FACESKETCHID:ASYSTEMFORFACIALSKETCHTOMUGSHOTMATCHING by ScottKlum ATHESIS Submitted toMichiganStateUniversity inpartialentoftherequirements forthedegreeof ComputerScience|MasterofScience 2014 ABSTRACT FACESKETCHID:ASYSTEMFORFACIALSKETCHTOMUGSHOTMATCHING by ScottKlum Facialcompositesarewidelyusedbylawenforcementagenciestoassistintheidencation andapprehensionofsuspectsinvolvedincriminalactivities.Thesecomposites,generated fromwitnessdescriptions,arepostedinpublicplacesandinthemediawiththehopethat someviewerswillprovidetipsabouttheidentityofthesuspect.Thislegacymethodof identifyingsuspectsisslow,tedious,andmaynotevenleadtothetimelyapprehensionof thesuspect.Hence,thereisaneedforamethodthatcanautomaticallyandientlymatch facialcompositestolargepolicemugshotdatabases.Asaresultofthisrequirement,facial compositerecognitionisanimportanttopicforbiometricsresearchers.Whilesubstantial progresshasbeenmadeinnon-forensicfacialcomposite(orviewedcomposite)recognition overthepastdecade,verylittleworkhasbeendoneusingoperationalcompositesrelevantto lawenforcementagencies.Furthermore,toourknowledge,nofacialcompositetomugshot matchingsystemhasbeendocumentedthatisreadilydeployable.Thecontributionsofthis thesisinclude:(i)anexplorationofcompositerecognitionusecasesinvolvingmultipleforms offacialcomposites,(ii)theFaceSketchIDSystem,ascalableandoperationallydeployable softwaresystemthatachievesstate-of-the-artmatchingaccuracyonfacialcompositesusing twocomplementaryalgorithms(holisticandcomponent-based),and(iii)astudyofthe oftrainingdataonalgorithmperformance.Experimentalresultsarepresentedusingalarge mugshotgallerythatisrepresentativeofalawenforcementagency'smugshotdatabase. Allresultsarecomparedagainstthreestate-of-the-art(COTS)face recognitionsystems. Copyrightby SCOTTJEFFREYKLUM 2014 Formyfamily,whosesupportisthereasonthesepagesare iv ACKNOWLEDGEMENTS Iwouldliketoacknowledgeandthankmyadvisor,Dr.AnilJain.I'vefeltanover- whelmingsenseofpersonalgrowthwhilewritingthisthesis,nearlyallofwhichIowetoDr. Jain'sexceptionalguidance.Iamforeverindebtedtohimforputtingupwithmeduringthe timesofmygraduatedegree,andhelpingmethoroughlyenjoythegoodtimes.Ican tlysaythatDr.Jainhaspositivelynotonlymyintellectualdevelopment, butmylifeasawhole,asmuchasanyonethatIhaveknown. Mythesiscommittee,whichincludesDr.XiaomingLiuandDr.ArunRossinadditionto Dr.Jain,havebeentremendouslyhelpfulasI'veworkedtowardsmyMaster's.Thegreatest impactbothDr.LiuandDr.Rosshavehadonmeissimplythroughexample;bothare modelcomputerscientistsandresearchers.IfIcanholdmyselftothestandardsthatthey havesetforthemselves,Iwillundoubtedlybesuccessful. Next,Iwouldliketoacknowledgemyfriendandpersonalmentor,Dr.BrendanKlare. Brendan'ssteadfastpositivityandenthusiasmhavebeenanindescribableboontowhatI've achievedwhileworkingtowardsmyMaster's.EngineerslikeBrendan,whoarenotonly incrediblyknowledgeableandcreativebutalsowell-spokenandpersonable,areoneofthe biggestreasonsIlovethedisciplineI'vechosen. I'dalsoliketothankmyfamilyfortheirunwaveringsupport.Iamluckytohavea sister,Adrienne,whohasbeenaconstantsourceofencouragement(andplentyoflaughs) throughoutmytimeincollege.Mymotherandfather,Cindyandarethegreatest parentsayoungmancouldaskfor.Myfatherhasshownhowheisduringthe courseofmyMaster's,anyrequestwithouttheslightesthesitation.Mymother, asshealwayshasbeen,wasasourceofcalmduringmyMaster'swork;knowingIhaveher unconditionallovehasbeenindescribablyreassuring.Ihaveawonderfulextendedfamily whohasalsobeenasourceofjoythesepasttwoyears.MyGrandmaEllieandGrandpaBill v meritspecialrecognitionas,withouttheirsupport,itwouldhavebeenmuchmore toattendcollege. Ihaveworkedwithaspecialgroupofpeoplewhohavecontributedinsomewayto myMaster's,andundoubtedly,I'llmissacknowledgingsomeoneinthefollowinglist:Josh Klontz,CharlesOtto,SerhatBucak,SoweonYoon,SunpreetArora,HuHan,LaceyBest- Rowden,RadhaChitta,ScottMcCallumandJakeRoberto.JoshandCharlesdeservea specialmention,asbothhavebeenincrediblefriendsandcolleaguesandhavehelpedme becomeabettercomputerscientist.Sunpreethasalsobeenasoundingboardforme,not tomentionagoodfriend.Myroommates,AkosNagyandNickSkhavebecomelifelong friendsandIamthankfultohavemetthemduringmyMaster's. Finally,IwanttothankmybestfriendKristinHouck.TheEnglishlanguagelacksthe descriptivepowertodetailwhatKristinhasmeantandmeanstome;tryingtodescribeit wouldonlycheapenthings.Iwilljustsay: IloveyouKristin.Thankyouforeverything. vi TABLEOFCONTENTS LISTOFTABLES..................................viii LISTOFFIGURES.................................ix CHAPTER1INTRODUCTION.........................1 1.1Background....................................1 1.2Contributions...................................5 CHAPTER2RELATEDWORK.........................6 CHAPTER3CONSTRUCTINGAFACIALCOMPOSITE.........9 3.1Hand-DrawnComposites.............................9 3.2Software-GeneratedComposites.........................10 3.3SurveillanceComposites.............................11 3.4ViewedComposites................................12 CHAPTER4THEFACESKETCHIDSYSTEM................14 4.1SystemSp...............................14 4.2FacialCompositetoMugshotMatchingAlgorithms..............15 4.2.1HolisticAlgorithm............................16 4.2.2Component-BasedAlgorithm......................18 CHAPTER5EXPERIMENTALPROTOCOL.................21 5.1Hand-DrawnComposites.............................22 5.2Software-GeneratedComposites.........................24 5.3SurveillanceComposites.............................24 5.4ViewedSoftware-GeneratedComposites.....................25 CHAPTER6EXPERIMENTALRESULTS..................26 6.1Hand-DrawnComposites.............................26 6.2Software-GeneratedComposites.........................32 6.3SurveillanceComposites.............................37 6.4ViewedSoftware-GeneratedComposites.....................39 CHAPTER7SUMMARYANDFUTUREWORK..............41 BIBLIOGRAPHY..................................43 vii LISTOFTABLES Table2.1Priorworkonfacialcompositetophotographmatching...........7 Table5.1Asummaryofdatabasesusedinthisstudy..................21 Table5.2Demographicdistributionofthe100,000mugshotsusedtoextendthe gallery......................................22 Table6.1Trueacceptrates(TAR)atfalseacceptrates(FAR)of0.1%and1% fortheFaceSketchIDSystemandthreetCOTSmatchersafter demographicring.ScoreslistedfortheFaceSketchIDSystem usingthetrainingsetswhichprovidethehighestretrievalratesforboth algorithmsandfusingthematchscores.Standarddeviationsofthe5-fold cross-validationarereportedwhentestingonthePRIP-HDCdatabase..35 Table6.2Retrievalranksfor(surveillancecomposite,mugshot)obtainedfromthe FaceSketchIDSystemand(surveillanceimage,mugshot)obtainedfrom thethreeCOTSmatchers.RanksmarkedasFTEindicatetheCOTS matcherfailedtoenrollthequerysurveillancemugshot.Allretrieval ranksagalleryof100,000subjectsafterdemographic...38 viii LISTOFFIGURES Figure1.1Examplesoffacialcompositesthatwereusedincasesinwhichthe suspectwassuccessfullyapprehended.Examplesofhand-drawncom- positesandtheirmugshotmatesareshownforDavidBerkowitz(Son ofSam)(a)[1],TimothyMcVeigh(theOklahomaCitybomber)(b) [2],andTedKaczynski(theUnabomber)(c)[3].Software-generated composites(d,e,f)thatwerecreatedusingthesoftwareFACES[4]are shownwithmatedmugshots.........................2 Figure2.1Examplesofsurveillanceimagesthatareofntlypoorquality suchthatCOTSmatchersareexpectedtofailtothetruematein amugshotdatabase.Surveillancecompositescanbedrawnbasedon theseimages,whichcanbeusedtoidentifyasuspectmoreaccurately. SurveillancecompositesshownaredrawnbySandraEnslow[5]......8 Figure3.1Examplesofmugshots(a)andmatedhand-drawncomposites(b)and software-generatedcomposites(c)createdusingFACES[4].Thehand- drawncompositesshownweredrawnbyeitherLoisGibson[6]orforensic artistsattheMichiganStatePolice(MSP).................10 Figure3.2Anexamplesurveillanceimage(a)andthecorrespondingsurveillance composite(b)andmugshot(c)usedinthisstudy.Allsurveillancedata wasprovidedbythePCSO..........................12 Figure3.3Foragivenphotograph(a)fromtheARdatabase[7],theviewedfacial compositesusedinourstudyconsistofahand-drawncomposite(b), acompositecreatedusingIdenti-Kit(c),andtwocompositescreated usingFACES(d,e)bytwotoperators................13 Figure4.1TheFaceSketchIDSystemgraphicaluserinterface(a).Optionsexist formanuallymodifyingqueryeyelocations(b),one-to-onecomparison ofqueryandtargetimages(c),andviewingimagesafteralgorithmic normalizationandpreprocessing(d).Thecompositeshownwasdrawn byLoisGibson[6]...............................15 ix Figure4.2TheholisticalgorithmpipelineusedbytheFaceSketchIDSystem.Fol- lowingnormalizationandpreprocessing,SIFT[8]andMLBP[9]fea- turesareextracted.Optimalsubspacesarelearnedforeachpatchand theprojectedfeaturesareconcatenated.AfteraPCAsteptoreduce templatesize,thefeaturevectorisnormalizedusingthe L 2 norm. ThesimilarityscoresbasedontheSIFTandMLBPfeaturevectors whencomparingcompositeandmugshotarefusedusingthesumrule afterz-scorenormalization..........................17 Figure4.3Thecomponent-basedalgorithmpipelineusedbytheFaceSketchIDSys- tem.Followingnormalization,STASM[10]isusedtodetect77facial landmarks.Eachofthe3componentsused(nose,mouth,andeyes)are extractedandnormalizedtoaspwidthandheight.MLBPfeatures areextractedfrompatchesinsidethefacialcomponent.APCAstepis usedtoreducethenoiseintheMLBPdescriptorforagivenpatch.Op- timalsubspacesarelearnedforeachpatchandtheprojectedfeatures areconcatenatedandnormalized.Intheinterestofbrevity,weomit thePCAstepusedtoreducethetemplatesizeinthisdiagram. L 2 similarityscoresaregeneratedforeachoftheselectedcomponents. Theoverall(facialcomposite,mugshot)similarityscoreisthesumof theindividualcomponentscoresafterz-scorenormalization........19 Figure5.1Exampleimagesfromthe100,000PCSOmugshotsusedtoextendthe experimentalgallery..............................22 Figure6.1Resultsfortheholistic(a,d)andcomponent-based(b,e)algorithms whenmatchinghand-drawncompositestomugshots.Thebestperfor- manceisachievedthroughafusionoftheholisticandcomponent-based algorithmmatchscores(c,f).ThreeCOTSmatchersareincludedin (c,f)asabaseline...............................27 Figure6.2ExamplesofsuccessfulRank-1matchesof(hand-drawncomposite,mugshot) pairs(a,b).Afailurecase(c)showsarelativelyaccuratecomposite whichwasreturnedatarankhigherthan200................28 Figure6.3Examplesofretrievalrankimprovementwhenmatchinghand-drawn compositestomugshotsaftermatchscorefusionoftheholisticand component-basedalgorithms.........................29 Figure6.4Examplesofpoorqualitycompositeswithlittleinformationotherthan outlinesoffacialcomponents(a)orunrealisticappearance(b).Both pairsshownareretrievedathigherthanRank-5000afterdemographic ....................................30 x Figure6.5COTS-2facescoresforthePRIP-HDCdatabasecompos- ites(a)( =4 : 89, ˙ =1 : 48),thePRIP-HDCdatabasemugshots ( =5 : 89, ˙ =1 : 37),andthePCSOdatabasemugshots(c)( =6 : 51, ˙ =1 : 37).Theinqualityisrelativelysmallerbetweenthe compositesandthePRIP-HDCmugshotsversusthatofthePCSO mugshots.Therefore,thereportedperformanceforallfacematchers maybeboostedduetothefactthatitiseasiertomatchimageswith similarfacialquality..............................31 Figure6.6Examplesofsuccessfulmatchesof(hand-drawncomposite,mugshot) pairs(a,b)fromthesequestereddataset.Afailurecase(c)showsa relativelyaccuratecompositewhichwasreturnedatarankhigherthan200.31 Figure6.7AcompositeandphotographsdepictingDzhokharTsarnaev.Retrieval ranksfortheFaceSketchIDSystemarelistedbelowthecorresponding photograph.Allranksareafterdemographic(15-25yearold, white,male)..................................32 Figure6.8Resultsfortheholisticandcomponent-basedalgorithmswhenmatch- ingsoftware-generatedcompositestomugshotsbefore(a)andafter(b) demographicCOTSmatchersareincludedasabaseline.....33 Figure6.9ExamplesofsuccessfulRank-1matchesof(software-generatedcompos- ite,mugshot)pairs(a,b).Afailurecase(c)showsarelativelyaccurate compositewhichwasreturnedatarankhigherthan200..........34 Figure6.10Examplesofretrievalrankimprovementwhenmatchingsoftware-generated compositestomugshotsaftermatchscorefusionoftheholisticand component-basedalgorithms.........................35 Figure6.11Examplesofahand-drawncomposite(a)andasoftware-generatedcom- posite(d)forwhichtheRank-1matchisanimpostor(b,e)thatismore similarinappearencetothecompositethanthegenuinemugshotmatch (c,f).......................................36 Figure6.12ResultsfortheFaceSketchIDSystemwhenmatching75hand-drawn compositesand75software-generatedcompositestomugshotsbefore andafterdemographicCOTSmatchersareincludedasabaseline.37 Figure6.13Asurveillanceframe(a)ofTamerlanTsarnaevwasusedtocreateahigh- qualitysurveillancecomposite(drawnbyJaneWankmiller[11])(b)to improveperformancewhenmatchingagainstaphotograph(c).After demographic(20-30yearold,white,male),theFaceSketchID SystemisabletoretrievethephotographbyRank-20...........38 xi Figure6.14Resultsfortheholistic,component-based,andfusedalgorithmsonviewed software-generatedcompositescreatedusingFACESandIdentiKit.For thecompositescreatedusingFACES,twooperators(anAmericanand anAsian)createdcomposites[12]......................39 xii CHAPTER1 INTRODUCTION Facialcompositesarecommonlyusedinlawenforcementtoassistinidentifyingsuspects involvedinacrimewhennofacialimageofthesuspectisavailableatthecrimescene (e.g.,fromasurveillancecameraoramobilephone).Afteracompositeofasuspect's faceiscreated,authoritiesdisseminatethecompositetolawenforcementandmediaoutlets withthehopethatsomeonewillrecognizetheindividualandprovidepertinentinformation leadingtoanarrest.Facialcompositesareparticularlyvaluablewheneyewitness'orvictim's descriptionsaretheonlyformofevidenceavailable[13].Unfortunately,thisprocessis tanddoesnotleverageallavailableresources,inparticular,theextensivemugshot databasesmaintainedbylawenforcementagencies.Successfultechniquesforautomatically matchingfacialcompositestomugshotswillimprovetheenessoffacialcomposites andallowforfasterapprehensionofsuspects. 1.1Background Facialcompositesusedinlawenforcementcanbedividedintothreecategories: (i) Hand-drawncomposites :Facialcompositesdrawnbyforensicartistsbasedon thedescriptionprovidedbyawitness.Hand-drawncompositeshavebeenused incriminalinvestigationsdatingasfarbackasthe19thcentury[14].Examples ofhighcasesinwhichahand-drawncompositewasusedareshownin Figs.1.1(a,b,c). (ii) Software-generatedcomposites :Facialcompositescreatedusingsoftwarekits whichallowanoperatortoselectvariousfacialcomponents(Figs.1.1(d,e,f)). Software-generatedcompositeshavebecomeapopularandmorerdableal- 1 (a)(b)(c) (d)(e)(f) Figure1.1:Examplesoffacialcompositesthatwereusedincasesinwhichthesuspectwas successfullyapprehended.Examplesofhand-drawncompositesandtheirmugshotmates areshownforDavidBerkowitz(SonofSam)(a)[1],TimothyMcVeigh(theOklahoma Citybomber)(b)[2],andTedKaczynski(theUnabomber)(c)[3].Software-generated composites(d,e,f)thatwerecreatedusingthesoftwareFACES[4]areshownwithmated mugshots. 2 ternativetohand-drawncomposites.Accordingto[14],80%oflawenforcement agenciesreportusingsomeformofsoftwaretocreatefacialcompositesofsus- pects.Wenotethat,basedonconversationswithlawenforcementagencies,the actualadoptionanduseofcomposite-generationsoftwaremaybelowerthan reportedin[14]. (iii) Surveillancecomposites :Facialcompositesdrawnbyforensicartistsbasedon poorqualitysurveillanceimages.Surveillancecompositesareusedinscenarios whene-shelf(COTS)systemsareexpectedtofailonquery (probe)faceimages(duetopoorlighting,osefaces,occlusion,etc.). Whereasforensicartiststypicallyrequireafewyearsoftrainingtobecometin drawingcomposites,onlyafewhoursoftrainingaretypicallyrequiredbeforeapolice canstartusingcomposite-generationsoftware.Irrespectiveofthequalityandcapabilityof thesoftware,mostcompositesoftwarepackagesrelyonchoosingasetoffacialcomponents (e.g.,eyes,nose,mouth)basedontheinformationcontainedinthewitness'description.It isimportanttoemphasizethatirrespectiveofthemethodusedtogeneratethecomposite, thequalityoftheresultingcomposite(namely,itsresemblancetothesuspect'srealface) mainlydependsontheaccuracyofthedescriptionprovidedbythewitnessandtheskillof theartist/operator.Wenotethatin[15],wereferredtohand-drawncompositesas\forensic sketches"andsoftware-generatedcompositesas\compositesketches".Thenamingconven- tionshavebeencorrectedinthisthesistotheprevailinglawenforcementterminology. Whileseveralmethodsthatmatchviewed 1 andhand-drawncompositestomugshotshave beenreportedintheliterature[16,17,18,19,20,21,22,23],onlyafewmethodshavebeen publishedforautomaticmatchingofsoftware-generatedcompositestomugshots[19,12]. Inallthepreviousstudiesreportedonsoftware-generatedcomposites,withtheexception of[15],compositeswerecreatedwhiletheoperatorwasviewingthehighqualitymugshot. 1 Manystudiesonfacialcompositetophotographmatchinghavereliedonviewedcom- positesinwhichthecompositeisdrawnbyhandwhileviewingthephotograph. 3 Thistypeofviewedcompositedoesnotaccuratelythecreationofcompositesused incriminalinvestigationsbecausethemugshotofthesuspectisunknownorunavailable. Indeed,therewouldbenoneedtocreatethecompositeifweknewthesuspectandhadhis mugshot.Whilesurveillancecompositesarealsocreatedwhenviewingimagesofthesuspect, theseimagesareofpoorqualitycomparedwithmugshots.Tothebestofourknowledge,no studieshavereportedperformancewhenmatchingsurveillancecompositestomugshots.An extendedreviewoffacialcompositetomugshotmatchingliteratureispresentedinChapter 2.Chapter3describestheconstructionprocessforeachtypeoffacialcompositeusedin thisthesis. Tothebestofourknowledge,nomatcherisavailablethatisdesignedforfacialcomposite- to-mugshotmatchingandisdeployedatlawenforcementagencies,thoughinvestigators oftenattempttouseCOTSmatchersinthismannerwithlimitedsuccess.Toaddressthis need,thisthesispresentstheFaceSketchIDSystemasastandalonesoftwaresystemthat canmatchfacialcompositestotheirmugshotmateswithstate-of-the-artaccuracy.System spcanbefoundinChapter4.TheFaceSketchIDSystemusestwocomplementary algorithmswhenmatchingfacialcompositestomugshots:(i)aholisticalgorithmand(ii)a component-basedalgorithm,bothofwhicharedescribedinChapter4.Itisimportantto pointoutthatthematchingperformanceoftheFaceSketchIDSystemcriticallydependson theaccuracyofthecomposite(intermsofitsresemblancetothesuspect'sface)aswellas thebetweenthetimethemugshotinthedatabasewascapturedandthetimethe compositewascreated.Nevertheless,whiletheaccuracyofcomposite-to-mugshotmatching istlylowerthanmugshot-to-mugshotmatching,compositetomugshotmatching systemsareneededtomaximizetheopportunityofapprehendingsuspectsinheinousand egregiouscrimeswheretheevidenceintheformofasuspect'sphotographislacking. Chapter5describestheexperimentsusedtoevaluatetheFaceSketchIDSystem.Experi- mentalresultswhenmatchinghand-drawn,software-generated,andsurveillancecomposites totheirmugshotmatesarereportedinChapter6.ThreeCOTSfacematchersareused 4 toestablishbaselinerecognitionaccuracywhenmatchingfacialcompositestomugshots. AllCOTSfacematchersusedinourexperimentshavebeenstudiedintheFaceVendor RecognitionTest(FRVT) 2 .Wealsoinvestigatetheofthetypeofdatausedto trainthealgorithmsleveragedbytheFaceSketchIDSystem.Tofacilitatecomparisonswith previouslypublishedresults,wealsodetailtheFaceSketchIDSystem'sperformancewhen matchingviewedsoftware-generatedcompositestophotographs. 1.2Contributions Theprimarycontributionsofthisthesisare: (i)Anexplorationofcompositerecognitionusecasesinvolvingmultipleformsof facialcomposites. (ii)TheFaceSketchIDSystem,ascalableandoperationallydeployablesoftware systemthatachievesstate-of-the-artmatchingaccuracyonfacialcompositesus- ingtwocomplementaryalgorithms(holisticandcomponent-based). (iii)Astudyoftheoftrainingdataonalgorithmperformance. 2 http://www.nist.gov/itl/iad/ig/frvt-home.cfm 5 CHAPTER2 RELATEDWORK Automatedfacematchingbetweentwofacialphotographsisawellstudiedproblemincom- putervisionandbiometrics[24].However,matchingfacialcompositestophotographsis amorechallengingproblemwithonlyalimitedamountofpublishedwork,someofwhich include:[16,17,18,19,20,22,21,23,12,15].Ofthese,moststudieshaveusedcomposites drawnwhileviewingthemugshotorphotograph(viewedhand-drawncomposites).Further, thestudiesthatconsideredoperationalhand-drawncompositesdidnotaddresstheuseof software-generatedcompositeswhicharereportedtobewidelyusedbylawenforcement agencies[14]. Toourknowledge,onlytwopreviousstudiesfocusedonautomaticfacerecognitionsys- temsusingsoftware-generatedcomposites.Theusedacombinationoflocalandglobal featurestorepresentcomposites[19],butitrequireduserinputintheformofrelevance feedbackinthematchingorrecognitionphase.Further,theauthorsin[19]usedasmall galleryintheirexperiments(300facialphotographs).ThemethodproposedbyHanetal. [12],usedacomponent-basedapproachtomatchfacialcompositestomugshots.WhileHan etal.usedalargergallerywith10,000mugshotsandcreatedamatchingmethodthatisfully automatic,thesoftware-generatedcompositesusedwerecreatedwhileviewingthemugshot photograph(viewedsoftware-generatedcomposites)andthereforedonotoperational scenarios. Ourworkuseshand-drawncompositesfromcriminalinvestigationsandsoftware-generated compositescreatedusingdescriptionsfromvolunteersgiventwodaysafterviewingamugshot, mimickingawitnessofanactualcrimescene.Furthermore,wecomparetherecognitionac- curacyofhand-drawncompositeswhenalgorithmsaretrainedusingttrainingdata sets.Weshowtheimprovedperformanceofmatchingfacialcompositestomugshotswhen 6 Table2.1:Priorworkonfacialcompositetophotographmatching. PublicationApproachLimitations ViewedHand-Drawn Tangand Wang[16] Photograph-to-compositecon- versionusingeigentransform Viewedcompositesarenotof anyvalueinlawenforcement andforensicsapplications. Methodsthatconvert compositetophotographor viceversaareoftensolvinga moreproblemthanthe facialcompositetophotograph matchingtask. Liuetal.[17]Photograph-to-compositecon- versionusinglocallylinear embedding Gaoetal.[25]Photograph-to-compositecon- versionusingembeddedhidden Markovmodel Wangand Tang[20] Photograph-to-compositecon- versionusingmultiscaleMarkov randommodel LinandTang [18] Commondiscriminantfeature extraction Zhangetal. [26] PrincipleComponentAnalysis (PCA)basedalgorithm Hand-Drawn UhlandLobo [27] Photometricstandardization Software-generatedcomposites, whicharewidelyusedinlaw enforcement,werenot considered. Klareand Jain[22] SIFTandMBLPfeaturede- scriptorswithlocal-feature baseddiscriminantanalysis Bhattetal. [21] Multi-scalecircularWeber'slo- caldescriptor Software- Generated Yuenand Man[19] Pointdistributionmodelandge- ometricalrelationship Compositeswerecreatedwhile viewingthephotographofthe subject(viewed software-generatedcomposites). Hand-drawncompositeswere notconsidered. Hanetal.[12]Component-basedrepresenta- tionusingMLBPdescriptors Contributions Proposed Method Facialcompositetomugshot matchingalgorithmsare deployedintheFaceSketchID System.Wefusethematch scoresoftwont(holistic andcomponent-based) algorithmstoboostthe matchingperformance. Hand-drawncomposites, software-generatedcomposites, andsurveillancecompositesare considered.Weinvestigatethe oftrainingthe algorithmsonerenttypesof (composite,photograph)data. 7 Figure2.1:Examplesofsurveillanceimagesthatareoftlypoorqualitysuchthat COTSmatchersareexpectedtofailtothetruemateinamugshotdatabase. Surveillancecompositescanbedrawnbasedontheseimages,whichcanbeusedtoidentify asuspectmoreaccurately.SurveillancecompositesshownaredrawnbySandraEnslow[5]. thematchscoresoftwoentalgorithms(holisticandcomponent-based)arefused.We alsodetailtheuseofsurveillancecomposites,whichhavenotpreviouslybeenreportedinthe literature(Fig.2.1).AdditionalexamplesofsurveillancecompositescanbefoundinFigs. 3.2and6.13.Allexperimentalresultsarebasedoncomparisonsagainstmugshotmatesfor thespfacialcompositesandanextendedgalleryof100,000mugshots.Thesizeofour galleryisrepresentativeofalawenforcementagency'smugshotdatabase.Asummaryof relatedworkcanbefoundinTable2.1. Chapter3describestheprocessofcreatingthetypesoffacialcompositesusedinthis thesis.WealsodetailthedatabasesusedtoevaluatetheFaceSketchIDSystem. 8 CHAPTER3 CONSTRUCTINGAFACIALCOMPOSITE Aspreviouslymentioned,lawenforcementagenciesrelyonthreemodalitiesoffacialcom- posites:(i)hand-drawncomposites,(ii)software-generatedcompositesand(iii)surveillance composites.Hand-drawncomposites(Section3.1)aredrawnbasedonaverbaldescription. Typically,hand-drawncompositesaredrawnbyaforensicartistwithspecialtraining.Sim- ilarly,software-generatedcomposites(Section3.2)aredrawnbasedonaverbaldescription, butarecreatedusingmenu-drivensoftware.Inmostcompositesoftwarepackages,theop- eratorselectsfromasetoffacialcomponentstosynthesizeaface.Facialcompositescan alsobecreatedusingpoorqualityorosefacialimages.Thesesurveillancecomposites, whichareusedwhenCOTSfacematchersareexpectedtofailontheoriginalfaceimages, aredescribedinSection3.3.Fig.3.1showsexamplehand-drawnandsoftware-generated compositesalongwithmatedmugshotsthatareusedinourexperiments.Fortheremainder ofthispaperwewillusethe(querymodality,targetmodality)orderedpairconventionto denotematchingscenarios. 3.1Hand-DrawnComposites Allhand-drawncompositesusedinourstudywerecreatedbyforensicartistsforreal-world criminalinvestigations.Tocreateahand-drawncomposite,anartistdrawsafacebasedon descriptionsprovidedbyeitheroneormultipleeyewitnesses.Forthistypeofcomposite,the timebetweenobservationandrecallbyawitnessvariesdependingonthecircumstances. Atotalof265hand-drawncompositesalongwiththeirmatedmugshotsareusedinour experiments,whichwewillrefertoasthePatternRecognitionandImageProcessing(PRIP) Hand-DrawnComposite(PRIP-HDC)database.Ofthe265totalhand-drawncomposites, 73weredrawnbyLoisGibson[6],43weredrawnbyKarenTaylor[2],56wereprovidedby 9 (a) (b) (c) Figure3.1:Examplesofmugshots(a)andmatedhand-drawncomposites(b)and software-generatedcomposites(c)createdusingFACES[4].Thehand-drawncomposites shownweredrawnbyeitherLoisGibson[6]orforensicartistsattheMichiganStatePolice (MSP). thePinellasCounty's(PCSO),46weredrawnbyforensicartistsemployedby theMichiganStatePolice(MSP),and47weredownloadedfromtheInternet. 3.2Software-GeneratedComposites Anumberofsoftwaresystemsareavailabletocreatecomposites:E-FIT[28],EvoFit[29], FACES[4],Identi-Kit[30],Mac-a-Mug[31],andPhoto-Fit[31].Ofthese,Identi-Kitand FACESaremostwidelyusedbylawenforcementagenciesintheUnitedStates[14].Both Identi-KitandFACESallowuserstochoosefromasetofcandidatecomponentsorfeatures (e.g.eyes,mouth,nose).FACESprovidesalargernumberoffeaturesandoptions,andithas beenobservedtobemoreaccurateincapturingfacialcharacteristicsthanIdenti-Kit[12]. Forthesetworeasons,weusedFACEStocreatecompositesforourmatchingexperiments. Tocreatethesoftware-generatedcomposites,weusedaproceduredesignedtomimic real-worldcompositesynthesisdetailedin[32].Volunteers(adultsrangingfrom20-40years 10 ofage)wereaskedtoviewamugshotofasuspectforoneminute.Twodayslaterthey wereaskedtodescribethemugshottotheFACESsoftwareoperator(theauthorofthis thesis)whohadnotseenthemugshot.Volunteersalsoprovideddemographicinformation aboutthesuspecttothebestoftheirability(gender,race/ethnicity,agerange).During thedescriptionprocess,theFACESoperatorusedacognitiveinterviewtechnique[33]to enhancethevolunteer'smemoryofthesuspect'sfacialfeaturesinthemugshot.Toreduce theproblemofoperatorcontamination[32],inwhichpreviouslycreatedcomposites thecreationofthecurrentcomposite,arandomfacewasgeneratedinitiallywhichwasthen mobasedonthevolunteer'sdescription. Wenotethattherearecertainlimitationsincreatingsoftware-generatedcomposites.For example,itistoachievecertaintypesofshadingandskintextureinthecomposite. Theoptionsforlocalizingacomponentonthefacearelimited,andthereforeachieving thedesiredalignmentofcomponentsisalsochallenging.Intotal,75software-generated compositesweresynthesized,eachtaking30minutestocreate,onaverage.Thisdatabase willbereferredtoasthePRIPSoftware-GeneratedComposite(PRIP-SGC)database. 3.3SurveillanceComposites Giventheubiquityofsurveillancetechnology,lawenforcementagenciesattempttomakeuse ofallofthefacialimagedataattheirdisposalregardlessofitsquality.Atthelowerendof thequalityspectrumareimagescapturedbyolder-generationcellphones,retailsurveillance cameras,andATMcameraswhichoftenareblurred,havetshadowsorocclusion,or containanoseface.Insomecases,thesefacialimagesareoftqualitytobeused inaCOTSfacematcher.However,inmostcasesthesurveillanceimageryisofextremely poorqualityandtheCOTSfacematchersfailtothecorrespondingindividualwithina mugshotgallery.Tomakeuseofthesepoorqualityfaceimages,lawenforcementagencies oftenemployaforensicartisttocreateahighqualityfacialcompositefromthesurveillance faceimage.Weinvestigatethepossibilityofusingthisformoffacialcompositetoimprove 11 (a)(b)(c) Figure3.2:Anexamplesurveillanceimage(a)andthecorrespondingsurveillance composite(b)andmugshot(c)usedinthisstudy.Allsurveillancedatawasprovidedby thePCSO. uponthematchingperformanceofCOTSmatchersusingasetof(surveillancecomposite, mugshot)pairsprovidedtousbythePCSO(Fig.3.2).Wenotethatwhilethesurveillance imagesusedinthisthesisareofrelativelyhighquality,weintroducetheuseofsurveillance compositesasaproof-of-concepttoshowthattheycanbeusedsuccessfully.Amorerealistic usecaseofsurveillancecompositeswouldinvolvethecompositesdepictedinFig.2.1,but wedonothavethematedmugshotsforthesecomposites. 3.4ViewedComposites Whileviewedcompositesarenotapplicableinforensicscenarios,wehavefoundthemto beusefulduringalgorithmtraining.Eighteen-hundred(viewedhand-drawncomposite,pho- tograph)pairsusedinourstudyareavailablefromtheChineseUniversityofHongKong (CUHK) 3 .TheCUHKFaceSketchdatabase[20]contains188pairsfromtheCUHKstudent database,123pairsfromtheARdatabase[7],295pairsfromtheXM2VTSdatabase[34], and1,194pairs[35]fromtheFERETdatabase[36].Wewillrefertothissetof1,800(viewed hand-drawncomposite,photograph)pairsastheCUHK-VHDCdatabase. Additionally,asetofviewedhand-drawncompositesweredrawnbyforensicartistsat theMSPfor93ofthe265mugshotsinthePRIP-HDCdatabase.Weinvestigatethe oftrainingourmatchingalgorithmsonthesecomposites,whichwewillrefertoasthePRIP 3 http://mmlab.ie.cuhk.edu.hk/facesketch.html 12 (a) (b)(c) (d)(e) Figure3.3:Foragivenphotograph(a)fromtheARdatabase[7],theviewedfacial compositesusedinourstudyconsistofahand-drawncomposite(b),acompositecreated usingIdenti-Kit(c),andtwocompositescreatedusingFACES(d,e)bytwot operators. ViewedHand-DrawnComposite(PRIP-VHDC)database.EighteofthePRIP-VHDC subjectshaveasinglefacialcomposite,andtheremaining8havetwocompositeseach. TodemonstratethestrengthoftheFaceSketchIDSystemcomparedtopreviouslyre- portedresults,weincludeasetofviewedsoftware-generatedcompositesinourmatching experimentsfrom[12].ThisdatawillbereferredtoasthePRIPViewedSoftware-Generated Composite(PRIP-VSGC)database.Foreachofthe123photographsfromtheARdatabase usedinthePRIP-VSGCdatabase,threecompositeswerecreated.Twocompositeswere createdusingFACESandthethirdwascreatedusingIdenti-Kit.Examplesofviewedcom- positesusedinourexperimentscanbefoundinFig.3.3. Chapter4describestheFaceSketchIDSystemindetail,includingsystemsp aswellasthealgorithmsthatareusedincompositerecognition. 13 CHAPTER4 THEFACESKETCHIDSYSTEM TheFaceSketchIDSystemwasdevelopedtoaddressthelackofafullyautomaticande meanstomatchfacialcompositestomugshots.SystemspfortheFaceSketchID SystemaredescribedinSection4.1,whilethematchingalgorithmsusedbytheFaceSketchID SystemaredescribedinSection4.2. 4.1SystemSp TheFaceSketchIDSystemsupportsadrag-and-dropenrollmentinterfacewithoptionsfor manuallymodifyingdetectedeyelocations,viewingbothprobeandtargetimagesafteralgo- rithmprocessing,andsearchingforknownindividualsbynamewithinthemugshotmatches. TheFaceSketchIDSystemalsosupportsthemugshotgalleryviademographicinfor- mationintheformofagerange,race,andgender.Tosimplifydeployment,galleryimages canbeenrolledtoandaccessedfromremotelocations(e.g.anserver). TheFaceSketchIDSystemiscompatiblewithWindows,OSX,andUbuntuLinuxenvi- ronments.SourcecodefortheFaceSketchIDSystemiswritteninC++.TheFaceSketchID SystemusesOpenCV[37]asamatrixlibrary,Eigen[38]forstatisticallearning,andQt[39] fortheGUI.SomemodulesoftheFaceSketchIDSystemareavailableinOpenBR[40].Ona 2.9GHzIntelCorei7laptopwith8GBofRAM,enrollment(includingeyedetection)and matchingspeedsare1.07templatespersecondperthreadandabout22,000comparisonsper secondperthread,respectively.Templatesareapproximately5.73KBinsize.Sp, templatescontainfeaturevectorsforthetwomatchingalgorithmsinadditiontodemographic information(age,race,andgender)anddetectedeyelocations.Wenotethatthecombination ofareasonablysmalltemplatesizeinconjunctionwithrapidrecognitioncapabilitiesshould facilitatealargeusabilityimprovementoverthetraditionalmethodofusingcompositedata 14 (a)(b) (c)(d) Figure4.1:TheFaceSketchIDSystemgraphicaluserinterface(a).Optionsexistfor manuallymodifyingqueryeyelocations(b),one-to-onecomparisonofqueryandtarget images(c),andviewingimagesafteralgorithmicnormalizationandpreprocessing(d).The compositeshownwasdrawnbyLoisGibson[6]. (e.g.disseminationtomediaoutlets).Avideodemonstratingthematchingprocesscanbe foundat http://biometrics.cse.msu.edu/images/ImgProjects/help_match.mp4 . 4.2FacialCompositetoMugshotMatchingAlgorithms TheFaceSketchIDSystemleveragestwocomplementaryalgorithmswhenmatchingfacial compositestotheirmugshotmates.ThedevelopedbyKlareandJain[23],isdesigned foruseinheterogenousfacerecognition.Thatis,itisenotonlywhenmatching(facial composite,mugshot)pairs,butalsoinnear-infrared,thermal,andcross-distancematching scenarios.Thesecond,developedbyHanetal.[12],wasoriginallydesignedforsoftware- 15 generatedcompositetomugshotmatching.Momadetotheoriginalalgorithms in[23]and[12]toimprovematchingaccuracy,templatesize,andalgorithmspeedsare alsodiscussed.Inthecaseofthecomponent-basedalgorithm,moareheavily bythealgorithmin[41].Eachalgorithmisdescribedindetailinthefollowing sections.Wenotethatbothalgorithmshavebeenextensivelytunedtoperformwellin (composite,mugshot)recognition. 4.2.1HolisticAlgorithm TheholisticalgorithmusedbytheFaceSketchIDSystemhasbeenfoundtobeane techniqueformatchingafacialcompositeprobeagainstagalleryofmugshots[23].One strengthoftheholisticalgorithmisthatitrepresentsbothfacialcompositesandmugshots withlocaldescriptor-basedfeatures,eliminatingtheneedtosynthesizeapseudo-composite fromthemugshotasisdonein[16]and[25].Thus,thealgorithmforrepresentingamugshot isanalogoustoafacialcompositeandwillbeomittedfromthefollowingdescription. Afterdetectingeyelocations,thefacialcompositeisnormalizedtoaheightand widthandtransformedsuchthatrightandlefteyesareatthesamepositionforevery composite.Thecenter-surrounddivisivenormalization(CSDN)[42]isthenappliedto thecompositetocompensatefortheerencesrelatedtothechangeinmodalitybetween compositeandmugshot.Subsequently,SIFT[8]featuresareextractedfromadensegrid acrosstheface.InparalleltotheCSDNpreprocessingandSIFTfeatureextractionpipeline, thenormalizedcompositeisprocessedwiththeTan&Triggspipeline[43](consistingof aGammaaceofGaussianandcontrastequalization)andmulti-scale localbinarypattern(MLBP)[9]featuresareextracted.Notethatthedensegridusedas keypointsforSIFTdescriptorextractionandthepatchesusedtocomputeMLBPfeatures correspondtothesamelocationswithinthecomposite.Although[23]usesadditional toimprovegeneralizationacrossmultiplemodalities,ourempiricalstudyshowsthatusing onlytheCSDNpriortoextractingSIFTfeaturesandtheTan&Triggspipelineprior 16 Figure4.2:TheholisticalgorithmpipelineusedbytheFaceSketchIDSystem.Following normalizationandpreprocessing,SIFT[8]andMLBP[9]featuresareextracted.Optimal subspacesarelearnedforeachpatchandtheprojectedfeaturesareconcatenated.Aftera PCAsteptoreducetemplatesize,thefeaturevectorisnormalizedusingthe L 2 norm. ThesimilarityscoresbasedontheSIFTandMLBPfeaturevectorswhencomparing compositeandmugshotarefusedusingthesumruleafterz-scorenormalization. toextractingMLBPfeatures,resultsinthebestmatchingperformanceforcomposites. TheTan&Triggspreprocessingpipeline,inparticular,resultedintlybetter qualitativeperformance.Thatis,afterincorporatingthispipelineintoboththeholisticand component-basedalgorithms,impostormatchesreturnedatlowrankswereobservedtobe moresimilarinappearancetothequerycomposite(whichcouldbearguedtobeameasure robustnessforthisrecognitiontask).Wenotethatalthoughin[43]thepreprocessingpipeline isusedtohandleinlighting,ourqualitativeanalysisindicatesthatithelpshandle inimagequality(resolution,compressionartifacts,etc.)aswell. ForbothSIFTandMLBPfeatures,optimalsubspacesarelearnedforeachpatchusing lineardiscriminantanalysis(LDA)afterapplyingPrincipalComponentAnalysis(PCA)to reduceredundancyintheextractedfeatures.KlareandJainusedarandom-sampleLDA (RS-LDA)techniqueintroducedin[44]tohandlethesmallsamplesizeproblem.Sincewe haverelativelymoretrainingdata,RS-LDAhasbeenreplacedbyLDAintheFaceSketchID Systemtoimprovealgorithmspeed. Afterlearninganoptimalsubspaceforeachpatchandprojectingthepatch-wisefeatures intotheirrespectivesubspaces,theprojectedfeaturesareconcatenatedtoformasingle 17 featurevectorforbothfeaturerepresentations.PCAisappliedtothefeaturevectorto reducetemplatesize,andtheresultingfeaturevectorisnormalizedusingthe L 2 norm.To measurethesimilaritybetweenfeaturevectors,theholisticalgorithmusesthe L 2 similarity measure.Afterz-scorenormalization,scoresfromtheSIFTandMLBPrepresentationsare fusedviaasum-of-scorefusionrulewithequalweightappliedtobothrepresentations.A diagramoftheholisticalgorithmpipelineisshowninFig.4.2. 4.2.2Component-BasedAlgorithm Asmentionedearlier,thecomponent-basedmethodusedbytheFaceSketchIDSystemwas proposedin[12]tomatchsoftware-generatedcomposites(createdusingFACESandIdenti- Kit)tophotographs.Similartotheholisticalgorithm,theprocessforrepresentinganimage isnotdependentonitsmodality.Thus,theprocessforrepresentingacompositeusingthe component-basedmethodwillbedescribed. Inthecomponent-basedalgorithm,facialcomponentsareautomaticallylocalizedby detectinglandmarkswithanactiveshapemodel(ASM)viatheSTASMlibrary[10].As in[41],theASMisinitializedusingeyelocationsprovidedbyaCOTSeyedetectorthat isbundledwiththeFaceSketchIDSystem.Wenotethatwhilealignmentiscriticalforthe holisticalgorithm,itisarguablymoreimportantwhenextractinglandmarksusedbythe component-basedrepresentationbecausetherelativelysmallsizeofthefacialcomponents limitsthedescriptivetolerancetonoise(viamisalignment). Afterfacialcomponentsareextractedandnormalizedtoaspwidthandheightand processedusingtheTan&Triggspreprocessingpipeline,MLBP[9]descriptorsareused tocapturethetextureandstructureofpatchesineachfacialcomponent.APCAstepis usedtoreducethenoisepresentinthepatch-wiseMLBPrepresentationforthegivenfacial component.Similartoholisticalgorithm,thecomponent-basedmethodusesLDAtolearn theoptimalsubspaceandimproverecognitionaccuracy.APCAstepisusedtoreduce templatesize. 18 Figure4.3:Thecomponent-basedalgorithmpipelineusedbytheFaceSketchIDSystem. Followingnormalization,STASM[10]isusedtodetect77faciallandmarks.Eachofthe3 componentsused(nose,mouth,andeyes)areextractedandnormalizedtoaspwidth andheight.MLBPfeaturesareextractedfrompatchesinsidethefacialcomponent.A PCAstepisusedtoreducethenoiseintheMLBPdescriptorforagivenpatch.Optimal subspacesarelearnedforeachpatchandtheprojectedfeaturesareconcatenatedand normalized.Intheinterestofbrevity,weomitthePCAstepusedtoreducethe templatesizeinthisdiagram. L 2 similarityscoresaregeneratedforeachoftheselected components.Theoverall(facialcomposite,mugshot)similarityscoreisthesumofthe individualcomponentscoresafterz-scorenormalization. In[12],cosinesimilaritiesbetweencorrespondingpatchesoffacialcomponentsarecom- putedandtheoverallcomponentsimilarityistheaverageofthepatch-wisesimilarities. Concatenatingthepatch-wisefeaturevectorspriortocomputinganoverallcomponentsim- ilarityreducestemplatesizeandincreasescomparisonspeedwithintheframeworkofthe FaceSketchIDSystem.Further,thetwocomparisontechniquesresultincomparableper- formance.Aswith[12],themostaccuratecomponentstobeusedduringscorefusionare determinedempirically.Scoresarenormalizedpriortofusionusingz-scorenormalization andequalweightsareappliedtoallcomponents.Forboththehand-drawnandsoftware- generatedcomposites,thecomponent-basedalgorithmusesthemouth,nose,andeyecom- ponents.Adiagramofthecomponent-basedalgorithmpipelineisshowninFig.4.3. Asimplesum-fusionruleisusedwhenfusingthematchscoresfrombothalgorithms afterz-scorenormalization.Whenmatchingbothhand-drawnandsoftware-generatedcom- positestomugshots,weightsof0.6and0.4areassignedtothematchscoresoftheholistic andcomponent-basedrepresentations,respectively(i.e.theholisticSIFTandMLBPmatch 19 scoreshaveweightsof0.2,whileeachofthecomponent-basedmatchscoreshaveweightsof approximately0.13). Chapter5describestheexperimentalprotocolsusedtoevaluatetheFaceSketchIDSystem indetail. 20 CHAPTER5 EXPERIMENTALPROTOCOL Thegallerysetforallexperiments(withtheexceptionofthoselistedinSection5.4)consists ofmatedmugshotsforthelistedcompositesplusasetof100,000mugshotsfromthePCSO database.Experimentalresultsarereportedwithandwithoutlteringthemugshotgallery usingdemographicinformation(intheformofagerange,race,andgender).Ground-truth demographicinformationwasprovidedforthe100,000mugshotsusedtoextendthegallery fromthePCSO.Weestimatedemographicinformationforthemugshotsforwhichwedo nothaveground-truthinformation(thematedcompositesaretohaveanagerange 5yearsrelativetotheestimatedageofthemugshot).Threecommercialfacematchers areusedasbaselines,whichwillbereferredtoasCOTS-1,COTS-2,andCOTS-3.Note thatweareunabletotrainanyoftheCOTSsystems.Table5.1summarizesthedatabases usedinourstudy.Fig.5.1showsexamplemugshotsusedtoextendthegalleryinmatching experiments.Table5.2showsthedistributionofdemographicsintheextendedgallery. Table5.1:Asummaryofdatabasesusedinthisstudy. DatabaseDetailsNo.ofPairs PRIP-HDC H and- d rawn c omposites(HDC) 265 withmugshotmates PRIP-SGC S oftware- g enerated c omposites(SGC) 75 withmugshotmates PRIP-VHDC V iewed h and- d rawn c omposites(VHDC) 93 withmugshotmates PRIP-VSGC V iewed s oftware- g enerated 123 c omposites(VSGC)withphotographmates CUHK-VHDC V iewed h and- d rawn c omposites(VHDC) 1800 withphotographmates 21 Figure5.1:Exampleimagesfromthe100,000PCSOmugshotsusedtoextendthe experimentalgallery. Table5.2:Demographicdistributionofthe100,000mugshotsusedtoextendthegallery. Males Ethnicity AgeRange < 20 20-30 30-40 40-50 50-60 > 60 Asian 1 182 155 89 46 17 Black 101 7447 6511 4171 2953 917 Hispanic 10 2480 2945 1599 619 184 White 46 11441 11424 10013 9133 3285 Other 1 83 78 91 40 30 Females Ethnicity AgeRange < 20 20-30 30-40 40-50 50-60 > 60 Asian 0 60 53 37 26 16 Black 2 2011 1660 1111 634 151 Hispanic 0 312 308 135 105 16 White 0 5002 4930 3944 2783 667 Other 0 19 28 9 6 3 5.1Hand-DrawnComposites Experimentalresultsformatching(hand-drawncomposite,mugshot)pairsarereported basedona5-foldcross-validationscheme.Trainingandtestingsetsaredisjoint;thatis, nosubjectthatwasusedtotrainanalgorithmwasusedwhentestingitsperformance.The 265subjectsinthePRIP-HDCdatasetareassignedtoacross-validationfoldviaanMD5 hashingfunctionbasedonthesubject'sidenThus,thenumberofsubjectsinthetest- ingsubsetofagivenfoldvariesbutis,onaverage,53.Thettrainingsetsusedto 22 trainthetwoalgorithmsinthehand-drawncompositetomugshotmatchingexperimentsare asfollows: 1. PRIP-HDC Facialcompositetomugshotmatchingalgorithmsaretrainedonthe setofapproximately212(hand-drawncomposite,mugshot)pairsavailablepercross- validationfoldinthePRIP-HDCdatabase.EachsubjectinthePRIP-HDCdatabase isonlyassociatedwithtwoimages:ahand-drawncompositeandamugshot. 2. CUHK-VHDC Algorithmsaretrainedonthesetof1,800(viewedhand-drawncom- posite,photograph)pairsfromtheCUHK-VHDCdatabase.SimilartothePRIP-HDC database,theCUHK-VHDCdatabasecontainsonlytwoimagespersubject.Note thatalthoughwenolongerneedtousecross-validationbecausewearetrainingon onedatasetandtestingonanother,wemaintainthetestingsplitsusedin(1)toallow forcomparisonbetweenexperiments.Thisprocedureisusedinallofthefollowing experimentsinwhichcross-validationisnotnecessary. 3. PRIP-HDC+CUHK-VHDC Algorithmsaretrainedonthesetofapproximately 212(hand-drawncomposite,mugshot)pairsavailableinthePRIP-HDCdatabaseas inprotocol(1).ForthetrainingsubsetofeachfoldofthePRIP-HDCdatabase,the entireCUHK-VHDCdatabaseisadded. 4. PRIP-HDC+CUHK-VHDC+PRIP-VHDC Algorithmsaretrainedwiththe sameprotocolasinprotocol(3).Whenthetestingsetdoesnotcontainsubjectsfrom thePRIP-VHDCdataset,thosepairsareaddedtothetrainingset. Wealsoreportperformanceonasetof32(hand-drawncomposite,mugshot)pairswhich havebeensequesteredfromthetrainingexperimentsreportedabove.Forthesepairs,the trainingsetthatresultsinthebestrecognitionperformanceisused.Notethatcross- validationisnotnecessaryintheseexperimentssincewearetrainingandtestingont data. 23 Finally,wereporttheperformanceofacompositerelatedtotheBostonMarathonbomb- ingsuspect(see[45])usingthesameexperimentalsetupasthesequesteredpairs.Thecom- positedepictstheyoungerbrother,DzhokharTsarnaev,drawnbyanartistinthecourt duringapreliminarytrial 4 .Whileitcanbeconsideredasaviewedhand-drawncomposite, weincludetheperformanceasanadditionalexampleofthecapabilitiesoftheFaceSketchID System. 5.2Software-GeneratedComposites DuetotherelativelysmallsizeofthePRIP-SGCdatabase,wecouldonlytrainthetwo matchingalgorithmsusingtheCUHK-VHDCdatabase.Thus,thereisnoneedforcross- validationwhentestingonsoftware-generatedcomposites. Weincludeacomparisonbetweenthe75compositesfromthePRIP-SGCdatabaseand thecorresponding75compositesfromthePRIP-HDCdatabase[15].Inthisexperiment, onlytheperformanceafterfusingthematchscoresofbothalgorithmsisreported. 5.3SurveillanceComposites ToevaluatetheperformanceoftheFaceSketchIDSystemon(surveillancecomposite,mugshot) pairs,wetraintheholisticandcomponent-basedalgorithmsusingtheoptimaltrainingsets asdeterminedbytheexperimentsinSection5.1.Wecompareretrievalrankswhenusing (surveillancecomposite,mugshot)pairsintheFaceSketchIDSystemversusretrievalranks whenusing(surveillanceimage,mugshot)pairsinCOTSmatchers.Foragivensubjectin thisdataset,thereare,onaverage,6compositescreatedbytartists.Wereportthe retrievalrankachievedusingthemostaccuratecompositeandthemostaccurateframefrom thesurveillancevideoforeachsubject.Wealsoincludeasurveillancecompositedepicting TamerlanTsarnaev(theolderbrotherallegedtobeinvolvedintheBostonMarathonbomb- 4 http://www.businessinsider.com/dzhokhar-tsarnaev-court-room-sketch-2013-7 24 ing)[11]andreporttheFaceSketchIDSystem'sperformancewhenmatchingthecomposite tophotographsfrom[45].ExamplesurveillancedatausedinthisstudycanbefoundinFigs. 3.2(a,b,c). 5.4ViewedSoftware-GeneratedComposites Weincluderesultswhenmatching(viewedsoftware-generatedcomposite,photograph)pairs fromthePRIP-VSGCdatabasetocompareagainstpreviouslypublishedresults.Asnoted earlier,thePRIP-VSGCdatabasecontains123pairsfromtheARdatabase,withthree compositesavailableperpair.CompositesgeneratedusingFACESbyboththeAmerican andAsianoperatorsaswellasthecompositesgeneratedusingIdenti-Kitareusedtoevaluate theperformanceofbothalgorithms.Boththeholisticandcomponent-basedalgorithmsare trainedontheCUHK-VHDCdatabaseforthisexperiment.Wenotethatasubsetofthe CUHK-VHDCdatabasecontainspairsfromtheARdatabasewhicharenotincludedsince theywouldbiasthematchingperformanceifusedduringalgorithmtraining.Wedonot includetheperformanceofCOTSsystemsinthisexperimentastheycanbefoundin[12].A galleryof10,000mugshotsfromthePCSOisusedtoextendthegalleryintheseexperiments tobeconsistentwiththatin[12].Whilewehaveagerange,genderandraceinformation tothegalleryset,onlygender-baseddemographicwasreportedin[12].Thus, toprovideafaircomparisonwith[12],allretrievalratesforthe(viewedsoftware-generated composite,photograph)experimentsdonotinvolveanydemographic Chapter6discussestheresultsoftheexperimentslistedabove. 25 CHAPTER6 EXPERIMENTALRESULTS ThefollowingsectionsdescribetherecognitionperformanceoftheFaceSketchIDSystem. Section6.1andSection6.2describetheperformanceofhand-drawnandsoftware-generated composites,respectively.InSection6.3,wediscusstheperformanceoftheFaceSketchIDSys- temonsurveillancecomposites.Finally,wereporttheFaceSketchIDSystem'sperformance onviewedsoftware-generatedcompositesinSection6.4toallowforcomparisonsagainst previouslypublishedresults. 6.1Hand-DrawnComposites Fig.6.1showsrankretrievalresultsoftheexperimentsinvolvinghand-drawncomposites. Fortheholisticalgorithm(Fig.6.1(a)),thechoiceofdatausedtotrainthealgorithmhas littlectontherecognitionperformance,withtheexceptionoftrainingononlythepairs fromtheCUHK-VHDCdatabase.ComparingRank-100andRank-200retrievalrates,the besttrainingset(PRIP-HDC+CUHK-VHDC+PRIP-VHDC)fromtheworsttrain- ingset(CUHK-VHDC)byapproximately2.4%and2.6%,respectively.Itisinterestingto notethatwhiletheviewedhand-drawncompositecombinationsoftrainingdataexhibit similarperformance,trainingtheholisticalgorithmontheCUHK-VHDCdatabasealone ismarkedlyworsethananyothercompositedatabase.Oneexplanationforthisisthat trainingononly(viewedhand-drawncomposite,mugshot)pairslikelycausesthesubspaces tobebiasedtowards(viewedhand-drawncomposite,photograph)matching(inwhichtex- tureandstructureareextremelyaccurate).Intheidealcase,inwhichthe(hand-drawn composite,mugshot)pairsareextremelysimilar,usingtheCUHK-VHDCdatabasetotrain theholisticalgorithmmaybeadvantageous.Amorecommoncaseincompositerecognition isthatcertainaspectsofthecompositeareinaccurateorcontainatamountof 26 (a)(b)(c) (d)(e)(f) Figure6.1:Resultsfortheholistic(a,d)andcomponent-based(b,e)algorithmswhen matchinghand-drawncompositestomugshots.Thebestperformanceisachievedthrough afusionoftheholisticandcomponent-basedalgorithmmatchscores(c,f).ThreeCOTS matchersareincludedin(c,f)asabaseline. noise(introducedbytheartistintheblanks"ofthewitness'orvictim'sdescription). Thus,itisunderstandablethatatrainingsetconsistingofboth(hand-drawncomposite, mugshot)and(viewedhand-drawncomposite,mugshot)pairsresultsinthebestrecognition performancefortheholisticalgorithm. Bycontrast,thecomponent-basedalgorithm(Fig.6.1(b))hastheworstrecognition performancewhentrainedonthePRIP-HDCdatabasealone.Thereasonforthisisthat,at thecomponentlevel(e.g.onlyconsideringthemouth),therecanbeatamountof noiseifthecomponentsaremisaligned.Incaseswherethecomponentalignmentisd subspaceslearnedarelikelybynoisemorethanthestructureandtextureofthe 27 (a)(b) (c) Figure6.2:ExamplesofsuccessfulRank-1matchesof(hand-drawncomposite,mugshot) pairs(a,b).Afailurecase(c)showsarelativelyaccuratecompositewhichwasreturnedat arankhigherthan200. componentitself.Sincefaciallandmarkdetectionismorestableinthecaseofthe(viewed hand-drawncomposite,mugshot)pairs,usingthisdatatotrainlikelyreducesnoisepresent inthelearnedsubspacesasaconsequenceofhavingmoredatawithaccuratealignment.This explanationthefactthattrainingusingviewedhand-drawncompositeandhand- drawncompositedataresultsinthebestperformanceofthecomponent-basedalgorithm whenmatching(hand-drawncomposite,mugshot)pairs.Thatis,withthestabilityprovided tothelearnedsubspacebytheviewedhand-drawncompositesincombinationwiththehand- drawncomposites(whichhavealessaccurate,butmoreforensicallyrelevant,appearance), thecomponent-basedmethodisabletoperformreasonablywell. ThebestperformancethattheFaceSketchIDSystemisabletoachieveon(hand-drawn composite,mugshot)pairsresultsfromfusingtheholisticandcomponent-basedmatchscores (Fig.6.1(c)).TheRank-200performanceaftermatchscorefusionisapproximately5.7% betterthanthatoftheholisticalgorithmandapproximately8.3%betterthanthatofthe component-basedalgorithm.WeincludeCOTSretrievalratesinFig.6.1(c)asabaseline againstourbestachievedmatchingperformance.Examplesofsuccessfulandunsuccess- 28 MethodRank Holistic30 Component- 4961 Based Fused8 MethodRank Holistic556 Component- 206 Based Fused34 Figure6.3:Examplesofretrievalrankimprovementwhenmatchinghand-drawncomposites tomugshotsaftermatchscorefusionoftheholisticandcomponent-basedalgorithms. ful(hand-drawncomposite,mugshot)matchcasescanbefoundinFig.6.2.Examplesof (hand-drawncomposite,mugshot)matchcasesinwhichmatchscorefusionimprovedthe performancecanbefoundinFig.6.3.Filteringthegallerybasedondemographicinforma- tion(age,gender,andrace)tlyimprovestheretrievalratesforbothholisticand component-basedalgorithmsaswellasthethreeCOTSmatchers(Figs.6.1(d,e,f)).Again, thehighestretrievalrateperformanceisachievedbythematchscorefusionoftheholistic andcomponent-basedalgorithms,withaRank-200retrievalrateofapproximately40%. ThedatainthePRIP-HDCdatabasevariestlyintermsofartistskilland imagequality(resolution,compressionartifacts,etc.)asitconsistsofimagescollected frommultiplesources.Somecompositeshavelittleinformationotherthantheoutlines ofmajorfacialfeatures(Fig.6.4(a)),whereasothershavelessanatomicallycorrectfacial proportionsresultingina\cartoon-like"appearance(Fig.6.4(b)).Itistoovercome thechallengesintrinsictothesepoorqualitycompositesand,asexpected,theperformance oftheFaceSketchIDSystemrsinthesecases.Wealsonotethatthefaceof thecompositesinthePRIP-HDCdatabase(asdeterminedbyCOTS-2)hasbeenobserved tobemoreconsistentwiththatofthePRIP-HDCmugshots(Figs.6.5(a,b))ascompared 29 (a)(b) Figure6.4:Examplesofpoorqualitycompositeswithlittleinformationotherthanoutlines offacialcomponents(a)orunrealisticappearance(b).Bothpairsshownareretrievedat higherthanRank-5000afterdemographic tothemugshotsfromthePCSO(usedtoextendtheexperimentalgallery)(Fig.6.5(c)). Thislimitationofourexperimentaldatabasesmayimplythatusingtdatathathas consistentfacialqualitymayresultintperformanceforalloftheevaluatedface matchers.However,weexpectthattherelativeperformanceoftheFaceSketchIDSystem andtheCOTSfacematcherswillremainconsistentwiththeresultsreportedabove. Figs.6.6(a),(b),and(c)showexampleretrievalsfromthesequesteredsetafterde- mographic(usingthePRIP-HDC+CUHK-VHDC+PRIP-VHDCdatabasetotrain bothalgorithms).Forthese32(hand-drawncomposite,mugshot)pairs,theFaceSketchID SystemisabletomatchtwosubjectsatRank-1,ninebyRank-100and13byRank-200 30 (a)(b)(c) Figure6.5:COTS-2facescoresforthePRIP-HDCdatabasecomposites(a) ( =4 : 89, ˙ =1 : 48),thePRIP-HDCdatabasemugshots( =5 : 89, ˙ =1 : 37),andthe PCSOdatabasemugshots(c)( =6 : 51, ˙ =1 : 37).Theinqualityisrelatively smallerbetweenthecompositesandthePRIP-HDCmugshotsversusthatofthePCSO mugshots.Therefore,thereportedperformanceforallfacematchersmaybeboosteddue tothefactthatitiseasiertomatchimageswithsimilarfacialquality. (a)(b) (c) Figure6.6:Examplesofsuccessfulmatchesof(hand-drawncomposite,mugshot)pairs (a,b)fromthesequestereddataset.Afailurecase(c)showsarelativelyaccuratecomposite whichwasreturnedatarankhigherthan200. 31 3682417 5442 Figure6.7:AcompositeandphotographsdepictingDzhokharTsarnaev.Retrievalranks fortheFaceSketchIDSystemarelistedbelowthecorrespondingphotograph.Allranksare afterdemographic(15-25yearold,white,male). afterdemographic.Notethatmatching13outof32pairsbyRank-200equates toaretrievalrateof40.63%,whichisroughlyequaltothebestresultsreportedinthe cross-validationexperimentsabove. Fig.6.7showsthecompositeandthephotographsdepictingDjokarTsarnaevalong withtherankatwhichtheywereretrieved(afterdemographicAsnotedin[45], thesephotographswouldlikelynotbeinalawenforcementagency'sdatabase.Nevertheless, theFaceSketchIDSystemisabletoretrievemultiplephotographsatlowranks(correctly recognizingeofsixphotographsbyRank-50). 6.2Software-GeneratedComposites Fig.6.8(a)showstheperformanceoftheholisticandcomponent-basedalgorithmsinaddi- tiontotheCOTSmatcherswhenmatching(software-generatedcomposite,mugshot)pairs. Theholisticalgorithmperformswell,achievinga8%retrievalratebyRank-25,14.6%by Rank-100,and20%byRank-200.Incontrastwiththeholisticalgorithm,thecomponent- basedalgorithmperformsworse,achievingRank-25,-100,and-200retrievalsratesof8%, 32 (a)(b) Figure6.8:Resultsfortheholisticandcomponent-basedalgorithmswhenmatching software-generatedcompositestomugshotsbefore(a)andafter(b)demographic COTSmatchersareincludedasabaseline. 10.6%,and12%,respectively.Thismaybeduetothefactthatitistoprecisely recognize(i.e.matchatlowranks)anindividualbasedpurelyonasetofcomponentsfrom thesoftware-generatedcomposite,asitishardtoachievethesamelevelofspcityasis possiblewhendrawingfacialcompositesbyhand.Twoscenarioscontributetothisculty: (i)aparticularcomponentmatchesveryhighlywithanimpostorand/or,(ii)overall,the componentsinthecompositearenottlysimilartothoseinthemugshot.Filter- ingwithdemographicinformationimprovestheRank-200performanceoftheholisticand composite-basedalgorithmswhenmatching(software-generatedcomposite,mugshot)pairs (Fig.6.8(b))to38.6%and32%,respectively. AsmentionedinSection6.1,bothalgorithmsbfromtheuseoftrainingdata thatmirrorsthedatausedduringtesting.Becausewedonothaveenough(software- generatedcomposite,mugshot)pairs,theonlytrainingdatausedwerefromtheCUHK- VHDCdatabases.Thus,whileweachieverespectableRank-200retrievalratesofapprox- imately20%and12%fortheholisticandcomponent-basedalgorithms,respectively,we 33 (a)(b) (c) Figure6.9:ExamplesofsuccessfulRank-1matchesof(software-generatedcomposite, mugshot)pairs(a,b).Afailurecase(c)showsarelativelyaccuratecompositewhichwas returnedatarankhigherthan200. believethattheperformanceofbothalgorithmscouldbeimprovedifmoreoperational software-generatedcompositedatawereavailable. Aswiththehand-drawncomposites,scorefusion(usingthesumrule)ofthetwoalgo- rithmsresultsinthebestretrievalratesfortheFaceSketchIDSystemon(software-generated composite,mugshot)pairs.FusionimprovestheRank-200performancetoapproximately 32%beforedemographicand44%afterdemographicExamplesofsuccess- fulandunsuccessful(software-generatedcomposite,mugshot)matchcasescanbefoundin Fig.6.9.Examplesof(software-generatedcomposite,mugshot)matchcasesinwhichmatch scorefusionimprovedtheperformancecanbefoundinFig.6.10.Trueacceptrates(TAR)at falseacceptrates(FAR)of0.1%and1.0%arereportedinTable6.1forboththePRIP-HDC andthePRIP-SGCdatabasestofacilitatecomparisonswithotherpublishedresults. Itisworthnotingthatinmanycaseswherefacialcompositeswerenotsuccessfully matchedtotheircorrectmugshotmate,theRank-1retrievalismoresimilarinappearance tothecompositethanthetruemate.WeviewthisnotasafailureoftheFaceSketchID System,butaresultoftheinherentinsynthesizinganaccuratecompositewhich 34 MethodRank Holistic5 Component- 467 Based Fused1 MethodRank Holistic492 Component- 146 Based Fused6 Figure6.10:Examplesofretrievalrankimprovementwhenmatchingsoftware-generated compositestomugshotsaftermatchscorefusionoftheholisticandcomponent-based algorithms. Table6.1:Trueacceptrates(TAR)atfalseacceptrates(FAR)of0.1%and1%forthe FaceSketchIDSystemandthreetCOTSmatchersafterdemographic ScoreslistedfortheFaceSketchIDSystemusingthetrainingsetswhichprovidethe highestretrievalratesforbothalgorithmsandfusingthematchscores.Standarddeviations ofthe5-foldcross-validationarereportedwhentestingonthePRIP-HDCdatabase. Matcher TestingTAR@FAR= Database0.1%1.0% FaceSketchID PRIP-HDC17.9% 3.9%54.6% 3.1% PRIP-SGC27.1%65.4% COTS-1 PRIP-HDC12.2% 4.9%38.1% 4.7% PRIP-SGC12.9%47.3% COTS-2 PRIP-HDC11.5% 2.8%49.1% 25.5% PRIP-SGC17%100% COTS-3 PRIP-HDC6.4% 1.8%24.9% 5% PRIP-SGC6.9%23.2% canbedueto(i)inaccurateorrathervaguedescriptionofthesuspectprovidedbythe witness,(ii)theagebetweenthetimethesuspect'smugshotwascapturedand whenhewasseenbyawitness/victim,and(iii)inexperienceoftheforensicartistsorthe limitationsofthecompositesoftware.Examplesofsuch(hand-drawncomposite,mugshot) and(software-generatedcomposite,mugshot)pairsareshowninFig.6.11. Fig.6.12showstheperformanceoftheFaceSketchIDSystemon75hand-drawncompos- 35 (a)(b)(c) (d)(e)(f) Figure6.11:Examplesofahand-drawncomposite(a)andasoftware-generatedcomposite (d)forwhichtheRank-1matchisanimpostor(b,e)thatismoresimilarinappearenceto thecompositethanthegenuinemugshotmatch(c,f). itesand75software-generatedcompositesdepictingthesameindividualsbothbeforeand afterdemographic[15].Forthese75subjects,ourexperimentalresultsindicatethat thesoftware-generatedcompositesaremoreaccuratethanthehand-drawncomposites(32% vs.12%beforeatRank-200,respectively).Inanattempttoprovideanunbiased comparison,thealgorithmsaretrainedonthe(viewedhand-drawncomposite,photograph) pairsfromtheCUHK-VHDCdatabase.Becauseofthis,itissurprisingthatthesoftware- generatedcompositesperformtlybetterthanthehand-drawncomposites. Themostprobableexplanationforthisisthatthetexturesinthesoftware-generated composites,ascomparedwiththehand-drawncomposites,morecloselymatchthemugshots. Sp,FACESusescomponentsfromvisible-lightimagestocreateacomposite(giving thecompositeaphoto-realisticappearance).Thus,whilethehand-drawncompositemay beasaccurateasitssoftware-generatedcounterpart,thenatureoftheproblem(recognition bycomparisonagainstamugshotgallery)mayfavorthesoftware-generatedcomposites. However,weneedtocollectmoresoftware-generatedcompositedata(usingothersoftware kits)tomakeaclaimregardingthesuperiorityofagivencompositemodality. 36 Figure6.12:ResultsfortheFaceSketchIDSystemwhenmatching75hand-drawn compositesand75software-generatedcompositestomugshotsbeforeandafter demographicCOTSmatchersareincludedasabaseline. 6.3SurveillanceComposites Table6.2showstheretrievalranksof(surveillancecomposite,mugshot)pairsfortheFace- SketchIDSystemand(surveillanceimage,mugshot)pairsfortheCOTSmatchersafterde- mographicWhenusingsurveillancecomposites,theFaceSketchIDSystemisable toachieveresultscomparabletoCOTSsystemswhenusingsurveillanceframes. Wenotethatitistomakemeaningfulinferencesfromthesmallnumberof (surveillancecomposite,mugshot)pairsusedinthisstudy.Further,thesurveillanceimages usedinourstudyareofreasonablyhighqualitysuchthat,ingeneral,theuseofsurveil- lancecompositesisunnecessary(astheCOTSmatchersdowellonthesurveillanceframes). However,caseswithhighlyose,occluded,orblurredfacespresentchallengestostate- of-the-artunconstrainedfacerecognitionsystems(suchasthoseinFig.2.1).Wehopeto 37 Table6.2:Retrievalranksfor(surveillancecomposite,mugshot)obtainedfromthe FaceSketchIDSystemand(surveillanceimage,mugshot)obtainedfromthethreeCOTS matchers.RanksmarkedasFTEindicatetheCOTSmatcherfailedtoenrollthequery surveillancemugshot.Allretrievalranksagalleryof100,000subjectsafter demographic SubjectFaceSketchIDCOTS-1COTS-2COTS-3 111460 20 95,962 2 11 15,131 332 2 FTE367 422 11 733 (a)(b)(c) Figure6.13:Asurveillanceframe(a)ofTamerlanTsarnaevwasusedtocreatea high-qualitysurveillancecomposite(drawnbyJaneWankmiller[11])(b)toimprove performancewhenmatchingagainstaphotograph(c).Afterdemographic(20-30 yearold,white,male),theFaceSketchIDSystemisabletoretrievethephotographby Rank-20. acquireadditionalsurveillancedatatoevaluatetheperformanceoftheFaceSketchIDSystem inmorechallengingsurveillancecases. Fig.6.13showsasurveillancecompositeofTamerlanTsarnaevwhichwascreatedusing apoorqualitysurveillanceframe.AswithDjokarTsarnaev,thephotographsshownof Tamerlanwouldnotbeinthemugshotdatabase.However,theFaceSketchIDSystemis abletomatchTamerlan'scompositetohisphotographatRank-2113andRank-20before andafterdemographicrespectively.Thisresultiscomparabletotheperformance achievedusingthemostaccurateCOTSsystemwhenmatchingthebest(surveillanceframe, 38 Figure6.14:Resultsfortheholistic,component-based,andfusedalgorithmsonviewed software-generatedcompositescreatedusingFACESandIdentiKit.Forthecomposites createdusingFACES,twooperators(anAmericanandanAsian)createdcomposites[12]. photograph)pairreportedin[45]. 6.4ViewedSoftware-GeneratedComposites Hanetal.[12]reportRank-1,Rank-100,andRank-200retrievalratesof10.6%,65%,and 73.2%whenmatchingviewedsoftware-generatedcomposites(createdbyanAmericanoper- ator)tophotographs,respectively.TheFaceSketchIDSystemisabletoachievecomparable Rank-1,Rank-100,andRank-200retrievalratesofapproximately14.6%,67.4%,75.6%on thesamedatasetafterfusingthematchscoresoftheholisticandcomponent-basedalgo- rithms(Fig.6.14). Hanetal.alsoreportthematchingperformancewhenFACEScompositesarecreatedby anAsianuser.SimilartotheAmerican-createdcomposites,theFaceSketchIDSystemisable toachievehigherretrievalrates,withanimprovementatRank-200ofapproximately4.9% overthatin[12].Whenmatchingsoftware-generatedcompositescreatedusingIdenti-Kit tomugshotsusingtheFaceSketchIDSystem,weobserveasimilarperformancedegradation comparedwithcompositescreatedusingFACESaswasreportedin[12].Forthecom- positescreatedwithIdenti-Kit,matchscorefusionviathesumruledoesnotimprovethe 39 performanceoftheFaceSketchIDSystembecauseofthepoorperformanceoftheholistic algorithm(althoughanotherfusionmethodologymaybehelpful).Thiscanbeexplainedby thefactthattheIdenti-Kitcompositeshavelittleinformationotherthanoutlinesoffacial components.Forthesepairs,thecomponent-basedalgorithmdetailedinthisthesisachieves comparableresultswiththehighestRank-200retrievalratereportedin[12]. 40 CHAPTER7 SUMMARYANDFUTUREWORK Facialcompositesdrawnbyforensicartists(hand-drawncomposites)orcreatedusingsoft- ware(software-generatedcomposites)areroutinelyusedbylawenforcementagenciestoassist inidenandapprehensionofsuspectsinvolvedincriminalactivities,especiallywhen nophotographofthesuspectatthecrimesceneisavailable.Thisthesisimprovesupon theusabilityandrecognitionperformanceofthesecompositesthrough:(i)Anexploration ofcompositeusecases,(ii)developmentoftheFaceSketchIDSystem,whichprovideslaw enforcementagenciesatoolwithwhichtomoreelymakeuseoffacialcompositedata, and(iii)aninvestigationoftheoftrainingthetwoalgorithmsont(composite, photograph)databasestoachievethebestmatchingperformance. TheFaceSketchIDSystemcombinesthestrengthsoftwotrepresentationand matchingalgorithms(holisticandcomponent-based)toachievestate-of-the-artaccuracies forboth(hand-drawncomposite,mugshot)and(software-generatedcomposite,mugshot) pairs.Wealsoshowtheperformanceofsurveillancecomposites,whichareusedforpoor qualitysurveillanceimageswhereCOTSsystemsareexpectedtofail.Thisscenarioislikely tobecomeanimportantapplicationoffacialcompositestomugshotmatchinggiventhe growingnumberofsurveillancecamerasaroundtheglobe.Threestate-of-the-artcommercial matcherswereusedasbaselinesforourexperiments.Filteringofthelargegallery(100,000 mugshots)basedondemographicinformationshowedatimprovementinretrieval accuracyinallmatchingexperiments. Tofurtherimprovethesystem'sperformanceandrobustnesswouldrequireacquiring additional(composite,photograph)pairs.Aspecialemphasisshouldbegivento surveillancecomposites,spthosewithsevereoseoroccludedfaces.Wearealso currentlydevelopingmatchingalgorithmsthatcandirectlyusetheverbaldescription(from 41 awitness)inadditiontothefacialcompositetoimprovethematchingperformanceofthe FaceSketchIDSystem. 42 BIBLIOGRAPHY 43 BIBLIOGRAPHY [1]TurnerEntertainmentNetworks,\SonofSam,"2014.[Online].Available:http: //www.trutv.com/library/crime/photogallery/serial-killer-sketches.html?curPhoto=4 [2]K.Taylor, ForensicArtandIllustration .CRCPress,2001. [3]TurnerEntertainmentNetworks,\TedKaczynski:TheUnabomber,"2014.[Online]. Available:http://www.crimelibrary.com/terrorists spies/terrorists/kaczynski/5.html [4]FACES4.0,IQBiometrics,http://www.iqbiometrix.com. [5]I.Lovett,\Losangelesidentifyvideoassaultsuspects," NewYorkTimes ,Jan- uary2011. [6]L.Gibson, ForensicArtEssentials .Elsevier,2008. [7]A.M.MartinezandR.Benavente,\TheARfacedatabase," CVCTechnicalReport , vol.24,June1998. [8]D.Lowe,\Distinctiveimagefeaturesfromscale-invariantkeypoints," Int.J.Comput. Vision ,vol.60,no.2,pp.91{110,January2004. [9]T.Ojala,M.ainen,andT.a,\Multiresolutiongrayscaleandrotation invarianttexturewithlocalbinarypatterns," IEEETrans.PatternAnal. Mach.Intell. ,vol.24,no.7,pp.971{987,August2002. [10]S.MilborrowandF.Nicolls,\Locatingfacialfeatureswithanextendedactiveshape model,"in Proc.ECCV ,2008. [11]L.Best-Rowden,H.Han,C.Otto,B.Klare,andA.Jain,\Unconstrainedfacerecog- nition:Identifyingapersonofinterestfromamediacollection," MSUTech.Report , 2014. [12]H.Han,B.Klare,K.Bonnen,andA.Jain,\Matchingcompositesketchestofacephotos: Acomponentbasedapproach," IEEETrans.Inf.ForensicsSecurity ,vol.8,no.1,pp. 191{204,January2013. [13]A.Jain,B.Klare,andU.Park,\Facematchingandretrievalinforensicsapplications," IEEEMultimedia ,vol.19,no.1,pp.20{28,2012. [14]D.McQuiston-Surrett,L.Topp,andR.Malpass,\Useoffacialcompositesystemsin USlawenforcementagencies," Psychology,CrimeandLaw ,vol.12,no.5,pp.505{517, 2006. [15]S.Klum,B.Klare,H.Han,andA.Jain,\Sketchbasedfacerecognition:Forensicvs. compositesketches,"in Proc.IEEEICB ,2013. 44 [16]X.TangandX.Wang,\Facesketchrecognition," IEEETrans.CircuitsSyst.Video Technol. ,vol.14,no.1,pp.50{57,January2004. [17]Q.Liu,X.Tang,H.Jin,H.Lu,andS.Ma,\Anonlinearapproachforfacesketch synthesisandrecognition,"in Proc.IEEECVPR ,June2005,pp.1005{1010. [18]D.LinandX.Tang,\Inter-modalityfacerecognition,"in Proc.ECCV ,2006,pp.13{26. [19]P.YuenandC.Man,\Humanfaceimagesearchingsystemusingsketches," IEEETrans. Syst.,Man,Cybern.A,Syst.,Humans ,vol.37,no.4,pp.493{504,July2007. [20]X.WangandX.Tang,\Facephoto-sketchsynthesisandrecognition," IEEETrans. PatternAnal.Mach.Intell. ,vol.31,no.11,pp.1955{1967,November2009. [21]H.Bhatt,S.Bharadwaj,R.Singh,andM.Vatsa,\MemeticallyoptimizedMCWLD formatchingsketcheswithdigitalfaceimages," IEEETrans.Inf.ForensicsSecurity , vol.7,no.5,pp.1522{1535,October2012. [22]B.Klare,Z.Li,andA.Jain,\Matchingforensicsketchestomugshotphotos," IEEE Trans.PatternAnal.Mach.Intell. ,vol.33,no.3,pp.639{646,March2011. [23]B.KlareandA.Jain,\Heterogeneousfacerecognitionusingkernelprototypesimilar- ities," IEEETrans.PatternAnal.Mach.Intell. ,vol.35,no.6,pp.1410{1422,June 2013. [24]S.LiandA.Jain(eds.), HandbookofFaceRecognition ,2nded.Springer,2011. [25]X.Gao,J.Zhong,andC.Tian,\Facesketchsynthesisalgorithmbasedone-hmm andselectiveensemble," IEEETrans.CircuitsSyst.VideoTechnol. ,vol.18,no.4,pp. 487{496,April2008. [26]Y.Zhang,C.McCullough,J.Sullins,andC.Ross,\Hand-drawnfacesketchrecognition byhumansandapca-basedalgorithmforforensicapplications," IEEETrans.Syst., Man,Cybern.A,Syst.,Humans ,vol.40,no.3,pp.475{485,May2010. [27]R.UhlandN.Lobo,\Aframeworkforrecognizingafacialimagefromapolicesketch," in Proc.IEEECVPR ,June1996,pp.586{593. [28]E-FIT,VisionMetricLtd.,http://www.vision-metric.com. [29]C.Frowd,P.Hancock,andD.Carson,\EvAholistic,evolutionaryfacialimaging techniqueforcreatingcomposites," ACMTrans.Appl.Percept. ,vol.1,no.1,pp.19{39, July2004. [30]Identi-Kit,Identi-KitSolutions,http://www.identikit.net/. [31]G.WellsandL.Hasel,\Facialcompositeproductionbyeyewitnesses," CurrentDirec- tionsinPsychologicalScience ,vol.16,no.1,pp.6{10,February2007. 45 [32]C.Frowd,D.Carson,H.Ness,D.McQuiston-Surrett,J.Richardson,H.Baldwin,and P.Hancock,\Contemporarycompositetechniques:Theimpactofaforensically-relevant targetdelay," LegalandCriminologicalPsychology ,vol.10,no.1,pp.63{81,February 2005. [33]R.Geiselman,R.Fisher,D.MacKinnon,andH.Holland,\Eyewitnessmemoryen- hancementwiththecognitiveinterview," AmericanJournalofPsychology ,vol.99,pp. 385{401,1986. [34]K.Messer,J.Matas,J.Kittler,J.Luettin,andG.Maitre,\Xm2vtsdb:theextended m2vtsdatabase,"in Proc.ofInternationalConferenceonAudio-andVideo-BasedPer- sonAuthentication ,vol.24,June1999,pp.72{77. [35]W.Zhang,X.Wang,andX.Tang,\Coupledinformation-theoreticencodingforface photo-sketchrecognition,"in Proc.IEEECVPR ,2011. [36]P.J.Phillips,H.Moon,P.J.Rauss,andS.Rizvi,\Theferetevaluationmethodologyfor facerecognitionalgorithms," IEEETrans.PatternAnal.Mach.Intell. ,vol.22,no.10, pp.1090{1104,2000. [37]Itseez,\TheOpenCVLibrary,"www.opencv.org,2000. [38]G.Guennebaud,B.Jacob etal. ,\Eigenv3,"http://eigen.tuxfamily.org,2010. [39]Digia,\Qt5,"http://qt-project.org/,2013. [40]J.Klontz,B.Klare,S.Klum,A.Jain,andM.Burge,\Opensourcebiometricrecogni- tion,"in Proc.IEEEBTAS ,2013. [41]K.Bonnen,B.Klare,andA.K.Jain,\Component-basedrepresentationinautomated facerecognition," IEEETrans.Inf.ForensicsSecurity ,vol.8,no.1,pp.239{253,Jan- uary2012. [42]E.MeyersandL.Wolf,\Usingbiologicallyinspiredfeaturesforfaceprocessing," Int. J.Comput.Vision ,vol.76,no.1,pp.93{104,2008. [43]X.TanandB.Triggs,\Enhancedlocaltexturefeaturesetsforfacerecognitionunder lightingconditions," IEEETrans.ImageProc. ,vol.19,no.6,pp.1635{1650, June2010. [44]X.WangandX.Tang,\Randomsamplingforsubspacefacerecognition," Int.J.Com- put.Vision ,vol.70,no.1,pp.91{104,2006. [45]J.KlontzandA.Jain,\Acasestudyonunconstrainedfacialrecognitionusingthe bostonmarathonbombingssuspects," MSUTech.Report ,2013. 46