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ABSTRACT

SPACE-TIME MODELING AND APPLICATION

TO EMERGING INFECTIOUS DISEASES

By

Cheng-Yu Lee

A refined modeling framework for space-time analyses, specifically developed for

general Space-Time Autoregressive Moving Average (STARMA) models, is proposed.

To enhance accuracy and performance of these analyses, statistical tools and algo-

rithms were extended from univariate case to space-time case, including space-time

extensions of the Hannan—Rissanen algorithm, the bias-corrected Akaike information

criterion, and the Bayesian information criterion. Methods for assessing statistical

significance of model parameters are also presented. A general-purpose statistical

software, called Integrated Enviromuent for Analyzing STARMA models (IEAST),

is developed for space-time analyses in this research. As an empirical example. the

framework and these space-time modeling methods are then applied to investigate

the spreading dynamics of West Nile virus (WNV) epidemic in crews and humans in

the Detroit Metro area in 2002. Both datasets of dead crews and human cases fit



very closely to those expected from a purely STAR (Space-Time Autoregressive) pro-

cess having low spatial and temporal orders. The use of the STARMA model allows

estimation of the rate of spread of WNV at different spatial scales and thus charac-

terization of the expected spatial and temporal scales. In addition, a space-time cross

correlation analysis between crew and human cases is conducted. The result shows

that there exists high cross correlation between dead crow and human cases at spe-

cific spatial and temporal lags. This evidence provides a foundation for the control of

human VVNV epidemics by using dead crows as a sensitive indicator variable. Statis-

tical inferences from a biological point of view based on these analyses can be used to

formulate the prevention and control policies for WNV. The determination of spatial-

temporal autoregressive parameters using STARMA holds considerable promise for

characterizing emerging infectious diseases.
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CHAPTER 1

Introduction

1.1 Space-Time Processes and Space-Time Depen-

dency in Biology and Ecology

Spatio—temporal models have gained widespread popularity for the last decade. One

major reason for this is an abundance of new challenging applications arising in the

environmental sciences and epidemiology. Typical examples include forecasting of

global climate change, infectious disease mapping, and their inter-relationship. Space-

time datasets are usually very large and, therefore, require substantial computing

power for modeling. The major improvement in computational power, especially

personal computing, is another sigI'Iificant cause for the recent surge in using the

models.

Biological and ecological data are often organized by units of time as well as by

geographic locations. The procesSes that produce, such data may have strong corre-

lations not only in time but also in space. It is not always reasonable to study such



processes by considering space and time separately. With increasing accessibility and

accuracy in remote sensing technology, large scale analyses (especially in space) of

space-time data become possible. This trend highlights the importance and necessity

of space-time analysis in various disciplines. In particular, some problems with high

dependency in space and time, such as precipitation/temperature forecasting, pollu-

tion spreading, population succession of organisms. and epidemics, require space-time

analysis and modeling to reveal or even forecast process dynamics.

In the natural world, biological or ecological systems are neither spatially nor tem-

porally homogeneous. Rather, the processes in these systems are dynamically (and

often systemically) self- or inter-correlated in space and in time. Analyses considering

only time or only space may produce misleading results and not reveal the dynamical

behavior of the system. In fact, processes such as epidemics, succession, competi-

tion, evolution, interactions, and population dynamics, assume that the elements of

an ecosystem close to one another in space or in time are more likely to be affected

by the same generating process. The lack of spatio-temporally explicit. analytical

framework is considered to be a major obstacle to understanding the fundamental

mechanisms of such processes.



1.2 Statistical Modeling and Various Space-Time

Models

In biological and ecological sciences, we usually have incomplete knowledge of the

physical mechanisms responsible for the dynamics, and thus must resort to statistical

estimation to represent the dynamic behavior of a system. Statistical modeling is an

important procedure for analyzing stochastic systems because it allows us to connect

the data to theoretical processes. Furthermore, in principle theoretical models can

be used to understand, forecast, or control the behavior of a realistic ecosystem. Fig-

ure 1.1 shows how a model is used to represent the data-generating process. The data

together with knowledge of the underlying process are used to identify a statistical

model. VVlIile modeling, a dataset is used to fit this hypothetical model, following

determination of some of the characteristic features (e.g. model types and orders) of

the process. The parameters of the model are estimated during the fitting process.

Next, adequacy of this statistical model can be evaluated. Finally, the statistical

model can be used for forecasting, analysis, control, or other purposes. The objective.

is to find a ”parsimonious” model with the smallest number of parameters needed to

adequately fit the patterns in the data.

Many space-time models have been developed since the initial development of

basic theory of space—time models in the 1970s. The following gives an introductitm

to some popular space-time models.

Kalman filtering has been applied in areas as diverse as aerospace, marine navi-

gation, signal processing, demographic modeling, etc. Kalman filtering estimates the



state of a system from observations containing random errors. Due to high success,

the Kalman filter quickly became an essential role in control theory. In the mid

19908, Cressie suggested that a Kalman filter incorporating space and time can be

a powerful tool for modeling space-time processes [17]. Two years later, Huang and

Cressie showed the details of the space-time Kalman filter (STKF) [31]. The (.lynamic

space—time structure is separable in space and time.

In the late 19908, Mardia and Goodall et al. suggested an approach cmnbining

Krigging and the Kalman filter, called Krigged Kalman filter (KKF), to model space-

time processes [38]. This model uses a time-varying linear combination of spatial

fields to represent variations in space and time. The most important feature of this

approach is that it reduces the number of parameters to a small number of key

parameters. This can be a good method for forecasting; however, these parameters

do not provide much information about the underlying mechanisms.

Vector Autoregressive Moving Average (VARMA) models (Lutkerpohl [36, 37])

are used to determine the dynamic interactions among multiple time series. VARMA

models can be viewed as a subclass of the state-space models that are widely used in

physics and engineering. VARMA processes are featured by their autoregressive. and

moving average orders. A p—th autoregressive order and q-th moving average order

VARMA process can be expressed as

P q

2,, :2 Z¢*’Z“k — 20,451-), + e, (1.1)

k=1 k=1

where Z(t) = [Zl(t), ZQU), - ' - , ZN(t)]’ is a kf-dIIIICIlSiOIlal time series vector, 5(1‘) is



a random noise vector where €(t) = [51(t), 520‘), - - - ,€N(t)]’, (pk and 0,. are unknown

coefficient matrices to be estimated. As shown in Equation 1.1, no structured spatial

dependence is defined. Instead, the spatial dependence structure is distrilmted among

the two sets of parameters, (15,, and 0;,. For most ecological and biological space—time

variables, spatial correlation (dependence) structures usually can be regularly defined.

Thus, the disadvantage of VARMA is that it does not. provide a systematic structure

of spatial dependence.

If processes or data reveal systematic dependencies between observations in neigh-

borhoods, the multi-variate time series models can be refined [27]. Weight matrices

can be used to reflect spatial correlation (or spatial dependence) for a given spatial

configuration and can be incorporated into a VARMA model to result in Space-Time

Autoregressive Moving Average (STARMA) models. In fact, STARMA models can

be viewed as special cases of the VARMA models.

The extension of univariate ARMA models into the spatial—temporal domain re-

sults in a general class of models known as Space-Time AutoRegressive Moving Av-

erage (STARMA) models [12, 40]. STARMA models can be used to represent a wide

range of stochastic processes that are space—time correlated. In 1980, Pfeifer and

Deutsch culminated the collective efforts to extend the Box-Jenkins approach [9] for

time series modeling to STARMA modeling [44, 48]. These studies also provided a

computational basis for STARMA modeling and analyses.

C
I
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1.3 Scope of the Work

Space-time ARMA modeling potentially has very wide applications. Its primary

theory and basic modeling framework have been established since the mid 1970s.

However, because of its computational complexity, paucity of appropriate algoritl’uns

and appropriate modeling framework, there have been few applications and space-time

analyses in the literature. Thanks to modern computing power and the sophistication

of statistical algorithms, it is now possible to represent explicitly spatio-ternporal

dynamics of natural processes in mathematical models and to realize the space—time

model in computation.

In this thesis, a computationally efficient and widely applicable method is intro—

duced. The difficulties encountered while applying the traditional modeling frame-

work are reduced by using the proposed algorithms and method with the space-time

extensions of the statistical criteria. The thesis will introduce basic STARMA them'y,

describe how the improvements can be achieved, and give examples of the statistical

inferences that can be made using the proposed methods and STARMA modeling

theory.

The main aim of this thesis is to introduce the improved methods, to establish

general space-time ARMA models for empirical data and to show how to establish

stochastic space-time models for biological or ecological processes. Because of the

presence of noises and errors in natural processes and datasets, it is often not easy to

identify and estimate a candidate model from a real dataset using existing methods.

To solve these problems, several statistical tools and algorithms were (‘ieveloped in



this research for increasing model accuracy and improving computing performance.

The secondary purpose of this thesis is to make the stochastic space—time mod—

eling theory more accessible to scientists. Since space-time modeling is a relatively

unfamiliar field for most scientists, a refined STARMA modeling framework is pro-

vided for general purpose modeling. Furthermore, to support ou' analysis and to

increase the accessibility to space-time modeling for scientists, we implemented a new

method and general-purpose. software called Integrated Environment for Analyzing

STARMA models (or IEAST, please refer to http://fried.for.msu.edu/"ieast),

developed explicitly for space-time analysis of processes with two-dimensional lattice

data. This is the first general—purpose space-time analysis and STARMA modeling

software. Since this work is one of the essential parts of the study, this software will

be described and used for data analysis and modeling in this thesis.

Finally, a thorough application of STARMA modeling, including statistical space—

time modeling and cross analysis of real data for the infectious disease, West Nile

virus, is conducted. This application illustrates how the proposed 111ethodology can

be tailored to model the spread of infectious diseases. In addition to its potential

use for short—term f(‘)recasting, this model class contributes to the understanding of

the spatio—tempm'al evolution of disease spreading process, since it can be used to

estimate how changes in spreading patterns in some specific locations are propagated

to the remaining of the spatial locations.



1.4 Organization of the Thesis

This thesis consists of theoretical and application components, according to the fol-

lowing chapters:

. Chapter 1 (this chapter) Introduction: An overview of space-time processes and

space-time dependence in biological and ecological sciences, space-tin'ie statis—

tical modeling and various space—time models, and the coverage of the thesis is

provided.

0 Chapter 2 Space- Time ARMA Models: The space-time modeling in this re-

search is based upon a. well—defined model, Space—Time ARMA (STARMA).

This chapter gives a historical background of the development of STARIVIA

modeling, the general definition of STARMA, spatial correlation structures,

limitations, assumptions, and conventional modeling method/statistical tools.

0 Chapter 5’ Development of the Proposed Method for STARMA Modeling, and

IEAST: This chapter explores the details of both the Box-Jenkins modeling

approach and the proposed modeling method. Statistical algorithms and tools

for improving modeling performance are developed and introduced in this chap-

ter. In addition, a software environment based on the developed metlnxl for

modeling STARMA models, called IEAST, is implemented and introduced.

0 Chapter 4 Application to the Spreading of West Nile Virus in Detroit Metro

Area: This chapter is another important part of the thesis. Based on the two

real datasets, human cases and dead crow data for WNV in Detroit, Michigan



in 2002, the dynamic behaviors of both datasets are analyzed and their space-

time models are established, using the method and tools discussed in Chapter 3.

Statistical inferences are given based on the analysis results. l\t’loreover, the cross

analysis between these two datasets were examined for statistical inferences on

the space-time relationship between human and dead crow variables.

Conclusion: Future research and limitations for this method are discussed in

this chapter.
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CHAPTER 2

Space-Time ARMA Models

2.1 Historical Background

Research in statistical/ecological models that describe the spatio—temporal evolution

of a single variable or multi—variable relationships in space and time started in the mid

19708. It has increased significantly during the last twenty years, because it is closely

related to progress in computer teclmology and the prevalence of remote sensing for

collecting large space-time datasets. Cliff and 0rd were among the first to establish

a model for interactions in space and time [14, 15], and since then several techniques

have been developed corresponding to different inferential needs and data. types.

The STARMA model class was first presented in the literature in the late 1970‘s

by Bennett [6]. Since then, it has been applied to spatial time series data from a wide

variety of disciplines such as river flow. traffic control, and spatial ecormmetrics. A

series of studies on the basic space-time modeling theories was completed during the

beginning of 1980s. Aroian defined m-dimensional time series, derived properties, and

11



applied to the examples of space-time series [4]. In following papers, univariate time

series autoregressive models [3], moving average models [55], and mixed models [42],

i.e. autoregressive moving average models, were extended to m-dimensional cases

(STARMA is a special case of m-dimensional time series). Furthermore, some of the

statistical properties of these models were investigated by Pfefier and Deutsch [46, 47].

Recently. Giacomini and Granger pointed out that the STARMA class of models

can be derived through a transformation of the Vector Autoregressive Moving Average

(VARMA) models [27]. In fact, the transformation is a restriction related to the

systematic spatial correlation structure as revealed by a set of weight matrices [27].

STARMA models can represent well most applications at large spatial scales, but

for the applications involving only a few observations across space it may be too

parsimonious.

For the related univariate ARMA modeling methodology, Box and Jenkins in 1970

approached the identification problem for time series by using temporal autocorre-

lation and partial autocorrelation analysis [9]. This method consists of identifying

the characteristic behaviors of the correlograms for temporal autoregressive, moving

average, and mixed processes. Martin and Oeppen then extended the identification

procedure in the Box-Jenkins approach to the space-time case, also using space-time

correlation functions [40]. At the same time, Bennett proposed an alternative proce-

dure for model it‘lentification for the spatial time series [5]. Various aspects of identi-

fication have been addressed by Bennett [5] and l\-*Iartin and ()eppen [40]. Pfeifer and

Deutsch in 1980 provided a comparison of accuracy and precision of various estima-

tion methods for the parameters in space-time autoregressive models, using computer

12  



simulations [45].

The three-stage iterative model-building philosophy commonly referred to as the

Box-Jenkins approach [9] for building univariate time series models has been adapted

for use with STARMA models. Pfeifer and Deutsch (1980) [44, 45, 48] were among

the first to develop space-time modeling techniques for lattice spaces in the context of

STARMA models, and they illustrated the model-building details for the identifica-

tion, estimation, and diagnostic checking of the STARMA model, using an iterative

three—stage procedure.

The extension of univariate ARMA time series models into the space-time domain

results in the general model class of STARMA models [12, 14]. These models apply

to a single random variable observable at N fixed sites or locations in space at discrete

points or periods of time, t = 1, 2, T. They are of value for descriptive and fore-

casting purposes when the observed system exhibits spatial autocorrelation defined

by Cliff and 0rd [13]: ’If the presence of some quality in a county of a country makes

it presence in neighboring counties more or less likely, we say that the phenomenon

exhibits spatial autocorrelation.”

2.2 Model Definitions

STARMA is a space—time extension of the ARMA model [9]. The STARMA model

class is characterized by linear dependence lagged in space as well as time. We

summarize some of the results of Pfeifer [44], using essentially the same notation.

STARMA expresses Z”, the observation of the space-time random variable at site

13



i (i=1,2,...,N) and time t, as a weighted linear combination of past observations

and random noise inputs, which may be lagged both in space and time. Let Z, =

[Z1,_,, Z“, - - - , ZN,,]' be the N x 1 vector of observations at. time t, where N is the

total number of sites in space.

The concept of a spatially lagged variable requires an ordering of the neighbors

of each site. A definition of spatial order appropriate for regularly spaced systems is

found in [7]. To formulate the spatial relations among sites, spatial weight matrices

W“) are used. Assume weight matrix W“) has elements mg) that are the wr-iighting

contributions of site j to site i, and which are nonzero if and only if site i and j are

l-th order neighbors in space. Then, the general STARMA model can be expressed

in the following form:

1'
q s

(lewmz.-. -— ZZ aw<’)e._k + e. (2.1)

=0 k=1 (:0

p

z,=Z

k=ll

where p and r are respectively the maximum autoregressive temporal and spatial

orders, q and s are respectively the maximum moving average temporal and spatial

orders, a“ and 91a are respectively the autoregressive and moving average paranwters

at temporal lag k and spatial lag l, Wm is the N x N weight matrix for spatial order

I, and at = [51,t352,ta - - - , 8N4], is the random noise vector at time t.

The weights w]? should reflect an ordering or proximity of spatial neighbors.

Figure 2.1 illustrates an example of a spatial order definition. The first order neighbors

(corresponding to w(1)) are those that are closest. to a given site. (the central gray

circles). The 2nd order neighbors are farther away from than the 1”" order neighlmrs,

14  



but closer than the 3"! order neighbors.

There are three major model types (STAR, STMA, and mixed models) defined

for general STARMA models. A process is said to be a Space-Time AutoRegressix-re

process of temporal order p and spatial order r if q = 0 (named as STAR(p. 1)). A

STAR process can be expressed as

P M:

Zr = ZZ¢sz(l)Zt-k + 51- (22)

[:0k2]

A Space-Time Moving Average process is of temporal order q and spatial order .s if

p = 0 (named as STMA((1, 5-)). A STMA process can be expressed as

q "7k

z, = e, — ZZ 9,,,w<’)e,_,,. (2.3)

k=1 [=0

The mixed model combines both autoregressive and moving average effects (if p > 0

and q > 0), and is named as l\."Iixed(p,q,r,s) (its mathematical form is given by

Equation 2.1). STAR and STMA model are popularly used in practice. Not only can

many practical stochastic processes be simply attributed to either STAR or STMA.

but also there exist. primary statistical differences between them.
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2.3 Spatial Correlation Structure and Weight Ma-

trices

As shown in Equations 2.1-2.3, spatial correlation structure is specified by a

set of weight matrices (Wm). There are ma.r(r, s) + 1 weight matrices, i.e.

W(0),W(1), - - - ,W("’"""(""“ll, for correlation structures of each spatial lag for a

Mixed(p, q, r, 5) model; r + 1 weight matrices for STAR(p,r); .s + 1 weight matri-

ces for STMA(q, .s). Specifically, Wm) is a unit matrix IN.

If the total number of sites in space is N (i.e. the length of the obscrmtion vector

Z), the size of all weight matrices for the configuration is N x N. The n-th row of

the weight matrix for spatial lag l is the distribution of the relative contributions of

the sites in the neighborhood of spatial lag l to the site n at some temporal lags. In

(1)
other words, if the weights wu- are the elements in W”), it is nonzero only if sites 2'

and site j are neighbors for spatial lag l with

i
Nl~“’—1 . d +"l>0f '111' =1Elam. _ an. a}. _ or a t,j,..

J:

Weights mg.) for each spatial lag 1 can be selected to reflect physical connections and

relationships among sites (or locations) of the system under study.

The weight matrices can be specified by model builders based on prior knowledge

of the data observed, or can be assigned to be isotropic and generated systemati-

cally. Because weight matrices define the relationship between each site in a. general

sense, STARMA model can be easily adapted to various spatial dimensions (cg.
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one-dimensional application, as in modeling the dispersal of species along a river,

or three-dimensional application, like modeling air conduction and circulation) or

special spatial arrangements (e.g. anisotropic weighting for directional spatial corre-

lation, like modeling spatial tendency of migration of a. species).

2.4 Box-Jenkins Modeling Approach

The classic (1970s) time series analysis uses a Box-Jenkins approach which is a general

procedure for modeling and forecasting stationary autoregressive and moving average

processes. The main output from such an approach is a regression model explaining

current values of the series in terms of past values. The coefficients in the model can

then be used to forecast the series into the future.

This approach involves identifying an appropriate ARMA model, fitting it to the

data, and using the fitted. model for forecasting. One of the attractive-é features of

Box-Jenkins approach for forecasting is that ARMA processes are a very rich class

of possible models. It is usually possible to find a model which provides an adequate

description for the data. The Box-Jenkins approach consists of iterative steps of

model identification, parameter estimation, diagnostic checking and forecasting (as

shown in Figure 2.2). Iterations of these steps are then used to find increasingly

better solutions.

The method for STARMA modeling in our research is based on a space-time

extension of the Box-Jenkins approach in [48]. In chapter 3, improvements and details

of STARMA modeling methodology are described.
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2.5 Space-time Autocorrelation and Partial Auto-

correlation Functions

There are two questions that arise in modeling procedures. First, what. type (STAR,

STMA, or mixed) of the space-time model should be used? Secondly, what are the

spatial and temporal orders of the model? Because there are so many potential candi-

dates, it is advantageous to have a computationally efficient method for identifying the

type and orders. As shown in Box and Jenkins [9], the popular identification method

for time series is to use the estimated autocorrelation and partial autocorrelation

functions. In an analogous way, the following statistical tools, space-time covariance.

autocorrelation, and partial autocorrelation can provide a systematic method for re-

vealing the characteristics (type and orders) of the underlying process for a given

dataset.

The space-time covariance between t“ and A?” spatial order neighbors at time lag

s can be defined as in [44]

[WmZtl’lW‘k’Zm]
7'7ka) = Et. N
 (2.4)

Based on the definition of space-time covariance in Equation 2.4, the Space-Time

Autocorrelation Function (STACF) between l”’ and km spatial order neighbors at

time lag s can be defined as

Wzkfsl

. t. :

.

2.5[)M (9)
7H(O)’7kk(0)

( )
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Having the space—time autocorrelation function from Equation 2.5, to fully unple—

ment the identification stage. in modeling procedure the corresponding partial auto-

correlations have to be estimated. The Space-Time Partial Autocorrelation Function

(STPACF) can be found in the following way. Given temporal lag m and spatial lag

n, the best linear predictor of Z, can be expressed as

171

2(t)lm.n = ZZ ¢le(I)Zt—k- (2.6)

k=1 1:0

For every m (=1...maximum temporal lag) and n (=0...maximum spatial lag), a set

of coefficients {mu 2 {am/c = 1...m,l = 0...n} can be found. For given temporal lag

m and spatial lag n, the STPACF is the element on", in the set. Em". En”, that is the

solution of the space-time Yule—\Valker equations for maximum temporal lag m and

spatial lag n [40, 48]. In other words, the space-time partial correlation function can

be found by successively fitting STAR(l\'IaxT=m,MaxS=n) models for m =1, 2, 3,

and for n =0, 1, 2, and picking out the estimates of the last coefficient from this

sequence of models. Computationally, the partial autocorrelations can be obtained

by solving the space-time Yule-Walker equation for each spatial order 0, 1, 2, and

for each temporal order 1, 2, using the recursive method shown by Durbin [19].

2.6 Assumptions

For space-time modeling, there. are some assumptions made, including spatial reg-

ularity [25], stationarity [47], invertibility [47], constant correlation structure, and
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normality.

A spatial system has spatial regularity if the spatial structure is regularly defined

over entire space, e.g. as in a lattice. Without spatial regularity, it is not meaningful

to define spatial lag structures [25]. Thus, we generally will not obtain spatial station—

arity without spatial regularity. In practice, it is extremely difficult to define a spatial

lag structure so that STARMA models are stationary and correlation functions well

defined without the assumption of regular distribution of locations.

The most important assumption in STARMA modeling is the validity of stationar-

ity. A space-time process is called stationary if its statistical properties do not change

with time or locations. However, it is often impractical to assume that the observa-

tion data is generated by a. stationary process, especially in space. In the natural

world, seasonality, trends, and clusters can cause non-stationarity. Generally, some.

preprocessing or transformations such as differencing, de-seasonalizing, tie—trending,

or logarithmic transformation must be performed in advance to obtain a stationary

series before a STARMA model can be fitted. It makes no sense to try to fit a data

generating from strongly non-stationary process to a stationary model like STARMA.

Without stationarity or approximation of stationarity we cannot make detailed sta-

tistical inferences about the properties of the underlying processes. Furthermore, by

ensuring the property of spatial replication, spatial stationarity allows us to gain more

statistical power [25]. Using a stationary model to fit a process without stationarity

is just like trying to characterize a system in which the characteristics of the system

are constantly changing. There is no way to look inside or to characterize such a.

system from its inputs and outputs.
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With the assumption of normality, only weak stationarity (second-order) is needed

for STARMA modeling to achieve strict stationarity. Weak stationarity is defined as

follows: Given a space-time process [ZN] t E Z, .7: E R"}, it is weakly stationary if:

1) second moment of Z” is finite for all t and :13: 2) first moment of ZN is indepen-

dent of t and r: 3) cross moment of ZN and ZIHHh depends only on s and h. Weak

stationarity plus an assumption of normality are sufficient to produce strict station—

arity. For a strictly stationary process, we have the same probability distribution

for all time and locations. If the probability distribution is not independent of time

and locations, it is difficult to define statistical properties of the process, e.g. level,

variance, covariance, correlation, and even hypothesis test. Among these properties,

the critical ones are correlations and hypothesis tests, which are necessary during

STARMA modeling and general space-time analysis.

To be stationary and having a unique solution, as in the univariate case, the

causality and invertibility conditions of the process must be satisfied. If p = 0 in

Equation 2.1, the model is a pure STMA model (as in Equation 2.3) and Z, is al—

ways stationary. When a STARlV’IA model has p autoregressive terms (p > 0), Z, is

stationary if and only if all roots of

PM

(let I —' Z:Z ¢k1W(I)IIT—k = 0

k=1 [:0

are inside the unit circle, that is, [r] < 1. If q = 0 in Equation 2.1, the model is a.

pure STAR model (as in Equation 2.3) and Z, is always invertible. When a STARMA
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model has q moving average terms (q > 0), Z, is invertible if and only if all roots of

m 1:

(1(21‘. I— 6HW(1).IT_k =0

(I

[:21 (:0

are inside the unit circle, that is, [:17] < 1 [48].

However, stationarity does not guarantee constant spatial correlation structure.

Processes that can be modeled by STARMA are the stochastic processes whose prop-

erties, such as correlative structures, do not. vary with location and time. Hence, we

need to further assume that the spatial correlation structure is constant, not varying

with either time or locations.

It is assumed that each observation of the space-time series has the same expecta-

tion function, standard deviation, and probability distribution function. We further

assumed a noise error component, which is a sequence of uncorrelated random vec-

tors with a constant distribution (Gaussian), constant variance, and zero mean. The

random noise vector at is normally distributed at time t and satisfies the following

characteristics:

at N1V(0,U2IN)

0213;, .s = 0

’ _

E[€(€l+s] _

0, otherwise

This assumption of normality assures that weak stationarity is sufficient. for a

uniform probability distribution for all times and locations. Although technically

the normality assumption is required, little to nothing is known about how strict
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violations may affect inferences.

2.7 Finest Lag Structure and Selection of Spatial

Correlation Structure

Although spacatime ARMA appears to be a direct extension of time series ARMA,

several properties of time series models do not apply to STARMA models. In par-

ticular, some important characteristics of STARMA models are only valid for the

finest lag structure [30]. A finest spatial lag structure is a special case of corre-

lation structures when, for each pair of site i and site j, there exists .9 such that

the neighborhood for spatial lag s of site i contains only site j. Strictly speaking,

properties such as stationarity, causality, invertibility, autocorrelation functions, and

Yule—\Nalker equations, are only valid for finest lag structure [30]. Spatial correla-

tion structure significantly affects the autocorrelation function, which may further

influence the determination of model types and orders during model identification.

The following points should be kept in mind while defining spatial correlatiml

structures. First, choosing a particular lag structure other than finest. lag structure

limits the generality of the models, so care must be taken in defining spatial correlation

structure to ensure that useful models are not eliminated from consideration. Second,

spatial correlation structure should be defined in a uniform manner across space

to ensure that the STARMA models are stationary and the correlations are well-

defined [30].



It may often be desirable to use a coarser lag structure in order to reduce the

number of parameters that must be estinmted. However, having a coarser lag struc-

ture restricts the generality of the class of STARMA models. Therefore, the choice

of an appropriate definition of lag structure is an important first step in the process

of selecting an adequate but parsimonious model. Knowledge about the process un-

derlying the data is helpful in deciding on an appropriate lag structure or correlation

structure. For instance, if the interactions among locations, for the process being

studied, depend only on the distance not the direction (i.e. isotropic), then the. lag

structure like the following can be a reasonable choice.

32123

3210123

32123

  
If both distance and direction influence the interactions among locations, the following

definition (considering the distance and the direction in south, north, west, and east)

might be desirable.

24



 

11

12

12

12

12

12

12 O
C
O
C
O
O
O
C
O
O
N
I

O
r
b
-
fi
s
d
i
-
O
J
N

O
W
N

C
I
!

C
E
C
E
G
C
D

C
}
!

10

10

10

10

10

10

 



OOOOOOO OOOOOOO OOOOOOO OOOOOOO

OOOOOOO OOOOOOO OOOOOOO 00.0000

0000000 0000000 OOOOOOO OOOOOOO

OOO®OOO OOO®OOO OOO®OOO OOO®OOO

0000000 0000000 OOOOOOO OOOOOOO

OOOOOOO OOOOOOO OOOOOOO OOOOOOO

OOOOOOO OOOOOOO OOOOOOO OOOOOOO

1st order 2nd order 3rd order 4th order

Figure 2.1. An example of the definition of spatial orders/lags in systems with two

spatial dimensions.
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Figure 2.2. Box-Jenkins modeling approach.
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CHAPTER 3

Development of the Proposed

Method for STARMA Modeling,

and IEAST

In STARMA modeling, there are some problems that. have impeded applications since

the theory was developed, including: no robust modeling method: no appropriate

statistical tools/algorithms; and no flexible or general purpose software. This chapter

describes the proposed STARMA modeling method with the related extension of

statistical tools and algorithms. This chapter will provide an introduction to the

conventional method as well as detailed description of the refined method. At the

end of this chapter, the general-purpose software IEAST for STARMA modelng will

also be introduced.

28



3.1 Specification of Spatial Correlation Structures

and Derivation of Weight Matrices

The first step of STARMA modeling is the specification of spatial correlation struc-

ture (i.e. assignment of spatial weight matrices, or SVVM for short). A systematic

procedure used in this research to specify spatial correlation structure is introduced

in this section.

The procedure for specifying spatial weigl'it matrices consists of three steps: (1)

specify Spatial Order Definition (SOD) matrix; (2) specify Spatial Relation Ma-

trix (SRM); (3) based on (1) and (2), weight matrices (SWM) can therefore be

determined and generated. In summary, the specification follows the sequence of

SOD —> SRM —> SVVM.

SOD is a matrix defining the spatial order of each ’related’ neighboring cells

relative to the central cell (i.e. the cell which is under consideration for spatial

correlation with neighboring cells). The matrix size depends upon how large. the

correlated spatial neighboring area must be as needed. For example, if we define the

first spatial order cells as the cells which are at a single ”rook‘s move" away; the

second spatial order cells as the cells which are at a single ”bishop‘s move” away: and

the third spatial order cells as the four cells which are exactly two cells away from

the central cell in the direction of east, west, south, and north; and so on, up to

fourth order, we can specify the SOD matrix as
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-_ 4 3 4 —-

4 212 4

SOD: 3 1 0 1 3 . (3.1)

4 212 4

-_ 4 3 4 ‘4 

The number of cells that can be defined for a specific spatial order is arbitrary. The

central element of SOD represents spatial order zero, that is, it is the cell (under

consideration) itself. In this example, four neighboring cells are. defined in each of

the first three orders of the central cell, but. eight neighboring cells are defined in the

fourth order. The definition of SOD needs not be symmetric, and its arrangement

could depend on the spatial correlation structures of the applications.

Once the SOD is specified, the weighting distribution in a given spatial order

can be defined. The weighting distributions of each spatial order are defined by a

matrix called Spatial Relation Matrix (SRl\I). The sum of the weight distribution of

every specific spatial order should be unity. The coefficients in SRM represent the

importance (in the sense of spatial correlatit‘m to the central cell) of every neighboring

cell in each specific spatial order. For uniform weights (isotropic), a SRl\I for the SOD

defined above can be defined as

  

— — 125 .25 125 — l

125 25 .25 25 125

81m: .25 .25 0 .25 .25 . (32)

125 25 .25 25 125

_ — 125 .25 125 — ]
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By comparing SOD and SRM, we. can definitely associate the spatial order of any

given cell with its corresponding weighting (in that. spatial order) in the correlated

neighborhood.

The above is an isotropic (directionless) example. We can also use a directional

spatial correlation structure, i.e. anisotropic correlation structure. The following is an

anisotropic example (a biased distribution towards the north in the first and second

spatial orders) of SRM for the SOD given in Equation 3.1.

— .125 .25 .125 —

.125 .35 .40 .35 .125

SEN: .25 .25 0 .25 .25 (3.3)

.125 .15 .10 .15 .125

— .125 .25 .125 —  

Every two—dimensional spatial matrix can be rearranged into a linear vector (as the

column vector Z, in Equation 2.1) for mathematical manipulations and computations.

For example, an observation in 4 X 4 spatial matrix can be rearranged into a linear

vector Z as following.

  

a

' l
a b c d b

e f h C

” -—» = z (3.4)

I J A: l i

- m n o p J

I- p d  
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Weight matrix W“) is actually a linear transformation matrix for spatial lag l

(or spatial order I). Consider WmZ: the observation vector Z is spatially-weighted

and transformed into vector Z”) with the weighting distribution at. spatial order I

by multiplying Z with the weight matrix of spatial order I, W"). The sum of the

transformed Z for all spatial orders can be written as Z Z“).

t

  

l" T " ‘ "

' " (l (l

b b"

125 35 .40 125

(I) C C‘ (I)w Z _ = = Z (3 5)

.- _l h p d - pi! —    

In the above example, the n-th row of the weight matrix for spatial order I (i.e..

w(l)) is a rearranged linear row vector of the relative contributions of the cells in the

neighborhood of spatial order I to the cell n.

Hence, the weight matrices can be generated systematically in the following way.

For the given SOD (Equation 3.1), SRM (Equation 3.3). and space dimension of 5 x 5,

we can now construct the weight matrix row by row for the first spatial order weight

matrix W“). Let us look at a simple example.

After removing the coefficients for the spatial orders other than the. first. order.

the matrix SRM can be rewritten as
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F _

0 .40 0

SRM = .25 0 .25 . (3-6)

L 0 .10 0 . 

In order to use a weight matrix based on the above first order SRl\‘I to transform

an observation (say vector Z) for each cell (from the 1st to the 25th element) in a

space with dimension of 5 x 5, we need to have a weight matrix W“) with 25 rows,

and it can be obtained as follows.

To obtain the first. row of W“), put the SRM into an empty (filled with zeros)

5 x 5 matrix by aligning the central cell (bold Os in the following equations) of SRl\I

to the first cell of the 5 X 5 matrix. Everything outside the 5 x 5 matrix is discarded.

Thus, we have

  

0.25000

.10 0 000

Row1—> 0 0000 —*[0.25000.1000~-0]

0 0 000

L0 0 000-

For the second row of W“), the SRM is shifted for a cell to the right. of the first

cell so that the central cell of SRM aligns with the second cell of the 5 x 5 matrix.

Keep doing this until the 25th row and have
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p.25 0 .2500-

0 .100 00

Row2 —+ 0 0 0 0 0 —+ [.25 0 .25 0 0 0 .10 0 0]

0 0 0 00

_0 0 0 00.

’0 25 0 25 l

0 0 .100

Row3 —» 0 0 0 0 0 —> [0.250.25000.10-..0]

0 0 0 0 0

_0 0 0 0 0_

F000 0 01

000 0 0

Row25_+ 000 0 0 —> [00-~0.40000.250].

000 0 .40

_000 .25 0‘  

Integrating all these 25 rearranged row vectors above, the weight matrix W“) is thus

obtained. The same procedure can be also applied to spatial order two, three. and so

forth. to generate Wm, Wm, etc. Finally. the whole set of weight matrices W”)

(l = 1,2, ~ - - , max spatial order) for the given SOD and SRM can be generated. This

procedure has be automated in IEAST.
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3.2 Identification Stage

The first stage of the modeling procedure is the identification stage, in which the.

initial most probable underlying model type (STAR, STMA or l\-’Iixed) and its maxi-

mum spatial/temporal orders are determined. There are diagnostic differences in the

STACF and STPACF among pure STAR, pure STMA, and mixed models. The model

type is determined based on whether the curves of STACF or STPACF drop abruptly,

or if both of them decay in an exponential manner along the time (or spatial) axis

(e.g. Pfeifer and Deutsch [48]). In the following sections, we call the abrupt. dropping

behavior "cut-off" and the exponential decaying behavior "tail-off”. Technically. we

can distinguish these two behaviors by their first order derivatives of the autocor-

relation functions. The derivatives of tailing-off functions generally are exponential

shape, and the derivatives of cutting-off functions have abrupt change around the

cut-off point. Conventionally, the method of identifying the process type was simply

a qualitative comparison of observations to theoretical behaviors. In the. following

sections, I have developed some quantitative metrics and methods to set up a sys-

tematic identification process that significantly improves computational performance.

Furthermore, the spatial and temporal order can be determined by investigating the

lags (in space or in time) at which the STACF or STPACF cuts-off.

In a manner analogous to that of the univariate ARMA, the subclasses of

STARMA family are characterized by their distinct STACF and STPACF behav-

iors. A pure STAR model exhibits a STACF that tails-off in both space and time,

and STPACF that cuts-off after certain lags in space and time. In contrast. a pure
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STMA model is characterized by a STACF that cuts-off after some temporal and

spatial lags and a STPACF that tails-off spatially and temporally. A mixed model

exhibits the spatial and temporal tailing-off of both the. STACF and STPACF. Two

examples shown in Figure 3.1 and 3.2 are to illustrate the cut-off/tail-off behaviors

of STACF/STPACF of two typical simulated data. These data were. generated by

picking the last 100 generations from a total of 5000 simulated generations. The

two-dimensional space was assumed to be 8 x 8, i.e. 64 cells in total. Uniform weight

matrices (or isotropic spatial correlaticm structure) were used for all spatial orders

(from first. to fourth). The random noise vector was at ~ N(0, (72 = 0.00125).

In summary, for STAR(2.1), the STPACF cuts-off at temporal lag two and at

spatial lag one; STPACF tails-off. On the other hand, for STl\r’IA(1,1), the STACF

cuts-off at temporal lag one and at spatial lag one and the envelope for STPACF

tails-off. These two examples illustrated how the model type is selected and how

the temporal/spatial orders are determined by observing the behavior of STACF and

STPACF.

3.3 Estimation Stage

The second stage is to estimate the parameters in the model identified in terms of the

model type and orders. In general. parameter estimation is to minimize. the following

sum of squared error function (or maximize the likelihood function) (Equation 3.7)

to find a set of maximum likelihood estimates. The maximum likelihood function to
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be optimized is

2
T p A1,. q 1m.

5(3) = Z Zt " ZZ ¢kIWU)Zt—k + 6kIW(l)Et—k (3.7)

t=l k211=0 k=11=0

where T is the number of observations in time, Z, is the observation vector at time t,

6t is the random error vector at time t. and fl = [5010, 0311, - - - , 45,,A,01(,,011, - - - .0,,,,,]’.

This is a quadratic nonlinear optimization problem.

For linear models (i.e. STAR for STARMA case), these maximum likelihood es-

timates can be found by applying linear estimators. For example, in a model of

STAR(maxT=2,maxS=1), all observations can be substituted into the model equa-

tion and arranged as in Equation 3.8.

  

. - F . - -

2h () O () O f q 61

1 $10

22 Z1 W( )Z1 0 0 45 52

23 = 22 w<1>z2 z1 w<1>z1 ” + 53 (3.8)

(2520

$21

27‘ ZT-i W(I)ZT—1 ZT—2 WmZ-T—2 ‘ ‘ ET      

The equation above can be simply expressed in linear model form as Z = XQ +E,

and the best linear unbiased estimator is Q = (X’X)‘1X’Z, where the observation

vector Z = [Z1.Z2, - - - ,Zrl’, model parameter vector Q = [el(,.qfill,c§2().gfigl]’. error

vector E = [51.52, - - ' ,erl’, and X is the large matrix in Equation 3.8 [48].

Because of the nonlinear nature of STMA and mixed models, the linear estimator

above is not appropriate. In this research, the parameters for nonlinear processes (i.e.
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STMA and mixed) are estimated by maximizing Equation 3.7 and searching through

a quadratic surface. A quadratic optimization algorithm, l\Iarquardt"s algorithm [30],

is used to maximize the likelihood function (or minimizing sum of least squared errors)

and to find the parameter estimates. Marquardts algorithm is a Gauss-Newton based

algorithm for least. squares optimization. However, as one may commonly encounter

in such optimization problems, it is important to locate an appropriate starting point

for the optimization process. This is especially critical for nmlti-variate nonlinear

optimization problems. During this research, it was found that the optimization pro-

cess for parameter estimates, in most cases, either converges to local optima or does

not converge. Thus, to avoid reaching a local maxima and to reduce the number of

iterations needed during the optimization process of the maximum likelihood func—

tion, a preliminary stage, pre-estz'matz'on. is implemented to calculate an appropriate

starting point for Marquardt‘s algorithm. In this study, I have. extended and imple-

mented the Hannan-Rissanen algorithm from univariate case [29] to space-time case

for calculating the initial points for STMA and mixed processes as shown below.

The space-time extension of Hannan-Rissanen algorithm has three iteratim steps.

1. A high order STAR model is fitted to the data using the space-time Yule-Walker

equation. Then, we have the following approximate model

Z; = i: 7),,1W(”Zf_k + E;

k=1 [=0

where {v},.,|k: = 1 - - - u,l = 0 - - - v} are the Yule-Walker estimates.
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2. The estimated random noise vectors can be computed as

U 1’

e __ t t 2 :2 :_~ I t .

1:21 1:0

3. Once the estimated random noise vectors é,.t = m + 1,---,T have been

found from Equation 3.9. pre—estimates of the model parameters, 61 =

A A I I O I

[cp',1p]’ are deternnned by least squares hnear regress1on of Z, onto the space.

{Zr—1. Zt_2. - ' ’ , Z¢_,,. 5-1. €143. ' - - ,é¢_q}.t = m + 1, . - - , T. By minimizing the

sum of square errors

T ,\
2

P k q mk A

5(5)) = E Z: — E ¢L~1szt_k+ E E ’d’klw(l)ét—k

(:171.-+-l k=1 [:0 k=1 (:0

with respect to d, we can obtain the space-time extension of the. Harman-

Rissanen estimator

a = (X’xrl x’e

where
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A 'A A A A! 7! 7v I

a = [5910,99119'"3991:195410.(+111«"'-li~k1la

Q : [Zm+1~Zm+2s"'~.ZT]I~

l'

Zm

Zm+1

 

From simulation

Using the pro—estimate d as the initial point for the optimization, the final least

A ’ A I I U Q 0 t O O I 0

[Q , G ]’ to minimize Equation 3.7. The maxnnum likehhood estlmate of the residual

variance (32 is thus

W(1)Zm

W(1)Zm+l

(3,2

W(r) z"! Zm—l

w(r)zm+l Zm

improves the robustness of the modeling method.

TN
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set, (3))

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

results, the space-time extension of Harman—Rissanen algorithm

is very efficient and accurate. The deviations of the parameter pre-estimates d from

the correct values are generally lower than 10%. This algorithm greatly reduces the

possibility of (h-‘larquardt’s algorithm) converging to a wrong local optima. and hence

squares estimates of the model, Q and 9, are obtained by finding the best ,8 =

 

 



where T is the number of points in time of the observations, N is the number of

sites in each observation, S(Q, 9) is the residuals sum of square errors, Q is a vector

containing the estimates for parameters in autoregressive terms. and ('9 is a vector

containing the estimates for parameters in moving average terms.

3.4 Diagnostic Checking Stage

Once the model type, orders. and parameter estimates are. determined, the acquired

model can be used to forecast or to analyze the future behavior of the system. How—

ever, to prevent 1.1nacceptable forecasting errors, further diagnostic. checks must be

made to ensure the selected model is appropriate. The methods for checking the

adequacy of the models include: residuals" autocorrelation analyses; residuals‘ ran-

domness testing, residuals” variance checking [48, 49], and statistical significance test-

ing of parameter estimates [48]. In this study, residuals" space-time autocorrelation

analyses, significance testing of parameters, measures for the model’s adequacy, and

residuals’ variance checking are. used for diagnostic checking.

Regarding the residuals of the STACF and STPACF, inadequacy of a candidate

model can be revealed by the presence of some significant correlation values. If a can—

didate model adequately represents the data, residuals should be white(uncorrelated

in space and time) noise. In other words, all autocorrelations (in space and in time)

at nonzero lags are equal to zero (or approxin‘iately equal to zero. in practice).

A candidate model is also checked for any unduly complexity, i.e. having sta-

tistically insignificant parameters. Thus, statistical significance of model parameters
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is tested for this purpose using the hypotheses that a parameter of interest. Bk is

zero while keeping other parameters unrestricted. That is, let. B“ = [81,132,- - ~ , Bk 2

0, 1315+], - - -]’. The test for this hypothesis is based on the statistic

[TN — K(<i>) — K(§-§)J[S(if) — 5(5)] N F1 mam-.5, (3.“)

5(fi)

 

where T is the number of points in time in the dataset, N is the total number of sites in

the dataset, S(B") is the sum of square residuals for parameter B with the restriction

Bk 2 0. S(B) is the sum of square residuals for parameter B without restriction, Q is a.

vector containing the estimated parameters for autoregressive terms in column vector

form, O is a vector containing the estimated parameters for moving average terms

in column vector form, K(Q) is the number of elements in Q, K(C:')) is the munbcr

of elements in 9. Any estimated parameter shown to be statistically insignificant.

Should be removed from the model. and the number of spatial or temporal orders

may be reduced, giving a simpler model that is then considered as the next candidate

model in an iterative modeling procedure.

The results of autocorrelation analysis may be obscure for model identification.

and high order models are not necessarily desirable although the residuals' variances

are small. As shown in Box and Jenkins [9]. an autoregressive model with invertibility

can expressed as an infinite sum of moving average terms (or with very high maximum

orders); and a moving average model with causality can be expressed as an infinite

sum of autoregressive terms (or with very high maxin‘mm orders). In practice. we

need to consider another model type (e.g. STMA) if the selection of current model
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type (e.g. STAR) causes very high orders in space or in time. To summarize the

model fitness and the model parsimony, we need to introduce some. control criteria. to

provide measures for evaluating candidate models, as well as to penalize the excessive

use of extra parameters in the fitting of models.

I extended the space-time extension of bias-corrected Akaike’s information crite-

rion [1]. referred to as the AICC. to be the criterion in determining the model type.

orders and checking adequacy of paranu-‘ters. It can be derived directly from Hurvich

and Tsai [32] by using the likelihood function for STARMA [48]

5(5)

20'2

 L(B. 02|Z) = (27r02)_%~ie.rp(— ) (3.12)

and obtained as

Q) + Mme) + K(é)l (., 1,)

52 TN — K(<i>) — [dc-“3) — 1' ' ' "

 
AICCSTARMA = TN10£‘(2”(32) +

In the definition of AICC, the last term is the penalty for high order models, which

makes the value of AICC higher than that of lower order model. Thus. while de-

termining an adequate model. we are searching for a model (given type. orders. and

parameters) with a minimum value of AICC.

However, because AICC has a tendency of overfitting autoregressions [33, 51], a

second criterion, Bayesian Information Criterion (BIC), is suggested to correct. this
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tendency [2. 50]. The BIC is also extended to the space-time case as

S . -

BICSTARAM = TN10£‘(27T(32) + ifi) + (I\'(Q) + K(@)) - Iog(‘TN). (3.14)
0-2

 

We illustrate the performance of the model type selection with AICC and BIC,

by using 150 Monte Carlo simulated datasets based on STAR, STMA and Mixed

processes (50 datasets for each subclass). In this illustration, we used each of the

four criteria: AICC only; BIC only; -AICC*BIC; and variance of residuals. The.

parameters of each simulated model were randomly chosen, with higher weights on

the parameters having lower spatial or temporal orders. As expected, using AICC or

variance as the only criterion has a bias toward indicating (overparameterized) mixed

model (Table 3.1).

The AICC is useful when the candidates are only STAR and STMA (excluding

mixed model). If we would like to select one out of these three subclasses, BIC per-

forms much better than AICC. As is shown in Table 3.1, all of the 50 simulated STA R.

datasets were correctly classified as STAR, i.e. 100% accuracy. If the given simulated

datasets are STMA and STARMA, the accuracies are 86% and 66%, respectively.

Furthermore, we found that using the product of AICC and BIC as the criterion can

provide even better performance (Table 3.1). The accuracy of model type determina—

tion for all subclasses can be as high as 78%. In summary, these methods provide a

reliable quantitative measure for (‘letermining model choice, whereas previous research

relied on subjective qualitative behavior of the STACF and STPACF.

With regard to variance checking, it has been shown by Pfeifer [44] that. if a
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Table 3.1. Accuracies of model type selection using variances, AICC, BIC. and —

AICC*BIC based on 150 Monte Carlo sinmlated datasets.

Using vmianccs of residuals
 

 
 

 

 

 

 

 

 

 

 

 

  

Simulated datasets Datasets identified as

based 011/ STAR STMA Mixed

STAR. 4% 0% 96%

STMA 4% 6% 90%

Mixed 8% 2% 90%

Using AICC

Simulated datasets Datasets identified as

based on/ STAR STMA Mixed

STAR 16% 0% 84%

STMA 4% 6% 90%

Mixed 8% 2% 90%

Using BIC

Simulated datasets Datasets identified as

based on/ STAR STMA Mixed

STAR 100% 0% 0%

STMA 4% 86% 10%

Mixed 18% 16% 66%

Using -AICC*BIC

Simulated datasets Datasets identified as

based on/ STAR STMA Mixed

STAR 100% 0% 0%

STMA 4% 78% 18%

Mixed 16% 4% 80%
 



process is pure white noise. then

1

zm ($.10)variancc(/310(3))

where 510(5) is the sample STACF as defined in Equation 2.5. That is. if the estimated

model appropriately represents the dataset, the variance of the sample STACF of

residuals should satisfy Equation 3.15.

3.5 A Refined STARMA Modeling Procedure

Combining the criteria and algorithms developed. a STARMA modeling procedure

was developed and used for analyses in this research, as shown in the. flowchart in Fig-

ure 3.3. The intention of the development of this refined modeling procedure has two

purposes. The first is to reduce the computing time for optimization in the estimation

stage, and to increase reliability during parameter estimation, especially for nonlinear

models (STMA and mixed). The second is to overcome the difficulty in model identi-

fication resulting from the ambiguous behaviors of some STACF/STPACF. These two

advances greatly promote the feasibility and robustness for automating the STARMA

modeling procedure computationally.

This refined procedure. is similar to the three-stage iterative procedure in [48].

in which STACF and STPACF are used to i(_lentify model types/orders and ordi—

nary least square is used for parameter estimation. For our approach. in those cases

where the model type cannot. be qualitatively identified by STACF/STPACF. the
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criteria AICC and BIC are used to iteratively determine the best candidate model.

In parameter estimation, the space-time extension of Hamian-Rissanen algorithm is

implemented to generate the starting point for optimization process. For the first. di—

agnostic test, every parameter‘s statistical significance is evaluated, in order to decide,

whether the current numbers of maximum temporal and spatial orders need to be re-

duced, increased, or neither. Finally, the residuals' STACF/STPACF are calculated

to ensure that no significant spatial/temporal correlation exists in the residuals. If

there are correlations, another iteration is needed for further refining the candidate

model.

3.6 Cross Correlations and Space-Time Regres-

sion Models

Cross correlation is a standard method for estimating the degree to which two series

are correlated. It is robust to noise and used widely in many disciplines for fez-

ture/signal detection and image/data processing. To further extend the usefulness

of the research, cross correlation analyses among the two space—time variables are,

conducted. Cross correlation analysis is in‘iplemented in IEAST and also applied to

the analysis of the epidemics of West Nile virus. This is especially useful when inves-

tigating space-time relation between two variables. It does not necessarily give us the

direction of causation flow, but. at the least, we can gain more information of how

(and to what degree) variables are similar to each other.
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Suppose we have two (correlated) space-time variables Z and Y. Z is dependent.

on an independent variable Y based on the Space-Time Regression model [40]

Cd

z, = Z: WWUW.-. + 5,, (3.10)

k=1 1:0

where Z, is expressed as a weighted sum of Y, lagged in space and time, with added

space-time noise 5). In simple words, the variable Y is the. cause. of the variable Z.

The cross correlation of Z and Y is defined in [40] and transformed into a format as

below

E[Z;W(-“)Y,_k]

x/Eizzztl - El<w<s>YirWs>Yt1 '

 

pzyts. k) = (3-17) 

where s is the spatial lag and kt is the temporal lag between the two series.

In the cross correlation function, the two variables (Z and Y) are ordered, that

is, pz‘y(8, k) # pyz(8, k). [)z‘y(8, k) gives the cross correlation of the major variable

Z and the secondary variable Y, and shows the correlation values for various spatial

and temporal lags (Z leading Y for some positive temporal lag). The differences or

lags in space and time of the peak (of the cross correlation function) from zero are. the

distances that the two variables separate in space and time. In the analysis conducted

for the spread of West Nile virus, these lags indicate the time delay and any spatial

lags between the human cases and the dead crows findings. The cross correlation is

based on an assumption of space-time regression model (Equation 3.16). The linear

relationship between variable Z and Y is shown in Figure 3.4. It is evident that. the
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autocorrelation of Y also contributes to the cross correlation pz_y(s, k) because

pzy = SpaceTim(2C01‘7'(Z,Y)

= SpaceTimcCorr(STR(Y),Y)

= Spa(1'e.TimeC0rr(2::1 2;:0 wk1W(’)Y1_k. Y).

The cross correlation can be spurious. \Nhen calculating the cross correlation of

two variables, this will inflate the cross correlation values and further make it difficult.

to achieve a parsimonious model. One solution to this problem is to use pre-whitening

to eliminate the autocorrelated components in both variables. To calculate [)Z.y(h’. k)

with pre—whitening, we can first fit a STARMA model for the input data. (Y) to reduce

sufficiently the residuals to white noise; then, filter the input data with this model

to obtain the white noise residuals, Y". Subsequently, we can filter the response

data (Z) with the same STARMA model, and finally, calculate the cross correlation

between the filtered response Z* and the filtered input Y“, that. is. ngy— (s, k).

3.7 The Development of IEAST

The integrated statistical computing environment, IEAST (Integrated Environment.

for Analyzing STARMA models), was designed for analyzing and modeling stochastic

processes based on general Space-Time AutoRegressive Moving Average (STARMA)

models in twodimensional gridded space. The current version only supports spatial

dimension N x N, that. is, where the numbers of cells in the X and Y directions

are equal. IEAST takes data files (.dat), spatial weight. files (.wet), program files
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(.pgm), and spatial/temporal configurations (in the Setup menu) as inputs. then

according to program or user selection, outputs plots, text numerical analysis results,

and model equations for STARMA analysis (see Figure 3.5).

This system was developed on RedHat Linux 9.0 using GNU OCTAVE v2.1.40

as the programming language. which is a high-level language primarily intended for

numerical matrix computations. OCTAVE provides a convenient command line inter-

face for numerically solving linear and nonlinear problems, and for performing other

numerical Operations. OCTAVE is largely compatible with the cormnercial software

MATLAB® and free of charge. Because of source code compatibility. IEAST can be.

easily run under Windows/Unix/h’lacOS without modifications.

To provide flexibility, there are two user interfaces provided in IEAST: the menu-

driven mode and the interpreter mode (i.e. IEAST programming mode). In

the menu-driven mode, users can carry out the modeling or analyzing procedure by

selecting among a series of hierarchical menu commands. Users nmst control all of

the flow of modeling procedures by themselves. This is convenient, but inefficient in

terms of time spent. With the programming mode, a simple and powerful IEAST

programming language is provided. Highly integrated instructions are provided for

users to compose STARMA modeling or space-time analysis procedures. Users can

design an efficient. and autonomous modeling procedure for specific applications by

simply combining instructions of core functions and flow controls. It is commonly

possible to implement an entire STARMA modeling procedure in less than 20 lines

of code. This programmability is especially useful when the iterative. procerhu'e is

necessary for analysis (as in the modeling procedure shown in Figure. 3.3). Figure. 3.3



is a suggested general modeling procedure for using IEAST.

This system is designed for two-dimensional STARMA analysis. H(:)we.ver, by

carefully designing the spatial weight matrices, this system can be adapted to one-

dimensional or even three-dimensional systems. If the computer memory and com-

puting power are sufficient, there are no limitations to the spatial dimensions of the

dataset that can be explored. However, if the spatial dimension is too small, boumlary

effects would be significant and should be taken into consideration. After trading-off

the computing power and practical needs, the largest spatial and temporal orders of

STARMA models in this implementation are limited.

IEAST consists of three major parts: menu-driven user interface, interpreter.

and core functions. Figure 3.6 illustrates the logical structure of IEAST. The. core

functions provide a complete set of functionalities for STARMA modeling and space-

time analysis, and they are also the basis for the menu—driven interface and interpreter.

The core functions are categorized as below:

0 System setup: These functions are for configuring a given space—time. system,

and include loading space-time data, importing datasets from various formats,

generating datasets from simulations, loading/setting up spatial correlation

structures, and 2D/3D visualization of space-time datasets in time/frequency

domains.

0 Preprocessing: To generalize STARMA models, there are provided various

transformations (or preprocessing) for datasets to be transformed into station-

ary ones before analysis. These functions include de-seasonalizing, tie-trending.



differencing, subsequencing/resampling, smoothing, recovering missing data,

pie—whitening with STARMA, and the Box-Cox transformation.

0 Correlation Analysis: Space—time auto-correlation (single variable) and cross-

correlation (between two variables) analyses, and plotting ability are. pr(.)vided.

0 Model Identification: This contains functions for identifying model type and

maximum spatial/temporal orders based on the behaviors of STACF and

STPACF.

0 Parameter Estimation: For linear processes (STAR), this function simply pro-

vides best linear estimators for model parameters. For nonlinear processes

(STMA and mixed), two steps are needed. The first step calculates a start-

ing point using the space—time extended Hannan-Rissanen algorithm. Then

this point is used as an initial point for the multi-variate nonlinear optimization

process for convergence of the estimates of parameters of models (h’larquardt‘7s

algorithm). In addition, several mechanisms for estimating spatial correlation

structures based on a given dataset and a model (with known type and orders)

are provided.

0 Diagnostic Analysis: Diagnostic functions provide various criteria for evaluating

the adequacy of the obtained model. In our system, the residuals STACF and

STPACF, variance analysis, AICC/BIC , and parameter significance analysis are.

used.

The functionalities of menu-driven interface for analysis are distributed in the



menu hierarchy. In this interface, users conduct step-by-step set up and analyze the.

dataset. through the menus. follow their own modeling procedure. The first two levels

of the menu system are shown in Figure 3.7. The current version of IEAST (version

1.30.01) has the following features:

0 A true spatial and temporal analysis software

0 Full configurability - spatial and temporal correlation structures can be specif-

ically designed by users

0 Interactive programming environment - a script interpreter with highly inte-

grated instructions is provided to simplify programming efforts and to improve

efficiency of analysis and modeling

0 Estimation of spatial weighting structure - The spatial weighting structure can

be retrieved and estimated from given datasets.

o Flexibility of defining spatial structure - a three-step definition for spatial struc-

ture makes IEAST very flexible in defining spatial structures, i.e. SOD ——+

5RM —+ SWM

0 Improved estimation algorithm - the introduction of space-time extension of

Hannan-Rissanen algorithm greatly reduces the estimation time and possil‘nlity

of converging to wrong results

0 Improved diagnostic measures - the space-time AIC/BIC and statistical signif-

icance for each parameter provide good criteria for the selection of model type

and orders, which is especially useful in the programming environment



0 Cross correlation analysis - space—time cross correlation between two variables

is provided

0 2D/3D plotting abilities - both data and analysis results can be plotted in two-

or three—dimensional graphs

For further information and usage, please refer to the IEAST manual, which can

be downloaded from the website http://fried.for.msu.edu/“ieast.
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Figure 3.6. System structure of the software IEAST. The gray blocks are the compo-

nents of IEAST which consist of three major parts: menu-driven interface, interpreter,

and core functions.



 

M
a
i
n
M
e
n
u

  

   

 

    

 
 

 

    

 
 
   

 
 
 

 
 

  

 

 
 

 
 
   

 
 

 

 

D
a
t
a

C
o
r
r
e
l
a
t
i
o
n

M
o
d
e
l

a
r
a
m
e
t
e
r

1
a

n
o
s
t
1
c

S
e
t
u
p

P
r
e
p
r
o
c
e
s
s
J
E

A
n
a
l
y
s
i
s
3

I
d
e
n
t
i
fi
c
a
t
i
o
n
]
L
E
s
t
i
m
a
t
i
o
n

J
L
D
A
n
g
a
l
y
s
i
s

J
L
P
r
e
f
e
r
e
n
c
e
j

I
n
t
e
r
p
r
e
t
e
r

r
S
p
a
e
e
-
t
i
m
e
N
r
R

S
T
A
C
F
fi
r

A
u
t
o
m
a
t
i
c
/

L
'
T

S
t
a
t
i
s
t
i
c
a
l
S

E
v

E
n
t
e
r

L
d
a
t
a
s
e
t

J
L
e
m
o
v
e
m
e
a
g

J
d
d
e
n
t
i
fi
c
a
t
i
o
g
k

i
n
e
a
r

J
:
s
i
g
n
i
fi
c
a
n
c
e
A

a
v
e

n
J

i
n
t
e
r
p
r
e
t
e
r

r
S
p
a
t
i
a
l
a

r
D
e
-
s
e
a
s
o
n
j

S
T
P
A
C
F

1
f

A
r
t
i
fi
c
i
a
l

N
f
N
o
n
—
L
i
n
e
a
r

\
f

A
I
C
C
/
B
I
C
N
(
L
o
a
d
E
n
v
.

N
c
t
o
r
r
e
t
l
a
t
i
o
n

L
J

J
I
d
e
n
t
i
fi
c
a
t
i
o
n
J
k

J
K

J
J

k
s

r
u
c
u
r
e
%

(
D
i
f
f
e
r
e
n
c
e
j

S
T
X
C
F

N
r
P
a
r
a
m
e
t
e
r

N
K

F
r
o
m

N
(
R
-
S
T
A
C
F:
0

t
a
v
e
(
:
d
e

d
I
n
f
o
o
f

k
b
y
o
n
e

J
J
p
m
a
s
k
i
n
g

J
k
A
C
F
/
P
A
C
F
J
C

J
C

J

D
e
-
t
r
e
n
d

[
S
T
P
X
C
F

U
s
e
r
-
d
e
fi
n
e
d

R
-
S
T
P
A
C
F

D
i
r
C
o
n
t
e
n
t
s

L
J

J
C

J
2

J
L

J

F
S
u
b
s
e
q
&
fi

N
f

T
L

r
e
s
a
m
p
l
e
J

E
x
t
S
T
X
C
F
J

K
E
s
t
P
a
r
a
m

J

(
P
l
o
t

(
T

L
S
m
o
o
t
h
i
n
g
j
[

C
o
r
r
e
l
a
t
i
o
n
s
J

L
E
s
t
S
R
M

J

M
i
s
s
i
n
g

E
s
t
S
R
M
&

N

d
a
t
a

J
P
a
r
a
m

J

F
i
l
t
e
r
w
/

N

S
T
A
R
M
A
J
\

[
U
n
d
o

J  
 

Figure 3.7. The first two levels of the menu system in IEAST
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CHAPTER 4

Application to the Spreading of

West Nile Virus in Detroit Metro

Area

4.1 West Nile Virus

The West Nile Virus (WNV) was first detected in a woman with a mild fever in the

West Nile District of Uganda in 1937. Since then WNV has been spreading to North

Africa, Europe, West and Central Asia, and the Middle East. Before reaching the

United States, outbreaks of the virus had occurred in Uganda (1937), Israel (1951-

1957), France (1962), South Africa (1974), Algeria (1994), Romania (1996—1997).

Czech Republic (1997), Congo (1998), and Russia (1999). In the United States.

WNV was first recognized during an outbreak of arboviral encephalitis in New‘York

City in September 1999 [10] (first time found in the Western Hemisphere). As of
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2004, the virus had been found in 46 states with 264 human deaths [18].

Humans are infected by W'NV through the bite of an infected mosquito.

Mosquitoes become infected when they feed on infected birds that have high lev-

els of West Nile viremia. These infected mosquitoes then become a vector of WNV

and spread the virus when they feed on the blood of humans (and horses. etc). The

virus causes fatal neurologic diseases in humans, horses, and a variety of birds. Wild

birds and mosquitoes (Cater species) are considered the primary hosts and vectors,

respectively [34, 53, 54]. Humans and horses are considered incidental hosts and

infected during transmission cycles.

The outbreaks in North America are characterized by steep epidemic curves in

American crow (Corvus branch.;1/7'hyn(:hus) populations overtime, with highly localized

clusters of crow infections in space [20, 43, 52]. Mosquitoes of the genus Calm: transmit

WNV among these birds [34, 53], and crows succumb rapidly to infection within 4—

8 days after exposure [35, 41]. Although other species of birds are susceptible to

viral infection and may participate in viral amplification during an epizootic, corvid

deaths of American crows precede other bird species, consistent with the idea that

crows facilitate transmission [21]. In an outbreak in New York City in 1999, 89% of

laboratory-confirmed WNV-infected birds were American crows [34]. The estimated

death rate due to WNV infection was 68% within a marked crow population during

an epizootic in Illinois in 2002 [58]. Thus, the absolute accumulation of dead crows

(even if infection is not always laboratory-confirmed) is a measure of the spread of

virus infection in the crow population, and has been identified as a sensitive indicator

variable for an on-going epizootic in crows and associated heightened risk of infection
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in humans [20, 52. 56].

Previous studies that predict the spread of WNV rely mainly on dead crow den—

sities [21, 22, 23]. The dynamical behavior of the incidence of dead crows remains a

poorly understood biological system with complex space-time interactions. Current.

understanding of the spreading dynamics of WNV infection based upon incidence

of dead crows has several limitations, including: 1) there is no explicit Spt-lCO-ldlllf‘

analysis or model of it [20]; 2) there are few statistical inferences provided; 3) dead

crow densities are highly dependent 011 various factors other than W'NV loads. e.g.

crow population size; 4) these analyses are purely temporal. There is little research

on methodologies that account for both spatial and temporal dynamics. Recently, an

epidemiological early warning system called Dynamic Contirmous-Area Space-Time

(DYCAST) was implemented by Theophilides et a1 [52]. It is based on cluster analysis

and uses the Knox test to retrieve the space-time interactions of dead crow sightings

as indicators of an intense WNV amplification cycle. This system successfully pre-

dicted co—localization of 5 of 7 human WNV cases within 13 days of appearance of

dead crow clusters in burroughs of New York City in 2001. DYCAST can identify

clusters or areas of high risk for WNV infection, but does not determine the dynamics

of the spread of the disease.

While STARMA modeling may or may not reveal all mechanistic components of

a process, it may be useful for examining the space-time structure of its dynamics. In

particular, STARMA modeling may place spatial-temporal scale constraints 011 epi-

demic infectious diseases. In this study, once either the model type and pa‘ameters

or just the spatial correlation structures are obtained, the model can be used to char-
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acterize the past and possibly even predict the future dynamics of spreading behavior

and, most importantly, to provide information about the factors which govern the

spreading behavior. Thus, we not only can recognize the areas of epidemiologic con-

cerns in human health [28, 59], but also provide details on the space-time transmission

dynamics of 'WNV.

Clusters of crow deaths and clusters of human cases of West Nile viral 11'1eni1'1goen-

cephalitis or West Nile fever tend to co—occur geographically [21, 52, 56]. In addition,

accumulations of crow deaths generally precede human case notifications [22]. Many

public health agencies have adopted dead crow surveillance as the primary tool for

monitoring WNV activity in their jurisdictions.

Despite the confidence in accepting the validity of dead crow data (DCD) as

proximate indicators of human risk of WNV infection, there exists no model of the

space-time behavior of crow deaths and human cases during any single epidemic.

More importantly, there has been no generalizable, explicit statistical correlation of

the epidemic curves of dead crows and human cases simultaneously considered in

space and time. If a positive correlation is found to exist with identifiable temporal

and spatial lags between DCD and human case data, then one could reliably utilize

the correlation coefficients as a predictive tool for human risk of infection in space—

time, given the space-time dynamics of a dead crow epizootic curve. In this study,

I not only attempt to model separately the behavior of crow epizootic and human

epidemic curves during a West Nile virus outbreak using a space-time 21.11toregressive

moving average (STARMA) model, but also to investigate the interaction between

these two processes using space—time cross—correlation analysis and a space—time re—
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gressive (STR) model (Equation 3.16) with the intent of building a generalizable

method for correlating the epidemic of infectious diseases to the indicator processes.

4.2 Description of the Datasets and Diagnoses

The dead crow data (DCD) was collected systen'latically before and during an out-

break of VVe‘tst Nile viral menii1goencephalitis among humans in southeastern h'Iichigan

in the summer of 2002 [11]. Data consisted of public sightings of dead crows logged

onto a website or reported by telephmie call to a toll free number from April to ()c-

tober, 2002. The total crow death distribution (1,817 dead crow sightings) is shown

in Figure 4.1. WNV infection was confirmed in a. sub-sample of crows by immuno-

histocliernical detection of viral protein of necropsied specimens [26]. The estimated

rate of infection in dead crows was 70% (K. Signs and .I. Patterson, unpublished). A

total of 1807 dead corvid sightings were documented statewide. A plot of 1,514 dead

crow sightings (the rectangular area enclosed by the thick line in Figure 4.1) were

successfully classified by latitude and longitude and by date of sighting, spanning 28

weeks. These data were plotted within a rectangular area of 31.6 x 25.8 miles over a

map of the metropolitan region of Detroit, in southeastern Michigan.

When determining an appropriate array of cell for analysis, boundary effect is

an important concern. In IEAST, a mechanism is applied to the boundary cells

when needed, that is, the weighting of boundary cells is normalized to compensate

those cells outside the boundary. According to simulations, boundary effect can

become significant when the array of cells is smaller than 8 x 8. In addition. to avoid



the probability distribution of the divided cells being close to Poisson distribution

(violation to the assumption), configurations of smaller arrays are preferred. Thus,

for purposes of analysis, this area was divided into a. grid of 10 x 10 cells. each cell

of 3.16 x 2.58 miles dimensions. Accordingly, the dataset was of spatial dimensions

10 x 10 and had 28 time periods. Figure 4.2 shows the space—time dynamics of the

data. An average over time of the regulated data is shown in Figure 4.5 in which two

foci and spatial trends can be identified.

Reports of human cases and samples of cerebral spinal fluid or blood serum for

analysis of antibodies were obtained from clinicians and clinical laboratories in Michi-

gan. Reports of patients presenting with viral encephalitis or meningitis. altered

mental status including Guillain-Barre syndrome with atypical features, and acute

febrile illness accompanied by malaise, anorexia. nausea, vomiting, and neurologic

signs were screened for matching with the case definition for West Nile viral menin-

goencephalitis or West Nile fever. Data on address of residence and date of onset of

disease were obtained from the case-patient or attending physician through telephone

interviews. Antibodies to W'NV and other arboviruses in sera from the case-patients

were detected by IgM capture ELISA in either single serum specimens or in paired

acute and convalescent. sera and were classified as presumptive (single specimens with

high titers) or confirmed (four-fold rise in antibody titer from acute to convalescent

specimens). A total of 504 human cases were classified within the Detroit Metro

area. A plot of 387 human cases spanning 13 weeks is chosen for analysis as shown

in Figure 4.3. These data points are scattered in a rectangular area of 36.28 miles

x 34.23 miles. The space-time dynamics are shown in Figure 4.4. Thus. the human
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case data was of spatial dimensions 10 x 10 and had 13 time periods. A11 average

over time of the regulated data is shown in Figure 4.5.

4.3 Assumptions and the Specification of Spatial

Correlation Structure

Considering the real situations, several reasonable assumptions can be made for the

dead crow and human case data in these 21.11alyses:

1. Crows died mainly of WNV.

2. The locations of human cases (or dead crows) reported were the same (or near)

places where human (or crows) got infected.

3. The spatial correlation structures for these data were isotropic and i1'1variant

with time.

There are many ways to define spatial correlation structures for applications.

Most of them are based on the Euclidean distances between cells. For the analyses

in this chapter, the de-trended data is assumed to be isotropic (directionless) or

uniform. A definition used by Pfeifer and Deutsch [48] was used. The two 111at1i<r11s

used for specifying correlation structures, the spatial order matrix (SOM) and the.

spatial relation matrix (SRM), are defined in Equation 4.1 and 4.2, respectively. The

matrix SOM defines the relative positions of spatial orders (or lags) 11p to sixth. For

example, all elements in SOM with number 3 are the third order neighbors of the.
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central cell. The matrix SRM gives relative weights of every cell in each spatial order.

As mentioned in Section 3.1, all weights in a given spatial order should sum up to

unity. The spatial weight matrices IV“), which are six matrices (from spatial order

one to six) with dimension 100 x 100, can be derived from the given SOM and SRM

(as shown in Section 3.1), and are required in all calculations in STARMA modeling.
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The environmental conditions for disease spreading are generally not uniform over

space and time. especially for large scales. For example, population of crows, popu—
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lation of mosquitoes, and habitats for coexisting of crows and mosquitoes definitely

affect the spreading behavior and are clustered over space. Many reasons (such as

still waters for 1'nosquitoes, accessibility of food for crows, etc) result in this non-

uniformity. In this study, the non-uniformity was removed using space-time de-

trending.

To make the space-time series stationary, the spatial and temporal trends were

removed. Many polynomial surfaces for spatial trends were fitted and tested, but

no substantial differences were found for the space-time autocorrelations of the de—

trended data. Even the cut—off positions in space and in time remained constant. The.

only difference was that the STACF/STPACF tended to be lower when the orders of

the spatial and the temporal trends in the polynomials were higher. This is to be ex-

pected, because the high orders removes autoregression. To avoid removing too much

autoregression. the orders of the polynomials for the trend surfaces were selected to

be as small as reasonable. For temporal trends, the averages over space were preferred

for use because there is no appropriate smoothng function (e..g polynomials) that

can be well-fitted to the data (there existed a second high peak in Figure 4.6, which

was probably caused by news announcements of dead crow cases of VVest-Nile virus at.

week 19). If a smooth function was fitted to such data and then used for rile—trending,

it could introduce spurious negative correlations in the de-trended data.

Because there were at least two spatial foci of incidence in the data, a fourth order

polynomial trend surface combined with the temporal trend (average over space)

was ultimately removed from the data. The fourth order polynomial spatial trend

69



Strendtr, y) is the least-square best—fit of Equation 4.3 to the data and is expressed as

4

Strcndcra y) : Z aijj‘jyi-j (43)

where (1,} are the least-square best-fit coefficients. The temporal trend is the average

over two-dimensional space and can be written as

TircndU) 2 £22 2031/”

1’ y

where N is the number of sites, Z(_,,,,),, is the element of Z, at location (any). and

vector Z, is the original space-time series data. In combination, the spatial and

temporal trends were removed according to the equation

ZELMJ : Z(T»y).t — h ' Strend(-rs 3]) ° T‘trendU)

where h. is a constant so that h-S,,.,.,,d(;r., y) ~Tirend(t) best-fit to Z,, Z; is the de-trended

2,. After de-trending, the grand mean was also subtracted.

The spatial trend combining with temporal trends (as shown in Figure 4.6) and

grand mean were removed from the DCD dataset. before analysis and modeling.



4.5 Results for the Analysis and Modeling of the

Dead Crow Dataset

In order to identify an appropriate model type for the DCD, space-time autocorre-

lations were calculated. The STACF and STPACF of the de-trended data. for the

given SOM and SRM (defined in Equation 4.1 and 4.2) are shown in Figure 4.7.

They indicated that the model type was STAR, because the STACF tails-off and

the STPACF cuts-off. Based 011 the temporal and spatial lags where the STPACF

cuts-off, the maximum temporal and spatial orders were determined as three and

four, respectively. Tints, the. candidate of the underlying process of the data was

STAR(1naxT=3, maxS=4).

Based on the model type and orders found, the maximum likelihood estimates

of the parameters and corresponding significance levels can be calculated. and these

estimates are shown in Table 4.1. Substituting the estimates into Equation 2.1, we

have the following STARMA model equation:

2,: .26z,_1 +.04z,_2 —.022,_3

+.36W“)Z,_1 —.18W“)Z,_2 —.11W<1>zH

+.10w<2>z,_, —.07W(2’Z,_2 +.02W<2)Z,_3

—.09W<3>z,_-l —.04W(3)Z,_2 —-.02W<3>z,_3

+.04W<4>zH —.11W<4>z,_2 —.03w<4>z,_3

+E,.
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Table 4.1. The estimates and significance levels of the model 1,)arameters

(STAR(MaxT-——3, MaxS=4)).

Estimates of parameters

Spatial lag

Temporal lag 8:0 8:1 8:2 8:3 8:4

 

 

 

T=1 .26 .36 .10 -.09 .04

T=2 .04 -.18 -.07 —.04 -.11

T=3 -.02 -.11 .02 —.02 —.03
 

Significance levels of parameters

Spatial lag

Temporal lag 8:0 8:1 S22 $23 $24

 

 

 

T=1 m .901 $0 .100 .400

T=2 .040 m .040 .300 £10

T=3 .400 .01 .250 .900 .600
 

Two diagnostic checks were conducted for this analysis: significance test for the

parameters and correlation analysis for the residuals. The significance test results are

shown in Table 4.1. Several parameters at relatively high temporal or spatial lags were

statistically insignificant. However, technically the maximum temporal and spatial

orders from the candidate STAR(maxT=3, maxS=4) should not be reduced, because

highly significant parameters were found at S=4/T=2 (spatial lag 4 and temporal

lag 2) and S=1/T=3 (spatial lag 1 and temporal lag 3). The STACF/STPACF of

residuals show no significant correlation among residuals (Figure 4.8). Therefore, the

candidate model represented the underlying process of the DCD adequately, as it is

well-fitted by the data and it is parsimonious.

In addition to the 10 x 10 cell configuration, the same area was divided into

various arrays of cells up to 20 x 20, for analyses in different configurations. Based

on the same spatial correlation structure (i.e. same SOM and SRM) and de-trending



methods, these modeling results were consistent. The maximum spatial order and the

parameters of the model differed when different arrays of cells were used to model the

same data as is expected, because smaller cell size is associated with higher 111aximu1n

spatial order needed for the model. However, the physical meaning of the modeling

results does not change (as shown in Table 4.2 and 4.3).

Three analyses using various arrays of cells: 10 x 10, 16 x 16, and 20 x 20 were

performed. Only parameters that met the 0.01 significance level were entered into

the final models. Based on the significance level, the maximum spatial orders for

these three cases can be determined as fourth, sixth, and seventh, respectively. The

maximum spatial order can be transformed into distance in the following way. For

configuration 10 x 10, the cell size is 3.16 x 2.58 miles. According to the spatial lag

definition in Equation 4.1, the spatial lag four is two cells away in X-direction and one

cell away in Y-direction from the central cell (lag zero). Thus, the physical distance

in the configuration 10 x 10 for spatial lag four can be calculated as the following.

 

physical distance = \/(2 - 3.16)2 + (1 - 2.58)2 = 6.83 miles.

After transformations, the equivalent physical distances (measured between cell cen-

ters) for these maximum spatial orders were found to be quite uniform (6.83. 6.76.

and 6.45 miles, respectively). This shows that the spatially correlated areas from

these modeling results are consistently about 6.4 miles in radius, regardless of the cell

size used.

Furthm'more, additional analyses were conducted over a wide range of still other
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Table 4.2. The maximum spatial lags and the corresponding distances between cell

midpoints for that lag, for three models using different cell numbers (larger numbers,

smaller areas).

 

Estimated Equivalent

Cell numbers max S order real distances
 

10x10 4 6.83 miles

16x16 6 6.76 miles

20x20 7 6.45 miles
 

configurations, including: various datasets of sub-sampling of various parts of the

entire area; and various other cell configurations and SOMs and SRMs. For eacl’l

of these, the refined iterative modeling procedure and the de-trending method were

used. In all cases (results not shown), the model that was converged to was consistent

with the model reported.

The results show that the incidence of reported dead crows per week fitted a.

STAR model. A high degree of space-time autoregression was found, and no evidence

of moving average influences. The latter result indicates that although there was both

stochasticity and statistical noise in the observed values (the estimated variance is

1.451), these sources of variation were not directly or immediately shared spatially

or temporally among cells. Rather, they were shared only through the autoregressive

structure attributable to spatial spreading of WNV. Diagnostically, the envelope of

the STPACF cuts to zero after temporal lag three, whereas the STACF tails off with

increasing time lag (Figure 4.7). The robustness of this diagnostic check, especially

so since the process is STAR, was also indicated in the extensive investigations us-

ing computer simulations. Moreover, the residuals are those expected from random

(white) noise. There do not appear to be any particular reasons to expect STMA

74



spatially-sl'iared stochastic inputs or shared random errors in the DCD.

The results also show that the process underlying the DCD has low spatial and

temporal orders. Moreover, the autoregressive coefficients show a pattern that gen-

erally fits those expected for most biological processes. For example, consider the

10 x 10 array of cells and the spatial order matrix (SOM) of Equation 4.1 and the

spatial relation matrix (SRM) of Equation 4.2. As could be expected, the autore-

gressive parameters are positive and large for close spatial proximities, i.e. small

distances, and drop in value as distance increases (Table 4.1). Exceptions involving

fairly large negative parameters for short distances at time lags two and three are

discussed below. The results also showed that the temporal order of the process is

nearly h’larkovian, since large and significant parameters are observed only for time

lags of one and two weeks. It has been argued that the Markovian property should

be common in biological processes [24]. In addition, the prominence of one- and

two-week lagged effects is consistent with the short interval between infection and

death [35], and with empirical evidence of intense localized epizootics [20, 52].

Using the same SOM and SRM, the best fitted model is STAR(maxT=3,

maxS=4), and completely consistent results were found using various other arrays

of cells. The maximum spatial lags consistently gave maximum distances of ca. 6.4

miles, in terms of distances between cell-centers. I also examined models with various

other SOMs and SRMs, and again obtained completely consistent results. However.

as noted in the results and further explained below, there was evidence that the. mod—

els could be reduced further in size; the model might be reduced to STAR(maxT=2.

maxS=2), consistent with the array of positive autoregressive effects.
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Table 4.3. The maximum spatial lags for positive autoregressive effects and the

corresponding distances between cell midpoints for that lag, for three models using

different cell numbers.

 

Estimated Equivalent

Cell numbers max S order real distances
 

10x10 2 4.07 miles

16x16 3 3.96 miles

20x20 4 3.41 miles
 

Focusing on positive autoregressive effects, it appears that the DCD operates

over rather smaller distances, with maximum distances of direct effects of locations

on one another of ca. four miles or less. However, the distances over which the

virus load is primarily moving (spreading) may still be much smaller. There is a

remarkable reduction of autoregressive effects for spatial lag 2 (0.10) compared to

spatial lag 1 (0.36) for the 10 x 10 array of cells and SOM of Equation 4.1 and SRM

of Equation 4.2. The main difference between the two is the length of the boundaries

between cells with various spatial lags. This strongly suggests that the length of

boundary largely determines the rates of spread of WNV among cells. If that is the

case, it would indicate that \NNV directly spreads mostly over very short distances

across cell borders, less than a mile or possibly even a few hundred meters.

Crows can fly long distances, so the scale over which the DCD show large positive

autoregressive effects may seem surprisingly small. However, the mosquito vector is

active primarily during hours when the crows are roosting, and crows are territorial

and show high fidelity to roosting sites [57]. Thus, crows may largely be being infected

and transmitting the virus at their roosting sites, and thus apparently not spatially

spreading the disease, although they would amplify the viral load locally. In addition.
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the distances of flights between where dead crews are found and their roosting sites

are superimposed on this process [58]. Although such movements do not spread the

disease, they could influence the short term autoregression of DCD. While crows are

a very good indicator of viral loads, they may not be largely responsible for spreading

the disease spatially. Other animals or even the mosquito vector itself may be more

responsible for the local spatial spread per se.

Two points should be reinforced. First, since crows are one of the most ii‘ifected

animals, they could be very important in amplifying the disease locally (say within a

cell). Second, the results do not mean that the crows do not on occasion spread WNV

over long distances, and perhaps even start a new local epidemic. It is unlikely that

such low frequency events would be detected in the analyses. Nevertheless, the results

do suggest that there is high probability that local epidemics could be contained, for

example, through a concentrated eradication effort, by spraying mosquito repellant

at mosquito breeding ponds, etc.

One specific feature of the autoregressive structure that deserves special exami-

nation is the rather large negative autoregressive parameters at time lag 2 for some.

spatial lags. This was observed in all models, and appears to be a real effect. It may

be explained by the depletion of the. crow population. Depletion of the crow popula-

tion was extreme: during the course of the WNV season in 2002, up to 70 % of crews

in Detroit died from 'WNV (K. Signs and J. Patterson, unpublished). Hence, for

example, if a cell had unusually high DCD for a given time period (week), especially

during the height of the WNV season, a significant portion of the crow population

in that cell would have died, leaving fewer to be infected and die one to two weeks
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later. Thus, the results suggest that there are actually two DCD autoregressive pro-

cesses. The first is dependent on the local and nearby WNV loads, and the second is

a weaker echo effect caused by depletion. The mixture of the two may make temporal

lag one DCD autoregressive parameters all positive, but not all of the temporal lag

two parameters.

4.6 Results for the Analysis and Modeling of the

Human Case Dataset

The analyzing procedure followed for human case data was similar to that for DCD.

The same spatial correlation structure (i.e. same SOM and SRM as in Equation 4.1

and 4.2) was used for spatial dimension 10 x 10, but a fourth order polynomial

trend surface combined with the temporal trend (weekly average over space.) (as

shown in Figure 4.9) and the grand mean were removed from the human case data

before STARMA modeling. The autocorrelations for the de-trended human case data.

are shown in Figure 4.10. It is not surprising that the autocorrelations fluctuate

considerably since the number of cases of human case data is much smaller than

that of DCD. However, the behavior of STACF/STPACF still revealed some clues

about model type. The curves in the STACF gradually decay to zero as temporal lag

increases. On the contrary, the curves in the STPACF drop quickly and cross axis at a

short temporal lag, and then fluctuate and gradually diminish at higher temporal lags.

This suggests that the pure STAR model is a good candidate for the de-trended data.
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Regarding the maximum orders of the candidate model, we can start with by using

six as the maximum for both spatial and temporal lags, because the STACF showed

that there’s no significant correlation for spatial and temporal lags greater than six.

Although a STAR model with maximum spatial and temporal order six may be too

complex for the data, we start from the candidate model STAR(l\'IaxT=6,l\IIaxS=6)

and then iteratively refine the model to achieve a parsimonious one.

Given the candidate model STAR(MaxT=6,l\‘IaxS—-—6), the model parameter esti-

mates and the significance level for each parameter can be found in the stages of esti-

mation and diagnostic checking, respectively (Table 4.4). As in the analysis of DCD,

if significance level is higher than 0.01, the corresponding parameter is classified as

insignificant and then is removed from the candidate model. Once all parameters for

a temporal lag (or a spatial lag) are removed, the maximum temporal or spatial order

may be reduced. In the significance analysis listed in Table 4.4, all significance levels

less than equal to 0.01 are underlined. The results show that the maximum temporal

order four and spatial order six are sufficient for these significant parameters. Thus,

the new candidate model is a reduced STAR(MaxT=4,MaxS=6).

Next, based on the new candidate model, the new parameter estimates and

corresponding significance levels are calculated as in Table 4.5. Note that

the values of retained parameters are very similar to those estimated using

STAR(l\-laxT=6,l\/IaxS=6). Based on significance tests, it is not possible to further

reduce the maximum orders because the parameter with temporal lag four and spatial

lag six is significant (significance level S 0.01). Substituting the parameter estimates

into the model equation for STAR(MaxT=4,MaxS=6), a mathematical equation for
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Table 4.4. Initial estimates and significance levels of the model parameters

(STAR(MaxT=6, MaxS=6)) for the human dataset.

Estimates of parameters

Spatial lag

Temporal lag 8:0 8:1 8:2 8:3 S=4 8:5 8:6

T=1 .26 .06 —.10 —.29 —.05 -.30 -.06

.12 .27 .13 -.12 -.11 -.22 -.11

.07 .10 —.15 .05 -.00 .06 -.01

.04 —.17 -.07 -.02 .16 .25 .11

-.01 -.10 -.04 .10 -.06 .11 .06

-.04 .08 .09 .03 -.03 -.19 ~09

 

 

 

H
a
w
k
-
l
a

G
e
n
a
—
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o
w

 

Significance levels of parameters

Spatial lag

Temporal lag 820 8:1 822 8:3 824 8:5 8:6

T=1 £01 .700 .040 w .500 .100 .150

T 2 m .100 .040 .150 .300 .020 .020

T 3 .900 .400 .040 .150 .900 .400 .900

T24 .900 ,0_1_Q .900 .900 .020 010 ._0_m

T 5

T 6

 

 

 

.500 .300 .900 .080 .500 .300 .150

.900 .250 .150 .900 .600 .040 .040
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Table 4.5. Final estimates and significance levels of the model parameters

(STAR(MaxT=4, MaxS=6)) for the human dataset.

Estimates of parameters

Spatial lag

Temporal lag 8:0 8:1 8:2 8:3 S=4 S=5 S=6

 

 

 

T=1 .26 .06 -.11 -.30 -.07 -.30 -.06

T=2 .10 .27 .12 -.11 —.09 -.22 —.11

T=3 .05 .07 -.15 .06 .01 .06 -.01

T=4 .03 -.14 -.07 .03 .16 .21 .10
 

Significance levels of parameters

Spatial lag

Temporal lag 8:0 8:1 8:2 8:3 S=4 S=5 S=6

 

 

 

T=1 £01 .700 .040 m1 .400 M . 150

T=2 .020 . 100 .060 . 150 .400 .040 .020

T=3 .900 .900 .040 . 150 .700 .400 .900

T=4 .900 .040 .800 .400 .020 .020 ill—0
 

representing the underlying process of the human epidemics can be obtained as in

Equation 4.5.

The autocorrelation analysis for the residuals shows no large correlations among

spatial lags zero to six and temporal lags one to four. However, there do exist some

correlations in higher temporal and spatial lags. The correlations in higher spatial

and temporal orders (which are not included in the model) are not as significant

as that in the lower orders (Table 4.5). Therefore, this model (Equation 4.5) can

be accepted as the final model for representing the process of human epidemics. In

summary, the human epidemic in Detroit Metro area is highly autocorrelated within

spatial lag six (equivalent to 12.57-12.86 miles away in physical distance) and four

weeks time period.
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There are several points needed to be noted. The area defined for analysis for

DCD is different from that for human case data. Nonetheless, this would not affect

the final results because the spatial correlation structure used for both datasets is

directionless or isotropic. The highly infective area (up to spatial lag 6, or about 12

miles) for human is larger than that for dead crows (up to spatial lag 4, or about 6

miles). This infers that the disease spreading of human cases is, spatially, faster than

that of crew cases. It can be explained by the mobility and active area of human is

much larger than that of crows. Because of this, the observation error in human case

dataset is also larger than that in DCD.

From the parameter estimates, the significant parameters for DCD tend to be

gathered around lower spatial orders, and tend to be dispersed in a wide area for

human case data. In short spatial lags (one or larger) and temporal lags(two or

larger), especially for spatial lag one at temporal two or higher, the parameters for
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human case data is positive and significantly above zero. Contrarily, the parameters

for DCD are negative and significantly below zero. Because human cases should not

have evident depletion effect as compared to crow cases, this further justifies that the

depletion effect among crow is the major reason causing these negative parameters

around low spatial orders for DCD.

4.7 Summary of Analyses for the Dead Crow

Dataset and the Human Case Dataset

As needed for the first step of the STARMA analyses, the space-time autocorrelation

function (STACF) and the space-time partial autocorrelation function (STPACF)

are shown in Figure 4.7 for the DCD and in Figure 4.10 for the human case data.

For both datasets, the STACF values are very large at short spatial lags (distances)

and temporal lags, and they tail-off as either temporal or spatial lag increases. The

STPACFs of both become and stay near-zero (cut-off) at small spatial and temporal

lags. These fundamei‘ital aspects of the both dataset are diagnostic in slmwing that

both DCD and human cases behaved as a STAR process, and possessed no shared

stochastic inputs. In other words, each space—time series behaved as a purely autore-

gressive process with added white noise (spatially and temporally random stochastic

inputs). Moreover, both datasets have small spatial and temporal orders, the maxi—

mum possible values of which are determined by the lags at which the STPACF cuts

to zero.
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For the DCD, based on inspection of the STPACF, the maximum spatial lag is four

and the maximum temporal lag is three. Estimates of the space-time autoregression

coefficients for various spatial and temporal lags for the STAR(maxT=3, maxS=4)

structure are shown in Table 4.1. Large and highly significant positive coefficients

are only observed for (T21, S20), (T21, S21), (T22, S20). This indicates that

most of the spread operates between nearest neighbor cells, and over a two week time

period. It is also noteworthy that the coefficient value is much larger for rooks move

(spatial lag S 21) than for bishops move (S22) nearest neighboring cells. Similarly,

the STPACF for the human case data indicate that the maximum spatial lag for

positive autoregression is six and the maximum temporal lag is four. Estimates of

the space-time autoregression coefficients for various spatial and temporal lags for the

STAR(maxT24, maxS26) model are shown in Table 4.5.

Diagnostic checking for model adequacy is conducted not only by the significance

test of parameters, but also by inspection of the STACF/STPACF of the residuals.

The graphs of the STACF/STPACF of the residuals for the de-trended DCD, as

shown in Figure 4.8 are flat throughout, closely resembling that of the random white

noise. This is consistent with the fitted STAR model having captured all of the

autoregression in the de-trended data [16]. The same was observed in the STACF

and STPACF of the residuals of the fitted model for the human case data.

As noted before, I further examined both datasets with other model construc-

tions. I varied cell sizes and used sub-areas of the entire dataset, and in all cases,

for both datasets, the best fitted models were purely STAR models, and these had

fully consistent distances and time scales. I also used different polynomials for spatial
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de-trending. Again, the results were fully consistent, except that very large-order

polynomials generally tended show reductions in autoregressive coefficients. This is

expected, since over-de-trending generally removes some autoregression or autocorre-

lation [8].

4.8 Results for the Cross Analysis Between Hu-

man Case and Dead Crow Datasets

Dead crews are sentinels of WNV viral activity generally and locally, and there

is a burgeoning effort to use dead crow reports as a local signal of an outbreak

(Theophilides et a1 [52] with their Knox statistic and Watson et a1 [56] with their

geostatistical analysis). However, there were no studies that considered spatial and

temporal interactions simultaneously, nor that presented a cross-correlation analysis

between dead crow reports and human cases. In addition, there have been no studies

that incorporated specific spatial units and project the spread of WNV. Therefore, a

few question arose: how predictive in space units and time units are DCD for human

cases? What is the predictive power? If the two processes (dead crow epizootic curve

and human case epidemic curve) are demonstrably space-time regressive, then a model

can be developed in which spatial and temporal lags with specific model parameters

are provided, showing the ” strength” of the relationships at defined space-time units.

In this study, the cross correlations between the DCD and the human case dataset.

are investigated using the method mentioned in Section 3.6. The results provide a.
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foundation for creating a space-time regression in which dead crows data are used as

an indicator variable to derive the space-time dynamics of human epidemics.

A plot of 1,753 dead crow sightings was successfully classified by latitude and

longitude and by date of sighting, spanning 28 weeks. The plot of 385 human cases

of the same rectangular area covered as in previous dead crow sightings was classified

and spanned 14 weeks. These data points and the area for the cross correlation

analysis are shown in Figure 4.12 and Figure 4.13. These data were plotted within a

nearly square area of 39.17 miles x 39.23 miles over a map of the 111etropolitan region

of Detroit, iV'Iichigan. This area was again divided into a grid of 10 x 10 cells, each

cell with 3.92 miles x 3.92 miles dimensions.

Because the human case data spanned from Julian week 30 to week 43 and DCD

from week 16 to week 43, zeros was applied to human case data. for the cells in time

periods in which there were no cases reported. Thus, in space and time the DCD

and human case data cover the same time period and physical area. Accordingly, the

data set was of spatial dimensions 10 x 10 and had 28 time periods.

We also assumed that the spatial correlation structure of the data was isotropic

and invariant with time. A higher order (up to ten) of spatial correlation structure is

used for the cross analysis (the SOM and SRM are shown in Equation 4.6 and 4.7).

The method in section 3.6 was used for calculating cross correlations, and no spatial

and temporal de—trending was used.
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E 4.7)

As shown in the analysis of results for the DCD and the human cases, the two space-

time process both behave as a STAR process and possessed no shared stochastic or

statistical noise inputs. The space-time cross-correlations between the DCD and the
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human case data are shown in Figure 4.14. The spatial lags span from 0 to 10, and the

temporal lags from -12 to +12. The temporal lags in the cross correlation represent

the number of weeks in which human cases reported lagged after dead crow cases

reported. The cross correlation coefficients were very large (as high as 0.7). Across all

spatial lags the peaks were such that DCD preceded the human cases by three weeks.

and these cross correlation curves are perfectly aligned. Although this result does not

provide a proof of causation flow between dead crows and human cases, the result do

support the use of dead crow data as a space-time indicator variable for forecasting

human epidemics. Moreover, the correlations drop smoothly and symmetrically for

temporal lags deviating from the three week time lag and spatial lags increasing from

0 to 10. Generally the correlations also decrease smoothly with spatial distance.

An exception is the slightly greater values for spatial lag one than spatial lag zero.

This may infer that crows died in adjacent cells is even more correlated with the

incidence of human cases than the crows that died in the same cell. However. this

outcome may simply result from sampling effects. At least, we know that the cross

correlations between human cases and dead crows for spatial lag one are as large. as

those for spatial zero. When temporal lag decreases to -8 or below, the correlations

between these two datasets are negligible (less than 0.1). This result indi rates that

the crow epidemic that occurred eight weeks earlier no longer correlates with current

human epidemic in space and time. When spatial lag increases up to 10 (equivalent

to 21.1 miles), the cross correlations are reduced to as low as 0.2.

As mentioned in section 3.6, the autocorrelation of the DCD can spuriously con-

tribute to cross correlations. To eliminate this effect, the cross correlation is conducted
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with pre—whitening. Both the DCD and human case data are ‘filtered' with the esti-

mated crow model equation (Equation 4.4), and then calculate the cross correlation

between the two filtered space—time series as usual. The result is shown in Figure 4.15.

Generally, the cross correlation is lower, but there is no significant difference between

Figure 4.14 and Figure 4.15 in terms of pattern. This provides compelling evidence

that the high cross correlation between the human and the dead crow data is causal

and not spurious.

4.9 Discussion

The STARMA framework of statistical space-time modeling appears to hold consid—

erable promise for characterizing the space—time autoregressive structure and corre-

lations for many biological processes, including many variables associated with the

spread of zoonotic infectious diseases. The application of STARMA to dead crow

data (DCD) as indicators of the environmental load of the WNV in metropolitan

Detroit showed that DCD follows a STAR process having low spatial and temporal

orders. This outcome is consistent over various definitions of spatial lag structures.

The results indicate that the incidence of dead crow does not spread spatially very

far very fast. Indeed, a focus on positive autoregressive effects and the contrast be-

tween rooks—move and bishops-move nearest-neighboring cells suggests that most of

the spread is determined by the length of shared boundaries. Biological considerations

suggest that although crows are a likely cause of local amplification of WNV. they

are not spatially spreading the virus very far very fast. It is possible that other hosts
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or even the mosquito vector itself may be more responsible for the spatial spread. In

addition, there appear to be significant. effects of depletion of the crow population on

the space-time dead crow incidence.

The autocorrelation results for modeling the human case data appear more er-

ratic than that for DCD (as shown in the STACF/STPACF for human case data

in Figure 4.10), however it follows the same pattern as the DCD. It should also be

kept in mind that the number of human cases is much smaller than that for DCD.

Such paucity in the number of samples can introduce statistical noise during analysis.

In space-time modeling, the condition of abundant samples in time and in space is

critical.

It is important to discuss the de-trending over time and space. The fact that we

de-trended temporally over the season means that the autoregressive parameters are

not rates of spread, but rather relative rates given the overall increase or decrease

in WNV. The former might be recovered by adding multipliers to the autoregressive

(the variance of the errors term 5:, might also change over time) striwtures, depending

on the exact week. More interesting is the rather striking spatial non-stationarity.

Since these have been removed by polynomial regression, the analyses reveals nothing

about why they occurred.

Finally, in the cross analysis, the two datasets revealed very high correlation which

reaches the maximum values for each spatial lag at temporal lag -3. That is, the num-

ber of crows dying in neighboring cells three weeks earlier has the highest ('rorrelation

with the number of human infections. This result supports the assumption in the epi—

demiological literature that crow epidemic is leading human epidemic by three weeks
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and it strengthens the basis for using dead crow data as an indicator for forecasting

human epidemics.
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Figure 4.1. Dead crows reported in the Detroit Metro area. The rectangular area

enclosed by thick line is the area retained after truncation.
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Figure 4.2. Dead crow dataset in the Detroit Metro area with 10 x 10 cells in space

and spanning 28 weeks in time.
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Figure 4.3. Human cases reported in the Detroit Metro area. The rectangular area

enclosed by thick line is the area retained after truncation.
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Figure 4.4. Human cases in the Detroit Metro area with 10x10 cells in space and

spanning 13 weeks in time.



 
Figure 4.5. The spatial trends (averaging over time) of dead crow (upper) and human

case data. The areas cover by these two datasets are not aligned geographically.
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Figure 4.6. The spatial and temporal trends removed from the dead crow dataset.
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Figure 4.7. Space-time autocorrelation analysis of the de-trended (lead crow dataset.
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Residuals' Space-Time Autocorrelation (R-STACF)
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Figure 4.8. Space-time autocorrelation analysis for the modeling residuals of dead

crow dataset
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Figure 4.9. The spatial and temporal trends removed from the human case dataset.
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Figure 4.10. Space-time autocorrelation analysis for the de—trended human case

dataset.
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Figure 4.11. Space—time autocorrelation analysis for the modeling residuals of human

case dataset
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Figure 4.12. Dead crows reported and area for cross analysis.
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Figure 4.13. Human cases reported and area for cross analysis.
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Figure 4.14. Space-time cross correlation between the human case data and the dead

crow data.

105



Rho(l,k=0,s:T-lag)

 

 

E
x
t
e
n
d
e
d
S
p
a
c
e
-
T
i
m
e
C
r
o
s
s
C
o
r
r
e
l
a
t
i
o
n
(
E
x
t
S
T
X
C
F
)

    

1

1

S
p
a
t
i
a
l
l
a
g
0
_
.
_

S
p
a
t
i
a
l
l
a
g

1
-
—
x
.
-
-

S
p
a
t
i
a
l
l
a
g
2

.
-
-
-
.
*

S
p
a
t
i
a
l
l
a
g
3

------
E
l

------

S
p
a
t
i
a
l
l
a
g
4

-
.
-
.
.
_
.
.

S
p
a
t
i
a
l
l
a
g
5
“
9
.
-

S
p
a
t
i
a
l
l
a
g
s

-
.
-
.
.
.
.
.

.

S
p
a
t
i
a
l
l
a
g
7

"
-
A
-
-
-

1

S
p
a
t
i
a
l
l
a
g
8

-
-
A
-
-
-
.

S
p
a
t
i
a
l
l
a
g
9
+

 
 

S
p
a
t
i
a
l
l
a
g
1
0

-
.
—
-
.
-
_
-

i
i

i
I

i

-
1
0

-
5

0
5

1
0

T
e
m
p
o
r
a
l

l
a
g

Figure 4.15. Space-time cross correlation between the filtered human case data and

the filtered dead crow data.
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CHAPTER 5

Conclusion

In this thesis, the application has demonstrated the effectiveness of STARMA mod—

eling in analyzing and modeling space-time data. specifically in disease spreading.

At the same time, it also provides a demonstration of using the refined modeling

framework and related statistical tools/algorithms. If the programming language in

IEAST is used. we can even automate the whole process of analysis and modeling.

and increase efficiency and flexibility of computations.

However. there are some points or limitations to be kept in mind when modeling

space-time data. First, the number of data points in space and time need to be,

’sufficiently’ large, or the random distribution (point pattern processes) of the given

data can be quite different than the basic assumption of normal distribution in our

STARMA model. In this research. several transformation methods (transforming to

near normal distribution) have been applied to the DCD and human data to try to

reduce the influence of the potential non-normality. Incidentally, after comparing the

analysis results of transformed and non-transformed data, any differences are subtle.
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This may result from the nature of autocorrelations, that is, the relative values or

positions ( in time or in space) are more important than the absolute values. Second,

the STARMA model assumes that the value of the space—time variable for a given time

and location is ’linearly’ correlated with its past values in time and in neighboring

locations. Although in reality there is no purely linear process, most of them are.

either close to or able to be transformed into linear process. If we know some process

is highly non-linear, some methods have to be used to transform it into a linear

one, or STARMA models are not appropriate for modeling such processes. Third. as

mentioned in the basic assumptions, the correlation structure (in space and in time)

of the. process underlying the given data should be time—invariant. In fact, no model

can represent a process with constantly changing characteristics. Fourth, as implied

in the context, STARMA modeling using IEAST does not allow missing observations.

For cells without samples or observations, its value simply is regarded as zero (e.g.

no cases for the WNV modeling). If missing observations is an important issue. the

dataset needs to be interpolated or extrapolated in advance with some other temporal

or spatial methods, such as Krigging, smoothing, etc.

For future research, there are two directions for follow-up. First, anisotropic

(directional) correlation structure can be an option while modeling. In my research,

the spatial correlation structure (or weight matrices) was assumed and assigned to

be uniform or directionless. Not every natural process is isotropic. It is especially

interesting that an unknown spatial correlation structure can be estimated for a given

space-time data. For example, with some epidemics, there i'nay exist a significant

tendency in some specific direction. Once the spatial correlation structure is retrieved
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from the given data. it can be very useful in forecasting the spatial spreading tendency.

In IEAST, there is a functionality for estimating spatial correlation structure based on

a given dataset. However, for most cases, the number of parameters to be estimated

for a correlation structure is too large and the computation needed intensive, involving

too much computation to be applied to real data to get useful results. The work of

developing algorithms or statistical tools to simplify this calculation is necessary.

However, in general the model for forecasting human epidemic from dead crow data

is very useful for prediction and forecast.
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