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ABSTRACT

ROLE OF CENTRAL EICOSANOIDS IN THE DEVELOPMENT OF
ANGIOTENSIN II-SALT HYPERTENSION IN THE RAT

By

Ninitha-Margret-Julfiya Asirvatham-Jeyaraj

Human essential hypertension (HTN) causes end organ damage, cardiovascular
disease and premature death. While increased sympathetic nerve activity (SNA) is a
principal risk factor for the development of HTN, the central mechanisms that drive high
sympathetic outflow remain unclear. Increased SNA and blood pressure (BP) can be
triggered by high salt intake (2% NaCl) and the hormone angiotensin |l (Angll). Our lab
has extensively studied a rat model of HTN caused by these two factors in combination
(Angll-salt HTN), and have shown that SNA contributes to the HTN and blocking whole-
body eicosanoid (prostaglandin, thromboxane, lipoxygenase) synthesis with
cyclooxygenase (COX) inhibitors attenuated both the increased SNA and HTN
development. My project was to determine how eicosanoid products contribute to AnglI-
salt HTN. In initial experiments, | showed that whole-body COX inhibition failed to
reverse established Angll-salt HTN in rats (similar to human hypertensives). In contrast,
COX inhibition only during the first several days of 14-day Angll-salt treatment
successfully prevented subsequent HTN development and sympathetic support of BP
(i.e. neurogenic pressor activity). | concluded that COX products exert important
physiological effects only during the early phase. | next investigated the roles of the two
isoforms of COX and found that COX-1 specific products drive the development of

Angll-salt HTN. Because most eicosanoid products in peripheral tissues (blood vessel,



kidney) lower BP, | decided to test if central (i.e. brain) eicosanoids, acting early in the
process of Angll-salt HTN development, cause a long-lived increase in SNA and BP. |
chronically administered the COX inhibitor into the brain at a dose designed to block
COX in the brain, and showed that this prevented increase in SNA and HTN
development. | concluded that one or more COX-1 products in the brain contribute to
HTN development. | also performed PCR and Western blot analysis of COX pathway-
associated gene and protein expression in known cardio-regulatory regions of the brain.
This revealed only modest changes for the most part, but | observed significant changes
in the prostaglandin D2 (PGDZ2) pathway (downstream from COX) in the OVLT (cardio-
regulatory brain region), choroid plexus (CP) and cerebrospinal fluid (CSF). Importantly,
| showed increased lipocalin-prostaglandin D synthase (L-PGDS) expression in the CP
and CSF, the main sites of L-PGDS synthesis and secretion, respectively. These
findings were the first ever to implicate brain PGD2 in HTN. Thus, to investigate this
finding in more detail, | measure brain levels of PGD2 with mass spectrometry and
found high levels in CSF and rostral ventrolateral medulla (RVLM) of HTN rats. PGD2 in
the brain binds mainly to the G-protein coupled receptor DP1R. Immunofluorescence
staining revealed down-regulation of DP1R in the RVLM during the early phase of
Angll-salt HTN; perhaps predictable in the presence of increased agonist concentration.
Finally, blockade of L-PGDS prevented the increase in PGD2 levels in the RVLM during
the early phase of Angll-salt treatment and attenuated subsequent HTN development.
In conclusion, the results of my studies suggest a novel mechanism for neurogenic HTN
development: PGD2 generated in the brain from L-PGDS acts on DP1R in the RVLM,

which ultimately leads to increased SNA, neurogenic pressor activity and HTN.
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CHAPTER 1

INTRODUCTION



1. Hypertension

High blood pressure, medically termed hypertension (HTN), is a principal risk factor for
cardiovascular diseases. A recent report published in 2013 on the occasion of World
Health Day by the World Health Organization (WHO) addresses HTN as “a global public
health problem” and a “silent killer” (1). One in three Americans adults over 18 years of
age is hypertensive (196). HTN is a modifiable risk factor that predisposes to the
development of cardiovascular and renal diseases; it is the major factor responsible for
myocardial infarction (69%), stroke (77%), and chronic heart failure (74%) (99). In the
US and the world, healthcare costs due to the impact of HTN have surpassed billions
when considering direct medical expenses and lost productivity (101). Patients who are
clinically diagnosed with HTN are prescribed multiple drugs like diuretics, angiotensin
receptor inhibitors, angiotensin converting enzyme inhibitors etc., to control their blood
pressure (BP) and prevent multiple organ damage. Lifestyle modifications suggested to
reduce blood pressure include a nutritionally balanced diet low in sodium and fat
content along with regular exercise. In particular, it has been suggested that lowering
sodium intake population-wide from 3,300 mg to 2,300 mg per day could reduce the

number of cases of high BP and save billions of dollars annually on health care (178).

1.1. Classification of hypertension
A pressure of £120 mmHg exerted against the walls of blood vessels when the left
ventricle of the heart is contracting and <80 mmHg when the heart is relaxing are typical

systolic and diastolic blood pressures found in healthy young adults, respectively.



Therefore, adult humans with BP at or below 120/80 mmHg are considered

‘normotensive” (28).

Individuals can exhibit different stages of HTN that are defined by the cardiovascular
risk encountered with different levels of elevated BP. The Seventh Report of the Joint
National Committee on Prevention, Detection, Evaluation and Treatment of High Blood
Pressure categorized HTN into prehypertension (120-129/80-89 mmHg), stage 1
hypertension (140-159/90-99 mmHg) and stage-2 hypertension (=2160/2100 mmHg)
(28). The stage of prehypertension is considered a grey area during HTN development
because the relative risk for cardiovascular disease development is low, but such
patients have an increased chance of progressing to true hypertension. Clinical

management of patients with prehypertension is controversial at the same time.

1.2. Causes of hypertension

Only 5 to 10 percent of patients have a clearly identifiable etiology for their HTN, such
as pheochromocytoma, primary aldosteronism, Cushing’s syndrome, coarctation of
aorta, or adrenal cortical tumors. Patients with a known cause for their HTN are
generally curable once the underlying cause is removed and are said to have
“secondary hypertension” (87). The remaining 90 to 95 percent of patients have HTN
with no single identifiable cause: this category is termed “essential” or “primary”
hypertension. The term “essential” is a misnomer that was coined in the 1940s-1950s
based on the mistaken belief that increased BP was essential to maintain adequate

tissue perfusion through an abnormally constricted arterial system. Modifiable risk



factors that increase the probability of developing essential HTN include increased body
weight, excessive salt intake or alcohol consumption, environmental stresses, and

physical inactivity (3).

Non-modifiable risk factors include age, sex and genetics. Human hypertension is a
polygenic trait with many gene variants contributing to a quantitative phenotype such as
blood pressure. It is impossible to point at any one particular gene as the cause of HTN,
instead it arises from the interaction of many genes with small effects (10). Therefore,
identification of new genes requires novel statistical approaches based on many

thousands of patients (142).

There are few outward symptoms of HTN, hence the designation “silent killer”. Severe
HTN occasionally is often signaled by headache and/or vertigo. Stroke, left ventricular
hypertrophy and vascular disease leading to myocardial ischemia and congestive heart
failure are frequent complications that account for much of the morbidity and mortality

associated with HTN (82, 198).

1.3. Treatment of hypertension

Numerous categories of hypertensive drugs are prescribed to patients including
diuretics, beta-blockers, alpha-blockers, centrally acting sympatholytics, vasodilators,
calcium channel blockers, ACE inhibitors, angiotensin receptor blockers and renin, or a
combination of these drugs (28). Most patients ultimately need to take drugs from two or

more of these classes to achieve adequate control of their HTN. Some individuals do



not reach therapeutic BP targets even when taking three or more drugs and are
therefore described as having resistant hypertension. In recent years catheter-based
renal sympathetic denervation has shown efficacy (50, 238) in lowering blood pressure
in some patients with resistant hypertension, emphasizing the important role of the

sympathetic nervous system in the pathophysiology of HTN.

2. Neural regulation of blood pressure

Hippocrates, “The Father of Medicine”, over 2500 years ago appreciated the link
between the mind and physical health. In recent decades, many details have been
discovered about how the brain regulates BP (145, 244). Changing neuronal activity in a
number of distinct “cardio-regulatory” neuronal regions of the brain controls BP by
affecting cardiac function, blood vessel tone, hormone secretion, body fluid volume
regulation and other factors (88). The primary sites in the brain containing neurons that
regulate cardiovascular function are the spinal cord, brainstem, and hypothalamus. In
addition, a network of peripheral afferent and efferent autonomic neurons comprises a
short-term and long-term feedback control system that allows the brain to tightly
regulate BP (36). BP control is mostly invested in the sympathetic nervous system
(SNS), one of two major arms of the efferent autonomic nervous system (the other
being the parasympathetic nervous system). Anatomically, short preganglionic neurons
of the SNS originate from the thoracolumbar region of the spinal cord, in particular from
the cell bodies of intermediolateral (IML) cell column. They send their axons to the
paravertebral and prevertebral ganglia and adrenal medulla. Long postganglionic fibers

project from the ganglia to various effector organs, where they release the primary



sympathetic neurotransmitter norepinephrine (NE) along with numerous other con-

transmitters.

Widespread physiological responses to increased SNS activity (SNA) were initially
characterized as the “fight or flight response.” With regard to BP regulation, sympathetic
innervation of effector organs like the peripheral blood vessels, sinoatrial node and
myocardium allows precise minute-to-minute control of BP via changes in arterial
vasoconstriction, heart rate, and stroke volume (86, 88). While long-term control of BP
was generally thought to be determined by the kidney pressure natriuresis mechanism
(78, 87), it is now well accepted that the SNS plays a key role not only in short term but
also in long-term control of BP (36, 50, 86, 128). For example, one autonomic pathway
that operates over the long-term to control BP is renal SNA (49), which regulates renal

vascular resistance, sodium and water excretion, and renin release.

2.1. Central nervous system

As noted earlier, neural pathways originating in the brain maintain BP primarily by
affecting SNA. Activity in these pathways is determined both by the intrinsic firing rates
of neurons and by the concerted action of circulating hormones (e.g angiotensin I,
leptin), chemicals (e.g. glucose), afferent neural inputs from the periphery (e.g.
baroreceptors and chemoreceptors) and inputs from other brain regions (e.g. cerebral

cortex) on pathway neurons.



Brain regions known to be important in BP regulation that are considered important for
signaling include the amygdala in the cerebral cortex, the paraventricular nucleus
(PVN), preoptic nuclei and dorsomedial nucleus in the hypothalamus, the A5
noradrenergic nuclei in the pons, the rostral ventrolateral medulla (RVLM) and nucleus
of the solitary tract (NTS) in the brainstem, and circumventricular organs such as the
hypothalamic subfornical organ (SFO) and organum vasculosum of the lamina
terminalis (OVLT) and the brainstem area postrema (AP) (59, 96, 208).
Circumventricular organs (CVO) are the first brain structures to come into contact with
peripheral hormonal signals that regulate SNA, like angiotensin Il (176). Neuronal
connections link these CVOs to other cardioregulatory regions involved in control of

SNA and BP (217).

2.2. Baroreceptor reflex

Although many factors influence SNA at rest and during physiological stresses, the
arterial baroreceptor reflex exerts overriding control of SNA over short time intervals
(seconds to minutes). The brain receives continuous inputs from arterial baroreceptor
neurons, i.e. neurons with cell bodies in the nodose and petrosal ganglia and
deformation-sensitive nerve endings situated in the carotid sinus and the aortic arch.
Increased arterial pressure stretches the blood vessel wall and activates these nerve
endings, which causes the baroreceptor neurons to discharge and inhibit sympathetic
vasomotor activity. Peripheral afferent fibers arising from the baroreceptor neurons
synapse on first order neurons of the NTS located in medulla (brainstem). These NTS

neurons excite second-order neurons through glutamatergic synapses (140). The



glutamate sensitive NTS second-order neurons convey the baroreceptor signal to the
caudal ventrolateral medulla (CVLM), which sends inhibitory signals to neurons within
the RVLM (86, 186). RVLM neurons are tonically active and provide most of the “basal’
excitatory drive to sympathetic preganglionic neurons in the spinal cord. The reduced
activity in RVLM neurons caused by baroreceptor activation causes a fall in sympathetic
nerve discharge to the blood vessels and heart and a decline in blood pressure (and

heart rate) (186, 197).

Aside from its role in the baroreceptor reflex, the RVLM serves as a “final common
pathway” for most neural regulation of BP by causing sympathetically mediated
changes in heart rate, stroke volume and systemic vascular resistance. This role of the
RVLM became evident when researchers observed dose dependent reductions in SNA
and BP when the inhibitory neurotransmitter gamma amino butyric acid (GABA) was

microinjected into the RVLM in experimental animals (98, 182).

Among other brain nuclei, the PVN is considered a particularly key integrative center for
control of SNA and BP (125, 170). The PVN regulates SNA and BP by direct neuronal
connections to: 1) the NTS and RVLM in the brainstem, and 2) spinal sympathetic pre-
ganglionic neurons. The PVN receives input from many important integrative centers of
the hypothalamus (e.g. the SFO, median preoptic nucleus, arcuate nucleus,
suprachiasmatic nucleus), pons (lateral parabrachial nucleus), and brainstem (NTS and
RVLM) (187). Although the PVN is known to play an important role in stress,

metabolism, growth, reproduction, immune, gastrointestinal, and renal function, recent



studies point to an important function of the PVN in regulating SNA and BP in

hypertension as well (4, 31, 125, 148).

3. Sympathetic nervous system activity (SNA) in hypertension

In varied experimental animal models such as spontaneously hypertensive rats (116),
renovascular hypertension (21), angiotensin Il hypertension (162), angiotensin ll-salt
hypertension (175, 268), Dahl salt sensitive rats (146) and mineralocorticoid
hypertension (119), there is evidence for increased SNA. There also is compelling
evidence for increased SNA in human hypertensive patients. For example, a substantial
subset (around 50%) of essential hypertensive patients has elevated SNA and/or
sympathetic support of BP (45, 48, 80, 81, 134, 205). This evidence comes from a
variety of techniques for assessing SNA such as measurement of plasma
norepinephrine or norepinephrine spillover, direct recording of single or multi-unit
sympathetic nerve fiber firing rate, measurement of plasma catecholamine in
hypertensive population the depressor response to ganglionic blockers, and changes in

blood pressure after surgical sympathectomy (191, 205).

3.1. Physiological mechanisms of increased sympathetic effects on BP

Broadly speaking, sympathetic effects on blood pressure, which in my dissertation | call
neurogenic pressor activity, can be caused by two general sets of physiological effects
classified as “prejunctional” and “postjunctional”. Prejunctional mechanisms determine
the concentrations of NE in the neuro-effector junctions of target tissues (blood vessels,

heart, kidney), and include: 1) increased centrally-mediated sympathoneural or adrenal



medullary outflow (this is generally described as “increased SNA”), 2) increased
ganglionic neurotransmission and 3) increased NE release or decreased uptake by
sympathetic nerve terminals (often called “increased neurotransmission”) (86). The
postjunctional mechanisms are 1) vascular remodeling, 2) augmented vascular, cardiac
or renal adrenoreceptor-mediated tissue responses, 3) altered cardiac or vascular ion
channels, 4) abnormal intracellular signaling, 4) increased release of intracellular
calcium from stores, or 5) decreased actions of physiological antagonists such as nitric
oxide (86). The net effect of all these factors determines the degree to which the
sympathetic nervous system determines blood pressure, i.e. neurogenic pressor

activity.

3.2. What causes increased SNA and neurogenic pressor activity in HTN?

A myriad of factors contribute to increased SNA or neurogenic pressor activity in human
hypertension. Broadly these could be categorized into genetic factors and behavioral or
environmental factors (48). The increase in SNA seen in many hypertensive patients is
partly caused by genetic factors (56, 245). Another prime cause for increased SNA is
behavioral stress (47, 183). Obesity (6), insulin resistance (150) and inactivity (154) also
are believed to enhance SNA in hypertensive patients. Finally, sleep deprivation (184),
hypoxia (277) and inflammation (144) could account for increased SNA in human
hypertension. From a physiological control system perspective, increased SNA could
be a consequence of baroreceptor, chemoreceptor or metaboreceptor impairment (36,
37). Other physiological factors possibly responsible for increased SNA in hypertension

include: increased plasma or tissue osmolality (173), elevated levels of circulating
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hormones like angiotensin Il (92, 193), and both inadequate or excess intake of salt (18,

108) .

A major goal of my research project is to more fully elucidate specific brain signaling
mechanisms that can cause increased SNA that result in increase BP. To this end, my
experiments employed two factors that are well known to be important in the
development of HTN, namely angiotensin Il and high dietary salt intake. Thus, before
proceeding further | will give brief overviews on the physiology of the renin-angiotensin-

aldosterone system and salt, with specific emphasis on how they can affect SNA.

4. Renin angiotensin aldosterone system

The renin angiotensin aldosterone system (RAAS) producing the effector molecule
angiotensin Il (Angll) in response to physiological stimuli is a classic endocrine system
(246). The main components of the classical renin angiotensin aldosterone system
(Figure 1-1) include:

Renin: The juxtaglomerular (JG) cells that surround the renal afferent arterioles secrete
renin. It is a protease enzyme synthesized first as an inactive precursor pro-renin.
Angiotensinogen: It is a large protein with over 450 amino acids and is synthesized in
the liver. The renin angiotensin system cascade starts with the release of enzyme renin
from the kidney. Renin then acts on the precursor angiotensinogen in the blood to form

Angl.
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Angiotensin I: Angl is a decapeptide formed by renin activity. It has limited physiological
activity, but is hydrolyzed by circulating and locally expressed angiotensin converting
enzyme to the physiologically active Angll.

Angiotensin converting enzyme (ACE): The enzyme ACE is mainly expressed in the
lungs and to some extent in other tissues like vascular endothelial cells, kidneys,
forebrain circumventricular organs and the adrenal (25). ACE catalyzes the conversion
of angiotensin | into angiotensin Il. ACE inhibitors are widely used as antihypertensive
drugs.

Angiotensin Il (Angll): It is an octapeptide produced by the renin angiotensin pathway.
Physiological effects of Angll include: potent vasoconstriction; stimulation of certain
brain regions controlling SNA, thirst responses and vasopressin release; angiogenesis;
release of aldosterone from the adrenal cortex; and direct actions on renal tubular cells
to cause sodium absorption (68, 246).

Angiotensin Il receptors: Most established physiological effects of Angll are mediated
through interaction with cell membrane receptors. The known Angll receptors are
angiotensin type 1 receptor and angiotensin type 2 (AT1 and AT2) that belong to the
superfamily of seven transmembrane spanning G-protein coupled receptors. AT1
mediates vasoconstriction, cardiac hypertrophy, fibrosis and inflammation. Angll-AT1
signaling triggers aldosterone release and sodium retention (250). Actions of Angll at
AT1 receptors are in some instances partially opposed by actions at AT2 receptors.
AT2 receptor stimulation activates phospholipase A2, and nitric oxide release and
thereby produces anti-inflammatory, vasodilatory and anti-proliferative effects (65, 230).

AT1 receptor blockers are effective in lowering vascular tone and blood pressure along
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with reducing catecholamine, vasopressin and aldosterone release (230).

Aldosterone: The adrenal cortex is the site of synthesis of the steroid hormone
aldosterone. Aldosterone acts primarily on the epithelium of the renal collecting tubules
and distal tubules to cause an increase in the reabsorption of sodium and secretion of
potassium resulting in sodium conservation and enhanced excretion of the potassium
ion (261). Angiotensin Il stimulates secretion of aldosterone from adrenal cortex and

aldosterone in turn acts on renal tubules to increases blood volume and blood pressure.

The RAAS controls BP after being activated by one or more physiological cues. For
example, a reduction in renal perfusion pressure (or salt deprivation) stimulates the
release of renin from the JG cells of the kidney into circulating blood. Under most
circumstances, the rate-limiting step in the formation of Angll is the rate of release of
renin from the kidney. In addition to reduced perfusion pressure and salt depletion, renin
secretion is stimulated by activation of beta-1 adrenergic receptors on JG cells by
norepinephrine released from renal sympathetic nerves (9). In addition to the classical
renin-angiotensin system (RAS), tissue specific RAS have been identified in brain,
blood vessels, heart, adrenal gland, testes, ovaries, skin, adipose tissue and leukocytes
(34). These tissue-specific RAS have roles like control of blood flow, cell growth and
repair, to name a few. It remains unclear how important tissue-specific RAS are to
normal physiological function and the degree to which they are actually independent of

the classical RAS (100, 258, 274).
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Figure 1-1: Renin-angiotensin-aldosterone system. Circulating renin from kidney
cleaves liver angiotensinogen to form angiotensin | (Angl). In the lung, angiotensin-
converting enzyme (ACE) acts on Angl to form angiotensin Il (Angll). Angll acts mainly
on the angiotensin type 1 receptor (AT1) to cause vasoconstriction, sympathetic

activation, and the secretion of vasopressin and aldosterone.

14



5. Angiotensin Il as a cause of increased SNA in hypertension

Abundant evidence supports the idea that Angll can increase SNA and/or sympathetic
support of blood pressure by acting on both the brain and peripheral SNS (24, 85, 141,
268). With regard to brain mechanisms, pivotal work by Brody and colleagues revealed
the critical role of brain CVOs in the Angll-induced HTN. Neurons in CVOs like the SFO
and OVLT innervate neurons in the PVN that sends projections to the RVLM in the brain
stem, and directly to sympathetic neurons in the spinal intermediolateral cell column
(IML), and thereby modulate sympathetic tone (185). Although there is support for the
idea that Angll could be a player in the elevated SNA observed in some human
hypertensives, that idea remains controversial (79, 141). This is likely due to: 1)
important differences in the experimental animal models used to study the question; 2)
the disparate approaches that have been used to quantify SNA in experimental animals
and human patients; and 3) the often disregarded impact of other factors (e.g. salt

intake) on the physiological actions of Angll (see below).

6. Salt

Salt is regarded as an essential human commodity. If we take pages from the annals of
history, we find many wars were fought to have control over salt. The Indian civil
disobedience movement against the taxation of salt was a hallmark of the Indian
Independence movement in 1930, where Gandhi led freedom fighters in what was
called the “Salt March to Dandi” to make salt from the sea. With modernization, the use
of salt has been under scrutiny because its widespread use as a food preservative has

produced higher levels in the body, with possible adverse consequences. The human
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body is 60% water, a handful of solutes, mainly sodium, potassium, calcium,
magnesium, chloride, bicarbonate, phosphate, organic anions, and proteins. “Salt” is
made up of sodium and chloride and is the major contributor to human extracellular and
serum osmolality. In these fluids the concentration of sodium is tightly regulated in the
range of 135-145mnol/L and physiological disturbances occur if the concentration
becomes higher or lower. In large population groups, average dietary salt intake has
been shown to be an important risk factor for hypertension and related cardiovascular
diseases. In contemporary western society, sodium intake is around 100-200 mmol/day
(240). Groups of individuals with intake of sodium below 50 to 100mmol/day have a
lower incidence of cardiovascular diseases (42). Groups with higher daily intake than
average are at increased risk for hypertension and modest reduction in salt intake

reduces blood pressure (97, 240).

6.1. Salt sensitivity of blood pressure

Despite the results from population studies cited above, individuals exhibit different BP
responses to changes in salt intake. Some individuals respond to an increase in salt
intake with a prompt rise in BP of over 10 mmHg and are called “salt-sensitive,”
whereas others show no change in BP and are called “salt-resistant”. Some studies
claim that as many as 50% of hypertensive subjects are salt-sensitive (55, 163, 252),
although others report a lower fraction (61). Factors affecting salt sensitivity are race,
birth weight, age, renal function and diabetes (77, 122, 251). The physiological
mechanisms underlying salt sensitive hypertension are not fully known. Impaired renal

sodium excretion has been hypothesized as one explanation (89-91), but some studies
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find no difference in sodium handling between salt-sensitive and salt-resistant
hypertensive humans and instead show critical differences in regulation of vascular tone
between the two groups (20, 41). High salt intake decreases renin secretion (218), and
the resulting decrease in circulating Angll is a major factor in facilitating renal salt
excretion (90). Interestingly, however, this decrease in renin-secretion is blunted in
some salt-sensitive hypertensive patients (16, 256, 266) and these same subjects
exhibit higher SNA than salt-resistant hypertensives (266). What could account for the
increased SNA in these individuals? The answer may be that under certain conditions
(especially inappropriately high RAS activity) the brain is capable of “sensing” high
dietary salt intake and responding in a way that leads to elevated SNA and BP (6, 18,

136, 216, 217, 226).

6.2 Brain salt sensors and sympathetic nerve activity

An organism tightly maintains the homeostasis of water and solute content in the body.
In experimental animals, raising the sodium concentration in the cerebrospinal fluid by
infusion of hypertonic saline into the lateral ventricles of the brain causes a rapid
increase in BP and SNA (217). This effect is mediated through “salt sensors” or sodium
sensors in the brain (216). The central sodium sensing mechanism was proposed to be
critical in salt sensitive hypertension because infusion of the sodium channel blockers
amiloride and benzamil into the cerebral ventricles successfully attenuated HTN
development in salt-sensitive animal models (2, 169). The most sensitive
osmoreceptors are localized in CVOs like the SFO, OVLT and AP. As noted earlier,

these structures lack a blood brain barrier and therefore are exposed to alterations in
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blood osmolality and hormone levels (e.g. Angll) (227). In response to increase salt and
other signals that influence the SNS (like Angll), projections from the OVLT and SFO
stimulate the median preoptic nucleus and thereby activate excitatory interneurons

projecting to the PVN to cause sympathoexcitation as described earlier (18, 216).

In summary, both circulating Angll and high salt intake salt can affect brain circuits that
increase SNA and blood pressure via converging neural pathways that originate in the
forebrain CVOs and ultimately include both the PVN and RVLM (176). This combined
action may be operative in at least a subset of human patients with salt-sensitive
essential hypertension. A primary goal of the research in this dissertation was to employ
an experimental animal model of Angll-dependent, salt-sensitive hypertension to
develop a more detailed understanding of the brain signaling mechanisms responsible

for the increased SNA and BP initiated by salt and Angll.

7. Angiotensin ll-salt model of hypertension

Our lab and others have previously characterized in detail an experimental model of
HTN (see (176) for more details) produced by chronically infusing exogenous Angll into
male Sprague-Dawley rats ingesting a diet containing 2% NaCl by weight (normal rat
chow contains 0.4% NaCl). The HTN is very likely caused by multiple mechanisms
(including actions of Angll on the vasculature and kidney), but King et al. (127)
demonstrated that generalized sympathetic outflow (measured using both plasma NE
concentrations and whole-body NE spillover) was greater in rats infused with Angll and

fed a 2%NaCl diet (Angll-salt) than in rats receiving either Angll or salt treatment alone.
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As noted above, high salt diet typically reduces RAS activity but the study by King et al.
supports the idea that one possible mechanism of salt-sensitive HTN is increased SNA
caused by inappropriately high Angll levels during high salt intake. Sympathetic effects
on BP in the Angll-salt model also was assessed by measuring neurogenic pressor
activity from the acute fall in BP after eliminating all postganglionic sympathetic activity
with a ganglion blocking drug; the results strongly support a role for SNA in the
development of Angll-salt HTN (126). Surprisingly, however, measurement of regional
NE spillover and chronic, direct microneurographic recordings of SNA revealed no
changes in either lumbar or renal SNA in rats with Angll-salt HTN (175, 268) and neither
renal nor lumbar sympathectomy affected Angll-salt HTN development (175). On the
other hand, splanchnic denervation significantly attenuated Angll-salt HT (128)
suggesting that increased splanchnic SNA was the major player in the neurogenic
component of HTN in the model. Furthermore, it appears that both increased splanchnic
vascular resistance (133) and decreased vascular capacitance (126) mediate the
effects of splanchnic sympathetic activity on Angll-salt HTN. Finally, central sodium
sensors have an important part in Angll-salt HTN, since blockade of brain sodium

channels with benzamil attenuates HTN development in the model (unpublished data).

An advantage of using the Angll-salt model to study sympathetic mechanisms in the
development of hypertension is that there is a clear pre-hypertensive phase, followed by
a short “developmental” phase, and finally an “established” phase, all occurring over a
period of less than two weeks. Furthermore, neurogenic pressor activity during each of

these phases can be assessed in relatively undisturbed, conscious animals using
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telemetric measurement of BP and a ganglion-blocking drug as described earlier.
Importantly, based on such analyses, the mechanisms causing Angll-salt HTN appear
to differ during the developmental and established phases of the model. During the first
3-5 days of Angll infusion (the early developmental phase), non-neurogenic
mechanisms seem to have the largest role in increasing BP, whereas during the late
developmental and established phases of hypertension, neurogenic mechanisms
become predominant (133). Thus, studying the Angll-salt model potentially allows for a
more clear separation of cause and effect when seeking brain mechanisms that initiate
changes in BP as opposed to those that occur in response to HTN development. A
hypothetical scheme for sympathetically mediated increases in BP in Angll-salt HTN is

shown in Figure 1-2.
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Figure 1-2: Brain sites potentially involved in changes in sympathetic nerve
activity and blood pressure in Angll-salt hypertension (Angll-salt HTN). Changes
in osmolarity due to high salt diet, and/or peripheral Angll levels, are sensed by the SFO
and OVLT that then signal mainly through the MnPO, PVN and RVLM to cause
increased splanchnic sympathetic nerve activity. The resultant increase in total
peripheral resistance and decrease in vascular capacitance cause HTN. Not shown in
the figure is the potential for modulation of SNA by baroreceptors activated by increased
BP. SFO-subfornical organ, OVLT-organum vasculosum lamina terminalis, MnPO-
median preoptic nucleus, PVN-paraventricular nucleus, RVLM-rostral ventrolateral

medulla.
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8. Eicosanoids

Eicosanoids are a class of lipid mediators that carry information from one cell to another
(35). These cellular messengers have various physiological and pathophysiological
roles in fever, inflammation, pain, sleep, gastrointestinal function, bone remodeling,
allergic asthma, luteolysis and parturition (35). The term “eicosa” in Greek means 20 as
eicosanoids are derived from polyunsaturated fatty acids containing 20 carbons (Figure
1-3). They play a vital role in host defense against adverse conditions, e.g. protection
against bacterial pathogens. The eicosanoids are part of a family of biologically active
lipids derived from the action of cyclooxygenases (COX) or prostaglandin synthases
upon the twenty-carbon essential fatty acids or eicosanoids. Prostanoids can be further
subdivided into three main groups, the prostaglandins, prostacyclins and thromboxanes.
Prostaglandins (PGs) are the major eicosanoids studied in detail beginning with work by
Von Euler in 1936, who first reported prostaglandins as vasodilators and muscle
stimulating agents derived from the prostate glands of humans and experimental
animals (243). PGs have been used clinically in patients with congenital ductus
arteriosus to maintain duct patency until surgical correction (44). PGs regulate gastric
secretion, increase uterine contraction and cause labor induction (64). Receptors for
PGs are a class of 7-trans-membrane domain, G-protein coupled proteins with strong

intra-class structural similarities (29).
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Figure 1-3: Eicosanoid biosynthesis and receptors: Eicosanoids are formed by a
sequence of enzyme reactions after cell activation. First, cytosolic phospholipase A2
cleaves arachidonic acid (AA) from membrane phospholipids. AA is converted to
prostaglandin H2 by the membrane bound cyclooxygenase (COX) enzyme and
lipoxygenase converts AA to leukotrienes that act on the leukotriene (LT) receptor.
PGH2 is further isomerized by prostaglandin synthases (PGIS, microsomal PGES1/2,
cytosolic PGES, and PGDS) and thromboxane (TX) synthase to form PGI2, PGE2,

PGF2a, PGD2 and TX, which act on their receptors IP, EP1-4, FP, DP1, DP2 and TP.
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8.1. Synthesis, signaling and function of eicosanoids

Eicosanoids function as local hormones. They are not stored intracellularly, but instead
are synthesized (as illustrated in Figure 4) “on demand”. Upon cell injury or other
stimuli like binding of ligands such as bradykinin or angiotensin Il, the rate-limiting
enzyme phospholipase A2 translocates to the nuclear envelope, endoplasmic reticulum
and Golgi apparatus to release arachidonic acid (AA) from membrane phospholipids
(39). Among the PLA2 isoforms, Type IV cytosolic PLA2 (cPLA2) is the major player
involved in eicosanoid synthesis because cells that do not contain this enzyme cannot
synthesize eicosanoids. Oxygenation of AA by the rate-limiting enzyme COX (with two
isoforms: COX-1 and COX-2) forms intermediate precursors viz., the prostaglandins
PGG2 and PGH2 with a half-life of 3 minutes (35, 209). COX-1 and COX-2 are integral
membrane proteins of the endoplasmic reticulum (ER) and nucleus. Subgroups of
prostanoid synthases (acting on PGH2) and lipoxygenases (acting on AA directly)
produce PGI2, PGE2, PGF2a, PGD2 and TxA2 and leukotrienes (LT). Products of this

pathway have a very short half-life (20-30 seconds) (35).

The requirement for two distinct COX enzymes is not fully understood. COX-1, a 70kD
protein is found ubiquitously in all tissues and acts as a constitutively active enzyme
(209). The other isoform, COX-2 (72kD), produces prostaglandins in response to
inflammatory stimuli. Separate genes encode the two forms of COX but the two forms
of COX exhibit structural homology with almost identical catalytic sites. Other
differences between COX-1 and COX-2 include varied subcellular localization, substrate

specificity and the manner in which they are coupled to upstream and downstream
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enzymes (241). In 1994, Picott, Loll and Gravito established the three-dimensional
structure of COXs (138). The small differences in the catalytic domains of these

enzymes have been exploited for development of isoform specific inhibitors.

The COX-1 isoform in the endoplasmic reticulum generates PG when there are high
levels of AA substrate available to act on. The PG product is then released in an
autocrine or paracrine manner to signal downstream through numerous cell-surface G-
protein coupled receptors. The main role of the COX-1 products is to maintain
homeostasis and hence the name “housekeeping protein.” COX-1 expression in kidney,
stomach, vascular endothelium, and blood platelet supports the idea that it is expressed
as a signaling mediator in tissues with specialized needs. In platelets the COX-1

product thromboxane is a potent vasoconstrictor and causes platelet aggregation (209).

COX-2 on the other hand is an inducible enzyme in most tissues. However the kidney
and brain COX-2 is constitutively active. Stimuli like cytokines, growth factors and tumor
promoters, produced as part of an inflammatory response, lead to eicosanoid synthesis
from even low concentrations of the substrate AA in cell types involved in inflammatory
responses like macrophages and monocytes. The prostanoids then help resolve the

inflammation.

Listed below are some important eicosanoids (Figure 1-4) along with their important

biological roles.
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8.1.1. Prostaglandin E2: Prostaglandin E is synthesized from the precursor PGH2 by
prostaglandin E synthases cytosolic-PGES (c-PGES) and microsomal-PGDS (m-PGES-
1 and m-PGES-2). Cytosolic PGES is constitutively expressed in various tissues,
however microsomal PGDS is a perinuclear protein. PGE2 has a very short half-life of
30 seconds. PGE2 acts locally by binding to its receptors EP1, EP2, EP3 or EP4. EP1
is a Gq coupled receptor that increases IP3 by calcium signaling. EP2 and EP4 are Gs
coupled receptors that increase cAMP. The EP3 receptor is a Gi coupled receptor that
decreases cAMP and increase calcium. PGE2 has proinflammatory effects: for
example, LPS-induced PGE2 production causes harmful effects on neurons and
enhances pain sensations. On the other hand, PGE2 blocks LPS-induced cytokine
synthesis and neuroinflammation providing evidence for an anti-inflammatory effect

(194).

8.1.2. Prostaglandin D2: PGD2 is the major prostaglandin synthesized in the brain. Its
precursor PGH2 is acted upon by lipocalin type PGD2 (L-PGDS) or hematopoietic
PGD2 (h-PGDS). L-PGDS is present in cells of a variety of tissues especially in the
central nervous system. H-PGDS is predominant in the cytosol of immune and
inflammatory cells. The CP, leptomeninges and oligodendrocytes synthesize L-PGDS in
the CNS. It is unique in that it functions not only as a synthase to form PGD2 but also
acts as a carrier for lipophilic molecules (235). L-PGDS is secreted into the
cerebrospinal fluid and is also known as beta trace protein (172). Other sites of PGD2

synthesis are mast cells and leukocytes (dendritic cells and T helper 2 cells). PGD2 is

metabolized into PGJ2 and 15d-PGJ2. PGJ2 is then converted into 15—deoxy-A12’ .
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12, 14

PGJ2 and A12-PGJ2. 15-deoxy-A -PGJ2 acts as a ligand for the nuclear receptor

peroxisome proliferator-activated receptor gamma (PPARY) and inhibits nuclear factor

kappa light chain enhancer of kappa light chain enhancer of B cells (NFkB) (195). A

proinflammatory effect of PGD2 is mediated through the Gs-protein coupled DP1
receptor that increases cAMP; and the DP2 receptor, a Gi coupled receptor that
decreases cAMP and increases intracellular calcium (194). PGD2 is involved in type |
acute allergic responses, pain perception and regulating physiological sleep (95, 194,

233).

8.1.3. Prostaglandin 12: PGI2 is synthesized by prostacyclin synthase (PGIS) that is
co-localized with COX-1 in the endoplasmic reticulum and constitutively expressed by
endothelial cells (194). PGI2 is a potent vasodilator and inhibits platelet aggregation.
PGI2 is metabolized by non-enzymatic hydrolysis to form the inactive product 6-keto-
PGF+.. PGI2 acts through Gs, Gi or Gq coupled receptors to decrease cAMP and
increase IP3 signaling. Relevant IP receptors are localized in kidney, liver, lung,

platelets, aorta and heart (210).

8.1.4. Prostaglandin F2a: PGF synthase acts on PGH2 to form PGF2a. It is required
for normal parturition (219) and plays an important role in ovulation and contraction of
uterine smooth muscle cells. The PGF2a receptor FP is a Gq coupled receptor and its

deletion reduces blood pressure and atherosclerosis (270). 15-keto-dihydro-PGF2a is
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the main metabolic product of PGF2a and can be detected in the plasma and urine as

an indicator of PGF2a produced in response to acute or chronic inflammation.

8.1.5. Thromboxane: Thromboxane A2 is synthesized by thromboxane synthase
mainly in mast cells and macrophages. Later TxA2 is converted into inactive TxB2. The
actions of TxA2 are through the Gq, G12/13 or small G protein coupled receptor TP that
increases cAMP, intracellular calcium and IP3 signaling. TxA2 promotes platelet
adhesion and smooth muscle contraction. TP receptor deletion has been linked to lower

blood pressure response but also bleeding defects (225).

8.1.6. Non-steroidal anti-inflammatory drugs

Drugs that inhibit the synthesis of the eicosanoids are called non-steroidal anti-
inflammatory drugs (NSAIDS). In 1899 the first NSAID, aspirin, was introduced; it
revolutionized the drug industry by relieving patients of pain and inflammation (93).
NSAIDs can be differentiated based on their ability to selectively inhibit COX-1 versus
COX-2. The drugs that have much higher potency against COX-1 are so-called “COX-1
selective” inhibitors like naproxen and flurbiprofen. The selective COX-2 inhibitors
include celecoxib and rofecoxib. Aspirin, a “non-selective COX inhibitor’ actually
produces more COX-1 than COX-2 inhibition (Cox-2/COX-1 IC50 ratio of 4.3, which is

high and similar to COX-1 specific NSAIDS) (93, 248).
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Figure 1-4: Prostaglandin synthesis and actions. Cytokines, growth factors or

trauma triggers translocation of type IV cytosolic phospholipase (cPLA2) and release of

arachidonic acid from membrane lipids. Metabolism by COX-1 or COX-2 forms
intermediate PGH2 that is converted to PGE2, PGD2, PGF2q, PGl2 (prostacyclin) and

TxA, (thromboxane). The synthesized prostaglandins then exert autocrine or paracrine

actions by acting on prostaglandin transporter (PGT) or other carriers. The effector

specific effect is caused by interaction with different receptors like EP1, EP2, EP3, EPg4,

DP1, DP2, FP, IP, TP. CO=cumulus oophorus cell. VSMC=vascular smooth muscle cell.

[Adapted from C D Funk Science 2001; 294: 1871-1875].
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8.2. Eicosanoids in the brain

Next to adipocytes, the brain contains the highest amount of lipids: around 36-60%
(221). Arachidonic acid (AA) and docasohexanoic acid (DHA) are the two main
polyunsaturated fatty acids present in the brain, located in the sn-2 position of the
phosphoglycerides of neural cell membranes. Activation of phospholipase A2 liberates
AA from those phosphoglycerides. In the brain cPLAZ2 is expressed in astrocytes (220),
endothelial cells of cerebral blood vessels (213), glial cells, pia matter and choroid
plexus (135). Cyclooxygenases (COX-1 and COX-2) metabolize free AA to form
eicosanoids by synthetic pathways similar to those described earlier in this chapter.
COX-1 in the brain is expressed constitutively in hippocampal CA3 and CA4 neurons,
granular neurons of the neocortical layer, microglial cells in the white and grey matter in
all brain regions (267), spinally projecting PVN neurons (264) and SFO (22). On the
other hand, the inducible enzyme COX-2 is expressed in neurons in neo-cortices and
allo-cortices, hippocampus, amygdala, dendritic spines involved in synaptic signaling,
PVN neurons, locus coeruleus neurons and astrocytes surrounding the blood vessels
(123). Both AA and DHA can be metabolized into leukotrienes and hydroxyl derivatives
by lipoxygenase, whereas AA can form lipoxins by the action of 5-lipoxygenase (224). In
the brain, 5-lipoxygenase is expressed in neurons and glial cell; however, the brain

microvessel endothelium is devoid of 5-LOX (272).

COX-1 and COX-2 catalyze the formation of PGH2, the intermediate metabolite of AA.
PGH2 is further transformed into PGE2, PGD2, PGI2 and TxA2 by various synthases in

the brain. PGE2 is synthesized by three different PGE synthases viz., the constitutive
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cytosolic prostaglandin E synthase (cPGES); membrane bound mPGES-2 and the
inducible mPGES-1. In rat brain, neurons and astrocytes of the ipsilateral cortex
express mPGES-2 and SFO neurons express cPGES (22, 201). Rat and human brain
L-PGDS is expressed in arachnoid trabecular cells (158), oligodendrocytes,
leptomeninges and choroid plexus (232) and it synthesizes PGD2, the most abundant
eicosanoid in the brain. The isoform hematopoietic PGDS is widely distributed in the
periphery, and to some extent in the brain in the microglial cells (160), T-helper2 cells,
antigen presenting cells and the mast cells (117). The eicosanoid prostacyclin
synthesizing enzyme prostacyclin (PGI2)-synthase is shown to be present both rats and
humans in the cortical neurons, purkinje cells of the cerebellum but not in the glial cells
(152). In addition to these, PGI2 synthase was also localized in blood vessels, microglial
cells, oligodendrocytes and hippocampal neuron (207). The thromboxane synthesizing
enzyme thromboxane synthase in the ovine brain is localized in the neuronal cell body
and axons of NTS and RVLM along with ventricular ependymal cells, the cerebellar

peduncle in the rostral pons and purkinje fibres (110).

Together, the products of COX pathway called the eicosanoids take part in critical
neural functions. For example, PGE2 has been linked to physiological long-term
potentiation, spatial learning and synaptic plasticity. Other critical roles of eicosanoids in
the brain include resolution of inflammation, anti-inflammatory and neuroprotective
functions (224). PGD2 is one of the several known humoral sleep inducing factors: it
stimulates DP1 receptors localized in the leptomeninges of the basal forebrain causing
release of adenosine that in turn acts as a paracrine sleep promoting signaling molecule

(109). A dose dependent increase in sleep time occurs with increases in brain PGD2
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levels. Studies with the PGD2 synthesis inhibitor selenium chloride, as well as
transgenic and knockout mice, demonstrate the critical role of PGD2 as a sleep inducer

(27, 94).

When there is injury to brain tissue, free radicals (reactive oxygen species) cause
damage by oxidation of lipids. Lipid peroxidation can result in neurodegenerative
diseases (224). Eicosanoids take part in the process of neuroinflammation as seen in
diseases like Alzheimers, multiple sclerosis and epilepsy. The pathogenesis of
neuroinflammation is characterized by neural injury that causes migration of microglia
and adhesion of leukocytes to the site of injury. Microglia produces cytokines like
tumour necrosis factor-a and interleukin-13 along with chemokines and vascular cell
adhesion molecule at the site of injury. These cytokines and chemokines then increase
cPLA2 activity (54). This cPLA2 activity is the source of increased release of pro-
inflammatory eicosanoids. The importance of eicosanoids in neurodegenerative
diseases is shown by the fact that long-term use of NSAIDs has been proven beneficial
in delaying the onset and slowing the progression of the disease (74). COX-2 mediated
synaptic signaling further elucidates its role in inflammation especially in neurons (265).
Effectiveness of COX inhibitors like aspirin and ibuprofen in reducing fever, sleepiness
and anorexia (the “sickness syndrome”) during systemic inflammation show that
eicosanoids play a critical role during inflammation by signaling in the brain (202). In rat
models PGE2 is suggested to act on the EP3 receptors localized the median preoptic

nucleus neurons to cause fever (167).
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8.2.1. Role of eicosanoids in hypertension

The eicosanoids have both pro-hypertensive and antihypertensive effects (115). These
lipid mediators are produced and act in multiple tissues like kidney, brain, blood vessels
and immune system where they can influence blood pressure (168). Our lab’s interest in
the role of eicosanoids in hypertension originated in part from data on human HTN
patients taking NSAIDs: most commonly an increase in BP was observed (11, 26). This
suggests that the net effect of COX products on BP in patients with HTN is depressor.
Interestingly, however, the effects of COX inhibitors on BP seem to vary depending on
the type of HTN studied. For example, in normotensive and hypertensive patients with a
stimulated renin angiotensin system, COX inhibitors lower blood pressure (113) . NSAID
treatment also attenuates HTN development in human renovascular hypertension (111),
and in renin-dependent animal models like two-kidney one-clip hypertension (214),
Angll hypertension (168), and aortic coarctation induced hypertension (139). Therefore,
it appears that the net effect of COX products in angiotensin-dependent HTN (unlike
other forms) is to increase BP. Since a large fraction of human patients with HTN show
a significant fall in BP when treated with renin-angiotensin system inhibitors (i.e. have
angiotensin-dependent HTN), even when they have no evidence of an “activated” renin-
angiotensin system, a better understanding of how COX products regulate BP in
angiotensin-dependent HTN is needed. Some earlier work by others has addressed that

topic, as described in the next section.
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8.2.2. Effect of eicosanoids on Angll HTN development

Are eicosanoids one cause of Angll mediated HTN? COX products stimulate renin
secretion, and COX inhibitors reduce plasma renin activity (62). This may explain why
COX inhibitors blunt HTN development in some renin-dependent animal models like the
aortic coarctation model (114), and two kidney one clip model (214), i.e. eicosanoid
synthesis inhibition with NSAIDs likely lower BP by decreasing plasma renin activity.
Aside from an action on renin secretion (and thus Angll formation) as a mechanism for
eicosanoid effects, many studies have examined the role of eicosanoids in HTN caused
by chronic administration of Angll itself (Angll HTN), thus bypassing any influence of
renin. The most common approaches have been with the use of COX inhibitors (22, 57,
211) and COX knockout mice (22, 188, 260). The studies have yielded contradictory
conclusions, possibly because they employed different treatment regimens, treatment
durations and methods of measuring blood pressure. Furthermore, the relative

importance of COX-1 versus COX-2 in Angll HTN is disputed (22, 188, 211).

Two main mechanisms have been proposed to explain pro-hypertensive effects of
various eicosanoids in Angll HTN. Early work on this topic is well summarized by
Nasjletti (119). He suggested that systemic and renal vasoconstriction induced by TxA2
and PGH2 played a critical part in Angll- and Angll-salt HTN. Wilcox and colleagues
(70, 124, 129) also found that TxA2 induced renal vasoconstriction played an important
role in Angll HTN. Interestingly, COX blockade during Angll HTN in dogs impaired
hypertension development, but actually augmented renal sodium retention (76), so COX

products don’t seem to exert a pro-hypertensive effect in Angll HTN by impairing renal
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sodium excretion. Finally, a limited number of investigations have suggested a link
between eicosanoids and increased SNA and neurogenic pressor activity in Angll HTN.
The first support for this idea came from Luft and coworkers who reported an increase
in directly recorded splanchnic SNA that was associated with increased eicosanoid
synthesis in a chronic Angll HTN model in rats (143). Later, Wilcox’s group (71) showed
increased neurogenic pressor activity in rats made hypertensive by chronic infusion of a
TxA2/PGH2 receptor agonist. Neither of these studies provided clear evidence,
however, on specific tissue targets where eicosanoids might act to increase sympathetic

regulation of BP.

8.2.3. Eicosanoids may increase BP and/or SNA by actions in the brain

Studies with acute ICV administration of various eicosanoids into brain showed that
PGE2 and PGD2 cause pressor responses that require sympathetic nervous system
activation. Similarly, stimulation of TxA2/PGH2 receptors in the brain increases BP (70).
These finding provide the basis for the idea that brain eicosanoids may regulate BP by
affecting SNA. Interestingly, the pressor response to ICV PGE2 was abolished by lesion
of the median eminence (an important link between SFO, OVLT and PVN) (104)
suggesting that “salt sensors” may be involved in eicosanoid mediated increases in
sympathetic nerve activity and BP. Lesions of both SFO and OVLT have been found to
reduce Angll-salt HTN in rats (30, 177). Very recently, Cao et al reported that COX-1
inhibition blocks Angll HTN and reduces SNA in mice by reducing PGE2 formation and
therefore activation of EP1 receptors in the SFO (22). PGE2 induced ROS production

(247) in the SFO was proposed to mediate the increased SNA and BP in Angll HTN
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(275). Collectively, these observations strongly suggest that angiotensin signaling in the
brain may include recruitment of sympathoexcitatory and pro-hypertensive mechanisms

mediated by COX-derived eicosanoids.

Brain eicosanoids also activate SNA in other conditions like heart failure and stress, and
studies on these conditions may provide insights into the specific brain pathways
involved. For example, in a rat model of heart failure, PGE2 was reported to act directly
on PVN neurons to increase SNA (269). Stress-related corticotropin releasing factor
(CRF) signaling in the brain also brings out an intriguing connection between brain
eicosanoids and SNA. Katafuchi et al has reported that ICV CRF or PGE2 increase
splenic sympathetic nerve activity. The PGE2 mediated increase in SNA was blocked
completely when the rats were pretreated with a CRF antagonist indicating a sequential
signaling of CRF followed by PGE2 in causing pressor effect in rats (120). Furthermore,
levels of CRF in the cerebrospinal fluid have been strongly correlated with those of L-
PGDS in obese humans (43). A role for COX in sympathoexcitatory CRF signaling in
the brain was suggested by the finding of increased COX1 and COX2 expression in pre-
sympathetic PVN neurons by Yamaguchi et al (264). These same neurons were found
to activate sympathetic pre-ganglionic neurons specifically in the celiac and stellate
ganglia (239). With the reports of successful attenuation of Angll-salt HTN by celiac
ganglionectomy, it is possible that the COX expressing PVN neurons play pivotal role in

increased splanchnic sympathetic nerve activity in Angll-salt HTN (128).
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8.2.4. Angiotensin Il, neuroplasticity and brain eicosanoids

The brain can exhibit long-term “adaptation” in response to even brief stimuli by
“‘experience-dependent plasticity causing long-lasting, functional and structural changes
in brain circuits” (262). Interestingly, it has long been known that even a brief increase in
circulating Angll levels can induce a long-term sensitization to effects of Angll on the
brain that are produced days or weeks later; for example, stimulation of salt appetite
(199). Recently, Johnson and colleagues showed that transient short-term exposure to
circulating Angll also could accentuate or “sensitize” later (at least one week)
development of Angll-HTN at least in part by brain mechanisms (262). Others also have
shown that transient increases in circulating Angll can produce salt-sensitive
hypertension later in life without the need for further exposure to Angll (107). Gabor and
Leenen (69) recently summarized evidence that sympathoexcitation in Angll HTN
involves both very rapid and very slow changes in brain cardio-regulatory pathways.
Therefore, it is of great interest that brain eicosanoids have been shown to participate in

long-term adaptation of neuronal pathways as part of the overall “stress response” (67).
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9. Central hypothesis

Increased sympathetic activity and hypertension development caused by chronic

infusion of angiotensin Il in rats on high dietary salt intake are mediated by

eicosanoid signaling in specific cardio-regulatory brain regions (See Figure 1-5)

Specific Aim 1: Test the hypothesis that Angll-salt HTN is associated with increased

transcription of eicosanoid related genes in established cardio-regulatory brain regions
during the early stages of HTN development.

Specific Aim 2: Test the hypothesis that COX products in the brain during the early

stages of HTN development contribute to increased SNA and BP in Angll-salt HTN.

Specific Aim 3: Test the hypothesis that increased brain L-PGDS expression during

early stages of HTN development contributes to elevated SNA and HTN.

Specific Aim 4: Test the hypothesis that PGD2 signaling through the DP1R causes

increased SNA and BP in Angll-salt HTN.

10. Significance

Increased SNA contributes to human hypertension. Understanding how specific
eicosanoids act on the brain to increase SNA and BP would help fill a gap in our
knowledge of how dysregulation of SNA occurs in hypertension. The proposed work
could help identify new therapeutic strategies for treating HTN and preventing

cardiovascular disease.
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Figure 1-5: Hypothesis and specific aim: Chronic infusion of angiotensin Il in rats on

high dietary salt intake increase SNA and hypertension by altering eicosanoid signaling

in brain. Abbreviations and acronyms are described in the text. CG = celiac ganglion
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CHAPTER 2

MATERIALS AND METHODS
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1. Animals

Male Sprague Dawley rats weighing 225-275g were obtained from Charles River
laboratories (Wilmington, MA) and housed in groups of 3 prior to experimentation. The
rats were maintained in light- and temperature-controlled animal rooms and were
allowed free access to food and water. The daytime light cycle was from 6:30am to
6:30pm. After the surgical procedures, rats were housed individually in cages with cage
tops containing high salt (2% NaCl) or normal chow diet (Research Diets, New
Brunswick, NJ) that was provided throughout the experimental period along with ad-lib
distilled water. All procedures were performed in compliance with the NIH’s Laboratory
Animal Care and Use guidelines and after approval from the Institutional Animal Care

and Use Committee at Michigan State University.

2. General anesthesia and post-operative analgesia

Mini-osmotic pump and telemeter implantation surgeries were performed under
isoflurane anesthesia. The rat was placed in an anesthetic chamber and breathed a
mixture of 2 to 4% isoflurane in oxygen at a flow rate of 2.0 L/min for induction. The rats
were then placed in a surgical area with nose cone and heated pad and anesthesia was
maintained with a mixture of 0.5-2% isoflurane and oxygen at a flow rate of 2.0 L/min.
Intracerebroventricular (ICV) cannula implantation surgery was performed using the
injectable anesthetics ketamine (75mg/kg body weight) and xylazine (7.5mg/kg body

weight), both administered intraperitoneally (ip) in combination.
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The rats were given post-operative antibiotic and analgesics for a period of 24-48 hours
depending on the surgery. Enrofloxacin (Baytril, Bayer Healthcare, Kansas),
intramuscularly (im) at 5mg/kg body weight was used as the antibiotic. Carprofen
(Rimadyl, Pfizer, NY), subcutaneously (sc) at a dose of 5mg/kg body weight was used

as for analgesia.

3. Radiotelemetry implantation

The surgical site was prepared using chlorhexidine scrub. Under general anesthesia as
described above, a 2mm lateral midline incision on the thigh and the femoral artery was
exposed. The tip of a radio-telemeter (TA11PA-C40, Data Science International (DSI),
St Paul, MN) catheter was introduced (approximately 4cm) through the left femoral
artery into the abdominal aorta just cranial to aortic bifurcation. The body of the
transmitter was placed in a subcutaneous pocket along the caudo-ventral abdomen.
This device recorded blood pressure and physical activity for 10 seconds at every 10-
minute interval. After surgical recovery, 24hr/day data values were transmitted via radio
signals from the animals to DSI plate receiver positioned under the animals’ cages and
then to a computer data acquisition program (Dataquest ART 4.1, Data Sciences
International, St. Paul, MN) for analysis. Variables recorded include; systolic, diastolic

and mean (calculated) arterial pressure; heart rate (calculated); and activity level.

4. Mini-osmotic pump implantation

Mini-osmotic pumps (2ML2 and 2004 models, Alzet, Cupertino, CA) (Figure 2-1) were

used for drug delivery in a chronic fashion with a constant rate of infusion.
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Figure 2-1: Osmotic mini pump

Osmotic pumps work on the principle of osmotic pressure difference between the inner
chamber of the pump and the tissue where it is implanted. The pumps osmotic layer
helps water to flux inside the pump through the semipermeable membrane. This flux
causes the agent of interest (angiotensin Il and other drugs) to be pumped out of the

inner chamber at a constant and predetermined rate.

The 2ML2 mini-osmotic pumps had a flow rate of 0.083333 pl/min, and when filled with
angiotensin Il in powdered form dissolved in physiological saline (Sigma, St. Louis, MO)
at appropriate concentrations produced a drug delivery rate of 150ng/kg body
weight/minute. Mini-osmotic pumps filled with angiotensin |l were incubated at 37°C for
4 hours or overnight before implantation to get a constant release of the drug from the
day of implantation. The surgery was performed under general anesthesia (as
described above). After making an incision in the dorsal region of the neck, a small
subcutaneous pocket was made on the back of the rat to place the pump. The incision

was closed with 5-0 silk, non-absorbable sutures.
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5. Intracerebroventricular brain cannula implantation

After rats were anesthetized with ketamine and xylazine as described earlier, they were
placed in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA). An incision
was made in the skin on top of the skull. Cotton swabs were used to clean the surgical
site to expose bregma on the skull surface. The coordinates relative to bregma,
anterioposterior = -0.8mm, mediolateral = -1.5, and ventral = 4.2mm, were used to
position the ICV cannula on the right side of the rat’s skull. Stainless steel screws were
attached to the skull and dental acrylic (Dentsply International inc., York, PA) was used
to secure the cannula to the skull. Rats were housed in individual cages after surgery.
At the end of the experiment, cannula placement was confirmed in each study. In case
of using the brain for mMRNA or western blot study, visual confirmation of the ICV site
was done and in other cases either dye was injected or sections were stained to confirm

the ICV cannula placement.

6. Femoral catheterization

A polyurethane catheter (RFA-01, Strategic Applications Inc., Chicago, IL) was used for
arterial catheterization. Under general anesthesia with isoflurane, a midline incision on
the thigh was made and the catheter tip was inserted into the abdominal aorta through
the left femoral artery. The saline-filled catheter was connected to a Power Lab recorder
(AD Instruments, Inc., Colorado Springs, CO) for blood pressure and heart rate

measurements.
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7. Animal euthanasia
Rats were euthanized by injecting Fatal Plus® (Pentabarbital, 390mg/kg, ip) followed by
decapitation using guillotine. Rongeurs were used to quickly remove the brain out

carefully by cutting the occipital bone and the skull attachments.

8. Microdissection of rat brain

Using a Microm HM525 cryostat maintained at -15°C, 500 pm thick serial brain sections
were obtained. The sections were then transferred to a cold stage maintained at the
same temperature. The paraventricular nucleus (PVN), subfornical organ (SFO),
organum vasculosum lamina terminalis (OVLT), rostral ventrolateral medulla (RVLM)
and nucleus tractus solitarius (NTS) were microdissected using the Palkovits’
microdissection technique (179) with a 500um punch. A rat brain atlas (179) was used
to identify and using a stainless steel needle of 1mm diameter, punch out the nuclei of

interest. The isolated brain tissue was stored at -80°C for future analyses.

9. Polymerase chain reaction (PCR) array and quantitative real time-PCR

RNA was extracted from brain punches using a GenElute Mammalian Total RNA
Miniprep Kit (Sigma Aldrich, St. Louis, MO USA). To evaluate the quality of extracted
RNA, a Nanodrop Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) was
used and samples with low quality RNA (assessed by OD 260/280 ratio outside the
range of 1.8 and 2.1) were excluded from further analysis. Reverse transcription for
cDNA synthesis was performed with an RT? first strand kit (SABiosciences, Frederick,

MD) using 100 ng of RNA from the samples.
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9.1. PCR array: A custom Rat RT? profiler™ PCR array (SABiosciences, Frederick,
MD) with 21 eicosanoid related gene primers (Table 2-1) in a 96 well plate format was
used. The PCR reaction mixture for the 96 well plates included 102 pl diluted cDNA
synthesis reaction, 1048 ul RNA grade water, and 1150 pl RT? SYBR Green master
mix. PCR reactions were carried out on ABI 7500 Fast real time PCR system (Applied
Biosystems, Carlsbad, CA) using an RT? SYBR Green master mix (SABiosciences,
Frederick, MD). The PCR conditions included a holding stage (95°C for 10 mins) and
cycling stage (95°C for 15 sec, 60°C for 1 minute and 72°C for 35 seconds) followed by
a melt curve to confirm the specificity of the amplified products. To control for DNA
contamination, no template control was included. The Ct values were normalized to
beta actin. The house keeping genes in the array were Lactate dehydrogenase (Idha),
2AACT

Ribosomal protein13a (Rpl13a) and B-actin. The fold change was calculated by

method.

Table 2-1: 96-well custom PCR array template for eicosanoid related genes

Number | Gene Gene symbol | Gene RefSeq #
1 PG-endoperoxide synthase 1 (COX-1) | Ptgs1 NM_017043
2 PG-endoperoxide synthase 2 (COX-2) | Ptgs2 NM_017232
3 Arachidonate 5-lipoxygenase Alox5 NM_012822
4 Alox5 activating protein Alox5ap NM_017260
5 Arachidonate 12-lipoxygenase Alox12 NM_001105798
6 Arachidonate 15-lipoxygenase Alox15 NM_031010
7 Thromboxane A synthase 1 Tbxas1 NM_012687
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Table 2-1 (cont’d)

8 PGI2 (prostacyclin) synthase Ptgis NM_031557
9 PGE synthase 1(microsomal) Ptges1 NM_021583
10 PGE synthase 2 Ptges?2 NM_001107832
11 PGE synthase 3 (cytosolic) Ptges3 NM_001130989
12 PGD2 synthase (brain) Ptgds NM_013015
13 PGD2 synthase 2 (hematopoietic) Ptgds2 NM_031644
14 Thromboxane A2 receptor Tbxa2r NM_017054
15 PGI2 (prostacyclin) receptor Ptgir NM_001077644
16 PGE receptor 1 (subtype EP1) Ptger1 NM_013100
17 PGE receptor 2 (subtype EP2) Ptger2 NM_031088
18 PGE receptor 3 (subtype EP3) Ptger3 NM_012704
19 PGE receptor 4 (subtype EP4) Ptger4 NM_032076
20 PGD receptor Ptgdr NM_001135164
21 PGD receptor-like Ptgdrl NM_001030643
22 Beta actin Actb NM_ 031144
23 Lactate dehydrogenase ldha NM_012583
24 Ribosomal protein13a Rpl13a NM_017008

9.2. Quantitative RT-PCR: To amplify and simultaneously quantify the DNA of interest
we performed real time polymerase chain reaction or quantitative PCR reactions. It was
carried out on ABI 7500 Fast real time PCR system (Applied Biosystems, Carlsbad, CA)

using SYBR Green master mix (Cat. No. 330500, SABiosciences, Frederick, MD). The
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PCR reaction mixture included 1ul cDNA, 10.5ul RNA grade water, 1yl primer and
12.5ul SYBR Green master mix. The PCR conditions were the following: holding stage
(95°C for 10 min) and cycling stage (95°C for 15 sec, 60°C for 1 minute and 72°C for 35

seconds) followed by melt curve to confirm the specificity of the amplified products.

10. Cerebrospinal fluid collection

The skin on the head was shaved and surgically prepared with 3 chlorhexadine scrubs
and 3 alcohol scrubs. The surgical site was draped with sterile gauze and a small
incision was made on the skin above the atlanto-occipital region. The head was placed
in a stereotaxic apparatus and flexed downwards, so that it made a 45 ° angle to the
rat's body. One end of a micro-hematocrit capillary tube was pulled with a pipette puller
to get a pointed tip with 0.5mm diameter for insertion into the cisterna magna to collect
the CSF. The other blunt end of the micro-hematocrit capillary tube was attached to a 7-
10 cm length of Tygon® tubing. An 18G needle with a blunt tip was inserted into the
other end of the Tygon® tubing and the needle was attached to a 1cc syringe. The
plunger of the syringe was disconnected before cerebrospinal fluid (CSF) collection to
allow its free flow. Once the spinotrapezius muscles on the rat’'s back region were
separated from one other at the midline using cotton swabs, the landmark for CSF
collection at the atlanto-occipital junction was seen. The pointed micro-hematocrit
capillary tube was inserted into the atlanto-occipital junction and clear CSF (75 to 100
micro liters) flowing through the tube was collected in an Eppendorf® tube by either

allowing it to flow freely or pulling the plunger if necessary.
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11. Western blotting

The brains removed from rats anesthetized with pentobarbital sodium (50mg/kg ip) were
extracted and then frozen on dry ice. Cryostat sections (500um) from PVN, SFO, NTS,
RVLM, CP and OVLT were made and punched using the Palkovits micro-dissection
technique. Tissues were lysed using lysis buffer [0.5 mmol/l Tris-HCI (pH 6.8), 10%
SDS, and 10% glycerol] with protease inhibitors (0.5 mmol/l PMSF, 10 pg/ul aprotinin,
and 10 pg/ul leupeptin). Protein concentration was measured using the bicinchoninic
acid protein assay (Sigma, St Louis, Mo), which was run on SDS-PAGE 10% gel or
12% gel and transferred to a nitrocellulose membrane and later blocked for 1 h with
Odyssey® Blocking Buffer. Blots prepared were then incubated overnight (4°C) with
primary antibody Anti-COX-1 (1:500; Millipore, Temecula, CA) or Anti-tubulin (1:2,000
dilution; Millipore; Temecula, CA) or Anti-PGDs (Cayman chemicals, Ann Arbor, MI) or
anti-PLA2 (Novus biologicals, Littleton, CO). After rinsing the membrane 4 times for 5
minutes with tris buffered saline with tween-20 (TBS-T) and a final rinse in TBS, the
blots were incubated using a secondary antibody for 1 h at room temperature. An
Odyssey® imager was used to visualize the bands. For a positive control, one lane in

the membrane had the purified form of the protein of interest.

12. Cyclooxygenase activity assay

The bifunctional enzyme COX exhibits both cyclooxygenase activity and peroxidase
activity. The COX activity leads to conversion of the substrate arachidonic acid into
PGG2 (hydroperoxy endoperoxide), and the peroxidase component converts PGG2 into

PGH2, a precursor for the production of various other prostanoids through reduction
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reactions. To determine the activity of the enzyme (both COX1 and COX2) in brain
tissue, we used a cyclooxygenase fluorescent activity assay (Cayman Chemicals, Ann
Arbor, MI). The assay utilizes the peroxidase component of the enzyme. The compound
ADHP (10-acetyl-3, 7-dihydroxyphenoxazine), when added to tissue containing PGG2,
forms a fluorescent compound resoruffin. This fluorescent compound is analyzed with
an excitation wavelength between 530-540nm and an emission wavelength between

585-595nm. The test system included purified ovine COX-1 as a positive control.

Sample preparation: The rat brains were snap frozen on dry ice and stored at -80°C.
500um brain sections were prepared using a cryostat at -15°C and brain punches from
SFO, OVLT, PVN), RVLM, NTS and the third and fourth ventricle CP were
homogenized in 50yl of lysis buffer (0.1M Tris HCI, pH 7.5, containing 100mM PMSF,
leupeptin and aprotinin). The homogenized tissue was centrifuged at 10,000g for 15

minutes at 4°C. The supernatant was then collected and frozen at -80°C before assay.

13. Blood collection and high performance liquid chromatography

For blood collection the rats were anesthetized using 0.5ml of Fatal Plus®
(pentobarbital, 390mg/kg ip). 2-3ml of blood was collected using a 22gauge needle from
the abdominal aorta. The blood was collected into 2ml Eppendorf® tubes and
centrifuged at 14000 rpm for 10 minutes (Spectrafuge 16M Microcentrifuge). Plasma
was collected from the top layer and placed in fresh Eppendorf® tubes without
disturbing the pellet.

HPLC was performed using a Waters 510 HPLC pump (Millipore), Waters™717

Autosampler (Millipore) and Waters™ 996 photodiode Array Detector. Ketorolac
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tromethamine (Cayman chemicals, Ann Arbor, MI) standards were prepared by
dissolving 1mg in 1ml of saline. The working standard solutions (62.5pg/ul, 125pg/ul,
250pg/ul, 500pg/pl) were prepared by dilution of the primary stock solution with the
saline. The plasma containing the compound was separated using Luna 5u C18 (5 ym
particle size, 250 mm length x 4.6 mm I.D.) reversed-phase columns (Phenomenex,
Torrance, CA). A 50:50 (v/v) mixture of acetonitrile containing 0.065% triethylamine and
1.65% glacial acetic acid (pH 4.3) was used as the mobile phase. The optimum flow
rate of 1.0 mL/min was used for separation and the column was maintained at 20-22°C.

The detection wavelength was 314nm.

14. Immunofluorescent staining and confocal microscopy

Previously flash frozen slides containing 10um thick sections of SFO, OVLT, PVN,
RVLM and NTS were used for immunofluorescent staining by the MSU histopathology
laboratory. Samples were cryoprotected and sections were placed in -80 °C for storage
until staining. Upon removal from -80°C, slides were air dried overnight at room
temperature and were placed in Tris buffered saline (pH 7.5) for 5 minutes for pH
adjustment.  Heat Induced Antigen Retrieval (ScyTek Laboratories, Utah) was
performed at pH 6.0 in a rice steamer for 10 minutes at 100 degrees followed by an
additional 20 minutes at room temperature. Slides were then blocked in 3% hydrogen
peroxide in TBS for 10 minutes at room temperature. Autofluorescence was blocked
using ammonium hydroxide and ethanol for 60 minutes at room temperature. Following
these pretreatments, slides were loaded on a Dako Autostainer. Slides were blocked for

non-specific protein with Normal Donkey Serum (Jackson ImmunoResearch, PA) for 30
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minutes. An antibody cocktail of mouse anti-DP1 at a dilution of 1:100 (Thermo
Scientific, MA) and rabbit anti-FOX/NeuN at a dilution of 1:1000 (Abcam, Cambridge,
MA) in Normal Antibody Diluent (NAD) (Scytek — Logan, UT) was incubated for 60
minutes at room temperature. Secondary antibody cocktail of Donkey anti-Mouse
Dylight 647 @ 1:500 and Donkey anti-Rabbit Dylight 405 @ 1:100 was made in 2%
normal rat serum (Jackson ImmunoResearch, PA). Cover slips were placed on the

slides after covering them with ProLong Antifade.

15. Confocal microscopy: An Olympus FluoView 1000 laser scanning confocal
microscope was used to take 20X and 40X magnified images of the 10um thick coronal
brain sections. Differential interference contrast images and overlay images were taken

to localize the receptors on the neurons and ependymal cells.

16. Liquid chromatography and tandem mass spectrometry (LC-MS/MS)

Mass spectrometry is an analytical technique that separates ionic species based on the
electrical charge and atomic mass using magnetic and electrical fields. The main
components of a mass spectrometer are the inlet for the sample, ion source, mass
analyzer and an ion detector. After solid phase extraction the sample in the mass
spectrometer is sprayed through a thin capillary in an electric field to create charged
droplets. These droplets then pass through a heated inlet gas in the mass analyzer.
Here they are separated according to their mass to charge (m/z) ratio. MS/MS is a two-
stage system, where in the first stage an ion is preselected, and in the second stage,

fragments induced by collision with an inert gas like argon or helium are analyzed.
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Preparation of standards: All standards were obtained from Cayman Chemicals, Ann
Arbor, MI.

a) PGE2 MS standard (Catalog No.10007211): 1mg/ml DMSO

b) PGD2 MS standard (Catalog No.10007202): 1mg/ml DMSO

c) PGJ2 MS standard (Catalog No.10007233): 500ug/100pl methyl acetate (5mg/ml)

d) A'-PGJ2 lipid maps MS standard (Catalog No.10007234): 100ug/100ul methyl
acetate (1mg/ml)

e) 15-deoxy-A"?"*-PGJ2 lipid maps MS standard (Catalog No.10007235): 100ug/100pl
methylacetate (1mg/ml)

f) Arachidonic acid: Item # 90010 500mg/ml|

16.1. Solid phase extraction of lipid mediators from brain punches

Solid phase extraction (SPE) was performed using OASIS max pElution Plate 30 ym
(Waters Corporation, Milford, MA). The steps followed for SPE were first, sample
preparation (total volume of 500ul). To the sample (brain punches from region of
interest), 18Q water (245pl), 0.01% butylated hydroxytoluene to prevent oxidation (1pl
of 1% BHT (26mg BHT from Cayman chemicals, Ann Arbor, Ml in 1ml methanol) and
Internal standard (4ul of 500pg/ul of PGD2-d4) were added. Then 250ul of 4%
phosphoric acid (Sigma Aldrich, St. Louis, MO) (4% H3PO4=2g in 50ml| water) was
added to disrupt the protein binding and help flow through the SPE cartridge. The
sample was homogenized (Omi TH int. — for 5-10 seconds) and centrifuged at ~12000g

for 10 min (Spectrafuge 16M-14000rpm). The supernatant was separated and the
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volume was made to up to 750ul. The OASIS max pElution cartridge was conditioned
with 100ul methanol and equilibrated with 100ul water.

For loading, 750 pl of sample was loaded to the cartridge and a flow rate of 1 drop/ sec
was maintained. [Note: The flow through the liquid was collected the first time to
perform extraction efficiency]. For the first wash, 200ul of 2% ammonium hydroxide (2ml
NH40OH+100ml water) at pH 10-11 was used for removal the salt and charge the acidic
analytes and lock them in the cartridge. [Note: The flow through the liquid was collected
the first time to perform extraction efficiency]. For the second wash, 200ul of 1Tml 100%
methanol was used to remove the basic and the neutral interference. [Note: The flow
through the liquid was collected the first time to perform extraction efficiency]. For
elution, 50ul of a mixture of 100% methanol and 2% formic acid was used for eluting the
lipid prostaglandins and AA from the cartridge. (0.227ml of 88% formic acid + 10ml
methanol).

The eluted solution was placed in a screw cap vial (Part # 5182-0715, Agilent
Technologies, Santa Clara, CA) with a vial insert (Part # 5183-2085) and blue screw
cap (Part # 5182-0717). The vials were stored at -80°C before LC-MS/MS analysis
using Waters Xevo TQ-S UPLC MS/MS (Waters Corporation, Milford, MA). The
experiments were performed using the biochemistry RTSF facility at Michigan State

University.

Extraction efficiency= Samples with standard mixed before SPE X 100

Samples with standards spiked post SPE
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The loading waste, washes were dried in vacuum and reconstituted in 50ul
acetonitrile/water (1:1, V/V) for analysis. This determined the loss of analytes and was

performed during the first experimental run.

16.2. Liquid-liquid extraction of lipid mediators from cerebrospinal fluid

Liquid-liquid extraction was used for processing cerebrospinal fluid (CSF). 100ul of CSF
sample was added to 100 ul of 0.15M EDTA, 80ul of 45nM phosphoric acid and 20ul of
methanol. The liquid-liquid extraction was performed as described previously (72) where
samples were incubated with 600ul of ethyl acetate. After vortexing thoroughly, two
layers were obtained. The top layer containing the analytes was separated and 600yl of
ethyl acetate was added. After vortexing, the top layer was removed and subjected to a
gentle stream of nitrogen at 45°C. The residues were reconstituted with 50pl of
acetonitrile/ water/formic acid (20:80:0.0025, v/v, pH 4.0) and centrifuged for 2 minutes
at 10,000g. It was transferred to a glass vial and stored at -80°C prior to injection into

the Xevo TQ-S for analysis.

16.3. Chromatography

Mobile phase C consisted of 0.1% formic acid and mobile phase D consisted of 100%
acetonitrile. Compounds were separated using Ascentis® Express C18 HPLC column
(10cm x 2.1mm, 2.7um) maintained at a temperature of 40°C. Initial conditions for
separation were 1% mobile phase C and 99% mobile phase D at a flow rate of
0.3ml/min. The proportion of mobile phase C gradually increased to 99% for 14 minutes

at a flow rate of 0.3ml/min. The total run time was 14 minutes.
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16.4. Mass spectrometry

Mass spectrometry was performed using an Acquity UPLC system coupled to a Waters
Xevo TQ-S mass spectrometer (Waters, Milford, MA) in an electrospray negative
ionization mode. An extract volume of 10 pl was injected into the UPLC system and
eluted with a gradient mixture of 0.1% formic acid and 100% acetonitrile. The mass
spectrometer was optimized following tuning in multiple reaction monitoring (MRM)
mode with a capillary voltage of 3.0 V, cone voltage of 35.0 V, source offset of 50.0 V,
analyser LM resolution 1 of 2.93, HM resolution 1 of 14.60, ion energy 1 of 0.6, LM
resolution 2 of 2.79, HM resolution 2 of 14.90, ion energy 2 of 0.9, desolvation
temperature of 500°C, desolvation gas flow of 600L/Hr, cone gas flow of 150L/Hr and

collision gas pressure of 7 bar and collision gas flow of 0.20mL/min.

The mass to charge ratio (m/z) of parent and daughter ions of individual compounds
with their dwell time, cone voltage and collision voltage were as shown in table 1. Data
was acquired and analyzed using Target Lynx™ Software. Calibration curves were
constructed by plotting peak area ratio (standard to internal standard) versus the

nominal concentration and were fit using least-square regression with 1/x weighting.

56



Table 2-2: Arachidonic acid and prostanoid mass to charge ratio, dwell time and

voltage for mass spectrometry analysis

Compound Parent Daughter | Dwell Cone | Collision

(m/z) (m/z) (s) (V) (V)
1 AA 303.2 259 0.125 45 16
2 Prostaglandin J2 333.1 2711 0.1 33 16
3 |A™-PGJ2 333.1 189 0.1 21 16
4 | 15-deoxy-A""-PGJ2 [315.2 271.1 0.1 39 10
5 Prostaglandin E2 351.2 271 0.125 55 16
6 prostaglandin D2 351.2 203.1 0.125 55 22
7 Prostaglandin D2-d4 355.2 319 0.125 33 10

17. Statistical analyses

Within group differences were assessed by a one-way repeated measures ANOVA with
post-hoc multiple comparisons using Dunnett’s procedure (GraphPad Instat 3). Between
group differences were assessed by a two-way mixed design ANOVA and post-hoc
testing at each time point was performed using Bonferroni’'s procedure to correct for
multiple comparisons (GraphPad Prism 4). For the PCR array between group
differences were analyzed by one-sample t-tests with a hypothetical mean as 1.
Student’s t-test was used to analyze the western blot data. A p-value of < 0.05 was
considered significant. All results are presented as means * standard error of the mean

(SE).
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CHAPTER 3

CYCLOOXYGENASE-1 AND NOT CYCLOOXYGENASE-2 INHIBITION

ATTENUATES ANGIOTENSIN II-SALT HYPERTENSION AND NEUROGENIC

PRESSOR ACTIVITY IN THE RAT
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1. Introduction

Angiotensin Il is involved in the etiology of systemic hypertension through various
mechanisms. These include direct contraction of blood vessels and subsequent
remodeling of their structure (83), reductions in renal sodium excretion (174), release of
aldosterone (253), and activation of the sympathetic nervous system (SNS) (32, 58).
McGiff proposed the idea that the renin-angiotensin system influences eicosanoid
formation and reported the release of prostaglandin-like substances during infusion of
Angll (151). But are eicosanoids involved in Angll HTN? This question has been
addressed in numerous previous studies through the use of COX inhibiting drugs (22,
57, 211) and COX knockout mice (22, 188, 260). However these efforts produced
contradictory conclusions, possibly because the studies employed quite varied
treatment regimens, treatment durations and methods of measuring blood pressure.
Also, has noted earlier, eicosanoids cause both pro-hypertensive and antihypertensive
effects by acting on the kidneys, blood vessels, endocrine organs and brain. In addition,

the relative importance of COX-1 versus COX-2 in Angll HTN is disputed (22, 188, 211).

As reviewed in Chapter 1, sympathoexcitation is an important cause of HTN during
Angll infusion, particularly in the setting of high dietary salt intake (127, 203). Both older
(115, 143) and recent (22) experiments indicate that the sympathetic nervous system is
activated by eicosanoids in experimental Angll HTN and/or that eicosanoids are
involved in mediating neurogenic hypertension. But the precise mechanisms by which
eicosanoids cause sympathoexcitation remain to be fully elucidated. Therefore, in this

study | used radiotelemetric methods and Angll-salt HTN protocol to determine the role
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of eicosanoids in causing neurogenic HTN. In addition, pharmacological tools were
used to determine the relative contribution of COX-1 and COX-2 to sympathetic control

of BP in Angll-salt HTN.

2. Experimental Protocols

2.1. Selective COX-1 or COX-2 inhibition in chronic Angll-salt hypertensive rats:
Radiotelemetery- implanted rats, fed a high salt diet were used in this experiment.
Following a 5-7 day of surgical recovery period and 3 days of baseline blood pressure
recordings, DMSO (vehicle) or a selective COX-1 inhibitor SC560 (10mg/kg ip) or a
selective COX-2 inhibitor nimesulide (10mg/kg ip) were injected once daily for the
remainder of the study. The doses for COX-1 and COX-2 inhibitors were chosen based
on previous reports (84, 242) of the use of 10mg/kg ip dose, successfully mimicking the
effects of the widely used COX inhibitor aspirin as well as the successful reduction of
eicosanoid levels in various tissues. Both SC560 and nimesulide are reported to cross
the blood brain barrier (215) and therefore could act both peripherally and centrally.
After 4 days of COX inhibition or DMSO injection, Angll or physiological saline infusion
was initiated using a miniosmotic pump (2ML2, Alzet, Cupertino, CA). Angll was infused
at the rate of 150ng/kg/min sc, for 14 days. MAP and HR were measured for the entire
duration of the experiment. Animals were subjected to ganglionic blockade with
hexamethonium (Sigma, St. Louis, MO; 30mg/kg ip) 10 days after starting Angll
administration to assess neurogenic pressor activity (228). The fall in MAP was
recorded 15 minutes after injecting hexamethonium, and the magnitude of that fall was

used as an estimate of neurogenic pressor activity.
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3. Results

3.1. Effect of selective COX-1 and COX-2 inhibition on chronic Angll-salt HTN:
COX-1 inhibition with SC560 (Figure 1): In vehicle (DMSO) treated rats (n=7) fed a high
salt diet, MAP was 1052 mmHg on pretreatment day 3 and gradually increased to
1358 mmHg on day 14 of infusion. In the SC-560 treated group (n=10), during the
pretreatment period or during treatment with SC560 alone MAP was not different from
that of the vehicle treated group. During Angll administration, however, MAP rose to
only 117+1 mmHg 14 days after Angll infusion in SC560 treated rats, and was

significantly lower than that of the control group on days 6-14 of Angll infusion.
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Figure 3-1: Effect of selective cyclooxygenase (COX)-1 inhibition on mean arterial

pressure (MAP). Response to Angll in rats fed a high salt diet. Rats were treated daily
with the selective COX-1 inhibitor SC560 or vehicle. # =p<0.05 SC560 vs. DMSO as

vehicle.
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COX-2 inhibition with nimesulide (Figure 2): Treatment with nimesulide alone did not
affect MAP relative to the vehicle (DMSO) ip treated control group. Both groups had
similar MAP during the control period. The vehicle treated group (n=5) on a high salt
diet had a baseline MAP of 102 + 2 mmHg on pretreatment day 3, which was similar the
drug treatment group’s (n=5) day 3 MAP of 101 + 1 mmHg. From day 4 to 7, nimesulide
treatment did not cause any change in MAP compared to the vehicle treated rats. After
starting the Angll infusion, MAP in the vehicle treated group increased to 126 + 6 mmHg
at the end of infusion period. In the nimesulide treated group, MAP increased to 135 +
12 mmHg. Therefore, Angll infusion caused the same magnitude of hypertension in
vehicle and nimesulide treated rats. The data suggests that the COX-2 inhibitor causes

a slight increase in blood pressure in Angll-salt HTN rats.

Neurogenic pressor activity: The maximum falls in MAP after ganglionic blockade on
day 10 of Angll infusion in vehicle treated rats and in rats subjected to selective COX
inhibition are shown in Figure 3. In experiments with SC560 (Figure 3A), ganglion
blockade decreased MAP significantly more in control (39 + 4 mmHg) versus drug-
treated (27 + 4 mmHg) rats. In experiments using nimesulide (Figure 3B), the fall in
MAP with ganglion blockade was similar in control (58 + 9 mmHg) and drug treated (62

+ 12 mmHg) animals.
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Figure 3-2: Effect of selective COX-2 inhibition on MAP. Rats were treated with the
selective COX-2 inhibitor nimesulide or vehicle and were infused with angiotensin Il

subcutaneously.
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Figure 3-3: Depressor response to ganglionic blockade 10 days after Angll
infusion in DMSO, SC560 and nimesulide (NM) treated rats. Peak fall in MAP in

response to hexamethonium administration (30mg/kg ip) in SC560 (A) and NM (B)

treated rats. # =p<0.05 SC560 vs. DMSO
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4. Discussion

Previous investigators have used both pharmacological and gene knockout approaches
to determine if eicosanoids play a critical role in Angll mediated hypertension, but their
results have led to conflicting conclusions (22, 188, 260). Eicosanoid products can exert
both pro- and anti-hypertensive effects: thus, their net effect on blood pressure will
depend on where increased eicosanoids formation occurs and on which specific
products are released. Earlier studies showed that dietary salt intake is one factor that
influences the contribution of eicosanoids to Angll dependent hypertension (115, 157).
More recent studies by King found that COX inhibition with ketoprofen, a non-selective
COX inhibitor, did not prevent hypertension in rats on a normal salt diet (0.4%NaCl).
However, in rats that were on a high salt diet (2% NaCl), COX-inhibition prevented the
later phase of Angll-salt hypertension (beyond day 5 of Angll infusion), but not the early

rise in MAP (days 1-4) of Angll infusion.

There are multiple potential explanations for why eicosanoids could make a higher
contribution to Angll hypertension under conditions of high salt diet. However my lab
and others have shown that high salt intake amplifies the role of the sympathetic
nervous system in Angll HTN (176, 203, 260). Furthermore, Kings work showed that
selective removal of the splanchnic sympathetic innervation significantly attenuated
chronic Angll-salt HTN (128) during the later phase of HTN development, indicating that
specifically splanchnic SNS activity is important for HTN development in this model.
Since direct recordings in conscious rats with chronic Angll HTN showed an increase in
splanchnic SNS activity that was associated with a significant rise in urinary excretion of

cyclooxygenase products (143), we hypothesized that COX-derived prostanoids could
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increase blood pressure in the Angll-salt model by stimulating SNS activity. This idea
was further supported by the work that shows that ketoprofen treatment had a more
prominent effect on Angll-salt hypertension development during the later days of Angll
infusion (8).1t has been previously reported that neurogenic mechanisms appear to play
a greater role in this hypertension model after 4-5 days of Angll infusion (127, 128,
133). The increase in MAP on days 1-4 appears to be caused by either the direct
pressor actions of Angll or perhaps renal sodium and water retention. The increase in
neurogenic pressor activity only during the later phase of Angll-salt HTN may be due to
an ability of COX products to “prime” subsequent changes in sympathetic regulation of

BP. This idea will be addressed in more detail in Chapter 4 of my dissertation.

Earlier, King et al tested the role of COX products in the neurogenic actions of Angll in
two ways. First the SNS activity was assessed using measurement of whole body
norepinephrine spillover in ketoprofen treated rats. A statistically significant 71%
increase in whole body NE spillover on days 7 and 14 of Angll infusion was seen in rats
on a high salt, but not low salt, diet (127). In unpublished studies in rats treated with
ketoprofen there was a much smaller (though statistically significant) increase in whole
body NE spillover on day 7 of Angll infusion (36% vs. control) and a statistically non-
significant increase (14% vs. control) on day 14 of Angll infusion in high salt fed rats.
Therefore, the global SNS activation caused by Angll infusion in rats on high salt diet,
as indicated by significant elevation in plasma NE and whole body NE spillover (127)

was largely, but not completely, prevented by non-selective COX inhibition.
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Furthermore, in King’s studies measurement of neurogenic pressor activity (the acute
contribution of the autonomic nervous system to arterial pressure) was used to test if
eicosanoid-related SNS activity contributed to Angll-salt hypertension. Vehicle treated
Angll-salt HTN rats exhibited a marked drop in MAP during ganglionic blockade; Angll-
salt rats treated with ketoprofen showed a substantially smaller drop in pressure,
although the difference was not statistically significant. This suggests that a eicosanoid-
driven increase in SNS activity may be at least partially responsible for the hypertension

in Angll-salt treated rats.

As a first step in my study | asked whether eicosanoids involved in Angll-salt HTN were
derived from the enzymatic isoforms COX-1 or COX-2. It is known that Angll exerts
physiologically significant pro-inflammatory effects that contribute to numerous
cardiovascular diseases (38, 57). Angll appears to produce inflammatory responses
predominantly in a localized manner in target tissues such as blood vessels (38) kidney
(254) and brain (276). COX-2 is the isoform most strongly implicated in generating
inflammatory eicosanoids, so it is logical to assume that COX-2 the key player in Angll-
salt HTN. Some published studies support this conclusion. For example, pretreatment
with COX-2 inhibitors like refecoxib and nimesulide attenuated Angll-HTN in Sprague
Dawley rats (149, 190, 260). However, in contrast to this idea, other studies indicate
that COX-1 is the source of eicosanoids involved in Angll HTN (7). In a recent report,
Cao and colleagues showed that Angll HTN was attenuated in COX-17" mice but not
COX-2"" mice (22). As noted earlier, the contradictory reports from various laboratories

could be attributed to the differences in animal models used, blood pressure
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measurement methods like tail cuff plethysmography versus radiotelemetry, or the

mode of drug administration.

My studies indicate that the key eicosanoids involved in Angll-salt hypertension are
derived from the COX-1 and not the COX-2 isoform: hypertension development was
markedly and significantly attenuated by treatment with the COX-1 inhibitor SC560, but
not by treatment with the COX-2 inhibitor nimesulide. However, with selective COX-1
inhibition, we did not see as complete an attenuation of hypertension as we observed
with the non-selective COX inhibitor ketoprofen. This may be due to 1) additional
pharmacological actions of ketoprofen, or 2) involvement of COX-2 in the development
of hypertension, although our results with the selective COX-2 inhibition do not support
the latter idea. The doses of the inhibitors used to totally block COX enzyme could
possibly fall on different stages of their dose response curves. This differential COX
inhibition with a particular dose of NSAID could explain the increased attenuation of
HTN with ketoprofen (2mg/kg, sc) compared to SC560 (10mg/kg, ip). It is further
notable that COX-1 inhibition with SC560 significantly reduced neurogenic pressor
activity in Angll-salt HTN rats. This result supports the hypothesis that eicosanoids

increase arterial pressure in Angll-salt HTN in part by increasing SNS activity.

In conclusion, this study suggests that in rats fed a high salt diet, chronic Angll infusion
stimulates the formation of eicosanoids from COX-1 that activate the SNS and increase
arterial pressure. This data does not allow us to establish where these eicosanoids are

produced, or where they act, to increase SNS activity or arterial pressure. However,
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central injections of eicosanoids can increase SNS activity (171) and arterial pressure
(112), and a recent study in mice strongly implicated brain COX-1 activity in Angll HTN
(22). Thus, studies described in my next chapter focus on exploring the role of brain

eicosanoids in Angll-salt hypertension.
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CHAPTER 4

TRANSCRIPTIONAL AND TRANSLATIONAL REGULATION OF CENTRAL

ENZYMES AND RECEPTORS IN THE EICOSANOID SYNTHESIS PATHWAY

DURING THE DEVELOPMENT OF ANGIOTENSIN II-SALT HYPERTENSION IN THE

RAT
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1. Introduction

Samuelsson first described the eicosanoids in the brain in 1964 (200) where these
“‘local hormones” are known to act as mediators of inflammation, fever, feeding, sleep
and other functions. Relatively little evidence has been published supporting a role for
brain eicosanoids in BP regulation, and | summarized that evidence in Section 8.2.3 of
Chapter 1. As described earlier my dissertation, both other investigators and | found that
treatment with COX inhibitors during Angll-salt HTN development does not affect BP
during the early stage (1-4 days of Angll infusion) but significantly lowered BP during
the later neurogenic phase of HTN (5-14 days after Angll infusion). Therefore, here |
hypothesize that 1) eicosanoids act early in HTN development to ‘prime” a later
engagement of neurogenic pressor mechanisms, and 2) early changes in the
expression of COX pathway enzymes and/or receptors in the brain could be the cause
of this ‘priming” effect in Angll-salt HTN. To address these hypotheses | did
experiments designed to 1) identify the critical time period during with eicosanoids
operate to affect Angll-salt HTN development, and 2) analyze eicosanoid pathway gene
and protein expression during that critical time window in specific brain nuclei known to

regulate sympathetic activity and BP.

2. Experimental protocols

2.1. Non-selective COX inhibition in Angll-salt treated rats with established HTN:
In order to test the effect of NSAID treatment on rats with established Angll-salt HTN
the following experiment was performed. Rats were allowed a 5-day recovery period

after telemeter surgery. After three days of control MAP and HR recordings the rats
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were divided into two groups, both receiving Angll (Sigma) delivered at a constant rate
of 150ng/kg/min using a mini-osmotic pump (2ML2, Alzet) implanted subcutaneously,
starting on day 3 until day 17 (figure 1). On days 9, 10 and 11 of the Angll infusion
period (after HTN was well-established), one group received once daily subcutaneous
injections of either vehicle (saline, n=5) or the potent non-selective COX inhibitor
ketoprofen (2mg/kg, n=7). The subcutaneous Angll pumps were removed on day 14 of
Angll infusion to allow reversal of the hypertension. Then starting 4 days later rats from
one group (n=5) received once daily subcutaneous injections of saline vehicle for three

consecutive days while the other group received ketoprofen (2mg/kg, n=7).

Hexamethonium (30mg/kg, IP) was given during the control period (C2), drug treatment
period (D3) and the angiotensin treatment period (A10) of the protocol, respectively, to
determine the effect of ketoprofen treatment on neurogenic pressor activity in
established Angll-salt hypertensive rats. The magnitude of the acute (10-30 minutes)
fall in BP was used as an indicator of the degree of sympathetic regulation of blood

pressure, as described in General Methods.

2.2. Non-selective COX inhibition prior to and during early stages of Angll-salt
HTN: My next goal was to identify potentially critical time periods during which
eicosanoids contribute to the development of Angll-salt HTN. To achieve this end, |
investigated the effect of non-selective cyclooxygenase inhibition at two different time
points during the development of Angll-salt HT. In the first set of experiments, after 3

control days of BP measurement either saline vehicle (n=3) or ketoprofen (2mg/kg, n=3)
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was administered for 4 days prior to Angll infusion. Hexamethonium (30mg/kg, IP) was
given once acutely 10 days after starting Angll to evaluate neurogenic pressor activity in

the two groups of rats.

In the second set of experiments, after 3 control days of BP measurement ketoprofen
(2mg/kg, sc.) or saline was administered once daily for 4 days (prior to starting Angll
infusion) and then once daily for an additional week (during the first 7 days of Angll
infusion). Neurogenic pressor activity was measured on day 10 of Angll infusion, as

described above.

2.3. Brain eicosanoids in the early stage of Angli-salt HTN

2.3.1. Transcriptional and translational regulation of eicosanoid pathway related
genes:

For performing PCR and western blot analysis of tissue punches collected from cardio-
regulatory brain regions, a total of 22 radiotelemeter-implanted rats were used. After 3
days of control recording, Angll (150ng/kg/min, sc., n=12) or physiological saline (n=10)
was delivered for 4 days using a mini-osmotic pump (Alzet, 2ML2). Then the rats were
sacrificed, brains were collected, snap frozen in dry ice and kept at -80°C until further

analysis as described in Chapter 2.

2.3.2. PCR array:

Expression level of 21 genes involved in eicosanoid signaling was measured in PVN,

OVLT, SFO, CP, RVLM and NTS as described in Chapter 2.
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2.3.3. Quantitative real time polymerase chain reaction (q RT-PCR):

To confirm L-PGDS expression in OVLT and to measure the cPLA2 gene expression in
4 day Angll treated and vehicle treated rat brains, punches were collected from PVN,
SFO, OVLT, RVLM, NTS, third ventricle CP (3VCP), fourth ventricle CP (4VCP) and the
middle cerebral artery (MCA) (n=5/group) and q RT-PCR was performed as described

in Chapter 2.

2.3.4. Western blot analysis:

To analyze changes in eicosanoid pathway proteins during early development of HTN,
the brain from 4 day Angll (n=7) or vehicle (n=5) treated rats were collected. Punches
from PVN, SFO, OVLT, NTS, RVLM, 3VCP and 4VCP were analyzed as described in

Chapter 2.

3. Results

3.1. Non-selective COX inhibition in established Angll-salt HTN rats:

The baseline levels of MAP in both groups were identical from control day 1 to control
day 3. After starting Angll infusion MAP increased from 101+1 mmHg on control day 3
to 125+7 mmHg on day 8 of Angll infusion in the vehicle group, and from 102 mmHg on
day 3 to 122+3 mmHg on day 8 in the group that would later receive treatment with
ketoprofen (Figure 4-1A). Rats were then given either saline vehicle or ketoprofen
(2mg/kg/day, ip) for 3 consecutive days. MAP was not affected by ketoprofen treatment
in these animals with established hypertension, being 126+8 mmHg in the vehicle group

and 128+3 mmHg in the ketoprofen group, respectively, on the last day of treatment
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(Figure 4-1A). Ganglion blockade with hexamethonium (10 days after Angll infusion), on
the second day of ketoprofen or vehicle treatment caused similar depressor responses
in the vehicle treated (66+14 mmHg) and ketorprofen treated (55+8 mmHg) rats (Figure

4-1B).

After the 14-day Angll infusion period the osmotic pumps were removed and MAP fell
over several days to 103x1 mmHg and 103+2 mmHg in the vehicle and ketoprofen
groups, respectively. At this point we again administered ketoprofen or vehicle for 3

days and saw no change in MAP in either group (Figure 4-1A).
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Figure 4-1: The effect of non-specific cyclooxygenase inhibition on MAP and
neurogenic pressor activity in established Angll-salt HTN rats. A) MAP in rats on
2% NaCl diet given a three-day treatment of non-selective cyclooxygenase inhibitor or
vehicle during and after infusion of Angll. B) Peak fall in MAP in response to ganglion
blockade with hexamethonium during ketoprofen or vehicle treatment in rats with

established HTN rats after 10 days of Angll infusion.
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3.2. Non-selective COX inhibition prior to and during the early stages of Angll-salt
HTN:

Figures 4-2 and 4-3 show data from rats treated with ketoprofen for different lengths of
time prior to, or during the early days of, chronic Angll infusion. Figure 4-2A shows MAP
in rats pretreated with vehicle (n=3) or ketoprofen (2mg/kg, sc, n=3) for 5 days prior to
Angll infusion. After 14 days of Angll infusion MAP rose to 147+2mmHg in vehicle
treated rats and to only 129+8mmHg in ketoprofen treated rats, but there was no
statistically significant difference in MAP between the two groups. Acute depressor
responses to hexamethonium on day 10 of Angll infusion were similar in vehicle (-

57+5mmHg) and ketoprofen (-56+x14mmHg) treated groups (Figure 4-2B).

Figure 4-3 shows results from studies in which ketoprofen administration was started 4
days prior to beginning Angll infusion and then extended for 7 more days (after the start
of Angll infusion). Another group of animals received only saline vehicle treatment over
the same time course. MAP was similar in the two groups prior to Angll infusion, e.g.
100+3 mmHg on D1 in vehicle treated rats and 1031 mmHg on D1 in ketoprofen
treated animals prior to starting Angll infusion (Figure 4-3A). In rats treated with vehicle
only, MAP increased markedly during Angll infusion and was 141+10 mmHg by the end
of the infusion period. In rats treated with ketoprofen, however, MAP rose initially up to
A4 (125+3) during Angll infusion but was only 109+7 mmHg by the end of the infusion
period (significantly lower than MAP in vehicle treated animals). The depressor
response (Figure 4-3B) was significantly less in ketoprofen treated rats (-35+7 mmHg)

than in vehicle treated rats (-92+12 mmHg).
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Figure 4-2: The effect of non-selective cyclooxygenase inhibition prior to Angll
administration on Angll-salt HTN and neurogenic pressor activity. A) Mean arterial
pressure in rats treated with cyclooxygenase inhibitor in one group and vehicle in
another group for 5 days prior to making them hypertensive with Angll infusion. B) Peak

fall in MAP in response to ganglion blockade after 10 days of Angll infusion.

# = (p<0.05) vs. control rats.
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Figure 4-3: The effect of non-selective cyclooxygenase inhibition prior to and
during the early phase of Angll administration on Angll-salt HTN and neurogenic
pressor activity. A) MAP in rats after non-selective cyclooxygenase inhibition or
vehicle treatment for 5 days prior to and first 7 days of Angll infusion. B) Peak fall in

MAP in response to ganglion blockade with hexamethonium on day 10 (A10).

# = (p<0.05) vs. control rats.
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3.3. Gene array analysis of eicosanoid related gene expression in the brain of rats
in the early stage of Angll-salt HTN:

PCR array analysis was used to measure transcriptional regulation of genes in brain
samples obtained from rats on day 4 of Angll-salt administration. MAP on day 4 was
105+2 mmHg in control rats and 125+5 mmHg in Angll-salt treated rats. The PCR data
are shown in Figure 4-4. Between group differences were analyzed by one-sample t-
tests with a hypothetical mean as 1. Angll treated rats showed a significant up-
regulation of Arachidonate 5-lipoxygenase (Alox5) (2.0 fold), PGD synthase 2-
hematopoitic (Ptgds2) (1.6 fold) and down-regulation of PG-endoperoxide synthase 1
(Ptgs1) (0.9 fold) and prostacyclin synthase (0.6 fold), in the RVLM (n=4). In the OVLT
(n=2), lipocalin type prostaglandin D synthase or PGD2 synthase (brain) (ptgds) (4.3
fold) expression was increased, whereas COX1, PGH synthase (0.2 fold) and PGD
receptor (0.6 fold) expression were significantly down regulated. Eicosanoid gene
expression was unaffected in the PVN, (n=5), SFO (n=5), NTS (n=5) and CP lining the
third (n=5) and fourth ventricle (n=5). The p value of mRNA fold change for PGD2

synthase (brain) in CP of third ventricle was 0.0648.

3.4. Quantitative RT-PCR:

Q RT-PCR was performed in order to confirm the result of gene expression changes
found in OVLT with PCR array. In rats (n=5) treated with Angll for 4 days, there was a
significant 3-fold increase in L-PGD-synthase gene expression in the OVLT compared

to vehicle treated rats.
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Q RT-PCR was also performed for another rate limiting enzyme in eicosanoid synthesis,
i.,e. cPLA2, since it was inadvertently not included in the customized eicosanoid
pathway PCR array we used. The enzyme cPLA2 expression was significantly higher in
OVLT (2.2-fold, n=5), PVN (2.4-fold, n=5), NTS (9-fold, n=5) and MCA (22-fold, n=5) of
Angll treated rats compared to vehicle treated rats. There were no changes in cPLA2

expression in RVLM or SFO.
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Figure 4-4: Eicosanoid related gene expression in rats treated with Angll or
vehicle for 4 days. The mRNA fold change of eicosanoid related genes in samples
collected on day 4 from A) PVN, B) SFO, C) OVLT, D) RVLM, E) NTS, F) MCA, G) CP-
third ventricle (3VCP) and H) CP-fourth ventricle (4VCP). # Significant difference

(p<0.05) upregulation of eicosanoid genes in Angll treated rats vs. vehicle treated rats.

* Significant downregulation of eicosanoid genes after Angll infusion compared to

vehicle treated rats. Between group difference was analyzed by one-sample t-test with a

hypothetical mean of 1.
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Figure 4-4 (Cont'd)
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Figure 4-5: Phospholipase A2 and lipocalin prostaglandin D synthase gene
expression using q-RT PCR in 4-day Angll or vehicle treated rats. (A) PLA2 gene
expression in PVN, NTS, SFO, RVLM, MCA, third ventricle CP (3V), fourth ventricle CP
(4V) and OVLT. (B) Lipocalin prostaglandin D synthase gene expression in 4 day Angll
treated rats in OVLT. # = p<0.05, significant overexpression after 4 days of Angll
infusion compared to vehicle treatment in rats. Between group difference was analyzed

by one-sample t-test with a hypothetical mean of 1.
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3.5. Western blot analysis:
Western blot analysis showed a significant overexpression of cPLA2 protein in the MCA
and L-PGDS protein in the 3VCP (Figure 4-6). There were no changes in protein levels

of COX-1 in Angll treated rats in MCA, SFO, OVLT, PVN or RVLM (Table 4-1).
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Figure 4-6: Phospholipase A2, cyclooxygenase-1 and lipocalin prostaglandin D
synthase protein expression in 4-day Angll or vehicle treated rats. A) cPLA2
protein expression in 4 day Angll treated rats in middle cerebral artery (veh; n=7, Angll;
n=5). B) COX-1 protein expression in 4 day Angll treated rats in middle cerebral artery
(veh; n=3, Angll; n=5). C) Lipocalin type prostaglandin D synthase protein expression in
4 day Angll treated rats in CP in third ventricle (veh; n=6, Angll; n=4). = Overexpression

of proteins (p<0.05) in Angll infusion day 4 compared to control rats.

88



Enzyme | Groups % Protein expression over control (Beta actin for MCA and Beta tubulin for brain regions)
MCA OVLT PVN SFO RVLM NTS 3VCP 4\/CP
PLA2 | Control | 6.6+2.4 3.3+0.7 4.9+1.1 3.3£0.5 2.1£0.2 4.0+0.2 4.2+0.9 20+3
Angll | 36 4+8.2 2.2+0.8 4.2:0.4° 4.2+0.5 2.2:0.4 3.3£0.2 5.4+1.1 27+5
COX-1 | Control | 62.5+15.4 | 0.077+0.02 | 0.075+0.01 | 0.17+0.05 | 0.08+0.07 | 0.01+0.03 | 1.04:0.2 | 4.8+2
Angll 47+9.2 |0.078+0.02 | 0.085+0.01 | 0.16+0.1 | 0.07+£0.05 | 0.06+0.03 | 0.8£0.1 | 2.6+0.5
L-PGDS | Control - 0.4+0.03 0.2+0.08 0.5£0.2 | 0.02+0.003 - 0.5£0.2 | 1.1+05
Angll - 0.2+0.03 0.3+0.04 0.6+0.1 0.01 - 1.4+0.2% | 0.320.2

Table 4-1: Phospholipase A2, cyclooxygenase-1, prostaglandin D synthase protein expression in 4-day

angiotensin Il compared to vehicle treated rats. Western blot analysis of protein of interest in samples from a) PVN, b)

SFO, c) OVLT, d) RVLM, e) NTS, f) MCA, g) CP-third ventricle (3VCP) and h) CP-fourth ventricle (4VCP) is represented

as the % protein expression over control. * Overexpression of proteins (p<0.05) in Angll infusion day 4 compared to

control rats. $ Lower expression of proteins after Angll infusion compared to control rats on day 4 of HTN.
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4. Discussion

The main findings of this study are: 1) acute COX inhibition does not reverse
established Angll-salt HTN; 2) transient COX inhibition during the first phase of Angll-
salt HTN development impairs the ultimate development of HTN in the second
(neurogenic) phase; 3) Angll-salt HTN is associated with early transcriptional regulation
of eicosanoid pathways, especially in the OVLT and the cerebral vasculature; and 4)
altered expression of cPLA2 and L-PGDS proteins in the cerebral vessels and brain

nuclei occur during the early phase of Angll-salt HTN.

In previous studies in our lab (discussed in Chapter 3) continuous treatment with
ketoprofen attenuated Angll-salt HTN development, but only during the second phase of
the HTN (8). Since this later phase of HTN is caused mainly by increased neurogenic
pressor activity, we reasoned that eicosanoid products might drive that increased
neurogenic pressor activity; and our results using ganglion blockade supported that
idea. However, previous studies in experimental animals and humans indicate that
NSAIDs like ketoprofen generally don’t reduce BP in established HTN (see Chapter 1).
Therefore, | wanted to test whether COX activity was required to maintain elevated SNA
in the later phase of Angll-salt HTN. The results were clear: once HTN was established,
blocking COX activity had no effect on BP or SNA (assessed from neurogenic pressor
activity). | then went on to do experiments designed to determine when eicosanoids did
act to increase SNA during Angll-salt HTN. | found that COX inhibition limited to the first
week (early phase) of Angll-salt administration significantly attenuated later HTN
development. Additionally, neurogenic pressor activity in short-term ketoprofen treated

rats was lower than their untreated counterparts on day 10 of Angll. Collectively these
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data indicate that COX products act during the early phase of HTN development to
somehow increase SNA during the later phase. How might this delayed effect of

eicosanoids be produced?

There is convincing evidence that short-term exposure to Angll can cause long-lasting
changes in the brain pathways by which Angll regulates SNA and BP. One
manifestation of this phenomenon is the ability of short-term increases in circulating
Angll to “sensitize” responses to subsequent increases in circulating Angll occurring
even weeks later (263). The mechanisms responsible for this “priming” action of Angll
have not been identified, but could be similar to those responsible for the known
influence of brain Angll and its metabolites on learning and memory (259). My data
suggest that COX inhibitors may prevent this priming action in Angll-salt HTN.
Interestingly, an analogous effect of COX inhibitors has been demonstrated in
Alzheimer’s disease (AD). Chronic COX-1 inhibition effectively delays the development
of cognitive and other defects in AD, but has no benefit once the disease is established
(106). COX-derived eicosanoids in the brain are able to induce long-lasting neuroplastic
changes in numerous neuronal populations and pathways that after a period of time do
not require continued eicosanoid action (12, 27). This phenomenon could explain the

timing of the protective actions of COX inhibitors in both AD and HTN.

Eicosanoids could regulate sympathetic activity and blood pressure in Angll-salt HT in a
variety of ways, but my studies focused on a possible role of eicosanoids in the brain.
Eicosanoid products are produced throughout the brain in response to numerous

physiological and pathophysiological stimuli, and are synthesized in various brain
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regions by the pathways described in chapter 1 (Figure 1-3). Because eicosanoid
products can act in the brain to increase SNA and BP, and also cause long-lasting
adaptive changes in brain regulatory pathways, I tested the hypothesis that discrete
transcriptional and translational products of the brain eicosanoid pathway would be

activated during the early development of Angll-salt HTN.

Four days after starting Angll-salt treatment in rats eating a high salt diet, | found an
increase in MRNA levels of cPLA2 in some cardio-regulatory brain regions and cerebral
arteries. Since cPLA2 protein also was overexpressed in cerebral arteries, this could
produce accelerated conversion of membrane phospholipids into AA, the major
substrate for production of eicosanoids. Angll is known to stimulate membrane
phospholipid metabolism in other tissues (153), and activate the AA cascade in the
cerebral microvasculature (213). The possible importance of cPLA2 will be addressed
further in Chapter 6. Downstream to cPLAZ2, however, there was no change in the
transcript levels of COX-1, another key enzyme in eicosanoid synthesis. This latter
finding is consistent with the fact that COX-1 is generally a constitutively active enzyme

in the brain and elsewhere (241).

Expression of genes in the COX and lipoxygenase enzymatic pathways was evaluated
to help identify specific eicosanoids that might act as brain mediators of elevated
sympathetic activity and BP. Overall, other than cPLA2, very few changes in eicosanoid
gene expression were found early in Angll-salt HTN, including genes for synthetic

enzymes and known receptors. This could be taken as evidence against an important
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role for brain eicosanoids in Angll-salt HTN, but also could indicate that the relevant
eicosanoids generated by Angll-salt are part of a constitutively active pathway involved
in normal brain physiology. A notable and surprising exception was my finding that
transcription of L-PGDS, which is found primarily in the brain in meningioepithelial cells
and oligodendrocytes (232), was strongly upregulated in the OVLT, a circumventricular
organ that comes in contact with circulating angiotensin Il through a “leaky” blood brain
barrier. Because the leptomeninges, arachnoid trabecular cells and CP epithelial cells
are the primary sources of L-PGDS production and secretion into the cerebrospinal fluid
(14), the implications of expression of the L-PGDS gene in the OVLT are not clear.
Nevertheless, when combined with the facts that 1) the L-PGDS product PGD2 is the
most abundant eicosanoid in the brain, and 2) PGD2 injected into the brain causes a
sympathetically mediated increase in BP (60), the dramatic increase in L-PGDS gene
expression (along with cPLA2) led me to further investigate a possible role of brain
eicosanoids, and especially L-PGDS, in the development of Angll-salt HTN. Those

studies are described in Chapters 5 and 6.
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CHAPTER 5

CENTRAL INHIBITION OF CYCLOOXYGENASE AND LIPOCALIN

PROSTAGLANDIN D SYNTHASE BLOCKS THE DEVELOPMENT OF

ANGIOTENSIN II-SALT HYPERTENSION IN THE RAT
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1. Introduction

In previous Chapters, | showed evidence that cyclooxygenase products play a key role
in the developmental stages of a neurogenic model of Angll-salt HTN (Figure 4-3).
Specifically, administering either a non-selective, or a specific COX1, cyclooxygenase
inhibitor during HTN development significantly attenuated the increase in blood
pressure and also reduced neurogenic pressor activity (determined as the acute
depressor response to ganglion blockade). Although many other previous reports
implicate eicosanoids in angiotensin-dependent hypertension (155-157, 255), most of
those reports suggest that the main tissue targets are blood vessels or the kidney.
However, there is some evidence that COX1 in the brain participates in a
sympathoexcitatory and pressor pathway (22, 23). So as part of my project | performed
an analysis of eicosanoid pathway gene expression in cardioregulatory brain regions
during the early phase of Angll-salt HTN. The analysis revealed no changes in COX1 or
COX2 expression in the brain, but did highlight enzymes both upstream (cPLA2) and
downstream (L-PGDS) of COX as potential regulated elements of the eicosanoid
pathway during Angll-salt HTN development (Chapter 4). In the current study | tested
the hypothesis that downstream products of cyclooxygenase activity in the brain
contribute to Angll-salt HTN and that one mechanism for this effect is increased
synthesis and release of L-PGDS. To that end, | did the following experiments: 1)
measured brain COX activity, and CSF L-PGDS protein content, during the early phase
of Angll-salt HTN development; and 2) tested the effect of selective brain blockade of

COX activity, and LPGDS activity, on Angll-salt HTN.
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2. Experimental protocols

2.1. Mean arterial pressure and cyclooxygenase activity in cardio-regulatory brain
regions during the early stages of Angll-salt HTN development:

Rats were given high salt diet and either Angll (n=5) or saline vehicle (n=5) was infused
subcutaneously for 4 days. BP was measured using a radio-telemeter implanted into the
abdominal aorta through the femoral artery. On the fourth day of Angll infusion, the rats
were euthanized and brains were collected, snap frozen on dry ice and stored at -80°C.
Using a cryostat maintained at -15°C, 500um thick coronal brain sections were prepared
and brain punches from SFO, OVLT, PVN and RVLM were obtained. COX activity was

measured in the punches as described in Chapter 2.

2.2. Brain cyclooxygenase inhibition in Angll-salt hypertensive rats:

To verify the involvement of brain COX pathways in HTN development, we used our
standard Angll-salt HTN protocol. After three days of baseline control MAP recording
(days C1, C2 and C3), a brain infusion cannula attached to an osmotic pump was
implanted into the lateral ventricle (co-ordinates; -0.8mm AP, -1.5mm ML and 4.2mm
DV). A mini-osmotic pump (Alzet, model 2004) delivered ketorolac at different doses
(33, 3.3. or 0.6 nmol/h) or vehicle (DMSO) intracerebroventricularly (ICV) to different
groups of rats throughout the “drug-alone” control period (days D1, D2, D3 and D4) and
the remainder of the experimental protocol. After the 4-day drug-alone period, mini-
osmotic pumps (Alzet, model 2ML2) for sc Angll infusion (150ng/kg/min) were
implanted (days A1-A14). The control group received saline vehicle infusion. On days

C2, D2 and A10, neurogenic pressor activity was determined in rats receiving ICV

96



ketorolac at 33 nmol/h and in vehicle treated rats, using the acute fall in blood pressure

after injection of the ganglionic blocker hexamethonium (30mg/kg, ip).

2.3. Plasma ketorolac measurement using high performance liquid
chromatography:

To determine an ICV infusion rate of ketorolac that would inhibit COX in the brain but
not in peripheral tissues, we measured the drug concentration in blood during ICV
infusion at three rates: 0.6nmol/h, 3.3nmol/h and 33nmol/h. Ketorolac was infused into
the lateral ventricles of male Sprague Dawley rats using brain infusion cannula attached
to an osmotic pump (Alzet, model 2004). After one week of infusion, blood was drawn
from the abdominal aorta of anesthetized rats and plasma was collected. Ketorolac
concentrations in plasma were measured as described in Chapter 2. Plasma
concentrations were compared to the published IC50 of ketorolac, namely 0.27uM or

100ng/ml in plasma (33).

2.4. Western blot analysis for lipocalin prostaglandin D synthase expression in
the cerebrospinal fluid during early stages of Angll-salt HTN:

Rats were made hypertensive using our standard Angll-salt HTN protocol (n=5/group),
and CSF was collected from both hypertensive and normotensive control rats on day 4
(A4) of Angll or vehicle infusion respectively. CSF was collected and assayed for L-

PGDS protein concentration as described in Chapter 2.
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2.5. Central and peripheral L-PGDS inhibition:

ATS56, a highly selective inhibitor of L-PGDS enzymatic activity (63), was used to test
the role of L-PGDS in the development of Angll-salt HTN. Osmotic mini-pumps (Alzet,
Model 2004) delivered AT56 centrally as described earlier (5.8nmol/h, ICV, n=7) or
peripherally (5.8nmol/h, sc, n=4). The delivery rate of AT56 was chosen based on an
amount reported earlier to produce effective L-PGDS inhibition (16). After three days of
baseline control MAP recording (C1, C2 and C3) and 5 days of AT56 drug treatment
alone (D1, D2, D3, D4 and D5) that continued for the rest of the protocol, Angll
(150ng/kg/min sc) was infused for an additional 14 days (A1-A14, n=7/group).
Neurogenic pressor activity was evaluated (as described earlier) on day 2 (C2), day 6

(D3) and day 17 (A10) of the protocol.

3. Results

3.1. Mean arterial pressure and cyclooxygenase activity in cardio-regulatory brain
regions during the early stages of Angll-salt HTN development:

MAP and HR were not different between the groups during the control period. The Angll
treated rats had a significantly higher MAP on A4 compared to vehicle infused rats
(Figure 5-1A). In contrast there was no significant effect of Angll infusion on HR

compared to the controls (Figure 5-1B).
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Figure 5-1: MAP and heart rate (HR) in Angll-salt HTN rats. Mean arterial pressure
(A) and heart rate (B) in high salt (2% NaCl) fed rats before and after they were infused

with Angll (n=5) or vehicle control (n=5). # = p<0.05 Angll versus vehicle treatment.
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Total COX activity was measured in two hypothalamic CVOs (SFO and OVLT) and two
brain regions known to regulate sympathetic activity (PVN and RVLM). There were no
significant differences in COX activity on day A4 between vehicle treated and Angll
treated rats in the RVLM (Figure 5-2A), SFO (Figure 5-2B) or OVLT (Figure 5-2C).
However, total COX activity was significantly higher in the PVN of Angll-salt HTN rats

compared to vehicle treated rats (Figure 5-2D).
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3.2. Brain cyclooxygenase inhibition in Angll-salt hypertensive rats:

During the control period (C1, C2 and C3), baseline MAP was not different between the
groups (Figure 5-3A). MAP also was not affected by any ICV infusion rate of ketorolac
or vehicle administration (D1, D2, D3 and D4). In the control group (ICV vehicle with sc
vehicle), MAP did not change from day A1 (105 + 2mmHg) through day A14 (103 +
2mmHg). In the Angll infused rats receiving ICV vehicle, MAP increased significantly
from 110 £ 3mmHg on day A1 to 140 £ 10mmHg on day A14 (p<0.05). In the groups
that received ICV ketorolac alone (33nmol/h or 0.6nmol/h), MAP did not change
throughout the study. In the Angll-infused rats receiving the two higher rates of ICV
ketorolac (3.3 and 33nmol/h), MAP rose for the first few days then declined to values
not different from those seen in the control groups, i.e. ICV ketorolac with sc vehicle and
ICV vehicle with sc vehicle. In rats receiving the lowest rate of ICV ketorolac infusion
(0.6nmol/h), MAP increased less during Angll infusion than in the control group, but the
difference was not statistically significant. There were no significant differences in HR
between the groups at any time (figure not shown). Finally, there were no differences in
neurogenic pressor activity (figure 5-3B) between the 7 groups during the control period
(day C2) or during drug control period (day D2). However, after 10 days of Angll
infusion (day A10), the hexamethonium-mediated fall in MAP (mmHg + SE) in the
vehicle treated Angll-salt rats was 78 + 10mmHg. In comparison, the fall was 48 *
5mmHg (p<0.05), 45 £ 9mmHg (p<0.05), and 57+ 9mmHg (p>0.05) in Angll-salt rats
treated with 33, 3.3 and 0.6mmol/h ICV ketorolac respectively that was not significantly
different from the fall in MAP in rats not receiving Angll: ICV vehicle, 47 £+ 1mmHg; ICV

ketorolac (33nmol/h), 43 + 8mmHg; and ICV ketorolac (0.6nmol/h), 36 £ 4mmHg.
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Figure 5-3: Effect of chronic COX inhibition on MAP and neurogenic pressor
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3.3. Plasma ketorolac measurement using high performance liquid
chromatography:

Three infusion rates of ketorolac, 33nmol/h (n=4), 3.3nmol/h (n=5) and 0.6nmol/h (n=9),
were studied after measuring their MAP (Figure 5-3A). After 14 days of ICV infusion in
these rats the plasma concentration of ketorolac were 173+30ng/ml, 45+6ng/ml and
undetectable, respectively in comparison to the concentration (100ng/ml) of ketorolac

required to inhibit COX activity by 50% (IC50) in plasma (33).

3.4. Lipocalin-prostaglandin D synthase content in CSF during the early stages of
Angll-salt HTN in rats:
L-PGDS protein content in CSF was significantly higher in the Angll-salt HTN rats

compared to the vehicle treated rats (Figure 5-4).

3.5. Central and peripheral L-PGDS inhibition:

MAP was not affected by either ICV or sc administration of AT56 alone compared to
vehicle treated rats (Figure 5-5A). During the first two days of Angll infusion, MAP rose
similarly in all three groups of rats. By day A14, however, MAP rose to a significantly
higher level in vehicle treated rats (124 + 5SmmHg) compared to rats given AT56 either
ICV (105 £+5mmHg) or sc (108 £+ 1TmmHg). There were no significant differences in HR
between the groups at any time (Figure 5-5B). Neurogenic pressor activity (Figure 5-5C)
was not different between the groups on day C3 or day D3, but was significantly lower

in both AT56 treated groups compared to the control rats (p<0.05) on day A10.
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Figure 5-5 (Cont'd)
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4. Discussion

Cao et al (22) showed that COX-1 activity specifically in the brain is critical for Angll-
mediated HTN in mice. In previous studies we found evidence that COX-1 activity is
vital for increased neurogenic pressor activity, increased SNA and HTN development in
an Angll-salt model in rats (8). Angll-salt HTN in rats is characterized by two stages, an
early non-neurogenic phase (1-5 days), and a second neurogenic phase (6-14 days)
(28, 31). Interestingly, | demonstrated that inhibiting COX activity only during the early
phase (first 3-5 days of a 14 day infusion) of Angll administration is sufficient to
attenuate subsequent neurogenic HTN development (Chapter 4, Figure 4-3). In an
attempt to localize the tissue(s) where COX products influenced neurogenic
hypertension development, | investigated COX gene expression (Chapter 4, Figure 4-4
and Figure 4-5) and protein expression (Chapter 4, Figure 4-6 and Table 4-1) in various
brain regions and peripheral tissues during this early phase of the rat model, but
observed no significant changes. Therefore, in the first part of the investigation
described in this Chapter 1 measured the direct enzymatic activity of COX in our Angll-

salt HTN model.

Circumventricular organs with a deficient blood brain barrier like the SFO and OVLT
contain AT1 receptors and facilitate signaling in the brain in response to circulating
Angll (17, 180). Critical Angll signaling through central circuits beginning at either the
SFO or OVLT and passing through the hypothalamic PVN and brainstem RVLM has
been reported in Angll HTN models both in the absence (118, 249) and presence (137,

176, 177) of high salt intake. Therefore, | measured COX enzymatic activity in these
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regions during the early phase of Angll-salt HTN. | found an increase in COX activity
only in the PVN. It is not clear if this increase occurred in neurons or other cells in the
PVN. Generally COX-1 in the brain is found primarily in microglia and is expressed
constitutively (192). There is evidence though that COX-1 enzymatic activity in glial cells
can be directly stimulated via G-protein based signaling pathways (13, 223). In
addition, however, COX-1 expression is increased in spinally projecting PVN neurons
during both stress (103) and corticotropin releasing factor (206) induced sympathetic
activation. PGEZ2 is a major product of COX-1 and acute injection of PGEZ2 into the PVN
causes elevated SNA and BP in rats (120, 153). Collectively these results suggest that
during the early phase of Angll-salt HTN increased COX-1 activity could generate PGE2
or other products in the PVN and thereby increase SNA and BP. But because no direct
links between circulating Angll, COX activity in the PVN, SNA and blood pressure have
been reported, we performed additional experiments exploring the role of brain COX in

HTN development.

In my previous studies on COX activity in Angll-salt HTN, | used systemic administration
of COX inhibitors and thus could not rule out that possibility that the antihypertensive
effects | found were due at least in part to blocking the formation of eicosanoids in the
vasculature, kidney or other peripheral organs. In order to determine whether COX
activity specifically in the brain is required for the development of Angll-salt HTN, I
tested the effect of selective COX inhibition in the brain using chronic ICV infusion of the
COX1/COX2 inhibitor ketorolac. | chose ketorolac because of its relatively high water

solubility, making it easier to deliver high concentrations of drug into the CSF. Chronic
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central COX inhibition with ICV ketorolac had no effect on BP or HR in normotensive
rats, but attenuated HTN development and reduced neurogenic pressor activity in the
second phase of Angll-salt HTN. | infused different doses of ketorolac ICV and
measured plasma ketorolac concentration in an attempt to insure maximal inhibition of
COX in the brain with minimum inhibition of peripheral COX (due to diffusion of
ketorolac out of the brain into the systemic circulation). Although all ICV infusion rates of
ketorolac successfully ameliorated Angll-salt HTN, it's important to note that rates of 3.3
and 0.6 nmol/h produced plasma concentrations much lower than the reported 1C50
required for inhibition of COX (100 ng/ml). This suggests that these infusion rates
inhibited COX only in the brain and not in peripheral tissues. Although a limitation to this
study is that | did not directly confirm COX inhibition in the brain of ketorolac treated
rats, the results still strongly suggest that COX-derived eicosanoids in the brain are

necessary for the increase in neurogenic pressor activity and BP in Angll-salt HTN.

| previously reported increased expression of L-PGDS, an enzyme downstream from
COX in the eicosanoid pathway, in the CP during the early stage of Angll-salt HTN
(Figure 4-6C). L-PGDS is synthesized by CP lining the ventricles of brain and is
secreted into the cerebrospinal fluid (232, 235). COX converts arachidonic acid to
PGH2 and L-PGDS catalyzes the conversion of PGH2 to PGDZ2; this occurs
predominantly in the brain. Apart from PGD2 synthesis, L-PGDS acts as a transporter of
lipophilic molecules (235, 257), and thereby is part of the superfamily of secretory
proteins called lipocalins. Brain L-PGDS is important in sleep induction (46, 132, 233,

236), temperature regulation (118, 164) and inflammation (47, 56, 150), but has not
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previously been linked to BP regulation. However, acute ICV injection of PGD2 causes
a modest, sympathetically mediated increase in BP (76, 112, 118). Therefore, |
performed two studies to test the hypothesis that brain L-PGDS contributes to the
development of Angll-salt HTN. First | measured L-PGDS in the CSF of rats during the
early phase of Angll-salt HTN, and second | explored the effects of chronically blocking
L-PGDS in the Angll-salt model using chronic ICV and sc infusion of the drug AT56, a

highly selective L-PGDS blocker.

In the first experiment, consistent with my hypothesis, | found significantly elevated CSF
content of L-PGDS protein in rats with early phase Angll-salt HTN. Relatively little is
known about the factors regulating L-PGDS synthesis and secretion into CSF (71), and
there are no published data at all on Angll, although AT1 receptors are found on the CP
and leptomeninges (33, 67). One possibility is that Angll-salt could work by increasing
oxidative stress in the CP, since the latter has been shown to drive L-PGDS expression

(273).

In the second experiment, | found that both ICV and sc administration of the L-PGDS
inhibitor AT56 markedly reduced BP and neurogenic pressor activity during the late
(neurogenic) phase of Angll-salt HTN. Unfortunately, limited data were available to
guide my selection of dose for AT56, so | can’t be certain how completely L-PGDS
activity in the brain was inhibited. Likewise | cannot rule out that the effects observed
were due to blockade of peripheral L-PGDS. However, PGD2 is a vasodilator in the

systemic circulation and inhibition of peripheral L-PGDS would be expected to cause
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vasoconstriction and increased BP (121, 271). Despite these caveats, when considered
with my other findings, the results from this experiment support the idea that increased

brain L-PGDS activity is important in the development of Angll-salt HTN.

My data here in rats provide strong support for the recent findings of Cao et al. in mice
that COX1 in the brain plays an important role in Angll mediated HTN. A particularly
notable similarity is that both our results and those of Cao et al show that brain COX
activity is important only during the early stage of HTN development. As noted in
Chapter 4, this suggests that COX-derived eicosanoids are “priming” a later increase in
neurogenic pressor activity and HTN rather than causing them directly. There are,
however, also some important differences between our findings and those of Cao et al.
Their data in mice indicate the COX-1 activity and eicosanoid generation are increased
only in the SFO and not in other brain regions; we found COX activity to be increased in
the PVN but not in the SFO. Their data support PGE2 acting on the EP1 receptor as the
main downstream signaling mechanism causing HTN; we did not specifically investigate
PGE2 or its receptors, but our results implicate (for the first time) an alternative
downstream eicosanoid pathway enzyme (L-PGDS) and product (PGD2) in Angll-salt
HTN. These disparities could reflect differences in species, Angll infusion rates, and/or

salt intake between our studies and require further investigation.

In conclusion, the results presented in this chapter provide insight into the central

signaling mechanisms driving neurogenic Angll-salt HTN. We found an increase in COX

activity in the PVN during early HTN development stages with no change in COX
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expression indicating the possibility of more conversion of substrate into eicosanoid
products through increases in COX activity. The importance of the COX pathway is
further supported by successful attenuation of HTN development with brain-selective
COX inhibition. Downstream of COX, L-PGDS was discovered to be critical in
increasing neurogenic pressor activity and BP during Angll-salt HTN. The final studies
in my dissertation were performed to explore in more detail how L-PGDS contributes to

Angll-salt HTN and are described in Chapter 6.
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CHAPTER 6

BRAIN PROSTAGLANDIN D2 AND EICOSANOID RECEPTOR

CHARACTERIZATION DURING DEVELOPMENT OF ANGIOTENSIN II-SALT

HYPERTENSION IN THE RAT
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1. Introduction

In the central nervous system L-PGDS is predominantly synthesized in the
leptomeninges and CP and later, secreted into the CSF (222, 237). Urade et al reported
dominant mMRNA expression of L-PGDS in leptomeninges, CP and oligodendrocytes of
adult rat brain (237). L-PGDS (also known as beta trace protein in humans) is the
second most abundant protein (next only to albumin) that is secreted into the CSF
(105). The two important functions of L-PGDS are: synthesis of PGD2, a lipid mediator
that regulates physiological processes like sleep (234), pain (118) and body
temperature (13); and a transporter of lipophilic molecules viz., bilirubin, biliverdin, and
retinol. Due to this transport property L-PGDS is considered a member of the lipocalin

family of lipid transporters (232).

Inhibiting L-PGDS enzymatic activity results in low brain PGD2 levels and suppression
of sleep (189, 234). The CSF concentration of PGD2 in rats fluctuates in a circadian
fashion: from 903 + 162 pg/ml at night to 503 + 78 pg/ml during the day (222). PGD2
affects sleep by acting on D-type eicosanoid receptors (DP1R) (189) on arachnoid
trabecular cells on the ventral surface of rostral forebrain (158). PGD2 also binds to DP-
2 receptors (DP2R), otherwise known as chemo-attractant receptor homologue
molecule expressed on T helper 2 cells (CRTH2). DP2R are mainly localized on type 2
lymphocytes, basophils and eosinophils (206). Recently, however, DP2R on neurons
have been shown to mediate communication between microglia and neurons in the

spinal cord (118).
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A role for brain L-PGDS or PGD2 in the pathogenesis of hypertension has not been
previously reported, although, Hirawa et al (103) found higher levels of L-PGDS in the
plasma and urine of patients with essential hypertension. As described in earlier
chapters of my dissertation, | found increased transcript levels of L-PGDS in the OVLT
and CP, and increased L-PGDS protein expression in the CSF, during the
developmental stage of our Angll-salt HTN rat model. Furthermore, | showed that
inhibition of L-PGDS in the brain significantly attenuates Angll-salt HTN and the
associated increase in neurogenic pressor activity. Those results, however, do not
establish whether the enzymatic or transport function of L-PGDS is most important for
HTN development. Because most known physiological effects of L-PGDS in the brain
are mediated by PGD2, | hypothesized that PGDZ2 levels in the brain increase during the
development of Angll-salt HTN. DP1Rs are expressed in the arachnoid and CP (158)
but expression in brain cardio-regulatory regions has not been reported. Therefore |
performed experiments designed to localize DP1Rs in circumventricular organs (SFO,
OVLT), and other BP regulating brain regions like the PVN and RVLM, and examine

changes in their expression during the development of Angll-salt HTN.

2. Experimental protocols

2.1. Angli-salt HTN and tissue collection for eicosanoid measurement:

Tissues were obtained from high salt (HS) (2%NaCl) fed rats that were infused with
Angll (150 ng/kg/min, sc; n=5) or saline (n=5) for 4 days. BP was measured using a
radio-telemeter catheter implanted into the abdominal aorta through the femoral artery.

On the fourth day of Angll infusion (A4), CSF from cisterna magna of these rats was
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collected using the protocol that is described in the methods section in Chapter 2. The
rats were then euthanized and brains were collected. Brains were snap frozen on dry
ice and stored at -80°C. Using a cryostat maintained at -15°C, 500um thick coronal
brain sections were prepared and brain punches from SFO, OVLT, PVN and RVLM

were obtained.

2.2. Ultra-performance liquid chromatography-tandem mass spectrometry for
measurement of AA and prostaglandins:

The substrate for prostaglandin synthesis (AA) and the resultant eicosanoids, in
particular PGD2 and its metabolites PGJ2, delta-12-PGJ2 and PGE2 levels were
measured in brain punches and CS using ultra high performance liquid chromatography

coupled with mass spectrometry as described in Chapter 2.

2.3. Immunofluorescence detection of DP1 receptor in early stages of Angll-salt
HTN:

Two groups of rats (Angll infused or vehicle infused) were prepared using our standard
Angll-salt HTN protocol as described in Chapter 2, but | did not measure BP in these
animals. After four days of Angll (n=5) or vehicle (n=5) infusion, brain tissue was
collected. Using a microtome, 10um thick sections coronal brain sections were
prepared. After immunofluorescent staining, the neurons and DP1 receptor expression
were imaged in different regions like SFO, OVLT, PVN, RVLM and CP using confocal

microscopy as described in Chapter 2.
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3. Results
3.1. Blood pressure and heart rate:
The blood pressure in high salt fed rats after 4-days of Angll infusion was consistently

higher compared to vehicle infused control rats (data not shown).

3.2. Eicosanoid levels in cardio-regulatory brain regions during the early stage of
Angll-salt HTN development:

During the early stage of hypertension development there were higher levels of AA in
the CP lining the third ventricle in HTN versus control rats (Figure 6-1A). PGD2 was
significantly higher in CP (Figure 6-1B), CSF (Figure 6-1C) and RVLM (Figure 6-2A, 2B,
2C). No differences were found in other brain regions. There also were no differences in
the levels of PGE2, or the PGD2 metabolites PGJ2, delta-12-PGJ2 and 15-deoxy-PGJ2

in the various brain regions or CSF of Angll-salt HTN rats compared to the control rats.
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Figure 6-1: Ultra performance liquid chromatography-tandem mass spectrometric

analysis of lipid mediators. Measured AA (A) and PGD2 (B) levels in the CP lining the

third ventricle and PGD2 levels in the cerebrospinal fluid (C). t test *=p<0.05 vs. vehicle.

(n=5 in each group).

119



100
m/z 351.2->m/z 203.1

g PGD2
c
c
_3 M
o
@ 100-1B PGD2 m/z 351.2->m/z 203.1
£ 4.06
© 50—
X ] J\ NA /\ﬂ
3.8 3.9 41 4.4

Retention time (min)

(@)

=N =
o o
© o
© o
9

5000+

PGD2(pg/region)

o
L

Vehicle Angll

Figure 6-2: Representative chromatogram with PGD2 levels in RVLM.
With a retention time of 4.06 minutes and m/z of 351.2->203.1, PGD2 peaks were

detected in the RVLM of vehicle treated (A) and angiotensin |l treated (B) rats which

was higher in the RVLM (C). t test *=p<0.05 vs. vehicle. (n=5 in vehicle treated rats and

n=4 in Angll-salt treated rats).
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3.3. Immunofluorescence detection of DP1 receptor in early stages of Angll-salt
HTN:

Control rats showed significant expression of DP1R in the RVLM (Figure 6-3). In Angll
infused rats there was a decrease in DP1R expression that was statistically significant
(Figure 6-4). Another area that expressed DP1R was CP (Figure 6-5A) but there was
no difference in the expression in Angll infused rats (data not shown). In the cardio-
regulatory regions of the brain like SFO (Figure 6-5B), OVLT (Figure 6-5C) and PVN

(Figure 6-5D) there was no detectable DP1R expression in control or Angll treated rats.
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Figure 6-3: Double immunofluorescent staining for neuronal cell bodies and the
G-protein coupled receptor DP1R in early stages of HTN development. Arrows
point at the neurons and the DP1 receptors with NeuN and DP1 receptor staining
respectively. . The DP1R in the RVLM of 4-day vehicle treated rats as shown in the top
panel, were localized on the NeuN immunoreactive neurons. 4 days of angiotensin Il
treatment decreased the DP1R expression on the NeuN immunoreactive RVLM
neurons (as shown in the bottom panel). Scale bar=30um. [For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic

version of this dissertation]
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Figure 6-4: DP1 receptor expression in RVLM of 4-day Angll-salt HTN rats. DP1R
expression was lower in the RVLM neurons of 4-day angiotensin |l treated rats

compared to the vehicle treated rats. Paired t test # =p<0.05 vs. vehicle.

123



Figure 6-5: DP1R expression in CP, SFO, PVN and OVLT of Angll treated rats. CP
lining the brain ventricles expressed DP1R as shown in the DIC image of Angll HTN rat
Scale bar=30pm in a 40X image (A) and the expression was not different from the
control rats (fig not shown). DP1R were not seen in SFO (B), PVN (C) or OVLT (D) of

Angll or vehicle (fig not shown) treated rats. Scale bar=60um in a 20X image.
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Discussion

There are two main findings of this study. First, during the early stage of development of
Angll-salt HTN there is an increase in PGD2 levels in the CP and CSF: brain sites
where the enzyme L-PGDS is synthesized and secreted, respectively. Surprisingly,
PGD2 concentrations also were increased in the RVLM, but not in the SFO, OVLT or
PVN. Second, | found that DP1Rs are expressed on neurons in the RVLM, but not in
the SFO, OVLT or PVN; and that their expression is decreased during the development
of Angll-salt HTN. These findings suggest the existence of a heretofore-unknown brain
signaling mechanism-involving PGD2 that may contribute to the pathophysiology of

HTN.

In my experiments, Angll-salt HTN was associated with an early increase in AA levels in
the CP (Figure 6-1A), suggesting increased activity of cPLA2. Combined with my
observation that neither cPLA2 gene expression nor protein concentration was
increased in the CP at the same time period during Angll-salt HTN development
(Chapter 4), | conclude that cPLAZ2 is functioning here as a constitutive. Similar to L-
PGDS, cPLA2 in the brain is found predominantly in the CP, oligodendrocytes and
astrocytes (135), but its role in brain physiology remains largely unknown (53). Although
Angll is a potent stimulus for membrane phospholipid metabolism in other tissues (153),
and activates the AA cascade (including PGD2 synthesis) in the cerebral
microvasculature (213), this is the first report of increased choroid AA production in
Angll HTN. As noted earlier, the CP is the predominant site of synthesis of PGD2 and

the CSF acts as a reservoir of secreted PGD2 (14, 222, 237). | found increased PGD2
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levels in the CP and CSF in Angll-salt treated rats compared to control rats, indicating
increased synthesis and secretion into CSF. | speculate that a coordinated increase in
AA levels and L-PGDS enzymatic activity in the CP is required to generate elevated
levels of PGD2 in response to Angll-salt treatment. Most importantly, when combined
with my data showing that Angll-salt HTN is attenuated in animals receiving an inhibitor
of L-PGDS (AT56) in the brain (Chapter 5), the current results support the conclusion
that PGDZ2 signaling in the brain is a critical part of Angll-salt HTN development. This
raises the question of where and how PGD2 acts in the brain to facilitate HTN

development.

Current thinking is that PGD2 initiates signaling in the brain by accessing target tissues
both from the CSF (sleep) and from local tissue synthesis (from L-PGDS) (232), but
details on the latter are sparse. Administering PGD2 into the subarachnoid space of rats
was shown to elicit powerful neuronal activation in brain regions involved in sleep
regulation (e.g. ventrolateral preoptic area) and modest activation of the PVN, but to
have no effect on neurons in the RVLM (204). As noted in Chapter 1, injection of PGD2
into the brain causes an acute, sympathetically mediated increase in BP. To my
knowledge, however, no one has previously measured PGD2 concentrations in the
CVOs, or cardioregulatory regions like the PVN or RVLM, in experimental models of
HTN. A new finding of my study was increased PGD2 levels in the RVLM (but not in
SFO, OVLT or PVN) during Angll-salt HTN development (Figure 6-2C). This
observation led me to conclude that PGD2 could act in the RVLM to increase SNA and

neurogenic pressor activity in Angll-salt HTN.
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As an aside, Cao et al revealed elevated COX1-derived PGE2 levels in the SFO during
the early stages of Angll HTN in mice (22). | also found a small increase in PGE2 levels
in the SFO early in Angll-salt HTN, but this difference was not statistically significant.
Disparity between my results and those of Cao et al may be due to use of different

infusions rates of Angll or to species differences.

| also measured the PGD2 metabolites PGJ2 and delta-12-PGJ2 in the CP, CSF and
cardio-regulatory brain regions. No changes in the levels of these metabolites were
observed in Angll-salt HTN rats. This suggests that conversion of PGD2 into these
metabolites does not play a role in mediating HTN development. Another metabolite of
PGD2 is 15deoxy delta-PGJ2. It acts as a ligand for the transcription factor peroxisome
proliferator activated receptor gamma and could inhibit activation of RAS, sympathetic
outflow and brain inflammation, especially in PVN (271). However, my assay was
unable to detect 15deoxy delta-PGJ2 in any of the samples, so I'm unable to make any

conclusions about its role in Angll-salt HTN.

The next question | addressed was how PGD2 might alter SNA and neurogenic pressor
activity in Angll-salt HTN. As reviewed earlier, PGD2 binds to two different receptors,
DP1R and DP2R (166). | investigated the DP1 receptors because it has been linked to
most actions of PGD2 in the brain, especially sleep. DP1R are localized in arachnoid
trabecular cells of the rostral forebrain and CP (158). There is also evidence of

localization of DP1R mRNA in the CP and leptomeninges of rat brain (257). But to my
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knowledge no one has reported DP1R in cardioregulatory brain regions. While
confirming sites identified in earlier reports, my study shows for the first time localization
of DP1R on neurons of the RVLM. Combined with my finding that PGD2 concentrations
are elevated in the RVLM early during Angll-salt HTN development, these results
support the hypothesis that PGD2 acting at DP1R on RVLM neurons contributes to
Angll-salt HTN. My additional observation that DP1R in the RVLM were downregulated
with Angll treatment (Figure 6-4) is consistent with an Angll-salt mediated increase in

PGD2 signaling providing the feedback stimulus for receptor downregulation.

How might Angll and salt cause an increase PGD2 in the RVLM? One possibility is that
Angll-salt treatment could increase PGD2 levels in the CSF (via the pathway outlined
earlier) and PGD2 could then diffuse into the RVLM. This raises the question though of
why | did not observe elevated PGD2 levels in other brain regions. Alternatively, Angll-
salt stimulated neuronal signals from CVOs to the RVLM could increase the activity of
L-PGDS and generation of PGD2 within the RVLM. However, | did not observe an
increase in L-PGDS gene expression in the RVLM of rats early in Angll-salt HTN
(Chapter 4, Figure 4-4D). That does not rule out the possibility of changes in enzymatic
activity. Finally, Angll could act on cerebral blood vessels coursing through the RVLM to
release PGD2, which could then diffuse into the brain parenchyma. Again, however,
this raises the question of why increases in PGD2 were not seen in other vascularized

brain regions.
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How might PGD2 act in the RVLM to increase neurogenic pressor activity and cause
HTN? As described in Chapter4, my hypothesis is that eicosanoid products are acting in
the brain not to directly increase SNA, but rather to produce slowly developing, adaptive
changes in brain circuits that modulate SNA over the long-term (i.e. “prime” later
sympathoexcitation). Therefore, presumably the same cellular mechanisms proposed to
be responsible for eicosanoid-mediated neuroplasticity (27) and neuronal adaptive
responses (66) in other neural responses (stress, learning) could operate in the RVLM.
A more detailed understanding at the cellular level of how long-term, adaptive changes

occur in neurons in cardioregulatory brain regions is emerging (26).

Finally, even though there is abundant evidence linking increased neuronal activity in
the RVLM to the pathophysiology of Angll HTN (132), Pedrino and colleagues (181)
recently reported that increased resting sympathoexcitatory discharge from RVLM
neurons is not required for the maintenance of Angll-salt HTN in anesthetized rats.
Thus, | need to consider the possibility that PGD2 may not influence Angll-salt HTN by

actions in the RVLM.

The data in this study reveal a novel association between PGD2 signaling via the DP1R
in the brain and the development of Angll-salt hypertension. More detailed studies are
required to determine if this information can be used to develop new, practical therapies

for treating HTN or other conditions involving increased SNA.
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CHAPTER 7

DISCUSSION
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As reviewed in Chapter 1, eicosanoids have long been implicated in the pathogenesis of
hypertension but actions of eicosanoids on the cardioregulatory regions of the brain
have received relatively little attention. Studies from Wilcox and colleagues suggested
that the most important brain eicosanoids involved in Angll-dependent HTN are
thromboxanes acting on thromboxane (TP) receptors (70, 255). More recently Cao et al
(4) proposed a very different scheme linking brain eicosanoids to the development of
HTN based on experiments in mice. They suggested that during the early phase of HTN
development, Angll increased PGE2 generation in the SFO, which then acted on EP-1

receptors to increase BP and neurogenic pressor activity.

My work reveals a completely new paradigm for understanding how eicosanoids act in
the brain during Angll HTN development. In particular, | propose a previously
unsuspected role for L-PGDS and PGD2. Figure 7-1 is a summary of my data and a
hypothetical scheme based on those data to explain how exposure to Angll and high
salt diet might produce HTN. Briefly, | propose that in rats fed a high salt diet, peripheral
Angll acts on brain AT-1 receptors to cause direct sympathoexcitation via established
pathways originating in the OVLT and SFO. In addition, however, Angll acts on other
AT-1 receptors to initiate eicosanoid-based signaling. In cerebral vessels and CP,
cPLA2 is stimulated to produce AA, which is then converted by COX1 to PGH2. L-
PGDS is induced in the CP and secreted into the CSF, and as a result converts PGH2
to PGD2 in both CP and CSF. Possibly by diffusion from the CSF, PGD2 levels also

increase in the RVLM.
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Figure 7-1: A hypothetical signaling pathway by which circulating Angll and high
salt intake may cause increased splanchnic SNA and HTN. Acronyms are as

defined in the text. CG = celiac ganglion
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PGD2 binds to DP1R in the RVLM and causes a slowly developing change in either
neuronal excitability or synaptic function that ultimately produces higher splanchnic SNA

and HTN.

7.1. Function of choroid plexus in angiotensin ll-salt hypertension development

One unique aspect of my hypothesis is the postulated role of the CP in HTN
development. In the central nervous system, CP lines the lateral ventricles, third
ventricles and fourth ventricles. CP is made up of a monolayer of ependymal cells that
are the choroid epithelial cells with basal lamina, large central spherical nucleus and villi
on the luminal surface. It plays an important role in the synthesis of CSF (19).
Importantly, AT-1 receptors are found in the CP (73, 229) and previous work has
suggested that the CP is a target of Angll signaling in HTN (52) but mainly to affect the
ability of the CP to regulate CSF sodium concentration (5). On the other hand, my data

indicate that the CP is a source of eicosanoids that regulate SNA.

Binding of Angll to AT-1 receptors increases intracellular calcium and thereby causes
cPLAZ2 to translocate to the intracellular endoplasmic reticulum and nuclear membranes
(14). The 85kD enzyme cPLAZ2 is present in different organs including brain and is
localized in platelets, macrophages, neutrophils, endothelial cells and vascular smooth
muscle cells (131). Cytosolic PLA2 mRNA is reported in pia mater both on the brain
surface as well as in the inner core of the CP (135). In response to injury there is an
increase in cPLA2 expression in the astrocytes that act as neuron support cells

providing cell-to-cell communication in the brain (220). Phosphorylation regulates the
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catalytic activity of cPLA2 at the phospholipid membrane (39). One caveat to my
observation of increased cPLAZ2 activity in Angll-salt HTN is the lack of data on the
levels of phosphorylated cPLA2 in hypertensive rats compared to the controls.
However, increased production of AA in the CP after Angll administration is strong
evidence of increased functional cPLA2 activity there, either in the vasculature or other

cell types.

Arachidonic acid release from the membrane phospholipids (PL) by the action of cPLA2
is acted upon by the two isozymes of cyclooxygenase viz., COX-1 and COX-2, localized
in the endoplasmic reticulum (ER) and nuclear envelope, respectively (75). The
positioning of COX-1 near cPLA2 in the ER could provide ready access to free AA in the
CP for eicosanoid synthesis. Since | observed a COX-1 dependent increase in BP in my
model, it is logical to hypothesize that COX-1 mediates the synthesis of downstream
eicosanoid products in the brain near the site of AA release--the choroid plexus--during
early stages of Angll-salt HTN. My data indicate that this likely does not require

additional COX protein to be produced.

7.2. Possible role of L-PGDS in the development of Angll-salt hypertension

CP is the major site of L-PGDS synthesis (15). The CP promptly responds to peripheral
inflammatory stimuli with induction of genes like interleukin 1 and tumor necrosis factor
a, but L-PGDS (normally constitutive) also is strongly induced (147). The mRNA levels
of L-PGDS are increased in the CP after 6, 12 and 24 hours, but return to baseline after

72 hours (147). This could be why | did not see increased L-PGDS transcript levels in
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the CP in 4-day Angll salt treated rats. L-PGDS protein expression on the other hand
was higher in the CP lining the third ventricle when compared to the control rats
suggesting a differential transcriptional and translational regulation of L-PGDS in the CP
during early developmental stages of Angll-salt HTN. L-PGDS in the brain is localized in
subcellular structures like rough endoplasmic reticulum, Golgi apparatus, arachnoid
trabecular cells and oligodendroglial cells (231). Interestingly, similar to the close
association of cPLA2 with COXs, L-PGDS is also co-localized with COXs in choroid
plexus, leptomeninges and perivascular microglial cells (14). Given the increase in L-
PGDS expression in the CP (Figure 4-6C) along with increased PGD2 levels in CP
(Figure 6-1B) and CSF (Figure 6-1C), | postulate that synthesis of PGD2 in CP and CSF
is due to increased L-PGDS activity during early development of Angll-salt HTN. This
implies that the mechanism by which the competitive inhibitor of L-PGDS, AT56,
reduces both PGD2 levels (Figure 6-3) in the brain and Angll-salt HTN development is
via reduced PGD2 formation from L-PGDS in the CP. A limitation of my study is that |
did not measure PGD2 levels in the CP or CSF in AT56 treated rats (I measured them
only in the RVLM). The importance of L-PGDS in Angll-salt HTN development is
bolstered by the observed disparity in the regulation of L-PGDS in males compared to
the female rats. Kittikulsuth and co-workers (130) recently reported that female rats are
protected against development of Angll-salt hypertension compared to male rats. This
protection is likely caused by gonadal sex hormone estrogen (E2). The L-PGDS
promoter contains E2 binding sites (40) and E2 decreases L-PGDS m-RNA levels in the
brain (161). It is therefore tempting to speculate that regulation of L-PGDS by E2 could

be the cause of the relative resistance of female rats to Angll-salt HTN.
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7.3. Possible role of PGD2 acting on DP1Rs in the development of Angll-salt
hypertension

The main function of L-PGDS is synthesis of PGD2 from the precursor PGH2. PGD2 is
the most abundant prostaglandin in the brain (234). It is present in CSF and rapidly
transported out through a variety of lipid and organic anion transporters (222). In Angll-
salt HTN rats | found increased PGD2 levels in the CP, CSF and RVLM. So does
PGD2 signaling in the brain alter blood pressure? As reviewed earlier, most PGD2
actions in the brain are mediated via DP1Rs. Because | found DP1R expression in the
RVLM (Figure 6-4), | predicted that paracrine signaling by PGD2 through DP1Rs in the
RVLM could mediate Angll-salt HTN development. Some support for this idea came
from my finding that DP1Rs are downregulated in the RVLM during the early stage of
Angll-salt HTN (perhaps as a response to increased local agonist concentration). Two
important caveats to this idea, however, are that: 1) | did not demonstrate that PGD2 in
the brain can by itself cause neurogenic HTN; and 2) | did not show that blocking

DP1Rs in the RVLM attenuates development of Angll-salt HTN.

Although not included in my dissertation, | did two preliminary studies in an attempt to
address both of these concerns. First, | infused PGD2 ICV for 14 days into rats on high
salt diet and measured BP via telemetry. | expected to see a gradual rise in BP and
neurogenic pressor activity after a delay of 3-5 days, but instead there were no changes
in either variable when compared to vehicle-infused control rats. Very surprisingly
though, when | measured the concentration of PGD2 in the CSF of these rats at the end

of the study | found equally low levels of PGD2 in the two groups of rats. Thus, it is likely
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that this experiment was not a valid test of my original hypothesis. Second, | induced
Angll-salt HTN with our standard protocol in rats treated ICV with either vehicle or the
DP1R antagonist BW A868C. | hypothesized that the DP1R antagonist would block the
development of HTN in a manner similar to what | observed with ketorolac and AT56.
Instead the rats receiving the DP1R antagonist actually became more hypertensive than
the vehicle treated rats, and exhibited greater neurogenic pressor activity. The results of
this study certainly do not support my hypothesis concerning DP1R in Angll-salt HTN.
However, | did not do experiments to confirm that the infusion rate of BW A868C | used
was in fact effective in blocking DP1R in the RVLM, so these results also are not

definitive.

In light of this uncertainty about the role of the DP1R in Angll-salt HTN, an alternative
explanation may be an action of PGD2 on the other main receptor subtype, DP2R, also
known as chemoattractant receptor homologous molecule expressed on T helper cells
(CRTHZ2). DP2Rs are present at low levels in the brain and are predominantly localized
on T helper 2-lymphocytes, eosinophils and basophils (102). However recently it was
shown that PGD2 derived from COX-1 in microglial cells could affect neuronal function
by actions on DP2R, at least in the spinal cord (118). Therefore, a role for DP2Rs in
PGD2 signaling during development of Angll-salt HTN is possible and could be tested

with a pharmacological DP2R antagonist or with DP2R knockout approaches.

7.4. Importance of RVLM as the site of action of PGD2 to increase BP
Potentiated RVLM neuronal activity is believed to cause both experimental hypertension

and human essential hypertension (132). As noted by Mueller (165): “The increased
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output of the RVLM in hypertension is likely dependent on increased excitatory input
from other brain regions, as well as an increase in sensitivity to excitatory input.
Interestingly, the increase in sensitivity to excitation may occur together or separately
from the increased tonic excitatory input depending on the model or risk factor studied.”
In this dissertation | propose that in Angll-salt HTN there may be both increased
excitatory input from the OVLT and SFO, and increased sensitivity to excitatory input in
the RVLM; and that the latter is caused in part by PGD2 derived mainly from the CP.
Neurons expressing the Gs subtype DP1 receptors are cyclic AMP dependent. When
stimulated, DP1-Rs could activate protein kinase A and increase intracellular calcium.
An increase in calcium is known to activate the calmodulin-mediated myosin light chain
kinase (CAM kinase Il) that has been associated with memory formation in male mice
(159). CAM kinase Il expressed by the dendritic spine has been shown to modulate
neural plasticity (212). The differential expression of CAM kinase Il with PGD2 signaling
has not been reported but there could be a modulation of synaptic transmission through
CAM kinase Il that could cause enhanced synaptic transmission during HTN
development.

Mueller also highlights the evidence that increased sensitivity of RVLM neurons to
excitatory inputs is the result of slowly developing but persistent structural and/or
functional changes in synaptic transmission within the RVLM (i.e. neuroplasticity) (165).
This is consistent with my finding, and that of Cao et al (22), that increased production
of eicosanoid products is essential for the development but not the maintenance of
Angll-salt HTN, suggesting that eicosanoids work by gradually changing neuronal

sensitivity rather than by direct actions on neuronal activity.
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7.5 Future directions

The data presented in my dissertation support sequential roles for cPLA2, COX-1, L-
PGDS and PGD2 in potentiating the development of Angll-salt HT. However, it does not
exclude the possibility that the critical actions of L-PGDS in neurogenic HTN are
independent of PGD2 formation. Therefore, more experiments need to be performed to
confirm a cause-and-effect relationship between increased brain PGD2 and neurogenic
HTN. Specifically, it needs to be determined whether the main function of L-PGDS is to
act as a lipid carrier or to synthesize PGD2. This could be investigated by additional
studies on the ability of PGD2 itself to cause chronic HTN, and by further investigation
of DP1R and DPR2 antagonists or knockout animals. The contribution of PGD2
signaling at the molecular level in different cell types like neurons, astrocytes and
microglia also needs to be further explored in order to develop a complete
understanding of how PGD2 in the brain affects SNA and BP. Finally, much additional
work is necessary to confirm that the RVLM is the principal site of action of COX
products in mediating neurogenic HTN. This would likely require tissue-specific genetic
targeting strategies because of the difficulty of chronically and specifically accessing the

RVLM with drugs in conscious animals.

7.6. Overall significance, perspectives and therapeutic implications

In light of suggested roles for brain L-PGDS in sleep (189), obesity (43) and insulin
resistance (51), and the known associations of these conditions with sympathetic
overactivity and essential HTN, my findings reveal an up-to-now unknown signaling

pathway in the brain that could explain why these physiological and pathological
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conditions often occur together. Nevertheless, with regards to HTN it will be challenging
to capitalize on my findings to generate novel therapies. This is because the new
mechanism | discovered appears to operate only during the initiation of HTN and is not
required once HTN is established. Current therapy of HTN is focused only on lowering
BP once the condition is established. On the other hand, it's possible that a more
refined understanding of how L-PGDS or PGD2 affects brain pathways regulating SNA
could lead to strategies for reversing those changes and thereby modulating SNA for

therapeutic benefit.
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