0.070
9 0.066 0.057 0.061 0.063 0.067

10 0.066 0.058 0.062 0.063 0.066
12 0.057 0.063 0.064 0.064
15 0.063 0.063 0.064
20 0.063 0.065
25 0.064 0.066
30 0.064 0.064
40 0.063
50 0.063
60 0.063
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Table 3.7: (cont’d)

overlapping G block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0 1 0.114 0.073 0.073 0.080 0.079 0.122 0.123 0.179 0.312 0.452
2 0.114 0.074 0.069 0.071 0.068 0.087 0.089 0.114 0.198 0.327
3 0.074 0.069 0.073 0.069 0.080 0.079 0.093 0.150 0.254
4 0.069 0.074 0.069 0.080 0.075 0.087 0.125 0.209
5 0.074 0.069 0.078 0.075 0.084 0.111 0.180
6 0.069 0.079 0.075 0.082 0.101 0.158
7 0.078 0.077 0.083 0.096 0.145
8 0.079 0.077 0.083 0.092 0.135
9 0.079 0.074 0.084 0.089 0.125

10 0.079 0.075 0.083 0.089 0.119
12 0.076 0.082 0.089 0.110
15 0.083 0.086 0.100
20 0.087 0.095
25 0.089 0.094
30 0.088 0.095
40 0.094
50 0.095
60 0.095
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Table 3.7: (cont’d)

overlapping G block bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0 1 0.099 0.069 0.081 0.100 0.117 0.219 0.242 0.319 0.483 0.616
2 0.099 0.067 0.075 0.083 0.090 0.138 0.156 0.204 0.346 0.496
3 0.067 0.075 0.084 0.087 0.117 0.125 0.156 0.275 0.415
4 0.075 0.087 0.091 0.112 0.114 0.137 0.226 0.360
5 0.087 0.094 0.109 0.112 0.124 0.194 0.318
6 0.094 0.110 0.110 0.121 0.175 0.286
7 0.111 0.109 0.120 0.160 0.258
8 0.112 0.111 0.121 0.150 0.240
9 0.114 0.113 0.119 0.146 0.224

10 0.114 0.113 0.118 0.141 0.207
12 0.113 0.120 0.135 0.185
15 0.122 0.130 0.166
20 0.130 0.151
25 0.133 0.143
30 0.136 0.140
40 0.139
50 0.141
60 0.143

542



Table 3.8: Daily Data, Weekends Missing, i.i.d. Bootstrap, 5% level

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

−0.5 0 1 0.051 0.050 0.050 0.043 0.047 0.037 0.048 0.032 0.021 0.004
2 0.051 0.051 0.049 0.044 0.050 0.040 0.049 0.039 0.031 0.019
3 0.051 0.048 0.046 0.049 0.042 0.048 0.040 0.035 0.021
4 0.048 0.044 0.050 0.043 0.049 0.041 0.036 0.029
5 0.044 0.050 0.041 0.049 0.041 0.038 0.030
6 0.050 0.042 0.049 0.041 0.041 0.032
7 0.041 0.050 0.042 0.039 0.033
8 0.041 0.048 0.041 0.041 0.034
9 0.040 0.050 0.042 0.041 0.036

10 0.040 0.048 0.042 0.042 0.035
12 0.048 0.042 0.041 0.038
15 0.043 0.040 0.037
20 0.041 0.040
25 0.041 0.041
30 0.042 0.040
40 0.040
50 0.039
60 0.040
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Table 3.8: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0 0 1 0.048 0.051 0.052 0.051 0.051 0.054 0.053 0.053 0.053 0.052
2 0.048 0.050 0.051 0.052 0.050 0.051 0.052 0.053 0.054 0.050
3 0.050 0.050 0.051 0.050 0.052 0.051 0.053 0.053 0.053
4 0.050 0.050 0.051 0.052 0.051 0.052 0.051 0.053
5 0.050 0.051 0.052 0.051 0.053 0.051 0.052
6 0.051 0.053 0.053 0.054 0.051 0.053
7 0.052 0.052 0.052 0.051 0.052
8 0.051 0.052 0.051 0.051 0.053
9 0.051 0.051 0.051 0.051 0.053
10 0.051 0.052 0.051 0.051 0.051
12 0.051 0.050 0.053 0.051
15 0.050 0.053 0.053
20 0.053 0.051
25 0.051 0.053
30 0.052 0.052
40 0.053
50 0.052
60 0.051
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Table 3.8: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.1 0 1 0.046 0.051 0.051 0.052 0.050 0.055 0.051 0.058 0.063 0.071
2 0.046 0.050 0.050 0.051 0.049 0.053 0.051 0.056 0.058 0.061
3 0.050 0.050 0.051 0.051 0.054 0.051 0.055 0.054 0.059
4 0.050 0.051 0.050 0.054 0.051 0.054 0.054 0.058
5 0.051 0.050 0.053 0.053 0.055 0.053 0.056
6 0.050 0.053 0.053 0.055 0.053 0.057
7 0.054 0.051 0.054 0.053 0.055
8 0.054 0.051 0.055 0.054 0.055
9 0.054 0.051 0.052 0.055 0.055

10 0.054 0.051 0.053 0.054 0.054
12 0.051 0.052 0.055 0.054
15 0.052 0.055 0.055
20 0.054 0.054
25 0.053 0.055
30 0.054 0.055
40 0.054
50 0.054
60 0.053
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Table 3.8: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.3 0 1 0.047 0.053 0.050 0.054 0.050 0.059 0.050 0.067 0.087 0.124
2 0.047 0.052 0.048 0.053 0.048 0.057 0.049 0.058 0.067 0.089
3 0.052 0.048 0.055 0.051 0.057 0.051 0.056 0.062 0.075
4 0.048 0.054 0.053 0.057 0.052 0.055 0.060 0.068
5 0.054 0.051 0.057 0.051 0.058 0.057 0.064
6 0.051 0.058 0.053 0.058 0.056 0.063
7 0.057 0.051 0.058 0.057 0.061
8 0.058 0.052 0.058 0.058 0.060
9 0.058 0.051 0.057 0.058 0.059

10 0.058 0.052 0.057 0.059 0.057
12 0.051 0.057 0.059 0.057
15 0.057 0.059 0.058
20 0.057 0.061
25 0.057 0.060
30 0.056 0.059
40 0.058
50 0.059
60 0.057
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Table 3.8: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.5 0 1 0.044 0.053 0.049 0.057 0.051 0.069 0.058 0.085 0.131 0.206
2 0.044 0.053 0.049 0.056 0.052 0.061 0.053 0.065 0.088 0.135
3 0.053 0.049 0.057 0.053 0.061 0.052 0.061 0.076 0.105
4 0.049 0.057 0.054 0.059 0.053 0.061 0.069 0.091
5 0.057 0.052 0.059 0.055 0.062 0.065 0.082
6 0.052 0.060 0.056 0.063 0.063 0.077
7 0.060 0.055 0.061 0.063 0.072
8 0.060 0.054 0.062 0.064 0.070
9 0.059 0.055 0.062 0.065 0.067

10 0.059 0.056 0.062 0.065 0.066
12 0.056 0.061 0.065 0.064
15 0.061 0.063 0.064
20 0.062 0.065
25 0.062 0.066
30 0.062 0.064
40 0.063
50 0.063
60 0.063
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Table 3.8: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.8 0 1 0.050 0.061 0.062 0.080 0.080 0.139 0.138 0.194 0.320 0.452
2 0.050 0.061 0.062 0.071 0.071 0.097 0.098 0.127 0.206 0.327
3 0.061 0.063 0.072 0.070 0.087 0.087 0.104 0.157 0.254
4 0.063 0.071 0.071 0.086 0.082 0.093 0.134 0.209
5 0.071 0.070 0.085 0.082 0.091 0.118 0.180
6 0.070 0.087 0.081 0.090 0.108 0.158
7 0.087 0.082 0.091 0.101 0.145
8 0.087 0.084 0.091 0.097 0.135
9 0.088 0.083 0.092 0.095 0.125

10 0.088 0.086 0.092 0.094 0.119
12 0.086 0.091 0.094 0.110
15 0.092 0.094 0.100
20 0.093 0.095
25 0.095 0.094
30 0.095 0.095
40 0.094
50 0.095
60 0.095
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Table 3.8: (cont’d)

iid bootstrap critical value

ρ θ M values of G

2 3 4 5 6 10 12 15 30 60

0.9 0 1 0.057 0.072 0.095 0.126 0.145 0.255 0.273 0.340 0.490 0.616
2 0.057 0.072 0.088 0.101 0.110 0.165 0.182 0.229 0.356 0.496
3 0.072 0.089 0.103 0.105 0.139 0.145 0.177 0.284 0.415
4 0.089 0.103 0.109 0.131 0.135 0.154 0.236 0.360
5 0.103 0.110 0.129 0.128 0.145 0.206 0.318
6 0.110 0.128 0.127 0.139 0.184 0.286
7 0.127 0.127 0.136 0.171 0.258
8 0.130 0.126 0.135 0.162 0.240
9 0.131 0.128 0.134 0.154 0.224

10 0.131 0.129 0.134 0.150 0.207
12 0.130 0.137 0.143 0.185
15 0.140 0.139 0.166
20 0.138 0.151
25 0.141 0.143
30 0.142 0.140
40 0.139
50 0.141
60 0.143
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Figure 3.1: Size Adjusted Power Comparision based on G = 60, M = 30 case

For interpretation of the references to color in this and all other figures, the reader is referred to the
electronic version of this dissertation.
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Figure 3.1: (cont’d)
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Figure 3.1: (cont’d)
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Figure 3.2: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 1
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Figure 3.2: (cont’d)
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Figure 3.3: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 2

555



Figure 3.3: (cont’d)
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Figure 3.4: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 3
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Figure 3.4: (cont’d)
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Figure 3.4: (cont’d)
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Figure 3.4: (cont’d)
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Figure 3.5: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 4
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Figure 3.5: (cont’d)
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Figure 3.5: (cont’d)
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Figure 3.6: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 5
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Figure 3.6: (cont’d)
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Figure 3.6: (cont’d)
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Figure 3.6: (cont’d)
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Figure 3.7: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 6
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Figure 3.8: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 7
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Figure 3.9: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.5, M = 8
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Figure 3.10: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 1
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Figure 3.10: (cont’d)
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Figure 3.10: (cont’d)
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Figure 3.11: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 2
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Figure 3.11: (cont’d)
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Figure 3.11: (cont’d)
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Figure 3.12: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 3
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Figure 3.12: (cont’d)
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Figure 3.12: (cont’d)
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Figure 3.12: (cont’d)
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Figure 3.13: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 4
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Figure 3.13: (cont’d)
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Figure 3.13: (cont’d)
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Figure 3.13: (cont’d)
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Figure 3.14: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 5
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Figure 3.14: (cont’d)
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Figure 3.15: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 6
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Figure 3.16: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 7
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Figure 3.17: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 8
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Figure 3.18: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.8, M = 9
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Figure 3.19: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 1
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Figure 3.19: (cont’d)
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Figure 3.19: (cont’d)
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Figure 3.19: (cont’d)
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Figure 3.20: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 2
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Figure 3.21: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 3
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Figure 3.21: (cont’d)
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Figure 3.22: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 4
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Figure 3.23: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 5
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Figure 3.24: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 6
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Figure 3.25: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 7
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Figure 3.26: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 8
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Figure 3.27: Size Adjusted Power Comparision- Clustering V.S. Smoothing, ρ = 0.9, M = 9
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Appendix A

PROOFS FOR CHAPTER 1

We will use the following notation. Let fv
(
εi
)
=

√
1+λ2

σ2 φ

(
εi

√
1+λ2

σ2

)
, fε

(
εi
)
=

2
σ φ
( εi

σ

)(
1−Φ

(
εiλ
σ

))
, fp

(
εi
)
= p fv

(
εi
)
+ (1− p) fε

(
εi
)
, ln L = ∑ ln fp

(
εi
)
, mi =

φ

(
εiλ
σ

)
1−Φ

(
εiλ
σ

) , θ =
(

β′, λ, σ2, p
)′

, β = k× 1 vector, θ∗∗ =
(

β̂′, λ̂, σ̂2, p̂
)′

, where β̂ =OLS,

λ̂ = 0, σ̂2 = 1
n ∑ ε̂2

i , ε̂i=yi − x′i β̂, p̂ ∈ [0, 1]. ∨ indicates maximum.

Result 1. θ∗∗ is a stationary point of the log likelihood function.

Proof. The first derivative of ln L is :

S (θ) =



∂ ln L
∂β

∂ ln L
∂λ

∂ ln L
∂σ2

∂ ln L
∂p



=



n
∑

i=1

p fv
(
εi
)(1+λ2

σ2 εixi

)
+(1−p) fε

(
εi
)( εixi

σ2 +
mixiλ

σ

)
fp
(
εi
)

n
∑

i=1

p fv
(
εi
)( λ

1+λ2−
λ

σ2 ε2
i

)
−(1−p) fε

(
εi
)( 1

σ miεi
)

fp
(
εi
)

n
∑

i=1

p fv
(
εi
)(
− 1

2σ2+
1+λ2

2σ4 ε2
i

)
+(1−p) fε

(
εi
)(
− 1

2σ2+
1

2σ4 ε2
i +

λ
2σ3 miεi

)
fp
(
εi
)

n
∑

i=1

fv
(
εi
)
− fε

(
εi
)

fp
(
εi
)


.
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When λ = 0,

S (θ)|λ=0 =



1
σ2

n
∑

i=1
εixi

− (1− p)
√

2
π

1
σ

n
∑

i=1
εi

− n
2σ2 + 1

2σ4
n
∑

i=1
ε2
i

0


.

It is straightforward that S
(
θ∗∗

)
= 0, since, with εi = ε̂i,

n
∑

i=1
ε̂i = 0 and

n
∑

i=1
ε̂ixi = 0.

Therefore, θ∗∗ is a stationary point.

Result 2. Evaluated at the stationary point, θ∗∗, the Hessian of the log likelihood is negative

semi-definite with two zero eigenvalues.

Proof. The Hessian evaluated at the stationary point θ∗∗ is

H
(
θ∗∗

)
=



− 1
σ̂2

n
∑

i=1
xix
′
i (1− p̂)

√
2
π

1
σ̂

n
∑

i=1
xi 0 0

(1− p̂)
√

2
π

1
σ̂

n
∑

i=1
x′i − (1− p̂)2 2n

π 0 0

0 0 − n
2σ̂4 0

0 0 0 0


.

When p̂ = 1,

H
(
θ∗∗

)
=



− 1
σ̂2

n
∑

i=1
xix
′
i 0 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0


.

Because − 1
σ̂2 ∑n

i=1 xix
′
i is a negative definite matrix, H

(
θ∗∗

)
is a negative semi-definite

matrix with two zero eigenvalues.
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Now suppose that p̂ 6= 1. Note that the first row of H
(
θ∗∗

)
,

(
− 1

σ̂2
n
∑

i=1
x′i, (1− p̂)

√
2
π

n
σ̂ ,

0, 0
)

, is linearly dependent with the (k + 1)th row of H
(
θ∗∗

)
. Multiplying the first row

by (1− p̂)
√

2
π σ̂ and adding to the (k + 1)throw results in a row vector of zeros. Hence,

H
(
θ∗∗

)
∼



− 1
σ̂2

n
∑

i=1
xix
′
i (1− p̂)

√
2
π

1
σ̂

n
∑

i=1
xi 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0


,

where ∼ stands for an elementary row operation. Again, the first column and the (k +

1)th column of the transferred matrix are linearly dependent. Similarly, multiplying the

first column by (1− p̂)
√

2
π σ̂ and adding to the (k + 1)th column results in a column

vector of zeros. In other words,

H
(
θ∗∗

)
∼



− 1
σ̂2

n
∑

i=1
xix
′
i (1− p̂)

√
2
π

1
σ̂

n
∑

i=1
xi 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0



∼



− 1
σ̂2

n
∑

i=1
xix
′
i 0 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0


.

Elementary operations preserve the rank of a matrix. Hence, the rank of H
(
θ∗∗

)
is k + 1,

i.e., H
(
θ∗∗

)
has two zero eigenvalues.

Now we will show that H(θ∗∗) is negative semi-definite. Let α =
(

α′1, α2, α3, α4
)′

be an arbitrary non-zero (k + 3)× 1 vector, where α1 is a k× 1 vector, and α2, α3, α4 are
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scalars. Then,

α′H
(
θ∗∗

)
α

=−
(

1
σ̂

1√
n

α′1
n
∑

i=1
xi − α2 (1− p)

√
2
π

√
n

)2
− 1

σ̂2 α′1

(
n
∑

i=1
xix
′
i −

1
n

n
∑

i=1
xi

n
∑

i=1
x′i

)
α1

− n
2σ̂4 α2

3

≤0,

because

n
∑

i=1
xix
′
i −

1
n

n
∑

i=1
xi

n
∑

i=1
x′i =

n
∑

i=1

xi −
1
n

n
∑

j=1
xj

xi −
1
n

n
∑

j=1
xj

′

is positive semi-definite. Therefore H
(
θ∗∗

)
is negative semi-definite.

Result 3. θ∗∗ with p̂ ∈ [0, 1) is a local maximizer of the log likelihood function if and only if

∑n
i=1 ε̂3

i> 0.

Proof. From Result 2, we know that the Hessian evaluated at θ∗∗ is negative semi-definite.

Therefore, if the log likelihood decreases in the direction of the two eigenvectors asso-

ciated with zero eigenvalues, θ∗∗ is a local maximizer of the log likelihood. The two

eigenvectors that are associated with the two zero eigenvalue are

(1− p̂)
√

2
π σ̂

0

1

0

0


and



0

0

0

0

1


.
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Let

∆θ = µ



(1− p̂)
√

2
π σ̂

0

1

0

0


+ φ



0

0

0

0

1


=



(1− p̂)
√

2
π σ̂µ

0

µ

0

φ


.

Because λ ≥ 0, µ > 0. ∆θ has only three non-zero arguments. Thus, relevant parame-

ters would be β0, λ, and p. By Taylor’s expansion,

L
(
θ∗ + ∆θ

)
− L

(
θ∗
)

=
1
6

Lβ0β0β0

(
(1− p̂)

√
2
π

σ̂µ

)3
+ 3Lβ0β0λ

(
(1− p̂)

√
2
π

σ̂µ

)2
µ

+ 3Lβ0λλ

(
(1− p̂)

√
2
π

σ̂µ

)
µ2 + 3Lβ0β0p

(
(1− p̂)

√
2
π

σ̂µ

)2
φ

+ 3Lβ0pp

(
(1− p̂)

√
2
π

σ̂µ

)
φ2 + Lλλλ µ3 + 3Lλλpµ2φ + 3Lλpp µφ2 + Lppp φ3

+6Lβ0pλ

(
(1− p̂)

√
2
π

σ̂µ

)
µφ

]
+ o

(
(µ ∨ φ)4

)
= (1− p̂)

1
6π

√
2
π

1

σ̂3

(
−4p̂2 + p̂(8− 3π) + π − 4

) n
∑

i=1
ε̂3
i µ3 + o

(
(µ ∨ φ)4

)
.

The 1st order term is zero because θ∗∗ is a stationary point (Result 1). The 2nd order term

is zero by the definition of the eigenvector. Note that
(
−4p̂2 + p̂(8− 3π) + π − 4

)
has

its maximum, π − 4 < 0, when p̂ = 0. Since µ > 0, L
(
θ∗ + ∆θ

)
− L

(
θ∗
)
< 0 if and only

if ∑ ε̂3
i > 0. Therefore, θ∗∗ with p̂ ∈ [0, 1) is a local maximizer if and only if ∑ ε̂3

i > 0.

When p̂ = 0, the expression goes back to the one in Waldman (1982).

Result 4. θ∗∗ with p̂ = 1 is a local maximizer of the likelihood function if ∑n
i=1 ε̂3

i > 0.
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Proof. The two eigenvectors associated with the zero eigenvalues are

0

1

0

0


and



0

0

0

1


.

Let

∆θ = µ



0

1

0

0


+ φ



0

0

0

1


=



0

µ

0

φ


.

Because λ ≥ 0 and p ≤ 1, µ > 0 and φ < 0. ∆θ has only two non-zero arguments. Thus,

the relevant parameters would be λ and p. By Taylor’s expansion,

L
(
θ∗ + ∆θ

)
− L

(
θ∗
)

=
1

24

[
Lλλλλµ4 + 4Lλλλpµ3φ + 6Lλλpp µ2φ2 + 4Lλpppµφ3 + Lpppp φ4

]
+ o

(
(µ ∨ φ)5

)
= −1

4
µ4 +

1

3σ̂3

√
2
π

n
∑

i=1
ε̂3
i µ3φ− n

π
µ2φ2 + o

(
(µ ∨ φ)5

)
The 1st order term is zero because θ∗∗ is a stationary point (Result 1). The 2nd or-

der term is zero by the definition of the eigenvector. The third order term is zero be-

cause L
(
θ∗ + ∆θ

)
− L

(
θ∗
)

in Result 3 is zero when p̂ = 1. Since φ < 0 and µ > 0,

1
3σ̂3

√
2
π

n
∑

i=1
ε̂3
i µ3φ < 0 when ∑ ε̂3

i > 0. Therefore, if ∑ ε̂3
i > 0, L

(
θ∗ + ∆θ

)
− L

(
θ∗
)
<

0 and θ∗∗ with p̂ = 1 is a local maximizer.
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Appendix B

PROOFS FOR CHAPTER 2

In this Section, we prove that Ω̂
p
→ Ω under Assumption R′′ (footnote on p10) and Theo-

rem 2.2. We use the following notation. Given block resample ω•t = (y•t , x•′t )′ in Section

2.3.1, we let v•0t = x•t (y
•
t − x•′t β) ≡ x•t u•0t and v•t = x•t (y

•
t − x•′t β̂) ≡ x•t u•t . Follow-

ing the notation in Gonçalves and Vogelsang (2011), p• denotes the probability measure

induced by the bootstrap resampling, conditional on a realization of the original time

series. Let Z•T be bootstrap statistics. Then, we write Z•T = op•(1) in probability or

Z•T
p•
→ 0 if for any ε > 0, δ > 0, limT→∞ p[p•(|Z•T | > δ) > ε] = 0. Similarly we

say that Z•T = Op•(1) in probability if for all ε > 0 there exists an Mε < ∞ such that

limT→∞ p[p•(|Z•T | > Mε) > ε] = 0. Finally, we write Z•T
p•
⇒ Z in probability if con-

ditional on the sample, if Z•T weakly converges to Z under p•, for all samples contained

in a set with probability converging to one. Specifically, we write Z•T
p•
⇒ Z in probabil-

ity if and only if E•[ f (Z•T)] → E[ f (Z)] in probability for any bounded and uniformly

continuous function f .

Lemma B1. Let r ≥ p ≥ 1. Suppose ‖wt‖r ≤ ∆ < ∞. Let {at} be a random sequence

which takes values either 0 or 1. If {(at, εt)} is a α-mixing sequence with αm of size −a and

{wt} is Lp−NED on {εt} with νm of size −b, then {atwt − E(atwt),F t} is Lp-mixingale of

size −min{b, ar−2
2r } with uniformly bounded mixingale constants where F t is a nondecreasing

sequence of σ-fields, σ
(

Xt, Xt−1, . . .
)

, Xt = (at, εt).

Proof. We start by defining the following notation. Let Xt = (at, εt),

F t
s = σ

(
Xs, Xs+1, . . . , Xt

)
, Gt

s = σ
(

εs, εs+1, . . . , εt
)

. First we prove that {atwt −

E(atwt)} is Lp-mixingale. Note that
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∥∥∥E
[

atwt − E(atwt)|F
t−m
−∞

]∥∥∥
p

=
∥∥∥E
[

atwt − atE
[
wt|G

t+k
t−k

]
+ atE

[
wt|G

t+k
t−k

]
− E

(
atE

[
wt|G

t+k
t−k

])
+E

(
atE

[
wt|G

t+k
t−k

])
− E(atwt)

∣∣∣F t−m
−∞

]∥∥∥
p

≤
∥∥∥E
[

at
(

wt − E
[
wt|G

t+k
t−k

])∣∣∣F t−m
−∞

]∥∥∥
p

+
∥∥∥E
[

atE
[
wt|G

t+k
t−k

]∣∣∣F t−m
−∞

]
− E

(
atE

[
wt|G

t+k
t−k

])∥∥∥
p

+
∥∥∥E
(

atE
[
wt|G

t+k
t−k

])
− E(atwt)

∥∥∥
p
∵ Minkowski inequality

≤
∥∥∥at

(
wt − E

[
wt|G

t+k
t−k

])∥∥∥
p

+
∥∥∥E
[

atE
[
wt|G

t+k
t−k

]∣∣∣F t−m
−∞

]
− E

(
atE

[
wt|G

t+k
t−k

])∥∥∥
p

+
∥∥∥at

(
wt − E

[
wt|G

t+k
t−k

])∥∥∥
p
∵ Conditional Jensen’s inequality

≤ 2
∥∥∥wt − E

[
wt|G

t+k
t−k

]∥∥∥
p
+
∥∥∥E
[

atE
[
wt|G

t+k
t−k

]∣∣∣F t−m
−∞

]
− E

(
atE

[
wt|G

t+k
t−k

])∥∥∥
p

≤ 2dtνk + 6α

1
p−

1
r

m
∥∥∥atEt+k

t−kwt
∥∥∥

r

∵ {wt} is Lp-NED on {εt} with νm of size −b

and
{

atE
[
wt|G

t+k
t−k

]}
is α-mixing with αm of size −a

≤ 2dtνk + 6α

1
p−

1
r

m ‖wt‖r

≤ max
{

dt, ‖wt‖r
}2νk + 6α

1
p−

1
r

m

 ≡ ctψm
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Also note that∥∥∥(atwt − E(atwt))− E
[

atwt − E(atwt)| F
t+m
−∞

]∥∥∥
p

=
∥∥∥atwt − E

[
atwt| F

t+m
−∞

]∥∥∥
p

≤ 2
∥∥∥atwt − E

[
atwt| F

t+m
t−m

]∥∥∥
p

∵ Davidson (2002, Theorem 10.28)

= 2
∥∥∥atwt − atE

[
wt| F

t+m
t−m

]∥∥∥
p

∵ at is F t+m
t−m −measurable

≤ 2
∥∥∥wt − E

[
wt| F

t+m
t−m

]∥∥∥
p

≤ 2dtνm ≤ ctψm+1

Therefore {atwt − E(atwt)} is Lp−mixingale with ψm of size −min
{

b, ar−p
pr
}

with

ct << max
{

dt, ‖wt‖r
}

. Next we show that mixingale constants are uniformly bounded.

According to the Minkowski and conditional modulus inequalities,∥∥∥wt − E
[
wt|G

t+m
t−m

]∥∥∥
p
≤ ‖wt‖p +

∥∥∥E
[
wt|G

t+k
t−k

]∥∥∥
p

≤ ‖wt‖p + ‖wt‖p

= 2 ‖wt‖p

Since ‖wt‖p ≤ ‖wt‖r is uniformly bounded by assumption, we can set dt equal to a finite

constant for all t. Furthermore, by imposing dt = 2 ‖wt‖p, we can set vm ≤ 1 without loss

of generality. Thus, mixingale constant, ct << max
{

dt, ‖wt‖r
}
≤ max

{
2 ‖wt‖p , ‖wt‖r

}
,

is uniformly bounded under the assumed moment conditions.

Lemma B2. Let xt and wt be Lp-NED on εt with νx
m and νw

m of respective sizes−φx and−φw.

Then {xtwt} is Lp/2-NED of size −min{φx, φw}.

Proof. We follow the proof similar to that of Davidson (2002, Theorem 17.9). Define F t
s =
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σ
(

εs, εs+1, . . . , εt
)

. Note that

∥∥∥xtwt − E
[

xtwt| F
t+m
t−m

]∥∥∥ p
2

=
∥∥∥xtwt − xtE

[
wt| F

t+m
t−m

]
+ xtE

[
wt| F

t+m
t−m

]
− E

[
xt| F

t+m
t−m

]
E
[

wt| F
t+m
t−m

]
+E

[
xt| F

t+m
t−m

]
E
[

wt| F
t+m
t−m

]
− E

[
xtwt| F

t+m
t−m

]∥∥∥ p
2

≤
∥∥∥xtwt − xtE

[
wt| F

t+m
t−m

]∥∥∥ p
2
+
∥∥∥xtE

[
wt| F

t+m
t−m

]
− E

[
xt| F

t+m
t−m

]
E
[

wt| F
t+m
t−m

]∥∥∥ p
2

+
∥∥∥E
[

xt| F
t+m
t−m

]
E
[

wt| F
t+m
t−m

]
− E

[
xtwt| F

t+m
t−m

]∥∥∥ p
2

∵ Minkowski’s Inequality

=
∥∥∥xt

(
wt − E

[
wt| F

t+m
t−m

])∥∥∥ p
2
+
∥∥∥(xt − E

[
xt| F

t+m
t−m

])
E
[

wt| F
t+m
t−m

]∥∥∥ p
2

+
∥∥∥E
[(

xt − E
[

xt| F
t+m
t−m

]) (
wt − E

[
wt| F

t+m
t−m

])∣∣∣F t+m
t−m

]∥∥∥ p
2

≤ ‖xt‖p
∥∥∥wt − E

[
wt| F

t+m
t−m

]∥∥∥
p
+
∥∥∥xt − E

[
xt| F

t+m
t−m

]∥∥∥
p
‖wt‖p

+
∥∥∥xt − E

[
xt| F

t+m
t−m

]∥∥∥
p

∥∥∥wt − E
[

wt| F
t+m
t−m

]∥∥∥
p

∵ Hölder’s inequality and Conditional Jensen’s inequality

≤ ‖xt‖p dw
t νw

m + dx
t νx

m ‖wt‖p + dx
t νx

mdw
t νw

m

≤ max
{
‖xt‖p dw

t , ‖wt‖p dx
t , dx

t dw
t
} (

νw
m + νx

m + νx
mνw

m
)
≡ dtνm

In other words, dt = max
{
‖xt‖p dw

t , ‖wt‖p dx
t , dx

t dw
t

}
and νm = νw

m + νx
m + νx

mνw
m =

O
(

m−min{φx,φw}
)

.

Lemma B3. Define f (w) : T 7→ R,T ⊂ Rk, a function of k real variables, and ρ(w1, w2) =

∑k
i=1

∣∣∣w1
i − w2

i

∣∣∣ that measures the distance between points w1 and w2. Let {wt} be a k di-

mensional random sequence, of which each element is L2 − NED of size −b on {εt}. Suppose

that f (wt) is L2-bounded. Further assume that
∣∣∣ f (w1

t )− f (w2
t )
∣∣∣ ≤ Bt(w

1
t , w2

t )ρ(w
1
t , w2

t )
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a.s. where ρ() and Bt() satisfy the following conditions: Bt(w
1
t , w2

t ) : T × T 7→ R+for

1 ≤ q ≤ 2,
∥∥∥ρ
(

wt, E
[
wt|G

t+m
t−m

])∥∥∥
q
< ∞,

∥∥∥B
(

wt, E
[
wt|G

t+m
t−m

])∥∥∥
q/(q− 1)

< ∞, and for

r > 2,
∥∥∥B
(

wt, E
[
wt|G

t+m
t−m

])
ρ
(

wt, E
[
wt|G

t+m
t−m

])∥∥∥
r
< ∞. Then, { f (wt)} is L2 − NED

on {εt} of size −b(r− 2)/(2(r− 1)).

Proof. See Davidson (2002, Theorem 7.16).

Lemma B4. For some nondecreasing sequence of σ-fields {F t} and for some p > 1, let
{

wtF t
}

be an Lp-mixingale with mixingale coefficients ψmand mixingale constants ct. Then letting Sj =

∑
j
t=1 wt and Ψ = ∑∞

m=1 ψm, it follows that

∥∥∥∥∥max
j≤T

∣∣∣Sj
∣∣∣∥∥∥∥∥

p
≤ KΨ

(
T
∑

t=1
cβ
t

) 1
β

, β = min {p, 2}

for some generic constant K.

Proof. See Hansen (1991),Hansen (1992).

Proof of footnote on page 10: First we show that
{

vtv′t+j − E
(

vtv′t+j

)}
is L(2 + δ)/2-

mixingale of size −1 with uniformly bounded mixingale constants. Note that under the

Assumption R′′-4, {v∗t } is L2+δ-NED on {εt} of size −1, which implies that {v∗t+j}

is L2+δ-NED on {εt} of size −1 as well. See Davidson (2002, Theorem 17.10). Then{
v∗t v∗′t+j

}
is L(2 + δ)/2-NED on {εt} of size −1 by Lemma B2. Also note that under the

Assumption R′′-5, {(at, εt)} is α-mixing of size −(2 + δ)(r + δ)/(r− 2) and∥∥∥v∗t v∗′t+j

∥∥∥2+δ
2
≤
∥∥v∗t

∥∥
2+δ

∥∥∥v∗t+j

∥∥∥
2+δ

≤ ∆2 < ∞.

Using Lemma B1, this implies that {atv∗t v∗t+j − E(atv∗t v∗t+j)} is L(2 + δ)/2-mixingale of

size−1 with uniformly bounded mixingale constants. In other words, {vtvt+j−E(vtvt+j)}

is L(2 + δ)/2-mixingale of size −1. Secondly, we show that Ω̃
p
→ EΩ̃. Using Lemma B4, we
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can write∥∥∥∥∥∥ 1
T

T−j
∑

t=1

(
vtv′t+j − E(vtv′t+j)

)∥∥∥∥∥∥
(2 + δ)/2

≤ 1
T

KΨ

T−j
∑

t=1
c
min{2+δ

2 ,2}
t

max{ 2
2+δ

,12}

≤ K′T

(
−1+max{ 2

2+δ
,12}
)

uniformly in T for some finite constant K′. The last inequality follows by the fact that ct

is uniformly bounded constants and Ψ < ∞ which is due to ψm being of size −1. Hence,

1
M

T

(
1−max

{
2

2+δ
,12

}) ∥∥Ω̃− EΩ̃
∥∥

2+δ
2

=
1
M

T

(
1−max

{
2

2+δ
,12

}) ∥∥∥∥∥∥
T
∑

j=−T
k
(

j
M

)
1
T

T−j
∑

t=1

(
vtv′t+j − E

(
vtv′t+j

))∥∥∥∥∥∥2+δ
2

≤ 1
M

T

(
1−max

{
2

2+δ
,12

})
T
∑

j=−T

∣∣∣∣k( j
M

)∣∣∣∣
∥∥∥∥∥∥ 1

T

T−j
∑

t=1

(
vtv′t+j − E

(
vtv′t+j

))∥∥∥∥∥∥2+δ
2

∵ Minkowski’s inequality

≤ K′
∫

R
|k(x)| dx < ∞,

uniformly in T, where

MT

(
max

{
2

2+δ
,12

})
−1

= MT
− 1

2q+1 T
1

2q+1+max{− δ
2+δ

,−1
2}

= O(1)T
max

{
2(1−qδ)

(2q+1)(2+δ)
, 1−2q
(2q+1)2

}
= O(1)o(1) = o(1)

since max {1/2, 1/δ} < q. Therefore
∥∥Ω̃− EΩ̃

∥∥
2+δ

2
→ 0, and thus Ω̃

p
→ EΩ̃ by Markov’s

inequality. Thirdly, we prove that EΩ̃
p
→ Ω so that combining with above result, Ω̃

p
→ Ω.
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By definition we can write

Ω− EΩ̃

= (1− k (0))
1
T

T
∑

t=1
E
(

vtv′t
)
+

1
T

M
∑

j=1

(
1− k

(
j

M

)) T−j
∑

t=1

(
E
(

vtv′t+j

)
+ E

(
vt+jv

′
t
))

+
1
T

T−1
∑

j=M+1

T−j
∑

t=1

(
E
(

vtv′t+j

)
+ E

(
vt+jv

′
t
))

Note that ∥∥∥vtv′t
∥∥∥2+δ

2
≤
∥∥∥v∗t v∗′t

∥∥∥2+δ
2
≤
∥∥v∗t

∥∥
2+δ

∥∥v∗t
∥∥

2+δ ≤ ∆2 < ∞,

which implies that 1/T ∑T
t=1 E

(
vtv′t

)
= Op(1). Therefore, k(0)→ 1 implies that the first

term vanishes as T → ∞. Showing the second term being op(1) is the same as showing

that the equation below is op(1).∣∣∣∣∣∣
M
∑

j=1

[
1− k

(
j

M

)]
1
T

T−j
∑

t=1
E
(

vtv′t+l

)∣∣∣∣∣∣ ≤
M
∑

j=1

∣∣∣∣1− k
(

j
M

)∣∣∣∣ 1
T

T−j
∑

t=1

∣∣∣E (vtv′t+l

)∣∣∣
Using Lemma B1,

{
vt,F t

}
is L2+δ-mixingale of size−1 with uniformly bounded mixin-

gale constants, where F t
s = σ

(
Xt, Xt−1, . . . , Xs

)
, Xt = (at, εt). Then, we can write

∣∣∣E (vtv′t+l

)∣∣∣ = ∣∣∣∣E(E
[

vtv′t+j

∣∣∣F t+j−[j/2]
−∞

])∣∣∣∣
=

∣∣∣∣E(vtE
[

v′t+j

∣∣∣F t+j−[j/2]
−∞

])∣∣∣∣
≤ ‖vt‖2

∥∥∥∥E
[

v′t+j

∣∣∣F t+j−[j/2]
−∞

]∥∥∥∥
2

≤ ∆dtν[j/2]

≤ Kν[j/2]. (eqB.1)
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Hence,∣∣∣∣∣∣
M
∑

j=1

[
1− k

(
j

M

)]
1
T

T−j
∑

t=1
E
(

vtv′t+l

)∣∣∣∣∣∣ ≤
M
∑

j=1

∣∣∣∣1− k
(

j
M

)∣∣∣∣ 1
T

T−j
∑

t=1

∣∣∣E (vtv′t+l

)∣∣∣
≤

M
∑

j=1

∣∣∣∣1− k
(

j
M

)∣∣∣∣ 1
T

T−j
∑

t=1
Kν[j/2]

=
T − j

T
K

M
∑

j=1

∣∣∣∣1− k
(

j
M

)∣∣∣∣ ν[j/2] (eqB.2)

If we show that (eqB.2) converges to zero then we are done with the second term. We use

the same approach as done in the proof of Gallant and White (1995, Lemma 6.6). First

define µ to be a counting measure on the positive integers. Then, we can write

M
∑

i=1

∣∣∣∣1− k
(

j
M

)∣∣∣∣ ν[j/2] =
∫ ∞

0
1 {j ≤ M}

∣∣∣∣1− k
(

j
M

)∣∣∣∣ ν[j/2]. (eqB.3)

Note that for each j ∈ N, limT→∞ k (j/M)→ 1 implies

lim
T→∞

1 {j ≤ M}
∣∣∣∣1− k

(
j

M

)∣∣∣∣ ν[j/2]dµ(j)→ 0. (eqB.4)

Also note that since |1− k(j/M)| is bounded,

1 {j ≤ M}
∣∣∣∣1− k

(
j

M

)∣∣∣∣ ν[j/2] ≤ Kν[j/2]

for some finite constant K. Kν[j/2] is integrable because νm is of size −1. Therefore by the

dominated convergence theorem, (eqB.4) implies that (eqB.3) converges to zero as well.

This in turn implies that (eqB.2) converges to zero as T → ∞. Hence the second term

vanishes as T → ∞. Now consider the third term. It is sufficient to show that∣∣∣∣∣∣ 1
T

T−1
∑

j=M+1

T−j
∑

t=1
E
(

vtv′t+j

)∣∣∣∣∣∣→ 0 as T → ∞.
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Using (eqB.1),∣∣∣∣∣∣ 1
T

T−1
∑

j=M+1

T−j
∑

t=1
E
(

vtv′t+j

)∣∣∣∣∣∣ ≤ 1
T

T−1
∑

j=M+1

T−j
∑

t=1

∣∣∣E (vtv′t+j

)∣∣∣
≤ 1

T

T−1
∑

j=M+1

T−j
∑

t=1
Kν[j/2]

=
1
T

T−1
∑

j=1

T−j
∑

t=1
Kν[j/2] −

1
T

M
∑

j=1

T−j
∑

t=1
Kν[j/2].

The two terms above converge to the same limit as T → ∞ by the similar argument as

above. Hence, the third term converges to zero as well. Therefore we’ve shown that

EΩ̃
p
→ Ω. Combining with above result, Ω̃

p
→ Ω. Lastly, note that given assumptions

are sufficient for Andrews (1991, Assumption B). Hence,
√

T/M
(
Ω̂− Ω̃

)
= Op(1). See

Andrews (1991, Proof of Theorem 1(1)). Therefore Ω̂ − Ω̃ = op(1) because M1+2q/T =

O(1), q ∈ (max{1/2, 1/δ}, ∞). Therefore, Ω̂
p
→ Ω.

Lemma B5. Suppose that {wt − E(wt)} is a weakly stationary L2−mixingale with ‖wt‖p ≤

∆ < ∞ for some p > 2 such that its mixingale coefficients ψm satisfy ∑∞
1 ψm < ∞ and its

mixingale constants are uniformly bounded. Let {w•t : t = 1, . . . , T} denote an MBB resample

of {wt : t = 1, . . . , T} with block size l satisfying either of the two following conditions: (a) l is

fixed as T → ∞, or (b) l → ∞ as T → ∞ with l = o(T). Then, for any η > 0, as T → ∞,

p•
 sup

r∈[0,1]

∣∣∣∣∣∣T−1
[rT]
∑

t=1

(
w•t − E•

(
w•t
))∣∣∣∣∣∣ > η

 = op(1).

Proof. See Gonçalves and Vogelsang (2011, Proof of Lemma A.4).

Lemma B6. Under Assumption R′,

(a) For any fixed l such that 1 ≤ l < T, T → ∞,

p lim
T→∞

Ω•T = Γ0 +
l

∑
j=1

(
1− j

l

)(
Γj + Γ′j

)
≡ Ωl ,

where Γj = E
(

vtv′t−j

)
.
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(b) Let l = lT → ∞ as T → ∞ such that l2/T → 0. Then

p lim
T→∞

Ω•T = Γ0 +
∞
∑

j=1

(
Γj + Γ′j

)
≡ Ω,

Proof. See Gonçalves and Vogelsang (2011, Proof of Lemma A.2).

Lemma B7. Suppose Assumption R′′ holds and let Ωl and Ω as defined in Lemma B6 be positive

definite matrices. It follows that

(a) For any fixed l such that 1 ≤ l < T, T → ∞,

Z•T(r)⇒
p• ΛlWk(r),

in probability where Λl is the square root matrix of Ωl .

(b) Let l = lT → ∞ as T → ∞ such that l2/T → 0. Then

Z•T(r)⇒
p• ΛlWk(r),

in probability where Λ is the square root matrix of Ω.

Proof. See the proof of Gonçalves and Vogelsang (2011, Lemma A.3). The sufficient condi-

tion for the proof is that {vt} is L2+δ −mixingale with size −1 with uniformly bounded

mixing coefficients, which is implied by Assumption R′′ and Lemma B1.

Proof of Theorem 2.2: Define the vector ωt = (yt, x′t)
′ that collects dependent and ex-

planatory variables. Let l ∈ N(1 ≤ l ≤ T) be a block length and let Bt,l = {ωt, ωt+1, . . . ,

ωt+l−1} be the block of l consecutive observations starting at ωt. Draw k0 = T/l blocks

randomly with replacement from the set of overlapping blocks {B1,l , . . . , BT−l+1,l} to

obtain a bootstrap resample denoted as ω•t = (y•t , x•′t )′, t = 1, . . . , T. We want to show

1. T−1 ∑
[rT]
t=1 x•t x•′t ⇒

p• rQ• for some Q•

2. T−1/2 ∑
[rT]
t=1 v•t ⇒

p• Λ•Wk(r) for some Λ•
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is true under Assumption R′ with Assumption R′ 3-5 strengthened to Assumption R′′ 3-5.

Let p• denote the probability measure induced by the bootstrap resampling conditional

on a realization of the original time series. Assumption R′ 1-2 and Lemma B3 implies

that {x∗t x∗′t } is L2 − NED of size −1. Then from Lemma B1, {xtx′t −Q} is L2-mixingale

of size −1 with uniformly bounded mixingale constants. Also Assumption R′ 1 implies

that
∥∥∥xtx′t

∥∥∥
r
≤ ∆, r > 2. Therefore Lemma B5 applies and the first condition follows

straightforwardly. Now we prove the second condition. Given our definitions v•0t and

v•t , we can write

v•t = v•0t − x•t x•′t
(

β̂− β
)

,

which implies that

T−1/2
[rT]
∑

t=1
v•t

= T−1/2
[rT]
∑

t=1

(
v•0t − E•

(
v•0t
))

+ T−1/2
[rT]
∑

t=1
E•
(

v•0t
)
− T−1/2

[rT]
∑

t=1
x•t x•′t

(
β̂− β

)
≡ Z•T(r) + A•1T(r)− A•2T(r).

We show the second condition in the following two steps.

Step 1. We show that Z•T(1)⇒
• Λ•Wk(r).

Proof of Step 1. Straightforward from Lemmas B6-B7 and Assumption R′′.

Step 2. We show that supr∈[0,1]

∣∣∣A•1T(r)− A•2T(r)
∣∣∣ = op•(1) in probability.

Proof of Step 2. Note that
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A•1T(r)− A•2T(r)

= T−1/2
[rT]
∑

t=1
E•
(

x•t
(

y•t − x•′t β̂ + x•′t β̂− x•′t β
))
− T−1/2

[rT]
∑

t=1
x•t x•′t

(
β̂− β

)
= T−1/2

[rT]
∑

t=1
E•
(

x•t
(

y•t − x•′t β̂
))

+ T−1/2
[rT]
∑

t=1
E•
(

x•t x•′t β̂− x•t x•′t β
)

− T−1/2
[rT]
∑

t=1
x•t x•′t

(
β̂− β

)
= T−1/2

[rT]
∑

t=1
E•
(
v•t
)
− T−1/2

[rT]
∑

t=1

(
x•t x•′t − E•

(
x•t x•′t

)) (
β̂− β

)
≡ B•1T(r)− B•2T(r).

It is sufficient to show that supr∈[0,1]

∣∣∣B•1T(r)
∣∣∣ = op•(1) and supr∈[0,1]

∣∣∣B•2T(r)
∣∣∣ =

op•(1), in probability.

Step 2-1. We prove that supr∈[0,1]

∣∣∣B•1T(r)
∣∣∣ = op•(1).

B•1T(r) = T−1/2
[rT]
∑

t=1
E•
(
v•t
)

= T−1/2
Mr
∑

m=1

•
∑

s=1
E•
(

v̂Im+s
)

= T−1/2
Mr
∑

m=1

l
∑

s=1
E•
(

v̂Im+s
)
− T−1/2

l
∑

s=B+1
E•
(

v̂IMr+s

)
≡ b•1T − b•2T ,

where Mr = [([rT]− 1)/l] + 1 and B = min{l, [rT]− (m− 1)l}. Note that Mr ∈ {1, . . . , k0},

B ∈ {1, . . . , l}, and I1, . . . , Ik0
are i.i.d. uniformly distributed on {0, 1, . . . , T − l} (See
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Paparoditis and Politis (2003)).

sup
r∈[0,1]

∣∣∣b•1T

∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
Mr
∑

m=1

l
∑

s=1
E•
(

v̂Im+s
)∣∣∣∣∣∣

= sup
r∈[0,1]

∣∣∣∣∣∣T−1/2
Mr
∑

m=1

l
∑

s=1

1
T − l + 1

T−l
∑

j=0
v̂j+s

∣∣∣∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣∣T−1/2Mr
l

∑
s=1

1
T − l + 1

T−l
∑

j=0
v̂j+s

∣∣∣∣∣∣
≤ T−1/2k0

∣∣∣∣∣∣ 1
T − l + 1

l
∑

s=1

T−l
∑

j=0
v̂j+s

∣∣∣∣∣∣
≤ T−1/2k0

∣∣∣∣∣ 1
T − l + 1

(
l

T
∑

t=1
v̂t −

[
(l − 1)v̂1 + (l − 2)v̂2 + · · ·+ v̂l−1

+(l − 1)v̂T + (l − 2)v̂T−1 + · · ·+ v̂T−l+2
])∣∣∣

= T−1/2k0

∣∣∣∣ 1
T − l + 1

(
(l − 1)v̂1 + (l − 2)v̂2 + · · ·+ v̂l−1 + (l − 1)v̂T

+(l − 2)v̂T−1 + · · ·+ v̂T−l+2
)∣∣∣ ∵ OLS FOC

= T−1/2k0Op(
l2

T
) ∵ v̂t is uniformly bounded in probability (See below)

= Op

(
l√
T

)
= op(1) ∵ l is fixed or

l2

T
→ 0.

We show that v̂t is uniformly bounded in probability. Given our definitions,

v̂t = xt(yt − x′t β̂) = vt − xtx′t(β̂− β).

First note that vt and xtx′t are uniformly L q
2
−bounded, which implies that both are uni-
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formly bounded in probability.

‖vt‖q =
∥∥atv∗t

∥∥
q ≤

∥∥v∗t
∥∥

q ≤ ∆ < ∞∥∥∥xtx′t
∥∥∥q

2
=

∥∥∥∥atx∗t x∗
′

t

∥∥∥∥q
2
≤
∥∥∥∥x∗t x∗

′
t

∥∥∥∥q
2
≤
∥∥x∗t

∥∥
q

∥∥∥∥x∗
′

t

∥∥∥∥
q
≤ ∆2 < ∞

Also, we know that
∣∣β̂− β

∣∣ = op(1). Hence β̂− β is uniformly bounded in probability.

Therefore v̂t is uniformly bounded in probability.
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Finally, note that

sup
r∈[0,1]

∣∣∣b•2T

∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

E•
(

v̂IMr+s

)∣∣∣∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

E•
(

vIMr+s − xIMr+sxIMr+s′(β̂− β)

)∣∣∣∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

E•
(

vIMr+s

)
− T−1/2

l
∑

s=B+1
E•
(

xIMr+sxIMr+s′(β̂− β)

)∣∣∣∣∣∣
≤ sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

E•
(

vIMr+s

)∣∣∣∣∣∣
+ sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

E•
(

xIMr+sxIMr+s′(β̂− β)

)∣∣∣∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

E•
(

vIMr+s

)∣∣∣∣∣∣
+ sup

r∈[0,1]

∣∣∣∣∣∣T−1
l

∑
s=B+1

E•
(

xIMr+sxIMr+s′
)∣∣∣∣∣∣
∣∣∣√T(β̂− β)

∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

1
T − l + 1

T−l
∑

j=0
vj+s

∣∣∣∣∣∣
+ sup

r∈[0,1]

∣∣∣∣∣∣T−1
l

∑
s=B+1

1
T − l + 1

T−l
∑

j=0

(
xj+sxj+s′

)∣∣∣∣∣∣
∣∣∣√T(β̂− β)

∣∣∣
≤ T−1/2

T − l + 1

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

vj+s

∣∣∣∣∣∣
+

T−1/2

(T − l + 1)

T−l+1
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

xj+sx′j+s

∣∣∣∣∣∣ ∣∣(β̂− β
)∣∣
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In terms of the first term,

E

k
1
2
0

T−1/2

T − l + 1

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

vj+s

∣∣∣∣∣∣


≤ E

k
1
2
0 T−1/2

T − l + 1

T−l
∑

j=0
max

1≤i≤l

∣∣∣∣∣∣
j+l
∑

s=j+i
vs

∣∣∣∣∣∣


≤
k

1
2
0 T−1/2

T − l + 1

T−l
∑

j=0

∥∥∥∥∥∥ max
1≤i≤l

∣∣∣∣∣∣
j+l
∑

s=j+i
vs

∣∣∣∣∣∣
∥∥∥∥∥∥

2+δ

≤
k

1
2
0 T−1/2

T − l + 1

T−l
∑

j=0
K′l

1
2

= O(1) ∵
k0l
T
→ 1

The first inequality is obvious because for r ∈ [0, 1], B ∈ {1, . . . , l}. Using Lemma B4

and the fact that {vt} is L2+δ-mixingale of size −1 with uniformly bounded mixingale

constants due to Lemma B1, the third inequality is also straightforward. Therefore by the

Markov inequality,

T−1/2

T − l + 1

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=B+1

vj+s

∣∣∣∣∣∣ = Op(k
−1

2
0 ) = op(1).

Now we consider the second term.

T−1/2

(T − l + 1)

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

xj+sx′j+s

∣∣∣∣∣∣ ∣∣β̂− β
∣∣

=
T−1/2

(T − l + 1)

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

{(
xj+sx′j+s −Q

)
+ Q

}∣∣∣∣∣∣ ∣∣β̂− β
∣∣

≤ T−1/2

(T − l + 1)

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

(
xj+sx′j+s −Q

)∣∣∣∣∣∣+ T−1/2Q
∣∣β̂− β

∣∣ ,
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where the second term is Op
(

T−1
)
= op(1) because β̂− β = Op(T−1/2), and the first

term is Op(k
−1/2
0 ) = op(1) because of the following.

E

k
1
2
0

T−1/2

(T − l + 1)

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

(
xj+sx′j+s −Q

)∣∣∣∣∣∣


≤ E

 k
1
2
0 T−1/2

(T − l + 1)

T−l
∑

j=0
max

1≤i≤l

∣∣∣∣∣∣
j+l
∑

s=j+i

(
xj+sx′j+s −Q

)∣∣∣∣∣∣


≤
k

1
2
0 T−1/2

(T − l + 1)

T−l
∑

j=0

∥∥∥∥∥∥ max
1≤i≤l

∣∣∣∣∣∣
j+l
∑

s=j+i

(
xj+sx′j+s −Q

)∣∣∣∣∣∣
∥∥∥∥∥∥

2

≤
k

1
2
0 T−1/2

(T − l + 1)

T−l
∑

j=0
K′l

1
2

= O(1) ∵
k0l
T
→ 1.

The first inequality is obvious because for r ∈ [0, 1], B ∈ {1, . . . , l}. Note that {xtx′t} is

L2− NED with given assumptions due to Lemma B3 and combining Lemma B1, {xtx′t−

Q} is L2-mixingale of size −1 with uniformly bounded mixingale constants. Then using

Lemma B4, the third inequality is straightforward. Therefore by the Markov inequality,

T−1/2

(T − l + 1)

T−l
∑

j=0
sup

r∈[0,1]

∣∣∣∣∣∣
l

∑
s=B+1

(
xj+sx′j+s −Q

)∣∣∣∣∣∣ = Op

k
−1

2
0

 = op(1).

Hence we have supr∈[0,1]

∣∣∣b•1T

∣∣∣ = op•(1) and supr∈[0,1]

∣∣∣b•2T

∣∣∣ = op•(1), which implies

that supr∈[0,1]

∣∣∣B•1T

∣∣∣ = op•(1) in probability.

Step 2-2. We prove that supr∈[0,1]

∣∣∣B•2T(r)
∣∣∣ = op•(1). We can write

sup
r∈[0,1]

∣∣∣B•2T(r)
∣∣∣ = sup

r∈[0,1]

∣∣∣∣∣∣T−1/2
[rT]
∑

t=1

(
x•t x•′t − E•

(
x•t x•′t

))∣∣∣∣∣∣ ∣∣β̂− β
∣∣

= sup
r∈[0,1]

∣∣∣∣∣∣T−1
[rT]
∑

t=1

(
x•t x•′t − E•

(
x•t x•′t

))∣∣∣∣∣∣
∣∣∣√T(β̂− β)

∣∣∣
= op•(1)

627



We know that |
∣∣∣√T(β̂− β)

∣∣∣ = Op(1). From Lemma B5,

sup
r∈[0,1]

∣∣∣∣∣∣T−1
[rT]
∑

t=1

(
x•t x•′t − E•

(
x•t x•′t

))∣∣∣∣∣∣ = op•(1).

Hence we have the third equality.

628



Appendix C

PROOFS FOR AMPLITUDE MODULATED STATISTIC, NON-RANDOM MISSING
DATA

We define λ to be the total fraction of observed data points as

λ2C+1 − λ2C + λ2C−1 − · · ·+ λ1 =
2C+1

∑
j=1

(−1)j+1λj ≡ λ.

Also define

Wk =
2C+1

∑
j=1

(−1)j+1Wk
(

λj
)

We first prove a lemma that shows that Assumptions NR′ imply that Assumptions NR

hold.

Lemma C1. Assumption NR′ is sufficient for Assumption NR.

Proof: Under Assumption NR′ 6 the locations of missing observations are fixed. Hence,

lim
T→∞

Tn
T

= λn, for n = 0, . . . , 2C + 1,

where it holds trivially that λ0 = 0 and λ2C+1 = 1. Assumptions NR′ 1,2, and 5, imply

that for all r ∈ (0, 1],

T−1
[rT]
∑

t=1
x∗t x∗′t ⇒ rQ∗.

Assumptions NR′ 3, 4, and 5, imply that for all r ∈ (0, 1],

T−1/2
[rT]
∑

t=1
v∗t ⇒ Λ∗Wk(r).

Also note that Assumption NR′ 7 implies that there exists Λ∗ such that Λ∗Λ′ = Ω∗.

The next two lemmas establish the limits of scaled sums of the amplitude modified

processes.
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Lemma C2. Under Assumption NR′ 1,2, 5, and 6, for all r ∈ (0, 1],

T−1
[rT]
∑

t=1
xtx′t ⇒

C
∑

n=0
1
{

λ2n < r ≤ λ2(n+1)

} 2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)
Q∗,

where λ0 = 0, λ2C+1 = 1, and C is the total number of missing clusters.

Proof: Assumptions NR′ 1, 2, 5, and 6 are sufficient for Assumptions NR 1 and 2 by

Lemma C1. Hence we can write for r ∈ (λ2n, λ2n+1],

T−1
[rT]
∑

t=1
xtx′t

= T−1
[rT]
∑

t=1
x∗t x∗′t − T−1

[
λ2nT

]
∑

t=1
x∗t x∗′t + T−1

[
λ2n−1T

]
∑

t=1
x∗t x∗′t − . . . + T−1

[
λ1T

]
∑

t=1
x∗t x∗′t

⇒
(

r− λ2n + λ2n−1 − . . . + λ1
)

Q∗,

whereas for r ∈ (λ2n+1, λ2n+2] we have

T−1
[rT]
∑

t=1
xtx′t

= T−1

[
λ2n+1T

]
∑

t=1
x∗t x∗′t − T−1

[
λ2nT

]
∑

t=1
x∗t x∗′t + T−1

[
λ2n−1T

]
∑

t=1
x∗t x∗′t − . . .

+ T−1

[
λ1T

]
∑

t=1
x∗t x∗′t

⇒
(

λ2n+1 − λ2n + λ2n−1 − . . . + λ1
)

Q∗.

Combining these two results we have for r ∈
(

λ2n, λ2n+2
]
,

T−1
[rT]
∑

t=1
xtx′t ⇒

2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)
Q∗.

It immediately follows for r ∈ [0, 1] that

T−1
[rT]
∑

t=1
xtx′t ⇒

C
∑

n=0
1
{

λ2n < r ≤ λ2n+2
} 2n+1

∑
j=1

(−1)j+1
(

r ∧ λj
)

Q∗.
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Lemma C3. Under Assumption NR′ 3, 4, 5, 6, and 7, for r ∈ (0, 1],

T−1/2
[rT]
∑

t=1
vt ⇒ Λ∗

C
∑

n=0
1
{

λ2n < r ≤ λ2n+2
} 2n+1

∑
j=1

(−1)j+1Wk
(

r ∧ λj
)

.

Proof: Assumptions NR′ 3, 4, 5 and 6 are sufficient for Assumptions NR 1 and 3 by

Lemma C1. Using similar algebra as the proof in Lemma C2, we have for r ∈
(

λ2n, λ2n+1
]
,

T−1/2
[rT]
∑

t=1
vt

= T−1/2
[rT]
∑

t=1
atv∗t

= T−1/2
[rT]
∑

t=1
v∗t − T−1/2

[
λ2nT

]
∑

t=1
v∗t + T−1/2

[
λ2n−1T

]
∑

t=1
v∗t − . . . + T−1/2

[
λ1T

]
∑

t=1
v∗t

⇒ Λ∗
[
Wk (r)−Wk

(
λ2n

)
+Wk

(
λ2n−1

)
− . . . +Wk

(
λ1
)]

,

and for r ∈
(

λ2n+1, λ2n+2
]
,

T−1/2
[rT]
∑

t=1
vt

= T−1/2
[rT]
∑

t=1
atv∗t

= T−1/2v∗t − T−1/2

[
λ2nT

]
∑

t=1
v∗t + T−1/2

[
λ2n−1T

]
∑

t=1
v∗t − . . . + T−1/2

[
λ1T

]
∑

t=1
v∗t

⇒ Λ∗
[
Wk

(
λ2n+1

)
−Wk

(
λ2n

)
+Wk

(
λ2n−1

)
− . . . +Wk

(
λ1
)]

.

Therefore, for r ∈
(

λ2n, λ2n+2
]
,

T−1/2
[rT]
∑

t=1
vt ⇒ Λ

2n+1
∑

j=1
(−1)j+1Wk

(
r ∧ λj

)
,

and it immediately follows for r ∈ (0, 1] ,

T−1/2
[rT]
∑

t=1
vt ⇒ Λ∗

C
∑

n=0
1
{

λ2n < r ≤ λ2n+2
} 2n+1

∑
j=1

(−1)j+1Wk
(

r ∧ λj
)

.

631



Proof of Theorem 2.3 (a). Using Lemmas C2 and C3 it follows that

T−1
T
∑

t=1
xtx′t ⇒

2C+1
∑

j=1
(−1)j+1

(
1∧ λj

)
Q∗ = λQ∗,

T−1/2
T
∑

t=1
vt ⇒ Λ∗

2C+1
∑

j=1
(−1)j+1Wk

(
1∧ λj

)
= Λ∗Wk,

which imply that

√
T
(

β̂− β
)
=

(
T−1

T
∑

t=1
xtx′t

)−1
T−1/2

T
∑

t=1
vt ⇒ λ−1Q∗−1Λ∗Wk.

Lemma C4. Let T−1/2Ŝ[rT] = T−1/2 ∑
[rT]
t=1 v̂t. Let {λi} denote the set {λ1, λ2, ..., λ2C}.

Under Assumption NR′, for r ∈ (0, 1], as T → ∞,

T−1/2Ŝ[rT] ⇒ Λ∗B̆k
(
r, {λi}

)
,

where

B̆k
(
r, {λi}

)
=

C
∑

n=0
1
{

λ2n < r ≤ λ2(n+1)

} 2n+1
∑

j=1
(−1)j+1

(
Wk

(
r ∧ λj

)
−
(

r ∧ λj
)

λ−1Wk.
)

.

Proof: For r ∈ (0, 1] we can write

T−1/2Ŝ[rT]

= T−1/2
[rT]
∑

t=1
v̂t = T−1/2

[rT]
∑

t=1
vt − T−1

[rT]
∑

t=1
xtx′t
√

T
(

β̂− β
)

⇒ Λ∗
C
∑

n=0
1
{

λ2n < r ≤ λ2n+2
} 2n+1

∑
j=1

(−1)j+1Wk
(

r ∧ λj
)

−
C
∑

n=0
1
{

λ2n < r ≤ λ2n+2
} 2n+1

∑
j=1

(−1)j+1
(

r ∧ λj
)

Q∗
(
λQ∗

)−1 Λ∗Wk

= Λ∗
C
∑

n=0
1
{

λ2n < r ≤ λ2n+2
} 2n+1

∑
j=1

(−1)j+1
(
Wk

(
r ∧ λj

)
−
(

r ∧ λj
)

λ−1Wk
)

≡ Λ∗B̆(r, {λi})
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where the weak convergence,⇒, is straightforward given Lemmas C2-C3 and Theorem

2.3 (a).

Proof of Theorem 2.3 (b): We can write

Ω̂AM

= T−1
T
∑

t=1

T
∑

s=1
k
(

t− s
bT

)
v̂tv̂′s

= T−1
T−1
∑

t=1
T−1

T−1
∑

s=1
T−1/2Ŝt

× T2
[

k
(

t− s
bT

)
− k

(
t− s− 1

bT

)
− k

(
t− s + 1

bT

)
+ k

(
t− s
bT

)]
T−1/2Ŝ′s,

where the second line follows by application of summation by parts to each sum. By

Lemma C4 and Kiefer and Vogelsang (2005) it follows that

Ω̂AM ⇒ Λ∗P
(
b, B̆k(r, {λi}

)
Λ∗′.

Given the lemmas, we can now sketch the proof of Theorem 2.3 (c).

Proof of Theorem 2.3 (c): Using Theorem 2.3 (a) and the delta method, it directly follows

that
√

Tr(β̂)⇒ R
(

β0
) (

λQ∗
)−1 Λ∗Wk

where R(β0) = ∂r(β)/∂β′|β=β0
. Note that the limit is q linear combinations of k indepen-

dent Wiener processes. Because Wiener processes are Gaussian, linear combinations of

Wiener processes are also Gaussian. Thus, we can rewrite the q linear combinations of

k independent Wiener processes as q linear combinations of q independent Wiener pro-

cesses. Define the q× q matrix ∆∗ such that

∆∗∆∗′ = R
(

β0
) (

λQ∗
)−1 Ω∗

(
λQ∗

)−1 R
(

β0
)′ .

An equivalent representation for R
(

β0
) (

λQ∗
)−1 Λ∗Wk is given by

R
(

β0
) (

λQ∗
)−1 Λ∗Wk = ∆∗Wq.
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Using Lemmas C2 and Theorem 2.3 (b), it follows that

WT

=
√

Tr(β̂)′
r(β̂)

(
T−1

T
∑

t=1
xtx′t

)−1
Ω̂AM

(
T−1

T
∑

t=1
xtx′t

)−1
r(β̂)′

−1
√

Tr(β̂)

⇒
[

R(β0)
(
λQ∗

)−1 Λ∗Wk
]′

×
[

R
(

β0
) (

λQ∗
)−1 Λ∗P

(
b, B̆k(r, {λi})

)
Λ∗′

(
λQ∗

)−1 R
(

β0
)′]−1

×
[

R(β0)
(
λQ∗

)−1 Λ∗Wk
]

=
(

∆∗Wq
)′ [

∆∗P
(

b, B̆q(r, {λi}
)

∆∗′
]−1

∆∗Wq

=W′q
[

P
(

b, B̆q(r, {λi})
)]−1

Wq,

and the proof is complete. Note that for the case of one restriction, q = 1, it follows for

the t-statistic that,

tT ⇒
W1√

P
(
b, B̆1(r, {λi})

) .
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Appendix D

PROOFS FOR EQUAL SPACED STATISTIC, NON-RANDOM MISSING DATA

We first define some relevant functions similar to those defined in Kiefer and Vogelsang

(2005). Define the functions

kb(x) = k
(x

b

)
,

∆2Ka
ts

= k


t
∑

i=1
ai −

s
∑

i=1
ai

bTES

− k


t
∑

i=1
ai −

s
∑

i=1
ai − 1

bTES

− k


t
∑

i=1
ai −

s
∑

i=1
ai + 1

bTES



+ k


t
∑

i=1
ai −

s
∑

i=1
ai

bTES

 ,

DTES
(r)

= T2
ES

[(
kb

(
[rTES] + 1

TES

)
− kb

(
[rTES]

TES

))
−
(

kb

(
[rTES]

TES

)
− kb

(
[rTES]− 1

TES

))]
.

When k(x) is twice continuously differentiable,

lim
TES→∞

DTES
(r) = k′′b (r) =

1

b2 k(
r
b
), (eqD.1)

where the limit holds uniformly in r by the definition of the second derivative and the

continuity of k′′(x). Let k′b−(b) denote the first derivative of kb(x) from the left at x = b.

Then, by definition,

b−1k′(1)− = k′b−(b) = lim
TES→∞

TES

[
kb (b)− kb

(
b− 1

TES

)]
(eqD.2)

= lim
TES→∞

TES

[
kb

(
[bTES]

TES

)
− kb

(
[bTES]

TES
− 1

TES

)]
.

635



Throughout this section we assume that MES = bTES where b ∈ (0, 1] is fixed. For

notational purposes we let the summation be zero whenever the starting value is larger

than the final value. For example, for a sequence {ak}, then we have ∑0
k=1 ak = 0.

Lemma D1. An equivalent expression for Ω̂ES is given by

Ω̂ES =
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+1Ŝt∆2Ka

tsŜ′s.

Proof: First rewrite Ω̂ES using summation by parts (see Kiefer and Vogelsang (2005) for

details):

Ω̂ES =
1

TES

T
∑

t=1

T
∑

s=1
k


t
∑

i=1
ai −

s
∑

i=1
ai

bTES

 v̂tv̂′s,

=
1

TES

T−1
∑

t=1

T−1
∑

s=1
Ŝt

k


t
∑

i=1
ai −

s
∑

i=1
ai

bTES

− k


t
∑

i=1
ai −

s+1
∑

i=1
ai

bTES



−k


t+1
∑

i=1
ai −

s
∑

i=1
ai

bTES

+ k


t+1
∑

i=1
ai −

s+1
∑

i=1
ai

bTES


 Ŝ.′

s
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Note that if at+1 = as+1 = 1, it follows that

k


t
∑

i=1
ai −

s
∑

i=1
ai

bTES

− k


t
∑

i=1
ai −

s+1
∑

i=1
ai

bTES

− k


t+1
∑

i=1
ai −

s
∑

i=1
ai

bTES



+ k


t+1
∑

i=1
ai −

s+1
∑

i=1
ai

bTES



= k


t
∑

i=1
ai −

s
∑

i=1
ai

M

− k


t
∑

i=1
ai −

s
∑

i=1
ai − 1

M

− k


t
∑

i=1
ai −

s
∑

i=1
ai + 1

M



+ k


t
∑

i=1
ai −

s
∑

i=1
ai

M

 ≡ ∆2Ka
ts.

However when at+1 = 0 and/or as+1 = 0, it follows that

k


t
∑

i=1
ai −

s
∑

i=1
ai

bTES

− k


t
∑

i=1
ai −

s+1
∑

i=1
ai

bTES

− k


t+1
∑

i=1
ai −

s
∑

i=1
ai

bTES



+ k


t+1
∑

i=1
ai −

s+1
∑

i=1
ai

bTES

 = 0 6= ∆2Ka
ts.

This holds because if at+1 = 0, then the first term cancels out the third term and the

second term cancels out the fourth term, and if as+1 = 0 then the first two terms cancel

each other out and the last two terms cancel each other out. Whenever at+1 = 0 and/or

as+1 = 0, we require the argument of the sum to be zero. This can be accomplished by
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scaling the argument of the sum by at+1as+1. Using this device it follows that

Ω̂ES =
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+1Ŝt∆2Ka

tsŜ′s,

completing the proof.

We next prove a collection of lemmas used to establish the limit of Ω̂ES. The first set

of lemmas are algebraic and mechanical whereas the second set of lemmas work out the

limits of components of Ω̂ES.

Lemma D2. Under Assumption NR′ 6, , it follows as T → ∞,

T−1
ES

[rT]
∑

t=1
at −

[uT]
∑

t=1
at

→ λ−1

 C
∑

n=0
1
{

λ2n < r ≤ λ2(n+1)

} 2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)

−
C
∑

l=0
1
{

λ2l < u ≤ λ2(l+1)

} 2l+1
∑

j=1
(−1)j+1

(
u ∧ λj

) .

Proof: It is sufficient to establish the limit of T−1
ES

[rT]
∑

t=1
at. First consider the behavior of

T−1
[rT]
∑

t=1
at. There are two possibilities depending on the value of r. The first is when r is

in an interval such that data are observed at t = [rT] and the second is such that data is

missing at t = [rT]. Note that data are observed at t = [rT] whenever r ∈
(

λ2n, λ2n+1
]
,

n = 0, . . . , C. Therefore, when r ∈
(

λ2n, λ2n+1
]
, we can write

T−1
[rT]
∑

t=1
at = T−1

[rT]
∑

t=1
1− T−1

[
λ2nT

]
∑

t=1
1 + T−1

[
λ2n−1T

]
∑

t=1
1− . . . + T−11,

→ r− λ2n + λ2n−1 − . . . + λ1,

= r +
2n
∑

j=1
(−1)j+1λj (eqD.3)

where the term ∑2n
j=1(−1)j+1λj is removing the missing portions from r. In contrast,

when r ∈
(

λ2n+1, λ2n+2
]
, data is missing at t = [rT]. Hence when r ∈

(
λ2n+1, λ2n+2)

]
,
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we can write

T−1
[rT]
∑

t=1
at = T−1

[
λ2n+1T

]
∑

t=1
1− T−1

[
λ2nT

]
∑

t=1
1 + T−1

[
λ2n−1T

]
∑

t=1
1− . . . + T−1

[
λ1T

]
∑

t=1
1,

⇒ λ2n+1 − λ2n + λ2n−1 − . . . + λ1,

= λ2n+1 +
2n
∑

j=1
(−1)j+1λj (eqD.4)

The reason that we have a different expression compared to (eqD.3) is because r is now

located where the observations are missing and we have to remove the portion of missing

observations from λ2n+1 rather than from r. From λ2n+1 to r, there is no observed data

and thus at = 0 for t in the range [λ2n+1T] < t ≤ [rT]. Combining (eqD.3) and (eqD.4),

the following holds for r ∈ (λ2n, λ2n+2]:

T−1
[rT]
∑

t=1
at = 1

{
λ2n < r ≤ λ2n+1

}
T−1

[rT]
∑

t=1
at + 1

{
λ2n+1 < r ≤ λ2n+2

}
T−1

[rT]
∑

t=1
at

→ 1
{

λ2n < r ≤ λ2n+1
}r +

2n
∑

j=1
(−1)j+1λj


+ 1

{
λ2n+1 < r ≤ λ2n+2

}λ2n+1 +
2n
∑

j=1
(−1)j+1λj


= 1

{
λ2n < r ≤ λ2n+2

} 2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)
.

It immediately follows for a general value of r ∈ (0, 1]:

T−1
[rT]
∑

t=1
at →

C
∑

n=0
1{λ2n < r ≤ λ2n+2}

2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)
. (eqD.5)

Applying the result given by (eqD.5) for the case of r = 1 gives

TES
T

= T−1
T
∑

t=1
at →

2C+1
∑

j=1
λj(−1)j+1 ≡ λ. (eqD.6)
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Using (eqD.5) and (eqD.6) it follows that

T−1
ES

[rT]
∑

t=1
at =

(
TES

T

)−1
T−1

[rT]
∑

t=1
at

→ 1
λ

C
∑

n=0
1
{

λ2n < r ≤ λ2(n+1)

} 2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)
,

and the lemma is established.

Lemma D3. The following algebraic relationship holds:

at+1as+1 =
C
∑

n=0

C
∑

l=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}
1
{

T2l ≤ s ≤ T2l+1 − 1
}

.

Proof: Recall that data are observed when there exists a value of n such that T2n + 1 ≤

t ≤ T2n+1 (see Definition 1). Therefore, at+1 = 1 implies that there is a value of n such

that

T2n ≤ t + 1 ≤ T2n+1,

or equivalently

T2n ≤ t ≤ T2n+1 − 1.

If at+1 = 0, then t does not satisfy this inequality for any value of n. Therefore, we may

write

at+1 =
C
∑

n=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}

,

and it directly follows that

at+1as+1 =
C
∑

n=0
1
{

T2n ≤ t ≤ T2n+1 − 1
} C

∑
l=0

1
{

T2l ≤ s ≤ T2l+1 − 1
}

=
C
∑

n=0

C
∑

l=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}
1
{

T2l ≤ s ≤ T2l+1 − 1
}

.

640



Lemma D4. The following algebraic relationship holds:

at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ < [bTES
]}

=
C
∑

n=0

C
∑

l=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}

× 1
{

T2l ≤ s ≤ T2l+1 − 1
}
1

|t− s| <
[
bTES

]
+

2(n∨l)
∑

k=2(n∧l)+1
(−1)kTk


Proof: Note that the number of missing observations in the first missing cluster is (T2 −

T1), the number of missing observations in the second missing cluster is (T4− T3), and so

forth. Hence the nth missing cluster has (T2n − T2n−1) missing observations. Therefore,

the total number of missing observations in the first n missing clusters is

n
∑

k=1

(
T2k − T2k−1

)
. (eqD.7)

Suppose that t is in the range T2n ≤ t ≤ T2n+1 − 1. We want to count the number of

observed data points up to time t. We further divide this interval for t into two parts

because when t is in the range T2n < t ≤ T2n+1 − 1 data is observed at time t while for

t = T2n data is missing. First consider the case T2n < t ≤ T2n+1 − 1. In this case there

are n missing clusters before time t. Hence the number of missing observations up to time

t is ∑n
k=1

(
T2k − T2k−1

)
from (eqD.7). Subtracting this number of missing observations

from t, we obtain the number of observed data points up to time t. Therefore it follows

that

t
∑

i=1
ai = t−

n
∑

k=1

(
T2k − T2k−1

)

= t−
2n
∑

k=1
(−1)kTk. (eqD.8)

Next, consider the case of t = T2n. Because data is not observed at t = T2n, instead

of counting all the way up to time t, we only count up to time T2n−1, which is the last

time period where the data is available. There are (n − 1) missing clusters up to time

T2n−1. Then using (eqD.7), the number of missing observations in those (n− 1) clusters
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is ∑n−1
k=1 (T2k − T2k−1). Hence the number of observed data points up to time T2n is

T2n
∑

i=1
ai = T2n−1 −

n−1
∑

k=1
(T2k − T2k−1),

which can be re-expressed as

T2n−1 −
n−1
∑

k=1

(
T2k − T2k−1

)
= T2n − (T2n − T2n−1)−

n−1
∑

k=1

(
T2k − T2k−1

)
= T2n −

n
∑

k=1

(
T2k − T2k−1

)

= T2n −
2n
∑

k=1
(−1)kTk,

showing that the t = T2n case can also be expressed as (eqD.8). Therefore, when t falls in

the range T2n ≤ t ≤ T2n+1 − 1, it follows that

t
∑

i=1
ai = t−

2n
∑

k=1
(−1)kTk. (eqD.9)

Now consider values of t and s with t ≥ s such that T2n ≤ t ≤ T2n+1 − 1, T2l ≤ s ≤

T2l+1 − 1. Note that because t ≥ s it follows that n ≥ l. Using (eqD.9) gives,

t
∑

i=1
ai −

s
∑

i=1
ai =

(
t−

2n
∑

k=1
(−1)kTk

)
−
(

s−
2l
∑

k=1
(−1)kTk

)

= (t− s)−
2n
∑

k=2l+1
(−1)kTk. (eqD.10)

Similarly, when t ≤ s,

s
∑

i=1
ai −

t
∑

i=1
ai = (s− t)−

2l
∑

k=2n+1
(−1)kTk.

Therefore, we can write∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ = |t− s| −
2(n∨l)

∑
k=2(n∧l)+1

(−1)kTk.
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Using this expression we have ∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ < [bTES]

is equivalent to

|t− s| < [bTES] +
2(n∨l)

∑
k=2(n∧l)+1

(−1)kTk.

From the proof of Lemma D3 we know that at+1 = 1 and as+1 = 1 if and only if there is

a value of n and a value of l such that

T2n ≤ t ≤ T2n+1 − 1, T2l ≤ s ≤ T2l+1 − 1,

and when this is the case,
∣∣∣∑t

i=1 ai −∑s
i=1 ai

∣∣∣ < [bTES] if and only if

|t− s| < [bTES] +
2(n∨l)

∑
k=2(n∧l)+1

(−1)kTk,

and it immediately follows for this case that

at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ < [bTES
]}

= 1
{

T2n ≤ t ≤ T2n+1 − 1
}

× 1
{

T2l ≤ s ≤ T2l+1 − 1
}
1

|t− s| <
[
bTES

]
+

2(n∨l)
∑

k=2(n∧l)+1
(−1)kTk

 .

As was done in the proof of Lemma D3 we can write for general values of t and s:

at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ < [bTES
]}

=
C
∑

n=0

C
∑

l=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}

× 1
{

T2l ≤ s ≤ T2l+1 − 1
}
1

|t− s| <
[
bTES

]
+

2(n∨l)
∑

k=2(n∧l)+1
(−1)kTk

 .

This completes the proof.
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Lemma D5. Suppose that t > s. Then the following algebraic result holds:

at+1as+11

{
t

∑
i=1

ai −
s
∑

i=1
ai =

[
bTES

]}
=

C
∑

n=0

n
∑

l=0

1

T2n − [bTES]−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
1

t = s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk


Proof: From the proof of Lemma D3 we know that at+1 = 1 and as+1 = 1 if and only if

there is a value of n and a value of l such that

T2n ≤ t ≤ T2n+1 − 1, T2l ≤ s ≤ T2l+1 − 1.

From (eqD.10) in Lemma D4, we also know that when

t
∑

i=1
ai −

s
∑

i=1
ai =

[
bTES

]
it follows that

t = s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk

because t > s. Plugging this formula for t into the inequality T2n ≤ t ≤ T2n+1 − 1 gives

T2n ≤ s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk ≤ T2n+1 − 1,

which can be rearranged as

T2n −
[
bTES

]
−

2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1−

[
bTES

]
−

2n
∑

k=2l+1
(−1)kTk.

Hence, given t > s, the conditions: at+1 = 1, as+1 = 1 and ∑t
i=1 ai −∑s

i=1 ai =
[
bTES

]
hold if and only if the following three conditions are satisfied for some value of n and
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some value of l:

T2n −
[
bTES

]
−

2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1−

[
bTES

]
−

2n
∑

k=2l+1
(−1)kTk,

T2l ≤ s ≤ T2l+1 − 1,

t = s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk.

In terms of indicator functions we express this equivalence as

at+1as+11

{
t

∑
i=1

ai −
s
∑

i=1
ai =

[
bTES

]}

=1

T2n − [bTES]−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
1

t = s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk

 .

Writing more generally as done in the proof of Lemma D3 by combining the above ex-

pression for all possible values of n and l with n ≥ l gives the desired relationship:

at+1as+11

{
t

∑
i=1

ai −
s
∑

i=1
ai =

[
bTES

]}
=

C
∑

n=0

n
∑

l=0

1

T2n − [bTES]−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
1

t = s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk

 .

Lemma D6. Suppose that t > s. Then the following algebraic result holds:

at+1as+11

{
t

∑
i=1

ai −
s
∑

i=1
ai =

[
bTES

]
+ 1

}
=

C
∑

n=0

n
∑

l=0

1

T2n − [bTES]− 1−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 2− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
1

t = s +
[
bTES

]
+ 1 +

2n
∑

k=2l+1
(−1)kTk


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The proof is essentially the same as the proof of Lemma D5.

Lemma D7. The following algebraic result holds:

at+1as+11

{
t

∑
i=1

ai −
s
∑

i=1
ai = 0

}
=

C
∑

n=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}
1 {t = s}

Proof: Note that when at+1 = 1 and as+1 = 1, it follows that

t
∑

i=1
ai −

s
∑

i=1
ai = 0

if and only if t = s. It is obvious that the difference in sums is zero when t = s. The

difference in sums cannot be zero if t and s are different. Suppose that t > s. Then we

have
t

∑
i=1

ai −
s
∑

i=1
ai = at + at−1 + · · ·+ as+2 + as+1 6= 0,

because as+1 = 1. We have the same conclusion when t < s due to the fact that at+1 = 1.

Hence, at+1 = 1, as+1 = 1 and ∑t
i=1 ai − ∑s

i=1 ai = 0 are satisfied if and only if t = s

and there is a value of n such that

T2n ≤ t ≤ T2n+1 − 1.

In terms of indicator functions we can write these conditions as

at+1as+11

{
t

∑
i=1

ai −
s
∑

i=1
ai = 0

}
= 1

{
T2n ≤ t ≤ T2n+1 − 1

}
1 {t = s} .

Writing more generally as done in the proof of Lemma D3 we have the desired result:

at+1as+11

{
t

∑
i=1

ai −
s
∑

i=1
ai = 0

}
=

C
∑

n=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}
1 {t = s} .

The next collection of lemmas establish the limit of Ω̂ES.

Lemma D8. Let MES = bTES where b is a fixed constant with b ∈ [0, 1]. When k(x) is twice

continuously differentiable, under Assumptions NR′, as T → ∞

Ω̂ES ⇒ Λ∗PES
1

(
b, B̆k({λ}

2C
1 )

)
Λ∗′
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where,

PES
1

(
b, B̆k({λ}

2C
1 )

)
= − 1

b2λ3

C
∑

n=0

C
∑

l=0

∫ λ2n+1
λ2n

∫ λ2l+1
λ2l

k′′
(λb)−1

2n+1
∑

j=1
(−1)j+1(r ∧ λj)−

2l+1
∑

j=1
(−1)j+1(u ∧ λj)


× B̆k(r, {λi})B̆k(u, {λi})

′dudr.

Proof: Using the definitions at the beginning of this appendix, it is straightforward to

show that

T2
ES∆2Ka

ts = −DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
.

From Lemma D1 we know that

Ω̂ES =
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+1Ŝt∆2Ka

tsŜ′s.

Re-expressing Ω̂ES in terms of DTES
(r) gives

Ω̂ES = − 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+1ŜtT−2

ES DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
Ŝ′s.

Plugging in the expression from Lemma D3 gives,

Ω̂ES = − 1
TES

T−1
∑

t=1

T−1
∑

s=1

C
∑

n=0

C
∑

l=0
1{T2n ≤ t ≤ T2n+1 − 1}1{T2l ≤ s ≤ T2l+1 − 1}

× ŜtT−2
ES DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
Ŝ′s

= −
(

T
TES

)3
T−1

T−1
∑

t=1
T−1

T−1
∑

s=1

[
C
∑

n=0

C
∑

l=0
1{T2n ≤ t ≤ T2n+1 − 1}

×1{T2l ≤ s ≤ T2l+1 − 1}T−1/2ŜtDTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
T−1/2Ŝ′s

]
.
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Mapping t to [rT] and s to [uT] we can write

Ω̂ES = −
(

T
TES

)3 ∫ 1

0

∫ 1

0[
C
∑

n=0

C
∑

l=0
1
{

λ2n ≤ r < λ2n+1
}
1
{

λ2l ≤ u < λ2l+1
}

T−1/2Ŝ[rT]

×DTES

T−1
ES

[rT]
∑

i=1
ai −

[uT]
∑

i=1
ai

 T−1/2Ŝ′
[uT]

 dudr.

Using Lemma D2, Lemma C4, (eqD.1), (eqD.6) and the continuous mapping theorem it

follows that

Ω̂ES ⇒ λ−3
∫ 1

0

∫ 1

0

[
C
∑

n=0

C
∑

l=0
1
{

λ2n ≤ r < λ2n+1
}
1
{

λ2l ≤ u < λ2l+1
}

× k′′
b−1λ−1

 C
∑

n=0
1
{

λ2n < r ≤ λ2(n+1)

} 2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)

−
C
∑

l=0
1
{

λ2l < u ≤ λ2(l+1)

} 2l+1
∑

j=1
(−1)j+1

(
u ∧ λj

)
×Λ∗B̆k(r, {λi})B̆k(u, {λi})

′Λ∗′
]

dudr.

The limiting expression can be simplified by breaking up the integrals into the ranges

indicated by the indicator functions and using the fact that when λ2n ≤ r < λ2n+1:

C
∑

n=0
1{λ2n < r ≤ λ2(n+1)}

2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)
=

2n+1
∑

j=1
(−1)j+1

(
r ∧ λj

)
.

Therefore we have

Ω̂ES ⇒ −Λ∗ 1

b2λ3

C
∑

n=0

C
∑

l=0

∫ λ2n+1
λ2n

∫ λ2l+1
λ2lk′′

(λb)−1

2n+1
∑

j=1
(−1)j+1(r ∧ λj)−

2l+1
∑

j=1
(−1)j+1(u ∧ λj)


×B̆k(r, {λi})B̆k(u, {λi})

′
 dudrΛ∗′,

= Λ∗PES
1

(
b, B̆k({λ}

2C
1 )

)
Λ∗′,
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completing the proof.

Lemma D9. Let MES = bTES where b is a fixed constant with b ∈ [0, 1]. Under Assumption

NR′, when k(x) is continuous, k(x) = 0 for |x| ≤ 1, and twice continuously differentiable

everywhere except for |x| = 1, as T → ∞,

Ω̂ES ⇒ Λ∗PES
2

(
b, B̆k({λ}

2C
1 )

)
Λ∗′

where,

PES
2

(
b, B̆k({λ}

2C
1 )

)
≡

− 1

b2λ3

C
∑

n=0

C
∑

l=0

∫ λ2n+1
λ2n

∫ λ2l+1
λ2l

1
|r− u| < bλ +

2(n∨l)
∑

j=2(n∧l)+1
(−1)jλj


× k′′

(λb)−1

2n+1
∑

j=1
(−1)j+1(r ∧ λj)−

2l+1
∑

j=1
(−1)j+1(u ∧ λj)


× B̆k(r, {λi})B̆k(u, {λi})

′
 drdu

+
k′(1)−

bλ2

C
∑

n=0

n
∑

l=0

∫ λ2l+1
λ2l1

λ2n − bλ−
2n
∑

j=2l+1
(−1)jλj < u ≤ λ2n+1 − bλ−

2n
∑

j=2l+1
(−1)jλj


×

B̆k

u + bλ +
2n
∑

j=2l+1
(−1)jλj, {λi}

 B̆k(u, {λi})
′

+B̆k(u, {λ}2C
1 )B̆k

u + bλ +
2n
∑

j=2l+1
(−1)jλj, {λi}

′
 du.
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Proof: Straightforward calculations give

∆2Ka
ts =

− 1
T2

ES
DTES

(
T−1

ES

(
t
∑

i=1
ai −

s
∑

i=1
ai

)) ∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ < [bTES][
k
(
[bTES]
bTES

)
− k

(
[bTES]−1

bTES

)]
+ k

(
[bTES]
bTES

) ∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES]

−k
(
[bTES]
bTES

) ∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES] + 1

0 otherwise
.

We rewrite Ω̂ES using Lemma D1 and dividing it into the three nonzero cases as deter-

mined by ∆2Ka
ts:

Ω̂ES

=
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+1Ŝt∆2Ka

tsŜ′s

= − 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ < [bTES
]}

× 1

T2
ES

DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
ŜtŜ′s

+
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ = [bTES
]}

×
[

k
(
[bTES]
bTES

)
− k

(
[bTES]− 1

bTES

)
+ k

(
[bTES]
bTES

)]
ŜtŜ′s

− 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ = [bTES
]
+ 1

}
k
(
[bTES]
bTES

)
ŜtŜ′s.
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Expanding the second term gives

Ω̂ES

= − 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ < [bTES
]}

× 1

T2
ES

DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
ŜtŜ′s

+
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ = [bTES
]}

×
[

k
(
[bTES]
bTES

)
− k

(
[bTES]− 1

bTES

)]
ŜtŜ′s

+
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ = [bTES
]}

k
(
[bTES]
bTES

)
ŜtŜ′s

− 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣∣ = [bTES
]
+ 1

}
k
(
[bTES]
bTES

)
ŜtŜ′s

= ζ1 + ζ2 + ζ3 + ζ4.

First consider ζ1. Plugging in the expression from Lemma D4 gives,

ζ1 = − 1
TES

T−1
∑

t=1

T−1
∑

s=1

C
∑

n=0

C
∑

l=0

[
1
{

T2n ≤ t ≤ T2n+1 − 1
}
1
{

T2l ≤ s ≤ T2l+1 − 1
}

× 1

|t− s| <
[
bTES

]
+

2(n∨l)
∑

k=2(n∧l)+1
(−1)kTk


× 1

T2
ES

DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
ŜtŜ′s


= −

(
T

TES

)3 1
T

T−1
∑

t=1

1
T

T−1
∑

s=1

C
∑

n=0

C
∑

l=0

[
1
{

T2n ≤ t ≤ T2n+1 − 1
}

× 1
{

T2l ≤ s ≤ T2l+1 − 1
}
1

|t− s| <
[
bTES

]
+

2(n∨l)
∑

k=2(n∧l)+1
(−1)kTk


×DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
T−1/2ŜtT−1/2Ŝ′s

]
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where the second equality holds by rescaling. Next, consider ζ2. We use the expression

from Lemma D5 when t > s. When s > t, the expression is the same with t and s

interchanged. When t = s, ζ2 = 0. Therefore we have

ζ2 =
1

TES

T−1
∑

t=1

T−1
∑

s=1

C
∑

n=0

n
∑

l=0

1

T2n − [bTES]−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
1

t = s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk


×
[

k
(
[bTES]
bTES

)
− k

(
[bTES]− 1

bTES

)] (
ŜtŜ′s + ŜsŜ′t

)
.

We further simplify ζ2 by plugging in t = s +
[
bTES

]
+ ∑2n

k=2l+1(−1)kTk directly rather
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than denoting it as an indicator function. The double sum collapses to a single sum giving

ζ2 =
1

TES

T−1
∑

s=1

C
∑

n=0

n
∑

l=0

1

T2n − [bTES]−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

} [
k
(
[bTES]
bTES

)
− k

(
[bTES]− 1

bTES

)]
×
(

Ŝ
s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk
Ŝ′s + ŜsŜ′

s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk

)

=

(
T

TES

)2 1
T

T−1
∑

s=1

C
∑

n=0

n
∑

l=0

1

T2n − [bTES]−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
TES

[
k
(
[bTES]
bTES

)
− k

(
[bTES]− 1

bTES

)]
×
(

T−1/2Ŝ
s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk
T−1/2Ŝ′s

+T−1/2ŜsT−1/2Ŝ′
s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk

)
.

Finally consider ζ3 and ζ4. Because
[bTES]+1

bTES
is beyond the truncation point, it follows

that k
(
[bTES]+1

bTES

)
= 0. Therefore, we have

k
(
[bTES]
bTES

)
= k

(
[bTES]
bTES

)
− k

(
[bTES] + 1

bTES

)
,

and notice that

(bTES)k
(
[bTES]
bTES

)
= (bTES)

[
k
(
[bTES]
bTES

)
− k

(
[bTES] + 1

bTES

)]
→ k′+(1) = 0.

We obtain zero because k′+(1) is the derivative from the right of the truncation point.

Using similar arguments as used for ζ2, it follows that ζ3 = op(1) and ζ4 = op(1) because
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k′+(1) = 0. Combining the results for ζ1, ζ2, ζ3, ζ4 allows us to write

Ω̂ES = −
(

T
TES

)3
T−1

T−1
∑

t=1
T−1

T−1
∑

s=1

C
∑

n=0

C
∑

l=0

1
{

T2n ≤ t ≤ T2n+1 − 1
}
1
{

T2l ≤ s ≤ T2l+1 − 1
}

× 1

|t− s| <
[
bTES

]
+

2(n∨l)
∑

k=2(l∧n)+1
(−1)kTk

DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))

× T−
1
2 ŜtT−

1
2 Ŝ′s

+

(
T

TES

)2 1
T

T−1
∑

s=1

C
∑

n=0

n
∑

l=0

1

T2n −
[
bTES

]
−

2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1−

[
bTES

]
−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
TES

[
k
(
[bTES]
bTES

)
− k

(
[bTES]− 1

bTES

)]

×

T−1/2Ŝ
s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk
T−1/2Ŝ

′−1
2

s

+T−1/2ŜsT−1/2Ŝ′
s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk

)
+ op(1).
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Using similar arguments as in the proof of Lemma D8 it follows that

Ω̂ES = − 1

λ3

∫ 1

0

∫ 1

0

C
∑

l=0

C
∑

n=0
1
{

λ2n < r < λ2n+1
}
1
{

λ2l < u < λ2l+1
}

× 1

|r− u| < bλ +
2(n∨l)

∑
k=2(l∧n)+1

(−1)kλk


× DTES

(
T−1

ES

(
t

∑
i=1

ai −
s
∑

i=1
ai

))
T−

1
2 Ŝ[rT]T

−1
2 Ŝ′

[uT]dudr

+
1

λ2

∫ 1

0

C
∑

n=0

n
∑

l=0
1
{

λ2l < u < λ2l+1
}

× 1

λ2n − bλ−
2n
∑

k=2l+1
(−1)kλk < u < λ2n+1 − bλ−

2n
∑

k=2l+1
(−1)kλk


× TES

[
kb (b)− kb

(
b− 1

TES

)]T−1/2Ŝ[(
u+bλ+∑2n

k=2l+1(−1)kλk
)

T
]T−1/2Ŝ′

[uT]

+T−1/2Ŝ[uT]T
−1/2Ŝ′[(

u+bλ+∑2n
k=2l+1(−1)kλk

)
T
] du

+ op(1).

Using limTES→∞ TES
[
kb (b)− kb (b− 1/TES)

]
= b−1k′(1)−, Lemma D2, Lemma C4,

(eqD.1), (eqD.6), the continuous mapping theorem, and the simplifications used in the
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proof of Lemma D8, it follows that

Ω̂ES

⇒ Λ∗
[
− 1

b2λ3

C
∑

l=0

C
∑

n=0

∫ λ2n+1
λ2n

∫ λ2l+1
λ2l

1

|r− u| <

b
2C+1

∑
l=0

λl(−1)l+1 +
2(n∨l)

∑
k=2(l∧n)+1

(−1)kλk


× k
′′
(λb)−1

2n+1
∑

j=1
(−1)j+1(r ∧ λj)−

2l+1
∑

j=1
(−1)j+1(u ∧ λj)


× B̆k(r, {λi})B̆k(u, {λi})

′dudr

+
k′(1)−

bλ2

C
∑

n=0

n
∑

l=0

∫ λ2l+1
λ2l

1

λ2n − bλ−
2n
∑

k=2l+1
(−1)kλk < u < λ2n+1 − bλ−

2n
∑

k=2l+1
(−1)kλk


×

B̆k

u + bλ +
2n
∑

k=2l+1
(−1)kλk, {λi}

 B̆k(u, {λi})
′

+B̆k(u, {λi})B̆k

u + bλ +
2n
∑

k=2l+1
(−1)kλk, {λi}

′ du

Λ∗′

≡ Λ∗PES
2
(
b, B̆k({λi})

)
Λ∗′.

Lemma D10. Let MES = bTES where b is a fixed constant with b ∈ [0, 1]. Under Assumptions

NR′, when k(x) is the Bartlett kernel, as T → ∞,

Ω̂ES ⇒ Λ∗PES
3
(
b, B̆k({λi})

)
Λ∗′
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where,

PES
3
(
b, B̆k({λi})

)
=

2
b

1

λ2

C
∑

n=0

∫ λ2n+1
λ2n

B̆k
(
r, {λi}

)
B̆k
(
r, {λi}

)′ dr

− 1
b

1

λ2

C
∑

n=0

n
∑

l=0

∫ λ2l+1
λ2l1

λ2n − bλ−
2n
∑

k=2l+1
(−1)kλk ≤ u ≤ λ2n+1 − bλ−

2n
∑

k=2l+1
(−1)kλk

B̆k
(
u, {λi}

)
B̆k

u + bλ +
2n
∑

k=2l+1
λk(−1)k, {λi}

′

+B̆k

u + bλ +
2n
∑

k=2l+1
λk(−1)k, {λi}

 B̆k
(
r, {λi}

)′
 du.

Proof: Using straightforward algebra we have

∆2Ka
ts =



2
bTES

∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = 0

− 1
bTES

+ 1− [bTES]
bTES

∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES]

−
(

1− [bTES]
bTES

) ∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES] + 1

0 otherwise
.

We rewrite Ω̂ES using Lemma D1 and dividing it into the three nonzero cases as deter-

mined by ∆2Ka
ts while expanding the second term into two parts giving

Ω̂ES =
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = 0

}
2

bTES
ŜtŜ′s

− 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES]

}
1

bTES
ŜtŜ′s

+
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES]

}(
1−

[bTES]
bTES

)
ŜtŜ′s

− 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES] + 1

}(
1−

[bTES]
bTES

)
ŜtŜ′s.
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Using similar arguments as used in the proof of Lemma D9 for ζ3 and ζ4, it is easy to

show that the third and fourth terms are op(1). Therefore, we have

Ω̂ES =
1

TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = 0

}
2

bTES
ŜtŜ′s

− 1
TES

T−1
∑

t=1

T−1
∑

s=1
at+1as+11

{∣∣∣∣∣ t
∑ ai −

s
∑ ai

∣∣∣∣∣ = [bTES]

}
1

bTES
ŜtŜ′s + op(1)

Using Lemmas D5 and D7 we can write

Ω̂ES =
1

TES

T−1
∑

t=1

T−1
∑

s=1

C
∑

n=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}
1 {t = s} 2

bTES
ŜtŜ′s

− 1
TES

T−1
∑

t=1

T−1
∑

s=1

C
∑

n=0

n
∑

l=0

1

T2n − [bTES]−
2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}
1

t = s +
[
bTES

]
+

2n
∑

k=2l+1
(−1)kTk


× 1

bTES

(
ŜtŜ′s + ŜsŜ′t

)
+ op(1).

We can simplify Ω̂ES by plugging in t = s and t = s +
[
bTES

]
+ ∑2n

k=2l+1(−1)kTk into

the first and second terms respectively instead of using the indicator functions to give

Ω̂ES =
1

TES

T−1
∑

t=1

C
∑

n=0
1
{

T2n ≤ t ≤ T2n+1 − 1
} 2

bTES
ŜtŜ′t

− 1
TES

T−1
∑

s=1

C
∑

n=0

n
∑

l=01
T2n − [bTES]−

2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

} 1
bTES

(
Ŝ

s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk
Ŝ′s

+ŜsŜ′
s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk

)]
+ op(1)
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=
2
b

(
T

TES

)2
T−1

T−1
∑

t=1

C
∑

n=0
1
{

T2n ≤ t ≤ T2n+1 − 1
}

T−
1
2 ŜtŜ′t

− 1
b

(
T

TES

)2
T−1

T−1
∑

s=1

C
∑

n=0

n
∑

l=01
T2n − [bTES]−

2n
∑

k=2l+1
(−1)kTk ≤ s ≤ T2n+1 − 1− [bTES]−

2n
∑

k=2l+1
(−1)kTk


× 1

{
T2l ≤ s ≤ T2l+1 − 1

}(
T−

1
2 Ŝ

s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk
T−

1
2 Ŝ′s

+T−
1
2 ŜsT−

1
2 Ŝ′

s+
[
bTES

]
+∑2n

k=2l+1(−1)kTk

)]
+ op(1),

=
2
b

(
T

TES

)2 ∫ 1

0

C
∑

n=0
1
{

λ2n ≤ r < λ2n+1
}

T−
1
2 Ŝ[rT]T

−1
2 Ŝ′

[rT]dr

− 1
b

(
T

TES

)2 ∫ 1

0

C
∑

n=0

n
∑

l=01
λ2n − bλ−

2n
∑

k=2l+1
(−1)kλk ≤ u ≤ λ2n+1 − bλ−

2n
∑

k=2l+1
(−1)kλk


× 1

{
λ2l ≤ u < λ2l+1

}(
T−

1
2 Ŝ

[(u+bλ+∑2n
k=2l+1(−1)kλk)T]

T−
1
2 Ŝ′

[uT]

+T−
1
2 Ŝ[uT]T

−1
2 Ŝ′

[(u+bλ+∑2n
k=2l+1(−1)kλk)T]

)]
du

Further simplifications can be obtained by denoting the indicator functions as the ranges

of the integrals:
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Ω̂ES =
2
b

(
T

TES

)2 C
∑

n=0

∫ λ2n+1
λ2n

T−
1
2 Ŝ[rT]T

−1
2 Ŝ′

[rT]dr

− 1
b

(
T

TES

)2 C
∑

n=0

n
∑

l=0

∫ λ2l+1
λ2l


1

λ2n − bλ−
2n
∑

k=2l+1
(−1)kλk ≤ u ≤ λ2n+1 − bλ−

2n
∑

k=2l+1
(−1)kλk


×
(

T−
1
2 Ŝ

[(u+bλ+∑2n
k=2l+1(−1)kλk)T]

T−
1
2 Ŝ′

[uT]

+T−
1
2 Ŝ[uT]T

−1
2 Ŝ′

[(u+bλ+∑2n
k=2l+1(−1)kλk)T]

)]
du

+ op(1)

Then, by Lemma C4 and the continuous mapping theorem,

Ω̂ES ⇒ Λ∗


2
b

1

λ2

C
∑

n=0

∫ λ2n+1
λ2n

B̆k
(
r, {λi}

)
B̆k
(
r, {λi}

)′ dr− 1
b

1

λ2

C
∑

n=0

n
∑

l=0

∫ λ2l+1
λ2l


1

λ2n − bλ−
2n
∑

k=2l+1
(−1)kλk ≤ u ≤ λ2n+1 − bλ−

2n
∑

k=2l+1
(−1)kλk


×

B̆k
(
u, {λi}

)
B̆k

u + bλ +
2n
∑

k=2l+1
λk(−1)k, {λi}

′

+B̆k

u + bλ +
2n
∑

k=2l+1
λk(−1)k, {λi}

 B̆k
(
u, {λi}

)′
 du

Λ∗′

= Λ∗PES
3
(
b, B̆k({λi})

)
Λ∗′.

Proof of Theorem 2.5 (a): Theorem 2.5 (a) directly follows from Lemmas D8-D10.

Proof of Theorem 2.5 (b): Recall that the null hypothesis is H0 : r(β0) = 0 with q
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restrictions. The Wald statistic is defined as

WES
T = r

(
β̂ES

)′ [
R
(

β̂
)

V̂ESR
(

β̂ES
)′]−1

r
(

β̂ES
)

,

where

V̂ES = TES

TES
∑

t=1
xES

t xES′
t

−1

Ω̂ES

TES
∑

t=1
xES

t xES′
t

−1

.

Using β̂ES = β̂ and ∑
TES
t=1 xES

t xES′
t = ∑T

t=1 xtx′t, we can write

WES
T

= r
(

β̂ES
)′ [

R
(

β̂ES
)

V̂ESR
(

β̂ES
)′]−1

r
(

β̂ES
)

= r
(

β̂ES
)′ R

(
β̂ES

)
TES

TES
∑

t=1
xES

t xES′
t

−1

Ω̂ES

TES
∑

t=1
xES

t xES′
t

−1

R
(

β̂ES
)′
−1

× r
(

β̂ES
)

=
√

Tr
(

β̂
)′ TES

T
R
(

β̂
) (

T−1
T
∑

t=1
xtx′t

)−1
Ω̂ES

(
T−1

T
∑

t=1
xtx′t

)−1
R
(

β̂
)′−1

×
√

Tr
(

β̂
)

.

From the proof of Theorem 2.3 (a), we know that

√
Tr(β̂)⇒ R

(
β0
) (

λQ∗
)−1 Λ∗Wk.

There exists a q× q matrix ∆∗ such that

∆∗∆∗′ = R
(

β0
) (

λQ∗
)−1 Ω∗

(
λQ∗

)−1 R
(

β0
)′ ,

and it follows that

R
(

β0
) (

λQ∗
)−1 Λ∗Wk = ∆∗Wk.
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Using this result and Lemmas D8- D10 (depending on the type of kernel) it follows that

WT ⇒
[

R(β0)
(

λjQ
∗)−1

Λ∗Wk

]′
×
[
λR
(

β0
)(

λQ∗
)−1 Λ∗PES (b, B̆k({λi})

)
Λ∗′

(
λQ∗

)−1 R
(

β0
)′]−1

×
[

R(β0)
(
λQ∗

)−1 Λ∗Wk
]

=
(

∆∗Wq
)′ [

λ∆∗PES
(

b, B̆q({λi})
)

∆∗′
]−1 (

∆∗Wq
)

=W′q
[
λPES

(
b, B̆q({λi})

)]−1
Wq.

For the special case of q = 1, we have the following limit for the t-statistic:

tT ⇒
W1√

λPES (b, B̆1({λi})
) .

Note that the particular form of PES
(

b, B̆q({λi})
)

is given by Lemmas D8- D10 depend-

ing on the form of kernel.
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Appendix E

PROOFS FOR FIXED-G, LARGE-nG CASE WHEN G EVENLY DIVIDES T

Proof of Theorem 3.2 (a) (Asymptotic Limit of OLS): Plugging in nG = T/G to (3.2) in

Section 3.2, we can write

β̂− β =

 G
∑

g=1

gnG
∑

t=(g−1)nG+1
xtx′t


−1

G
∑

g=1

gnG
∑

t=(g−1)nG+1
vt

=

 G
∑

g=1

(
g
G )T

∑
t=(

g−1
G )T+1

xtx′t


−1

G
∑

g=1

(
g
G )T

∑
t=(

g−1
G )T+1

vt.

It directly follows that

√
T
(

β̂− β
)
=

 G
∑

g=1
T−1

(
g
G )T

∑
t=(

g−1
G )T+1

xtx′t


−1

G
∑

g=1
T−

1
2

(
g
G )T

∑
t=(

g−1
G )T+1

vt. (eqE.1)

Assumption B implies

T−1
(

g
G T)

∑
t=1

xtx′t ⇒
g
G

Q,

and

T−1/2
(

g
G T)

∑
t=1

vt ⇒ ΛWk(
g
G
).

Therefore from (eqE.1) it follows that

√
T
(

β̂− β
)
⇒

 G
∑

g=1

(
g
G
− g− 1

G

)
Q

−1 G
∑

g=1
Λ
(
Wk

( g
G

)
−Wk

(
g− 1

G

))

=

 G
∑

g=1

Q
G

−1

ΛWk (1)

= Q−1ΛWk (1) .
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Define Ŝg =
g
∑

j=1
v̂j. We now establish the following lemma about Ŝg.

Lemma E2. Let W̃k(r) =Wk (r)− rWk (1). Under Assumption B as T → ∞,

T−1/2Ŝg ⇒ ΛW̃k
( g

G

)
.

Proof: Plugging in nG = T/G, gives

T−1/2Ŝg = T−1/2
g
∑

j=1
v̂j = T−1/2

g
∑

j=1

jnG
∑

t=(j−1)nG+1
v̂t

= T−1/2
g
∑

j=1

(
j
G )T

∑
t=(

j−1
G )T+1

v̂t (eqE.2)

Note that v̂t = xt(yt − x′t β̂) = vt − xtx′t(β̂− β). Thus, we can write

T−1/2Ŝg = T−1/2
g
∑

j=1

(
j
G )T

∑
t=(

j−1
G )T+1

(
vt − xtx′t

(
β̂− β

))

=
g
∑

j=1

T−1/2
(

j
G )T

∑
t=(

j−1
G )T+1

vt − T−1
(

j
G )T

∑
t=(

j−1
G )T+1

xtx′t
√

T
(

β̂− β
)
 .

Assumption B implies that

T−1/2

(
j
G

)
T

∑
t=
(

j−1
G

)
T+1

vt ⇒ Λ
(
Wk

(
j
G

)
−Wk

(
j− 1

G

))
,

and

T−1

(
j
G

)
T

∑
t=
(

j−1
G

)
T+1

xtx′t ⇒
(

j
G
− j− 1

G

)
Q.
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From Theorem 3.2 (a), we know that

√
T(β̂− β)⇒ Q−1ΛWk (1) .

Therefore from (eqE.2),

T−1/2Ŝg ⇒
g
∑

j=1

{
Λ
(
Wk

(
j
G

)
−Wk

(
j− 1

G

))
−
(

j
G
− j− 1

G

)
QQ−1ΛWk (1)

}
,

= Λ
(
Wk

( g
G

)
− g

G
Wk (1)

)
,

≡ ΛW̃k(
g
G
).

Proof of Theorem 3.2 (b) (Asymptotic Distribution of CHAC): Define

P(G, M, W̃k) =

G−1
∑

g=1

G−1
∑

h=1
W̃k

( g
G

)(
2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

))
W̃k

(
h
G

)′
.

Using summation by parts we can rewrite G
T Ω̂ as

G
T

Ω̂

=
G−1
∑

g=1

G−1
∑

h=1
T−1/2Ŝg

[
2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

)]
T−1/2Ŝ

′
h

⇒ Λ

G−1
∑

g=1

G−1
∑

h=1
W̃k

( g
G

)(
2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

))

×W̃k

(
h
G

)′]
Λ′

≡ ΛP(G, M, W̃k)Λ
′

Weak convergence follows from Lemma E2. The above expression is valid for any kernel

but in the case of the Bartlett kernel we can further simplify P(G, M, W̃k) as follows. Note
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that for the Bartlett kernel we have

2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

)
=



2
M when g = h

− 1
M when |g− h| = M

0 otherwise.

.

Therefore

P(G, M, W̃k) =
2
M

G−1
∑

g=1
W̃k

( g
G

)
W̃k

( g
G

)′
− 1

M

G−M−1
∑

g=1

(
W̃k

( g
G

)
W̃k

(
g + M

G

)′
+ W̃k

(
g + M

G

)
W̃k

( g
G

)′)
.

Proof of Theorem 3.2 (c) (Asymptotic Distribution of WCHAC and tCHAC) :Using

the definition of WCHAC and Theorem 3.2 (a,b) it follows from standard calculations

that

WCHAC =
(

Rβ̂− r
)′ [RV̂CHACR′

]−1 (
Rβ̂− r

)
=
√

T
(

Rβ̂− r
)′ [RTV̂CHACR′

]−1√
T
(

Rβ̂− r
)

=
[

R
√

T
(

β̂− β
)]′ R

(
1
T

T
∑

t=1
xtx′t

)−1
G
T

Ω̂

(
1
T

T
∑

t=1
xtx′t

)−1
R′
−1

× R
√

T
(

β̂− β
)

⇒
[

RQ−1ΛWk(1)
]′ [

RQ−1ΛP(G, M, W̃k)Λ
′−1R

]−1
RQ−1ΛWk(1).

(eqE.3)

There exists a q× q matrix ∆∗ such that

∆∗∆∗′ = RQ−1ΩQ−1R′,

and it follows that

RQ−1ΛWk = ∆∗Wq.
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Then from (eqE.3),

WCHAC ⇒
[

RQ−1ΛWk(1)
]′ [

RQ−1ΛP(G, M, W̃k)Λ
′−1R

]−1
RQ−1ΛWk(1)

=W′q(1)∆∗′[∆∗P(G, M, W̃q)∆′∗]−1∆∗Wq(1)

=W′q(1)P(G, M, W̃q)−1Wq(1)

When q = 1,

tCHAC ⇒
W1(1)√

P(G, M, W̃1)
.
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Appendix F

PROOFS FOR FIXED-G, LARGE-nG CASE WHEN THE NUMBER OF
OBSERVATIONS ARE NOT THE EXACT MULTIPLE OF G

In this appendix we obtain the fixed-G limits for the case where the number of clusters

does not evenly divide the sample. Suppose that there are nG observations in first G− 1

clusters and nl ≤ nG observations in the last cluster. Hence it follows that T = nG(G−

1) + nl . Assume that
nl
T → λl as T → ∞.

Asymptotic Limit of OLS: First notice that β̂ can be rewritten as

β̂ =

G−1
∑

g=1

gnG
∑

t=(g−1)nG+1
xtx′t +

T
∑

t=T−nl+1
xtx′t


−1

×

G−1
∑

g=1

gnG
∑

t=(g−1)nG+1
xtyt +

T
∑

t=T−nl+1
xtyt

 .

Also, note that

T = nG(G− 1) + nl ⇔ nG =
T − nl
G− 1

⇔ 1
G− 1

(
1−

nl
T

)
T. (eqF.1)
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Then with (eqF.1) and Assumption B,

√
T
(

β̂− β
)

=

G−1
∑

g=1
T−1

gnG
∑

t=(g−1)nG+1
xtx′t + T−1

T
∑

t=T−nl+1
xtx′t


−1

×

G−1
∑

g=1
T−1/2

gnG
∑

t=(g−1)nG+1
vt + T−1/2

T
∑

t=T−nl+1
vt



=

G−1
∑

g=1
T−1

g
G−1(1−

nl
T )T

∑
t= g−1

G−1(1−
nl
T )T+1

xtx′t + T−1
T
∑

t=(1−nl
T )T+1

xtx′t


−1

×

G−1
∑

g=1
T−1/2

g
G−1(1−

nl
T )T

∑
t= g−1

G−1(1−
nl
T )T+1

vt + T−1/2
T
∑

t=(1−nl
T )T+1

vt


⇒

G−1
∑

g=1

(
g

G− 1
− g− 1

G− 1

)
(1− λl)Q +

(
1− (1− λl)

)
Q

−1

×Λ

G−1
∑

g=1

(
Wk

(
g(1− λl)

G− 1

)
−Wk

(
(g− 1)(1− λl)

G− 1

))
+Wk(1)−Wk

(
1− λl

)
= Q−1ΛWk (1)

Lemma F2. Let W̃k(r) = Wk (r) − rWk (1). Under Assumption B as T → ∞, when g ≤

G− 1,

T−1/2Ŝg ⇒ ΛW̃k

(
g(1− λl)

G− 1

)
.

When g = G,

T−
1
2 Ŝg = 0.
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Proof: When g ≤ G− 1, it follows by simple algebra

T−1/2Ŝg

= T−1/2
g
∑

j=1

jnG
∑

t=(j−1)nG+1
v̂t

=
g
∑

j=1
T−1/2

jnG
∑

t=(j−1)nG+1
vt −

g
∑

j=1
T−1

jnG
∑

t=(j−1)nG+1

(
xtx′t

)√
T
(

β̂− β
)

=
g
∑

j=1
T−1/2

j
G−1(1−

nl
T )T

∑
t= j−1

G−1(1−
nl
T )T+1

vt

−
g
∑

j=1
T−1

j
G−1(1−

nl
T )T

∑
t= j−1

G−1(1−
nl
T )T+1

(
xtx′t

)√
T
(

β̂− β
)

∵ ng =
T − nl
G− 1

(eqF.1)

⇒
g
∑

j=1
Λ
[
Wk

(
j(1− λl)

G− 1

)
−Wk

(
(j− 1)(1− λl)

G− 1

)]

−
g
∑

j=1

[
j(1− λl)

G− 1
Q−

(j− 1)(1− λl)
G− 1

Q
]

Q−1ΛWk (1)

= Λ
[
Wk

(
g(1− λl)

G− 1

)
−

g(1− λl)
G− 1

Wk (1)
]
≡ ΛW̃k

(
g(1− λl)

G− 1

)
When g = G,

T−
1
2 ŜG = 0

because it is the first order condition for the OLS estimator. Note that when λl = 0, we

obtain the same result as in Lemma E2 as expected.

670



Asymptotic Limit of G
T Ω̂: Recalling the algebra using the proof of Theorem 3.2 (b):

G
T

Ω̂

=
G−1
∑

g=1

G−1
∑

h=1
T−1/2Ŝg

[
2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

)]
T−1/2Ŝ

′
h

⇒ Λ

G−1
∑

g=1

G−1
∑

h=1
W̃k

(
g(1− λl)

G− 1

)(
2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

))

W̃k

(
h(1− λl)

G− 1

)′]
Λ′

≡ ΛPl
(

G, M, W̃k, λl
)

Λ′,

which follows from Lemma F2. For the Bartlett kernel we have

G
T

Ω̂

=
G−1
∑

g=1

G−1
∑

h=1
T−1/2Ŝg

[
2k
(
|g− h|

M

)
− k

(
|g− h + 1|

M

)
− k

(
|g− h− 1|

M

)]
T−1/2Ŝ

′
h

=
2
M

G−1
∑

g=1
T−1/2ŜgT−1/2Ŝ

′
g

− 1
M

G−M−1
∑

g=1

(
T−1/2ŜgT−1/2Ŝ

′
g+M + T−1/2Ŝg+MT−1/2Ŝ

′
g

)

⇒ Λ

 2
M

G−1
∑

g=1
W̃k

(
g(1− λl)

G− 1

)
W̃k

(
g(1− λl)

G− 1

)′
−

1
M

G−M−1
∑

g=1

(
W̃k

(
g(1− λl)

G− 1

)
W̃k

(
(g + M)(1− λl)

G− 1

)′

+W̃k

(
(g + M)(1− λl)

G− 1

)
W̃k

(
g(1− λl)

G− 1

)′)]
Λ′

≡ ΛPl(G, M, W̃k, λl)Λ
′

Note that when λl = 0, the asymptotic approximation is the same as in Theorem 3.2 (b).

Asymptotic Limit of WCHAC: Using similar arguments as in the proof of Theorem 3.2
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(c), it follows from the previous results in this appendix that

WCHAC

=
(

Rβ̂− r
)′ [RV̂CHACR′

]−1 (
Rβ̂− r

)
=
√

T
(

Rβ̂− r
)′ [RTV̂CHACR′

]−1√
T
(

Rβ̂− r
)

=
[

R
√

T
(

β̂− β
)]′ R

(
T−1

T
∑

t=1
xtx′t

)−1
T−1GΩ̂

(
T−1

T
∑

t=1
xtx′t

)−1
R′
−1

× R
√

T
(

β̂− β
)

⇒
[

RQ−1ΛWk(1)
]′ [

RQ−1ΛPl(G, M, W̃k, λl)Λ
′−1R

]−1
RQ−1ΛWk(1)

=Wq(1)′Pl(G, M, W̃q, λl)
−1
Wq(1).

When q = 1,

tCHAC =
Rβ̂− r√

RV̂CHACR′

⇒
W1(1)√

Pl(G, M, W̃1, λl)
.
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