x. 5.. .V. , 3‘ {..r.‘ .. .n ‘ ; J. . w «. ... n: if," 3 wk... ..mfimwaa up “as: ...... . mauve 4,; .. I; ...lsfiflnhru. 15...? . 4 , in .... saw. a a . .. 2v . . x... :1 P1? .... . a .,..:...u;w..amm.., ..a a . 13:17.“. I“? ;. ...”. ..a.)n..:.22.v.; I an». n. 432. «... \ v I... 3.1.: 3!; q .u r 3n 2 .1 “an, r LIBRARIES MICHIGAN STATE UNIVERSITY EAST LANSING, MICH 48824-1048 . This is to certify that the dissertation entitled CARBENE COMPLEXES, BIS(|M|DO) COMPLEXES, AND TITANIUM HYDROAMINATION CATALYSTS presented by JAMES THADDEUS CISZEWSKI has been accepted towards fulfillment of the requirements for the Ph.D. degree in Chemistry Major Professor’s Signature / L/ ”7/51 Date MSU is an Aflinnative Action/Equal Opportunity Institution PLACE IN RETURN Box to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 cz/c—_—mcmateoue.imts‘ CARBENE COMPLEXES, BIS(IMIDO) COMPLEXES, AND TITANIUM ALKYNE HYDROAMINATION CATALYSTS By James Thaddeus Ciszewski A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 2004 ABSTRACT CARBENE COMPLEXES, BIS(IMIDO) COMPLEXES, AND TITANIUM ALKYNE HYDROAMINATION CATALYSTS By James Thaddeus Ciszewski Several new chelating dipyrrolyl ligands based on N,N-di(pyrrolyl-a-methyl)-N— methylamine (dpma) have been synthesized, including a compound containing a norborn- enyl group (szpna) and a compound containing a chiral menthyl group (szpCHIRA). Dipyrrolylmethane derivatives have also been investigated as chelating dipyrrolyl ligands for metal complexes. The group-6 complexes M(NBu‘)2(dpma), where M = Cr, Mo, and W, have been synthesized and characterized by single-crystal x-ray diffraction, which shows that the axial imido ligand is significantly bent compared to the linear imido group. Variable tem- perature 1H NMR indicates that the imido ligands remain inequivalent from -80 °C to +80 °C. 1H, 13'C, and 14N NMR data have been used to investigate the imido group inequiva- lencies. DFI‘ calculations have been performed to determine the energies associated with straightening the axial (bent) imido ligand, and indicate that the spectroscopic differences between the two imido ligands is due to the different chemical environments (axial versus equatorial). The dpma ligand has been incorporated into several different molybdenum and ruthenium alkylidene species. These five-coordinated complexes do not perform metath- esis reactions, probably due to steric and electronic effects imposed by the dpma ligand. Another complex containing the 5,5-dimethyldipyrrolylmethane ligand (dmpm), shows metathesis activity at elevated temperatures, but decomposition of the complex at these temperatures prohibits the use of this complex as a metathesis catalyst. The first group-6 imido self-tethered alkylidene has been prepared. The tethered complex shows no sign of ring strain. The complex is unstable to alkoxide substitution. Cyclooctyne has been found to react in a [2+2] manner with molybdenum and tungsten bis(imido) dichloride complexes. The alkylidene product isolated in both cases contains two equivalents of cyclooctyne, and is stable to metathesis conditions. Chemical and thermal decomposition of these complexes results in a novel pyrrole containing the two cyclooctyne molecules. The tungsten complex reacts with 50% aqueous sulfuric acid to yield a dinuclear u-oxo oxide complex containing the inserted cyclooctyne molecules. Titanium complexes containing the dpma and dmpm ligands, as well as Ti(NMe2)4, have been found to be active catalysts for the hydroamination of alkyne with amines. These catalysts exhibit different selectivity, indicating that the active catalysts in each case is dif- ferent. Dedicated to the memories of my dad, Richard Thomas Ciszewski, and my Auntie Verba. iv ACKNOWLEDGMENTS This research was carried out with generous support of Michigan State University, The United States Department of Energy, and The Office of Naval Research. The writer gratefully appreciates the support of the Department of Chemistry at Michigan State Uni- versity for a Brubaker Fellowship and a Dye Fellowship, as well as the use of instruments and laboratory space. Thanks also to my Dissertation Committee for the helpful advice with many dif- ferent things, personal and professional. Thank you to Dr. Wulff, for taking the time to read this dissertation, and to be on my committee. I especially appreciate the help of Prof. James McCusker for listening and putting things into perspective. The time and effort put into my research by Prof. Mitch Smith has been remarkable, and I owe much of what I have been able to accomplish to his dedication and time, especially in Odom/Smith Group Meetings. Also thanks are due to Profs. Beck and Posey for the time and effort they put in on my committee. The people I have worked with over the last five and one-half years have also played a large part in my success. Angie, my friend and box mate, helped me with this research, made me laugh, made me realize things (’cause it hit me that Montana was really just a leg, and then just like that it all fell into place), and sang with me. Chris and JD, good friends who helped change the catalyst on so many glove boxes so many times, helped me learn to do air-sensitive chemistry, let me use their glassware and, in the case of JD, always walked too fast. Paul (aka Dr. Worm) who helped me learn how to do things in lab, played “The Time is Wrong” with me (although he usually lost), and made me laugh the first couple of years I was here. Yahong, who helped me not get buried with crystal structures, helped when I needed it, and was just a good friend who always had a smile on her face. Dan let me rant when I needed to, and has been a good friend the last few years. Thanks to Kin, my friend, who I used as an example of how hard to work. Ben helped me purify a few things (especially szpCHIRA) and was always there to talk to. Sarah helped me a lot with various COGS-related things, and the way she stood by me and helped me when I needed help the most, I’ll never forget. Amanda, Emily, Andrea, and Kapil have been there to listen and talk to over the last couple of years. Much thanks goes to Bob Rasico, who helped immensly with getting the new lab in order, and a multitude of other stuff that needed to be fixed and/or changed. Thanks also to Melissa Parsons; Bill Fritz; Manfred Langer and Scott Bankroff in the Glass Shop; Ker- mit Johnson and Long Lee in the NMR facility; Rui Huang; Don Ward; Glenn Wesley and Tom Bartlett in the Machine Shop; Scott Sanderson and Dave Cedarstaff in the Electronics Shop; Tom Geissenger and Bill Flick in Stores; Karen Maki, Lisa Coye, and Beth McGaw in the Business Office; Nan Murray; Debbie Roper; and Lisa Dillingham. Much of the work in this dissertation has been done by and with Ms. Angie Turnas, Dr. Changsheng Cao, Mr. Cliff Foster, Mr. Chris Hall, Ms. Shannon Harris, Dr. Yahong Li, Dr. Yanhui Shi, and Dr. Baohan Xie, and I appreciate their assistance. I would like to men- tion especially the assistance of Prof. James F. Harrison with the computations included in this work. A special thanks must go to my advisor, Prof. Aaron Odom, for his understanding, patience, and support through this research. I hope that I have done my part in securing his future at Michigan State, as he has done his part in helping me throughout the process of getting this research done and becoming an inorganic (or organometallic) chemist. Thank you to Laura, for being understanding and encouraging when I decided to return to school. The encouragement and help of my family is appreciated more than they can know. My mom, who was always patient and supportive, and my sisters Cindy, Kathy, and Sue, who have always been there for me. And thank you also to Dr. Michael Thomas and Rose- mary Thomas for their support and generosity over the last two years, and a special thanks vi to Rosemary Thomas for proofreading this work. Finally, I want to thank Carrie for all of her love and support the last two years. I couldn’t have finished without her and I’m looking forward to our future together. vii PREFACE The bulk of this work has previously been published elsewhere. Chapter 2 is an expanded version of the article “Investigation of Transition Metal-Imido Bonding in M(NBu‘)2(dpma)”, Inorg. Chem. 2004, 43, 3605-3617 by James T. Ciszewski, James F. Harrison, and Aaron L. Odom. Chapter 4 is based on “Synthesis of and Structure of an imido-tethered Schrock carbene of molybdenum”, Dalton Trans. 2004, 4226-4227 by James T. Ciszewski, Baohan Xie, Changsheng Cao, and Aaron L. Odom. Chapter 5 is adapted from “Group-6 Imido Activation by a Ring-Strained Alkyne”, Organometallics 2004, 23, 5386-5388 by James T. Ciszewski, Kapil S. Lokare, and Aaron L. Odom. Chapter 6 is a compilation of the work that appeared in “Titanium til-Pyrrolyl Complexes: Electronic and Structural Characteristics Imposed by the N,N-Di(pyrrolyl- a-methyl)-N-methylamine (dpma) Ligand”, Inorg. Chem. 2001, 40, 1987-1988 by Shan- non A. Harris, James T. Ciszewski, and Aaron L. Odom; “Ti(NMe2)4 as a Precatalyst for Hydroamination of Alkynes with Primary Amines”, Organometallics 2001, 20, 3967-3969 by Yanhui Shi, James T. Ciszewski, and Aaron L. Odom; “Hydroamination of Alkynes Catalyzed by 3 Titanium Pyrrolyl Complex”, Organometallics 2001, 20, 5011-5013 by Changsheng Cao, James T. Ciszewski, and Aaron L. Odom; “Group-4 til-Pyrrolyl Com- plexes Incorporating N,N-Di(pyrrolyl-a-methyl)-N-methylamine”, Inorg. Chem. 2002, 41, 6298-6306 by Yahong Li, Angie Turnas, James T. Ciszewski, and Aaron L. Odom; and “Titanium dipyrrolylmethane derivatives: rapid intermolecular alkyne hydroamination” Chem. Commun. 2003, 586-587 by Yanhui Shi, Christopher Hall, James T. Ciszewski, Changsheng Cao, and Aaron L. Odom. Images in this dissertation are presented in color. viii TABLE OF CONTENTS LIST OF TABLES ....................................................... xii LIST OF FIGURES .................................................... xxi LIST OF SCHEMES .................................................... xxiv LIST OF CHARTS .................................................... xxv LIST OF ABBREVIATIONS ........................................... xxvi CHAPTER 1 CHELATING PYRROLYL LIGANDS ....................................... 1 Introduction ...................................................... 1 Results and Discussion ............................................. 2 Ligands derived from amines ................................... 2 Ligands derived from ketones ................................... 4 Experimental ...................................................... 6 General considerations ........................................ 6 General considerations for X-ray diffraction ...................... 7 N,N-di(pyrrolyl-a-methyl)-N-methylamine (szpma, l) ............. 8 Lizdpma ................................................... 8 N ,N-di(pyrrolyl-a-methy1)-N-( 1 -methyl-norborn-5-ene) amine (szpna, 2) .......................................... 9 [( l S,28,5R)- 1 -(2-isopropyl-5-methyl)cyclohexyl] amine hydrochloride . . 9 N ,N-di(pyrrolyl-a-methyl)-N- [( 1 S ,28,5R)-1-(2-isopropyl-5- methyl)cyclohexyl]amine (szpCI-IIRA, 3) ................ 10 LizdeHIRA ............................................... 10 5,5-di-n-propyldipyrrolylmethane (szppm, 4) .................... 11 Lizdmpm .................................................. 12 CHAPTER 2 AN INVESTIGATION OF TRANSITION METAL—IMIDO IN M(NR)2(dpma) ..... 13 Introduction ..................................................... 13 Results and Discussion ............................................ 17 ' Syntheses and structures ..................................... 17 1H and 13C NMR spectroscopy ................................. 24 Solid-state 13C NMR spectroscopy ............................. 29 14N NMR spectroscopy ...................................... 29 Examination of M(NBu‘)2(dpma) using DF'I‘ ..................... 35 Conclusions ..................................................... 40 Experimental .................................................... 43 General considerations ...................................... 43 ix Procedure for Density Function Theory calculations ............... 45 Cr(NBu‘)2(dpma) (5) ........................................ 45 Mo(NBu‘)2(dpma) (6) ........................................ 46 W(NBu‘)2(dpma) (7) ......................................... 47 Mo[N(2,6-Pri2C6H3)]2(dpma) (8) ............................... 47 Mo(NBu‘)2(deHIRA) (9) .................................... 48 General Considerations for single crystal X-ray diffraction ......... 48 CHAPTER 3 TRANSITION METAL ALKYLIDENES CONTAINING DIPYRROLYL LIGANDS ......................................... 50 Introduction ..................................................... 50 Results and Discussion ............................................ 51 Conclusions ..................................................... 60 Experimental .................................................... 60 General considerations ...................................... 60 General considerations for single crystal X-ray diffraction ......... 61 Mo(dpma)(Ndip)(=CHCMe2Ph) (10) ........................... 63 Mo(NBu‘)2(CH2CMe2Ph)2 .................................... 63 Mo(NBu‘)(=CHCMe2Ph)(OTf)2(dme) ........................... 64 Mo(dpma)(NBu‘)(=CHCMe2Ph) (11) ........................... 64 Mo(dmpm)(Ndip)(=CHCMezPh) (12) ........................... 65 Ru(dpma)(PCy3)(=CHCH=CMe2) (13) .......................... 65 Ru(dpma)(PCy3)(=CHPh) (l4) .................................... 66 CHAPTER 4 SELF-TETHERED MOLYBDENUM ALKYLIDENES ........................ 68 Introduction ..................................................... 68 Results and Discussion ............................................ 70 Experimental .................................................... 73 General considerations ...................................... 73 General considerations for single crystal X-ray diffraction ........ 74 2-(3,3-dimethylpent-4-enyl)nitrobenzene ........................ 75 2-(3,3-dimethylpent-4-enyl)aniline ............................. 76 Mo(NAr)2C12(DME) (16) ..................................... 77 Mo(NAr)2(CH2CMe2Ph)2 (17) ........................................ 77 Tethered Carbene (18) ....................................... 78 CHAPTER 5 CYCLOOCTYNE ADDITION TO GROUP-6 IMIDO COMPLEXES ............. 79 Introduction ..................................................... 79 Results and Discussion ............................................ 80 Experimental .................................................... 87 General considerations ...................................... 87 General considerations for single crystal X-ray diffraction ......... 87 Mo(=C8H12=C8H12=NAr)(NAr)Cl2 (19) .......................... 89 W(=C8H12=C8H12=NAI)(NAr)C12 (20) ........................... 90 Pyrrole 21 ................................................. 90 [W(=C8H12=C8H12=NAr)(O)(p.-O)]2 (22) ......................... 91 CHAPTER 6 HYDROAMINATION OF ALKYNES USING TITANIUM CATALYSTS .......... 92 Introduction ..................................................... 92 Results and Discussion ............................................ 93 Catalyst design and synthesis ................................. 93 Hydroamination ............................................ 96 Conclusions ..................................................... 105 Experimental .................................................... 105 General considerations ...................................... 105 Ti(NMe2)2(dpma) (24) ....................................... 105 Ti(dppm)(NMe2)2 (26) ...................................... 107 Representative procedure for hydroamination reactions ............ 107 Procedure for the kinetic measurements ........................ 108 Reaction of excess phenylacetylene with Ti(NMe2)2(dpma) ......... 108 Procedure for hydroamination of l-hexyne with p-toluidine followed by reduction ..................................... 108 General considerations for single crystal x-ray diffraction .............. 109 BIBLIOGRAPHY ..................................................... 111 APPENDIX .......................................................... 123 xi Table 1-1. Table 2-1. Table 2-2. Table 2-3. Table 3-1. Table 3-2. Table 3-3. Table 3-4. Table 4-1. Table 4-2. Table 5-1. Table 5-2. Table 5-3. Table 6-1. LIST OF TABLES Structural parameters for szpma (l), szpna (2), and szmpm from single crystal x-ray diffraction ................................. 6 Selected bond distances and angles from x-ray diffraction on complexes 5-9. For the numbering scheme, see Figure 2-2 ................ 21 Comparison of solution and solid-state 13C NMR data from compounds 5—7 ..................................................... 30 Structural parameters for compounds 5—9 from single-crystal x-ray diffraction ....................................................... 44 Selected bond distances and angles from x-ray diffraction on complexes 10 and 11. For the numbering scheme, see Figure 3-1 ........... 52 Selected bond distances and angles from x-ray diffraction on complex 12. For the numbering scheme, see Figure 3-3 ................ 56 Selected bond distances and angles from x-ray diffraction on complex 13. For the numbering scheme, see Figure 3-4 ................. 59 Structural parameters for compounds 10—13 from single-crystal x-ray diffraction. .................................................... 62 Selected bond distances and angles from x-ray diffraction of the tethered carbene. For the numbering scheme, see Figure 4-1 .............. 72 Structural parameters for compound 18 from single-crystal x-ray diffraction. ...................................................... 73 Selected bond distances and angles from x-ray diffraction of the double insertion product. For the numbering scheme, see Figure 5-1 ..... 81 Selected bond distances and angles from x-ray diffraction of the double insertion product. For the numbering scheme, see Figure 5- 1. . . . 85 Structural parameters for compounds 19—22 from single-crystal x-ray diffraction. ...................................................... 88 Selected bond distances and angles from x-ray diffraction of Ti(dpma)(NMe2)2 (23). For the numbering scheme, see Figure 3-4 ....... 94 xii Table 6-2. Selected bond distances and angles from x-ray diffraction of Ti(dmpm)(NMe2)2. For the numbering scheme, see Figure 3-4. ............ 97 Table 6-3. Alkyne hydroamination results ................................... 100 Table 6-4. Results of hydroamination of l-hexyne with amines .................. 102 Table 6-5. Comparison of rate constants for selected catalysts ................... 104 Table 6-6. Structural parameters for compounds 24—26 from single-crystal x-ray diffraction. ...................................................... 106 Table A-l.l. Table A-1 2. Table A-1.3. Table A-1.4. Table A-l.5. Table A-2.1. Table A-2.2. Table A-2.3. Table A-2.4. Table A-2.S. Crystal data and structure refinement for szpma .................. 123 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103)for H 2dpma. U(eq) 18 defined as one third of the trace of the orthogonalized U'J tensor ............................... 124 Bond lengths [A] and angles [°] for szpma ...................... 124 Anisotropic displacement parameters (A2 x 103) for szpma. The anisotropic displacement factor exponent takes the form: -2n2[h2a*2U11 + +2hka* b* U12] ......................... 125 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for szpma ........................................ 126 Crystal data and structure refinement for szpna ................... 127 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for H 2.dpna U(eq) 18 defined as one third of the trace of the orthogonalized UlJ tensor ....................... 128 Bond lengths [A] and angles [°] for szpna ...................... 129 Anisotropic displacement parameters szpna. The anisotropic displacement factor exponent takes the form: -2.1t2[h2a*2U”+ +2hka* b* U12] ............................... 129 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for (szpna) .................................. 130 Table A-3.1 Crystal data and structure refinement for szmpm .................. 131 xiii Table A-3.2. Table A-3.3. Table A-3.4. Table A-3.5. Table A-4.l. Table A-4.2. Table A-4.3. Table A-4.4. Table A-4.5. Table A-5.l. Table A-5.2. Table A-S.3. Table A-S.4. Table A-5.5. Table A-6.l. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103)for H depm. U(eq) 18 defined as one third of the trace of the orthogonalized U'J tensor ............................ 132 Bond lengths [A] and angles [°] for llzdmpm ..................... 132 Anisotropic displacement parameters (A2 x 103) for szmpm. The anisotropic displacement factor exponent takes the form: -2:tz[h2 a*2U“ +... +2hka* b* U12] ............................. 133 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for H 2dmpm ................................ 134 Crystal data and structure refinement for Cr(NBu‘)2(dpma) ........... 135 Atomic coordinates ( x 104), equivalent isotropic displacement parameters (A2 x103), and occupancies for Cr(N Bu‘)2(dpma) U(eq)1s defined as one third of the trace of the orthogonalized U‘J tensor. .136 Bond lengths [A] and angles [deg] for Cr(NBu‘)2(dpma) ............. 136 Anisotropic displacement parameters (A2 x 103) for Cr(NBu‘)2(dpma). The anisotropic displacement factor exponent takes the form: -2:t2[h2a*2U“+... +2hka* b*U‘2]. .............................. 137 Hydrogen coordinates ( x 104), isotropic displacement parameters (A2 x 103), and occupancies for Cr(NBu‘)2(dpma) ..................... 138 Crystal data and structure refinement for Mo(dpma)(NBu‘)2 .......... 139 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dpma)(NBu‘)2. U(eq) 15 defined as one third of the trace of the orthogonalized U‘J tensor ......................... 140 Bond lengths [A] and angles [°] for Mo(dpma)(NBu‘)2. ............ 140 Anisotropic displacement parameters (A2 x 103) for Mo(dpma)(NBu‘)2. The anisotropic displacement factor exponent takesthe form: -2:l:2[h2 a*2U11 +.. .+2hka* b*U'2]. ............... 141 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(dpma)(NBu')2. ..................... 142 Crystal data and structure refinement for W(dpma)(NBu‘)2 ........... 143 xiv Table A-6.2. Table A-6.3. Table A-6.4. Table A-6.5. Table A-‘7.1. Table A-7.2. Table A-7.3. Table A-7.4. Table A-7.5. Table A-8.1. Table A-8.2. Table A-8.3. Table A-8.4. Table A-8.5. Table A-9.1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for W(dpma)(NBu‘)2. U(eq) is defined as one third of the trace of the orthogonalized UlJ tensor ................ 144 Bond lengths [A] and angles [°] for W(dpma)(NBu‘)2. ............. 144 Anisotropic displacement parameters (A2 x 103) for W(dpma)(NBu‘)2. The anisotropic displacement factor exponent takes the form: ~21132[hza*2U” + + 2hka* b* U12] .................. 145 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for W(dpma)(NBu‘)2. ........................ 146 Crystal data and structure refinement for Mo(dpma)(Ndip)2. ......... 147 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)2. U(eq) is defined as one third of the trace of the orthogonalized UiJ tensor ................... 148 Bond lengths [A] and angles [°] for Mo(dpma)(Ndip)2 .............. 148 Anisotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)2. The anisotropic displacement factor exponent takes the form: -2:l'l22[h2 a*2U11 +... +2hka* b* U12] ................. 150 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(dpn1a)(Ndip)2. ........................... 151 Crystal data and structure refinement for Mo(deHIRA)(NBu‘)2. ..... 153 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(deHIRA)(NBu‘)2. U(eq). is defined as one third of the trace of the orthogonalized UlJ tensor ...... 154 Bond lengths [A] and angles [°] for Mo(deHIRA)(NBu‘)2 .......... 154 Anisotropic displacement parameters (A2 x 103) for Mo(deHIRA)(NBu‘)2. The anisotropic displacement factor exponent takes the form: -2112[ h2 a*2U11 + + 2 h k a* b* U12] ...... 156 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(deHIRA)(NBu‘)2. ................ 157 Crystal data and structure refinement for Mo(dpma)(Ndip)(=CHCMe2Ph) .............................. 158 XV Table A-9.2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)(=CHCMe2Ph). U(eq) is defined as one third of the trace of the orthogonalized UlJ tensor. . . . . 159 Table A-9.3. Bond lengths [A] and angles [°] for Mo(dpma)(Ndip)(=CHCMe2Ph). . 159 Table A-9.4. Anisotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)(=CHCMeaPh). The anisotropic displacement factor exponent takes the form: -23'l: [h2 a"‘2U11 + + 2 hk a* b* U12] ......... 161 Table A-9.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)(=CHCMe2Ph) ............. 162 Table A-10.1. Crystal data and structure refinement for Mo(NBu‘)(dpma)(=CHCMe2Ph)°pentane ........................ 163 Table A-10.2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dpma)(NBu‘)(=CHCMe2Ph)-pentane. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ..................................... 164 Table A-10.3. Bond lengths [A] and angles [°] for Mo(dpma)(NBu‘)(=CHCMe2Ph)°pentane ................... 165 Table A-10.4. Anisotropic displacement parameters (A2 x 103) for Mo(dpma)(NBut)(=CHCMe2Ph)-pentane. The anisotropic displacement factor exponent takes the form: —2n2[ 112 a*2U1' + + 2 h k a* b* U12] ..................... 167 Table A-10.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters(A2 x 103) for Mo(dpma)(NB u‘) (=CHCMe2Ph)0pentane ..... 169 Table A-11.1. Crystal data and structure refinement for Mo(dmpm)(Ndip)(=CHCMe2Ph). ........................... 171 Table A-11.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dmpm)(NdiP)(=CHCMe2Ph). U(eq) is defined as one third of the trace of the orthogonalized U‘J tensor. . . . 172 Table A-11.3. Bond lengths [A] and angles [°] for Mo(dmpm)(Ndip)(=CHCMe2Ph). ........................... 172 Table A-11.4. Anisotropic displacement parameters (Azx 103) for Mo(dmpm)(Ndip)(=CHCMe§Ph). The anisotropic displacement factor exponent takes the form: -2rt [h2 a"‘2U11 + + 2 h k a* b* U12] ....... 174 xvi Table A-11.S. Table A-l2.1. Table A-12.2. Table A-l2.3. Table A-12.4. Table A-12.5. Table A-13.1. Table A-l3.2. Table A-l3.3. Table A-13.4. Table A-13.5. Table A-14.1. Table A-14.2. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(dmpm)(Ndip)(=CHCMe2Ph) ........... 175 Crystal data and structure refinement for Ru(dpma)(PCy3)(=CHCH=CMe2)-toluene ...................... 177 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Ru(dpma)(PCy3)(=CHCH=CMe2)0toluene. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ....................................... 178 Bond lengths [A] and angles [°] for Ru(dpma)(PCy3)(=CHCH=CMe2)-toluene .................... 178 Anisotropic displacement parameters (A2 x 103) for Ru(dpma)(PCy3)(=CHCH=CMe2)0toluene. The anisotropic displacement factor exponent takes the form: -2.Tt2[ h2 a*2U11 + + 2 h k a* b* U12] ................... 180 Hydrogen coordinates ( x 104) and isotropic displacement parameters (Azx 103) for Ru(dpma)(PCy3)(=CHCH=CMe2)-toluene .......... 182 Crystal data and structure refinement for Mo(NR)(OTf)2(DME) ...... 183 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(NR)(OTf)2(DME). U(eq) is defined as one third of the trace of the orthogonalized U‘J tensor .............. 184 Bond lengths [A] and angles [°] for Mo(NR)(OTt)2(DME). ...... 184 Anisotropic displacement parameters (A2 x 103) for Mo(NR)(OTf)2(DME). The anisotropic displacement factor exponent takes the form: -2 112[h2 a"‘2 U11 + + 2 h k a* b* U12] ...... 186 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(NR)(OTf)2(DME) .................... 187 Crystal data and structure refinement for MoC12(NAr)(=C8H12=C8H12=NAr). ....................... 188 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for MoC12(NAr)(=C8H12=C8H12=NAr). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................... ' .................... 189 xvii Table A-14.3. Table A-14.4. Bond lengths [A] and angles [°] for MoC12(NAr)(=C8H1 2=C8H12=N Ar). ............................. 189 Anisotropic displacement parameters (A2 x 103) for MoC12(NAr)(=C8H12=C8H12=NAr). The anisotropic displacement factor exponent takes the form: -2n2[h2a*2U“+...+2hka*b*U12] ....................... 191 Table A-14.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for MoC12(NAr)(=C8H12=C8H12=NAr) ........ 193 Table A-15.1. Crystal data and structure refinement for WC12(NAr)(=C8H12=C8H12=NAr) ............................... 194 Table A-15.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A?- x 103) for WC12(NAr)(=C8H12=C8H12=NAr). U(eq) is defined as one third of the trace of the orthogonalized U‘J tensor. ..... 195 Table A-15.3. Bond lengths [A] and angles [°] for WC12(NAr)(=C8H12=C8H12=NAr) ............................. 195 Table A-15.4. Anisotropic displacement parameters (A2 x 103) for Table A-15.5. Table A-l6.l. Table A-l6.2. WC12(NAr)(=C8H12=C8H12=NAr). The anisotropic displacement factor exponent takes the form: -2n2[h2a*2U“+...+2hka*b*U12] ........................ 197 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for WC12(NAr)(=C8H12=C8H12=NAr) ......... 199 Crystal data and structure refinement for [W (=C8H12=C8H12=NAr)(O)(u-O)]2. ....................... 200 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for [W(=C8H12=C8H12=NAr)(O)(ll-O)]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor ..................................... 201 Table A-16.3. Bond lengths [A] and angles [°] for [W(=C8H12=C8H12=NAr)(O)(lt-O)]2. ........................... 201 Table A-l6.4. Anisotropic displacement parameters (A2 x 103) for [W(=C8H12=C8H12=NAr)(O)(u-O)]2. The anisotropic displacement factor exponent takes the form: -2n:2[h2a*2U“+...+2hka*b*U12] .................... 203 xviii Table A-16.5. Table A-17.1. Table A-17.2. Table A-l7.3. Table A-17.4. Table A-17.5. Table A-18.1. Table A-18.2. Table A- 18.3. Table A-18.4. Table A-18.5. Table A-19.1. Table A-19.2. Table A-19.3. Table A-19.4. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for [W(=C8H12=C8H12=NAr)(O)(u-O)]2 ...... 204 Crystal data and structure refinement for Ti(NMe2)2(dpma). ........ 205 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Azx 103) for Ti(NMe2)2(dpma). U(eq) is defined as one third of the trace of the orthogonalized UlJ tensor. . . . . 206 Bond lengths [A] and angles [°] for Ti(NMe2)2(dpma) ............. 206 Anisotropic displacement parameters (Azx 103) for T1(NMe2)2(dpma). The anisotropic displacement factor exponent takes the form: -23'l22[ 112 a*2U“ + + 2 h k a* b* U12] ........................ 207 Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Ti(NMe2)2(dpma) ............................. 208 Crystal data and structure refinement for Ti(dmpm)(NMe2)2 ......... 209 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Ti(dmpm)(NMe2)2. U(eq) is defined as one third of the trace of the orthogonalized U‘J tensor. ................ 210 Bond lengths [A] and angles [°] for T i(dmpm)(NMe2)2. ........... 210 Anisotropic displacement parameters (Azx 103) for 'I”l(dmpm)(NMe2)2. The anisotropic displacement factor exponent takes the form: -2Itz[h2 a"‘2U11 + +2hka* b* U12] ........................ 213 Hydrogen coordinates ( x 104) and isotropic displacement parameters (Azx 103) for Ti(dmpm)(NMe2)2. ..................... 214 Crystal data and structure refinement for Ti(dppm)(NMe2)2. ........ 215 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x 103) for Ti(dppm)(NMe2)2. U(eq) is defined as one third of the trace of the orthogonalized U‘J tensor. ..... 216 Bond lengths [A] and angles [°] for Ti(dppm)(NMe2)2 ............. 217 Anisotropic displacement parameters (A2 x 103) for Ti(dppm)(NMe2)2. The anisotropic displacement factor exponent takes the form: -21t2[ h2 a*2U11 + + 2 h k a* b* U12] ...................... 218 xix Table A-l9.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Azx 103) for Tl(dppm)(NMe2)2. ......... 219 XX Figure 1.2. Figure 1-3. Figure 1-3. Figure 2.1. Figure 2-2. Figure 2.3. Figure 2-4. Figure 2-5. Figure 2-6. Figure 2-7. Figure 2-8. LIST OF FIGURES The ORTEP representation (50% probability ellipsoids) of szpma (1), obtained by single-crystal x-ray diffraction, showing the two indistinguishablemolecules in the assymmetric unit .................... 3 The ORTEP representation (50% probability ellipsoids) of szpna (2), obtained by single-crystal x-ray diffraction. ....................... 4 The ORTEP representation (50% probability ellipsoids) of 5,5—dimethyl-dipyrrolylmethane (szmpm) obtained by single-crystal x-ray diffraction, showing the two chemically equivalent molecules in the asymmetric unit .................... 5 Statistics on the bis(imido) complexes of group-6 from the Cambridge Structural Database. Each entry is the sum of the two imido bond angles in a complex ................................. 14 The ORTEP representation (50% probability elipsoids) of Cr(dpma)(NBu')2 (5) ......................................... 19 The variable temperature 1H NMR of Mo(dpma)(NBu‘)2 (6) ............ 20 Superposition of the crystal structures of Cr(dpma)(NBu‘)2 (5), Mo(dpma)(NBu‘)2 (6), and W(dpma)(NBu‘)2 (7). ................... 22 Statistics on the five coordinate bis(imido) complexes of group-6 from the Cambridge Structural Database showing the type of imido ligand versus 1: ................................................ 23 The relevant nOe enhancements used to assign the 1H NMR resonances in W(dpma)(NBu‘)2; the arrowhead points to the proton that is enhanced by excitation of the proton at the end of the arrow .................................................. 24 Plot of bis(tert-butylimido) complexes of group-6 A8043 values versus Sanderson electronegativity values for the metals in the +6 oxidation state ....................................... 26 Estimation of electron-withdrawing ability of various ligand sets on M(NBu‘)2. Values are in arbitrary units with bis(tert-butyl)diazene as reference of 0. Metal centers estimated to be more electron- withdrawing than the reference are positive. ...................... 28 xxi Figure 2-9. The solution state (top) and CP-MAS 13C NMR (bottom) spectra of Cr(dpma)(NBu‘)2(S). .............................................. 29 Figure 2-10. The 14N NMR spectra of Cr(NBu‘)2(dpma) (5) (top), Mo(NBu‘)2(dpma) (6) (middle), and W(NBu‘)2(dpma) (7 ) (bottom). ..... 3 1 Figure 2-11. Comparison of selected bond angles and bond lengths from the crystal strucures (top) and calculated geometries (bottom) of M(dpma)(NBu‘)2. . . 36 Figure 2-12. Plot of the differences of the calculated atomic charge differences between linear and bent imido bondsd versus Abbb for compounds 5-7. . . 37 Figure 2-13. Plots of calculated energies versus angle for the axial imido ligand of compounds 5-7. ........................................... 39 Figure 2-14. Plot of calculated energy difference from minimum to 175° in axial imido angle versus estimated electronegativities on the Pauling Scale. . . . 40 Figure 2-15. Plot of some of the calculated molecular orbitals of Figure 3.1. Figure 3-2. Figure 3-3. Figure 3-4. Figure 3-5. Figure 4-1. Figure 5-1. Figure 5-2. Cr(dpma)(NBu‘)2 (S). For ease of viewing, atom labels and tert-butyl methyl groups have been omitted ..................... 41 The ORTEP representation (50% probability ellipsoids) of Mo(dpma)(Ndip)(=CHCMe2Ph) (10) (left) and Mo(dpma)(NBu‘)(=CHCMe2Ph) (11) (right) .......................... 52 The space-filling representation of Mo(dpma)(Ndip)(=CHCMe2Ph) (10) (left) and Mo(dpma)(NBu‘)(=CHCMe2Ph) (11) (right), with the ligands color-coded. ..................................... 54 The ORTEP representation (50% probability ellipsoids) of Mo(dmpm)(Ndip)(=CHCMe2Ph) (11). ............................. 56 The variable temperature 1H NMR spectra of Mo(dmpm)(Ndip)(=CHCMe2Ph) (12) ................................. 57 The ORTEP representation (50% probability ellipsoids) of Ru(dpma)(PCy3)(=CHCH=CMe2) (13). ............................... 59 The ORTEP representation (25% probability ellipsoids) of the tethered carbene (18) ................................................. 72 The ORTEP representation (25% probability ellipsoids) of azametallacycle 19. ........................................... 81 The ORTEP representation (25% probability ellipsoids) of pyrrole 21 formed from decomposition of molybdenum complex 19. ............ 84 xxii Figure 5-3. The ORTEP representation (25% probability ellipsoids) of tungsten u-oxo complex 22. ........................................... 85 Figure 5-4. Simplified structure comparison between 20 (left) and 22 (right) illustrating the difference in bond length alternation due to changing ligand sets. ................................................. 86 Figure 6-1. The ORTEP representation (25% probability ellipsoids) of Ti(dpma)(NMe2)2 (23) ......................................... 94 Figure 6-2. The ORTEP representation (25% probability ellipsoids) of Ti(dmpm)(NMe2)2 (25) ......................................... 97 Figure 6-3. The variable temperature 1H NMR spectra of Ti(dmpm)(NMe2)2 (25). . . . 98 xxiii Scheme 3-1. Scheme 4-1. Scheme 4-2. Scheme 4-3. Scheme 5-1. Scheme 5-2. Scheme 6-1. LIST OF SCHEMES Interconversion of the axial imido ligand with the equatorial neophylidene ligand through a Berry pseudo-rotation mechanism ..... 55 The cyclic ploymerization of norbornylene using a self-tethered metathesis catalyst. ..................................... 69 Synthesis of 2-(3,3-dimethylpent-4-enyl)aniline. ................... 70 Synthesis of the tethered carbene ................................ 71 [2+2] Cycloaddition of an alkyne with an imido ligand and resonance forms of the products. ............................................. 79 Reactions of M(NAr)2C12(dme) with cyclooctyne. .................. 82 Possible imine products from terminal alkyne hydroamination ......... 92 xxiv LIST OF CHARTS Chart 2-1. A few of the pertinent valence bond structures for a transition metal bound imido ligand ................................................ 15 XXV LIST OF ABBREVIATIONS dpma: N,N-di(pyrrolyl-a-methyl)-N-methylarnine dpna: N,N-di(pyrrolyl-or-methyl)-N-(1-methyl-norborn-5-ene) amine deI-IIRA: N,N-di(pyrrolyl-a-methyl)-N-[(1S,2S,5R)-l-(2-isopropyl-5-methyl)- cyclohexyl]an1ine dppm: 5,5-di-n-propyldipyrrolyhnethane dmpm: 5,5-dimethyldipyrrolylmethane Bu‘: tert-butyl Ndip: 2,6-diisopropylphenyl Ar: an aromatic group ppm: parts per million DME, dme: 1,2-dimethoxyethane Tl-IF, thf: tetrahydrofuran xxvi CHAPTER 1 CHELATING PYRROLYL LIGANDS Introduction Pyrrole is currently undergoing a renaissance as a ligand for early transition metals. Previously, the pyrrole group was used primarily as the building block for macrocylic ligands, i.e. the ubiquitous porphryns and pthalocyanines.1 Recently, several groups, including the Odom group at Michigan State University, have begun to study smaller pyrrole containing ligands. This sudden interest in the use of pyrrole in ligands can be attributed to several factors, the primary one being the aromaticity of the pyrrole molecule. While the estimated aromatic stabilization energy of pyrrole, ~23 kcal/mole, is less than that of benzene at ~35 kcal/mole, this stabilization results in the pyrrolyl nitrogen atom being decidedly non- basic, primarily because the lone pair electrons of the nitrogen atom is delocalized in order to complete the 6-electron rt-system of pyrrole.2 In transition metal complexes, the pyrrolyl lt-system and the metal center can compete for the lone pair of electrons on the nitrogen atom, allowing for the stablization of both high and low oxidation-state metal centers (eq 1-1). Low oxidation-state metal @N—M <———> QN—, M ‘M (1-1) centers would be expected not to compete as effectively for the lone pair electrons as the Jt-system, resulting in an n1 linkage through a deprotonated pyrrole nitrogen atom. High oxidation-state metal centers would be expected to be more competitive for the lone pair electrons, either disrupting the aromatic system, or bonding through it. Additionally, pyrrole is an attractive building block for ligand synthesis because it readily undergoes substitution chemistry, making it easily incorporated into complex ligands.3 For example, the Mannich reaction between pyrrole, formaldehyde, and a wide variety of aliphatic amines (vide infra) gives high yields of tridentate dipyrrolyl ligands. There are also many ways of introducing substituents to the pyrrole ring itself, affording an easy way of altering the electronics of the aromatic Jt-system. Syntheses of several multi-dentate ligands incorporating the pyrrole ring has been accomplished. These syntheses, as well as the use of these compounds as ligands in early transition metal chemistry, are detailed below. Results and Discussion Ligands derived from amines. N,N-Di(pyrroly1-or-methyl)-N-methy1amine (szpma, 1) is synthesized as shown in eq 1-2. Carrying out the reaction at a lower temperature, 55 °C, decreases side products and eliminates the need for chromatography. This results in a higher yield than the preparation of Raines.4 The ORTEP diagram obtained by single-crystal x-ray analysis is shown in Figure 1-1. 1) EtOH / H20, 55 'C H H NH _ N N (12) + - N 20 * CW * ”2°" ..iHéi’. = W513) 2 3 1 1) EtOH / H20, RT > O NH - 2H 0 2 / + (El . + 2H200 2 -; H \ Q ; .,,/NH3 C'— 2) K2003 I N N A if @H / 2 (1-3) Interestingly, the methylamine hydrochloride can be replaced by a wide variety of amine hydrochlorides. This enables the synthesis of a variety of ligands with widely varying steric and electronic properties, while still retaining the chelating dipyrrole properties of the parent ligand. For example, the inclusion of a chiral menthol group in the ligand, eq 1-3, results in a ligand, szpCI-IIRA (2). Alternatively, a functional group may be introduced into the ligand this way, as in the synthesis of szpna (3), eq 1-4. Several of these novel ligands have been prepared. C24a C32a C333 C12a Figure 1-1. The ORTEP representation (50% probability ellipsoids) of szpma, 1, ob- tained by single-crystal x-ray diffraction, showing the two indistingishable molecules in the asymmetric unit. However, a few amines did not yield the desired ligands. For example, t-butylamine hydrochloride yielded only the product where the t-butylamine was monosubstituted, and attempts to produce a ligand based on 4-(ethylamine)-styrene were unsuccessful, yielding only thick, intractable oils. Single crystal x-ray analysis of two of these ligands, szpma (Figure 1—1) and szpna (Figure 1-2), shows the connectivity of the atoms. The bond lengths and bond 1)EtOH/H20. 55 ‘0 {LE 2 UH + + + 2Hzco -2H20 H (1.4) / 4| Z ,NH3 cr —>2)ch03 N N D4 WON“ / 3 angles in these structures are unremarkable. Structural parameters of the crystal structures of szpma and szpna are given in Table 1-1. Reaction of these ligands with slightly more than two equivalents of n-butyl lithium generates, in excellent yields, the dilithium salts of the ligands. These salts can be used in substitution chemistry with metal halides as an effective means of introducing the ligand to a metal center. Figure 1-2. The ORTEP representation (50% probability ellipsoids) of szpna (3), ob— tained by single-crystal x—ray diffraction. Ligands derived from ketones. In order to change the electronic and steric properties of the szpma-type ligands, a slightly altered dipyrrolyl ligand without the donor amine group was envisioned. The work of Lindsey’s group with dipyrrolylmethanes gave the appropriate ligands.5 The acid-catalyzed condensation of two equivalents of pyrrole pyrrole 5°/o CF3C02H ¥ H N W + 2V\ /7 4420 C22a Figure 1-3. The ORTEP representation (50% probability ellipsoids) of 5,5—dimethyl- dipyrrolylmethane (szmpm) obtained by single-crystal x-ray diffraction, showing the two chemically equivalent molecules in the asymmetric unit. with aldehydes or ketones rapidly form the dipyrrolyhnethane derivatives, for example the synthesis of 5,5—di-n-propyldipyrrolylmethane (szppm, 4), eq 1-5. The aldehyde or ketone used may be varied extensively, including aliphatic and aromatic compounds. Single-crystal x-ray analysis of 5,5—dimethyl-dipyrrolylmethane (szmpm) (Figure 1-3), shows the connectivity of the atoms. As in the case of szpma and szpna, the bond Table 1-1. Structural parameters for szpma (1), szpna (3), and szmpm from single— crystal x-ray diffraction. szpma szpna szmpm Formula C“1'11st C18H23N3 C22stN4 Formula weight 189.26 281.39 348.48 Space Group P3(l) P—1 P—1 a (A) 14.094(4) 7.6219(9) 8.434(3) b (A) 14.094(4) 9.8910(12) 9.197(3) c (A) 9.288(3) 10.9370(13) 13.232(4) (1 (°) 90 72.509(2) 99.838(7) (3 (°) 90 83.640(2) 95.4490) 7 (') 120 77.710(3) 97.257(7) Volume (A3) 1597.7(8) 767.41(16) 996.0(6) z 6 2 2 (1 (mm-1) 0.073 0.073 0.070 Dm(gcm'3) 1.180 1.218 1.162 Rain) (1 > 2s) 0.0988 0.0536 00405 11,070) (I > 2s) 0.2636 0.1209 0.0811 lengths and the bond angles of the pyrrole rings in szmpm are unremarkable. Structural parameters are included in Table 1-1. As in the case of the szpma derivatives, the dipyrromethanes react with n-butyl lithium to give the dilithium salts, which enables the introduction of the ligands to a wide variety of metal centers. Experimental General considerations. All manipulations were carried out in an MBraun drybox under a purified nitrogen atmosphere unless stated otherwise. Anhydrous ether was purchased from Columbus Chemical Industries, Inc. and freshly distilled from purple sodium benzophenone ketyl. Toluene was purchased from Spectrum Chemical Mfg. Corp. and purified by refluxing over molten sodium under nitrogen for at least 2 days. Pentane (Spectrum Chemical Mfg. Corp.), tetrahydrofuran (JADE Scientific), 1,2- dimethyoxyethane (DME, Aldrich Chemical Company), and benzene (EM Science) were distilled from purple sodium benzophenone ketyl. Dichloromethane (EM Science) and acetonitrile (Spectrum Chemical) were distilled from calcium hydride. Deuterated solvents were dried over purple sodium benzophenone ketyl (C6D6) or P205 (CDC13) and distilled under nitrogen. 1—(methylamine)-5-norbornene6 and (1S, 2S, 5R)-l-cyano-2-isopropyl- S-methylcyclohexane7 were synthesized as reported. Other compounds were purchased from commercial sources. Liquids were distilled under purified nitrogen or in vacuo prior to use. 1H and 13C spectra were recorded on Varian spectrometers at the Max T. Rogers NMR facility at Michigan State University. 1H and 13C assignments were confirmed with the use of two-dimensional 1H—‘H and l3C—‘H correlation NMR experiments when necessary. All spectra were referenced internally to residual protiosolvent (H) or solvent (13C) resonances. Chemical shifts are quoted in ppm and coupling constants in Hz. Common coupling constants are not reported. 1"'N NMR spectra were collected on a VXR-SOO spectrometer and are referenced to external neat CH3N02. 14N NMR spectra can also be internally referenced to dissolved natural abundance l4N2, which was invariably noticeable in our samples prepared under purified nitrogen, at -72 ppm (v1,2 = 50-80 Hz) in C6D6 versus neat nitromethane. 14N NMR spectra were deconvoluted using Varian software, and data reported are from the spectral deconvolutions. General considerations for x-ray diffraction. Crystals grown at -35 °C were moved quickly from a scintillation vial to a microscope slide containing Paratone N. Samples were selected and mounted on a glass fiber in wax and Paratone. The data collections were carried out at a sample temperature of 173(2) K on a Bruker AXS three-circle goniometer with a CCD detector. The data were processed and reduced utilizing the program SAINTPLUS supplied by Bruker AXS. The structures were solved by direct methods (SHELXTL v5.1, Bruker AXS) in conjunction with standard difference Fourier techniques. N,N-di(pyrrolyl-a-methyl)-N-methylamine (I-Izdpma, 1). This preparation is a modification of the literature procedure. To a solution of methylamine hydrochloride (6.7 g, 99 mmol) in 100 mL of absolute ethanol heated in a 55 °C oil bath was added aqueous formaldehyde solution (37%, 16.2 g, 200 mmol). After most of the methylamine hydrochloride was dissolved, pyrrole (13.4 g, 200 mmol) was added to the reaction mixture. The resulting mixture was refluxed at 55 °C for 4 h, and volatiles were removed under reduced pressure yielding a viscous oil. The oil was triturated with ether to give a white solid. The solid was then dissolved in water, basified with 5% K2C03, and extracted with ether. Additional K2CO3 was added if needed, and the aqueous phase was extracted twice more with ether. The organic layers were combined, and volatiles were removed in vacuo. The resulting oil was crystallized from benzene/hexanes at —35 °C yielding the product as a white solid, m 70—72 °C (lit 74—76 °C).4 Yield: 13.7 g (72%). 1H NMR (300 MHz, CDC13): 6 = 8.38 (m, 2H, N(I-I)-pyrrole), 6.59 (m, J1 = 0.97 Hz, 12 = 1.47, J3 = 1.22 Hz, 2H, 5- C4H3N), 6.01 (m, J1 = 2.68 Hz, J2 = 3.18, 2H, 4-C4H3N), 5.93 (m, 2H, 3-C4H3N), 3.37 (s, 4H, C4H3NCH2N), 2.07 (s, 3H, C4H3NCH2NMe). 13C NMR (CDC13): 6 = 127.53 (2- C4H3N), 117.95 (5-C4H3N), 108.50 (4-C4H3N), 107.86 (3-C4I-I3N), 53.37 (C4H3NCH2N), 41.52 (dpma-NMe). 14N NMR (C6D6): 6 = —234 (v1,2 = 1160 Hz). Lizdpma. A solution of szpma (5.00 g, 26.4 mmol) in approximately 100 mL of toluene was cooled to near frozen in a liquid nitrogen cold well within the dry box. To the stirring cold solution, 1.6 M n-butyl lithium (35 mL, 56 mmol, 2.12 equiv.) was slowly added by pipette. The product precipitated as a white solid during addition. When addition was complete, the solution was stirred for 5 min, then 100 mL of pentane was added. The solid was collected on a frit and was washed repeatedly with pentane. Drying in vacuo yielded Lizdpma (5.30 g, 26.4 mmole, >99.9 %), mp 148 °C dec. 1H NMR (300 MHz, THF-ds): 6 = 6.66 (s, 2H), 5.91 (s, 2H), 5.83 (s, 2H), 3.55 Oar s, 4H, C4H3NCH2N), 2.24 (s, 3H, C4H3NCH2NMe). 13C NMR (CDC13): 6 = 139.44, 126.93, 107.61, 105.50, 58.81 (C4H3NCH2N), 42.87 (dpma-NMe). N,N-di(pyrrolyl-a-methyl)-N—(l-methyl-norborn-S-ene)amine (szpna, 2). To a solution of 16.0 g 1-(methylamine)-5-norbornene hydrochloride (0.100 mol) in 200 mL of 95% ethanol in a 55 °C oil bath was added 16.2 g 37% formalin solution (5.99 g formaldehyde, 0.200 mol), causing most of the solid to dissolve. To this solution was added 13.4 g pyrrole (0.2000 mol), and the reaction was stirred for 5 h. After cooling overnight, the solution was poured into 400 mL 5% aqueous K2C03, then extracted four times with 200 mL portions of diethyl ether. The combined ether layers were decolorized with activated carbon, dried with Mg2804, and filtered. The volatiles were removed on a rotary evaporator, and then on a Schlenk line in vaccuo to yield 20.3 g of a tan solid (72.1 mmol, 72.1%), m 74-76 °C. Single crystals suitable for x-ray diffraction were grown from benzene/hexane. 1H NMR (500 MHz, CDC13): 6 = 8.26 (s, 2H, N(H)-pyrrole), 6.75 (m, J, = 2.45 Hz, J2 = 1.46 Hz, 2H, 5-C4H3N), 6.15 (m, J, = 2.45 Hz, J, = 2.93 Hz, 2H, 4-C4H3N), 6.06 (dd, J, = 2.93 Hz, J, = 5.86 Hz, 1H), 6.04 (m, J = 3.42 Hz, 2H, 3-C4H3N), 5.63 (dd, 1H), 3.63 (d, J = 14.16 Hz, 2H, C4H3NCH2N), 3.45 (d, J = 14.16 Hz, 2H, C4H3NCH2N), 2.87 (s, 1H), 2.77 (s, 1H), 2.30 (m, J, = 2.93 Hz, J2 = 3.42 Hz, J 3 = 3.91 Hz, 1H), 2.16 (m, J, = 8.79 Hz, J, = 3.91 Hz, J3 = 6.35 Hz, J, = 5.86 Hz, J5: 6.83 Hz, 2H), 1.83 (m, J, = 5.37 Hz, 12: 1.47 Hz, J3 = 2.44 Hz, J4: 4.88 Hz, J5: 3.91 Hz, 1H), 1.41 (dq, J, = 4.40 Hz, J, = 1.96 Hz, 1H), 1.24 (d, J = 8.30 Hz, 1H), 0.50 (m, J, = 2.45 Hz, J2 = 1.96 Hz, J3 = 4.39 Hz, J4 = 2.93 Hz, J5 = 1.47 Hz, 1H, ). 13C NMR (CDC13): 6 = 137.14, 132.22, 129.19 (2- C4H3N), 117.03 (5-C4H3N), 108.11 (4-C4H3N), 107.34( 3-C4H3N), 58.19, 50.67, 49.33, 44.77, 42.29, 36.97, 30.97. [(1S,ZS,SR)-l-(2-isopropyl-5-‘methyl)cyclohexyl]amine hydrochloride. A suspension of 11.3g of LiAlH4 (298 mmol) in 800 mL dry tetrahydrofuran was placed into a 2 L 3-neck flask in an ice bath. The flask was fitted with a mechanical stirrer, nitrogen inlet, and an addition funnel. Through the addition funnel was slowly added a solution of 24.4g (IS, 2S, 5R)-l-cyano-2-isopropyl-5—methylcyclohexane (148 mmol) in 500 mL dry tetrahydrofuran. After stirring for 12 h, 500 g ice and 1 L tetrahydrofuran were slowly added to the flask. The white solid was filtered off, and the volatiles removed on a rotary evaporator. 250 mL water was added, and the solution was extracted with three 250 mL portions of ethyl acetate. The combined organic layers were dried with N aZSO 4, filtered, and the volatiles were removed on a rotary evaporator. An ethereal solution of 1M HCl was added until precipitation of the title compound ceased.The white solid was collected on a frit, washed with -35 °C hexanes, and dried in vacuo. The yield was 10.5 g (51 mmol, 34.5%), m 194 °C dec. 1H NMR (300 MHz, CDC13): 6 = 8.4 (br s, 3H), 3.0 (br s, 1H), 2.4 (br s, 1H), 2.1 (br d, 1H), 1.7 (br d, 2H), 1.6 (br s, 1H), 1.25 (br m, 1H), 1.05 (br m, 3H), 1.0 (br m, 8H). 13C NMR (CDC13): 6 = 46.74, 37.04, 35.85, 35.19, 34.00, 29.41, 25.84, 25.22, 22.27, 21.53, 20.86. Anal. Calcd for C11H24NC1: C, 64.21; H, 11.76; N, 6.81. Found: C, 63.83; H, 12.17; N, 6.61. N,N-di(pyrrolyl-a-methyl)-N-[(lS,ZS,5R)-l-(2-isopropyl-5-methyl)- cyclohexyl]amine (szpCHIRA, 3). To a solution of 2.5 g [(1S,28,5R)-1-(2—isopropyl- 5-methyl)cyclohexyl]amine hydrochloride (12.2 mmol) in 250 mL 95% ethanol was added 1.61 g pyrrole (24.0 mmol) and 2.0 g 37% formalin solution (0.74 g formaldehyde, 24.6 mmol). The solution was stirred for 5 d, basified with a saturated solution of K2C03 in water, and extracted thrice with 200 mL portions of diethyl ether. The combined ether layers were dried with Mg2804, filtered, and the volatiles removed by rotary evaporation. Flash chromatography (silica gel, 5% ethyl acetate in hexanes), afforded 1.69 g of the title compound (5.15 mmol, 42.2%) as a light yellow oil. 1H NMR (300 MHz, CDC13): 6 = 8.16 (s, 2H, N(H)-pyrrole), 6.70 (m, 2H, 5-C4H3N), 6.11 (m, 2H, 4-C4H3N), 6.01 (m, 2H, 3-C4H3N), 3.67 (d, 2H), 3.29 (d, 2H), 2.55 (t, 1H), 2.03 (m, 5H), 1.60 (m, 3H), 1.25 (m, 3H), 0.85 (m, 9H). 13C NMR (CDC13): 6 = 129.49, 117.04, 108.09, 107.34, 51.15, 50.24, 38.18, 35.62, 32.91, 29.03, 25.75, 25.35, 21.77, 21.06. 10 LizdeHIRA. To a thawing solution of 1.69 g szpCHIRA (5.16 mmol) in 50 mL pentane was added 7.0 mL 1.6 M n-butyl lithium (12.6 mmol), and the solution was stirred for 5 min. Removal of the volatiles in vacuo, trituration with toluene, removal of the volatiles in vacuo, trituration with pentane, and removal of the volatiles in vacuo yielded 1.43 g (4.21 mmol, 81.7 %) of the title compound as a light orange solid, mp 140 °C dec. 1H NMR (300 MHz, THF-dg): 6 = 6.69 (t, J=1.62 Hz, 2H), 5.93 (t, J=2.49 Hz, 2H), 6.01 (m, J,=1.18 Hz, 12 = 1.32 Hz, 2H), 3.83 (d, J=13.5 Hz, 2H, C4H3NCH2N), 3.56 (d, J=13.5 Hz, 2H, C4H3NCH2N), 2.81 (t, J=13.2 Hz, 1H), 2.31 (s, 1H), 1.98 (br (1, J=10.8 Hz, 1H), 1.70-1.52 (br m, 2H), 1.50- 1.35 (br m, 3H), 1.30 (br s, 2H), 0.87 (dd, J ,=6.5 Hz, J2=1.2 Hz, 12H), 0.69 (d, J=6.3 Hz, 3H). 13C NMR (THF-ds): 6 = 140.06, 126.87, 107.83, 105.23, 57.87, 53.83, 49.66, 39.50, 36.90, 35.73, 29.92, 27.02, 23.09, 21.66. 5,5-di-n-propyldipyrrolylmethane (szppm, 4). To a solution of 75 mL pyrrole and 8.0 mL of 4-heptanone (6.5 g, 57 mmol) in an oven-dried 250 mL Schlenk flask flushing with argon was added 0.5 mL trifluoroacetic anhydride. After stirring for 18 h, the solution was made basic with 300 mL of 0.3 M NaOH. The mixture was twice extracted with 300 mL portions of diethyl ether, and the combined organic layers were washed with two 200 mL portions of water. After drying with MgSO4, the solution was filtered, and the volatiles were removed by rotary evaporation. Sublimation of the solid yielded 4.88 g (21.1 mmol, 37.2%) of the title compound as a white solid, m 101—103 °C. 1H NMR (300 MHz, CDC13): 6 = 7.60 (s, 2H, N(H)-pyrrole), 6.58 (m, J,=1.71 Hz, J2=O.98 Hz, J3=1.47 Hz, 2H, 5-C4H3N), 6.13 (m, 2H, 4-C4H3N), 6.11 (m, 2H, 3-C4H3N), 1.89 (m, J,=4.64 Hz, J2=3.17 Hz, J3=3.91 Hz, J4=0.98 Hz, J5=4.15 Hz, 4H, (C4H3N)2C(CH2CH2Me)2), 1.08 (m, J,=4.4O Hz, 1223.17 Hz, 13:1.71 Hz, J4=2.68 Hz, J5=3.42 Hz, 4H, (C4H3N)2C(CH2CH2Me)2), 0.86 (t, J=7.33 Hz, 6H, (C4H3N)2C(CH2CH2CH3)2). 13C NMR (CDC13): 6 = 137.27 (2-C4H3N), 116.80 (5-C4H3N), 107.30 (4-C4H3N), 105.51 (3-C4H3N), 42.74 ((C4H3N)2C(CH2CH2Me)2), 39.88 ((C4H3N)2C(CHZCH2Me)2), 17.11 11 ((C4H3N)2C(CH2CH2Me)2), 14.50 ((C4H3N)2C(CH2CH2CH3)2 . Lizdmpm. To a thawing solution of 1.04 g szmpm (5.97 mmol) in 20 mL pentane was added 10.0 mL 1.6 M n-butyl lithium (16 mmol). A white solid quickly formed. After stirring for 5 min, the solid was collected on a frit and washed with copious quantities of pentane. Drying in vacuo gave 1.10 g of the title compound (5.91 mmol, 99.0%) as a white solid, mp 153 °C dec. 1H NMR (300 MHz, THF-ds): 6 = 6.54 (br s, 2H), 5.90 (m, J,=1.5 Hz, J2=1.3 Hz, J3=2.4 Hz, J4=2.9 Hz, J5=2.1 Hz, 4H), 1.55 (s, 6H). 13C NMR (THF-ds): 6 = 1.44.97, 106.73, 102.83 (br), 32.98, 15.69. 12 CHAPTER 2 AN INVESTIGATION OF TRANSITION METAL-IMIDO BONDING IN M(NR)2(dpma) Introduction Transition metal imido chemistry has become popular in the last several years. The imido group is an important supporting ligand in many catalytic reactions,8 including C-H bond activation,9 hydroamination of alkynes with titanium imido intermediates,10 and other processes.11 There is a large number of group—6 bis(imido) compounds, offering a rich chemistry that has been the subject of much research, both for the basic knowledge obtained as well as these compounds’ utility as precatalyts or intermediates.12 Often, the two imido ligands in these group—6 compounds are inequivalent in the solid state, with one imido ligand being substantially more bent than the other, as in Mo(NPh)2(SzCNE12)2.l3 The Mo—N—Ph bond angles in the solid state are substantially different, with one being 169.4(4)° and the other 139.4(4)°. While it is quite common to find these inequivalent imido group geometries in the solid state, it is rare to find bis(imido) compounds in which the imido ligands do not either equilibrate rapidly in or become equivalent in solution, as evidenced by one type of imido group in the NMR spectra“,15 A statistical analysis of the bis(imido) structures of the Group-6 transition elements from the Cambridge Structural Database is shown in Figure 2-1. The imido—metal bond angles were summed to avoid arbitrary definitions of what was considered a “linear” bond, and what constituted a “bent” bond. The complex with the lowest sum of bond angles is the aforementioned Mo(NPh)2(SzCNEt2)2 at 309°.13 The average sum of imido bond angles was 328° with a standard deviation of 8°. It was expected that 4— and 5—coordinate compounds would have a larger sum of bond angles than 6—coordinate complexes, due to the ability of the lower coordinate compounds to form formal triple bonds to the imido ligands, whereas the 6—coordinate complexes would be expected to have formal metal—imido bond orders of, at most, 2.5. However, this is not true; that is, 6—coordinate complexes are no 13 20 lllHlHll .4-coord'inate angle sum 15 I 5-coordinate angle sum I 6-coordinate angle sum Count 316 326 336 Imido Angle Sum Figure 2-1. Statistics on the bis(imido) complexes of Group-6 from the Cambridge Structural Database. Each entry is the sum of the two imido bond angles in a complex. more likely to have smaller imido—metal angles than the 4— and 5—coordinate complexes. This can be rationalized by the effects that other ligands on the metal centers have on the ability of the imido ligands to participate in Ir—bonding with the metal center.16 Of the bis(imido) complexes examined, 30% had at least one imido with a bond angle of 155° or less; however, the reasons behind this behavior could not be elucidated from the statistical analysis. This study attempts to determine the underlying reasons that many bis(imido) complexes show imido bending, i.e., is the underlying reason for the bending the electronics of the system and, if so, are the electronics associated with electronegativity changes at the metal center and bond polarity? The three common valence bond structures which have been used to qualitatively explain metal-imido bonding (Chart 2-1)12'l7 can give some insights into the metal-imido bond. In Structure 1, which can be identified unambiguously in the solid state, an sp2 hybridized nitrogen atom donates two electrons to the metal center (using the neutral method of electron counting), resulting in a bent bond. Structure II is a linear imido, with an sp-hybridized nitrogen atom also donating two electrons to the metal center, with the lone pair of electrons in a nitrogen 2p orbital. In Structure III, the sp hybridized nitrogen atom donates four electrons to the metal, the lone pair interacting with a Jr-acceptor orbital on the metal center. Even though structures 11 and III will be difficult to differentiate based on bond lengths and angles, they have completely different effects on the electronics of the compound. Various research groups have used orbital symmetry arguments to differentiate between structures II and III. Bercaw and co-workers, for example, have used structure II to describe the imido bonding in the complex Ta(Cp"‘)2(NPh)H.18 In the similar niobium phenylimido complex Nb(Me3SiCp)2(NPh)Cl, the Nb—N—C(ipso) angle is somewhat bent I II III R T T Q N/ O NO N " II II III _ M M sp2 SP SP IV V R R N_/ 1L- .6 1.1+ sp2 SP Chart 2-1. A few of the pertinent valence bond structures for a transition metal bound imido ligand. 15 at 165°; calculations suggest that the potential energy surface describing imido bending is essentially flat to a bond angle of 140°.19 Jorgenson has suggested, in theoretical work, that the aromatic rings in phenyl imido complexes can accept electron density from the imido nitrogen atom, reducing imido It-bonding and flattening the potential energy surfaces associated with imido bending.20 On the other hand, since Nb(Cp)2(NBu‘)Cl has a relatively short Nb—N(imido) bond and a linear Nb—N—C(ipso) angle, structure III is a more reasonable approximation.21 Unlike more covalent nitrogen double-bonds, such as in organic imines, 22 calculations indicate that energy differences between bent and linear imido bonds in metal complexes are fairly small. ‘9'20 In fact, the “lateral shift” mechanism for imine isomerization involves a transition state very similar to structure 11.23 In more covalent systems, such as organic imines, a less likely mechanism is one that involves polarization of the C-N double bond, resulting in a zwitterionic transition state. These zwitterionic forms, IV and V, should be much larger participants in the structure of transition metal imido complexes, where the metal-imido bond is more highly polarized.17 The bond angle would change dramatically during interconversion of these structures, but the electron density at the nitrogen atom and at the metal center would remain relatively constant. The polarity of metal-nitrogen bonds increases when descending a triad (vide infra),24 so that the polar structures IV and V should play a larger role in the description of heavier congeners as compared to structures I, II and III. It appears that, oftentimes, in complexes which have a tridentate, dianionic ligand and two monodentate ligands on a transition metal, the two monodentate ligands will not rapidly exchange, at least on the NMR time scale.7-5'26 A prime example of this is the complex Cr(NBu‘)2{[Bu'NC(O)]2NBu‘}, prepared by Wilkinson and coworkers,” which exhibits two nonequivalent imido environments on the NMR timescale in solution.28 Three bis(tert-butyl) imido complexes have been prepared spanning the group-6 metals (chromium, molybdenum, and tungsten) which incorporate the tridentate, dianionic 16 ligand N,N-di(pyrrolyl-01-methyl)-N-methylamine (dpma), M(NBu‘)2(dpma). These complexes are very closely related structurally, and contain inequivalent imido groups both in the solid state and in solution on the NMR time scale, and thus can be used to study metal-imido bonding interactions. Any spectroscopic differences between these molecules, since they are so closely related structurally, can be attributed to the electronic differences of the Group-6 metals. Also prepared was Mo(Ndip)2(dpma), useful for comparisons between alkyl and aryl substituents, which will be briefly discussed, as well as Mo(NBu‘)2(del-IIRA). These compounds were studied by 1H NMR, 13C NMR, CP-MAS 13C NMR, 14N NMR, and x-ray diffraction. Although these data provide information about imido ligands in differing environments on the same metal, the experimental data cannot determine if these differences are induced by different bond angles in the imido ligands or simply because of the inherent electronic differences between axial and equatorial imido ligands Therefore, Density Functional Theory was used to explore the electronic energy associated with imido bending. Results and Discussion Syntheses and structures. Reaction of Cr(NBu‘)2(Br)2(py)29 and Lizdpma in diethyl ether yields dark red Cr(NBu')2(dpma) (5) (eq 2-1). The two imido groups in the solid-state structure are inequivalent, with one being substantially bent at 151.10(16)°, and the other being linear at 175.28(16)°. The bond angles around the chromium center in the solid-state structure are not those expected for either a trigonal bipyramid or a square pyramid; the complex is best described (vide infra) as a pseudo-square pyramid with the bent imido group in the axial position (Figure 2-2). The fact that the two imido groups are different in the solid state is not unusual, but what is unusual is that the two imido ligands don’t equilibrate in solution to give a single NMR resonance.14'15 There are two sharp, distinct tert-butyl resonances observed in the solution 1H NMR of 5 from -80 °C to 80 °C 17 E120 CrBr2(py)(NBu‘)2 + Lizdpma 2 LB > Cr(NBu‘)2(dpma) (2-1) — 1 r — pyridine 5 34% . E120 MoC12(NBu‘)2(dme) + ledpma 2 LC] > Mo(NBu‘)2(dpma) (2-2) — 1 38% 6 E120 W(NHBu‘)2(NBu‘)2 + szpma > W(NBu‘)2(dpma) (2-3) -2 H2NBllt 50% 7 . . E120 MoC12(Ndlp)2(dme) + ledpma 2 LC] = Mo(Ndip)2(dpma) (2-4) — l 38% 8 E120 MoC12(NBu‘)2(dme) + LizdeHIRA 2 L'Cl > Mo(NBu‘)2(del-IIRA) (2-5) - 1 15% 9 (Figure 2-3). This unexpected behavior can be attributed to the chelating dpma ligand. As shown in eq 2-2 and 2-3, the molybdenum and tungsten analogs of S, Mo(NBu‘)2(dpma) (6) and W(NBu‘)2(dpma) (7), have been synthesized. The molybdenum bis(imido) 6 is readily prepared from Mo(NBu‘)2C12(dme)30 and Lizdpma. The tungsten analog 7 was prepared by transarnination on W(NBu‘)2(NHBu')2-”1 with szpma. As in the case of 5, these complexes also display two different resonances due to the tert-butylimido groups that do not equilibrate on the 1H NMR timescale even at 80 °C. As can be seen in Table 2-1 and in Figure 2-4, the solid-state structures for 5-6 are very similar. In fact, the largest differences are found in the chromium complex 5, and these differences, although slight, can be attributed to the smaller atomic radius of the chromium atom. The two imido angles in 5 measure 151.1(2)° and 175.3(2)°, and the Cr—N(imido) bond distances are statistically different at 1.626(2) A and 1.641(2) A for 18 Figure 2-2. The ORTEP representation (50% probability elipsoids) of Cr(dpma)(NBu')2 (5). linear and bent, respectively. In the tungsten structure (7), the W—N(imido) distances are statistically equivalent at 1.748(3) A and 1.757(3) A; the bond distances and angles in the molybdenum bis(imido) 6 are within statistical errors of those in tungsten complex 7. The continuous symmetry parameter, 1: = (01 — B)/60 (where 01 and B are the largest and second largest angles around the metal center, respectively) can be used to quantify the accuracy of describing a complex as either a square pyramid (‘t = 0) or as a trigonal bipyramid (1: = 1).32 For complexes 5-7, 1: is computed as 0.28, 0.22, and 0.19, respectively, indicating that all three compounds are better described as square pyramidal. Arylimido Mo(Ndip)2(dpma) (8) was prepared from Mo(Ndip)2C12(dme)30 and Lizdpma in 35% yield (eq 24). The structure of 8, as determined by x-ray crystallography, is remarkably similar to the tert-butylimido derivative 6. Arylimido 8 has bent and linear imido angles of 155.8(5)° and 175.2(5)°, the bent imido bond angle being slightly larger 19 Ema a u n m o p a a Fl I I - P I I h - I I - I I I I - I I I I - I I I I h I I I I D I I I I - l a.) j 0. an- Baa a u n m e h a a — I I F I I I _ P I I - I I I! I — I I I I h I lI Il I — I I I I — I I I I — 1 a . i . o. 3- an H u n m e n e a — I I - I I P - — I I - I I I I _ I I L I — I I I I b IL I I — I I I I — I ‘ d o. 7 Ban a a n m o h e a — I I h I I I — - I I - I I I I - I I I I — I I I I - I I I L — I I I I - fi d 11 0. 34+ an.— a a n m o n a 0 FL L Il-y le L — F I I — I I I I - I I I I - I PlrlI — I I I Il _ .P I P I — 0. 91+ .GV $323536: so «22 :. agendas 6325 2F .3 2:»...— 20 21 $2.? a _ V3.9 o 32.9 69$ $82 26 32.22.25.232 6322 $3: 2222: 5252 $2.3 £22.62 523 632 3:226 523 £82: £22.52 5....8_ $36 3:83 $2.3 $2.8 e: 232.222.2232 522: €22: a _ :32 $2.2 $2.8 6: $2.22.»..E252 52: $2: @582: 53: 824.2. @2222 28:: 63: 62.: @3: 6:22: 0.22.2 2822 62.2. 525 62.62 632.5 0-32.2 €22 683 522 633 2:222 52.2 62:: 62:: 683 3282 683 .26 2.282322 69.2 $22 52: €22 2:832 $2.2 Son: 6:: 6%: 62m: 5:222 32.2 5 a: E a: 5 2252383232 3528432222 35:38:22; 282342252262 3.5.3:...ng £6 8.22 23 .3532: .N1N 952% com 680:8 253:5: 05 com 61m mega—9:8 so 85.326 28.2 EB... 8&5 new 82826 959 Vogue—om .TN 035. than in the bis(tert-butylimido) complex. The Mo—N(imido) bond distances do vary with statistical significance at 1.728(4) A and 1.751(5) A. These bond lengths are very similar to those found in bis(tert-butylimido) complex 6. The largest differences between the bis(2,6- diisopropylphenylimido) structure and the bis(tert—butylimido) structure is in the angles between the imido substituents and the donor amine of the dpma ligand, and appear to be a consequence of the steric bulk of the isopropyl groups on the aromatic rings. Bis(arylimido) 8 has a structure that closely resembles a square pyramid as judged by the r-parameter of 0.01 for the solid-state structure. An additional complex, Mo(NBu‘)2(deHIRA) (9), was synthesized by the reaction of Mo(NBu‘)2C12(dme) with LizdeHIRA. This complex is very similar to Mo(NBu‘)2(dpma) (6), although imido-molybdenum bond lengths are very < V .Cr(dpma)(NBu‘)2 (S) -M9(dpma)(NBu‘)2 (6) -W(dpma)(NBu‘)2 (7) Figure 2-4. Superposition of the crystal structures of Cr(dpma)(NBu‘)2 (5), Mo(dpma)(NBu‘)2 (6), and W(dpma)(NBu‘)2 (7). 22 slightly longer at 1.750(5) A and 1.745(5) A for the linear and the bent metal—imido bonds, respectively. The equatorial bond angle is slightly larger at 177.7(6)°, and the axial bond angle is similar (although statistically different by 01") at 155.2(6)°. This structure, with a 1: of 0.13, can also be viewed as more closely approximated as square pyramidal. Since I is significantly smaller in the case of the bis(arylimido) complex 8 than in any of the bis(tert-butylimido) structures, it is tempting to attribute this to electronic effects imposed by the arylimido groups versus the alkylimido groups. Figure 2—5 is a histogram of all of the group-6, five coordinate bis(imido) complexes from the CSD, along with complexes 5-9, showing how 1: varies with the type of substituent on the imido ligands. As can be seen, there appears to be little correlation between 1: and the character of the imido group, although 26 of the 35 compounds (74%) do have a 1: value less than 0.30. It appears that for some reason, perhaps electronic, group-6 bis(imido) complexes tend HIIIIH INBu‘, .Ndip2 2.0 E G 0 0| .. 0.00 0.15 0.30 0.45 0.60 0.75 T Figure 2-5. Statistics on the five coordinate bis(imido) complexes of group-6 from the Cambridge Structural Database showing the type of imido ligand versus t. 23 towards square pyramidal geometry rather than trigonal bipyramidal geometry. The M(irnido)2 core is remarkably similiar across the entire series as exemplified by the N(4)—M—N(5) bond angles, which are between 110.5° and 112.5° in all five complexes. 1H and 13C NMR spectroscopy. The 1H and 13C NMR of M(NBu‘)2(dpma), where M = Cr, Mo, and W, display inequivalent tert-butyl resonances. nOe experiments (Figure 2.6) were used to determine that the overall solid-state geometries were retained in solution, and we were also able to unambiguously assign the t-butyl 1H resonances to the bent (axial) and linear (equatorial) imido ligands. (1H,13C)-HMQC and (13C,13C)- I-IMBC spectroscopy33 was used to assign all of the proton and carbon resonances in the corresponding l3C spectra; the full assignments for all of the (tert-butylimido)(dpma) complexes can be found in the experimental section. Since the axial (bent) imido nitrogen atom is expected to be more electron-rich, the resonances associated with this ligand are expected to be more shielded than the corresponding atoms on the equatorial (linear) imido Figure 2-6. The relavent nOe enhancements used to assign the 1H NMR resonances in W(dpma)(NBu')2; the arrowhead points to the proton that is enhanced by excitation of the proton at the end of the arrow. 24 ligand. This expectation is confirmed by the nOe experiments. The 13C NMR chemical shifts of the tert-butylimido groups can be very informative as to the M—N bonding in bis(t—butylimido) complexes;34 specifically A601,, = 6CCl - 6C5, where Ca and C,3 are the quaternary and primary carbon atoms, respectively, in the tert- butylimido groups. Large 1360,,3 values are often attributed to the most covalent metal- nitrogen bonds, i.e., those with the most triple bond character (structure III in Chart 2-1), whereas more polarized bonding interactions (structures I, II, IV, or V) exhibit smaller values of A6GB. Since the polarity of the metal-imido bond will increase down a transition metal triad, ceteris paribus, the corresponding A6“,3 values will decrease. This trend is consistent with greater participation of structures IV and V in the overall description of the bonding of the imido ligands. Similary, decreasing A6043 values reflect increasing polarity in these systems as one proceeds from chromium to molybdenum to tungsten with values of 47.17 ppm, 38.54 ppm, and 34.17 ppm, respectively.35 Although comparisons between the different transition metal congeners of bis(imido) complexes using A6,“, values are intriguing, similar comparisons between bis(imido) complexes containing different supporting ligands have the potential to be very informative about the electronics of the ligands. As will be shown, the results are qualitatively what is expected from various common ligands. It is not unusual for a linear correlation to exist between chemical shifts and electronegativities“; many such studies have appeared in the literature.37 Many of the reported values for 13C NMR chemical shift differences correlate well with the estimated electronegativities of the Group-6 metals in the +6 oxidation state,38 and thus to expected polarity changes in the metal-nitrogen bonds. Plots of A5610 versus estimated electro- negativity of the metal center for four different bis(tert-butylimido) systems are found in Figure 2-7. The four different systems are M(Tp*)Cl(NBu‘)2,39 M(OSiR3)2(NBu‘)2,34'40 M(Cp)Me(NBu‘)2,29'41 and M(dpma)(NBu')2, where M = Cr, Mo, and W. Suggestive that metal electronegativity is, indeed, an important factor in imido nitrogen electron density, 25 5. r to 9 50 r/ /I 5‘. ‘5 / / 27% 3% 4° 2’ ’p .2215; " ’ ’ . a. g, 4"" 301.5 2 2.5 3 35 EbctronegetivityotMMflPauling Units Figure 2-7. Plot of bis(tert-butylimido) complexes of group-6 A6aB values versus Sanderson electronegativity values for the metals in the +6 oxidation state. I : M(Tp*)Cl(NBu‘)2, y = 22.785 + 8.8668x R = 0.9974; A : M(dpma)(NBu‘)2, y = 21.613 + 7.6024x R = 0.99963; 0 : M(OSiR3)2(NBu‘)2, y = 20.194 + 7.6545x R = 0.99999; 0 : M(Cp)(Me)(NBu‘)2, y = 24.696 + 5.3457x R=O.99852. the linear fits of all four lines are excellent. The linear fits also suggest that A601,, values are a reasonable measure of imido nitrogen electron density, at least in isostructural systems. The good linear fits do not necessarily indicate that Sanderson’s electronegativities for M(VI) are accurate but suggest only that the efiective electronegativity difi'erences are accurately portrayed within each set of complexes. Indeed, the electronegativity of the metal center should vary as the supporting ligands are varied. Since the Sanderson electronegativities were calculated from complexes containing ligands that are both more electronegative and poorer rt-donors than those included in Figure 2-7, they will overestimate the electronegativity of the metal centers. Essentially, the plots in Figure 2-7 need to be referenced so as to give the “true” effective electronegativities on the Pauling scale. As the ligands become more electron-deficient, they would be expected to cause 26 greater changes in the effective electronegativity of the metal center, and therefore have increasing slopes to the lines as plotted in Figure 2-7. The most electron-rich ligand sets should have the smallest slope. The slopes of the lines in Figure 2-7 follow this trend. The ligand set that is expected to be the least electron-donating, (Tp*)(Cl) (which can be viewed as a having a zwitterionic structure with a formal positive charge on the metal center in the complex, and a formal negative charge on the boron atom), has the largest slope at 8.87. The OSiR3 ligands and the dpma ligand are expected to be similar to each other and more electron donating than the (Tp*)(Cl) set, and the slopes of the lines corresponding to these ligands are 7.65 and 7.60, respectively. The ligand set (Cp)(Me), with two very electron- rich ligands, has the smallest linear slope at 5.35. There is no way of referencing the A6043 plots to the Pauling scale, but an arbitrary reference value can be used. The obvious choice for (tert-butyl)imido complexes is trans- bis(tert-butyl)diazene, Bu'N=NBut (1860,,3 = 39.0 ppm), since there is expected to be no bond polarity in the nitrogen-nitrogen bond. Referencing the data in Figure 2-7 to bis(tert- butyl)diazene results in the plot shown in Figure 2-8, and allows estimation of the relative electron-withdrawing abilities of metal centers with very dissimilar ligand sets. Positive values would be expected for complexes, with large contributions from structure III in Chart 1, that would be withdrawing more electron-density from the imido nitrogen atom compared to the reference compound. Complexes with significant contributions from structures IV and V would be eXpected to give rise to negative values compared to bis(tert-butyl)diazene. According to this technique, chromium with the ligand sets studied is always more electron- withdrawing than (t-butyl)imido and tungsten is always less electron-withdrawing, whereas molybdenum varies from more to less electron-withdrawing depending on the ligand set. Examination of a larger set of ligands, X, in X2Cr(NBu‘)2 is informative. For X2 = (neophyl)2,29 (neopentyl)2,29 (benzyl)2,“2 (OSiMe3)2,29'34 dpma, and C12,29 the electronic changes from altering the ligands result in 13.60,,3 values that range over 14.8 ppm.43 Remarkably, this implies that changing the supporting ligand can have as large an effect 27 55 5° % g ‘5 ,4 / O. a? 40 / 4 35 30 -1 -0.5 0 0.5 1 1.5 2 Ligands on M(NBu‘)2 Cr Mo W Cp(Me) : O 0.70 —0.54 —0.98 081R3 :e 0.91 —0.26 —0.79 dpma : A 1.07 —0.07 —0.64 Tp(Cl) :I 1.51 0.44 —0.21 Figure 2-8. Estimation of electron-withdrawing ability of various ligand sets on M(NBu')2. Values are in arbitrary units with bis(tert-butyl)diazene as reference of 0. Metal centers estimated to be more electron-withdrawing than the reference are positive. on the electron densities of the imidio nitrogen atoms as changing the metal centers from chromium to molybdenum to tungsten. It can be seen from these data that the donor ability of the dpma ligand is similar to dichloride and bis(trialkylsiloxy).“4 For Mo(NR)2(SZCNEt2)2 complexes, the differences in the solid-state 13C NMR resonances have been correlated to imido bonding.14a In solution, the difference in chemical shift, A6,_b, for the quaternary carbons on the axial (linear) tert-butyl groups minus the equatorial (bent), i.e. A6,_b = C(a)(,mw)- C(01)(bcm), was found to change as Cr > W > Mo with A6,_b equal to 2.1 ppm, 1.3 ppm, and 0.8 ppm, respectively, in the dpma complexes studied.45 Although it is not clear why the numbers trend in this way, the overall 28 magnitude of A6,_b is informative. Despite the large difference in bond angles for the linear imido ligands compared to the bent imido ligands (>25"), and the different coordination environments of the two imido ligands, the effect of these changes on the values of A6,_b observed is significantly less than is the effect that changing the metal center or supporting ligands has on A6043. The electron density of the imido nitrogen atoms is clearly influenced substantially by changes in the metal center and the other ligands on the metal center, and less so by the imido group environment. Solid-state 13C NMR spectroscopy. Since the solid-state structure is not necessarily the structure adopted in solution, the solution-state NMR data was compared to the CP- MAS 13C NMR spectral data. The data correlate amazingly well as can be seen in Figure 2-9 and Table 2-2; however, there are a few differences. Unlike in the solution-state spectra, the ordering of the A6,_b values was found to be Cr > Mo > W in the solid-state, with values of 4.0 ppm, 0.9 ppm, and 0.8 ppm, respectively, which is similar to the results found with 14N NMR (vide infra). 14N NMR spectroscopy. 14N NMR can also be used to investigate metal-imido bonding, and this use of 14N NMR has been thoroughly discussed by Bradley and coworkers Cr(dpma)(NtBu)2 * = toluene-da T=spinning side bands ., LLLJA JUlanoCh- 0 250 . ppm Figure 2-9. The solution state (top) and CP-MAS 13C NMR (bottom) spectra of Cr(dpma)(NBu‘)2 (5). 29 Table 2-2. Comparison of solution and solid-state 13C NMR data from compounds 5-7. Cr(dpma)(NBu‘)2 (5) M0(dpma)(NBu‘)2 (6) W(dpma)(NBu‘)2 (7) C(CH3)3 bent solution 30.2 31.0 32.5 solid 30.0 31.0 32.2 C(CI-I3)3 linear solution 31.1 31.7 33.1 solid 30.6 32.3 33.6 CMe3 bent solution 76.8 69.5 66.8 solid 75.8 69.2 66.8 CMe3 linear solution 78.9 70.3 68. 1 solid 79.8 70.1 67.6 CH2 solution 62.9 60.7 60.9 solid 62.3 60.3 59.3 N CH3 solution 46.0 44.6 44.7 solid 44.6 45.2 42.3 Pyrrole—4-C solution 103.0 105.0 105.7 solid 103.2 103.7 106.8 Pyrrole-3-C solution 109.3 1 10.0 1 1 1.0 solid 108.3 109.3 108.9 Pyrrole-2-C solution 132.6 133.4 1343 solid 132.0 132.4 134.1 Pyrrole- 1 -C solution 138.9 139.0 139.8 solid 137.1 139.3 140.3 and by others. ‘5 Osborn and Le Ny, for example, reported the 14N NMR of several axially symmetric, trigonal bipyramidal tungsten mono(imido) complexes.46 Because these complexes were highly symmetric, the 14N NMR resonances were relatively narrow (Av1 ,2 <100 Hz). Broader resonances are observed in the 14N NMR spectra of the dpma systems studied because of the lower symmetry of these compounds; however, all of the resonances corresponding to the nitrogen atoms of the complexes are readily observed, Figure 2-10. 30 .AAAA .....2..- “-..; m v v ‘7 700 600 500 400 300 200 100 ' ppm Figure 2- 10. The 14N NMR spectra of Cr(NBu‘)2(dpma) (5) (top), Mo(NBu‘)2(dpma) (6) (middle), and W(NBu‘)2(dpma) (7) (bottom). 47 o=oD+o (20 p The Ramsey equation, eq 2-7, describes the shielding of a nucleus in terms of a diamagnetic component, 0D, and a paramagnetic component, 01,; the paramagnetic term predominates in nitrogen NMR.48 As one descends a column in the periodic table, imido group resonances in nitrogen NMR shield significantly, primarily due to the higher negative charge on the nitrogen atom as the M-N(imido) bond polarity increases as well as the increase in AB because of larger ligand field splittings.15 Bending in imido-metal bonds is expected to decrease AE because of lower energy 11 —> rt* circulations,” compared to 31 linear imido-metal bonds, and this will decrease the shielding of the bent imido nitrogen resonances. The 14N NMR (Figure 2-10) spectra of compounds 5 - 8 are unlike the crystal structures and the 1H and 13C NMR spectra of these compounds in that only Cr(NBu')2(dpma) (5) clearly shows two distinct imido resonances. The spectrum of 5 has one relatively sharp peak at 588 ppm (Av, ,2 = 382 Hz) corresponding to the axial (bent) imido nitrogen atom14b and a broader resonance at 560 ppm (Av1 ,2 = 688 Hz) for the equatorial (linear) imido nitrogen atom. The molybdenum derivative, Mo(NBu‘)2(dpma) (6), exhibits two unresolved resonances at 472 (Ax/1,2 = 248 Hz) and 458 ppm (Ax/1,2 = 1100 Hz). The tungsten congener, W(NBu‘)2(dpma) (7), appears to have a single imido resonance at ~413 ppm; however, deconvolution of the spectrum requires two resonances at 415 (Av1 ,2 = 808 Hz) and 413 ppm (Avl,2 = 190 Hz) to explain the shape of the peak. The imido nitrogen atom resonances do shift upfield as expected as the shielding increases down the triad, going from 5 to 7. This shielding increase is dramatic at >150 ppm down the triad. Similar trends are seen in the nitrogen NMR of nitrido49 complexes.50 Imido substituent effects can be seen by comparing the 14N resonances of complexes 6 and 8. While alkyl inrido 6 displays two resonances for the imido groups, aryl imido 8 has a single Lorentzian peak in the 14N NMR for the imido nitrogen atoms at 429 ppm (Av1 ,2 = 648 Hz), which cannot be deconvoluted into two distinct resonances. Increases in the M-N(imido) bond polarity may result in decreased sensitivity of the corresponding chemical shifts to imido nitrogen environment.38 This is seen experimentally; the more covalent chromium complex 5 shows higher sensitivity to imido nitrogen environment than do the molybdenum and tungsten analogs, so much so that in the tungsten compound the resonances are separated by only 2 ppm. Assuming that one of the imido substituents is more electron—rich than the other substituent (consistent with the 13C NMR data), the two imido ligands should react differently when the electronegativity of the metal center is decreasing on going from chromium to molybdenum to tungsten. 32 This increase in bond polarity going down the group decreases the differences caused by having the nitrogen atoms in different environments. This also seems to be a reasonable explanation for the differences seen between alkyl imido 6 and aryl imido 8, that is, the aryl substituents on the imido nitrogen atoms of 8 result in more electronegative imido nitrogen atoms and higher Mo—N(imido) bond polarity. The result is the unresolvable resonances for the two different imido nitrogen atoms of 8. The aryl group will also resonance stabilize the imido lone pair electrons, leading to an increase in AB for n -* 11* paramagnetic circulations, shielding the aryl imido nitrogen atom by ~30 ppm compared to the tert-butyl derivative. If one assumes that the 14N NMR chemical shift differences are predominantly caused by the imido bond angle differences, an alternative explanation evolves. This would require that the 1H and 13C NMR chemical shifts are more sensitive to other factors. In this case, the more polar M-N(imido) bonds, those where M are molybdenum and especially tungsten, have a lower energy barrier to bending and straightening the M-N(imido)-C bonds. This lowered energy barrier would result in fluxional processes which equilibrate the imido bond angles on the 14N NMR time scale. The solid-state structures and Density Functional Theory calculations (vide infra) suggest that while the minima of the imido bond angle bending potential energy surfaces are similar, the energies required for a specific bond angle deformation change with the metal center. Variable temperature 14N might be useful to determine if the compounds are fluxional; there should be a low temperature limit at which the two different imido environments “freeze out,” becoming inequivalent. In these compounds, unfortunately, lowering the temperature quickly broadens the resonances, eliminating any possibility of observing two distinct peaks. Increasing the temperature of solutions of Mo(NBu‘)2(dpma) (6) resulted in clearer, sharper resonances with some shifting, although this shifting was insignificant over the temperature range available. Thus, it appears that there is no interchange of the imido ligands on the NMR time scale evident in the 14N NMR spectra of these compounds, consistent with what is seen in the 33 I.-- 4-2.1.5-. 1H NMR spectra. A few conclusions may be drawn from the 14N NMR spectra of complexes 6—8. The first is that the imido nitrogen resonances become more shielded as the metal is changed from chromium to molybdenum to tungsten. Secondly, decreasing the electronegativity of the metal center appears to reduce the differences between the axial and the equatorial imido ligands. As in the case of the A6,_b values (vide supra), the differences between the resonances due to the axial (bent) and equatorial (linear) imido ligands followed the trend Cr > Mo ~ W. The shifts of the resonance positions on changing the metal down the triad were much larger than the shifts of the resonance positions resulting from electronic differences between the two imido ligand environments. Typical of the chemical shifts seen for other amine complexes, the 14N NMR resonances corresponding to the amine donors of the dpma ligand are found at 84 ppm (At/1,2 = 1024 Hz), 74 ppm (Av1 ,2 = 1594 Hz), 79 ppm (As/1,2 = 1750 Hz), and 42 ppm (As/1,2 = 3132 Hz) for compounds 5—8, respectively. Concerning the 14N NMR chemical shifts of the pyrrolyl nitrogen atoms, there appears to be a link between pyrrolyl nitrogen chemical shifts and the Jt-electron density in the pyrrole ring. 51 For free azoles, the 14N chemical shifts vary linearly with the calculated rt-charge densities (SCF-PPP-MO method) of the aromatic ring. The possibility of being able to correlate the 14N chemical shifts of pyrrolyl nitrogen atoms and the Jt-acceptor strength of a metal center is indeed exciting, and these systems offer a change to evaluate the extent of metal center-aromatic system competition in these complexes. The 14N NMR chemical shift for the pyrrolyl nitrogen atoms in Cr(NBu‘)2(dpma) (5) is 195 ppm (Av1 ,2 = 125 Hz); the corresponding chemical shifts in the molybdenum and tungsten complexes are 198 ppm (Av1 ,2 = 372 Hz) and 201 ppm (Avl,2 = 421 Hz), respectively. This slight deshielding as one preceeds down the triad is consistent with slightly more Jt-bonding between the metal centers and the pyrrolyl nitrogen atom changing from chromium to molybdenum to tungsten. The arylimido complex 8 has a pyrrolyl 34 nitrogen atom resonance at 206 ppm (Avl ,2 = 895 Hz); apparently, the less electron—donating arylimido groups lead to additional pyrrolyl nitrogen electron-density being donated to the metal center than in the alkylimido complex 6. Since the chemical shift differences in these compounds are so small, the effects mentioned are undoubtedly small also. The size of the chemical shift changes observed might be related to competition for the n-acceptor orbital between the axial imido ligand and the pyrrolyl nitrogen lone pair electrons. For example, in the compounds Ti(dpma)2, Zr(dpma)2, and Hf(dpma)2, the pyrrolyl 14N chemical shifts vary almost linearly with the electronegativities of the metals in the +4 oxidation state over a 47 ppm range.25 This is due to the pyrrolyl p-electrons not having to compete with the strongly p-donating imido ligands found in complexes 5—9. Examination of M(NBu‘)2(dpma) using DFT. Geometry optimizations of the M(NBu‘)2(dpma) complexes at the SCF level, utilizing the LANL2dz effective core potential and the associated 3s3p3d basis set for the transition metals and the all electron 3-21 g basis set for the main group elememts, yield bond lengths and angles that are in remarkable agreement with the geometries obtained from single-crystal x-ray diffraction experiments. Figure 2-11 shows the experimental and calculated M—N-C bond angles and metal-ligand bond distance for complexes 5—7. As in the x-ray diffraction data, the chromium-imido bond distances are essentially the same in the calculated structure. Correlations between bond distance and bond order rarely work well; bond distances appear to be the result of many different factors. ‘6 Rothwell and coworkers, for example, have shown experimentally that metal alkoxide bond angles have no apparent correlation to metal alkoxide bond lengths.52 A similar conclusion can be drawn from the data presented here; i.e., the two M—N(imido) bonds in each molecule seem quite similar despite their different environments. The structure optimization calculations yield atomic charges; we can obtain the “net charge” of the two M—N imido bonds in each of the three compounds examined by subtracting the atomic charge of the nitrogen atom from the atomic charge of the metal atom. Subtracting the “net charge” of the axial (bent) metal—imido bond from the “net 35 <~oSN <52: < 223 £82: .3: .53: «5:258 _ 20.2 N <59: N 22:2: N «.328 N £382 A v e . when“. 28:: 2823 .6222: 82.322352 26 Ease moEoEeow cos—:28 28 Red 82522 Rambo 2: 886. 259.2 econ can 8&5 use: @8028 we E25980 .=.N 0.53..— 36 2.20 I I I I I--—y J 1.2747 + 17.838x R2: 0.97454 2.00 Cr 1.80 / 1.60 J a / go" 1.40 1 < w.// / 1.20 .0. / 0.80 / Mo 0.60 -0.030 -0.020 -0.010 0.000 0.010 0.020 0.030 0.040 0.050 Difference in Calculated Atomic Charges linear (M-N) - bent (M-N) Figure 2-12. Plot of the differences of the calculated atomic charge differences between linear and bent imido bonds versus A0“, for compounds 5—7. charge” of the equitorial (linear) metal—imido bond should give an estimation of the polarity difference between the two imido bonds. Graphing these values for the three complexes versus the observed solution-state ASLb for complexes 5—7 (vide supra), Figure 2-12, results in a straight line. The results indicitate that the axial (bent) metal—imido bond in complex 5 is less polar than the equatorial (linear) metal-imido bond. The opposite is true in the case of the molybdenum complex 6; that is, the axial (bent) metal—imido bond is more polar than the equatorial (linear) metal—imido bond. In complex 7 , the axial (bent) metal—imido bond is more polar than the equatorial (linear) metal—imido bond, but the two bonds are more similar in polarity than in either complexes 5 or 7. Why the calculated imido bond polarities trend the same way as does the solution-state A0”, rather than the solid—state Ml}.b is unknown. 37 Since the spectroscopic techniques discussed above cannot explain the factors leading to the resonance differences seen for the two imido substituents, the energy ban'iers associated with straightening the axial (bent) imido ligand from the solid-state angles to 175° (the approximate bond angle of the equatorial imido ligand) were calculated using Density Functional Theory, utilizing the LANL2dz effective core potential and the associated 353p3d basis set for the transition metals and the all electron 3-21g basis set for the main group elememts. In order to minimize computational expense as well as to avoid adding additional complications, these calculations involved simply changing the axial imido angle and determining the energy, without optimizing the rest of the structure. Because of this, the energies obtained are best viewed as upper limits. The energy associated with straightening the axial imido ligand for the chromium complex 5 was calculated as 4.5 kcal/mol (Figure 2-13). Legzdins and coworkers found, in a similar calculation for imido bending in Cr(O)(NMe)(Me)(NPriz), an energy of 4.4 kcal/mol associated with the deformation [of the Cr—N—C angle.53 The energies calculated for straightening the axial imido bonds in complexes 6 and 7 are 2.7 kcal/mol and 2.0 kcal/mol, respectively. These energies are small enough that the M—N(imido)—C bond angles should be changing rapidly on the NMR timescale in room temperature solutions, so the differences between the two imido ligands seen in the NMR spectra (supra infra) are probably a result of the overall coordination environment of the different ligands and the equilibrium bond angles. Plotting the calculated angle deformation energies versus the estimated electronegativity in the +6 oxidation state38 of the associated metal results in a straight line, Figure 2-14, suggesting that the angular deformation energy is related to the M—N(imido) bond polarity. Additional factors involved in the bond angle deformation would be expected to cause this plot to deviate from linearity. The ultimate question that arises from these systems is why the axial imido ligand is bent in the solid-state structures. The molecular orbitals (Figure 2-15) might yield some insight into this question, for if the pyrrolyl ligands were purely o-only donors, the axial 38 1O Cr(dpma)(NBu‘)g Imido Anglo Dotormntlon Emmy (hall/mole) A o 4.50 keel/mole lmldo Anglo Datamation Enemy (Ice-IMO”) lmldo Anglo Dolormatlon Emmy (Rod/incl.) 130 140 150 160 Angle (’) 170 190 Figure 2-13. Plots of calculated energies versus angle for the axial imido ligand of compounds 5-7. 39 5.0 -y = -O.47556 + 1.4678x R2: 0.9958 4.5 2 8% < E 4.0 r “5= / 8 Egg, 3.5 / “c’ S / "Jug 3.0 B. E / I %«3 2.5 RC) 0 2.0 1.5 1.5 2.0 2.5 3.0 3.5 Electron ativity of WW) Pau ing Scale Figure 2-14. Plot of calculated energy difference from minimum to 175° in axial imido angle versus estimated electronegativities on the Pauling Scale. imido ligand ought to be linear. However, any It—bonding from the pyrrolyl ligands could compete with axial imido n-bonding, resulting in a bent imido ligand. Several molecular orbitals were found with contributions from the pyrrolyl Jt-systems and the axial imido consistent with this postulate, and the 1"’N NMR resonances for the pyrrolyl nitrogen are suggestive of attenuated rt-bonding to those substituents due to competition with the imido ligand (vide supra). Conclusions It was attempted to quantify the relationship between electronegativity and imido angle bond deformation in these interesting complexes. Although none of the data described above is convincing alone, the overall picture created by the range of experimental and computational techniques described leads to several conclusions concerning these 40 +2.50 ' -2.50 - HOMO ‘/HOMO-l Energy (eV) Figure 2-15. Plot of some of the calculated molecular orbital of Cr(dpma)(NBu‘)2 (5). For ease of viewing, atom labels and tert-butyl methyl groups have been omitted. 41 bis(imido) complexes. The 14N NMR and the 13C solid-state NMR data indicate that the axial imido ligands in the studied complexes are bent (solution and solid) and that they are more electron-rich than are the equatorial imido ligand. However, it cannot be shown that the axial ligand is electron-rich because it is bent rather than being electron-rich because it is in the axial position. However, if the canonical forms in Chart 2-1 are reasonable descriptors of the bonding in these complexes, and assuming that imido ligands will form triple bonds when able (Structrue III, Chart 2-1), it is reasonable to say that the axial imido ligand is bent due to the larger amount of electron-density (or vice-versa). Assuming that imido ligand bond angle and electron density are related, the following conclusions can be drawn. The spectroscopic evidence, including 1H, 13C, and 14N NMR data, suggests that the imido substituents in the M(NBu')2(dpma) complexes do not exchange on the NMR timescale. Thus, it is possible to study the environmental differences of the two imido ligands via spectroscopy. For example, the more shielded tert-butyl resonances were found to be from the apparently more electron-rich axial (bent) imido ligands in complexes 5- 7. The calculated bond deformation energies indicate that the axial imido ligand angle is changing in solution, and that the observed differences in the two imido substituents is due to different equilibrium bond angles and different environments, i.e., axial vs. equatorial. The fact that A514) is nonzero indicates that the electron-densities on the two different imido nitrogen atoms are not the same. The value of A514) in solution and in the solid-state changed as Cr > Mo ~ W, similar to differences between imido nitrogen chemical shifts in the 14N NMR.54 However, the effect of changing the other ligands on the metal centers can be larger than changing the imido environment, as indicated by the A605 values. Therefore, imido environment on the metal center is likely less important to imido bonding than these metal-nitrogen polarity issues.55 A relatively simple description of imido bonding for this series of complexes is 42 apparent with these points in mind.56 There will be a contribution to bonding from polar structures such as IV and V, and since these zwitterionic contributors both have a M—N(imido) bond order of one, rehybridization involving exchange between these structures will not greatly affect the bonding or nitrogen atom electron-density. The barrier to straightening or bending an imido bond in this model will be determined by the energy required to exchange bent imido structure I with linear forms 11 and III, the extent to which the polar forms IV and V participate, and any steric effects. Thus, as the M—N(imido) bond becomes more covalent for metal centers with relatively high electronegativity, e. g. chromium(V I) with very electron-withdrawing groups, the barrier to nitrogen rehybridization (bending or straightening) should increase. The DFI‘ calculations on these complexes found that the chromium complex 5 has a higher barrier to imido angle deformation than the more polar, isostructural tungsten complex 7, consistent with this assertion. The linear relationship between the calculated deformation barriers and the estimated electronegativity suggests that bond polarity is a major factor in determining imido ligand deformation energies. The barrier to isomerization in highly covalent systems could approach those in organic imines, which typically range from 15 kcal/mol to >23 kcal/mol.22’23 Thus, the conclusions on these systems are consistent with the results of other studies that have observed14 and calculated57 differences in imido bonding associated with imido ligand bending, which are typically small. Additionally, studies of these systems indicate that larger barriers to imido angle deformation due to electronic structure may be found for chromium(V I) or other transition metals where the effective electronegativity more closely approximates that of nitrogen and where the bending is required16 by the electronics of the system, rather than by sterics58 or some other effect. Experimental General considerations. All manipulations of air-sensitive materials were carried out in an MBraun glove box under an atmosphere of purified nitrogen. Ethereal solvents 43 f Ill]. Ifl.t E: .o £85 835 ONE .o 385 aN A c 2.6:: 9.85 5.3. N22. 885 236 E A e 9e: RN; EN; 82 WNS :N._ is a 23: $2. ass 3% 89¢ Rho 9.55 a v e. v a. 4 N a _ VthaN €83: gm. _ m _ N s _ CwNm _ N 68.38 5: 2.5.3 8 8 8 8 8 C > o... 8 55.3 @808 A383 C a 8 8 8 8 8 C 5 $52 .2 68m: 68. .NN 2 .ENNN 6N5. .N as a $3.2 EVE. G E: :2: 62 _ .2 639$ 3: a 5N9; 624.2 2 35:3 65$ ANKSNE 3: a :VNA _ VNA _ CE N20”— :> _ V8 i _ CE 0:2 95.5 825 $58 N28 3.2m $.va 2V. _ mm Ema: «3:5... n2.0—29:..0 nz.s_\,_:.zau nzaszzeu n2225.20 “265229 .388... 5 as E as Amy Aéionsapamzzz Agasuafizvoz «5:255:33 Nos—2x533: Nos—2x235 ectoEtB >93" gigolo—mam EEC alm 3:39:00 “8 £82522. geogm .n.N 033—. and pentane were purchased from Aldrich Chemical Co. and distilled from purple sodium benzophenone ketyl. Toluene was purchased from Aldrich Chemical Co., refluxed over molten sodium for at least 2 d, and distilled. Dichloromethane was purchased from Spectrum Chemical Co., refluxed with calcium hydride for at least 2 d, and distilled. NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc. Deuterated benzene was distilled from purple sodium benzophenone ketyl. Deuterated toluene was degassed and dried with neutral activated alumina. NMR solvents were stored in sealed containers equipped with a Teflon stopcock in the dry box prior to use. Spectra were taken on Varian instruments located in the Max T. Rogers Instrumentation Facility. Routine coupling constants are not reported. Alumina, silica, and Celite were dried at >200 °C under dynamic vacuum for at least 12 h, then stored under inert atmosphere. Cr(NBu‘)2(Br)2(py),29 Mo[N(2,6- P152C6H3)]2C12(dme),30W(NBu‘)2(NHBu‘)2,31 and Mo(NBu‘)2C12(1,2-dimetlroxyethane)30 were prepared by literature methods. Bis(tert-butyl)diazene was purchased from Aldrich Chemical Co., and spectroscopic examinations were carried out in d7-toluene by 1H [0 = 1.18 (s, Bu‘)] and 13C NMR [0 = 65.95 C(CH3)3, 26.90 C(CH3)3]. Combustion analyses were performed by Oneida Research Services in Whitesboro, NY. Procedure for Density Functional Theory calculations. The calculated molecular structures were obtained by geometry optimizations at the SCF level using the LANL2dz effective core potential and the associated 353p3d basis set59 for the transition metals Cr, Mo, and W while the all electron 3-21g basis60 was used for the main group elements (H, C, O and N). The potential energy curves for the axial imido angle were calculated at the DFI‘ level using the B3LYP functional.61 As the angle was varied, the remainder of the molecule was kept at the optimal SCF geometry, a procedure that may overestimate the barrier for imido angle deformation. All calculations used the Gaussian 98-program62 as implemented on the Chemistry Department’s Silicon Graphics Origin 3400 computer. Cr(NBu')2(dpma) (5). A solution of Lizdpma (0.1006 g, 0.500 mmol) in 5 mL ether was cooled to near frozen in a liquid nitrogen cold well. This was added to a cold 45 solution of BrzCr(NBu‘)2(py) (0.2163 g, 0.499 mmol) in 5 mL ether. The resulting solution was allowed to warm to box temperature and stirred for 2 h. The solids formed were filtered off, and ether was removed in vacuo. The residue was recrystallized from ether/pentane, yielding 1 as a dark red powder in 34% yield (0.0655 g, 0.172 mmol), m 128-130 °C 1H NMR (toluene-d8): 5 = 6.97 (s, 2H, pyrrole-S-H), 6.60 (m, 11:2.44 Hz, 12:2.93 Hz 2H, pyrrole-4-H), 6.37 (m 11:1.22 Hz, 12:1.71, 2H, pyrrole-3-H), 4.37 (d, J=12.7 Hz, 2H, N-CI-IH-pyrrole, anti to methyl), 3.57 (d, J=12.7 Hz, 2H, N-CHH-pyrrole, syn to methyl), 2.41 (s, 3H, NCH3), 1.47 (s, 9H, NC(CH3)3, linear), 1.14 (s, 9H, NC(CH3)3, bent). 13C NMR (toluene-d8): 6 = 138.95 (pyrrole-l-C), 132.56 (pyrrole-2-C), 109.33 (pyrrole-3-C), 103.00 (pyrrole-4-C), 78.89 (NCMe3, linear), 76.78 (NCMe3, bent), 62.88 (methine CH2), 46.03 (NCH3), 31.12 (NC(CH3)3, linear), 30.22 (NC(CH3)3, bent). 14N NMR (benzene- d6): 6 = 587.90 (Av1 ,2 = 382.27 Hz), 559.80 (Av1 ,2 = 688 Hz), 194.84 (Avl,2 = 327 Hz), 83.66 (Av1 ,2 = 1024 Hz). Anal. Calcd for C19H31N5Cr: C, 59.82; H, 8.19; N, 18.36. Found: C, 60.20; H, 8.22; N, 17.98. Mo(NBu‘)2(dpma) (6). A solution of Lizdpma (0.2014 g, 1.00 mmol) in a mixture of 5 mL toluene and 1 mL ether was cooled in a liquid nitrogen temperature cold well to near frozen. This solution was added to a cold, stirring solution of Cleo(NBu‘)2(dme) (0.4007 g, 1.00 mmol) in 5 mL toluene. The reaction solution was allowed to warm to box temperature and stirred for 2 h. The solution was filtered, and volatiles were removed in vacuo. The resulting brown solid was recrystallized from pentane giving 2 as a yellow solid in 38% yield (0.161 g, 0.378 mmol), m 86 °C dec. 1H NMR (toluene-ds): 6 = 7.09 (s, 2H, pyrrole-S-H), 6.51 (m, 11:0.73 Hz, 12:2.44, 2H, pyrrole-4-H), 6.31 (m, J=2.44, 2H, pyrrole-3-H), 4.28 (d, J=12.7 Hz, 2H, N-CHH-pyrrole, anti to methyl), 3.46 (d, J=12.7 Hz, 2H, N-CHH-pyrrole, syn to methyl), 2.17 (s, 3H, NCI-I3), 1.49 (s, 9H, NC(CH3)3, linear), 1.21 (s, 9H, NC(CH3)3, bent). 13C NMR (toluene-ds): 6 = 139.00 (pyrrole-l-C), 133.37 (pyrrole-2-C), 110.04 (pyrrole-3-C), 104.96 (pyrrole-4-C), 70.29 (NCMe3, linear), 69.51 (NCMe3, bent), 60.67 (CH2), 44.61 (NCH3), 31.69 (NC(CH3)3, linear), 31.04 (NC(CH3)3, 46 bent). 14N NMR (23 °C, benzene-d6): 6 = 472 (Avl,2 = 248 Hz), 458 ppm (Av1 ,2 = 1100 Hz), 198.30 (Av1 ,2 = 372 Hz), 73.75 (Av1 ,2 = 1594 Hz). 14N NMR (59 °C, toluene-dB): 6 = 427.03 (Ax/1,2 = 273 Hz), 412.98 (Av1 ,2 = 792 Hz), 206.76 (Avl,2 = 432.76 Hz), 69.58 (Av1 ,2 = 1981 Hz). Anal. Calcd for C19H31N5Mo: C, 53.64; H, 7.34; N, 16.46. Found: C, 53.50; H, 7.23; N, 16.38. Mo(NBu‘)2C1263 may also be used in the preparation of 6 with similar results. W(NBu‘)2(dpma) (7). A solution of szpma (0.1902 g, 1.00 mmol) in 5 mL toluene was cooled to near frozen. The cold solution of ligand was added to a cold solution of W(NBu‘)2(NHBu‘)2 (0.4702 g, 1.00 mmol) in 5 mL toluene. The resulting solution was allowed to warm to box temperature and stirred for 2 h. Volatiles were removed in vacuo to yield a brown oil. To the oil, 2 mL of pentane was added. The solution was stirred for several min. Volatiles were again removed, which resulted in a yellow solid. Recrystallization from pentane gave 3 as a tan solid in 50% yield (0.255 g, 0.499 mmol), mp 78 °C dec. 1H NMR (toluene-ds): 6 = 7.16 (s, 2H, pyrrole-S-H), 6.38 (t, 11:3. 17, 12:2.45, 2H, pyrrole- 4-H), 6.20 (m, J 1:1.46, 2H, pyrrole-4-H), 4.48 (d, J=12.6 Hz, 2H, N-CHH-pyrrole, anti to methyl), 3.46 (d, J=12.6 Hz, 2H N-CHH-pyrrole, syn to methyl), 1.94 (s, 3H, NCH3), 1.45 (s, 9H, NC(CH3)3, linear), 1.12 (s, 9H, NC(CH3)3, bent). 13C NMR (toluene-ds): 6 = 139.76 (pyrrole-l-C), 134.35 (pYrrole-Z-C), 111.00 (PYrrole-3-C), 105.73 (pyrrole- 4-C), 68.06 (NCMe3, linear), 66.81 (NCMe3, bent), 60.87 (CH2), 44.658 (NCH3), 33.08 (NC(CH3)3, linear), 32.51 (NC(CH3)3, bent). 14N NMR (benzene-d6): 6 = 415.21 (Av1 ,2 = 808 Hz), 412.70 (Avl,2 = 190 Hz), 201.44 (Avl,2 = 421 Hz), 78.71 (Avl,2 = 1750 Hz). Anal. Calcd for C19H31N5W: C, 44.46; H, 6.09; N, 13.64. Found: C, 43.99; H, 5.86; N, 13.69. Mo(Ndip)2(dpma) (8). A solution of Lizdpma (1.001 g, 4.97 mmol) in 25 mL ether was cooled to near frozen. This cold solution was added to Cleo(Ndip)2(dme) (3.038 g, 5.00 mmol) in 25 mL ether. The resulting solution was allowed to warm to box temperature and stirred overnight. Lithium chloride was filtered off, and ether was removed in vacuo. The resulting brown solid was recrystallized from ether/pentane, which gave 4 as a tan 47 solid in 35% yield (1.10 g, 1.74 mmol). 1H NMR (benzene-d6): 6 = 6.93-7.02 (m, 6H), 6.91 (m, 2H), 6.40 (m, 11:2.69, J2=2.44, 2H), 6.26 (m, 2H), 4.43 (d, J = 13.0 Hz, 2H), 3.90 (h, J = 6.7 Hz, 2H), 3.46 (d, J = 13.0 Hz, 2H), 3.18 (h, J = 6.7 Hz, 2H), 2.23 (s, 3H), 1.05 (d, J = 6.7 Hz, 9H), 1.04 (d, J = 6.7 Hz, 9H). 13C NMR (benzene-d6): 6 = 153.22, 151.90, 147.91, 143.43, 139.20, 131.26, 129.55, 128.29, 128.29, 128.19, 127.81, 126.65, 122.95, 122.35, 111.06, 110.99, 105.84, 60.56, 45.46, 28.88, 28.80, 23.58, 23.42. 14N NMR (benzene-d6): 6 = 429.32 (Avl,2 = 648 Hz), 205.85 (Av1 ,2 = 895 Hz), 42.49 (Av),2 = 3132 Hz). Anal. Calcd for C35H47N5Mo: C, 66.34; H, 7.48; N, 11.05. Found: C, 66.39; H, 7.42; N, 11.03. Mo(NBu‘)2(deHIRA) (9). A solution of Lizdpma (0.0856 g,0.252 mmol) in a mixture of 5 mL ether was cooled in a liquid nitrogen temperature cold well to near frozen. This solution was added to a cold, stirring solution of C12M0(NBu‘)2(dme) (0.1009 g, 0.253 mmol) in 5 mL ether. The reaction solution was allowed to warm to box temperature and stirred for 1 h. The solution was filtered, and volatiles were removed in vacuo. The resulting brown solid was recrystallized from pentane giving 9 as a yellow solid in 15% yield (0.0215 g, 0.0391 mmol), mp 108 °C dec. 1H NMR (toluene-d8): 6 = 7.09 (s, 2H, pyrrole-S-H), 6.48 (m, 2H, pyrrole-4-H), 6.28 (m, 2H, pyrrole-3-H), 4.32 (t, 2H, N-CHH- pyrrole), 3.92 (dd, 2H, N-CHH—pyrrole), 3.00 (m, 1H), 2.60 (d, 1H,), 1.80 (m, 2H), 1.49 (d, 2H), 1.43 (s, 9H, CCH3), 1.2-1.4 (m, 7H), 1.10 (s, 9H, CCH3), 0.84 (d, 3H), 0.75 (d, 3H), 0.64 (d, 3H) . 13C NMR (toluene-dg): 6 = 139.81, 139.47 (pyrrole-l-C), 133.40, 133.36 (pYrrole-Z-C), 109.92, 109.88 (pyrrole-3-C), 105.09, 104.80 (pyrrole-4-C), 70.58 (NCMe3), 69.91 (NCMe3, bent), 58.72, 57.65, 50.79, 49.13,40.12, 35.63, 31.91, 31.38, 31.15, 28.70, 26.06, 24.88, 22.81, 21.65. Anal. Calcd for C29H49N5Mo: C, 61.79; H, 8.76; N, 12.42. Found: C, 61.33 H, 9.18; N, 11.94. General considerations for single crystal x-ray diffraction. Single crystals of 1-4 were grown at —35 °C in an MBraun inert atmosphere glove box. All but a small portion of the mother liquor was removed, and the crystals were removed from the glovebox in a sealed vial. The crystals were rapidly coated in Paratone N and mounted 48 on a glass fiber. The mounted crystal was placed under a cold stream of nitrogen from an Oxford “Cryostream” low-temperature device. Data were collected on a Bruker-AXS, Inc. SMART CCD diffractometer utilizing a PC running Windows NT. The data collection was done on a Bruker-AXS, Inc. 3-circle goniometer (x set to 54.78°). The source was a water-cooled Mo x-ray tube (A = 0.71073 A) operating at 50 kV/40 mA. A single crystal graphite monochromator selected the wavelength of light prior to being columated. The cell was determined using 00—0 scans (—0.3° scan width) with 3 sets of 20 frames. The initial cell was found by repeated least squares and Bravais lattice analysis. Full data sets were collected using (0—0 scans in four runs. The fourth run duplicates the first 50 frames of the first run to allow analysis of peak intensity changes resulting from crystal degradation; no correction was necessary for any of the structures reported. Absorption corrections were applied to the data. Using the initial cell, data were integrated to hkl/ intensity data using the Bruker-AXS, Inc. program package SAINT. The final unit cell was determined by SAINT using all the observed data. The structures were solved and refined using the SHELXTL program developed by G. M. Sheldrick and Bruker-AXS, Inc. A full listing of atomic coordinates, bond lengths, bond angles, and thermal parameters for all the structures have been deposited at the Cambridge Crystallographic Data Centre and can be found in the Appendix 1. Additional data pertaining to the collection and processing of the four structures can be found in Table 2-3. In Table 2-3, R1 = ZIIFol—IFCIIIEIFOI and wR2 -..-. {2w(F02—Fc2)2/2w0~‘02)2}“2. A partial listing of geometrical parameters for all four data sets may be found in Table 2-3. 49 CHAPTER 3 TRANSITION METAL ALKYLIDENES CONTAINING DIPYRROLYL LIGANDS Introduction In the last decade, Schrock carbenes (alkylidenes) have found extensive use as carbon—carbon double bond metathesis catalysts in both polymer and small-molecule synthesis. The substantial work of Schrock and coworkers has resulted in highly active, readily prepared, and commercially available molybdenum imido alkylidene catalysts.“65 Schrock, Hoveyda, and coworkers have introduced catalysts with chiral ancillary ligands and with polymer-supported ligands.“72 These ancillary ligands are typically alkoxide or aryloxide ligands; electron-withdrawing ligands result in more highly-active catalysts than electron-donating ligands. Little success in making active catalysts has resulted from the use of other types of ligands, such as aryldiamido ligands.73’74 The introduction of ruthenium-based metathesis catalysts by Grubbs and coworkers has allowed the use of less-stringent anaerobic conditions during double-bond metathesis.75 There have been many successful advances in these ruthenium catalysts, most notably the use of N -heterocyclic carbenes (Ardeungo carbenes) as ancillary ligands.7""83 Modification of the ruthenium-based catalysts to enable asymmetric ring-closing metathesis catalysts and polymer-supported catalysts has been less straightforward than with the molybdenum- based catalysts, primarily due to the difficulty involved with ancillary ligand substitution of the ruthenium catalysts. Alkoxide substitution of the chlorides has been shown to result in substantial decrease of reactivity of these complexes as metathesis catalysts.84 Dipyrrolyl ligands offer several advantages as ligands. They are readily synthesized in high yield. Many functional groups, including chiral centers, can be incorporated into the ligands through the use of appropriate starting materials. These ligands have already seen widespread use in titanium-based hydroamination catalysts85 (Chapter 6), and it was anticipated that their incorporation into metathesis catalysts could result in novel catalysts with interesting symmetric and asymmetric properties. With this in mind, several new 50 molybdenum— and ruthenium-based alkylidenes have been synthesized. Results and Discussion Reaction of Lizdpma with one equivalent of (OTf)2Mo(Ndip)(=CHCMe2Ph) yields, after work-up, Mo(dpma)(NdiP)(=CHCMe2Ph) (10, eq 3-1), as a mixture of two isomers. Since one isomer is more soluble in pentane than is the other, a partial separation of the two isomers may be carried out. The crystal structure of one of these isomers, the less pentane soluble isomer, is shown in Figure 3-1 and selected bond lengths and bond angles are shown in Table 3-1. As can be seen, the imido ligand is axial and the neophylidene ligand is equatorial in this structure. Although the molybdenum—carbon alkylidene bond distance in complex 10 of 1.898(2) A is in the typical range reported for molybdenum neophylidene complexes (1.881 - 1.963 A), and the downfield position of the alkylidene proton (12.4 ppm) is in the usual range of alkylidene proton resonances, the molecule is unreactive towards the typical metathesis substrates (norbornene, diethyl diallyl malonate). In fact, Mo(dpma) (NdiP)(=CHCMe2Ph) (10) is air stable in the solid state and in solution for longer than 12 h. Surprisingly, the isomers were found to slowly interconvert in solution; at 65 °C (C6D6), 15% of the pentane insoluble isomer converts to the other isomer in approximately 12 h. I31 (:11 UN _____, [Y‘N N’\) + no. _II o__ -2 LiOTf N»..IU'O_)L© _O«M I \ 36% In (3-1) VD 0T1 I N \ \ / LiN \IL/ E—t——-»2° 99 ii WN’X) + Timfiom -2 LiOTf N;Mo- (3- 2) NLi I o' . \ 26% I '5‘ I\R OTf 4U 11 51 Table 3-1. Selected bond distances and angles from x-ray diffraction on complexes 10 and 11. For the numbering scheme, see Figure 3-1. Mo(Ndi )(d ma) Mo(NBu‘Xd ma) ”mm “d “1"“ (AP) (=CHCMZIP1lr’) (10) (=CHCMe2P1li) (11) Mo-N(4) 1.716(2) 1.693(5) Mo-C(5) 1.898(2) 1.871(6) Mo-N(1) 2.089(2) 2.100(5) Mo-N(2) 2.0789(19) 2.106(5) Mo-N(3) 2.303(2) 2.277(5) Mo-N(4)-C(4l) 172.8307) 163.9(5) Mo-C(5)-C(51) 143.8409) 147.2(6) N(4)-Mo-C(5) 103.4500) 104.0(3) N(1)-Mo-N(4) 107.04(8) 101.1(2) N(2)-Mo-N(4) 103.53(8) 101.9(2) N(l)-Mo-C(5) 9916(9) 97.8(2) N(2)-Mo-C(S) 9660(9) 98.9(2) N(3)-Mo-N(4) 114.05(8) 128.2(2) N(3)-Mo-C(5) 142.38(9) 127.7(2) N(l)-Mo-N(2) 141.04(8) 147.1(2) N(1)-Mo-N(3) 7335(8) 73.5(6) N(2)-Mo-N(3) 7245(7) 73.9(2) Figure 3-1. The ORTEP representation (50% probability ellipsoids) of Mo(dpma)(N dip) (=CHCMe2Ph) (10) (left) and Mo(dpma)(NBu‘)(=CHCMe2Ph) (11) (right). 52 The space-filling model of Mo(dpma)(NdiP)(=CHCMe2Ph), (10), Figure 3-2, shows a possible explanation for the remarkable lack of reactivity of this complex, i.e., the steric requirements of the dpma ligand prevent the substrates from reaching the metal center. In order to test this theory, Mo(dpma)(NBu‘)(=CHCMe2Ph), 11, was synthesized from (OTf)2Mo(NBu‘)(=CHCMe2Ph) and Lizdpma, eq 3-2, resulting in a mixture of two different isomers. It was anticipated that there would be less steric crowding around the metal center due to the smaller (t-buty1)imido ligand. The solid-state structure obtained from single-crystal x-ray diffraction is shown in Figure 3-1, and selected bond lengths and bond angles are shown in Table 3-1. The space-filling model derived from the solid-state structure (Figure 3-2) indicates that there is less steric bulk around the molybdenum center than in the arylimido complex 10. However, complex 11 also shows a lack of reactivity towards metathesis chemistry. Thus, it appears that the lack of in complexes 10 and 11 is due to electronic effects. It would not be suprising if the molybdenum orbitals needed to perform metathesis would be involved in bonding with the dpma ligand. The obvious difference between the solid-state structures of the two dpma complexes is that in the (t-buty1)imido derivative the imido group is equatorial and the neophylidene group is axial. This results in a slight bending of the Mo—N(imido)—C bond to 163.9°; otherwise the only other substantial differences are seen in the N(3)—Mo—N(imido) and the N(3)—Mo—C(neophylidene) bond angles, resulting in complex 11 being better described as a square pyramidal structure than the arylimido complex (r = 0.02 and 1: = 0.32 for the (t- butyl)irnido and arylimido complexes, respectively). While nOe experiments were unable to differentiate the two isomeric species, it seems reasonable to suggest that the two different orientations seen in the solid-state structures of 10 and 11 are the two isomers produced in the syntheses, however only one isomer has been isolated from each reaction. It also seems reasonable to suggest that the two isomers interconvert via a Berry pseudo-rotation mechanism, Scheme 3-2. Compound 12, Mo(dmpm)(Ndip)(=CHCMe2Ph) (Figure 3-5), obtained by 53 -‘r‘. .( \ r.-‘.“ I‘ AI!" 1". . .l‘ulp v. OEI “2| «8% III 8898.8 8.3»: 2: a? 5ng a: Emaozomoux...mzxae§oz Ba 3...: 8: 2432052362586362 c6 8325852 25-88% 2F .3. as»; 54 Scheme 3-1. Interconversion of the axial imido ligand with the equatorial neophylidene ligand through a Berry pseudo-rotation mechanism. E" 9' If N N’” G}; Mowfi R R K I QI¢M0=N\ ‘— )mefi. reaction of Lizdmpm with (OTf)2M0(Ndip)(=CHCMe2Ph) (eq 3-3), was prepared to determine the influence of the dpma donor amine on the reactivity of complexes 10 and 11. Selected bond lengths and bond angles from single-crystal x-ray diffraction are shown in Table 3-2. As in the case of Mo(dpma)(NR)(=CHCMe2Ph), the molybdenum-carbon alkylidene bond length is typical at 1.925(9) A, although longer than in the dpma complexes 10 and 11. The corresponding alkylidene proton resonance at 12.97 ppm is in the typical range. Unfortunately, complex 12 also shows very little metathesis activity. In the solid-state structure, the dmpm ligand in this molecule adopts an 111,7]5 coordination geometry, similar to the coordination of this ligand in Ti(dmpm)(NMe2)2 (Chapter 6). However, the room temperature 1H and 13C NMR spectra are indicative of slow T's-pyrrolyl to nl-pyrrolyl exchange. The free energy of activation associated with Li I N; I ___§t_29_, I 1 1 (3'3) \ N + TfO II _>L© -2 LiOTf 2 N _>/_© ’I. _ II 12 55 Figure 3-3. The ORTEP representation (50% probability ellipsoids) of Mo(dmpm)(Ndip) (=CHCMe2Ph) (12). Table 3-2. Selected bond distances and angles from x-ray diffraction for complex 12. For the numbering scheme, see Figure 3-3. . . Mo(Ndi dm 111 mm and Angle“ W ) (=CHCN12iPh)p(12)) Mo—N(4) 1.731(6) Mo-C(5) 1.925(9) Mo-eentroid 2.083 Mo-N(2) 2.083(8) Mo-N(4)-C(41) 169.7(6) Mo-C(S)-C(51) 141.0(7) N(4)-M-C(S) 102.0(4) centroid-Mo-N(4) 126.3 N(2)-Mo-N(4) 105.9(3) centroid-Mo-C(5) 1 17.0 N(2)-Mo-C(5) 100.4(3) 56 ‘ e I .‘ AJA— Q!‘Vr.\~ - ‘11“ flm.\2 \' .lI‘F'I.\\IH“ I"~ llll.’\l"l.1 :“~t 1‘ IHIIIII.‘IUI.I"II.'II:“ 9i~£lmnilfidw> r..‘~‘u~l 0"”- I:~.u‘vr$~ an.— N N v m e N. a a 3 NH 2 MN 3 rul-pn—nbhp—nr-n—hbpn— - —b~ —L— —h- —b nI— - -— RP PP r—p 1<< - I g3: id) 00 M.81 j; I< 1 U.m.m~- 3 A. L PVM 5 4 I 1" I 40°C) required for the dmpm ligand to adopt an 711,711 coordination geometry in this complex. At these elevated temperatures, 1H NMR clearly shows a rapid disappearance of the alkylidene proton resonance in the presence of either diethyl diallyl malonate or 1,7-ocatdiene, after production of a few percent ring-closing product. Frustrated by the lack of reactivity of these complexes, complexes 13, Ru(dpm a)(PCy3)(=CHCH=CMe2) (eq 3-4), and 14, Ru(dpma)(PCy3)(=CHPh) (eq 3-5), were synthesized in the expectation that these ruthenium alkylidenes would exhibit greater metathesis reactivity. Figure 3-7 shows the structure of complex 13 obtained from single- crystal x-ray diffraction; selected bond lengths and angles are shown in Table 3-3. The ruthenium—carbon alkylidene bond distance of 1.854(11) A is similar to the ruthenium— carbon bond distance seen in other Grubbs’ catalysts derivatives, and the alkylidene proton resonance at 19.09 ppm is consistent with what is seen in other derivatives of Grubbs’ catalyst. However, as in the case of the molybdenum complexes (vide supra), the ruthenium Cl Tow, L'N 1) Et 0 2L'CI {1'31 fcya I. 1 2 , ’ I ’ RU — + \ N 1 -; RU \ CI' IV \ NLi (\3 2) CuBr, -PCy3 N_/ N\'\ (374) 1301/3 \‘U 13 c. ‘I’C’a. .... ‘~ 1°C” h... ' 1 Et 0, - 2 LiCI ‘ Flu—'7 + \ \ N \ 1 ) 2 > €R9Q/Ph (3'5) 01’ | NLi l 2) CuBr, -PCy3 N. N PCYa m 14 58 Table 3-3. Selected bond distances and angles from x-ray diffraction on Ru(dpma)(PCy3)(=CHCH=CMe2), (13). For the numbering scheme, see Figure 3-5. Distances and Anng (m Ru(dpma)(PCy3§:CHC1-I=CMe2) Ru-P 2.3 13(3) Rib-CU) 1.854(11) Ru-N(1) 2.078(10) Ru-N(2) 2.092(9) Ru-N(3) 2.141(9) Ru-C(l)-C(2) 129.5(9) P-Ru-C(l) 98.7(3) N(l)-Ru-P 97.4(3) N (2)-Ru-P 990(2) N (3)-Ru-P 152.0(3) N(l)-Rll-C(1) 89.5(4) N(2)-Rll-C(l) 98.2(4) N(3)-Ru-C( l) 109- 1(4) N(l)-Ru-N(3) 80.4(4) N(2)-Rn-N (3) 802(4) ~ I V _ - f4" Figure 3-5. The ORTEP representation (50% probability ellipsoids) of Ru(dpma)(PCy3)(=CHCH=CMe2) (13). compounds also show no metathesis activity, even at elevated temperatures and with CuBr added to promote tricyclohexylphosphine dissociation from the metal center. Conclusions Several new molybdenum and ruthenium alkylidene complexes have been synthesized and structurally which contain dipyrrolyl ligands. While structural and spectroscopic evidence indicate that these compounds are typical Schrock-type carbenes, they do not react as do typical Schrock carbenes. The lack of reactivity of the dpma- containing complexes 10, 11, 13, and 14 appears to be due to a combination of steric and electronic effects imposed by the tridentate ligand, whereas the lack of reactivity of the dmpm complex 12 appears to be the inaccesablity of the n1,n1-coordinated complex at room temperature. Experimental General considerations. All manipulations of air-sensitive materials were carried out in an MBraun glove box under an atmosphere of purified nitrogen. Ethereal solvents and pentane were purchased from Aldrich Chemical Co. and distilled from purple sodium benzophenone ketyl. Toluene was purchased from Aldrich Chemical Co., refluxed over molten sodium for at least 2 d, and distilled. Dichloromethane was purchased from Spectrum Chemical Co., refluxed with calcium hydride for at least 2 d, and distilled. NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc. Deuterated benzene was distilled from purple sodium benzophenone ketyl. Deuterated toluene was degassed and dried with neutral activated alumina. NMR solvents were stored in sealed containers equipped with a Teflon stopcock in the dry box prior to use. Spectra were taken on Varian instruments located in the Max T. Rogers Instrumentation Facility. Routine coupling constants are not reported. Alumina, silica, and Celite were dried at >200 °C under dynamic vacuum for at least 12 h, then stored under inert atmosphere. RuC12(PCy3)(=CHPh) was purchased 60 from Strem Chemical, and used as received. Mo(Ndip)(=CHCMe2Ph)(OTf)2(dme)86 and RuC12(PCy)3(=CHCH=CMe2)87*88 were prepared by literature methods. Combustion analyses were performed in-house at the Michigan State University Chemistry Department. General considerations for single crystal x-ray diffraction. Single crystals of 1- 4 were grown at -35 °C in an MBraun inert atmosphere glovebox. All but a small portion of the mother liquor was removed, and the crystals were removed from the glovebox in a sealed vial. The crystals were rapidly coated in Paratone N and mounted on a glass fiber. The mounted crystal was placed under a cold stream of nitrogen from an Oxford “Cryostream” low-temperature device. Data were collected on a Bruker-AXS, Inc. SMART CCD diffractometer utilizing a PC running Windows NT. The data collection was done on a Bruker-AXS, Inc. 3-circle goniometer (x set to 54.78°). The source was a water-cooled Mo x-ray tube (A = 0.71073 A) operating at 50 kV/40 mA. A single crystal graphite monochromator selected the wavelength of light prior to being columated. The cell was determined using w—G scans (—0.3° scan width) with 3 sets of 20 frames. The initial cell was found by repeated least squares and Bravais lattice analysis. Full data sets were collected using w—B scans in four runs. The fourth run duplicates the first 50 frames of the first run to allow analysis of peak intensity changes resulting from crystal degradation; no correction was necessary for any of the structures reported. Absorption corrections were applied to the data. Using the initial cell, data were integrated to hkl/intensity data using the Bruker—AXS, Inc. program package SAINT. The final unit cell was determined by SAINT using all the observed data. The structures were solved and refined using the SHELXTL program developed by G. M. Sheldrick and Bruker-AXS, Inc. A full listing of atomic coordinates, bond lengths, bond angles, and thermal parameters for all the structures have been deposited at the Cambridge Crystallographic Data Centre and can be found in the Supporting Information. Additional data pertaining to the collection and processing of the four structures can be found in Table 3—4. In Table 3-4, R1 = leFol-IFCII/ZIFOI and wR2 = 61 62 23c :8... m8 _ .c 885 3 A c 2.5:: $8.: :85 285 $85 an A a 9:: 83 82 £2 £2 Ana» 3 23: 2% ES 32. 22. $85 a N v n v N 85.38 E 8.88 83.3% £22; 5; 25.9 SS. i 8 Gimme: 8 C » SE S 8 53.2: a%8.8_ C n Swag 8 6:25 8 C a £32 .2 €32: 5&2: 533.2 3; u a: 582: 6.8.: 6% _ .3 858.2 a; a 3:325 6x268 $238.2 ASSN; a: a Ta 5%.: Ta .i _ C8 955 8.3m new? 86% was? 8.9% sue: saga DMA—mchv—SU mZOE_v=mmU deNmedO—Zodmmvdmnv $13—2szan 335.5% Seasfiowm—ofizozuuv Amhwflnwumeflfiomv ALMo—rwcfifiwys seam—QC: ouv 38:25.35 . £5232" 35338232 douofimmc by; Embol2w5m 88..— 313 8:39:00 8% €80.53; Egogm «in 955,—. {2w(F02—Fc2)2/2w(F02)2}“2. A partial listing of geometrical parameters for all four data sets may be found in Table 3-4. Mo(dpma)(Ndip)(=CHCMe2Ph) (10). A solution of Lizdpma (0.2020 g, 1.00 mmol) in a mixture of 20 mL toluene and 5 mL ether was cooled in a liquid nitrogen temperature cold well to near frozen. This solution was added to a cold, stirring solution of (OTF)2Mo(Ndip)(=CHCMe2)(dme) (0.7922 g, 1.00 mmol) in 40 mL toluene. After stirring the reaction for 18 h, the volatiles were removed in vacuo, and the solid dissolved in 40 mL toluene. The volatiles were again removed in vacuo, and the brown solid was dissolved in 20 mL toluene and filtered. The brown-red solid obtained after removal of volatiles in vacuo was recrystallized from toluene/pentane, to yield 10 as a brown solid in 35.9% yield (0.2123 g, 0.359 mmol) in two crops, m 78 °C dec. Anal. Calcd for C33H42N4Mo: C, 67.11; H, 7.17; N, 9.49. Found: C, 66.63; H, 7.34; N, 957. More pentane soluble isomer: 1H NMR (benzene-d6): 6 = 12.42 (s, 1H, Mo=CHCMe2Ph), 7.44 (d, J=8.1 Hz, 2H), 7.20 (t, J=6.78 Hz, 2H), 7.06 (m, J=7.67 Hz, 1H), 6.95 (d, J=1.77 Hz, 3H), 6.68 (br s, 2H), 6.42 (m, J=2.8 Hz, 2H), 6.18 (m, J=2.95 Hz, 2H), 3.93 ((1, 1:13.] Hz, 2H, N-CHH-pyrrole), 3.45 (sept, J=6.93 Hz, 2H, Ph[CH(CH3)2]2), 3.22 (d, J=13.1 Hz, 2H, N-CHH-pyrrole), 1.90 (s, 3H, NCH3), 1.78 (s, 6H, Mo=CHC(CH3)2Ph), 1.07 (d, J=6.93 Hz, 12H, Ph[CH(CI-I3)2]2) . 13C NMR (benzene-d6): 296.81 (Mo=CHCMe2Ph), 152.36, 147.92, 140.03, 135.28, 128.78, 127.35, 126.61, 126.32, 122.95, 110.75, 105.56, 60.26, 55.15, 43.69, 30.92, 28.51, 23.50. Less pentane soluble isomer: 1H NMR (benzene-d6): 6 = 12.63 (s, 1H, Mo=CHCMe2Ph), 7.37 (d, J=7.4 Hz, 2H), 7.21 (t, J=7.4 Hz, 2H), 7.06 (t, J=7.0 Hz, 1H), 6.94 (d, J=0.73 Hz, 3H), 6.70 (m, J=1.33 Hz, 2H ), 6.42 (m, 11:3.4 Hz, 12:0.89 Hz, 2H), 6.19 (m, 11:2.1 Hz, 12:1.2 Hz, 2H), 3.70 (sept, J=6.78 Hz, 2H, Ph[CH(CH3)2]2), 3.56 (d, J=l4.0 Hz, 2H, N- CHH-pyrrole), 3.35 (d, J=14.0 Hz, 2H, N-CHH-pyrrole), 2.23 (s, 3H, NCH3), 1.72 (s, 6H, Mo=CHC(CH3)2Ph), 1.09 (d, J=6.78 Hz, 12H, Ph[CH(CH3)2]2) . 13C NMR (benzene- d6): 304.40 (Mo=CHCMe2Ph), 153.39, 147.84, 147.30, 141.86, 139.81, 136.22, 129.28, 126.38, 123.29, 111.56, 106.03, 58.32, 55.92, 48.89, 30.78, 28.51, 23.57. 63 Mo(NBu‘)2(CH2CMe2Ph)2. A solution of C12Mo(NBu‘)2(dme) (2.82 g, 7.06 mmol) in 100 mL ether was cooled in a liquid nitrogen temperature cold well to near frozen. To this solution was added 34 mL of 0.5M ClMgCHzCMezPh in tetrahydrofuran. After stirring at box temperature for 14 h, the suspension was filtered through celite. The volatiles were removed from the filtrate in vacuo, leaving a brown oil which was used without further purification. 1H NMR (benzene-d6): 6 = 7.32 (d, 4H), 7.17 (s, 2H), 7.12 (d, 2H), 7.02 (m, 2H), 1.58 (s, 4H), 1.43 (s, 12H), 1.24 (s, 18H). 13C NMR (benzene-d6): 152.26, 128.37, 126.15, 125.66, 72.71, 67.47, 39.74, 33.36, 32.33. Mo(NBu')(=CHCMe2Ph)(OTf)2(dme). The crude Mo(NBu‘)2(CH2CMe2Ph)2 oil obtained above was dissolved in 100 mL 1,2-dimethoxyethane and cooled in a liquid nitrogen temperature cold well to near frozen. A cold solution of 3.19 g triflic acid (21.3 mmol) in 10 mL 1,2-dimethoxyethane was added. The solution was allowed to warm to box temperature, and was stirred for 16 h. Removal of the volatiles in vacuo left a brown oil, which was washed well with 50 mL portions of pentane (discarded) until a brown solid formed. This solid was dissolved in ether, and placed in the -35 °C freezer overnight. The solid t-butyl ammonium triflate was filtered off, and the volatiles were removed in vacuo. Recrystallization from ether/pentane gave 0.8636 g of a brown solid (1.26 mmol, 17.8%) as a mixture of seven isomers, m. 72 °C dec. 1H NMR (benzene-d6): 6 = 15.27 (s, 0.10H), 14.91 (s, .051H), 14.87 (s, 0.07H), 14.84 (s, 0.09H), 14.32 (s, 0.20H), 13.79 (s, 0.21H), 13.42 (s, 0.25H), 7.30 (d, 1.1H), 7.39 (t, 3.2H), 7.35-7.1 (m, 6.8H), 7.06 (m, 5.5H), 3.57 (br s, 0.73H), 3.36 (br s, 2.4H), 3.17(br s, 15.3H), 2.90 (br s, 1.8H), 2.84 (0.93H), 2.14 (s, 1.2H), 1.93 (s, 2.8H), 1.84 (s, 4.2H), 1.79 (s, 1.7H), 1.69 (s, 5.0H), 1.60 (br m, 3.2), 1.57 (s, 1.5H), 1.54 (s, 0.75H), 1.51 (s, 1.44H), 1.39 (s, 9.78H), 1.36 (3, 2.211), 1.32 (s, 9011), 1.23 (s, 3.0H), 1.21 (s, 2.9H), 1.18 (br s, 3.2H), 0.91 (br s, 7.5H), 0.86 (br s, 1.0H), 0.83 (s, 1.5H). 13C NMR (benzene-d6): 333.93, 332.89, 329.52, 326.66, 318.26, 317.28, 309.90, 150.97, 150.41, 150.07, 149.87, 149.06, 147.26, 139.12, 128.93, 128.79, 128.62, 128.17, 127.44, 127.33, 127.05, 126.79, 126.62, 126.46, 126.34, 125.81, 125.73, 122.53, 122.19, rr' ' 118.29, 117.98, 87.17, 78.89, 77.85, 76.59, 75.66, 71.31, 70.38, 69.71, 61.28, 60.84, 60.39, 59.74, 55.16, 53.96, 41.91, 40.45, 41.91, 40.45, 34.36, 32.03, 31.91, 31.60, 31.32, 31.24, 30.93, 30.79, 30.45, 30.31, 30.26, 29.58, 29.30, 29.13, 27.79, 27.06, 22.62, 14.20. Mo(dpma)(NBu')(=CHCMe2Ph) (11). A solution of Lizdpma (0.0305 g, 0.152 mmol) in 5 mL diethyl ether was cooled in a liquid nitrogen temperature cold well to near frozen. This solution was added to a cold, stirring solution of (OTF)2Mo(NBu‘)(=CHC Me2)(dme) (0.1.005 g, 0.146 mmol) in 5 mL diethyl ether. After stirring the reaction for 2 h, the volatiles were removed in vacuo, and the solid dissolved in 5 mL toluene. This was repeated twice. The volatiles were again removed in vacuo, and the brown solid was dissolved in 10 mL toluene and filtered. The brown-red solid obtained after removal of volatiles in vacuo was recrystallized from toluene/pentane, to yield 11 as a red-brown solid in 32.2% yield (0.0229 g, 0.0471 mmol), m. 82°C dec. This compound is isolated as a mixture of four isomers, one of which predominates. H NMR (benzene-d6): 6 = 12.22 (s, 1H), 7.5 (m, 1H), 7.22 (m, 2H), 7.07 (m, 2H), 6.79 (s, 2H), 6.50 (t, 11:2.42 Hz, 12:2.85 Hz, 2H), 6.28 (m, J 1:1.54 Hz, 2H), 3.96 (d, J=13.3 Hz, 2H), 3.25 (d, J=13.3 Hz, 2H), 1.91 (s, 6H), 1.90 (s, 3H), 1.00 (s, 9H). 13C NMR (benzene—d6): 292.03, 148.74, 138.93, 135.48, 133.24, 132.65, 128.75, 126.51, 126.42, 110.38, 104.95, 60.81, 43.74, 31.92, 30.89. Mo(dmpm)(Ndip)(=CHCMe2Ph) (12). A solution of Lizdmpm (0.1860 g, 0.999 mmol) in 5 mL ether was cooled in a liquid nitrogen temperature cold well to near frozen. This solution was added to a cold, stirring solution of (OTF)2Mo(Ndip)(=CHCMe2)(dme) (0.7921 g, 1.00 mmol) in 40 mL toluene. After stirring at box temperature for 20 h, the volatiles were removed in vacuo, and the solid dissolved in 10 ml. pentane and filtered. The brown-red solid obtained after removal of volatiles in vacuo was recrystallized from toluene/pentane, to yield 0.1507 g 11 as a yellow solid (0.262 mmol, 26.2%) in two crops, m 58 “C dec. 1H NMR (toluene-d8, 25 °C): 6 = 12.97 (s, 1H, Mo=CHCMe2Ph), 7.31 (s, 1H), 7.23 (d, J=7.6 Hz, 2H), 7.11 (m, J1=7.5 Hz, 11:8.6 Hz, 2H), 6.51 (s, 1H), 6.41 (m, 1H), 6.15 (m, 1H ), 6.08 (s, 1H), 5.67 (m, 1H), 3.54 (sept, 11:6.3 Hz, 2H, Ph[CH(CH3)2]2), 1.88 (s, 65 3H), 1.79 (s, 3H), 1.63 (s, 3H), 1.47 (s, 3H), 1.09 (d, J1=6.3 Hz, 6H, Ph[CH(CH3)2]2), 1.01 (d, J1=6.3 Hz, 6H, Ph[CH(CH3)2]2). 13C NMR (toluene-d8): 6 = 305.88 (Mo=CHCMe2Ph) 166.81, 165.01, 151.75, 150.15, 131.80, 127.75, 123.18, 121.64, 109.81, 108.00, 106.89, 104.09, 55.22, 39.56, 31.81, 30.32, 29.72, 28.19, 24.31, 23.50. Ru(dpma)(PCy3)(=CHCH=CMe,) (13). To a near frozen solution of 0.5205 g C12Ru(PCy3)2(=CI-1Ph) (0.650 mmol) in 5 mL diethyl ether was added a near frozen solution of 0.1308 g Lizdpma in 3 mL ether. After stirring at box temperature for 16 h, 1.0 g CuBr was added. The suspension was stirred for 24 h. Filtering off the solid left a red solid, from which the volatiles were removed in vacuo, giving a red powder. Recrystallization from toluene gave 0.1498 g (0.235 mmol, 36.2%) of the title compound as a red solid (a mixture of four isomers), m. 46°C, dec. 1H NMR (benzene-d6): 6 = 19.85 (m, J 1 = 5.71 Hz, Jz = 4.76 Hz, 0.66H), 19.33 (m, J 1 = 6.66 Hz, 12 = 4.76 Hz, 0.57H), 19.22 (m, J I = 5.71 Hz, 12 = 4.76 Hz, 0.35H), 18.88 (m, J 1 = 7.61 Hz, J2 = 2.86 Hz, 0.89H), 10.05 (s, 0.21H), 9.89 (s, 0.07H), 9.79 (s, 0.32H), 9.10 (s, 0.10H), 7.96 (d, 0.09H), 7.89 (d, 0.16H), 7.61 (d, 0.86H), 6.98 (s, 1.4H), 6.93 (s, 0.72H), 6.75 (s, 1.8H), 6.68 (s, 0.97H), 6.60 (s, 0.88H), 6.56 (s, 0.69H), 6.52 (d, 2.0H), 6.44 (s, 1H), 6.41 (d, 0.48H), 6.40-6.10 (br m, 3.0H), 6.00 (s, 1.8H), 4.64 (d, 0.56H), 4.50 (d, 0.56H), 4.43 (d, 0.39H), 4.32 (d, 1.69H), 3.83 (d, 0.71H), 3.53 (d, 0.74), 3.43 (dd, 1.7H), 3.17 (d, 1.1H), 2.91 (d, 0.76H), 2.8-2.5 (br m, 3.5H), 2.50 (s, 0.58H), 2.46 (s), 2.42 (s), 2.38 (s), 2.34 (s, 4.6H), 2.18 (s, 2.4H), 2.10 (s, 1.2H), 2.03 (br m, 7.0H), 1.84 (br m, 8.9H), 1.8-1.5 (br m, 25.5H), 1.5-1.0 (br m, 38.5H), 0.85 (br m, 5.1H), 0.63 (br m, 2.3H), 0.27 (s, 8.5H). 13C NMR (benzene-dé): 6 = 297.05 ((1), 295.90 (d), 294.52 (q), 290.92 (q), 148.22, 146.79, 146.58, 145.29, 144.91, 141.48, 141.08, 137.95, 137.81, 135.80, 135.40, 134.52, 133.62, 131.86, 130.78, 130.46, 129.43, 129.27, 126.74, 125.61, 124.57, 124.48, 123.59, 121.74, 121.63, 118.77, 118.36, 112.99, 112.19, 111.92, 109.44, 109.09, 108.88, 108.68, 108.58, 108.14, 107.50, 107.45, 105.27, 104.92, 104.67, 104.38, 104.31, 63.23, 60.67, 56.18, 55.75, 49.99, 42.82, 42.76, 41.37, 36.58, 36.33, 35.82. 35-56, 35.29, 34.79, 34.52, 34.38, 34.30, 31.00, 30.94, 30.81, 30.68, 30.43, 30.23, 30.14, 66 30.02, 29.55, 28.139, 28.07, 27.99, 27.93, 27.89, 27.79, 27.65, 27.56, 27.34, 26.82, 26.66, 26.42, 26.11, 22.66, 20.68, 20.34, 20.28, 18.28, 1.37. Anal. Calcd for C34H54N3PRu: C, 64.12; H, 8.55; N, 6.60. Found: C, 64.76; H, 8.79; N, 6.40. Ru(dpma)(PCy3)(=CHPh) (14). A solution of Lizdmpm (0.3966 g, 1.97 mmol) in 5 mL diethyl ether was cooled in a liquid nitrogen temperature cold well to near frozen. This solution was added to a cold, stirring solution of ClzRu(PCy3)2(=CHPh) (1.620 g, 1.97 mmol) in 50 mL diethyl ether. After stirring at box temperature for 2 h, 2.1 g CuBr was added. The suspension was stirred for 30 m, then placed in a —35 °C freezer for 16 h. Filtering off the solid left a red liquid, from which the volatiles were removed in vacuo, giving a red powder. 1H and 31P NMR indicated the presence of ClzRu(PCy3)2(=CHPh), so the powder was dissolved in 100 ml. ether, and 0.1188 g Lizdpma (0.591 mmol) was added. The solution was stirred for 14 h, 1.0g CuBr was added and the solution was stirred for an additional hour. The solid was filtered off and the volatiles were removed in vacuo, giving 1.27 g of 13 as a mixture of two isomers (1.93 mmol, 98.0%), which was used as obtained, 58 °C, dec. 1H NMR (benzene-d6): 6 = 19.09 ((1, 1:12.37 Hz,1H, Ru=CHPh), 7.21 (m, 2H), 7.19 (m, 1H), 7.04 (d, 2H), 6.87 (m, 2H), 6.80 (m, 2H), 6.56 (m, 2H ), 4.31 (d, J=12.9 Hz, 2H, N-CHI-I-pyrrole), 3.44 (d, J=12.9 Hz, 2H, N-CHH-pyrrole), 3.27 (s, 1H), 2.45 (q, 4H), 2.02 (s, 3H), 0.9—1.9 (m, 28H, P(C6H11)3). 13C NMR (benzene-dG): 6 = 298.34 ((1), 298.16 (d), 152.57, 152.53, 141.22, 129.67, 129.42, 129.33, 128.87, 128.53, 109.61, 105.39, 63.10, 54.43, 48.52, 42.08, 34.853, 34.58, 30.78, 30.12, 29.67, 27.77, 27.64, 26.76, 26.61.1-IRMS(FAB+): 659.2957, expected for C36H52N3PRu: 659.2953. 67 CHAPTER 4 SELF-TETHERED MOLYBDENUM ALKYLIDENES Introduction Molybdenum carbon-carbon double bond metathesis catalysts have proven very useful, with the pioneering work of Schrock and coworkers.”95 Fiirstner and coworkers synthesized several ruthenium alkylidenes tethered to N-heterocylic carbene ancillary ligands (eq 4-1), and investigated these complexes for ring-closing metathesis reactivity, with the thought that these catalysts might be more stable than current ruthenium metathesis catalysts. The intent was to produce a catalyst that, when all of the substrate was consumed from a reaction, would regenerate the tethered alkylidene preferentially over the unstable methylidene complex.96 Subsequently, Grubbs and co-workers used these catalysts for the selective cyclo-polymerizations of olefins by ring-opening metathesis polymerization.” Since the tether remains attached to the metal center, the chance of a metathesis reaction resulting in regeneration of the starting catalyst and a macrocyclic polymer are increased _ (9 .N. N , F‘ PCYa M95 V Mes NVN C"’~. l \ )5 ' (4‘1) 'Ru_ Br' SCI PCy3 KO'BU CI’ | PCY3 dramatically compared to a chain-termination step that would result in a linear polymer, Scheme 4-1 The chemistry of tethered molybdenum alkylidene complexes, with the alkylidene attached to the molybdenum center through an ancillary ligand, is being explored. It is believed that this will result in increased catalyst reusability, as in the ruthenium case, by eliminating the methylidene intermediates formed. In addition, the work of Schrock, Hovyeda, and co-workers in producing polymer-supported molybdenum metathesis catalysts would likely benefit from any increase in catalyst reusability derived from tethering the alkylidene to the metal center, Scheme 4-1.98 The use of self-tethered 68 Scheme 4-1. The cyclic polymerization of norbornylene using a self-tethered metathesis catalyst. molybdenum catalysts for the synthesis of novel cyclo-oligomerization products for use in high-performance materials is also envisioned. There are very few examples of complexes containing two molybdenum metal- ligand bonds tethered to form a metallacycle. A few examples of mutually tethered di- carbenes have been reported, typically prepared via oligomerization of alkynes by reduced metal complexes.99 The Zeigler-Natta polymerization activity of tethered group-6 bis(imido), ansa-di(organoimido) (analogs of ansa-metallocenes of the Group-4 elements) has been studied.100 Computer models, based on reported molybdenum crystal structures, indicated that the optimum ring size of the tether was 7-8 atoms. This is consistent with the typical ring sizes used to generate tethered organoimidos. Thus, a tether that would produce a ring size in this regime was envisioned. Originally, an alkene-substituted dpma ligand was going to be used as the tethering ligand, as it was fairly straight-forward to synthesize ligands such as szpna (3). However, 69 as discussed in Chapter 3, the dpma ligand inactivates molybdenum alkylidenes to metathesis reactions. Linkages through the alkoxides were tried, but resulted in reduced metal species. A linkage via the imido substituent has been adopted as an alternative, and has resulted in the first imido-tethered group-6 alkylidene. Results and Discussion The ligand which was ultimately successful in producing the imido-tethered alylidene was an arylamine with a alkene attached at the ortho-position, generating an 8-membered azametallocycle when the catalyst was ultimately synthesized. Scheme 4-2 outlines the synthetic route to the aniline derivative; commercially available phenethyl bromide is first converted to the alkyl zinc by reaction with Reike zinc. The copper-mediated SN2’ addition of the alkyl zinc to 3,3-dimethylallylbromide101 (~9:l SNZ’ : 8N2 isomers) results in 97% yield of the combined isomers,102 which was nitrated under standard conditions without purification.103 The high-yielding nitration generates a near equimolar ratio of the ortho and para isomers, which was reduced without separation of the isomeric products. 104 Column chromatography of the reduced product mixture gave the desired ortho-substituted aniline 15 in 22% yield, based on the crude mixture of the nitro isomers. 1) CuCN, 2LiBr, -25 ° ©N8r Zn* ©/\/ZnBr > m __—_.__.> HNOa. A020 HOAc O N NH2 2 \ 1) SnCIz, H+ | \ / I 2) column purification I 15 20/0 970/0 0 : b 49 : 51 Scheme 4-2. Synthesis of 2-(3,3-dimethylpent-4-enyl)aniline. 70 8 N513 NH 17 ClSlMe3 "‘ (NH.)2M0207 2 > Cleo(NAr)2(dme) DME | 16 15 94% jph CIMg 63% 3 HOTf ‘ Mo(NAr)2(CH2CMe2Ph)2 DME 17 35% 18 Scheme 4-3. Synthesis of the tethered carbene. A modification of the standard literature molybdenum alkylidene synthesis procedure was used to produce the desired tethered alkylidene (Scheme 4-3).93 Reaction of 15 (HZNAr) with NEt3, ClSiMe3, and (NH,,)2M0207 in DME provided 94% yield of Mo(NAr)2(Cl)2(DME) (16), although twice the normal molar equivalents of (NH 4)2M°207 were required. Otherwise, the reaction appeared to yield exclusively a mono(imido) complex (characterized only by NMR), even after heating for longer than 30 days. When the amount of (NH 4)2M°207 was doubled, the reaction was complete in 12 hours. Alkylation of 16 with 2 equiv. of neophylmagnesium chloride in diethyl ether/tetrahydrofuran afforded Mo(CHzCMezPh)2(NAr)2 (17) in 64% yield. The final step, reaction with three equivalents of triflic acid in DME protonates off one of the imido ligands, and presumably generates the intermediate neophylidene bis(triflate) (not observed) via loss of 2-methyl-2— phenylbutane. This molybdenum neophylidene rapidly cyclizes with the alkene substituent on the remaining imido ligand, producing the desired tethered carbene in 35% isolated yield. Three isomers of the product, as evidenced in the ]H and 13C NMR spectra (TI-IF- d8), were present in solution, a complication also observed in untethered systems.92 The resulting bis(triflate) 18 is only slightly soluble in many common 71 Figure 4-1. The ORTEP representation (25% probability ellipsoids) of the tethered carbene (18). Table 4-1. Selected bond distances and angles from x-ray diffraction of the tethered carbene. For the numbering scheme, see Figure 4-1. Distances and Angles (AP) Mo(Ar)(((1)'81‘)f)2(dme) Mo-N(l) 1.714(18) Mo-C(5) 1.828(19) Mo-O(ll) 2.168(11) Mo-O(21) 2.125(11) Mo-N(1)-C(10) 172.9(14) Mo-C(l)-C(2) 140.0(12) Mo-0(ll)-S(1) 124.2(7) Mo-O(21)-S(2) 132.3(7) N(1)-Mo-C(l) 100.2(8) 0(ll)-Mo-O(21) 152.7(4) N(l)-Mo-O(21) 98.4(5) 72 solvents; however, crystals suitable for x-ray diffraction study were obtained. The solid-state isomer obtained is drawn in Scheme 3-2, and the ORTEP representation is shown in Figure 4—2. Selected bond lengths and angles are shown in Table 4-1 . Comparison of the structure of tethered alkylidene 18 with the reported structure of Mo(OTf)2(Ndip)(neopentylidene)(DME),105 indicates that no ring strain is present in the metallacycle as judged by comparison of bond distances and angles. The bond angles and lengths are all typical of what is seen in other molybdenum neophylidene bis(triflate) complexes, as are the 1H and 13C NMR spectra (vide supra). Reactions to produce alkoxide derivatives of tethered neophylidene 18 resulted in reduced metal species, presumably because the imido ligand does not have a second bulky ortho substituent, a synthesis that is currently being pursued. Experimental General considerations. All manipulations of air-sensitive materials were carried out in an MBraun glove box under an atmosphere of purified nitrogen. Ethereal solvents and pentane were purchased from Aldrich Chemical Co. and distilled from purple sodium benzophenone ketyl. Toluene was purchased from Aldrich Chemical Co., refluxed over molten sodium for at least 2 d, and distilled. Dichloromethane was purchased from Spectrum Chemical Co., refluxed with calcium hydride for at least 2 d, and distilled. NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc. Deuterated benzene was distilled from purple sodium benzophenone ketyl. Deuterated toluene was degassed and dried with neutral activated alumina. NMR solvents were stored in sealed containers equipped with a Teflon stopcock in the glove box prior to use. Spectra were taken on Varian instruments located in the Max T. Rogers Instrumentation Facility. Routine coupling constants are not reported. Alumina, silica, and Celite were dried at >200 °C under dynamic vacuum for at least 12 h, then stored under inert atmosphere. 3,3-dimethyl-5-phenyl-1- pentene was prepared by the method of Reike and co-workers.103 Combustion analyses 73 were performed in-house at the Michigan State University Chemistry Department. General considerations for single crystal x-ray diffraction. Single crystals of 1-4 were grown at —35 °C in an MBraun inert atmosphere glove box. All but a small portion of the mother liquor was removed, and the crystals were removed from the glovebox in a sealed vial. The crystals were rapidly coated in Paratone N and mounted on a glass fiber. The mounted crystal was placed under a cold stream of nitrogen from an Oxford “Cryostream” low-temperature device. Data were collected on a Bruker-AXS, Inc. SMART CCD diffractometer utilizing a PC running Windows NT. The data collection was done on a Bruker-AXS, Inc. 3-circle goniometer (x set to 54.78°). The source was a water-cooled Mo x-ray tube (A. = 0.71073 A) operating at 50 kV/40 mA. A single crystal graphite monochromator selected the wavelength of light prior to being columated. The cell was determined using w—B scans (—0.3° scan width) with 3 sets of 20 frames. The initial cell was found by repeated least squares and Bravais lattice analysis. Full data sets were collected using 00-0 scans in four runs. The fourth run duplicates the first 50 frames of the first run to allow analysis of peak intensity changes resulting from crystal degradation; no correction was necessary for any of the structures reported. Absorption corrections were applied to the data. Using the initial cell, data were integrated to hkl/intensity data using the Bruker-AXS, Inc. program package SAINT. The final unit cell was determined by SAINT using all the observed data. The structures were solved and refined using the SHELXTL program developed by G. M. Sheldrick and Bruker-AXS, Inc. A full listing of atomic coordinates, bond lengths, bond angles, and thermal parameters for all the structures have been deposited at the Cambridge Crystallographic Data Centre and can be found in the Supporting Information. Additional data pertaining to the collection and processing of the four structures can be found in Table 4-2. In Table 4-2, R1 = ZIIFol-IFCII/XIFOI and wR2 = {2w(F02—Fc2)2/ZW(F02)2}“2. A partial listing of geometrical parameters for all four data sets may be found in Table 4-2. 74 Table 4-2. Structural parameters for compound 18 from single—crystal x-ray diffraction. Mo(NAr)(=CHCMe2Ph) (0T021dme) (18) Formula ClgstFéMoNogss Formula weight 657.45 Space Group P2(1)/n a (A) 12.69405) b (A) 1577(3) c (A) 1287(2) 01 (°) 90 B (°) 92.9306) 7 (°) 90 Volume (113) 2573(8) Z 4 :1 (Md) 0.758 Dem (g cm'3) 1.697 R(Fo) (I > 2s) 0.1008 11,050) (1 > 2s) 0.2300 2-(3,3-dimethylpent-4-enyl)nitrobenzene. In a flask was loaded fuming HNO3 (18.7 mL, 90%, d = 1.5), HOAc (18 mL), and AczO (14 mL), which was allowed to cool to room temperature before proceeding. This solution was added dropwise to 3,3-dimethyl-5- phenyl-l-pentene (45.8 g, 0.263 mol) in AczO (120 mL). The reaction was kept between 0 and —5 °C during the addition. After the addition, the mixture was stirred at 0 °C for 12 h. The reaction mixture was poured into crushed ice (300 g). The product was extracted with ethyl ether (3 x 200 mL), and the combined organic layers were washed with portions of saturated NaHCO3 (~300 mL total) until no gas formed on addition of the basic aqueous solution. The organic solution was filtered, and the separated solids were washed with ether (50 mL). The combined aqueous layers were extracted with ether (3 x 200 mL). The combined ether solutions were dried with MgSO4. The volatiles were removed in vacuo providing the product as a yellow oil in 97% yield (55.95 g) as a mixture of 49:51 75 mixture of ortho:para isomers, as determined by GC/FID analysis. The compound was used without further purification. 2-(3,3-dimethylpent-4-enyl)aniline. In a 2000 mL round-bottomed three-necked flask with a thermometer and a mechanical stirrer was loaded SnClz-ZHZO (270 g, 1.056 mol) and ethanol (500 mL). The mixture was heated to 55 °C, and the crude mixture of nitroarenes prepared in the previous step (55.95 g, 0.26 mol) was added very carefully so that the temperature was kept between 65 °C and 70 0C. After addition, the reaction mixture was stirred at 70 °C for 7 h. After cooling to room temperature, water (200 mL) was added. The pH of the solution was adjusted to 12 by addition of 40% NaOH. Extraction with hexane: ethyl acetate (vzv = 1:1) was carried out until the extract was colorless (~5 x 500 mL). The combined extracts were dried with MgSO4. Removing volatiles in vacuo provided 44.8 g of crude product as a red oil. GC/FID analysis show that the ratio of ortho to para products was 40:60. Column separation (silica gel, 250 ~ 400 mesh, 6:1 hexanezethyl acetate) gave 2-(3,3-dimethylpent-4-enyl)aniline (1) in 22 % yield (8.8 g) as a red oil. M = 189.30 g/ mol. 1H NMR (300 MHz, CDC13): 6 = 7.02 (m, 2H, -C6H4-), 6.62-6.80 (m, 2H, -C6H4-), 5.78-5.96 (m, 1H, -CH=CH2), 5.03 (dd, J1=3 Hz, 12:5 Hz, 1H, CH=CH2), 4.99 (dd, 11:3 Hz, 12:5 Hz, 1H, -CH=CH2), 3.56 (s, br, 2H, -NH2), 2.31-2.46 (m, 2H, -C6H4CH2CH2-), 1.48-1.66 (m, 2H, -C6H4CH2CH2-), 1.08 (s, 6H, -CH3). 13C NMR (CDC13): 6 = 147.8, 143.9, 129.2, 127.1, 126.8, 118.8, 115.4, 111.2, 41.7, 36.7, 26.6, 26.4. Elemental Analysis: Calc. For C13H19N: C, 82.48; H, 10.12; N, 7.40. Found: C, 82.71; H, 10.23; N, 7.56. MS (EI) m/z = 189 (M+). The other isomer of 4-(3,3-dimethylpent-4-enyl)aniline was isolated in 40% yield (16.0 g). 1H NMR (300 MHz, CDC13): 6 = 7.02 (dd, 2H, J=208 Hz, 8 Hz, - C6H4-), 6.69 (dd, 2H, J = 6 Hz, 4 Hz, -C6H4-), 5.80-6.01 (m, 1H, -CH=CH2), 5.07 (m, 2H, -CH=CH2), 3.58 (8, br, 2H, -NH2), 2.42-2.58 (m, 2H, -C6H4CH2CH2-), 1.56-1.70 (m, 2H, -C6H4CH2CH2-), 1.13 (s, 6H, -CH3). 13C NMR (C6D6): 6 = 163.1, 148.4, 144.8, 132.9. 129.3, 115.3, 110.8, 45.6, 36.8, 30.7, 26.8. Elemental Analysis: Calc. For C13H19N: C, 82.48; H, 10.12; N, 7.40. Found: C, 82.43; H, 9.57; N, 7.45. MS (EI) m/z = 189 (M+). 76 Mo(NAr)2Clz(DME) (16). In a 250 mL Schlenk flask was loaded ammonium dimolybdate (0.529 g, 2.70 mmol), 100 mL 1,2-dimethoxyethane (DME), and a stir bar. To the suspension was added triethylamine (4.37 g, 43.2 mmol), chlorotrimethylsilane (10.0 g, 92.0 mmol), and 1 (1.02 g, 5.40 mmol). The suspension was stirred at 70 °C for 12 h. After cooling to room temperature, the solution was filtered. The volatiles of the filtrate were removed in vacuo to give 1.60 g of Mo(NAr)2C12(DME) (16) as a red solid (2.53 mmol, 93.8%), which was used without further purification. 1H NMR (299.9 MHz, C6D6): 6 = 7.73 (d, J=7.62 Hz, 2H), 6.94 (d, J=7.03 Hz, 2H), 6.88 (t, J=7.62 Hz, 2H), 6.75 (t, J=7.03 Hz, 2H), 5.97 (m, 2H, =CH), 5.04 (m, 4H, CH2=), 3.46 (s, 4H, O-CHZ), 3.19 (s, 6H, 0- CH3), 2.85 (m, 4H), 1.72 (m, 4H, CH2), 1.15 (s, 12H, CH3). 13C NMR (75 MHz, C6D6): 6 = 156.14 (N—C(ipso)) 148.74, 135.84 C(ipso)-CH2), 128.82, 127.23 (=CH), 126.53, 110.77 (CH2=), 71.11 (O-CHZ), 63.02 (CMez), 44.30 (O-CH3), 37.16 (ArCHz), 34.51 (CMezPh), 27.80 (ArCHzCHz), 26.95 (CMez). Mo(NAr)2(CH2CMe2Ph)2 (17). To a —90 °C solution of Mo(NAr)2C12(DME) (16) (4.80 g, 7.60 mmol) in 300 mL THF was added 34 mL 0.5 M solution of neophyl magnesium chloride (17 mmol, 2.2 equiv.) The solution was allowed to reach room temperature, and then stirred for 18 h. Removal of the volatiles in vacuo left a red solid, which was dissolved in toluene and filtered to remove the magnesium chloride. The volatiles were removed from the toluene solution in vacuo, leaving a red solid which was recrystallized from ether at -35 °C to give 3.50 g of 3 (4.75 mmol, 62.5%). 1H NMR (299.9 MHz, C6D6): 6 7.3 (m, 4H), 7.1 (m, 6H), 7.0 (m, 5H), 6.8 (m, 3H), 5.7 (m, 2H, =CH), 4.9 (m, 4H, =CH2), 2.7 (m, 4H), 1.90 (s, 4H, Mo-CHZ), 1.6 (m, 4H, -CH2CH2-), 1.46 (s, 12H, CHZCMezPh), 1.00 (s, 12H, imido-CH3). 13C NMR (75.4 MHz, C6D6): 6 = 155.46 (N—C(ipso)), 151.16, 148.35, 135.40, 128.90, 128.62, 126.51, 126.38, 126.23, 125.62, 111.07 (=CH2), 78.63 (Mo-CH2), 43.58 (ArCHz), 40.82 (CMezPh), 36.93(CMe2), 32.75 (CMezPh), 27.38 (ArCHzCl-lz), 26.94 (CMez). Anal. Calc. for C46H60N2Mo: C, 74.97; H, 8.21; N; 3.80. Found: C, 74.93; H, 8.44; N, 3.77. 77 Tethered carbene (18). A thawing solution of 2.05 g triflic acid (13.7 mmol, 3.0 equiv.) in DME (10 mL) was added to a thawing solution of Mo(NAr)2(CH2CMe2Ph)2 (17) (3.32 g, 4.35 mmol) in DME (300 mL). This solution was stirred for 22 h, and then volatiles were removed in vacuo. The anilinium triflate was precipitated from a minimal amount of toluene, and removed by filtration. The remaining dark solid was recrystallized from ether/pentane, giving 1.01 g of a yellow 4 (1.52 mmol, 35.0%), m 83 °C dec. In fluid solution, the compound apparently exists as 3 different isomers, which made definitive assignment of many of the peaks difficult. There is dependence on temperature to the NMR spectra, and the relative amounts of each isomer changes with temperature. Schrock and coworkers have reported similar observations, including the fact that the two minor isomers are more prevalent in polar solvents. However, the tethered carbene has low solubility in most solvents except THF. The spectra reported here were taken at room temperature. Assignments, where they could be definitively made, are given. 1H NMR (299.9 MHz, THF-d8): 6 = 14.30, 14.27, 13.65, 8.15 (d), 7.0-7.6 (m), 3.43 (s, 4H, OCHZ), 3.40 (m), 3.27 (s, 6H, OCH3) 2.47 (m), 2.31 (s), 1.08 (m). 13C NMR (75.4 MHz, TI-IF-ds): 6 333.83, 330.83, 326.96, 155.64, 154.83, 154.62, 149.77, 149.44, 148.55, 138.43, 130.801, 130.39, 129.67, 129.42, 129.21, 129.21, 129.11, 128.91, 128.29, 127.42, 126.90, 126.80, 126.29, 126.03, 122.39, 118.18, 72.75, 66.30, 59.92, 59.59, 59.52, 58.90, 45.98, 45.85, 45.00, 30.16, 29.74, 29.30, 28.51, 27.85, 21.48, 15.68. 19F (282.2 MHz, THF-d8): —78.45, —78.58, —79.56, —79.64. Anal. Calc. for C18H25F6M0N0882: C, 32.98; H, 3.83; N; 2.13. Found: C, 33.43; H, 4.07; N, 2.12. 78 CHAPTER 5 CYCLOOCTYNE ADDITION TO GROUP-6 IMIDO COMPLEXES Introduction Schrock carbenes (alkylidenes) have impacted synthetic and polymer chemistry tremendously.106'107 A concise, simple preparation for alkylidenes has been the target of some exploration since the initial discovery by Schrock and co-workers. Nugent and coworkers, for example, have devised a readily prepared, tetraethyl lead activated tungsten mono(oxo) bis(aryloxy) dichloride system that rapidly and catalytically performs ring- closing metathesis of a number of functionalized dienes.108 Grubbs and co-workers have introduced a method of forming alkylidenes from tungsten bis(imido) dichloride phosphine adducts through reaction with disubstituted cyclopropenes.109 Despite this, the best synthetic route to molybdenum imido alkylidene metathesis catalysts continues to be that of Schrock’s, which was used to prepare the imido-tethered carbene described in Chapter 4. Research into the use of titanium imido (Chapter 6) and hydroazido(2—) complexes as alkyne hydroamination catalysts‘lO'111 and related processes112 has raised interest in [2 +2] cycloadditions of alkynes with metal-imido bonds.113 This type of cycloaddition (Scheme 5-1) typically results in the formation in azametallacyclobutenes (Stucture A).114 Contemplation of the other resonance form, Structure B, led to speculation that this form could be favored with the proper choice of metal and ligands. While searching for such a metal complex, it seemed a necessity that the metal center should readily form stable M=C bonds; a high oxidation state where drt-pn: bonding II” R — R M N“ M Ar _ IL. <~——> “‘1' II A? R R R R A B Scheme 5-1. [2+2] Cycloaddition of an alkyne with an imido ligand and resonance 19mg of the products. 79 gm is encouraged should stabilize Structure B. The prevalence of molybdenum complexes containing ligand-metal multiple bonds, such as imido alkylidene complexes, made it an atractive starting point (molybdenum has the most metal—ligand multiple bond complexes known of any metal). “5 Thus, the starting material of choice to form a new molybdenum imido alkylidene is a bis(imido) molybdenum (VI) complex, the synthesis of which is readily carried out on large scales from amines and ammonium molybdate.116 Reaction of molybdenum(VI) bis(imido) complexes with alkynes has the potential to form the desired product. Unfortunately, molybdenum(VI) bis(imido) complexes are unreactive towards most alkynes under mild conditions, where the alkylidenes would be stable. For example, treatment of Mo(NAr)2(Cl)2(DME), where Ar = 2,6-diisopropylphenyl, with a large excess of 3-hexyne at 75 °C overnight results in no reaction. Results and Discussion In order to overcome this lack of reactivity, the reaction between M(NAr)2(Cl)2(dme), where M = Mo and W, with a highly reactive, ring-strained alkyne, cyclooctyne,117 was examined. In ethereal solution, M(NAr)2(Cl)2(DME) readily reacts with cyclooctyne, fomljng a slightly soluble yellow complex (Scheme 5-2). Single-crystal x-ray analysis (Figure 5-1) of crystals of the product showed that two equivalents of cyclooctyne reacted with the metal bis(imido) complex. This product, M(=C8H12=C8H12=NAr)(NAr)C12, may tesul t from [2 + 2] cycloaddition of the metal-imido bond with cyclooctyne, followed by insertion of alkyne into alkylidene B. The M = Mo (19) and W (20) complexes were isolated in 90 % and 93% yield, respectively, through this synthetic strategy. Selected bond lengths and angles of metallacycles 19 and 20 are listed in Table 5'13 the two structures are identical within error. As anticipated, the bond lengths of the metallacycles are more consistent with alkylidene-imine Structure B than with the alkyl- amide Structure A. The Mo=C distance in 19, 1.933(6) A, is well within the typical range 80 Figure 5-1. The ORTEP representation (25% probability ellipsoids) of azametallacycle 19. Table 5- 1. Selected bond distances and angles from x-ray diffraction of the double insertion product. For the numbering scheme, see Figure 5-1. , M0(=C H =C H =Ndip) W(=C =C H =Ndi ) mm” and ”9mm (13101121101: (13) (8131111121116, (1220) p MO-N(l) 1.7365(5) 1.736(3) Mo-C(1A) 1 933(6) 1 944(4) MO-N(2) 2.155(5) 2.120(3) Mo-Cl(l) 2.4479(17) 2.4 1 20( 10) Mo-Cl(2) 2.4192(18) 2.4095( 10) Mo-N(l)-C(ll) 166.5(4) 168.6(3) N(l)-M0-C(1A) 104.9(2) 107.30( 14) C(lA)-Mo-N(2) 845(2) 86.9403) N(l)-M0-N(2) 106.1(2) 100.8102) N(1)-Mo-Cl(2) 94.6106) 9470(9) N(l)-M0-C1(1) 1 19.40( 15) 122.1 1(10) C(lA)-Mo-Cl(2) 9185(7) 93.0401) 81 O M NA CI d - ( M )2( me) pentane [M] = Mo(NAr)CI2 W(NAr)Clz Ar = 2,6-diisopropylphenyl I M 19A MO (193) Wo((20A)) w (208) Scheme 5-2. Reactions of M(NAr)2C12(dme) with cyclooctyne. seen for Mo=C bonds in alkylidenes; this distance also compares favorably with the Mo=C bond length of 1.878(9) A seen in the PMe3 adduct of Schrock’s catalyst, Mo(NAr)[=C( H)CMe2Ph][OC(CF3)2Me]2(PMe3).119 For comparison, the average Mo—C single bond distance in Mo(NAr)2(neophyl)2 is 2.128(5) 11.115 The carbon-carbon bonds in the metallacycle are equally informative. For the carbene-imine structure 19A, the C(2A)—C(2B) bond should have a bond order of 2; the bond length observed in 19 is 1.394(8) A, slightly longer than the C=C distance of 1.336 A in butadiene.120 The C(1A)—C(2A) and C(lB)—C(2B) distances average 1.463(7) A, and the C—C single bond distance in butadiene is 1.465 A.119 Thus, although the bond lengths in these metallacycles are consistent with structure B, the alkyl-imido structure A, does participate in the bonding. The Mo—N(2) distance in 19 is 2.155(5) A. The 13C NMR spectroscopy of complexes 19 and 20 exhibit resonances consistent with the alkylidene character. The molybdenum compound 19 exhibits the resonance for C(l) at 309 ppm; the corresponding resonance in Mo(NAr)[=C(H)CMe2Ph][OC(CF3)2M e]2 has a chemical shift of 288 ppm.118 The tungsten compound 20 has the alkylidene carbon resonance at 278 ppm; in W(NAr)[=C(I-I)CMe2Ph][OC(CF3)2Me]2, the analogous 82 resonance occurs at 254 ppm.121 This data leads to the conclusion that the reaction in Scheme 5-2 constitutes a novel direct conversion of an imido ligand to an alkylidene-like ligand. Ar 11 A A’ 01.... / N M 4 611. l M = M0 (75 °c, 1 h, 51%) ' / * 33332355” Ar, \ W(100 °C, 24 h, 30%) (5-1) 21 M = M0 (19) W(20) These metallacyclic complexes undergo an interesting, yet very frustrating, reaction. Thermolysis of both 19 and 20 results in the formation of novel pyrrole 21, eq 5-1. This product may be formed via reductive elimination from the alkyl-amido structure A (Scheme 5-2), or by intramolecular nucleophilic attack of the imine on the alkylidene carbon atom in the alkylidene-imine structure B. The tungsten containing complex 20 decomposes more slowly than does the molybdenum derivative 19, as would be expected for a reduction of the metal center. The propensity for the molybdenum complex to form pyrrole 21 is remarkable indeed. Most of the attempts to derivatize compound 19 into an active metathesis catalyst have resulted in the formation of the pyrrole decomposition product, as indicated by NMR evidence. For example, reaction of complex 19 with 2 equivalents of LiO‘BuF6 in diethyl ether results in formation of resonances in the 1H NMR spectrum that correspond to those of the pyrrole product. The same reaction carried out with KO‘BuF6, however, resulted in a solution that had no pyrrole present by 1H NMR; the 1H NMR is consitent with a species containing one type of diisopropylimido group. Addition of norbomene to this solution in the NMR tube resulted in polymer formation; the polymers formed have resisted characterization due to their low solubility in common solvents. Activation of complexes 83 C30 _ N1 . ' . C17 Figure 5-2. The ORTEP representation (25% probability ellipsoids) of pyrrole 21 formed from decomposition of molybdenum complex 19. 19 and 20 with AlCl3 also results in mixtures that polymerize norbomene.122 It is hoped that a simple procedure will be found to generate isolable metathesis catalysts from these complexes. These complexes, while unstable to pyrrole formation, do not participate in any kind of metathesis reaction unless activated (vide supra), likely because of resonance stabilization of the metallacycle. They are oxygen tolerant, and reaction of a toluene solution with 50% aqueous H2804 results in a metal complex with the metallacycle still present. The product of this reaction (eq 5-2) with the tungsten complex 20 has been structurally characterized by single-crystal x-ray diffraction, and is shown in Figure 5-3, with selected bond lengths and angles shown in Table 5-2. Replacement of all of the non-metallacycle ligands in this 84 Table 5-2. Selected bond distances and angles from x-ray diffraction of the double insertion product 22. For the numbering scheme, see Figure 5-3. Distances and Angles (Ar) [w(=?61){(:fizc)f:l(%Ndlp) w-ou) 1.696(3) w-0(2) 1.940(2) W-C(1A) 2.010(4) W-N 2.021(3) 0(1)-w-0(2) 124.84(120 0(1)-w-0(2)#1 99.0701) 0(2)-w-0(2)#1 77.15(11) 0(l)-W-C(1A) 111.3804) O(2)-W-C(1A) 123.6903) O(l)-W-N 100.5502) O(2)-W-N 85.5401) Clb ’. V. \92 02w ~ N 01 c1 Figure 5-3. The ORTEP representation (25% probability ellipsoids) of tungsten u-oxo complex 22. 85 way results in u-oxo complex 22. Tungsten u-oxo 22 is apparently less alkylidene-like in its properties. The W—C(1A) distance increases from 1.944(4) A in imido complex 20 to 2.010(4) A in 22. Indeed all the distances in the metallacycle are consistent with greater participation of the amido- alkyl resonance form (22A, eq 5-2) than in the imido derivative. For example, the W—N distance in the metallacycle of 22 shrinks to 2.021(3) A from 2.120(3) A in imido 20, consistent with increased alkyl-amido resonance form participation. Also consistent with this assertion, the 13C NMR resonance for Cu is shielded significantly to 238 ppm in 22 from 278 ppm in 20. As can be seen by comparing the bond distances of the metallacycles in tungsten 2.120(3) 1.315(4) 2.021 (3) 1.368(5) Ar Ar 1'1 1'1 (CI)2(ArN)W’ \ (11-0)2(0)W’ 1.944(4)‘/ I / _’1'45e(5) 2.010(4)/ l —’1'4°3(5) 1 .438(5) 1 404(5) 1 .381 (5) 1 454(5) Figure 5-4. Simplified structure comparison between 20 (left) and 22 (right) illustrating the difference in bond length alternation due to changing ligand sets. imido 20 and oxo 22, the other ligands on the metal are having a dramatic effect on the favored resonance form (Figure 5-4). While both resonance forms undoubtedly participate in both complexes, changing the ligands on tungsten can affect whether the alkylidene- 86 imine or alkyl-amido form is favored. Experimental General considerations. All manipulations of air-sensitive materials were carried out in an MBraun glove box under an atmosphere of purified nitrogen. Ethereal solvents, pentane, and toluene were purchased from Aldrich Chemical Co. and purified by passing through alumina columns to remove water after sparging with N2 to remove oxygen. NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc. Deuterated benzene was distilled from purple sodium benzophenone ketyl. Deuterated chloroform was distilled from CaH2 under dry N2. NMR solvents were stored in sealed containers equipped with a Teflon stopcock in the dry box prior to use. Spectra were taken on Varian instruments located in the Max T. Rogers Instrumentation Facility. Routine coupling constants are not reported. Many of the assignments are tentative due to the large number of overlapping peaks. The 13C NMR assignments are based on decoupled 13C, peak heights for overlapping signals and DEPT experiments. Alumina, silica, and Celite were dried at >200 °C under dynamic vacuum for at least 12 h, then stored under an inert atmosphere. Mo[N(2,6— P152C6H3)]2C12(dme),123 W[N(2,6-Pr‘2C6H3)]2C12(DME),121 and Mo(NAr)2(neophyl)2“6 were prepared by literature methods. Cyclooctyne was prepared using the procedure of Brandsma.124 Combustion analyses were performed by facilities in the Department of Chemistry at Michigan State University. General considerations for single crystal x-ray diffraction. Single crystals of 19 were grown at ambient temperature in an MBraun inert atmosphere glovebox. Single crystals of 20-22 were grown at —35 °C in an MBraun inert atmosphere glovebox. All but a small portion of the mother liquor was removed, and the crystals were removed from the glovebox in a sealed vial. The crystals were rapidly coated in Paratone N and mounted on a glass fiber. The mounted crystal was placed under a cold stream of nitrogen from an Oxford “Cryostream” low-temperature device. Data were collected on a Bruker-AXS, Inc. SMART CCD diffractometer utilizing a PC running Windows NT. The data collection 87 88 :23 N _ Ed 835 885 am A c 35:: 285 885 885 88... an A 5 35m 5... we ._ 5... 32 A15 3 28G 9.5“ $2. Sam 82 p.85 a v N w v N 633 652: 8:02 3 s _ :2st $5 2:2...» 8:5. .3 3:08 8 8 C s @253 $238 8 38.8. C n C _ 3.»: 585.3 8 8 C e @322 .2 5802 SEEN 63.8 2; 6 6:: Z. 54%.: 6 _ «5.2 548.: 3a ._ 6&2. .: 658.2 695.: 635.2 8 a 7.. TA. 8.: =2 _ CE :85 83m 3.9% 8. an 8.8” 9.5 Ewes «3.58. 38.03.523.220 23:30 ~262~_03=30 NzozmasfsU «.55... "—5.32: a 8.8%.. «63qu «.0385 lu—uln—al lu—alu—wl aszuazfiuanauvui 25.2.. = o: = on; 3821 = o: a 01st dong—Eu >8; Embed—$5 :5...“ «N I a mcasoqfioo 8m E80883 ECBosbm .m-m 03a? was done on a Bruker-AXS, Inc. 3-circle goniometer (x set to 54.78°). The source was a water—cooled Mo x-ray tube (A = 0.71073 A) operating at 50 kV/40 mA. A single crystal graphite monochromator selected the wavelength of light prior to being columated. The cell was determined using 01—0 scans (—0.3° scan width) with 3 sets of 20 frames. The initial cell was found by repeated least squares and Bravais lattice analysis. Full data sets were collected using 01—0 scans in four runs. The fourth run duplicates the first 50 frames of the first run to allow analysis of peak intensity changes resulting from crystal degradation; no correction was necessary for any of the structures reported. Absorption corrections were applied to the data. Using the initial cell, data were integrated to hkl/intensity data using the Bruker-AXS, Inc. program package SAINT. The final unit cell was determined by SAINT using all the observed data. The structures were solved and refined using the SHELXTL program developed by G. M. Sheldrick and Bruker-AXS, Inc. A full listing of atomic coordinates, bond lengths, bond angles, and thermal parameters for all the structures have been deposited at the Cambridge Crystallographic Data Centre and can be found in the Supporting Information. Additional data pertaining to the collection and processing of the four structures can be found in Table 5-3. In Table 5-3, R1 = ZIIFOI—IFCIIIEIFOI and wR2 = {2w(F02—Fcz)2/2w(F02)2}“2. A partial listing of geometrical parameters for all four data sets may be found in Table 5-3. Mo(=C8H12=C3H12=NAr)(NAr)Cl2 (19). To a stirred solution of ClZMo(Ndip)2(DME) (250 mg, 0.411 mmol, 1 equiv) in 5 mL pentane was added cyclooctyne (112 mg, 1.03 mmol, 2.5 equiv). After 3 h, the yellow precipitate was isolated by decanting the liquid, washed with pentane, and dried in vacuo to give pure 19 (271 mg, 0.369 mmol, 90%), m 142 °C dec. 1H NMR (CDCl3) 6 = 7.27 (dd, 11:1.46 Hz, 12 = 7.76 Hz, 1H), 7.16 (t, J = 7.76 Hz, 1H), 7.03 (m, J1=6.45 Hz, J2 = 2.34 Hz, 1H), 6.93 (m, 11:6.88 Hz, 12 = 1.61 Hz, 13:4.69 Hz, J4 = 1.46 Hz, 1H 3H), 4.85 (dt, 11:3.99 Hz, 12 = 17.71 Hz, 1H), 4.16 (m, 11:4.25 Hz, 12 = 7.61 Hz, J3=4.83 Hz, J4 = 5.42 Hz, J5=7.46 Hz, 1H), 3.53 (sept, J=6.73 Hz, 2H), 3.37 (sept, J=6.59 Hz, 1H), 3.10 (dt, 11:4.54 Hz, J2 = 89 15.0 Hz, 1H), 2.5 — 2.9 (m, 6H), 1.9 — 2.2 (m, 6H), 1.5 — 1.9 (m, 10H), 1.35 (d, J=6.44 Hz, 3H), 1.23 (d, J=6.88 Hz, 3H), 1.20 (d, J=6.88 Hz, 6H), 0.93 (d, J=6.73 Hz, 6H), 0.90 (d, J=6.88 Hz, 3H), 0.78 (d, J=6.88 Hz, 3H). 13C NMR (CDC13) a 309.31 (CO), 177.14 (N=C), 153.75 (C), 147.32 (2 overlapping C), 143.71 (C), 141.87 (C), 139.74 (C), 133.91 (C), 130.96 (C), 128.69 (CH), 128.13 (CH), 125.44 (CH), 124.10 (CH), 122.55 (2 overlapping CH), 44.21 (CH2), 32.38 (CH2), 31.06 (CH2), 28.72 (Pri-CH), 28.59 (2 overlapping Pri- CH and overlapping CH2), 28.34 (Pri-CH), 28.15 (CH2), 28.03 (CH2), 27.38 (CH2), 26.30 (CH2), 26.02 (PH-CH3), 25.98 (CH2), 25.44 (Fri-CH3), 25.20 (CH2), 25.13 (CH2), 24.80 (CH2), 24.51(Pr’-CH3), 24.38 (Fri-CH3), 24.29 (Fri-CH3), 22.80 (PH-CH3). Anal. Calcd. for C40H58C12N2Mo: C, 65.48; H, 7.97; N, 3.82. Found: C, 65.59; H, 8.20; N, 3.87. W(=C8H12=C8H12=NAr)(NAr)Cl2(20).ToastirredsolutionofC12W(Ndip)2(DME) (1.00 g, 1.44 mo], 1 equiv) in 10 mL pentane was added cyclooctyne (389 mg, 3.595 mmol, 2.5 equiv). After 12 h, the green-yellow precipitate was collected on a frit, washed with cold pentane, and dried in vacuo to give pure 2 (1.1 g, 1.34 mmol, 93%), m 122 °C dec. 1H NMR (C6D6) 6 = 7.07 (dd, 1H), 7.03 (t, 1H), 6.94 (m, 1H), 6.85 (m, 3H), 4.82 (m, 1H), 4.61 (m, 1H), 4.31 (sept, 2H), 3.98 (sept, 1H), 2.72 (m, 1H), 2.65 - 2.21 (m, 6H), 1.69 - 1.87 (m, 6H), 1.43 - 1.68 (m, 10H), 1.37 (d, 3H), 0.1.26 ((1, 3H), 1.24 (d, 6H), 1.20 (d, 6H), 0.97 (d, 3H), 0.73 (d, 3H). 13C NMR (CDC13) 6 = 280.89 (Ca), 169.19 (N=C), 150.80 (C), 146.85 (2 overlapping C), 144.68 (C), 143.44 (C), 140.68 (C), 137.76 (C), 128.45 (CH), 127.76 (CH), 127.35 (C), 125.30 (CH), 124.22 (CH), 122.35 (2 overlapping CH), 122.35 (2 overlapping CH), 41.88 (CH2), 31.34 (CH2), 30.92 (CH2), 29.73 (CH2), 29.44 (CH2), 29.35 (CH2), 29.12 (CH2), 28.59 (2 overlapping CH), 27.94 (2 overlapping CH and one overlapping CH2), 26.30 (CH2), 25.84 (CH3), 25.64 (CH2), 25.59 (CH2), 25.50 (2 overlapping CH3) 25.27 (CH3), 25.05 (CH2) 24.88 (2 overlapping CH3), 24.72 (CH3), 23.52 (CH3). Anal. Calcd. for C4OH58C12N2W: C, 58.46; H, 7.13; N, 3.41. Found: C, 58.40; H, 7.06; N, 3.46. Pyrrole 21. From 19. In a pressure tube, Cleo(Ndip)(=C8H12=C8H12=Ndip) (0.100 g, 0.136 mmol) was dissolved in toluene (20 mL). The sealed pressure tube was heated at 75 °C in an oil bath for 90 min. The volatiles were removed in vacuo, and the black solid was dissolved in 5 mL diethyl ether and passed through a short column of silica gel. Removal of the volatiles in vacuo yielded a yellow solid. Recrystallization from pentane gave 27 mg (0.0702 mmol, 51.6%) of the pyrrole decomposition product as light yellow crystals. From 20. In a pressure tube, C12W(Ndip)(=C8H12=C8H12=Ndip) (0.100 g, 0.122 mole) was dissolved in toluene (20 mL). The sealed pressure tube was heated at 100 °C in an oil bath for 24 h. The volatiles were removed in vacuo, and the black solid was dissolved in 5 mL diethyl ether and passed through a short column of silica gel. Removal of the volatiles in vacuo yielded a solid, which was recrystallized from pentane giving 14 mg (0.0357 mmol, 30%) of the pyrrole as light yellow crystals, m 114-116 °C. 1H NMR (CDC13) 6 = 7.35 (dd, 1H, p-H), 7.18 (app dd, 2H, m-H), 2.62-2.57 (m, 4H), 2.39 (sept, J = 6.9 Hz, 2H, CHMeZ), 2.26-2.32 (m, 4H), 1.56—1.66 (m, 4H), 1.45-1.38 (m, 12H), 1.10 (d, 12H, J = 6.9 Hz, CH(CH3)2). 13C NMR (CDC13) 6 = 148.27 (C—Pri), 134.34 (ipso-C ), 128.59 (p-C), 128.40 (pyrrole-Z-C), 123.63 (m-C), 116.96 (pyrrole-3-C), 29.82 (CH2), 29.49 (CH2), 27.42 (CHMez), 26.33 (CH2), 25.46 (CH2), 25.17 (CH2), 24.61 (CH(CH3)2), 22.31 (CH2). Anal. Calcd. for C28H41N: C, 85.87; H, 10.55; N, 3.58. Found: C, 85.97; H, 10.88; N, 3.71. [W(=C8H12=C8H12=NAr)(O)(p.-O)]2 (22). In a separatory funnel, C12W(Ndip)(=C8H12=C8H12=Ndip) (400 mg, 0.487 mmol) was dissolved in 200 mL toluene outside the glovebox. To this, 400 mL of 50% H2SO4 was added, and the mixture was shaken for 5 min. The toluene layer was separated and dried with K2CO3. The volatiles were removed in vacuo to yield an orange-red solid, m 172 dec. Recrystallization from pentane gave 223 mg of pure 3 (0.1835 mmol, 38%). The 1H was exhibited characteristics of a fluxional species. Anal. Calcd. for C56H82N204W2: C, 55.35; H, 6.82; N, 2.31. Found: C, 55.67; H, 6.83; N, 2.61. 91 CHAPTER 6 HYDROAMINATION OF ALKYNES USING TITANIUM CATALYSTS Introduction Imines are most often synthesized via the condensation of aldehydes or ketones with primary amines with the loss of water. While many imines can be made in this way, a more atom-economical way to synthesize imines is through the hydroamination of alkynes with amines, Scheme 6- 1. One of the advantages of this method is that water is not formed in hydroamination, so that the resulting imine solution is amenable to further reaction with water-sensitive reagents. Hydroamination of alkynes is currently being studied with the goal that improved catalysts for olefin hydroamination, a major synthetic challenge, can be developed. ‘25 Catalysts for the reaction can be based on alkali metals‘26, early transition metalsm, late transition metals,128 actinides,129 or lanthanides.130 Until recently, most early transition metal catalysts have been metallocene-based titanium and zirconium based; Bergman and coworkers have convincingly shown these hydroaminations to involve imido intermediates.131 Generally, these Cp-based group-4 catalysts lead to anti-Markovnikov addition of amines to alkynes,127 whereas late transition metal catalsysts favor Markovnikov prOdUCts.125’128 R_.=_——H RN" R _ H + = Hydroamination R + HZN R catalyst + H A N l .1; H Markovnikov H R H anti-Markovnikov Scheme 6-1. Possible imine products from terminal alkyne hydroamination. 92 There are currently many titanium hydroamination catalysts known, and several groups are working on this chemistry. The initial work involving titanium catalysis were the intramolecular reactions of Livinghouse and co-workers,132 as well as early (and often overlooked) observations by Rothwell and co-workers.133 The Doye,134 Bergman,135 and Beller136 groups have investigated Cp-based systems, and Ackermann and Bergman described a titanium sulfonamide complex for intramolecular hydroaminations.137 The list of viable catalysts grows weekly. It was discovered that hydroamination can be catalyzed by non-metallocene titanium systems. The regioselectivity of alkyne hydroamination can also be altered quite effectively by utilizing different ligands on the titanium center. Results and Discussion Catalyst design and synthesis. Reaction of Ti(NMe2)4 with one equivalent of szpma results in the formation of Ti(dpma)(NMe2)2, 23, in 97% yield (eq 6-1.) The structure obtained from sin gle-crystal x-ray diffraction is shown in Figure 6—1; selected bond lengths and angles are given in Table 6-1. As can be seen, the structure of the compound is pseudo-trigonal bipyramidal, with the dpma ligand facially orientated. Ti—NMe2 bond lengths are relatively short compared to previously reported Ti-NM62 bonds. The axial Ti—NMe2 bond length is 1.888(3) A; the equatorial 'Ii—NMe2 bond length is 1.859(3) A. The Ti-N(pyrrole) bond are longer, averaging 2.016(3) A, than the Ti-amide bonds by 0.143A. This is indicative of decreased Ti—N rt-bonding with the pyrrolyl nitrogen atoms compared to the dimethyl amide nitrogen atoms. The Ti—N (3) (donor amine) bond length Me, ,Me H N M WM N + Ti(NMez)4 -2HNMe2__ flTi—N"; e NH I l/ o , /N*(l Mew-” 97a MN\ / Me 23 93 Figure 6—1. The ORTEP representation (25% probability ellipsoids) of 11(dpma)(NM62)2 (23). Table 6-1. Selected bond distances and angles from x-ray diffraction of Ti(dpma)(NMe2)2(23). For the numbering scheme, see Figure 6-1. Distances and Angles (AP) 186911282?!sz Ti-N(l) 2.015(3) 'I‘i-N(2) 2.017(3) Ti-N(3) 2.312(3) Ti-N(4) 1.888(3) Ti-N(5) 1.859(3) N(l)-Ti-N(2) 120.3702) N(1)-Ti-N(3) 76.1602) N(l)-'I‘i-N(4) 97.8804) N(l)-Ti-N(5) 115.9504) N(2)-Ti-N(3) 75.6702) N(2)-Ti-N(4) 94.9603) N(4)-Ti-N(5) 100.7403) 94 is quite large at 2.312(3) A. NMR spectroscopy of Ti(dpma)(NMe2)2 exhibits some interesting features. The solution state spectrum exhibits no fluxional behavior between 25 °C and 90 °C in C6D6; the two dimethylamide ligand resonances are separated by 0.242 ppm. NOE and proton- carbon correlation spectroscopy (gHMQC and gHMBC), indicate that the resonance for the axial dimethylamide ligand is shifted downfield relative to the resonance due to the equatorial dimethylamide ligand. Surprisingly, this difference in chemical shift is not observed in CDC13, where the two resonances are separated by less than 0.002 ppm. Ti(dpma)(NMe2)2 is a very good catalyst for the hydroamination of alkynes with aromatic amines (vide infra). The sluggishness of this complex in hydroamination chemistry, as well as the low yield seen using alkyl amines and internal alkynes as substrates, has led to a search for more active catalysts. The dpma ligand does make the catalyst better in many ways than Ti(NMe2)4, and we were interested in keeping the benefits of the pyrrole groups. It was reasoned that the donor amine was inhibiting the hydroamination by making the titanium center electron-rich; thus, alkyne coordination to the titanium should be enhanced by making the titanium center less electron-rich. Previous experience with group-6 complexes containing the dpma ligand (vide supra) led to the conclusion that the dpma was a very restrictive ligand in that complexes containing dpma tend to be very rigid and nonfluxional, a characteristic that it currently believed to limit the flexibility of potential catalysts. Thus, interest in a dipyrrolyl ligand that did not contain any other donor groups developed, and the use of szmpm as a ligand was viewed favorably. Reaction of 1 equivalent of szmpm with Ti(NMe2)4 (eq 6-2) results in Ti(dmpm)(NMe2)2 (24), in good yield. Because of the low solubility of 24 in common organic solvents, compound 25, Ti(dppm)(NMe2)4, was synthesized; the propyl groups on the ligand enhances solubility of the titanium complex in toluene. The structure of 24 obtained via single-crystal x-ray diffraction is shown in Figure 6-1. Selected bond lengths and angles for compounds 24 and 25 are summarized in Tables 6-2. The structure of 95 R R 5120 H \ N + Ti(NMez)4 ——> R jirNMez (6-2) \ NH | / —2HNMe2 N M62 R=Me 24 R=PI“ 25 complex 24 was reported by Love and co-workers138 as these experiments were progressing. A similar complex, Ti(C5H4CH2C4H3N)(NMe2)2, containing a cycolpentadienyl group in place of one of the pyrrole rings, has been reported by Park and coworkers.139 Metal-ligand bond lengths are similar to those seen in Ti(dpma)(NMe2)2. For example, the Ti—NMe2 bond lengths average 1.879(5) A in Ti(dmpm)(NMe2)2, 1.877(6) A in Ti(dppm)(NMe2)2, and 1.874(3) A in Ti(dpma)(NMe2)2. As can be seen in the crystal structures for complex 24, the pyrrole rings adopted a n 1 ,n5-bonding mode to the titanium center. The Ti—N(n1-pyrrole) bond distance averages 2.025(5) A in Ti(dmpm)(NMe2)2 and 2.046(7) in Ti(dppm)(NMe2)2; the average Ti—N(pyrrole) bond length in Ti(dpma)(NMe2)2 is identical within error at 2.016(3) A. The structures of 24 and 25 are identical within error to that of Ti(C5H4CH2C4H3N)(NMe2)2. The NMR behavior of Ti(dmpm)(NMe2)2 and Ti(dppm)(NMe2)2 are strikingly different than that of Ti(dpma)(NMe2)2. Although the pyrrolyl groups are inequivalent in the solid-state structure of both complexes, the room temperature solution-state 1H NMR is consistent with fast pyrrolyl exchange. Cooling a solution of Ti(dmpm)(NMe2)2 provided spectra consistent with an n1,n5-dmpm complex. Variable temperature 1H NMR was used to determine the energy of activation associated with nS-pyrrolyl to 111-pyrrolyl exchange as 10.2 kcal/mol in CD2C12 at -60.2 °C (Figure 6-3). Hydroamination. Complex 24, Ti(dpma) (NMe2)2, catalyzes the hydroamination of alkynes with amines, Scheme 6-1. The reaction of aniline or cyclohexylamine with several different alkynes (diphenylacetylene, phenylacetylene, l-phenylpropyne, l-hexyne, and 3- hexyne) catalyzed by 10 mol % 24 was investigated, and the results are found in Table 96 Table 6-2. Selected bond distances and angles from x-ray diffraction of Ti(dmpm)(NMe2)2 and Ti(dppm)(NMe2)2. For the numbering scheme, see Figure 6-2. D. 1 m and Angles (AP) Ti(dmmeNMepz Ti(dppm)(NMez)2 (24) (25) 'I‘i-Centroid 2.025 2.015(3) Ti-N(2) 2.025(5) 2.017(3) Ti-N(4) 1.883(6) 1.888(3) Ti-N(5) 1.875(5) 1.859(3) Centroid-Ti-N(2) 105.3 120.3702) Centroid-Ti-N(4) 124.0 76.16(12) Cenroid-Ti-N(5) 111.9 97.88(14) N(2)-Ti-N(4) 101.5(2) 115.9504) N(2)-Ti-N(5) 107.8(2) 75.67(12) N(4)-'I‘i-N(5) 104.0(2) 100.7403) Figure 6-2. The ORTEP representation (25% probability ellipsoids) of Ti(dmpm)(NMe2)2 (25)- 97 8.3 .1-I1<_. 8...... 11:1 025 m e m e e w e l, iillli!4\<\lllljllll .1 111 11 l 1 1..-l.1 1 l1 11,... 11.11.14: 41% o. S- -1111 114.111.1111 - 1 lfl ya. 0. on- 11111... -- 1 J 11-- - 1.111-111.1111.11---- t a a as- lll--.i .llll...-- filllllllyfilllll 1.-..1l- , .1. 1111 45-1 5111-- .63 NANoEeraaeE .6 88a... ”.22 E 238833 6389 2:. .me 8:3... 98 6-3. All reactions were carried out at 75 °C; however higher yields and faster reactions occurred at higher temperatures. In general, terminal alkynes react much more quickly than internal alkynes, and aniline reacted much faster and with more regiochemical selectivity than cyclohexylamine. Hydroamination of l-phenylpropyne yields predominantly anti- Markovnikov selectivity (nitrogen attachment occurs 8 to the phenyl group); this is also the product seen with MezTiCp2 as product.140 A number of the catalytic reactions were slow at 75 °C, resulting in only low conversions after days of reaction time. Hydroaminations of internal alkynes with cyclohexylamine were usually very slow. Raising the reaction temperature to 130 °C often gave high yields of products in a reasonable time period (<30 h). The yields obtained at 130 °C are shown in brackets in Table 6-3. Phenylactylene undergoes polymerization/oligomerization with Ti(dpma)(NMe2)2, (23) which lowers the yields of hydroamination products. Polymerization was not seen with other alkynes. A number of different oligomers of phenylactylene were evident in the analysis of reaction mixtures. Treatment of an excess of phenylacetylene (150 equiv) with Ti(dpma)(NMe2)2 (1 equiv) in toluene at 75 °C resulted in several different oligomers that were separable by column chromatography. The major product, isolated in 45% yield, was 1 ,3,5-triphenylbenzene.141 Pre-catalyst 24 was found to promote the hydroamination of l-hexyne with a number of different amines (Table 6-4). All of these reactions show that the Markovnikov product is favored, often in excesss of 50:1, over the anti-Markovnikov product. Hydroamination did not occur with amines containing nitro or o-methoxy substituents. The hydroamination of l-hexyne with m-anisidine or p-anisidine occurred with high regioselectivities and yields. Many other functional groups were tolerated, including halogenated anilines. Electronic effects were observed; reactions involving very electron deficient aromatic amines, such as 2,3,4,5,6-pentafluoroaniline, took days instead of hours to reach completion. Steric effects, however, are negligible. For example, 2,6-diethylaniline and 99 Table 6-3. Alkyne hydroamination results. Amine Alkyne Catalyst Time(h) Yield (M : anti-M) PhNH2 BunC-CH ’I"1(dpma)(NMe2)2 6 90 (>50: l)a Ti(NMe2)4 2 90 (3 : 1)a Ti(dmpm)(NMe2)2 5 min (25 °C) 57 (40:1)(1 EtC-CEt Ti(dpma)(NMe2)2 72 73 (2: 1)3 Ti(NMe2)4 17 87a Ti(dmpm)(NMe2)2 24 (50 °C) 94(1 PhC-CH Ti(dpma)(NMe2)2 8 38 (2 : 1)° Ti(NMe2)4 2 49 (2:1)c T1(dmpm)(NMe2)2 5 min (25 °C) 41 (3.6:l)° PhC-CPh Ti(dpma)(NMe2)2 72174] 31 [99]a Ti(NMe2)4 57 92a T1(dmpm)(NMe2)2 24 84c PhC-CMe Ti(dpma)(NMe2)2 144 [24] 99 0:24) [96 (1:19)]8 Ti(dmpm)(NMe2)2 6 (50 °C) 50:1d Bu‘NHz Bu“C-CH Ti(NMe2)4 48 0 EtC-CEt Ti(NMe2)4 48 0 PhC-CH Ti(NMe2)4 10 53 (1:50)d PhC-CPh Ti(NMe2)4 48 0 CyNH2 Bu“C-CH Ti(dpmaXNMez)2 72 73 (2:1)3 EtC-CEt Ti(dpma)(NMe2)2 72 [24] 3 [57]1| Ti(dmpm)(NMe2)2 48 73d PhC-CH Ti(dpma)(NMe2)2‘ 20 50 (1 :6)d Ti(dmpm)(NMe2)2 10 min (25 °C) 54 (1:6)d PhC-CPh Ti(dpma)(NMe2)2 72 [24] 0 [70]‘1 Ti(dmpm)(NMe2)2° 48 (100 °C) 72c PhC-CMe '1”.(rlprna)0~llvle2)2 95 [29] trace [99 (1:4)]a Ti(dmpm)(NMe2)L 24 93(1 All reactions with T1(dpma)(NMe2)2 and Ti(NMe2)4 carried out with 10 mol % catalyst in toluene at 75 °C; times and yields in brackets are at 130 °C. Reactions with Ti(dmpm)(NMe2)2 were carried out in chlorobenzene with 5 mol% catalyst, except as noted. “Results are for aldehyde or ketone hydrolysis products, as determined by GC-FID. bResults are for imine products, as determined by GC-FID. °Isolated yield after reduction with LiAlH4. dIsolated yield of imine. e10 mol % Ti(dmpm)(NMe2)2 used. 100 aniline hydroaminated l-hexyne with comparable rates. With pre-catalyst 24, the hydroamination of l-hexyne with benzylamine or benzhydrylamine proceeded in 70-90% yield and was complete in <48 h at 75 °C. Regioselectivity is poor with benzyhydryl amine, with the Markovnikov product being favored only 3:1. Benzylamine gives very high Markovnikov selectivity. The reaction of p-toluidine with l-hexyne (eq 6-6) was carried out on a 5 g scale using 2 mol% Ti(dpma)(NMe2)2. Reduction of the imine product with LiAlH4 gave racernic MeCH[NH(p-tol)]Bun in 82% (9.4 g) yield. The product obtained had 1H NMR resonances consistent with literature142 values. To be sure that the dpma ligand was not coming off of the metal center during the course of the hydroamination, reactions were carried out with Ti(NMe2)4, in anticipation that this complex would not be a productive catalyst. However, Ti(NMe2)4 does catalyze the hydroamination of alkynes with amines; some results are shown in Table 6-3. With terminal alkynes, the Markovnikov product is the favored or exclusive product of hydroamination. As is the case with Ti(dpma)(NMe2)2, aniline generally gives better yields and faster rates. Ti(NMe2)4 also appears to catalyze the oligomerization of phenylacetylene, as does Ti(dpma)(NMe2)2. The results of Ti(NMe2)4 catalyzed hydroamination of l-hexyne with a number of different amines is shown in Table 6-4. As is the case with Ti(dpma)(NMe2)2, the favored product is the Markovnikov product; most of the reactions with arylamines were complete (in yields >70%) in less than 2h. Ti(NMe2)4 is a poorer catalyst for the hydroamination of 1-hexyne with both benzylamine and benzhydrylamine than is complex 24. In addition, titanium with Cp as ancillary ligand is a poor catalyst for hydroaminations involving benzylamine but was successful with benzhydrylamine.127d Comparison of the catalytic ability of Ti(dpma)(NMe2)2 and Ti(NMe2)4 leads to several conclusions. First, the active catalytic species has to be different for each complex. 10] Table 6-4. Results of hydroamination of l-hexyne with amines. . Yield Catalyst Time (h) (% M : % anti-M? Ti(NMe2)4 2 90 (3: 1) 0% Ti(dpma)(NMe2)2 6 90 (>50: 1) Ti(NMe2)4 2 87 (4:1) T1(dpma)(NMe2)2 6 94 (>50: 1) Ti(NMez)4 2 93 (6:1) 04;)». Ti(dpma)(NMe2)2 6 99 (>50:1) —0 Ti(NMe2)4 2 82 (40:1) O’NHZ Ti(dpma)(NMe2)2 6 83 (>50: 1) C' Ti(NMe2)4 2 72 (23; 1) (:11: CI Ti(dpma)(NMe2)2 6 78 (>50:1) F F Ti(NMe2)4 96 75 (37:1) F NH2 >>:<—< T1(dpma)(NMez)2 72 51 (>50:1) F F 5' Ti(NMe2)4 2 57 (9:1) NH2 Ti(dpma)(NMe2)2 9 99 (13:1) El NHZ Ti(NMe2)4 8 17 (5:1) C Ti(dpma)(NMe2)2 48 71 (>50:1) NH2 Ti(NM62)4 8 17 (5:1) Ti(dpma)(NMe2)2 26 89 (3:1) 102 Since the regioselectivity of the catalysts are very different, it was concluded that a dpma— containing species is involved in the catalysis with complex 24. An example of this different regioselectivity is seen in the hydroamination of 1-hexyne with aniline, where T i(NMe2)4 gives a 3:1 Markovnikov to anti-Markovnikov product ratio, compared with the >50:1 Markovnikov to anti-Markovnikov product ratio seen with Ti(dpma)(NMe2)4. Second, Ti(dpma)(NMe2)2 is a much more general catalyst than is Ti(NMe2)4, and yields products with a larger variety of substrates. Alkylarnines give poor yields with Ti(NMe2)4, but can give excellent yields with complex 24. Third, the pyrrolyl complex 24 generally is more selective for Markovnikov products than is Ti(NMe2)4. The use of Ti(dmpm)(NMe2)2 (25) as catalysts for hydroamination results in excellent yields and moderate to high selectivities, as can be seen in Table 6-3. In fact, catalyst 25 was such an active pre-catalyst for hydroamination that solutions of 25 with l-hexyne and aniline rapidly become hot to the touch, an observation not seen with either Ti(dpma)(NMe2)2 (24) or with Ti(NMe2)4. Table 6-5 gives kinetic measurements of the hydroamination of l-phenylpropyne with aniline, a reaction that is often very clean and moderate in rate and yields predominantly the imine of phenylacetylene. The kinetic measurements were carried out under pseudo-first order kinetics with 10 equiv. of aniline to 1 equiv. of l-phenylpropyne. The reaction utilizing catalyst 25, Ti(dmpm)(NMe2)2, was carried out in chlorobenzene due to low solubility of this catalyst in toluene. Under these conditions with these substrates, it was observed that Cp2T1(Me3Si-SiMe3) was about a factor of two faster than Ti(dpma)(NMe2)2 (24). Still more rapid was commercially available Ti(NMe2)4. Dipyrrolylmethane complexes 25 and 26 were an order of magnitude faster than the well-explored Cp- and dpma-based catalysts. ReaCtion rates were consistently slower in chlorobenzene than in toluene. The Cp-pyrrole complex of Park and coworkers was compared due to its structural similarities to complex 25, and was found to be a relatively poor catalyst, with reaction rates on the order of 100 times slower than 25. It is believed that the dipyrrolyl complex 25 can 103 Table 6-5. Comparison of rate constants for selected catalysts. 10 mol% catalyst (0.05 M) Ph‘IN Ph — Me + 10 Ph-NHg ; toluene MeJV Ph 0.5 M 5 M 75 °C — d[1-phenylpropyne] - kobst dt Precatalyst kobs x 10" s'1 TMGZ &Ti-NMe2 11 [713 CNdu/h/‘\ ' Me /T' 20 [l6]a % SIM63 Ti(NMe2)4 76 [157]a 208 [178]21 a Values in brackets are with chlorobenzene as solvent. 104 more readily access an n1,n'-configuration that the Cp-based system, and this contributes to the faster reaction rates. Conclusions Dipyrrolyl ligand containing complexes 24, 25, and 26 catalyze the hydroamination of alkynes with amines very well. These catalysts often offer better selectivity and higher yields in less time than Ti(NMe2)4, implying that the pyrrolyl ligands remain attached to the metal center during the course of the hydroamination reaction. Removal of the donor amine group from the dipyrrolyl ligand by using dipyrolylmethane derivatives results in complexes (25 and 26) that catalyze hydroamination reactions much more rapidly than the dpma complex 24 does. Experimental General considerations. All manipulations of air-sensitive materials were carried out in an MBraun glove box under an atmosphere of purified nitrogen. Ethereal solvents, pentane, and toluene were purchased from Aldrich Chemical Co. and purified by passing through alumina columns to remove water after sparging with N 2 to remove oxygen. NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc. Deuterated benzene was distilled from purple sodium benzophenone ketyl. Deuterated chloroform was distilled from CaH2 under dry N2. NMR solvents were stored in sealed containers equipped with a Teflon stopcock in the dry box prior to use. Spectra were taken on Varian instruments located in the Max T. Rogers Instrumentation Facility. Routine coupling constants are not reported. Alumina, silica, and Celite were dried at >200 °C under dynamic vacuum for at least 12 h, then stored under inert atmosphere. Combustion analyses were performed by facilities in the Department of Chemistry at Michigan State University, by Oneida Research Services in Whitesboro, NY, and by Desert Analytics in Tucson, Az. Ti(NMe2)2(dpma) (24). Ti(NMe2)4 (1.098 g, 3.1704 mmol) was dissolved in Et20 105 106 ES one .o 82 .o E A : 2:}: 28.: N83: 885 an A : 3:: 82 RS 33 A15 a: .28: 22. 83 53 p.55: 1 e w e N 63% 8:38 352: 5: 2.5....» 8 8 8 C :2 Emma? 5858 8 C n 8 8 8 C e @892 2.82.8 65.2 3: o €632 8:35:02 882 _ 2.: e $835.5 E583. 633 a: a ox _ :2 oz :8 5.2 _ E _ :8 95.5 88m 53% 8.8m 8.8m Bus: a1:55... Fezafeu Fezazno szamnu sass... G: $8 $8 «mozzxeésa. "magazines: «mozzxeeesfi £22856 :8: Embed—mam 89a en - ea 8:38:80 do.“ £80883 3.58—Em 6.0 053. (10 mL) and chilled to —35 °C. A 5 mL solution of szpma (0.600 g, 3.1704 mmol) in EtZO was added dropwise. After 30 min the volatiles were removed, and a yellow powder remained. X-ray quality crystals were obtained from pentane/E50 at —35 °C in 97.1 % yield (0.955 g), m 52 °C dec. 1H NMR (300 MHz, CDC13): 6 6.89 (m, 2H), 6.07 (m, 2H), 5.90 (m, 2H), 4.03 (d, J = 14 Hz, 2H), 3.75 (d, J = 14 Hz, 2H), 3.30 (s, 12H), 2.49 (s, 3H). 13C NMR (CDC13): 6 137.40, 126.64, 107.62, 102.54, 57.90, 47.18, 45.90, 42.82. MS (70 eV): m/z(%) 323.4(0.18) [M+]. Anal. Calcd. for C15H25N5Ti: C, 55.73; H, 7.80; N, 21.66. Found: C, 55.64;H, 7.52; N, 21.38. Ti(dppm)(NMe2)2 (26). A solution of 2.242 g Ti(NMez)4 (10 mmol) in 20 mL ether was added to a near frozen solution of szppm (2.303g, 10 mmol) in 20 mL ether. The reaction was allowed to warm to box temperature, and stirred for 3h. The volatiles were removed in vacuo, and the orange solid was recrystallized toluene/pentane. The title compound was collected as an orange powder in 68% yield (2.48 g). 1H (C6D6, 300 MHz): 6 = 6.95 (m, 2H, 5H—pyrrolyl), 6.32 (m, 2H, 4H-pyrrolyl), 6.28 (m, 2H, 3H- pyrrolyl), 2.96 (s, 12H, N(CH3)2), 2.16 (m, 4H, CHZCHZCH3), 1.45 (m, 4H, CHZCHZCH3), 0.90 (t, 6H, CHZCHZCH3). 13C (C6D6): 6 = 161.5 (2C-pyrrole), 126.1 (SC-pyrrole), 111.9 (4C—pyrrole), 109.6 (3C—pyrrole), 47.6 (N (CH3)2), 47.0 (CPfl‘z), 40.8 (CHZCHZCH3), 18.2 (CHZCHZCH3), 15.0 (CHZCHZCH3). Anal. Calcd. for C19H32N4Ti: C, 62.63; H, 8.85; N, 15.38. Found: C, 62.91; H, 9.21; N, 15.25. Representative procedure for hydroamination reactions. All manipulations of the solutions were done in a glove box under an atmosphere of dry nitrogen. In a 5 mL volumetric flask was loaded Ti(NMe2)2(dpma) (0.2 M solution in toluene, 0.2 mol, 1 mL), amine (6 mol, 3 equiv), dodecane (454 11L, 2 mol, 1 equiv), and alkyne (2 mol, 1 equiv). The solution was diluted to 5 mL with toluene and transferred to a pressure tube. A stirbar was added, and the tube was fitted with a Teflon stopper. The tube was removed from the drybox and heated in an oil bath. Reactions were run until no alkyne was detected or production of product ceased as determined by GC analysis. Most yields are 107 of ketones and aldehydes produced by hydrolysis of imine. This was done by stirring the imine solution with an equal volume of 10% HCl. The product was extracted with CH2C12 (3 x 5 mL) and analyzed by GC. Yields are versus dodecane internal standard. In the case of PhN=C(Me)Ph, CyN=C(Me)Ph, and ButN=C(Me)Ph, the imines were prepared and yields obtained directly versus dodecane internal standard. Procedure for the kinetic measurements. All manipulations of the solutions were done in an inert atmosphere glove box. In a 2 mL volumetric flask were loaded catalyst (0.1 equiv, 0.500 mL, 0.2 M solution), aniline (10 equiv, 10 mmol), dodecane (1 equiv, 1 mmol), and l—phenylpropyne (1 equiv, 1 mmol). The solution was diluted to 2 mL with solvent and transferred to a pressure tube. The tube was removed from the glove box and heated in an oil bath at 75 °C. The relative l-phenylpropyne versus dodecane concentration was monitored as a function of time by GC-FID. Reaction of excess phenylacetylene with Ti(NMe,)2(dpma). In an inert atmosphere dry box, a 250 mL round-bottom flask was loaded with a stir bar, toluene (30 mL), phenylacetylene (8.237 g, 75 mmol), and Ti(NMe2)2(dpma) (0.1616g, 0.5 mmol). The tube was fitted with a stopper and removed from the box. The reaction was heated to 75 °C with stirring for 5 days. The toluene was removed under reduced pressure, and the resulting solid was purified by column chromatography utilizing silica gel (4.5 x 40 cm) and 2:1 hexanes/CH2C12. The first band contained the majority of the material and was determined to be 1,3,5-t1iphenylbenzene by 1H NMR, 13C NMR, and mass spectrometry. The reaction yielded 3.5 g (46%) of purified compound. Procedure for hydroamination of 1-hexyne with p-toluidine followed by reduction. In an inert atmosphere dry box, a 250 mL flask was loaded with a stir bar, p-toluidine (12.86 g, 120 mmol), l-hexyne (4.93 g, 60 mmol), toluene (50 mL), and Ti(NMe2)2(dpma) (0.388g, 1.2 mmol). The flask was sealed, removed from the dry box, and heated to 75 °C with stirring. The reaction was heated for 28 h, then additional p- toluidine (6.43 g, 60 mmol) was added, followed by heating for 37 h. Most of the toluene 108 was removed in vacuo, and 80 mL of dry THF was added to the solution. The flask was cooled in an ice water bath, and LiAlH4 (6 g, 158 mmol) was added slowly. The reaction was refluxed for 61 h under N2. The flask was cooled to room temperature, and NaHCO3 (30 g) was added followed by stirring for 5 min. The mixture was filtered, and the solids were washed with ether (3 x 50 mL). The solution was washed with 70 mL of water. The aqueous layer was extracted with ether (3 x 30 mL), and all the organic solutions were combined. The solution was dried with Na2804 and solvent was removed in vacuo. To the residue was added 50 mL of pentane. Cooling to —25 °C caused p-toluidine to crystallize, which was removed by filtration. The product was distilled (65-67 °C, 0.25 mmHg) to give pure 9.4 g (82 %) of 2-(p-tolylamino)hexane. General considerations for single crystal x-ray diffraction. Single crystals of 1-4 were grown at —35 °C in an MBraun inert atmosphere glove box. All but a small portion of the mother liquor was removed, and the crystals were removed from the glovebox in a sealed vial. The crystals were rapidly coated in Paratone N and mounted on a glass fiber. The mounted crystal was placed under a cold stream of nitrogen from an Oxford “Cryostream” low-temperature device. Data were collected on a Bruker-AXS, Inc. SMART CCD diffractometer utilizing a PC running Windows NT. The data collection was done on a Bruker-AXS, Inc. 3-circle goniometer (x set to 54.78°). The source was a water-cooled Mo x-ray tube (A = 0.71073 A) operating at 50 kV/40 mA. A single crystal graphite monochromator selected the wavelength of light prior to being columated. The cell was determined using 00—0 scans (—0.3° scan width) with 3 sets of 20 frames. The initial cell was found by repeated least squares and Bravais lattice analysis. Full data sets were collected using 00—0 scans in four runs. The fourth run duplicates the first 50 frames of the first run to allow analysis of peak intensity changes resulting from crystal degradation; no correction was necessary for any of the structures reported. Absorption corrections were applied to the data. Using the initial cell, data were integrated to hkl/ intensity data using the Bruker-AXS, Inc. program package SAINT. The final unit cell was 109 F!— determined by SAINT using all the observed data. The structures were solved and refined using the SHELXTL program developed by G. M. Sheldrick and Bruker-AXS, Inc. A full listing of atomic coordinates, bond lengths, bond angles, and thermal parameters for all the structures have been deposited at the Cambridge Crystallographic Data Centre and can be found in the Appendix 1. Additional data pertaining to the collection and processing of the four structures can be found in Table 6-6. In Table 2-3, R1 = leFol—chll/ZIFOI and wR2 = {2w(F02—Fc2)2/2w(F02)2}“2. A partial listing of geometrical parameters for all four data sets may be found in Table 6-6. 110 h—n 3 BIBLIOGRAPHY . Lindoy, L. F. Chemistry of Macrocyclic Ligand Complexes. ed.; Cambridge University Press: 1992. . March, J. Advanced Organic Chemistry. 4th ed.; John Wiley and Sons: New York, 1992. . Jones, R. A. B., G. P. The Chemistry of Pyrroles. ed.; Academic Press: London, 1977. 4. Raines, S.; Kovacs, C. A. J. Heterocyclic Chem. 1970, 7, 223. 5 oo . Littler, B. J.; Miller, M. A.; Hung, C. H.; Wagner, R. W.; O’Shea, D. F.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 1391. . Alder, K.; Windemuth, E. Ber. 1938, 713, 1939. Adolfsson, H.; Nordstrom, K.; Warnmark, K.; Moberg, C. Tetrahedron.-Asymmetr. 1996, 7, 1967. . (a) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565. (b) Phillips, A. J.; Abel], A. D. Aldrichimica Acta 1999, 32, 75. (c) Schrock, R. R. Tetrahedron 1999, 55, 8141. (d) Schrock, R. R. Olefin Metathesis by Well-Defined Complexes of Molybdenum and Tungsten. In Topics in Organometallic Chemistry, Fiirstner, A. Rd; Springer: Berlin, 1998; Vol. 1. (e) Jamieson, J. Y.; Schrock, R. R.; Davis, W. M.; Bonitatebus, P. J.; Zhu, S. S.; Hoveyda, A. H. Organometallics 2000, I9, 925. (1) Adams, J. A.; Ford, J. G.; Stamatos, P. J .; Hoveyda, A. H. J. Org. Chem. 1999, 64, 9690. (g) N ugent, W. A.; Feldman, J .; Calabrese, J. C. J. Am. Chem. Soc. 1995, 117, 8992. (h) La, D. 8.; Alexander, J. B.; Cefalo, D. R.; Graf, D. D.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 9720. (i) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041. (j) Fujirnura, O.; Grubbs, R. H. J. Org. Chem. 1998, 63, 824. (k) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158. 9. Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696. 10. For examples see (a) C30, C.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 5011-5013 and Organometallics 2002, 21 , 5148. (b) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967-3969 and Organometallics 2002, 21, 5148. (0) Hill, J. E.; Profilet, R. D.; Fanwick, P. E.; Rothwell, I. P. Angew. Chem. Int. Ed. 1990, 29, 664. (d) Tillack, A.; Castro, 1. G.; Haltung, C. G.; Beller, M. Angew. Chem. Int. Ed. 2002, 41, 2541. (e) Pohlki, E; Heutling, A.; Bytschkov, I.; Hotopp, T.; Doye, S. Synlett 2002, 799. (f) Haak, E.; Bytschkov, I.; Doye, S. Angew. Chem. Int. Ed. 1999, 38, 3389. (g) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923. (h) Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475. (i) 111 ll 12. 13. 14 15 l6 l7. l8. 19. 20 21 Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125, 8100. (j) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956. (R) Cao, C.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880. . For a few examples see (a) Bruno, J. W.; Li, X. J. Organometallics 2000, 19, 4672. (b) Zuckerman, R. L.; Bergman, R. G. Organometallics 2000, I 9, 4795. (c) Bashall, A.; Collier, P. E.; Gade L. H.; McPartlin, M.; Mountford P.; Pugh, S. M.; Radojevic, S.; Schubart, M.; Scowen, I. J .; Trosch, D. J. M. Organometallics 2000, I9, 4784. (d) McInnes J. M.; Mountford, P. J. Chem. Soc., Chem. Communications 1998 1669. (e) Cantrell, G. K.; Meyer, T. Y. J. Am. Chem. Soc. 120, 8035. Wigley, D. E.; Organoimido Complexes of the Transition Metals. In Progress in Inorganic Chemistry; Karlin, K.D. Ed.; John Wiley & Sons, Inc.: New York, 1994; Vol. 42, 239. Haymore, B. L.; Maatta, E. A.; Wentworth, R. A. D. J. Am. Chem. Soc., 1979, 101, 2063. . (a) Barrie, P.; Coffey, T. A.; Forster, G. D.; Hogarth, G. J. Chem. Soc., Dalton Trans. 1999, 4519. (b) Strong, J. B.; Yap, G. P. A.; Ostrander, R.; Liable-Sands, L. M.; Rheingold, A. L.; Thouvenot, R.; Gouzerh, P.; Maatta, E. A. J. Am. Chem. Soc. 2000, 122, 639. . Bradley, D. C.; Hodge, S. R.; Runnacles, J. D.; Hughes, M.; Mason, J .; Richards, R. L. J. Chem. Soc., Dalton Trans. 1992, 1663. . Lin, 2.; Hall, M. B. Coord. Chem. Rev. 1993, 123, 149. For the sake of simplicity, a few of the canonical valence bond forms are given. A more complete discussion involving all of the limiting structures as applied to imido bonding is found in Cundari, T. R. Chem. Rev. 2000, 100, 807 and references therein. Parkin, G.; van Asselt, A.; Leahy, D. J.; Whinnery, L.; Huya, N. G.; Quan, R. W.; Henling, L. M.; Schaefer, W. P.; Santarsiero, B. D.; Bercaw, J. E. Inorg. Chem. 1992, 31, 82. Antifiolo, A.; Espinosa, P.; Fajardo, M.; Gémez-Sal, P.; Lopez-Mardomingo, C.; Martin-Alonso, A.; Otero, A. J. Chem. Soc., Dalton Trans. 1995, 1007-1013. . J¢rgensen, K. A. Inorg. Chem. 1993, 32, 1521. . Chemega, A. N.; Green, M. L. H.; Suarez, A. G. J. Chem. Soc., Dalton Trans. 1993, 3031. 112 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. McCarty, C. G. syn-anti Isomerization and rearrangements. In The Chemistry of the Carbon-Nitrogen Double Bond; Patai, S Ed.; The Chemistry of Functional Groups; Interscience Publishers: London, 1970, 365. (a) Cyclic Organonitrogen Stereodynamics, Lambert, J. B.; Takeuchi, Y. Eds.; VCH Publishers, Inc.: New York, 1992. (b) Guerra, A.; Lunazzi, L. J. Org. Chem. 1995, 60, 7959. (c) Kontoyianni, M.; Hoffman, A. J .; Bowen, J. P. J. Comp. Chem. 1992, 13, 57. For an example of recent calculations on oxo systems, see Gisdakis, P.; Rosch, N. J. Am. Chem. Soc. 2001, 123, 697. Li, Y.; Turnas, A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. 2002, 41, 6298. Schrock, R. R.; Seidel, S. W.; Schrodi, Y.; Davis, W. M. Organometallics 1999, I8, 428. Lam, H.-W.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1993, 781. For additional systems involving nonexchanging bent and linear imidos on the NMR timescale, see (a) Danopoulos, A. A.; Wilkinson, G.; Hussain, B.; Hursthouse, M. B. J. Chem. Soc., Chem. Comm. 1989, 896. (b) Danopoulos, A. A.; Leung, W.-H.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. Polyhedron 1990, 9, 2625. Meijboom, N.; Schaverien, C. J .; Orpen, A. G. Organometallics 1990, 9, 774. Fox, H. H.; Yap, K. B.; Robbins, J .; Cai, S.; Schrock, R. R. Inorg. Chem. 1992, 31, 2287. Nugent, W. A.; Harlow, R. L. Inorg. Chem. 1980, 19, 777. (a) Alvarez, S.; Llunell, M. Dalton Trans. 2000, 3288. (b) Addison, A. W.; Rao, T. N.; Reedijk, J .; van Rijn, J .; Verschoor, G. C. Dalton Trans. 1984, 1349. (c) Zabrodsky, H.; Peleg, S.; Avnir, D. J. Am. Chem. Soc. 1992, 114, 7843. Minoretti, A.; Aue, W. P.; Reinhold, M.; Ernst, R. R. J. Magnetic Resonance 1980, 40, 175. (a) N ugent, W. A.; McKinney, R. J.; Kasowski, R. V.; Van-Catledge, F. A. Inorg. Chim. Acta 1982, 65, L91. 0)) Ashcroft, B. R.; Clark, G. R.; Nielson, A. J.; Rickard, C. E. F. Polyhedron 1986, 5, 2081. (c) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds, Interscience: NewYork, 1988, 133. The values for the dpma complexes reported were obtained by taking the average of the Ca resonances minus the average of the C‘3 resonances in each of the spectra. 113 36. 37. 38. 39. 40. 41. 42. 43. 44. 45 46 This was done for comparison purposes with other bis(imido) complexes where the imidos are quickly exchanging. For a discussion and an extensive listing of applications in organic chemistry of NMR as it relates to charge densities see Emsley, J. W.; Feeney, J .; Sutcliffe, L. H. High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon Press: Oxford, 1966. A brief discussion on paramagnetic contributions to the 14N NMR chemical shift and relevant references are found in this book. (a) Gasteiger, J .; Marsili, M. Org. Mag. Res. 1981, I5, 353. (b) Spiesecke, H.; Schneider, W. G. J. Chem. Phys. 1961, 35, 722. (c) Cavanaugh, J. R.; Dailey, B. P. J. Chem. Phys. 1961, 14, 1099. (d) Dailey, B. P.; Shoolery, J. N. J. Am. Chem. Soc. 1955, 77, 3977. For a discussion of Pauling electronegativities versus transition metal oxidation states see Sanderson, R. T. Inorg. Chem. 1986, 25 , 3518. The same procedure using optical electronegativities provides plots of equally good linearity. For a discussion of optical electronegativity, see Jorgensen, C. K. Electron Transfer Spectra in Prog. Inorg. Chem. 1971, 12, 101. For a similar correlation between optical electronegativity and A6 values see reference 34c. Sundermeyer, J .; Putterlik, J .; F oth, M.; Field, J. S.; Ramesar, N. Chem. Bet: 1994, 12 7, 1201. Tp* is tris(3,5-dimethyl-l-pyrazolyl)hydroborate. For chromium and molybdenum, R is Bu'. For tungsten, R is Ph. Radius, U.; Sundermeyer, J. Chem. Ber. 1992, 125, 2183-2186. Coles, M. P.; Dalby, C. 1.; Gibson, V. C.; Clegg, W; Elsegood, M. R. J. Chem. Comm. 1995, 1709. For a similar discussion on bis( 1 -adamantylimido)chromium(VI) complexes see Coles, M. P.; Gibson, V. C.; Clegg, W.; Elsegood, M. R. J. Polyhedron 1998, 2483. Similar results are found when series of molybdenum complexes are examined, see Cole, S. C.; Coles, M. P.; Hitchcock, P. B. Dalton Trans. 2002, 4168. An alternative measure of linear versus bent comparison would be to use A60L (linear — A6a5 > Mo with values of 1.2, 0.7, and 0.1 respectively. However, the result is similar in that the A6 values due to changing the imido environment are far smaller (< 1.2 ppm) than changing the metal or ligands on the metal. Le Ny, J. P.; Osborn, J. A. Organometallics, 1991, 10, 1546. 114 47. 14N NMR spectra are referenced to the ammonia scale with NH3 as 0.00 ppm. On this scale, neat nitromethane has a resonance at 380.4 ppm. Another common scale uses ammonium as the reference, which appears at ~21 ppm on the ammonia scale. 48. (a) Webb, G. A.; Witanowski, M. Theoretical Background to Nitrogen NMR. In Nitrogen NMR, Witanowski, M.; Webb, G. A. Eds; Plenum Press: London, 1973. (b) Mason, J. Multinuclear NMR, Plenum Press: New York, 1987. 49. (a) Mason, J. Chem. Rev. 1981, 81, 205. (b) Donovan-Mtunzi, S.; Richards, R. L.; Mason, J. J. Chem. Soc., Dalton Trans. 1984, 1329. (c) Dilworth, J. R.; Donovan- Mtunzi, 8.; Kan C. T.; Richards, R. L.; Mason, J. Inorg. Chim. Acta 1981, 53, L161. (d) Odom, A. L.; Cummins, C. C. Organometallics 1996, 15, 898. 50. For discussion of similar effects in 170 NMR metal-oxo shifts see (a) Kidd, R. G. Can. J. Chem. 1967, 45, 605. (b) Klemperer, W. G. Angew. Chem. Int. Ed. 1978, 17, 246. (c) Miller, K. F.; Wentworth, R. A. D. Inorg. Chem. 1979, I8, 984. 51. Witanowski, M.; Stefaniak, L.; J anuszewski, H.; Grabowski, Z. Tetrahedron 1972, 28, 637. 52. (a) Steffey, B. D; Fanwick, P. E., Rothwell, I. P. Polyhedron 1990, 9, 963. For similar examples of early metal alkoxides with little or no correlation between bond distance and angle, see (b) Howard, W. A.; kaa, T. M.; Parkin, G. Inorg. Chem. 1995, 34, 5900. (c) Wolczanski, P. T. Polyhedron 1995, I4, 3335. For systems where alkoxide bond angle does seem to correlate with bond distance, see ((1) Tomaszewski, R.; Arif, A. M.; Ernst, R. D. J. Chem. Soc., Dalton Trans. 1999, 1883. (e) Huffman, J. C.; Moloy, K. G.; Marsella, J. A.; Caulton, K. G. J. Am. Chem. Soc. 1980, 102, 3009. For a recent computational study supporting Ti-OR triple bonding, see (1) Dobado, J. A.; Molina, J. M.; Uggla, R.; Sundberg, M. R. Inorg. Chem. 2000, 39, 2831. For an excellent experimental study comparing It-bonding in a variety of monoanionic ligands to a common metal fragment, see (g) Lukens, W. W., Jr.; Smith, M. R., III; Andersen, R. A. J. Am. Chem. Soc. 1996, 118, 1719. 53. Jandciu, E. W.; Legzdins, P.; McNeil, W. 8.; Patrick, B. O.; Smith, K. M. Chem. Commun. 2000, 1809. 54. Imido bond angle has recently been correlated with 95Mo NMR shielding as well. Minelli, M.; Hoang, M. L.; Kraus, M.; Kucera, G.; Loertscher, J.; Reynolds, M.; Timm, N.; Chiang, M. Y.; Powell, D. Inorg. Chem. 2002, 41, 5954. 55. For a reference demonstrating through SCF-Xa-SW analysis the high electron density on even linear imido nitrogens, see Schofield, M. H.; Kee, T. P.; Anhaus, J. T.; Schrock, R. R.; Johnson, K. H.; Davis, W. M. Inorg. Chem. 1991, 30, 3595. 56. Similar arguments relating bond order and bond polarity are put forth in Reference 41c, Chapter 2. 115 57. 58. 59. 61. 62. 63. 65. 66. 67. 68. 69. 70. Coffey, T. A.; Forster, G. D.; Hogarth, G.; Sella, A. Polyhedron 1993, 12, 2741. For an interesting reactivity study on an imido with an extremely small angle, see Gountchev, T. I.; Tilley, T. D. J. Am. Chem. Soc. 1997, 119, 12831. Hay, P. J .; Wadt, W. R. J. Chem. Phys. 1985, 82, 284. Gordon, M. S.; Binkley, J. 8.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1983, 104, 2797. Becke, A. D. J. Chem. Phys. 1993, 98, 1372. Gaussian 98, Revision A.ll.l, Frisch, M. J .; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. B.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratrnann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J .; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J .; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, 1.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T .; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 2001. Schoettel, G.; Kress, J.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1989, 1062. Schrock, R. R. Acc. Chem. Res. 1986, 19, 342. Schrock, R. R. Acc. Chem. Res. 1990, 23, 158. Tsang, W. C. P.; Hultzsch, K. C.; Alexander, J. B.; Bonitatebus, P. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 6337. T sang, W. C. P.; Hultzsch, K. C.; Alexander, J. B.; Bonitatebus, P. J .; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2652. Tsang, W. C. P.; Jemelius, J. A.; Cortez, G. A.; Weatherhead, G. S.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2591. Schrock, R. R.; Hoveyda, A. H. Angew. Chem Int. Ed. Eng. 2003, 42, 4592. Schrock, R. R.; Jamieson, J. Y.; Araujo, J. P.; Bonitatebus, P. J .; Sinha, A.; Pia, L.; Lopez, H. J. Organomet. Chem. 2003, 684, 56. 116 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. Schrock, R. R.; Jamieson, J. Y.; Dolman, S. J.; Miller, S. A.; Bonitatebus, P. J .; Hoveyda, A. H. Organometallics 2002, 21, 409. Hultzsch, K. C.; Jemelius, J. A.; Hoveyda, A. H.; Schrock, R. R. Angew. Chem. Int. Ed. 2002, 41, 589. Cochran, F. V.; Schrock, R. R. Abstr. Pap. Am. Chem. Soc. 2000, 220, U529. Gibson, V. C.; Marshall, B. L.; Redshaw, C.; Clegg, W.; Elsegood, M. R. J. J. Chem. Soc. Dalton 1996, 4197. kaa, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc. 1999, 121, 2674. Huang, J .; Schanz, H.-J.; Stevens, E. D.; Nolan, 8. P. Organometallics 1999, 18, 5375. Scholl, M.; kaa, T. M.; Morgan, J. P.; Grubbs, R. H. Tet. Let. 1999, 40, 2247. Furstner, A.; Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C. W.; Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236. Jafarpour, L.; Nolan, S. P. Org. Lett. 2000, 2, 4075. Jafarpour, L.; Nolan, S. P. Organometallics 2000, I9, 2055. Jafarpour, L.; Heck, M.-P.; Baylon, C.; Lee, H. M.; Mioskowski, C.; Nolan, S. P. Organometallics 2002, 21, 671. Jafarpour, L.; Hillier, A. C.; Nolan, S. P. Organometallics 2002, 21, 442. Sanford, M. S.; Henling, L. M.; Day, M. W.; Grubbs, R. H. Angew. Chem. Int. Ed. Eng. 2000, 39, 3451. (a) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967. (b) Cao, C.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 5011. (c) Shi, Y.; Hall, C.; Ciszewski, J. T.; Cao, C.; Odom, A. L. Chem. Commun. 2003, 586. (d) Cao, C.; Shi, Y.; Odom, A. L. Org. Lett. 2003, 4, 2853. (e) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J .; Dimare, M.; Oregan, M. J. Am. Chem. Soc. 1990, 112, 3875. 117 87. Wilhelm, T. B.; Belderrain, T. R.; Brown, S. N.; Grubbs, R. H. Organometallics 1997, I6, 3867. 88. Nolan, S. P.; Belderrain, T. R.; Grubbs, R. H. Organometallics 1997, 16, 5569. 89. The history of olefin metathesis was recently highlighted, see A. M. Rouhi, Chemical and Engineering News 2002, 80, 29. A. M. Rouhi, Chemical and Engineering News 2002, 80, 34. 90. Ivin, K. J .; Mol, J. C. Olefin Metathesis and Metathesis Polymerization, Academic Press: San Diego, 1997. 91. Schrock, R. R. J. Am. Chem. Soc. 1974, 97, 6577. 92. Schrock, R. R. Chem. Rev. 2002, 102, 145. 93. Oskam, J. H.; Fox, H. H.; Yap, K. B.; McConville, D. H.; O’Dell, R.; Lichtenstein, B. J.; Schrock, R. R. J. Organomet. Chem. 1993, 459, 185. 94. For examples, see Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041. La, D. S.; Alexander, J. B.; Cefalo, D. R.; Graf, D. D.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 9720. 95. Hultzsch, K. C.; Jemelius, J. A.; Hoveyda, A. H.; Schrock, R. R. Angew. Chem. Int. Ed. 2002, 41 , 589. 96. Furstner, A.; Krause, H.; Ackermann, L.; Lehmann, C. W. Chem. Commun. 2001, 2240. 97. Bielawski, C. W.; Benitez, D.; Grubbs R. H. Science, 2002, 297, 2041. Bielawski, C. W.; Benitez, D.; Grubbs, R. H. J. Am. Chem. Soc., 2003, 125, 8424. 98. Hultzsch, K. C.; Jemelius, J. A.; Hoveyda, A. H.; Schrock, R. R., Angew. Chem. Int. Ed. 2002, 41, 589. 99. For examples, see Kriley, C. B.; Kerschner, J. L.; Fanwick, P. B.; Rothwell, I. P. Organometallics, 1993, 12, 2051. Yeh, W.-Y.; Ho, C.-L.; Chiang, M. Y.; Chen, I-T. Organometallics, 1997, I6, 2698. Kershner, J. L.; Fanwick, P. B.; Rothwell, I. P. J. Am. Chem. Soc., 1988, 110, 8235. 100. For seminal examples, see Simeling, U.; Kolling, L.; Stammler, A.; Stammler, H.- G.; Kaminski, B.; Fink, G. Chem. Commun., 2000, 1177;. Kretzchmar, E. A.; Kipke, J .; Sundermeyer, J. Chem. Commun., 1999, 2381. Redshaw, C.; Gibson, V. C.; Clegg, W.; Edwards, A. J .; Miles, B. J. Chem. Soc., Dalton Trans., 1997, 3343. Gibson, V.C.; Redshaw, C.; Clegg, W.; Elsegood, M. R. J. J. Chem. Soc., Dalton 118 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. Trans., 1996, 4513; Lentz, M. R.; Fanwick, P.E.; Rothwell, I. P. Chem. Commun., 2002, 2482. Vani, P. V. S. N.; Chida, A. S.; Srinivasan, R.; Chandrasekharam, M.; Singh, A. K. Synth. Commun., 2001, 31, 219. Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem, 1991, 56, 1145. Hurd, C. D.; Jenkins, W. W. J. Org. Chem., 1957, 22, 1418. Strazzolini, P.; Giumanini, A. G.; Runcio, A.; Scuccato, M. J. Org. Chem. 1998, 63, 952. Mellor, A. G.; Mittoo, S.; Parkes, R.; Millar, R. W. Tetrahedron, 2000, 56, 8019. Tepe, J. J .; Madalengoitia, J. S.; Slunt, K. M.; Werbovetz, K. W.; Spoors, P. G.; Macdonald, T. L. J. Med. Chem., 1996, 39, 2188. Razafimbelo, J.; Baudouin, G.; Tillequin, F.; Renard, P.; Chem. Pharm. Bull., 1998, 46, 34. Fletcher, R. J .; Lampard, C.; Murphy, J. A.; Lewis, N. J. Chem. Soc., Perkin Trans. 1, 1995, 623. Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J .; DiMare, M.; O’Regan, M. J. Am. Chem. Soc., 1990, 112, 3875. Schrock, R. R. Chem. Rev. 2002, 102, 145. Grubbs, R. H. ed. Handbook of Olefin Metathesis Wiley-VCH: Weinheim, 2003. Nugent, W. A.; Feldman, J .; Calabrese, J. C. J. Am. Chem. Soc. 1995, 117, 8992. Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993, 115, 8130. For a review, see Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (a) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967. (b) Cao, C.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 5011. (c) Shi, Y.; Hall, C.; Ciszewski, J. T.; Cao, C.; Odom, A. L. Chem. Commun. 2003, 586. (d) Cao, C.; Shi, Y.; Odom, Org. Lett. 2003, 4, 2853. (e) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. Cao, C.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880. For seminal mechanistic studies on Group-4 metal catalyzed hydroamination, see (a) Baranger, A. M.; Walsh, P. J .; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 2753. (b) Walsh, P. J .; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. For an isolable azatitanacyclobutene, see Ward, B. D.; Maisse-Francois, A.; Mountford, P.; Gade, L. H. Chem. Commun. 2004, 704. 119 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds, John Wiley & Sons: New York, 1988. Schrock, R. R.; Mudzek, J. S.; Bazan, G. C.; Robbins, J .; DiMare, M.; O’Regan, M. B. J. Am. Chem. Soc. 1990, 112, 3875. The ring-strain in the triple-bond of cyclooctyne is estimated by hydrogenation (cyclooctyne to cis-cyclooctene versus 4-octyne to cis-4-octene) to be ~10 kcal/ mol. Turner, R. B.; Jarret, A. D.; Goebel, P.; Mallon, B. J. J. Am. Chem. Soc. 1973, 95, 790. Cyclooctyne is readily prepared on >10 g scales. Brandsma, L.; Verkruijsse, H. D. Synthesis 1978, 290. At —35 °C under an inert atmosphere, pure cyclooctyne has been stored without noticeable decomposition for months. Schrock, R. R.; Crowe, W. B.; Bazan, G. C.; DiMare, M.; O’Regan, M. B.; Schofield, M. H. Organometallics 1991, 10, 1832. Gordon, A. J .; Ford, R. A. The Chemist’s Companion, John Wiley & Sons: New York, 1972. Schrock, R. R.; DePue, R. T.; Feldman, J .; Yap, K. B.; Yang, D. C.; Davis, W. M.; Park, L.; DiMare, M.; Schofield, M.; Anhaus, J .; Walborsky, E.; Evitt, B.; Kruger, C.; Betz, P. Organometallics 1990, 9, 2262. Kress, J .; Wesolek, M.; Osborn, J. A. Chem. Commun. 1982, 514. Fox, H. H.; Yap, K. B.; Robbins, J. J .; Cai, S.; Schrock, R. R. Inorg. Chem. 1992, 31, 2287. Brandsma, L.; Verkruijsse, H. D. Synthesis 1978, 290. Two recent reviews: Nobis, M.; Driebe-Holscher, B. Angew. Chem. Int. Ed. 2001, 40, 3983. Miiller, T. B.; Beller, M. Chem. Rev. 1998, 98, 675. Pez, G. P.; Galle, J. E. Pure Appl. Chem. 1985, 57, 1917. (a) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923. (b) Haak, B.; Siebeneicher, H.; Doye, S. Org. Lett., 2000, 2, 1935. (c) Haak, B.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 1999, 38, 3389. (d) Siebeneicher, H.; Doye, S. J. Prak. Chem. — Chem Ztg. 2000, 342, 102. (e) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485. (f) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. (a) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546. (b) Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem. Int. Ed. 1999, 38, 3222. (c) Beller, M.; 120 129 130 131. 132. 133 134 Trauthwein, H.; Eichberger, M.; Breindl, C.; Muller, T. E.; Zapf, A. J. Organomet. Chem. 1998, 566, 277. . Straub, T.; Frank, W.; Reiss, G. J.; Eisen, M. S. J. Chem. Soc., Dalton Trans. 1996, 2541. . (a) Molander, G. A.; Dowdy, E. D. J. Org. Chem. 1999, 64, 6515. (b) Li, Y. W.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757. (c) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295. For metallocene-based systems, terminal imines are almost certainly the active species reacting with alkyne. We currently have no evidence for such a species in our system. However, it should be noted that Ti(NMe2)4 is known to produce isolable bridging imido complexes on reaction with primary amines, see Thorn, D. L.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1981, 103, 357. Excess of amine during the reactions conditions may support monomeric species for reaction with alkynes. (a) Fairfax, D.; Stein, M.; Livinghouse, T.; Jensen, M. Organometallics 1997, 16, 1523. (b) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485. (c) McGrane, P. L.; Jensen, M.; Livinghouse, T. J. Am. Chem. Soc. 1992, 114, 5459. (d) McGrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 5 7, 1323. . Hill, J. B.; Profilet, R. D.; Fanwick, P. E.; Rothwell, I. P. Angew. Chem. Int Ed. Eng. 1990, 29, 664. . (a) Pohlki, F.; Bytschkov, I.; Siebeneicher, H.; Heutling, A.; Konig, W. A.; Doye, S. Eur. J. Org. Chem. 2004, 1967. (b) Heutling, A.; Pohlki, F.; Doye, S. Chem-Eur. J. 2004, 10, 3059. (c) Doye, S. Synlett 2004, 1653. (d) Siebeneicher, H.; Bytschkov, I.; Doye, S. Angew. Chem. Int. Ed. 2003, 42, 3042. (e) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104. (f) Bytschkov, 1.; Siebeneicher, H.; Doye, S. Eur. J. Org. Chem. 2003, 2888. (g) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2003, 935. (h) Siebeneicher, H.; Doye, S. Eur. J. Org. Chem. 2002, 1213. (i) Pohlki, F.; Heutling, A.; Bytschkov, 1.; Hotopp, T.; Doye, S. Synlett. 2002, 799. (i) Heutling, A.; Doye, S. J. Org. Chem. 2002, 67, 1961. (k) Haak, B.; Bytschkov, 1.; Doye, S. Eur. J. Org. Chem. 2002, 457. (l) Bytschkov, T.; Doye, S. Tetrahedron Lett. 2002, 43, 3715. (m) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2001, 4411. (n) Sieibeneicher, H.; Doye, S. J. Prak. Chem-Chem. Ztg. 2000, 342, 102. (o) Haak, B.; Siebeneicher, H.; Doye, S. Org. Lett. 2000, 2, 1935. (p) Haak, B.; Bytschkov, 1.; Doye, S. Angew. Chem. Int. Ed. Eng. 1999, 38, 3389. 135. Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923. 136. Tillack, A.; Castro, 1. G.; Hartung, C. G.; Beller, M. Angew. Chem. Int. Ed. 2002, 41 , 2541. 121 137. Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475. 138. Novak, A.; Blake, A. J .; Wilson, C.; Love, J. B. Chem. Commun. 2002, 2796. 139. Sec, W. S.; Cho, Y. J.; Yoon, S. C.; Park, J. T.; Park, Y. J. Organomet. Chem. 2001, 640, 79. 140. A possible explanation for the selectivities in this reaction involves synthesis of a metallocyclobutane intermediate due to 1,3-hydrogen shift. Trosch, D. J. M.; Collier, P. B.; Bashall, A.; Gade, L. H.; McPartlin, M.; Mountford, P.; Radojevic, S. Organometallics 2001, 20, 3308. 141. For other early transition metal cyclotrimerizations of alkynes (a) Strickler, J. R.; Bruck, M. A.; Wigley, D. E. J. Am. Chem. Soc. 1990, 112, 2814. (b) Smith, D. P.; Strickler, J. R.; Gray, S. D.; Bruck, M. A.; Holmes, R. 8.; Wigley, D. E. Organometallics 1992, II , 1275. (c) Hartung, J. B.; Pedersen, S. F. Organometallics 1990, 9, 1414. 142. Benati, L.; Montevecchi, P. C.; Spagnolo, P. Tetrahedron 1986, 42, 1145. 122 APPENDIX COMPLETE CRYSTAL DATA AND STRUCTURE REFINEMENT DATA Table A-1.1. Crystal data and structure refinement for szpma. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume 2 Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.30° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole jtcatl C11H15N3 189.26 173 K 0.71073 A Trigonal P3(l) a = 14.094(4) A b = 14.094(4) A c = 9.288(3) A 1597.7(8) A3 6 1.180 Mg/m3 0.073 mm1 612 0.19 x 0.13 x 0.11mm3 1.67 to 23.30°. -15<=h<=15, -15<=k<=15, -10<=l<=8 7273 2705 [R(int) = 0.1179] 99.7 % Empirical 0.9982 and 0.3890 Full-matrix least-squares on F2 2705/ 1 /256 1.097 R1 = 0.0988, wR2 = 0.2636 R1 = 0.1030, wR2 = 0.2664 8(7) 0.026(7) 0.358 and 41292 e.A-3 a: 90°. 8: 90°. 7 = 120°. 123 Table A-1.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103)for szpma. U(eq) is defined as one third of the trace of the orthogonalized U13 tensor. x y z U(eq) x y z U(eq) N(lA) 4488(5) 3637(5) 8021(7) 35(2) N(lB) 5712(5) 8526(5) -l455(7) 34(2) N(2A) 5254(5) 6919(5) 4861(8) 38(2) N(2B) 7450(5) 9279(5) 3487(7) 31(2) N(3A) 5029(5) 4423(5) 4744(6) 28(1) N(3B) 7958(5) 10217(5) 106(6) 27(1) C(llA) 4748(7) 3923(7) 9426(10) 42(2) C(llB) 4918(6) 7454(6) -1516(9) 37(2) C(12A) 5867(7) 4507(7) 9533(10) 46(2) C(lZB) 5411(6) 6821(6) -1524(9) 35(2) C(13A) 6294(7) 4570(8) 8163(9) 44(2) C(13B) 6575(6) 7588(5) -l470(8) 30(2) C(l4A) 5430(6) 4037(7) 7218(9) 35(2) C(l4B) 6722(6) 8619(6) -1427(8) 30(2) C(21A) 4929(6) 7512(6) 3996(11) 41(2) C(2lB) 7643(6) 9662(6) 4883(9) 37(2) C(22A) 5042(6) 7302(7) 2622(11) 44(2) C(ZZB) 8693(7) 10551(7) 4915(10) 44(2) C(23A) 5481(6) 6562(7) 2633(10) 42(2) C(23B) 9080(7) 10689(7) 3501(10) 42(2) C(24A) 5549(6) 6346(6) 4026(10) 38(2) C(24B) 8313(6) 9885(6) 2633(8) 31(2) C(31A) 5408(6) 3823(7) 5652(9) 39(2) C(31B) 7743(6) 9711(6) -1359(8) 29(2) C(32A) 5935(6) 5605(6) 4693(9) 37(2) C(3ZB) 8305(6) 9617(6) 1095(8) 31(2) C(33A) 4805(7) 3959(7) 3292(9) 44(2) C(33B) 8839(7) 11359(7) -6(10) 45(2) Table A-1.3. Bond lengths [A] and angles [°] for szpma. N(lA)-C(llA) 1.362(11) N(lB)-C(llB) 1.359(10) N( 1 A)—C( 14A) 1.374( 10) N(lB)-C( 14B) 1.363(9) N(2A)-C(24A) 1.327(1 l) N(ZB)-C(24B) 1.342( 10) N(2A)-C(21A) 1.392(11) N(ZB)-C(ZIB) 1.378(10) N(3A)—C(33A) 1.462(11) N(3B)-C(33B) 1.464( 10) N(3A)-C(3 1 A) 1.472(10) N(3B)-C(3ZB) 1.486(9) N(3A)-C(32A) 1.510(9) N(3B)-C(31B) 1.495(9) C(l lA)—C( 12A) 1.369( 12) C(l lB)—C(12B) 1.379(11) C(12A)-C(13A) 1.391(12) C(lZB)-C(13B) 1.445(11) C(13A)-C(l4A) 1.379(11) C(13B)—C(14B) 1.362( 10) C( 14A)-C(3 l A) 1.483(11) C(l4B)-C(3 1 B) 1.492(10) C(21A)-C(22A) 1.338(13) C(ZIB)-C(2ZB) 1.381(11) C(22A)-C(23A) 1.453(13) C(22B)—C(23B) 1.399(13) C(23A)-C(24A) 1.344(12) C(23B)-C(24B) 1.370(11) C(24A)-C(32A) 1.528(12) C(24B)-C(3ZB) 1.475(11) 124 IC‘ ‘ C(l lA)-N(lA)-C(14A) 109.7(7) C(l lB)-N(1B)-C(14B) 110.4(6) C(24A)-N(2A)—C(2 1 A) 109.0(7) C(24B)-N(2B)—C(2 1 B) l 11.6(6) C(33A)-N(3A)-C(3 1 A) 109.3(6) C(33B)-N(3B)-C(32B) 109.3(6) C(33A)-N(3A)-C(32A) 109.8(6) C(33B)-N(3B)-C(31B) 108.5(6) C(31A)-N(3A)—C(32A) 107.6(6) C(32B)-N(3B)—C(3 lB) 109.7(5) N(lA)-C(11A)-C(12A) 107.8(8) N(lB)-C(11B)-C(12B) 108.5(7) C(l 1A)-C(12A)—C(13A) 107.7(8) C(l lB)-C(12B)-C(13B) 105.5(6) C(14A)-C(l3A)-C(12A) 108.1(7) C(14B)—C( lBB)-C(12B) 108.1(6) N(lA)-C(14A)—C(13A) 106.7(7) N(lB)-C(l4B)-C(13B) 107.5(6) N(lA)-C(l4A)-C(31A) 122.1(7) N(lB)-C(l4B)-C(31B) 121.5(6) C(13A)-C(14A)-C(31A) 131.1(7) C(13B)-C(14B)-C(31B) 131.0(7) C(22A)-C(21A)-N(2A) 107.8(7) N(2B)-C(21B)-C(22B) 106.7(7) C(21A)-C(22A)-C(23A) 107.0(7) C(2 l B)-C(22B)-C(23B) 105.8(7) ' C(24A)-C(23A)—C(22A) 105.9(8) C(24B )-C(23B)-C(22B) 1 10.2(7) N(2A)-C(24A)-C(23A) 1 10.2(8) N(2B)-C(24B)-C(23B) 105.6(7) N(2A)-C(24A)-C( 32A) 120.4(8) N(ZB)-C(24B)-C(32B) 121 .4(6) C(23A)-C(24A)-C(32A) 129.4(8) C(23B)-C(24B)-C(32B) 133.1(8) N(3A)-C(31A)-C(14A) 1 15.0(6) C( l4B)—C(3 1B)-N (3B) 1 13.0(6) N (3A)-C(32A)-C(24A) l l 1.9(6) C(24B)-C(32B)-N(3B) 1 14.6(6) Table A- 1.4. Anisotropic displacement parameters (A2 x 103) for szpma. The anisotropic displacement factor exponent takes the form: -2.1t2[ h2 a*2Ull + + 2 h k a* b* U12] ull U22 u33 I123 [113 U12 N( 1 A) 28(3) 42(4) 34(4) -6(3) -8(3) 17(3) N (2A) 30(3) 33(3) 39(4) —6(3) 3(3) 6(3) N (3A) 28(3) 30(3) 21(3) -2(3) 3(3) 12(3) C(l l A) 39(5) 41(4) 40(6) 1(4) 3(4) 15(4) C(12A) 39(5) 58(6) 40(6) -5(4) -9(4) 24(4) C(13A) 34(4) 68(6) 37(5) 9(4) -3(4) 3 1(4) C(l4A) 31(4) 44(4) 31(5) 0(4) 6(4) 20(4) C(2 1 A) 27(4) 26(4) 63(7) -1(4) 3(4) 8(3) C(22A) 27(4) 39(4) 55(6) 8(4) - 16(4) 9(4) C(23A) 29(4) 36(4) 49(6) 0(4) -3(4) 7(4) C(24A) 24(4) 31(4) 43(5) 4(4) -5(4) 4(3) C(31A) 37(4) 44(5) 42(5) 1(4) -3(4) 26(4) C(32A) 21(4) 39(4) 33(5) 3(3) 1(3) 0(3) C(33A) 36(4) 52(5) 36(5) -3(4) -2(4) 16(4) 125 N(lB) 34(3) 31(3) 35(4) 4(3) 1(3) 15(3) N (23) 24(3) 30(3) 30(4) -8(3) -6(3) 7(3) N(3B) 31(3) 23(3) 30(4) -2(3) -5(2) 17(3) C(l 18) 23(4) 35(4) 48(5) -2(4) 4(3) 12(3) C(12B) 38(4) 25(4) 46(5) 3(3) -5(4) 18(3) C(13B) 36(4) 28(4) 32(4) 4(3) -4(3) 20(3) C( 14B) 30(4) 36(4) 26(4) -2(3) -3(3) 19(3) C(2 1 B) 30(4) 35(4) 35(5) 2(4) - 1(4) 8(3) C(ZZB) 38(5) 42(5) 41(5) 1(4) -2(4) 10(4) C(23B) 30(4) 40(5) 43(6) 1(4) -8(4) 8(4) C(24B) 28(4) 34(4) 29(4) - 1 ( 3) -9(3) 15(3) C(3 13) 34(4) 34(4) 20(4) 1 ( 3) -1(3) 17(3) C(32B) 30(4) 29(4) 33(4) -4(3) -3(3) 15(3) C(33B) 51(5) 35(4) 42(6) -4(4) -1(4) 17(4) 9” Table A-1.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for szpma. x y z U(eq) x y z U(eq) H(1A) 3833 3262 7686 42 H( 1B) 5593 9068 -1437 41 H(2A) 5263 6923 5787 46 H(2B) 6851 8720 3199 37 H(l 1A) 4254 3752 10180 50 H(l 18) 4167 7192 -1547 44 H(12A) 6269 4807 10370 55 H(12B) 5068 6060 - 1557 42 H(13A) 7033 4912 7925 53 H(13B) 7127 7409 -1466 36 H(2 1 A) 4678 7973 4316 50 H(2 1 B) 7159 9376 5654 44 H(22A) 4872 7576 1813 53 H(ZZB) 9065 10972 5713 53 H(23A) 5674 6294 1838 5 1 H(23B) 9761 l 1246 3 193 50 H(3 l C) 6141 4012 5349 46 H(3 1 A) 7685 10200 -2042 35 H(3 1 D) 4934 3044 5487 46 H(3 1 B) 8360 9629 - 1644 35 H(32A) 6541 5660 4134 45 H(32C) 7815 8837 967 37 H(32B) 6197 5855 5662 45 H(32D) 9035 9778 825 37 H(33D) 5452 3985 2913 66 H(33A) 9513 l 1381 -244 67 H(33E) 4598 4375 2683 66 H(33B) 8919 1 1722 897 67 H(33E) 4220 3212 3329 66 H(33C) 8663 11721 -745 67 126 Table A-2.1. Crystal data and structure refinement for szpna. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume 2 Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.27° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Largest diff. peak and hole jtc16t C18H23N3 281.39 173(2) K 0.71073 A Triclinic P-l a = 7.6219(9) A b = 9.8910(12) A c = 10.9370(13)A 767.4l(l6).1313 2 1.218 Mg/m3 0.073 mrn'l 304 0.86 x 0.75 x 0.28 mm3 1.95 to 23.27°. -8<=h<=8, -8<=k<= 10, -l 1<=l<= 12 3523 2203 [R(int) = 0.0606] 99.6 % Empirical 0.8654 and 0.6448 Full-matrix least-squares on F2 2203 / O / 282 0.949 R1 = 0.0536, wR2 = 0.1209 R1 = 0.1026, wR2 = 0.1394 0.400 and 0.219 e.A-3 a: 72.509(2)°. B= 83.640(2)°. y = 77.710(3)°. 127 Table A-2.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for szpna. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) N(l) 4033(3) 3336(3) 4574(2) 28(1) C(31) 1845(4) 5695(3) 4073(3) 29(1) N(2) —883(3) 8973(3) 3511(3) 40(1) C(32) 2449(4) 8095(3) 3708(3) 31(1) N(3) 3177(3) 6635(2) 3535(2) 27(1) C(33) 3652(4) 6715(4) 2165(3) 30(1) C(11) 4337(4) 2031(3) 4304(3) 33(1) C(34) 5380(4) 7264(4) 1663(3) 34(1) C(12) 2996(4) 2053(4) 3574(3) 38(1) C(35) 5756(5) 7479(5) 198(3) 45(1) C(13) 1838(4) 3415(4) 3391(3) 34(1) C(36) 7696(5) 6666(4) 99(3) 53(1) C(14) 2507(3) 4184(3) 4011(2) 26(1) C(37) 7555(5) 5100(4) 643(4) 53(1) C(21) -2071(5) 9944(4) 2656(3) 45(1) C(38) 7228(5) 4859(5) 1894(4) 63(1) C(22) -1108(5) 10555(4) 1600(4) 50(1) C(39) 7121(4) 6244(4) 2221(3) 40(1) C(23) 724(5) 9963(4) 1809(3) 42(1) C(40) 8508(5) 6895(5) 1181(4) 53(1) C(24) 839(4) 8977(3) 2997(3) 33(1) Table A-2.3. Bond lengths [A] and angles [°] for szpna. N(1)-C(14) 1.366(3) C(22)-C(23) 1.410(5) N(1)—C(11) 1.376(4) C(23)-C(24) 1.369(4) N(2)-C(24) 1.369(4) C(24)-C(32) 1.490(4) N(2)-C(21) 1.377(4) C(33)-C(34) 1.515(4) N(3)-C(31) 1.478(3) C(34)-C(39) 1.546(4) N(3)-C(33) 1.484(4) C(34)-C(35) 1.554(4) N(3)-C(32) 1.493(4) C(35)-C(36) 1.534(5) C( 1 1)-C(12) 1 .358(4) C(36)-C(40) 1.489(5) C( l2)-C( 13) 1.416(4) C(36)-C(37) 1.506(5) C(13)-C(14) 1.360(4) C(37)-C(38) 1.321(5) C(14)-C(31) 1.491(4) C(38)-C(39) 1.500(5) C(21)-C(22) 1.349(5) C(39)-C(40) 1.552(5) C( 14)-N( 1 )-C(1 1) 109.3(3) N(3)—C(3 1)-C(14) 112.9(2) C(24)-N(2)-C(21) 109.6(3) C(24)-C(32)-N(3) 118.1(2) C(31)-N(3)-C(33) 1 11.0(2) N(3)-C(33)-C(34) 113.8(3) C(31)-N(3)-C(32) 109.2(2) C(33)-C(34)-C(39) 115.5(3) C(33)-N(3)-C(32) 111.6(2) C(33)-C(34)~C(35) 112.9(3) C(12)-C(11)-N(1) 107.9(3) C(39)-C(34)-C(35) 102.1(3) C(l 1 )-C( l2)-C( 13) 107.2(3) C(36)-C(35)-C(34) 103.6(3) 128 C(14)-C( l3)—C( 12) 107.9(3) C(40)—C(36)-C(37) 100.4(3) C(13)-C(14)-N(1) 107.6(3) C(40)-C(36)-C(35) 101.7(3) C(l3)-C(14)-C(31) 129.5(3) C(37)-C(36)-C(35) 104.0(3) N(1)-C(14)-C(31) 122.9(3) C(38)-C(37)-C(36) 107.1(4) C(22)-C(21)-N(2) 107.8(3) C(37)-C(38)-C(39) 108.6(4) C(21)—C(22)-C(23) 107.8(3) C(38)-C(39)-C(34) 107.0(3) C(24)—C(23)-C(22) 108.0(3) C(38)-C(39)-C(40) 98.3(3) C(23)-C(24)-N(2) 106.8(3) C(34)~C(39)-C(40) 99.1(3) C(23)-C(24)-C(32) 130.1(3) C(36)-C(40)-C(39) 94.9(3) N(2)-C(24)-C(32) 123.0(3) Table A-2.4. Anisotropic displacement parameters szpna. The anisotropic displacement factor exponent takes the form: -2fl:2[ h2 a"‘2U‘l + + 2 h k a* b* U12] ull [122 u33 u23 ul3 ul2 N(l) 33(2) 28(2) 27(1) -10(1) -6(1) -6(1) N(2) 36(2) 40(2) 41(2) -13(1) 1(2) -2(1) N(3) 26(1) 26(2) 28(1) -8(1) 1(1) -5(1) C(l 1) 37(2) 26(2) 37(2) -9(2) -7(2) -2(2) C(12) 50(2) 33(2) 40(2) -17(2) —9(2) 42(2) C(13) 32(2) 40(2) 32(2) -10(2) -10(2) -5(2) C(14) 26(2) 28(2) 24(2) -6(1) 1(1) -6(2) C(21) 32(2) 48(2) 58(2) -26(2) 41(2) 9(2) C(22) 57(3) 37(2) 51(2) -8(2) -17(2) 4(2) C(23) 40(2) 34(2) 48(2) —5(2) -5(2) -8(2) C(24) 31(2) 27(2) 42(2) -14(2) -2(2) -5(2) C(31) 24(2) 33(2) 29(2) -8(2) -1(2) -6(2) C(32) 31(2) 27(2) 36(2) -10(2) -5(2) -6(2) C(33) 28(2) 32(2) 29(2) -8(2) -2(1) -2(2) C(34) 31(2) 33(2) 36(2) -10(2) 7(1) -9(2) C(35) 40(2) 52(3) 34(2) -1(2) 2(2) -10(2) C(36) 49(2) 70(3) 3 1 (2) -1 1(2) 9(2) .4(2) C(37) 55(2) 56(3) 56(2) -29(2) 24(2) -23(2) C(38) 39(2) 45(3) 90(3) -2(2) 5(2) -3(2) C(39) 34(2) 54(3) 32(2) 43(2) -2(2) -8(2) C(40) 26(2) 80(3) 55(2) -27(2) 7(2) -11(2) 129 Table A-2.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for (szpna). H(1) H(2) H(l 1) H(12) H(13) H(21) H(22) H(23) H(34) H(36) H(37) H(38) x 4680(40) - 1 190(40) 5370(30) 2790(40) 8 10(30) -3380(40) -1640(40) 1730(40) 53 10(40) 8350(40) 7550(60) 6920(50) Y 3520(30) 8490(30) 1320(30) 1340(40) 3750(30) 10080(30) 1 1260(40) 10160(30) 8190(40) 6910(30) 4440(50) 3870(50) z 5090(30) 4300(30) 4610(20) 3230(30) 29 10(20) 2840(30) 870(30) 1 230(30) 1 8 10(30) -750(30) 30(40) 2520(40) U(eq) 40(10) 47(10) 26(8) 52(10) 17(7) 55(10) 63(1 1) 45(10) 58(1 1) 54(10) 130(17) 99(14) H(39) H(3 1 A) H(32A) H(33A) H(35A) H(40A) H(3 lB) H(32B) H(33B) H(35B) H(40B) x 73 80(40) 730(30) 2200(30) 3860(30) 5580(40) 9760(40) 1 560( 30) 35 10(30) 2620(30) 5020(50) 8400(50) Y 6230(30) 6090(30) 7940(30) 5700(30) 8520(40) 6320(40) 5740(30) 8610(30) 7350(30) 7020(40) 8010(50) z 3090(30) 3630(20) 4700(20) 2080(20) -290(30) 1 320( 30) 4980(30) 3420(20) 1620(20) -1 90( 30) 960(40) U(eq) 43(9) 22(7) 26(7) 31(8) 60(1 1) 61(10) 28(8) 26(7) 30(7) 79(13) 101(16) 130 IM- Table A-3.l. Crystal data and structure refinement for szmpm. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.29° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>25igma(1)] R indices (all data) Extinction coefficient Largest diff. peak and hole jtc51t C22H28N4 348.48 173(2) K 0.71073 A Triclinic P—l a = 8.434(3) A b = 9.197(3) A c = 13.232(4) A 996.0(6) A3 2 1.162 Mg/m3 0.070 mm" 376 0.38 x 0.54 x 0.98 mm3 1.57 to 23.29°. ~9<=h<=7, -9<=k<=10, -14<=1<=13 4583 2863 [R(int) = 0.0648] 99.3 % None 0.: 99.838(7)°. 8: 95.449(7)°. y = 97.257(7)°. Full-matrix least-squares on F2 2863 / 0 / 348 0.917 R1 = 0.0405, wR2 = 0.0811 R1 = 0.0715, wR2 = 0.0906 0.052(3) 0.190 and 0.152 6A-3 131 Table A-3.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103)for szmpm. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) X y z U(eq) N(lA) 1215(2) 2513(2) 8133(2) 31(1) N(lB) 5141(2) 3726(2) 8660(1) 29(1) N (2A) 4069(2) 181(2) 7422(1) 32(1) N(ZB) 3262(2) 2812(2) 6101(1) 32(1) C( l 1 A) 1373(3) 3799(3) 8852(2) 37( 1) C(1 1B) 6008(3) 2884(2) 9202(2) 32(1) C(12A) 1748(3) 3457(3) 9793(2) 41( 1) C(12B) 7307(3) 2620(2) 8701(2) 36( 1) C(13A) 1833(3) 1916(3) 9642(2) 36(1) C(13B) 7232(3) 3316(2) 7831(2) 34( 1) C( 14A) 1494(2) 1342(2) 8609(2) 28( 1) C(l4B) 5880(2) 4009(2) 7816(1) 27(1) C(21A) 4839(3) 463(2) 6570(2) 38(1) C(2lB) 1706(3) 2473(3) 5636(2) 37(1) C(22A) 3742(3) -954(2) 5799(2) 42(1) C(2213) 1018(3) 3736(3) 5802(2) 41(1) C(23A) 2238(3) 4088(2) 6191(2) 37(1) C(23B) 2196(3) 4878(3) 6387(2) 37(1) C(24A) 2462(3) -375(2) 7200(2) 29(1) C(24B) 3576(3) 4280(2) 6571(1) 28(1) C(31A) 1330(3) -234(2) 8018(2) 34(1) C(3113) 5224(2) 4977(2) 7106(1) 30(1) C(32A) 409(3) -714(3) 7489(3) 54(1) C(3213) 6385(3) 5176(3) 6287(2) 46(1) C(33A) 1702(4) -1282(3) 8772(2) 55(1) C(33B) 5110(4) 6511(3) 7737(2) 44(1) Table A-3.3. Bond lengths [A] and angles [°] for szmpm. N( 1 A)-C( 1 1A) 1.369(3) N(lB)-C(l 1B) 1.372(3) N( lA)-C( 14A) 1.371(2) N(lB)-C(14B) 1.376(2) N(2A)-C(2 1 A) 1 364(3) N(2B)-C(24B) 1 .368(2) N (2A)-C(24A) 1 .372(3) N(ZB)-C(21B) 1.370(3) C(l 1A)-C(12A) 1.354(3) C(l lB)-C(123) 1.360(3) C( 1 2A)-C( 13A) 1.409(3) C(IZB)-C( 13B) 1.410(3) C(13A)-C(l4A) 1.368(3) C(13B)-C(14B) 1.375(3) C(14A)—C(3 1A) 1.508(3) C(14B)-C(3 lB) 1.514(3) C(21A)-C(22A) 1 350(3) C(21B)-C(22B) 1.357(3) C(22A)-C(23A) 1 .414(3) C(22B)-C(23B) 1.415(3) C(23A)-C(24A) 1 .367(3) C(23B)—C(24B) 1.367(3) C(24A)-C(31A) 1.510(3) C(24B)-C(3 1B) 1.509(3) C(31A)-C(33A) 1.539(3) C(3 lB)-C(33B) 1.531(3) C(31A)-C(32A) 1.540(3) C(31B)-C(328) 1.546(3) C(11A)-N(1A)-C(14A) 110.0(2) C(1 lB)-N(lB)-C(14B) 110.27( 19) C(21A)-N(2A)—C(24A) 1 10.0(2) C(24B)-N(ZB)-C(21B) 110.27(19) 132 133 C(12A)-C(l 1A)-N ( 1 A) 107.9(2) C(12B)—C(11B)-N(1B) 107.4(2) C(11A)-C(12A)-C(13A) 107.3(2) C(l 1B)-C(12B)-C(13B) 107.9(2) C(14A)-C(13A)-C(12A) 108.5(2) C(14B)—C(13B)-C(12B) 108.09(l9) C(13A)-C(14A)-N(1A) 106.4(2) C(13B)-C(l4B)-N(1B) 106.38(18) C(13A)—C( 14A)-C(31A) 131.4(2) C(13B)-C(l4B)-C(3 1B) 131.94(18) N( 1A)-C( 14A)-C(3 1 A) 122. l2( 18) N(lB)-C(14B)-C(31B) 12 1 .62( 18) C(22A)-C(21A)—N(2A) 108.0(2) C(228)-C(21B)—N(2B) 107.6(2) C(21A)-C(22A)-C(23A) 107.4(2) C(2lB)-C(22B)-C(23B) 107.4(2) C(24A)-C(23A)-C(22A) 108.1(2) C(24B)-C(23B)-C(22B) 108.2(2) C(23A)-C(24A)—N(2A) 106.48(19) C(23B)-C(24B)-N(2B) 106.6(2) C(23A)-C(24A)-C(31A) 131.8(2) C(23B)-C(24B)-C(31B) 131.60(19) N(2A)-C(24A)-C(3 1 A) 121.53(18) N(2B)-C(24B)-C(31B) 121.66(18) C( 14A)-C(3 1A)-C(24A) 111.81(16) C(24B)-C(31B)—C(14B) 110.97(15) C(14A)-C(31A)—C(33A) 109.37(18) C(24B)—C(31B)-C(33B) 109.07(19) C(24A)-C(31A)-C(33A) 108.78(18) C(14B)-C(31B)-C(33B) 109.41(18) C(14A)-C(31A)-C(32A) 109.20(18) C(24B)-C(3 1 B)-C(32B) 109.37(17) C(24A)-C(31A)-C(32A) 108.58(19) C( 14B)-C(3 1B)-C(3ZB) 109.09(19) C(33A)-C(31A)-C(32A) 109.1(2) C(33B)-C(31B)-C(32B) 108.9(2) Table A-3.4. Anisotropic displacement parameters (A2 x 103) for szmpm. The anisotropic displacement factor exponent takes the form: -2n2[ h2 a"‘2U11 + + 2 h k a* b* U12] U11 U22 u33 U23 ul3 U12 N(lA) 24(1) 34(1) 35(1) 6(1) 5(1) 5(1) N(2A) 27(1) 32( 1) 37(1) 2( 1) 6( 1) 2( 1) C(llA) 22(1) 31(1) 55(2) -1(1) 12(1) 2(1) C(12A) 25(1) 48(2) 44(2) -8(1) 10(1) -2(1) C(13A) 24(1) 48(2) 37(1) 11(1) 8(1) 4(1) C(l4A) 17(1) 34(1) 35(1) 11(1) 7(1) 5(1) C(21A) 38(2) 34(1) 51(2) 14(1) 18(1) 12(1) C(22A) 56(2) 37(1) 37(1) 6( 1) 19(1) 11(1) C(23A) 38(2) 31(1) 39(1) 3(1) 1(1) 2(1) C(24A) 28(1) 24(1) 37(1) 7(1) 5(1) 3(1) C(31A) 30(1) 32(1) 42(1) 9(1) 11(1) 2(1) C(32A) 33(2) 46(2) 73(2) -1 1(2) 16(2) -7( 1) C(33A) 75(2) 43(2) 61(2) 25(1) 38(2) 22(2) N(lB) 19(1) 34(1) 34(1) 9(1) 3(1) 4(1) N(2B) 31(1) 28(1) 37(1) 7(1) 0(1) 8(1) C(l 18) C( 12B) C(13B) C(l4B) C(2lB) C(22B) C(23B) C(24B) C(31B) C(3ZB) C(33B) 28( 1) 24(1) 25( 1) 24( 1) 34(2) 32(2) 39(2) 30(1) 29(1) 35(2) 51(2) 34(1) 37(1) 39(1) 27(1) 36(2) 45(2) 29(1) 24(1) 30(1) 56(2) 31(1) 35(1) 48(2) 40(1) 29(1) 37(1) 46(1) 43(1) 28(1) 31(1) 46(2) 46(2) 12(1) 8(1) 9(1) 3(1) 10(1) 14(1) 6(1) 6(1) 9(1) 20(1) 6(1) 4(1) -2(1) 8(1) 2(1) -5(1) -5(1) 2(1) 3(1) 1(1) 1(1) -9(2) 2(1) 8(1) 4(1) -1(1) -1(1) 5(1) 11(1) 4(1) -1(1) -7(1) 0(1) Table A-3.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for szmpm. H( 1 A) H(2A) H(l 1A) H(12A) H(13A) H(2 1 A) H(22A) H(23A) H(32A) H(32B) H(32C) H(33A) H(33B) H(33C) x 1 100(20) 4490(30) 1250(20) 1930(20) 21 10(30) 5990(30) 3920(20) 1240(30) —730(30) -540(30) -1 100(30) 1590(30) 970(30) 2910(30) y 2470(20) 740(20) 4720(20) 4120(20) 1360(20) 140(20) -1350(20) -1550(20) -30(30) -1750(30) -600(20) -2330(30) - 1240(20) -960(30) z 7480(14) 8003(15) 8620(15) 10440( 15) 10180(16) 6592(16) 5108(15) 5814(15) 6959(18) 7097(17) 8060(17) 8361(17) 9309(18) 9163(18) U(eq) 23(6) 39(7) 45(7) 38(6) 49(7) 58(7) 36(6) 43(6) 72(9) 70(8) 61(7) 66(8) 67(8) 77(9) H( 1 B) H(ZB) H(l 1 B) H( 128) H( 13B) H(21B) H(22B) H(23B) H(32D) H(32B) H(32F) H(33D) H(33E) H(33E) x 4230(30) 3920(30) 5640(20) 8 100(30) 8020(30) 1300(30) -50(30) 2040(20) 5990(30) 7420(30) 6460(30) 4450(30) 4740(30) 6 1 60( 30) Y 3990(20) 2 1 30(20) 2600(20) 2050(20) 3350(20) 1430(20) 3820(20) 5870(20) 5850(20) 5640(20) 4150(30) 6500(20) 7 160(30) 6940(20) z 8841(16) 6140(15) 9854(15) 8939(14) 7307(14) 5243(14) 5531(16) 6642(14) 5855(17) 6626(15) 5802(17) 8323(16) 7290(18) 8084( 16) U(eq) 48(7) 44(7) 45(6) 41(6) 46(6) 47(6) 47(7) 37(6) 56(7) 46(7) 61(7) 44(6) 62(8) 50(7) 134 Table A-4.1. Crystal data and structure refinement for Cr(NBu‘)2(dpma) Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected / unique Completeness to theta = 28.24 Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>25igma(1)] R indices (all data) Extinction coefficient Largest diff. peak and hole Cr(NBu‘)2(dpma) C19H31C’Ns 81.49 173(2) K 0.71073 A Monoclinic P21/c a = 10.2007(2) A b = 9.4695(3) A c = 21.7312(5) A 2092.26(9) A3 4 1.211 Mg/m3 0.557 mm“| 816 0.53 x 0.26 x 0.26 mm 1.88 to 28.24 deg. -12<=h<=13, -l 1<=k<=12, -28<=l<=28 12878 /4936 [R(int) = 0.0553] 95.1% Full-matrix least-squares on F2 4936 / 0 / 227 0.929 R1 = 0.0433, wR2 = 0.0961 R1 = 0.0853, wR2 = 0.1071 0.0000(5) 0.510 and -0.295 e.A'3 01:90" 8 = 94.638(2) ° 7=90' 135 Table A-4.2. Atomic coordinates ( x 104), equivalent isotropic displacement parameters (A2 x 103), and occupancies for Cr(NBu‘)2(dpma). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) Cr 2216(1) 7791(1) 1209(1) 29(1) C(11) -252(2) 5870(3) 1011(1) 43(1) N(l) 412(2) 7021(2) 1265(1) 37(1) C(32) 2190(3) 10319(3) 2022(1) 46(1) N (5) 2914(2) 6261(2) 1143(1) 32( 1) C(33) 1800(3) 8099(3) 2545(1) 46(1) N (2) 3787(2) 8849(2) 1575(1) 35( 1) C(53) 3079(3) 4338(3) 406(1) 53( 1) N (3) 1487(2) 8939(2) 1976(1) 34(1) C(52) 4939(2) 4930(3) 1201(1) 49(1) C(14) 464(2) 7760(3) 1588(1) 37(1) C(23) 4762(3) 10700(3) 2069(1) 45(1) N(4) 2026(2) 8641(2) 550(1) 34( 1) C(12) -1512(2) 5875(3) 1175(1) 47(1) C(50) 3429(2) 4853(2) 1067(1) 35( 1) C(31) 39(3) 9102(3) 1868(1) 45(1) C(24) 3580(3) 10032(2) 1921(1) 39( 1) C(43) 3705(3) 8355(3) -169(1) 55(1) C(40) 2305(2) 8822(2) -94(1) 38(1) C(42) 1324(3) 7921(4) -491(1) 66(1) C(21) 5105(2) 8790(3) 1499(1) 40(1) C(51) 2843(3) 3887(3) 1534(1) 57(1) C(13) 4662(2) 7078(3) 1541(1) 46(1) C(41) 2127(4) 10393(3) -248(1) 71(1) C(22) 5723(3) 9908(3) 1799(1) 45(1) Table A-4.3. Bond lengths [A] and angles [deg] for Cr(NB u‘)2(dpma) Cr-N(5) 1.6256(18) C(14)-C(31) 1.482(4) Cr-N(4) 1 .6409(1 8) N(4)-C(40) 1 .458(3) Cr-N( 1) 1.993(2) C(50)-C(5 1) 1 .524(3) Cr—N(2) 1 .9994(19) C(50)-C(53) 1.531(3) Cr-N(3) 2.1717(18) C(50)-C(52) 1.546(3) N(1)—C(14) 1.372(3) C(24)-C(23) 1.376(3) N(l)-C(11) 1.375(3) C(24)-C(32) 1.477(3) N(5)-C(50) 1.448(3) C(40)-C(43) 1.517(4) N (2)-C(2 1) 1 369(3) C(40)-C(42) 1.528(4) N(2)-C(24) 1.375(3) C(40)-C(4 1) 1.533(3) N(3)-C(33) 1.484(3) C(21)-C(22) 1.370(3) N(3)-C(31) 1.485(3) C(13)-C(12) 1.405(4) N(3)-C(32) 1.490(3) C(22)-C(23) 1.400(4) C(14)-C(13) 1.379(3) C(11)-C(12) 1.362(3) N(5)-Cr-N(4) 1 12.48(9) C(13)-C(14)—C(3 1) 135.0(2) N(5)-Cr-N( 1) 95.27( 8) C(40)-N(4)-Cr 151.10(16) 136 N(4)-Cr-N( l ) N(5)-Cr—N(2) N(4)-Cr-N(2) N(1)-Cr-N(2) N(5)-Cr—N(3) N(4)-Cr-N(3) N( l )—Cr-N(3) N(2)-Cr-N(3) C(14)-N(1)-C(1 1) C(14)-N( l)-Cr C(l 1)-N(1)—Cr C(50)-N(5)-Cr C(21)-N(2)-C(24) C(21)-N(2)-Cr C(24)—N(2)-Cr C(33)-N(3)-C(31) C(33)-N(3)-C(32) C(31)-N(3)-C(32) C(33)-N(3)-Cr C(31)-N(3)-Cr C(32)-N(3)-Cr N(1)-C(14)-C(13) N(1)-C(14)-C(31) 100.86(9) 9800(8) 9783(8) 150.85(8) 133.88(8) 113.64(8) 76. 15(8) 75.94(7) 106.8(2) 119.18(16) 133.89(17) 175.28(16) 107.14(19) 134.05(15) 118.16(16) 109.43(18) 110.16(19) 112.74(19) 107.90(14) 109.18(14) 107.29(14) 109.5(2) 115.4(2) N(5)-C(50)-C(5 l ) N(5)-C(50)-C(5 3) C(5 1 )-C(50)-C(53) N(5)-C(50)-C(52) C(51)-C(50)-C(52) C(53)-C(50)-C(52) N(2)-C(24)-C(23) N(2)-C(24)-C(32) C(23)-C(24)-C(32) N(4)-C(40)—C(43) N (4)-C(40)-C(42) C(43)-C(40)-C(42) N(4)-C(40)-C(41) C(43)-C(40)-C(41) C(42)-C(40)-C(41) N(2)-C(2 1)-C(22) C(14)-C(13)-C(12) C(21)-C(22)-C(23) C(12)-C(11)-N(1) C(24)-C(32)-N(3) C(24)-C(23)-C(22) C(l 1)-C(12)-C(13) C(14)-C(3 1)-N(3) 108.09(l9) 109.94(19) 111.1(2) 107.49(19) 109.9(2) 110.2(2) 109.3(2) 115.0(2) 135.6(2) 109.10(19) 107.9(2) 110.8(2) 107.1(2) 1 10.8(2) 111.0(2) 109.3(2) 106.6(2) 107.6(2) 109.7(2) 106.91(19) 106.7(2) 107.4(2) 106.41(19) Table A-4.4. Anisotropic displacement parameters (A2 x 103) for Cr(NBu‘)2(dpma). The anisotropic displacement factor exponent takes the form: -2Itz[ h2 a"‘2U11 + + 2 h k a* b* U12] ull [122 {133 1123 ul3 ul2 Cr 33(1) 25(1) 29(1) -1(1) 2(1) 1(1) N(l) 35(1) 39(1) 37(1) 1(1) 5(1) 1(1) N(5) 29(1) 26(1) 39(1) -5(1) 1(1) -3(1) N(2) 43(1) 26(1) 35(1) -5(1) 1(1) -2(1) N(3) 44(1) 27(1) 33(1) 3(1) 8(1) 5(1) C(14) 37(1) 41(1) 34(1) 11(1) 6(1) 7(1) N(4) 38(1) 29(1) 35(1) 2(1) 0(1) -3(1) C(50) 41(1) 22(1) 41(1) -1(1) 0(1) 2(1) C(24) 54(2) 28(1) 34( 1) -4(1) 4( 1) -1(1) 137 C(40) 50(2) 32(1) 31(1) 3(1) 5(1) 5(1) C(21) 37(2) 34(1) 47(1) -5(1) -2( 1) 1(1) C(13) 33(1) 61(2) 45(1) 25(1) 7(1) 7(1) C(22) 41 (2) 43(2) 49(2) 0( 1) -9( l) -9( 1) C(11) 40(2) 49(2) 42(1) -6( 1) 2( 1) -9( 1) C(32) 63(2) 27( 1) 50(2) -9( 1) 13(1) 2( 1) C(33) 63(2) 44(2) 31(1) 5( 1) 7( 1) -2( 1) C(53) 66(2) 41 (2) 52(2) -15( 1) -4(1) 4( 1) C(52) 44(2) 38(2) 63(2) -11(1) -3(1) 11(1) C(23) 62(2) 30(1) 40( 1) -7( 1) -6(1) -12(1) C(12) 37(2) 55(2) 47(2) 10(1) -6(1) -9(1) C(31) 49(2) 38(2) 51(2) 7(1) 16(1) 13(1) C(43) 56(2) 62(2) 50(2) 12(1) 17(1) 12(2) C(42) 74(2) 80(2) 42(2) - 13(2) -7(1) -6(2) C(51) 63(2) 40(2) 68(2) 19(1) 1(2) -3(1) C(41) 1 1 1(3) 42(2) 63(2) 22(2) 26(2) 18(2) Table A-4.5. Hydrogen coordinates ( x 104), isotropic displacement parameters (A2 x 103), and occupancies for Cr(NBu')2(dpma). x y z U(eq) x y z U(eq) H(21A) 5517 8100 1279 48 H(12A) -2156 5205 1065 56 H(13A) -2421 7360 1717 55 H(3 l A) -348 9276 2254 54 H(22A) 6619 10105 1820 54 H(31B) -175 9887 1591 54 H(l 1A) 106 5191 765 52 H(43A) 3800 7375 -62 83 H(32A) 181 1 10969 171 1 55 H(43B) 4302 8907 98 83 H(32B) 2122 10735 2426 55 H(43C) 3899 8488 -590 83 H(33A) 1496 8591 2892 69 H(42A) 1461 6942 -390 99 H(33B) 2735 7965 2608 69 H(42B) 1450 8068 -919 99 H(33C) 1374 7196 2503 69 H(42C) 444 8186 -413 99 H(53A) 3456 4964 121 80 H(5 1 A) 1906 385 1 1450 86 H(53B) 2140 4324 323 80 H(51B) 3054 4248 1943 86 H(53C) 3421 3403 359 80 H(51C) 3202 2955 1503 86 H(52A) 5299 5556 91 l 73 H(4 1 A) 2756 10937 5 106 H(52B) 5310 4005 1163 73 H(41B) 1253 10682 -170 106 H(52C) 5147 5277 1612 73 H(41C) 2260 10545 -675 106 H(23A) 4895 1 1518 2302 53 138 Table A-5.l. Crystal data and structure refinement for Mo(dpma)(NBu‘)2. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume 2 Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.32° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Extinction coefficient Largest diff. peak and hole aloZm C1911311140815 425.43 173(2) K 0.71073 A Monoclinic P2(1)/n a = 9.451(5) A b = 10.175(5) A c = 22.217(11) A 2132.4(17) A3 4 1.325 Mg/m3 0.626 mm" 888 0.42 x 0.23 x 0.11 mm 1.84 to 23.32° -10<=h<=10, -7<=k<=1 l, -24<=1<=24 9490 3082 [R(int) = 0.3237] 99.5 % None a: 90° B= 93.569(9)° Y = 90° Full-matrix least-squares on F2 3082 / 0 / 227 0.931 R1 = 0.0723, WR2 = 0.1020 R1: 0.1697, wR2 = 0.1225 0.0(XJO(3) 0.550 and -0.580 e.A-3 139 Table A-5.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dpma)(NBu‘)2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq)j Mo 9029(1) 85 10( 1) 1426(1) 27(1) C(24) 6234(9) 8680(9) 719(4) 38(2) N( 1) 9194(7) 8822(6) 2347(3) 34(2) C(31) 7286(1 1) 10402(8) 2174(4) 57(3) N(2) 7492(7) 7913(6) 780(3) 28(2) C(32) 61 58( 10) 9818(8) 1131(4) 45(3) N(3) 6879(7) 9379(6) 171 1(3) 36(2) C(33) 6007( 10) 8380(9) 2008(4) 56(3) N(4) 9768(7) 9943(5) 1 166(3) 31(2) C(40) 10896(9) 10821 (8) 1009(4) 30(2) N (5) 10220(7) 7221(5) 1401(3) 27(2) C(41) 11786(11) 11131(8) 1587(4) 65(3) C(11) 10065(9) 8334(8) 2830(4) 41(2) C(42) 10185(11) 12097(7) 752(4) 54(3) C(12) 9687(11) 8834(9) 3357(4) 58(3) C(43) 11810(9) 10185(7) 538(4) 44(2) C(13) 8610(12) 9738(9) 3220(4) 56(3) C(50) 1 1400(9) 6270(7) 1378(4) 32(2) C(14) 8334(1 1) 9718(8) 2605(4) 48(3) C(51) 12770(9) 6925(7) 1603(4) 48(3) C(21) 7295(1 1) 6868(8) 394(3) 41(2) C(52) 11469( 10) 5828(8) 734(4) 49(3) C(22) 5971(1 1) 6948(10) 109(4) 53(3) C(53) 11053( 10) 5111(7) 1782(4) 46(3) C(23) 5309(11) 8063(10) 313(4) 56(3) Table A-5.3. Bond lengths [A] and angles [°] for Mo(dpma)(NBu‘)2. Mo-N(4) 1.731(6) C(11)-C(12) 1.346(11) Mo-N(5) 1.732(6) C(12)-C(13) 1.392(12) Mo-N(1) 2.066(6) C(13)-C(14) 1.375(11) Mo-N(2) 2.069(6) C(14)-C(31) 1.504(12) Mo-N(3) 2.339(7) C(21)-C(22) 1.369(12) N(1)-C(14) 1.370( 10) C(22)—C(23) 1.385(12) N(1)-C(1 1) 1.402(9) C(23)-C(24) 1.369(11) N(2)-C(21) 1.372(8) C(24)-C(32) 1.481(11) N(2)-C(24) 1.422( 10) C(40)-C(41) 1.523(10) N(3)-C(33) 1.487( 10) C(40)-C(43) 1.541(11) N(3)-C(32) 1.488( 10) C(40)-C(42) 1.555( 10) N(3)-C(31) 1 .498(10) C(50)-C(52) 1.505(1 1) N (4)-C(40) 1.450( 10) C(50)-C(51) 1.513(11) N (5)-C(50) 1.480(9) C(50)-C(53) 1.530( 10) N(4)-Mo-N(5) 1 10.5(3) C(52)-C(50)-C(51) 1 1 1.0(7) N(4)-Mo-N(1) 101.2(3) N(5)-C(50)-C(53) 107.1(7) 140 N(5)-Mo-N(1) 98.0(3) C(52)-C(50)-C(53) 110.5(6) N(4)-Mo-N(2) 107.2(3) C(51)—C(50)-C(53) 110.9(6) N(5)—Mo-N(2) 100.6(3) C(40)-N(4)—Mo 156.5(6) N(1)-Mo-N(2) 137.6(3) C(50)-N(5)—Mo 171.6(5) N(4)-Mo-N(3) 98.5(3) C(12)-C(11)-N(1) 111.0(8) N(5)-Mo-N(3) 150.8(3) C(11)-C(12)-C(13) 106.8(8) N( l )-Mo-N(3) 71 .8(3) C(14)-C(13)-C(12) 107.4(9) N(2)—Mo-N(3) 73.4(3) N(l)—C(14)-C( 13) 110.2(8) C(14)-N(l)-C(11) 104.5(7) N(1)-C(14)-C(31) 115.2(8) C(14)-N(1)-Mo 120.4(5) C(13)-C(14)-C(31) 134.5(9) C( 1 l)-N( 1 )-Mo 135.1(6) C(22)-C(21)-N(2) 109.2(8) C(21)-N(2)-C(24) 106.5(7) C(21)—C(22)-C(23) 108.4(8) C(21)-N(2)—Mo 136.4(6) C(24)-C(23)-C(22) 107.9(9) C(24)-N(2)-Mo 1 16.9(5) C(23)-C(24)-N(2) 107.9(8) C(33)-N(3)-C(32) 110.7(7) C(23)-C(24)-C(32) 135.4(9) C(33)-N(3)-C(31) 107.2(7) N(2)-C(24)-C(32) 116.2(7) C(32)-N(3)-C(31) 118.1(6) N(3)-C(31)—C(14) 104.3(6) C(33)-N(3)—Mo 112.1(5) C(24)-C(32)—N(3) 105.2(6) C(32)-N(3)-Mo 103.8(5) N(4)-C(40)-C(41) 107.5(7) C(31)-N(3)—Mo 104.9(5) N(4)-C(40)-C(43) 110.9(6) C(43)-C(40)-C(42) 110.4(7) C(41)-C(40)-C(43) 1 10.8(8) N(5)-C(50)-C(52) 107.8(6) N(4)-C(40)-C(42) 107.2(7) N(5)-C(50)—C(5 1) 109.4(6) C(41)-C(40)-C(42) 109.9(6) Table A-5.4. Anisotropic displacement parameters (A2 x 103) for Mo(dpma)(NBu‘)2. The anisotropic displacement factor exponent takes the form: -2n2[ 112 a*2U” + + 2 11 k a* b* U12] U11 U22 U33 U23 ul3 ulz Mo 30(1) 24(1) 25(1) 0(1) -2(1) 1(1) N(l) 47(5) 28(4) 27(4) -3(3) 10(4) 8(3) N(2) 27(4) 35(4) 24(4) - 1 (3) 8(3) -8(3) N(3) 32(5) 15(4) 60(5) ~15(4) 1(4) 3(3) N(4) 31(5) 30(4) 32(4) 2(3) -8(3) -7(3) N(5) 26(4) 29(4) 25(4) 0(3) 43(3) -3(3) C(1 1) 41(6) 47(6) 34(5) 8(5) -1 1(4) 66) C(12) 88(9) 66(7) 19(5) -3(5) -5(5) 10(6) C(13) 74(9) 75(7) 20(6) -7(5) 10(5) 6(6) 141 C(14) 58(7) 45(6) 41(6) 3(5) 0(5) 5(5) C(21) 63(7) 41 (6) 20(5) -1(4) 3(5) -8(5) C(22) 55(8) 86(8) 18(5) -10(5) -5(5) -38(6) C(23) 35(6) 104(9) 29(5) -7(6) -2(5) -4(6) C(24) 31(6) 55(6) 29(5) 8(5) 0(4) 1(5) C(31) 65(8) 44(6) 64(7) -15(5) 17(6) 3(5) C(32) 30(6) 49(6) 55(6) 14(5) 1(5) 13(4) C(33) 50(7) 74(7) 45(6) -1 1(6) 15(5) 4(6) C(40) 32(6) 33(5) 25(5) 4(4) -1(4) -10(4) C(41) 73(8) 71(7) 47(6) -3(5) -23(6) -36(6) C(42) 78(8) 33(5) 51(6) 10(5) 2(6) —4(5) C(43) 44(7) 46(6) 43(6) 3(5) 7(5) -11(5) C(50) 28(5) 28(5) 40(5) -1(4) 4(4) 6(4) C(51) 42(7) 41 (6) 62(7) 10(4) -3(5) 3(4) C(52) 56(7) 51(6) 42(6) -7(5) 17(5) 18(5) C(53) 50(7) 32(5) 56(6) 5(5) 10(5) 6(4) Table A-5.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(dpma)(NBu‘)2. x y z U(eq) x y z U(eq) H(l 1 A) 10805 7743 2791 49 H(42A) 9620 12483 1050 81 H(12A) 10072 8617 3740 70 H(42B) 9592 1 1889 398 81 H(13A) 8160 10260 3494 67 H(42C) 10905 12709 648 81 H(21A) 7955 6210 335 49 H(43A) 12241 9399 703 66 H(22A) 5583 6354 -174 64 H(43B) 12535 10790 434 66 H(23A) 4397 8343 194 67 H(43C) 11223 9970 184 66 H(31A) 6466 10694 2380 69 H(51A) 12967 7648 1344 72 H(31B) 7717 11156 1991 69 H(51B) 13531 6300 1603 72 H(32A) 5180 10053 1 186 54 H(51C) 12680 7242 2006 72 H(32B) 6639 10573 972 54 H(52A) 1 1687 6566 487 73 H(33A) 5137 8775 2117 84 H(SZB) 10571 5465 594 73 H(33B) 6522 8057 2363 84 H(52C) 12193 5172 710 73 H(33C) 5801 7665 1734 84 H(53A) 10182 4710 1631 69 H(4 1 A) 12221 10338 1743 97 H(53B) 10955 5418 2185 69 H(4lB) l 1190 11493 1879 97 H(53C) 11805 4476 1782 69 H(4 1 C) 12508 1 1755 1502 97 142 Table A-6.l. Crystal data and structure refinement for W(dpma)(NBu‘)2. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume 2 Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.26° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Extinction coefficient Largest diff. peak and hole alo C19H31NsW 513.34 173(2) K 0.71073 A Monoclinic P2(1)/n a = 9.4181(11) A b = 10.2171(12) A c = 22.190(3) A 2131.8(4) A3 4 1.599 Mg/m3 5.429 mm'1 1016 0.43 x 0.25 x 0.19 mm3 1.84 to 23.26° -9<=h<= 10, -10<=k<=1 1 , -20<=1<=24 9456 3074 [R(int) = 0.0355] 99.9 % Empirical 1.0000 and 0.5215 Full-matrix least-squares on F2 3074 / 0 / 227 1.090 R1 = 0.0192, wR2 = 0.0466 R1 = 0.0212, wR2 = 0.0473 0.00089(11) 0.690 and -0.368 e.A-3 a: 90° 8: 93.271(2)° Y = 90° 143 Table A-6.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for W(dpma)(NBu‘)2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) W 4007(1) 6522(1) 1438(1) 20(1) C(24) 1230(4) 6326(4) 718(2) 29(1) N(l) 4190(3) 6219(3) 2358(1) 25(1) C(31) 1148(4) 5204(4) 1147(2) 33(1) N(2) 2461(3) 7069(3) 786(1) 24(1) C(32) 2261(4) 4662(4) 2186(2) 32(1) N(3) 1862(3) 5675(3) 1725(1) 25(1) C(33) 950(4) 6672(4) 2001(2) 33(1) N(4) 4758(3) 5084(3) 1171(1) 24(1) C(40) 5870(4) 4171(4) 1010(2) 28( 1) N(5) 5194(3) 7845(3) 1412(1) 23(1) C(41) 6752(5) 3853(5) 1587(2) 51(1) C(l 1) 5032(4) 6737(4) 2826(2) 31(1) C(42) 6793(4) 4785(4) 547(2) 37(1) C(12) 4670(5) 6204(4) 3358(2) 42(1) C(43) 5127(5) 2939(4) 752(2) 46(1) C(13) 3575(5) 5293(4) 3229(2) 41(1) C(50) 6354(4) 8774(4) 1375(2) 26(1) C(14) 3305(4) 5305(4) 2616(2) 30( 1) C(51) 7739(4) 81 10(4) 1590(2) 38(1) C(21) 2288(4) 81 16(4) 402(2) 30( 1) C(52) 6072(4) 9943(4) 1782(2) 38(1) C(22) 982(5) 8049(5) 104(2) 40(1) C(53) 6422(5) 9210(5) 719(2) 45(1) C(23) 305(4) 6912(5) 307(2) 38(1) Table A-6.3. Bond lengths [A] and angles [°] for W(dpma)(NBu‘)2. W-N(4) 1.748(3) C(11)-C(12) 1.361(6) W-N(5) 1.757(3) C(12)-C(13) 1.407(6) W-N( 1) 2.063(3) C(13)-C(14) 1.369(5) W-N(2) 2.070(3) C(14)-C(32) 1.484(5) W—N(3) 2.321(3) C(21)-C(22) 1.365(6) N(1)-C(1 1) 1.375(5) C(22)-C(23) 1.411(6) N(1)-C(14) 1.397(5) C(23)-C(24) 1.364(6) N(2)-C(21) 1.371(5) C(24)-C(31) 1.495(5) N(2)-C(24) 1.387(5) C(40)-C(42) 1.519(5) N(3)-C (32) 1.487(5) C(40)-C(41) 1.522(6) N(3)-C(33) 1.487(5) C(40)-C(43) 1.535(6) N(3)-C(31) 1.494(5) C(50)-C(51) 1.523(6) N(4)-C (40) 1.462(5) C(50)-C(53) 1.526(5) N(5)-C(50) 1.453(5) C(50)-C(52) 1.530(5) N(4)-W—N(5) 1 1 1.40(14) C(l 1 )-C(12)-C(13) 107.8(4) N(4)-W—N(1) 101.3302) C(14)-C(13)-C(12) 106.7(4) 144 N(5)-W-N(1) N(4)-W-N(2) N(5)-W—N(2) N(l)-W-N(2) N(4)-W—N(3) N(5)-W-N(3) N(1)-W-N(3) N(2)-W—N(3) C0 1)-N(1)-C(14) C(11)-N(1)-W C(l4)-N(l)-W C(21)-N(2)-C(24) C(21)-N(2)-W C(24)-N(2)-W C(32)-N(3)-C(33) C(32)-N(3)-C(31) C(33)-N(3)-C(31) C(32)—N(3)—W C(33)-N(3)-W C(31)-N(3)-W C(40)-N(4)-W C(50)-N(5)-W C(12)-C(11)-N(1) 97.53(12) 105.80(13) 101.10(12) 138.42(11) 98.89(12) 149.51(12) 72.36(11) 72.78(11) 106.3(3) 134.5(3) 119.2(2) 106.9(3) 134.3(3) 118.6(2) 108.8(3) 116.8(3) 109.4(3) 105.0(2) 112.9(2) 103.9(2) 158.2(3) 170.4(3) 109.8(4) C(13)-C(14)-N(1) C(13)«C(14)-C(32) N(l)-C(14)-C(32) N(2)-C(21)-C(22) C(21)-C(22)-C(23) C(24)-C(23)-C(22) C(23)-C(24)-N(2) C(23)-C(24)-C(31) N(2)-C(24)-C(31) N(3)-C(31)—C(24) C(14)-C(32)-N(3) N (4)-C(40)-C(42) N(4)-C(40)-C(41) C(42)—C(40)-C(4 1) N(4)-C(40)-C(43) C(42)-C(40)-C(43) C(41)-C(40)-C(43) N (5)-C(50)-C(5 1) N(5)-C(50)-C(53) C(51)—C(50)-C(53) N(5)-C(50)-C(52) C(51)-C(50)-C(52) C(53)—C(50)-C(52) 109.4(4) 135.5(4) 114.9(3) 109.5(4) 107.3(4) 106.9(4) 109.3(4) 135.1(4) 115.1(3) 105.2(3) 105.5(3) 110.3(3) 107.1(3) 110.6(4) 107.3(3) 110.6(3) 110.8(4) 108.9(3) 108.5(3) 110.3(3) 108.7(3) 109.7(3) 110.7(3) Table A-6.4. Anisotropic displacement parameters (A2 x 103) for W(dpma)(NBu‘)2. The anisotropic displacement factor exponent takes the form: -2J‘l:2[1'12 a"‘2U11 + + 2 h k a* b* U12] ull 1122 {133 U23 1113 (112 W 20(1) 19(1) 21(1) 1(1) 1(1) 0(1) N(l) 29(2) 26(2) 20(2) -2(1) 2(1) 2(1) N(2) 23(2) 29(2) 20(2) 0(1) 1(1) 5(1) N(3) 23(2) 24(2) 29(2) 6( 1) 5(1) -3( 1) N(4) 26(2) 23(2) 25(2) 4( 1) 2(1) 0( 1) N(5) 26(2) 25(2) 18(2) 2(1) 1(1) 1(1) C(11) 35(2) 34(2) 25(2) -3(2) -3(2) 3(2) C(12) 54(3) 44(3) 27(2) 0(2) -2(2) 6(2) C(13) 57(3) 41(3) 26(2) 10(2) 10(2) 13(2) 145 C(14) C(21) C(22) C(23) C(24) C(3 1) C(32) C(33) C(40) C(41) C(42) C(43) C(50) C(51) C(52) C(53) 33(2) 38(2) 43(3) 25(2) 21(2) 25(2) 32(2) 29(2) 32(2) 57(3) 33(2) 61(3) 27(2) 30(2) 36(2) 51(3) 25(2) 32(2) 55(3) 60(3) 41 (2) 39(2) 26(2) 39(2) 23(2) 54(3) 36(2) 22(2) 21(2) 34(2) 27(2) 45(3) 33(2) 19(2) 19(2) 27(2) 26(2) 35(2) 40(2) 31(2) 28(2) 39(3) 43(2) 55(3) 30(2) 52(3) 51(3) 39(3) 5(2) 2(2) 3(2) -6(2) -5(2) -6(2) 7(2) 3(2) -2(2) 3(2) -7(2) -4(2) 0(2) -8(2) -6(2) 9(2) 6(2) 1(2) 4(2) -2(2) 1(2) 1(2) 8(2) 8(2) 4(2) -10(2) 5(2) 3(2) 4(2) 2(2) 5(2) 10(2) 4(2) 7(2) 15(2) 3(2) -5(2) 40(2) 4(2) 1(2) 10(2) 27(2) 6(2) 5(2) -5(2) -5(2) -4(2) -18(2) Table A-6.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for W(dpma)(NBu‘)2. x y z U(eq) x y z U(eq) H( 1 1A) 5743 7357 2785 37 H(42A) 7233 5562 713 55 H(12A) 5074 6407 3739 50 H(42B) 6214 5005 191 55 H(13A) 3122 4780 3507 49 H(42C) 7514 4174 443 55 H(2 1 A) 2958 8770 353 36 H(43A) 4590 3157 385 69 H(22A) 608 8643 - 180 47 H(43B) 4499 2598 1039 69 H(23A) -600 6618 184 45 H(43C) 5828 2290 669 69 H(31A) 165 4973 1204 39 H(51A) 7917 7382 1331 58 H(31B) 1634 4444 997 39 H(5 1 B) 7665 7803 1996 58 H(32A) 1432 4377 2391 39 H(51C) 8507 8725 1578 58 H(32B) 2684 3909 2000 39 H(52A) 6065 9655 2193 57 H(33A) 80 6271 21 1 1 49 H(52B) 5167 10322 1662 57 H(33B) 739 7361 1715 49 H(52C) 6806 10585 1745 57 H(33C) 1442 7029 2354 49 H(53A) 6593 8464 470 67 H(4 1 A) 7208 4635 1741 76 H(53B) 7180 9830 688 67 H(4 1 B) 7461 3214 1503 76 H(53C) 5536 9610 586 67 H(41C) 6145 3510 1882 76 146 Table A-7.l. Crystal data and structure refinement for Mo(dpma)(Ndip)2. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.33° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Absolute structure parameter Largest diff. peak and hole jtc 11 C35H47M°Ns 633.72 173(2) K 0.71073 A Orthorhombic Fdd2 a = 19.415(5) A b = 61.47307) A c = 11.280(3) A 13463(6) A3 16 1.251 Mg/m3 0.419 mm‘1 5344 0.25 x 0.25 x 0.11 mm3 1.32 to 23.33°. -19<=h<=21, -67<=k<=68, -12<=1<=12 15135 4654 [R(int) = 0.0921] 99.6 % None 0.9553 and 0.9024 Full-matrix least-squares on F2 4654/ 1 I379 0.977 R1 = 0.0431, wR2 = 0.0886 R1 = 0.0673, wR2 = 0.0953 006(5) 0.318 and 0.493 e.A-3 147 Table A-7.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) Mo( 1) 3194(1) 508(1) 8050( 1) 22(1) C(45) 981(4) 497(1) 10776(6) 42(2) N( 1) 4160(3) 492(1) 8820(4) 25( 1) C(46) 1434(3) 457(1) 9855(6) 29(2) N (2) 2659(3) 405(1) 6558(5) 26(1) C(51) 3286(3) 1014(1) 7674(5) 26(2) N (3) 3698(2) 190(1) 7439(4) 22( 1) C(52) 2817(3) 1153(1) 8266(6) 30(2) N(5) 3215(2) 786(1) 7815(5) 26(1) C(53) 2904(4) 1374(1) 8089(8) 50(2) N(4) 2632(3) 441(1) 9208(4) 24(1) C(54) 3425(5) 1452(1) 7368(8) 60(3) C(11) 4554(3) 643(1) 9440(6) 37(2) C(55) 3881(4) 1316(1) 6838(7) 50(2) C(12) 5054(3) 536(1) 10056(6) 35(2) C(56) 3833(4) 1096(1) 6969(6) 33(2) C(13) 4987(3) 313(1) 9819(6) 30(2) C(421) 3138(4) 568(1) 11518(6) 49(2) C(14) 4435(3) 290(1) 9059(5) 25(2) C(422) 3327(6) 790(1) 1 1954(12) 130(5) C(21) 2198(4) 499(1) 5800(6) 32(2) C(423) 3380(4) 404(1) 12398(11) 97(4) C(22) 1926(3) 344(1) 5079(6) 38(2) C(461) 1200(3) 390(1) 8648(6) 38(2) C(23) 2227(3) 142(1) 5393(7) 41(2) C(462) 1220(4) 145(1) 8506(7) 72(3) C(24) 2671(3) 187(1) 6295(5) 24(2) C(463) 486(4) 470(1) 8341(8) 73(3) C(31) 4083(3) 101(1) 8479(5) 23(2) C(521) 2241(4) 1060(1) 9003(7) 41 (2) C(32) 3129(3) 48(1) 7013(5) 29(2) C(522) 1598(4) 1032(2) 8258(9) 84(3) C(33) 4188(3) 236(1) 6464(6) 39(2) C(523) 2092(4) 1 196(1) 10123(7) 61 (2) C(41) 2140(4) 482(1) 10107(6) 28(2) C(561) 4324(4) 943(1) 6361(7) 44(2) C(42) 2379(4) 544(1) 1 1249(6) 38(2) C(562) 4007(5) 867(1) 5169(6) 67(3) C(43) 1885(4) 583(1) 12124(6) 43(2) C(563) 5037(4) 1042(1) 611 1(8) 66(3) C(44) 1205(4) 559(1) 1 1899(6) 44(2) Table A-7.3. Bond lengths [A] and angles [°] for Mo(dpma) (N dip)2. Mo(1)-N(5) 1 .728(4) C(41)-C(42) 1.421(9) Mo(1)-N(4) 1 .75 1(5) C(42)-C(43) 1 398(9) Mo(1)-N(1) 2.070(5) C(42)-C(421) 1.5 10( 10) Mo(1)-N(2) 2.076(5) C(43)-C(44) 1.353(9) Mo(1)-N(3) 2.290(5) C(44)-C(45) 1.394( 10) N(1)-C(14) 1.377(7) C(45)-C(46) 1.382(9) N(1)-C(11) 1.388(8) C(46)-C(461) 1.494(9) N(2)-C(21) 1.367(8) C(51)-C(52) 1.415(8) N(2)-C(24) 1.367(7) C(51)-C(56) 1.418(8) 148 N(3)-C(33) N(3)-C(32) N(3)-C(31) N(5)-C(51) N(4)-C(41) C( 1 1)-C(12) C(12)-C(13) C(13)-C(14) C(14)-C(31) C(21)-C(22) C(22)-C(23) C(23)-C(24) C(24)-C(32) C(41}C(46) N(5)-Mo(1)-N(4) N(5)-Mo(1)-N(1) N(4)-Mo(1)-N(1) N(5)-Mo(1)-N(2) N(4)-Mo(1)-N(2) N(l )-Mo(1)-N(2) N(5)-Mo(1)-N(3) N(4)-Mo(1)-N(3) N(1)—Mo(l)-N(3) N(2)-Mo( 1)-N(3) C(14)-N(1)-C(11) C(14)-N( l)-Mo(l) C(l 1)-N(1)-Mo(l) C(21)-N(2)-C(24) C(21)-N(2)-Mo(1) C(24)-N(2)-Mo( 1) C(33)-N(3)-C(32) C(33)-N(3)—C(31) C(32)-N(3)-C(31) C(33)-N(3)—Mo( 1) C(32)-N(3)-Mo( 1) C(31)-N(3)-Mo(1) C(51)-N(5)-Mo(1) C(41 )-N(4)-Mo( 1) C(12)-C(11)-N(1) C(11)-C(12)-C(13) 1.408(10) 141.17(19) 72.47(17) 73.1 1(19) 1.480(8) 1.490(7) 1.496(7) 1.422(7) 1.417(8) 1.363(8) 1.404(8) 1.380(8) 1.500(8) 1.359(8) 1.417(8) 1.363(8) 1.477(8) l 11.2(2) 95.1(2) 103.9(2) 101.0(2) 102.8(2) 141.8(2) 106.9(2) 106.8(5) 1 18.4(4) 132.8(4) 106.9(5) 134.7(5) 1 17.7(4) 1 10.4(5) 109.3(4) 114.0(4) 109.8(4) 106.3(3) 106.9(3) 175.2(5) 155.8(5) 109.2(6) 107.9(6) 149 C(52)-C(53) C(52)-C(521) C(53)-C(54) C(54)-C(55) C(55)-C(56) C(56)-C(561) C(421)-C(422) C(42 1 )-C(423) C(461)-C(463) C(46] )-C(462) C(521)—C(522) C(521)—C(523) C(561)-C(563) C(561)-C(562) C(24)«C(32)-N(3) C(46)—C(4 1 )-N(4) C(46)-C(4 1 )-C(42) N(4)-C(4 1 )-C(42) C(43)-C(42)-C(41) C(43)-C(42)-C(421) C(41)—C(42)-C(421) C(44)-C(43)-C(42) C(43)-C(44)-C(45) C(46)-C(45)-C(44) C(45 )-C(46)-C(41) C(45 )-C(46)-C(461) C(4 1 )-C(46)-C(461 ) C(52)-C(5 1 )-C(56) C(52)-C(5 1)-N(5) C(56)-C(51)—N(5) C(53)-C(52)-C(51) C(53)-C(52)-C(521) C(51)-C(52)-C(521) C(52)-C(53)-C(54) C(55)-C(54)-C(53) C(54)-C(55)-C(56) C(55)-C(56)-C(51) C(55)-C(56)-C(561) C(51)-C(56)-C(561) C(422)-C(421)-C(423) 1.383(8) 1.506(9) 1.38400) 1.357(9) 1.366(8) 1.504(9) 1.49400) 1.49501) 1.51 1(9) 1.512(9) 1.51501) 1.542(9) 1.539(9) 1.55200) 106.4(5) 119.5(6) 122.0(7) 1 18.4(7) 117.5(7) 120.7(7) 121.9(7) 121.2(7) 120.4(7) 122.2(7) 116.6(6) 122.7(6) 120.7(6) 122.2(6) 118.7(5) 119.0(5) 116.4(6) 122.9(6) 120.7(5) 121.1(7) 121.4(6) 121.2(7) 117.6(6) 121.8(7) 120.5(6) 108.7(7) C( 14)-C(1 3)—C( 1 2) 106.7(6) C(422)—C(421)—C(42) 1 13.4(7) N(1)—C(14)-C(13) 109.4(5) C(423)-C(421)~C(42) 1 12.0(6) N(1)-C(l4)-C(3l) 1 15.9(5) C(46)-C(461)-C(463) 1 13.4(6) C(13)-C(14)-C(31) 134.6(6) C(46)-C(461)-C(462) 1 11.4(6) C(22)-C(21)-N(2) 109.4(6) C(463)-C(461)-C(462) 108.9(6) C(21)-C(22)—C(23) 107.7(6) C(52)-C(52 l )-C(522) 1 10.5(6) C(24)-C(23)-C(22) 105.7(6) C(52)-C(521)-C(523) 1 12.7(6) C(23)-C(24)-N(2) 1 10.4(6) C(522)-C(521)-C(523) 111.3(6) C(23)-C(24)—C(32) 132.3(6) C(56)-C(561)-C(563) 1 14.0(6) N(2)-C(24)-C(32) 1 17.3(5) C(56)-C(561)-C(562) 109.5(6) N(3)-C(31)-C(14) 106.5(5) C(563)-C(561)-C(562) 108.5(7) Table A-7.4. Anisotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)2. The anisotropic displacement factor exponent takes the form: -21121112 a*2U” + + 2 h k a* 15* U12] ull u22 u33 u23 L113 1112 Mo(l) 22(1) 24(1) 20(1) 0(1) 1(1) 2(1) N( 1) 26(3) 19(3) 30(3) -4(3) -1(3) 2(3) N(2) 28(4) 27(3) 23(3) 2(3) -1(3) 2(3) N (3) 18(3) 29(3) 19(3) -4(2) 2(2) -6(2) N(5) 18(3) 37(3) 23(4) 3(2) 1(3) 4(3) N(4) 17(3) 38(3) 18(3) -1(3) 0(2) -9(3) C(11) 38(5) 31(4) 41(5) -5(4) 2(4) -5(4) C(12) 29(4) 41(4) 34(4) -3(3) ~11(3) -9(4) C(13) 20(4) 39(4) 29(4) 3(3) 7(3) 3(3) C(14) 21 (4) 30(4) 23(4) -5(3) 1(3) 2(3) C(21) 35(5) 33(4) 27(5) 4(4) 2(4) 8(4) C(22) 40(5) 45(4) 27(4) 5(4) -9(3) 10(4) C(23) 44(4) 42(4) 36(5) -10(4) -6(4) -3(4) C(24) 23(4) 36(4) 14(4) -1(3) -3(3) 4(3) C(31) 18(4) 26(3) 24(4) 0(3) 2(3) -3(3) C(32) 27(4) 34(4) 24(4) -5(3) 1(3) -2(3) C(33) 38(5) 46(4) 31(4) -4(4) 7(4) -1(4) C(41) 33(5) 26(4) 23(4) 3(3) 5(3) 0(3) C(42) 46(5) 35(5) 34(5) -3(4) 7(4) -12(4) C(43) 54(6) 51(5) 24(4) -3(4) 8(4) -10(4) C(44) 52(6) 53(5) 28(5) 4(4) 19(4) 19(4) 150 C(45) 26(4) 61(5) 39(5) 12(4) 14(4) 10(4) C(46) 23(4) 37(4) 27(4) 6(3) 4(3) 4(3) C(51) 34(4) 22(3) 23(4) 1(3) -1(3) 5(3) C(52) 34(4) 24(4) 32(5) -6(3) -3(4) 5(3) C(53) 60(5) 32(4) 56(5) 6(5) 2(6) 15(4) C(54) 8 1(7) 19(4) 80(6) 12(4) 18(6) 8(4) C(55) 54(5) 33(5) 64(6) 8(4) 15(5) 9(4) C(56) 37(5) 24(4) 39(5) 8(3) 2(4) 4(3) C(421) 59(6) 77(6) 12(3) 1(4) 3(4) - 17(5) C(422) 132(10) 46(6) 211(13) 5(7) 4116(10) -31(6) C(423) 45(6) 68(6) 177(12) 7(7) - 10(7) -10(5) C(461) 24(4) 65(5) 26(4) 6(4) 1(3) -1(4) C(462) 74(7) 87(6) 54(6) -26(5) -24(5) 15(5) C(463) 55(5) 101(7) 64(7) 9(6) -27(5) 12(5) C(521) 45(5) 29(4) 49(5) 0(4) 10(4) 14(4) C(522) 62(7) 1 16(7) 74(8) -8(7) 9(6) -10(5) C(523) 73(6) 60(5) 51(6) -3(4) 25(5) 10(5) C(561) 56(5) 39(4) 39(5) 8(4) 14(5) 4(4) C(562) 83(7) 69(6) 48(6) -13(5) 13(5) -3(5) C(563) 54(6) 57(5) 88(7) 16(5) 28(5) 15(5) Table A-7.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)2. x y 2 U(eq) X y 1 U(CQ) H(l 1) 4487 792 9435 44 H(4ZB) 3368 261 12045 145 H(12) 5382 600 10547 42 H(42C) 3086 406 13081 145 H(13) 5262 202 101 17 36 H(461) 1521 452 8071 46 H(21) 2088 646 5781 38 H(46A) 1647 90 8813 107 H(22) 1601 367 4485 45 H(46B) 1 182 109 7681 107 H(23) 2139 7 5054 49 H(46C) 843 81 8934 107 H(3 1 A) 4419 -6 8221 27 H(46B) 162 414 8907 1 10 H(3 1 B) 3768 32 9030 27 H(46D) 364 420 7562 1 10 H(32A) 331 1 -70 6535 34 H(46F) 480 626 8359 1 10 H(3ZB) 2880 - l 4 7678 34 H(521) 2385 915 9266 49 H(33A) 4543 332 6743 58 H(52C) 1457 1 170 7949 126 H(33B) 3948 303 5817 58 H(SZB) 1236 972 8740 126 H(33C) 4392 102 6200 58 H(52A) 1694 934 7614 126 H(43) 2027 626 12877 52 H(52F) 2519 1238 10486 92 151 H(44) H(45) H(53) H(54) H(55) H(42 1 ) H(42D) H(42B) H(42F) H(42A) 886 511 2609 3463 4233 3390 3114 3170 3818 3844 585 481 1471 1601 1374 543 815 897 800 437 12496 10641 8460 7245 6376 10778 12710 11398 12035 12632 53 50 59 72 59 195 195 195 145 152 H(52D) H(52B) H(561) H(56E) H(56E) H(56D) H(56B) H(56C) H(56A) 1827 1837 4386 3577 4317 3930 4999 5348 5210 1 1 1 1 1324 815 795 768 990 1 149 929 1 109 10672 9908 6869 5317 4785 4667 5494 5864 6818 92 53 100 100 100 99 99 99 Table A-8.1. Crystal data and structure refinement for Mo(deHIRA)(NBu‘)2. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.36° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole jtcxx3t C29114911491115 563.67 173(2) K 0.71073 A Orthorhombic P2(1)2(1)2(1) a = 9.852(3) A b = 16.642(4) A c = 18.190(5) A 2982.403) A3 4 1.255 Mg/m3 0.464 mm‘1 1200 0.06 x 0.08 x 0.51 mm3 1.66 to 23.36°. -10<=h<= 10, - l 8<=k<= 14, -18<=l<=20 13801 4323 [R(int) = 0.1614] 99.7 % Empirical 1.0000 and 0.7001 Full-matrix least-squares on F2 4323 / 0 / 317 0.976 R1 = 0.0640, wR2 = 0.0932 R1: 0.1216, wR2 = 0.1077 -0.18(7) 0.0012504) 0.444 and 0502 e.A'3 153 Table A-8.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(deHIRA)(NBu‘)2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) Mo( 1) 9670(1) 9877(1) 5187(1) 26(1) C(35) 6818(9) 9871(5) 6244(4) 32(2) N( 1) 81 10(6) 10050(4) 4441(3) 26(2) C(36) 5560(9) 10157(5) 5852(4) 34(2) N(2) 10233(8) 9214(3) 6101(3) 23(2) C(360) 5467(10) 11074(4) 5865(4) 52(3) N(3) 8477(7) 8671(3) 51 10(4) 25(2) C(37) 4316(9) 9781(5) 6186(4) 42(3) N(4) 10958(7) 9652(3) 4557(3) 23(2) C(38) 4393(8) 8870(5) 6262(5) 31(2) N(5) 9861(7) 10844(3) 5542(3) 26(2) C(39) 5670(9) 8626(5) 6679(4) 31(2) C(l 1) 7555(1 1) 10701(6) 4071(6) 37(3) C(390) 5698(9) 7718(4) 6863(5) 31(2) C(12) 6756(12) 10459(6) 3515(6) 51(4) C(391) 4481(11) 7460(5) 7324(5) 57(3) C(13) 6806(1 l) 9598(6) 3502(6) 48(3) C(392) 6974(1 1) 7499(5) 7301(5) 51(3) C(14) 7625(1 1) 9392(6) 4081(6) 34(3) C(40) 12038(9) 9840(6) 4041(5) 34(2) C(21) 10774(8) 9355(5) 6783(5) 28(2) C(41) 12701(1 1) 10653(5) 4236(6) 49(4) C(22) 10983(8) 8672(5) 7163(5) 31(2) C(42) 13098(1 1) 9173(6) 4093(6) 55(3) C(23) 10564(9) 8040(5) 6704(5) 29(2) C(43) 1 1413(10) 9856(6) 3285(4) 57(3) C(24) 10098(9) 8379(4) 6082(5) 23(2) C(50) 10079(10) 1 1643(4) 5844(5) 34(3) C(31) 8192(9) 8598(5) 4320(4) 25(2) C(51) 9413(12) 11688(5) 6597(5) 75(4) C(32) 9484(10) 8078(4) 5378(5) 36(3) C(52) 9464(13) 12235(4) 5328(5) 76(4) C(33) 7127(9) 8581(4) 5513(4) 32(3) C(53) 11588(11) 11778(6) 5928(6) 70(4) C(34) 6964(9) 8959(5) 6275(5) 3 1(3) Table A-8.3. Bond lengths [A] and angles [°] for Mo(deHIRA)(NBu‘)2. Mo( 1 )-N(5) 1.745(5) C(23)-C(24) 1.345( 10) Mo(1)-N(4) 1.750(7) C(24)-C(32) 1.502(1 l) Mo(1)-N(1) 2.070(6) C(33)-C(34) 1 .530(10) Mo(1)-N(2) 2.072(6) C(34)—C(35) 1.526(1 1) Mo(1)-N(3) 2.331(6) C(34)-C(39) 1.573(11) N( 1 )-C(14) 1.362(11) C(35)-C(36) 1.506(10) N(1)-C(11) 1.387(10) C(36)-C(37) 1.504(11) N(2)-C(21) 1 .370(9) C(36)-C(360) 1.529(9) N(2)-C(24) 1.397(8) C(37)-C(38) 1 .524(10) N(3)-C(31) 1.468(9) C(38)-C(39) 1.523( 10) N(3)—C(32) 1.482(10) C(39)-C(390) 1.548( 10) N(3)—C(33) 1.527( 10) C(390)-C(391) 1.524(12) N(4)-C(40) 1.452( 10) C(390)-C(392) 1.532(11) 154 N(5)-C(50) C(l l)-C(12) C(12)-C(13) C(13)-C(14) C(14).C(31) C(21)—C(22) C(22)-C(23) N (5)-Mo( 1 )-N(4) N(5)-Mo(1)-N( 1) N(4)-Mo(1)-N(1) N(5)-Mo(1)—N(2) N(4)-Mo( 1 )-N(2) N ( 1 )-Mo( 1 )-N(2) N(5)-Mo(1)-N(3) N(4)-Mo(1)-N(3) N ( 1 )-Mo( 1 )—N(3) N(2)-Mo(1)-N(3) C(14)-N(1)-C(11) C(l4)-N(1)-Mo(1) C(l 1)—N(1)-Mo(1) C(21)-N(2)-C(24) C(21)-N(2)-Mo( 1) C(24)-N(2)-Mo( 1) C(31)-N(3)-C(32) C(31)-N(3)-C(33) C(32)-N(3)-C(33) C(31)-N(3)-Mo(1) C(32)-N(3)-Mo( 1) C(33)-N(3)-Mo( 1) C(40)-N(4)-M0( 1) C(50)-N(5)-M0( 1) C(12)-C(l 1)-N(1) C(11)-C(12)-C(13) C(14)-C(l 3)-C(12) N( 1 )-C( 14)-C(13) N(1)-C(14)-C(31) C(13)-C(14)-C(31) C(22)-C(21)-N(2) C(21)-C(22)-C(23) C(24)-C(23)—C(22) 1.454(8) 1.343(13) 1.434(10) 1.370(14) 1.500(12) 1.346(9) 1.404( 10) 1 11.2(3) 101.2(3) 98.0(2) 99.5(3) 102.6(3) 143.1(3) 150.6(3) 98.2(3) 72.9(3) 74.0(3) 104.8(7) C(40)-C(43) C(40)-C(42) C(40)-C(41) C(50)-C(52) C(50)-C(53) C(50)-C(5 1) C(23)-C(24)-N(2) C(23)-C(24)-C(32) N (2)-C(24)-C(32) N(3)-C(3 1 )-C(14) N(3)-C(32)-C(24) N(3)-C(33)-C(34) C(35)-C(34)-C(33) C(35)—C(34)-C(39) C(33)-C(34)-C(39) C(36)-C(35)-C(34) C(37)-C(36)-C(35) 1.506(11) 1.528(12) 1.544(13) 1.490(11) 1.511(13) 1.520(11) 111.3(7) 135.7(7) 113.0(7) 106.5(7) 109.2(6) 119.1(7) 112.6(7) 106.9(7) 111.3(7) 114.2(7) 110.4(7) l 17.6(6) 136.0(6) 103.3(6) 137.7(5) 1 19.0(5) l 13.3(7) 107.2(7) 1 1 1.1(6) 103.0(4) 102.5(5) 1 19.6(4) 155.2(6) 177.7(6) 1 11.3(9) 107.0(10) 104.9( 10) 1 12.0(9) 1 16.0(9) 131.5(9) 1 12.3(7) 106.4(8) 106.7(7) 155 C(37)-C(36)-C(360) C(35)—C(36)—C(360) C(36)-C(37)-C(38) C(39)-C(38)-C(37) C(38)-C(39)-C(390) C(38)—C(39)-C(34) C(390)-C(39)-C(34) C(391)-C(390)-C(392) C(391)-C(390)-C(39) C(392)-C(390)-C(39) N(4)-C(40)-C(43) N(4)-C(40)-C(42) C(43)-C(40)—C(42) N(4)-C(40)-C(41) C(43)-C(40)—C(41 ) C(42)-C(40)-C(41) N(5)-C(50)-C(52) N(5)-C(50)-C(53) C(52)-C(50)-C(53) N(5)-C(50)-C(51) C(52)—C(50)-C(5 1) C(53)-C(50)-C(51) 11 1.1(7) 111.0(7) 114.2(7) 110.6(7) 112.5(7) 110.0(7) 115.5(7) 107.0(7) 112.3(7) 111.0(7) 107.1(7) 107.7(8) 110.4(8) 110.5(8) 111.6(8) 109.5(8) 107.9(7) 108.6(8) 111.4(8) 108.8(7) 111.1(8) 109.0(9) Table A-8.4. Anisotropic displacement parameters (Azx 103) for Mo(deHIRA)(NBu')2. The anisotropic displacement factor exponent takes the form: -2:t2[ h2 a"‘2U11 + + 2 h k a* b* U12] ull u22 u33 u23 ul3 ulZ Mo(l) 21(1) 25(1) 31(1) 2(1) 4(1) -20) N(l) 25(5) 23(4) 29(4) 0(4) 5(3) 0(4) N(2) 13(5) 33(4) 25(4) -3(3) -6(4) -3(3) N(3) 29(5) 29(4) 17(4) -2(4) 9(4) 6(3) N(4) 17(5) 45(5) 7(4) 0(3) 4(3) 2(3) N(5) 23(5) 29(4) 25(4) -9(3) 4(4) 4(3) C(11) 34(9) 26(6) 49(8) 12(5) -5(7) -7(5) C(12) 5801) 66(8) 30(8) 10(6) 41(7) 12(6) C(13) 27(9) 61(8) 54(9) -7(6) 4(7) 4(6) C(14) 28(8) 49(7) 25(8) 7(6) -3(6) 40(6) C(21) 8(6) 29(5) 46(7) 6(5) 5(5) -3(4) C(22) 23(7) 37(6) 34(6) 3(5) -6(5) 6(4) C(23) 12(7) 32(5) 44(6) 23(5) 7(5) 13(4) C(24) 1(7) 30(5) 38(6) 2(4) 4(5) 4(4) C(31) 28(7) 31(6) 16(6) -7(5) 4(5) -22(5) C(32) 33(7) 25(4) 52(8) 7(4) 5(6) 3(5) C(33) 39(7) 26(5) 32(6) -2(4) 8(5) 43(4) C(34) 24(7) 44(6) 25(6) 4(5) 40(5) 1(5) C(35) 29(6) 33(6) 33(6) -6(5) 4(5) 9(6) C(36) 32(7) 30(5) 40(5) 6(5) 3(5) -2(5) C(360) 34(7) 58(6) 65(7) -8(5) 5(7) 8(6) C(37) 44(8) 50(6) 32(6) 3(5) 1(5) -3(5) C(38) 6(7) 48(6) 40(6) 5(5) 4(5) 0(5) C(39) 22(7) 49(6) 23(6) 0(4) 5(5) -6(5) C(390) 27(8) 37(6) 29(6) 4(4) 4(5) -2(4) C(391) 47(10) 71(7) 53(8) 6(5) 25(7) 43(6) C(392) 6800) 49(6) 36(8) 4(5) 4(7) 41(6) C(40) 32(7) 45(6) 23(6) 8(6) 8(5) -7(6) C(41) 42(9) 57(8) 49(8) 2(6) 14(7) 46(6) C(42) 33(8) 72(8) 61(9) -7(7) 2(7) 2(6) C(43) 51(8) 67(7) 52(7) 13(6) 15(6) 4(7) C(50) 3300) 23(5) 47(7) -8(4) -9(6) -2(4) C(51) 9902) 60(7) 65(8) -38(6) 39(8) -3(7) C(52) 11301) 18(5) 95(9) -2(6) -3000) 3(6) C(53) 5800) 61(8) 9100) -220) -6(8) -23(7) 156 Table A-8.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(deHIRA)(NBu‘)2. x y z U(eq) x y z U(eq) H(llA) 7715 11235 4192 44 H(39C) 4529 6893 7415 85 H(12A) 6264 10788 3198 62 H(39D) 3659 7582 7063 85 H(13A) 6376 9254 3172 57 H(39E) 4490 7744 7783 85 H(21A) 10974 9865 6963 33 H(39F) 6981 6932 7397 77 H(22A) 11335 8628 7635 37 H(39G) 6976 7787 7759 77 H(23A) 10602 7494 6810 35 H(39H) 7766 7641 7023 77 H(31A) 7540 8172 4232 30 H(41A) 12029 11070 4218 74 H(3lB) 9018 8477 4052 30 H(4lB) 13410 10769 3890 74 H(32A) 10189 8003 5012 44 H(41C) 13077 10625 4723 74 H(32B) 9045 7564 5462 44 H(42A) 12700 8673 3942 83 H(33A) 6943 8011 5561 39 H(4ZB) 13411 9129 4591 83 H(33B) 6425 8804 5200 39 H(42C) 13851 9298 3777 83 H(34A) 7766 8827 6570 37 H(43A) 11176 9319 3141 85 H(35A) 6807 10078 6742 38 H(43B) 12053 10075 2941 85 H(3SB) 7607 10093 5999 38 H(43C) 10612 10184 3292 85 H(36A) 5618 9984 5338 41 H(51A) 9818 11296 6916 112 H(36B) 6280 11299 5660 78 H(51B) 8460 11581 6550 112 H(36C) 5362 11255 6363 78 H(51C) '9543 12215 6799 112 H(36D) 4699 11244 5579 78 H(52A) 9881 12183 4853 113 H(37A) 3536 9916 5885 50 H(52B) 9608 12769 5511 113 H(37B) 4170 10013 6669 50 H(52C) 8508 12135 5286 113 H(38A) 3599 8677 6523 37 H(53A) 12013 11760 5454 105 H(38B) 4400 8626 5778 37 H(53B) 11964 11366 6237 105 H(39A) 5629 8906 7152 38 H(53C) 11744 12294 6149 105 H(39B) 5697 7412 6403 37 157 Table A-9.1. Crystal data and structure refinement for Mo(dpma)(Ndip)(=CHCMe2Ph). Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.31° Absorption correction Max. and min. transmission Refinement method Data/ restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Extinction coefficient Largest diff. peak and hole th9 C33H42M°N4 590.65 173(2) K 0.71073 A Monoclinic P2(l)/n a = 9.724207) A b = 16.088(2) A c = 19.984(3) A 3078.7(8) A3 4 1.274 Mg/m3 0.453 mm" 1240 0.43 x 0.31 x 0.29 mm3 1.63 to 23.31°. -10<=h<=10, -10<=k<=17, -22<=1<=21 13730 4433 [R(int) = 0.0325] 99.8 % Empirical 0.8160 and 0.7072 Full-matrix least-squares on 1:2 4433 / 0 / 344 1.043 R1 = 0.0252, wR2 = 0.0600 R1 = 0.0374, wR2 = 0.0638 0.0005303) 0.254 and 0.250 e.A'3 01: 90° 8: 100.005(12)° Y = 90° 158 Table A-9.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)(=CHCMe2Ph). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. X Y 2 Wm) X y 2 U(CQ) Mo 9450(1) 1724(1) 840(1) 27(1) C(43) 9961(3) 4868(2) 1664(2) 49(1) N(l) 11176(2) 1181(1) 519(1) 36(1) C(44) 11084(3) 5197(2) 1414(2) 50(1) N(2) 8032(2) 1511(1) 1488(1) 32( 1) C(45) 11724(3) 4735(2) 976(1) 45(1) N (3) 10565(2) 937(1) 1734(1) 32(1) C(46) 11303(3) 3932(2) 791(1) 32(1) N(4) 9783(2) 2770(1) 925(1) 29(1) C(51) 7237(3) 2159(2) -530(1) 33(1) C(5) 8147(2) 1651(2) 17( 1) 30(1) C(52) 7880(3) 2093(2) -1181(1) 31(1) C(11) 11560(3) 1033(2) - 104(1) 43(1) C(53) 7223(3) 1711(2) -1769(1) 35(1) C(12) 12842(3) 664(2) -7(2) 53(1) C(54) 7846(3) 1684(2) -2345(1) 42(1) C(13) 13289(3) 572(2) 695(2) 49(1) C(55) 9133(3) 2024(2) -2336(1) 45(1) C(14) 12260(3) 895(2) 1004(1) 40(1) C(56) 9823(3) 2391(2) -1749(1) 48(1) C(21) 6603(3) 1541(2) 1435(1) 36(1) C(57) 9197(3) 2426(2) -1182(1) 43(1) C(22) 6243(3) 1438(2) 2057(1) 43(1) C(58) 5742(3) 1805(2) -633(1) 45(1) C(23) 7486(3) 1344(2) 2526(1) 42(1) C(59) 7173(3) 3076(2) -321(1) 48(1) C(24) 8559(3) 1391(2) 2169(1) 34( 1) C(421) 8169(3) 3745(2) 1740(2) 44(1) C(31) 12085(3) 1004(2) 1726(1) 45(1) C(422) 8333(3) 3736(2) 2509(2) 73(1) C(32) 101 13(3) 1306(2) 2345(1) 41(1) C(423) 6885(3) 4253(2) 1439(2) 60( 1) C(33) 10127(3) 49(2) 1670(2) 50( 1) C(46l) 12036(3) 3407(2) 328(1) 39(1) C(41) 10171(3) 3602(2) 1069(1) 30(1) C(462) 13304(3) 2974(2) 729(2) 51(1) C(42) 9463(3) 4075(2) 1494(1) 38(1) C(463) 12427(4) 3898(2) -266(2) 74(1) Table A-9.3. Bond lengths [A] and angles [°] for Mo(dpma)(Ndip)(=CHCMe2Ph). Mo-N(4) Mo-C(5) Mo-N(2) Mo-N(1) Mo-N(3) N ( 1 )-C(1 1 ) N(l)-C(14) N(2)-C(21) N (2)-C(24) N(3)-C(31) N(3)-C(32) 1.716(2) 1.898(2) 2.0789(19) 2.089(2) 2.303(2) 1.381(3) 1.382(3) 1.376(3) 1.381(3) 1.486(3) 1.489(3) 159 C(41)-C(42) C(41)-C(46) C(42)-C(43) C(42)-C(421) C(43)-C(44) C(44)-C(45) C(45)-C(46) C(46)-C(461) C(51)-C(59) C(51)-C(52) C(51)-C(58) 1.405(3) 1.420(3) 1.387(4) 1.524(4) 1.383(4) 1.377(4) 1.386(4) 1.519(4) 1.536(4) 1.541(3) 1.542(3) N(3)-C(33) N(4)-C(41) C(5)-C(51) C(11)-C(12) C(12)-C(13) C(13)-C(14) C(14)-C(31) C(21)-C(22) C(22)-C(23) C(23)-C(24) C(24)-C(32) N (4)-Mo—C(5) N (4)-Mo-N(2) C(5)-Mo-N(2) N (4)-Mo-N( 1 ) C(5)-Mo-N(1) N(2)-Mo-N( l) N (4)-Mo-N(3) C(5)-Mo-N(3) N(2)-Mo-N(3) N(1)-Mo-N(3) C(l 1)-N(1)-C(14) C(l l)-N( 1 )-Mo C(14)-N(1)-Mo C(21)-N(2)-C(24) C(21)-N(2)-Mo C(24)-N(2)-Mo C(31)-N(3)-C(32) C(31)-N(3)—C(33) C(32)-N(3)-C(33) C(31)-N(3)—Mo C(32)-N(3)-Mo C(33)-N(3)—Mo C(41)-N(4)—Mo C(51)-C(5)-Mo C(12)-C(11)—N(l) C(11)-C(12)-C(13) C(14)-C(13)-C(12) C(l3)-C( 14)-N( 1) C(13)-C(14)-C(31) 1 .489(3) 1 .407(3) 1 .5 19(3) 1.365(4) 1 .404(4) 1 .367(4) 1 .492(4) 1 .359(3) 1 .404(4) 1 364(4) 1 .497(4) 103.45(10) 103.53(8) 96.60(9) 107.04(8) 99.16(9) 141.04(8) 114.05(8) 142.38(9) 7245(7) 7335(8) 106.4(2) 134.92(19) 118.67(17) 106.2(2) 135.73(17) 117.69(16) 114.6(2) 109.8(2) 109.4(2) 106.63(15) 104.53(15) 111.81(l6) 172.83(17) 143.84(19) 109.3(3) 107.7(3) 106.8(3) 109.8(3) 134.2(3) 160 C(52)-C(53) C(52)-C(57) C(53)-C(54) C(54)-C(55) C(55)-C(56) C(56)-C(57) C(421)-C(422) C(421)-C(423) C(461)-C(462) C(461)-C(463) N(2)-C(24)-C(32) N(3)-C(31)-C(14) N(3)-C(32)-C(24) C(42)-C(41)-N(4) C(42)-C(4 1 )-C(46) N(4)-C(41)-C(46) C(43)-C(42)-C(41) C(43)-C(42)-C(421 ) C(41)-C(42)-C(421) C(44)-C(43)-C(42) C(45)-C(44)-C(43) C(44)-C(45)-C(46) C(45)-C(46)-C(41) C(45 )-C(46)-C(461) C(41)-C(46)-C(461) C(5)—C(51)-C(59) C(5)—C(51)-C(52) C(59)-C(51)-C(52) C(5)-C(51)-C(58) C(59)-C(51)-C(58) C(52)-C(51)-C(58) C(53).C(52)-C(57) C(53)-C(52)-C(51) C(57)-C(52)-C(51) C(52)-C(53)-C(54) C(55)-C(54)-C(53) C(54)-C(55)-C(56) C(57)-C(56)-C(55) C (56)-C(57)-C(52) 1.382(3) 1.388(3) 1.391(4) 1.363(4) 1.378(4) 1.377(4) 1.518(4) 1.526(4) 1.519(4) 1.527(4) 1 15.5(2) 106.4(2) 105.9(2) 119.8(2) 121.9(2) 118.3(2) 117.4(2) 120.9(2) 121.7(2) 121.8(3) 119.7(3) 121.9(3) 1 17.2(2) 122.2(2) 120.6(2) 111.5(2) 107.4(2) 109.7(2) 108.3(2) 108.0(2) 111.9(2) 117.4(2) 123.7(2) 119.0(2) 121.0(2) 120.4(3) 119.6(3) 119.9(3) 121.7(3) N(1)-C( 14)-C(31) C(22)-C(21)-N(2) C(2 l )-C(22)-C(23) C(24)-C(23)-C(22) C(23)-C(24)-N(2) C(23)-C(24)-C(32) 1 16.0(2) 110.0(2) 107.2(2) 107.0(2) 109.7(2) 134.8(2) C(422)-C(421 )-C(42) C(422)-C(42 1)-C(423) C(42)-C(42 1)-C(423) C(462)-C(461 )-C(46) C(462)-C(461)-C(463) C(46)-C(461)-C(463) 112.5(2) 109.8(2) 110.6(2) 110.9(2) 111.0(2) 113.1(2) Table A-9.4. Anisotropic displacement parameters (Azx 103) for Mo(dpma)(NdiP)(=CHCMe2Ph). The anisotropic displacement factor exponent takes the 161 form: -2J'l:2[1'12 a*2U11 + + 2 h k a* b* U12] U11 U22 u33 [J23 U13 U12 Mo 27(1) 27(1) 27(1) 0(1) 7(1) -2(1) N(l) 34(1) 35(1) 41(1) -5(1) 12(1) -3(1) N(2) 32(1) 34(1) 31(1) 5(1) 9(1) -1(1) N(3) 31(1) 26(1) 38(1) 0(1) 3(1) -1(1) N(4) 27(1) 30(1) 29(1) 1(1) 7(1) -3(1) C(5) 31(1) 31(2) 31(1) 4(1) 14(1) -50) C(11) 44(2) 42(2) 47(2) -13(1) 20(1) -11(2) C(12) 44(2) 47(2) 76(2) -18(2) 32(2) -6(2) C(13) 31(2) 39(2) 80(2) -7(2) 13(2) 0(1) C(14) 27(2) 37(2) 55(2) -2(1) 7(1) -3(1) C(21) 31(2) 40(2) 38(2) 3(1) 9(1) -2(1) C(22) 40(2) 46(2) 46(2) 3( 1) 20(1) -1(1) C(23) 58(2) 42(2) 31(2) 3(1) 19(2) -2(2) C(24) 43(2) 31(2) 28(1) 2(1) 6(1) —4(1) C(31) 32(2) 45(2) 54(2) 4(2) -2( 1) 2(1) C(32) 48(2) 44(2) 30(2) 3( 1) 1(1) -2(2) C(33) 53(2) 32(2) 67(2) 6(2) 12(2) 1(2) C(41) 29(1) 26(2) 33(1) 4(1) -3(1) -2(1) C(42) 34(2) 28(2) 50(2) -2( 1) 6( 1) 1(1) C(43) 42(2) 35(2) 71(2) -1 1(2) 14(2) 2(2) C(44) 46(2) 27(2) 75(2) -5(2) 6(2) -8(2) C(45) 37(2) 40(2) 56(2) 12(2) 5(1) -10(2) C(46) 31(1) 33(2) 31(1) 7(1) -2(1) -5(1) C(51) 36(2) 36(2) 28(1) -3(1) 5(1) -1(1) C(52) 33(2) 31(2) 27(1) 2(1) 0(1) 1(1) C(53) 31(1) 40(2) 33(2) -2(1) -2(1) 1(1) C(54) 48(2) 45(2) 30(2) -3( 1) -2(1) 8(2) C(55) C(56) C(57) C(58) C(59) C(421) C(422) C(423) C(46 l) C(462) C(463) 55(2) 44(2) 47(2) 35(2) 63(2) 41(2) 45(2) 36(2) 35(2) 42(2) 90(3) 50(2) 62(2) 50(2) 61 (2) 42(2) 31 (2) 105(3) 75(2) 50(2) 65(2) 90(3) 3 1 (2) 41 (2) 28(2) 38(2) 36(2) 65(2) 67(2) 66(2) 3 l ( 1) 48(2) 47(2) 8(1) 9(2) -1(1) -1(1) -1(1) -10(2) 25(2) -12(2) 4(1) -13(2) 14(2) 13(1) 11(1) 1(1) 8(1) 2(1) 21(2) 9(2) 5(2) 6(1) 8(1) 25(2) 12(2) -14(2) -15(2) 1(2) 10(2) -1(1) -6(2) -7(2) - 14( 1) 3(2) -14(2) Table A-9.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(dpma)(Ndip)(=CHCMe2Ph). x y z U(eq) x y z U(eq) H(SA) 8015 1092 -94 36 H(57) 9669 2678 -790 51 H(l IA) 11027 1 164 -524 51 H(58A) 5377 1857 -21 8 67 H(12A) 13332 502 -346 63 H(58B) 5759 1229 -758 67 H(13A) 14125 337 909 59 H(58C) 5158 2108 -988 67 H(21A) 5976 1620 1032 44 H(59B) 8095 3310 -253 72 H(22A) 5341 1432 2154 51 H(59C) 6806 31 12 94 72 H(23A) 7564 1263 2992 51 H(59A) 6579 3377 -672 72 H(31A) 12594 57 7 2010 54 H(42A) 8016 3172 1578 53 H(31B) 12433 1543 1895 54 H(42B) 9142 3415 2696 109 H(32A) 10547 1844 2448 49 H(42F) 7518 3491 2640 109 H(32B) 10370 946 2736 49 H(42G) 8441 4294 2679 109 H(33A) 10612 ~259 2050 75 H(42B) 6081 4037 1599 89 H(33B) 10350 -176 1257 75 H(42C) 6741 4219 952 89 H(33C) 9139 11 1661 75 H(42D) 7025 4823 1576 89 H(43A) 9528 5188 1955 59 H(46A) 11379 2973 133 46 H(44A) 1 1404 5729 1540 60 H(46B) 13032 2669 1098 77 H(45A) 12461 4967 800 54 H(46F) 13995 3380 906 77 H(53) 6352 1468 -1781 42 H(46G) 13687 2597 437 77 H(54) 7382 1432 -2739 50 H(46B) 12886 3537 -540 11 1 H(55) 9544 2010 -2723 53 H(46C) 13045 4344 ~94 1 1 1 H(56) 10709 2614 - 1736 58 H(46D) 11598 4122 -537 l 1 l 162 Table A-10.1. Crystal data and structure refinement for Mo(NBu‘)(dpma)(=CHCMe2Ph) Opentane. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.31° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Extinction coefficient Largest diff. peak and hole at7tn C27.5013411140134 523.58 173(2) K 0.71073 A Triclinic P-l a: 12.065109) A b = 14.139(2) A c = 19.318(3) A 2844.3(8) A3 4 1.223 Mg/m3 0.481 mm'1 1104 0.37 x 0.23 x 0.18 mm3 1.63 to 23.31°. -13<=h<=13, -15<=k<=15, -l3<=1<=21 13157 8170 [R(int) = 0.0644] 99.3 % None 01: 96.54l(3)° B: 102.773(3)° y = 114.526(3)° Full-matrix least-squares on F2 8170 / 0 / 601 1.014 R1 = 0.0806, wR2 = 0.2252 R1: 0.1337, wR2 = 0.2518 0.0056(9) 3.142 and —0.612 e.A'3 163 Table A-10.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Azx 103) for Mo(dpma)(NBu‘)(=CHCMe2Ph)-pentane. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) Mo(l) 6368(1) 3443(1) 10258(1) 41(1) Mo(2) 1825(1) 3253(1) 4471(1) 41(1) N( 1 A) 6827(8) 4766(6) 9800(5) 46(2) N( 1 B) 3090(8) 4104(7) 3912(5) 50(2) N(2A) 5952(9) 2791(7) 1 1 149(4) 52(2) N(ZB) 964(8) 3302(7) 5319(4) 46(2) N(3A) 6863(7) 4857(6) l 1 179(4) 39(2) N(3B) 2586(7) 5020(6) 4996(4) 40(2) N(4A) 7347(8) 2973(7) 10068(5) 53(2) N (4B) 523(8) 2437(6) 3742(4) 48(2) C(4A) 8510(12) 2819( 10) 10107(7) 65(3) C(4B) -651(10) 2017(9) 3135(6) 58(3) C(SA) 4767(1 1) 251 1(8) 9567(6) 59(3) C(SB) 2555(9) 2373(8) 4760(5) 45(3) C(l 1A) 6956(1 1) 4939( 10) 9140(7) 67(3) C(l 1B) 3322(11) 3830(9) 3278(6) 56(3) C(12A) 7321(11) 5993(11) 9121(7) 71(4) C(IZB) 4160(11) 4717(11) 3127(6) 71(4) C(13A) 7488(13) 6552( 1 1) 9823(8) 82(4) C(13B) 4480(10) 5600(9) 3693(6) 56(3) C( 14A) 7090(14) 5730(11) 10201 (7) 83(4) C( 148) 3819(10) 5191(9) 4152(6) 49(3) C(2 1 A) 5566(16) 1805(10) 1 1280(8) 99(5) C(2 1 B) -10(10) 2574(9) 5500(7) 58(3) C(22A) 5377(14) 1786(10) 11940(8) 83(4) C(ZZB) -182(11) 3045(10) 6087(7) 62(3) C(23A) 5683(13) 2806( 10) 12254(7) 72(4) C(23B) 703(11) 4106(10) 6296(6) 53(3) C(24A) 6005(13) 3424(9) 1 1771(6) 64(3) C(24B) 1421( 10) 4234(8) 5829(6) 46(3) C(3 l A) 6580(20) 5656(15) 10933(9) 153(9) C(3 1 B) 3817(11) 5678(9) 4892(6) 62(3) C(32A) 6230(20) 4548(13) 1 1738(10) 140(8) C(3ZB) 2652( 10) 5155(8) 5766(6) 54(3) C(33A) 8236(17) 5263(16) l 1528(10) 1 73( 10) C(33B) 1633(11) 5307(9) 4590(6) 57(3) C(4 l A) 9438(16) 3369(19) 10858(9) 157(9) C(4lB) -1670(11) 990( 10) 3268(7) 79(4) C(42A) 8120(20) 1577(15) 9935(15) 187(12) C(4ZB) -298(12) 1756(1 1) 2439(7) 82(4) C(43A) 9115(16) 3325(16) 9563(9) 131(7) C(43B) -1085(15) 2894(1 1) 3083(9) 1 12(6) C(51A) 4055(15) 1522(9) 8962(8) 97(5) C(5 IB) 2478(10) 1264(8) 4684(6) 49(3) C(52A) 3312(1 1) 1774(8) 8317(6) 54(3) C(SZB) 3771(9) 1371(7) 4625(6) 43(3) C(53A) 3958(16) 2394(1 1) 7906(9) 91(5) C(53B) 4646(12) 1287(9) 5180(6) 60(3) C(54A) 3390(30) 2678(16) 7360(1 1) 126(8) C(543) 5778(13) 1397(1 1) 5116(8) 78(4) C(55A) 2140(30) 2321(18) 7183(11) 138(12) C(SSB) 6107(13) 1580(10) 4507(9) 71(4) C(56A) 1446(17) 1715(14) 7531(13) 121(8) C(56B) 5284(14) 1665(9) 3937(7) 73(4) C(57A) 2082(13) 1430(10) 8141(8) 79(4) ' C(57B) 4115(11) 1583(8) 4000(6) 55(3) C(58A) 4800(30) 1 100(20) 8779(12) 290(20) C(58B) 2177(12) 852(9) 5365(7) 73(4) C(59A) 3160(30) 709(17) 9281(12) 260(20) C(59B) 1399(12) 494( 10) 4001(7) 83(4) C( 1 S) 7600(20) 761(15) 7633(1 1) 139(8) C(4S) 8428(14) 4365(14) 7503(8) 105(5) C(2S) 7160(20) 1440(20) 7315(10) 168(10) C(5S) 7911(11) 2522(10) 7495(6) 51(3) C(3S) 7464(15) 31 17(16) 7250(8) 118(7) 164 Table A-10.3. Bond lengths [A] and angles [°] for Mo(dpma)(NBu‘)(=CHCMe2Ph)°pentane. Mo( 1)-N(4A) Mo( 1 )-C(5A) Mo( 1 )-N( 1 A) Mo( 1 )-N(2A) Mo( 1 )-N(3A) N(lA)-C(l 1A) N( l A)-C( 14A) N(2A)-C(2 1 A) N(2A)-C(24A) N(3A)-C(3 1 A) N (3A)-C(32A) N(3A)-C(33A) N(4A)-C(4A) C(4A)-C(43A) C(4A)-C(4 l A) C(4A)-C(42A) C(5A)-C(51A) C(l 1A)-C(12A) C(12A)-C(13A) C(13A)-C(l4A) C( 14A)-C(3 1 A) C(21A)-C(22A) C(22A)-C(23A) C(23A)-C(24A) C(24A)-C(32A) C(51A)-C(58A) C(51A)—C(59A) C(51A)—C(52A) C(52A)-C(57A) C(52A)-C(53A) C(53A)-C(54A) C(54A)-C(55A) C(55A)-C(56A) C(56A)-C(57A) C( 1 S)-C(28) C(28)-C(SS) N(4A)-Mo( 1)-C(5A) 1.661(9) 1.896(11) 2.079(8) 2.104(8) 2.291(8) 1.357(14) 1.360(15) 1.348(14) 1.387(13) 1.408(17) 1.462(17) 1.469(18) 1.494(14) 1.493(17) 1.51(2) l.59(2) 1.498(16) 1.375(16) 1 .4 17( 18) 1.414(16) l.66(2) l .346( 17) 1.358(16) 1.359(15) 1.509( 18) 135(3) 152(3) 1.533(17) 1.302(16) 1.369(17) l.32(2) 1.33(3) 1.29(3) 1.45(2) 1.4 1(3) 1.37(2) 104.1(5) 165 Mo(2)-N(4B) Mo(2)-C(5B) Mo(2)-N(lB) Mo(2)-N(2B) Mo(2)-N(3B) N(lB)-C(llB) N(lB)-C(l4B) N(2B)-C(2lB) N(2B)-C(24B) N(3B)-C(3ZB) N(3B)-C(31B) N(3B)-C(33B) N(4B)-C(4B) C(4B)-C(43B) C(4B)-C(42B) C(4B)-C(41B) C(58)-C(51B) C0 1B)-C( 1 213) C0213)-C03B) C(13B)-C(14B) C(l4B)-C(31B) C(21B)-C(22B) C(22B)-C(23B) C(23B)-C(24B) C(24B)-C(32B) C(51B)-C(59B) C(5113)-C(5213) C(SlB)-C(SSB) C(52B)-C(53B) C(52B)-C(57B) C(53B)-C(54B) C(54B)-C(55B) C(SSB)-C(56B) C(56B)-C(57B) C(3S)-C(55) C(3S)-C(4S) N(4B)—Mo(2)-C(SB) 1.711(8) 1.86700) 2.108(9) 2.134(9) 2.285(8) 1.36403) 1.37403) 1.35003) 1.37002) 1.45702) 1.46303) 1.47102) 1.46402) 1.538(17) 1.54806) 1.55906) 1.52003) 1.35706) 1.41606) 1.34204) 1.51504) 1.34805) 1.37705) 1.35904) 1.55705) 1.53504) 1.535(14) 1.55405) 1.38304) 1.38604) 1.34406) 1.34107) 1.36407) 1.40006) 126(2) 1.60(2) 104.2(4) N(4A)-Mo(1)-N( 1A) C(5A)—Mo( 1 )-N( 1 A) N(4A)-Mo( 1 )-N(2A) C(5A)-Mo(1)-N(2A) N ( 1 A)-Mo( l )-N(2A) N (4A)-Mo( 1 )-N(3A) C(5A)-Mo(1)-N(3A) N( 1A)-Mo( 1 )-N(3A) N(2A)-Mo(1)-N(3A) C(l 1A)-N( 1A)-C( 14A) C(l lA)-N(1A)-Mo(l) C(14A)-N(1A)-Mo(1) C(21A)-N(2A)-C(24A) C(2 1 A)—N(2A)-Mo( 1) C(24A)-N(2A)-Mo( l) C(31A)-N(3A)-C(32A) C(31A)—N(3A¥C(33A) C(32A)-N(3A)«C(33A) C(31A)oN(3A)-Mo(1) C(32A)-N(3A)-M0(1) C(33A)-N(3A)-Mo( l) C(4A)-N(4A)-Mo( 1 ) C(43A)-C(4A)-N(4A) C(43A)-C(4A)-C(41 A) N(4A)-C(4A)-C (4 l A) C(43A)-C(4A)—C(42A) N(4A)-C(4A)-C (42A) C(4 1 A)-C(4A)-C (42A) C(51A)—C(5A)—Mo(l) N(lA)-C( l 1A)-C(12A) C(l lA)-C(12A)-C(13A) C(12A)-C(13A)-C(14A) N( 1A)-C( 14A)-C(13A) N( 1A)-C( 14A)-C(3 1 A) C( l3A)-C(14A)—C(3 1A) C(22A)-C(21A)-N(2A) C(21A)-C(22A)—C(23A) C(22A)-C(23A)-C(24A) C(23A)-C(24A)-N(2A) C(23A)-C(24A)-C(32A) N(2A)-C(24A)-C(32A) 102.4(4) 99.0(4) 101.5(4) 96.1(4) 147.6(3) 127.0(4) 128.9(4) 74.2(3) 74.0(3) 105.3(9) 134.5(8) 120.2(8) 104.8(10) 134.6(8) 120.5(7) 107.4(13) 111.5(14) 106.9(13) 1 13.5(8) 113.5(8) 103.9(8) 161.9(8) 108.8(10) 108.7(13) 108.7(11) 110.2(14) 109.4(11) 111.0(14) 145.1(11) 111.4(11) 107.6(11) 103.2(12) 112.1(11) 113.9(11) 132.3(14) 111.9(12) 106.2(11) 108.6(11) 108.5( 10) 134.4(12) 116.7(11) 166 N(4B)-Mo(2)-N(1B) C(5B)-Mo(2)-N(1B) N(4B)-Mo(2)-N(2B) C(5B)—Mo(2)-N(2B) N ( 1 B)-Mo(2)-N (2B) N(4B )-Mo(2)-N(3B) C(5B)-Mo(2)-N(3B) N( 1 B)—M0(2)-N(3B) N (ZB)-Mo(2)-N(3B) C(11B)-N(1B)-C(14B) C(l 1B)-N( 1B)-Mo(2) C(14B)-N(1B)—Mo(2) C(21B)—N(2B)-C(24B) C(21B)-N(2B)-Mo(2) C(24B )-N(ZB)-Mo(2) C(32B).N(3B)-C(31B) C(32B)-N(3B)-C(33B) C(3 lB)-N(3B)-C(33B) C(32B )-N(3B)-Mo(2) C(31B)-N(3B)-Mo(2) C(33B)-N(3B)-Mo(2) C (4B )-N(4B)-Mo(2) N(4B)—C(4B)-C(43B) N(4B)-C(4B)-C(42B) C(43B)-C(4B)-C(42B) N(4B )-C(4B)-C(41B) C(43B)-C(4B)—C(4 1 B) C(42B)-C(4B)-C(4 l B) C(51B)-C(SB)-Mo(2) C(12B)~C(11B)-N(1B) C(11B)-C(12B)-C(13B) C(14B)-C(13B)-C(12B) C(13B)-C(14B)-N(1B) C(13B)-C(14B)-C(3 lB) N(lB)-C(14B)-C(31B) N(2B)-C(21B)-C(22B) C(21B)«C(22B)-C(23B) C(24B )-C(23B)-C(22B) C(23B)-C(24B)-N(2B) C(23B)-C(24B)-C(32B) N(2B)-C(24B)-C(32B) 99.6(4) 99.0(4) 101.6(4) 98.8(4) 148.0(3) 130.0(3) 125.8(4) 74.2(3) 73.8(3) 105.8(9) 133.8(8) 120.2(7) 105.8(9) 134.2(8) 120.0(7) 111.8(8) 1 10.9(8) 108.4(8) 110.0(6) 111.9(6) 103.7(6) 163.2(7) 108.5(9) 106.1(9) 109.8(11) 108.6(9) 112.5(11) 1 1 l. 1( 10) 149.0(8) 109.7(10) 107.5( 10) 105.5(10) 111.4(9) 132.5(1 1) 1 15.8(9) 109.6(11) 108.7(10) 105.4( 10) 110.5(10) 135.5(10) 114.0(9) N(3A)-C(31A)-C(14A) 101.3(12) N(3B)-C(31B)-C(14B) 107.9(9) N(3A)-C(32A)-C(24A) 108.3(12) N (3B)-C(32B)-C(24B) 107.4(8) C(58A)-C(51A)-C(59A) 105.6(19) C(58)-C(51B)-C(59B) 110.3(9) C(58A)-C(51A)-C(5A) 113.8(15) C(5B)-C(5 13)—C(52B) 107.1(8) C(59A)-C(51A)-C(5A) 104.3(16) C(59B)-C(51B)-C(52B) 110.6(9) C(58A)-C(51A)-C(52A) 1 13.6( 17) C(5B)-C(51B)-C(58B) 108.2(9) C(59A)—C(51A)-C(52A) 11 1.1(16) C(59B)-C(51B)~C(58B) 108.6(10) C(5A)-C(51A)-C(52A) 108. 1 ( 10) C(52B)-C(51B)-C(58B) 112.1(9) C(57A)-C(52A)—C(53A) 1 17.6(13) C(538)-C(52B)-C(57B) 117.1(10) C(57A)-C(52A)—C(5 1A) 123.1(13) C(53B)-C(52B)-C(51B) 123.0(10) C(53A)-C(52A)—C(5 1 A) 119.3(13) C(57B)—C(52B)—C(5 1B) 119.9(10) C(54A)-C(53A)-C(52A) 122.9( 18) C(54B)-C(53B)-C(52B) 121.7(12) C(55A)-C(54A)-C(53A) 1 19(2) C(55B)—C(54B)-C(53B) 121.6(12) C(56A)-C(55A)-C(54A) 122(2) C(54B)—C(55B)-C(56B) 119.8(12) C(55A)-C(56A)—C(57A) 1 18.0(19) C(55B)-C(56B)-C(57B) 1 19.5(12) C(52A)-C(57A)-C(56A) 120.0(15) C(52B)—C(57B)-C(56B) 120.3(11) C(58)-C(28)-C( 18) 120(2) C(3S)-C(5S)—C(2$) 119.3(17) C(5S)-C(3S)-C(4S) 114.8(14) Table A-10.4. Anisotropic displacement parameters (A2 x 103) for Mo(dpma)(NBut)(=CHCMe2Ph)-pentane. The anisotropic displacement factor exponent 167 takes the form: -2n2[ h2 3*2U11 + + 2 h k a* b* U12] U11 U22 (133 U23 {113 U12 Mo(l) 45(1) 39(1) 35(1) 2(1) 5(1) 19(1) Mo(2) 37(1) 39(1) 37(1) -5(1) 6(1) 13(1) N( l A) 54(6) 42(5) 38(5) 4(4) 9(4) 20(5) N(2A) 78(7) 39(5) 39(5) 6(4) 16(5) 29(5) N(3A) 40(5) 38(5) 34(5) 8(4) 1(4) 18(4) N(4A) 60(6) 50(6) 50(6) 1 1(4) 24(5) 24(5) N( 13) 44(5) 55(6) 42(6) -2(4) 10(4) 18(5) N(ZB) 35(5) 46(5) 45(5) 3(4) 4(4) 14(4) N(3B) 29(5) 46(5) 32(5) -3(4) 6(4) 10(4) N (43) 41 (5) 45(5) 44(5) -9(4) 4(4) 14(4) C(4A) 71(9) 85(9) 65(9) 32(7) 32(7) 50(8) C(5A) 72(8) 42(7) 40(7) 6(5) -3(6) 15(6) C(l 1A) 76(9) 59(8) 57(9) 10(7) 23(7) 23(7) C(12A) 66(8) 88(11) 61(9) 38(8) 18(7) 33(8) C(13A) C(l4A) C(2 1 A) C(22A) C(23A) C(24A) C(31A) C(32A) C(33A) C(41A) C(42A) C(43A) C(5 1 A) C(52A) C(53A) C(54A) C(55A) C(56A) C(57A) C(58A) C(59A) C(4B) C(5B) C(l 1B) C(12B) C( 13B) C( 14B) C(21B) C(22B) C(23B) C(24B) C(31B) C(32B) C(33B) C(4lB) C(42B) C(43B) C(5 1 B) C(52B) C(53B) C(54B) 108(1 1) 110(12) 169(16) 121(12) 103(10) 88(9) 230(20) 240(20) 109(15) 101(13) 210(20) 1 1 1(14) 1 18(12) 55(8) 1 12(12) 250(30) 230(30) 61(1 1) 49(9) 430(50) 310(40) 42(7) 39(6) 57(7) 55(8) 47(7) 43(6) 47(7) 59(8) 61 (8) 54(7) 54(7) 54(7) 63(8) 44(7) 66(9) 108(12) 46(6) 45(6) 77(9) 75(10) 55(8) 71(10) 39(8) 54(9) 66(9) 50(7) 155(17) 96(13) 162(19) 320(30) 136(18) 210(20) 26(7) 40(6) 68( 10) 85(14) 85(17) 73(13) 70(9) 200(30) 107(16) 56(7) 41 (6) 59(8) 103(1 1) 65(8) 55(7) 53(7) 77(9) 71(9) 51(7) 51(7) 47(7) 51(7) 79(9) 93( 10) 80(1 1) 37(6) 22(5) 65(8) 96(1 1) 88(1 1) 40(8) 74( 10) 75(10) 42(7) 50(8) 76(12) 1 16(15) 15 1 ( 18) 94(14) 350(40) 138(16) 91(1 1) 35(7) 104(13) 63(14) 63(13) 150(20) 81 ( 10) 150(20) 130(20) 43(7) 40(6) 45(7) 34(7) 5 1 (7) 41(7) 69(9) 65(9) 47(7) 39(6) 62(8) 52(8) 52(7) 70(9) 53(9) 1 10(13) 52(7) 52(7) 47(8) 8 1 (1 l) 168 35(8) 8(7) 3(7) 24(7) 11(7) 11(6) -35(1 1) 22(11) -108(15) 50(17) 130(20) 93(15) -5(7) -7(5) 25(10) 28(11) -25(11) -56(12) -20(8) -140(20) 6506) -7(6) -1(5) 0(6) 3(7) 13(6) -3(6) 15(6) 33(7) 15(6) 4(5) -6(6) -6(5) 0(6) -10(7) -6(7) -7(9) -5(5) 4(5) 18(6) 32(9) 34(9) 15(8) 60(1 1) 48(9) 24(7) 21(7) -3 1(14) 104(17) - 19(1 3) 28(1 1) 170(20) 90(13) -29(10) 4(6) 56( l 1) 67(16) -43(18) -47(12) 15(8) - 190(30) -80(20) -9(5) 6(5) 16(6) 18(6) 19(6) 15(5) 25(6) 34(7) 30(6) 10(6) 11(6) 13(6) 11(6) -4(7) -2(7) -3500) 8(5) 13(6) 21(7) 17(8) 36(8) 19(8) 20(9) 30(8) 33(8) 26(7) 145( 1 8) 75( 15) 36( l 4) 140( l 8) 1 37( 1 8) 95( 1 4) 15(8) 4(6) 38(9) 86(19) 90(20) 19( 10) 6(7) 260(30) -60(20) 5(6) 10(5) 24(6) 19(8) 17(6) 17(6) 14(6) 34(7) 41(7) 32(6) 16(6) 20(6) 26(6) 6(7) 22(8) 50( 10) l 6(5) 8(5) 37(7) 57(9) C(558) 66(9) 65(9) 10802) 23(8) 46(9) 45(7) C(56B) 10301) 57(8) 56(9) 5(6) 40(8) 28(8) C(57B) 58(8) 49(7) 45(7) 8(6) 8(6) 16(6) C(SSB) 76(9) 60(8) 8700) 27(7) 46(8) 23(7) C(59B) 65(9) 74(9) 75(9) -36(7) -11(7) 29(7) C(lS) 210(20) 12206) 10906) 3703) 77(16) 85(17) C(2S) 170(20) 170(20) 7204) 1605) 1504) 1(19) C(38) 8002) 16809) 42(9) -501) 14(8) 503) C(48) 8501) 15406) 6500) 2(10) 10(8) 5602) C(55) 50(7) 69(9) 33(7) 8(6) 10(6) 27(7) Table A-10.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Azx 103) for Mo(dpma)(NBu‘)(=CHCMe2Ph)'pentane. x y z U(eq) x y z U(eq) H(SA) 4195 2772 9628 71 H(53) 3323 2822 5116 54 H(11A) 6816 4412 8749 80 H(l 1B) 2961 3140 2992 67 H( 1 2A) 7438 6286 8720 85 H( 123) 4468 4742 2725 85 H(13A) 7787 7282 9994 98 H(13B) 5032 6313 3738 67 H(14A) 7960 5887 10469 100 H(ZIB) -489 1858 5258 70 H(2 1 A) 5444 1209 10953 1 19 H(ZZB) -797 2709 6313 74 H(22A) 5093 1 193 12141 100 H(23B) 791 4624 6675 64 H(23A) 5675 3043 12721 86 H(3 1 A) 4504 5695 5273 74 H(24A) 6917 3651 11986 77 H(3 1 B) 3938 6404 4912 74 H(3 1 C) 7045 63 30 1 1294 184 H(32A) 2701 5843 5951 65 H(3 1 D) 5677 5446 10807 184 H(32B) 3403 5 122 6047 65 H(32C) 5425 45 80 1 1618 168 H(33A) 81 1 4861 4635 86 H(32D) 6762 5033 12208 168 H(33B) 1599 5206 4084 86 H(3 3D) 8706 5691 1 1242 260 H(33C) 1867 6043 4784 86 H(33E) 8429 4673 1 1560 260 H(4 1 A) - 1472 407 3166 1 18 H(33F) 8471 5691 12008 260 H(4 l B) -2498 815 2953 118 H(4 1 D) 10023 4080 10857 236 H(41C) - 1669 1 l 14 3767 118 H(4 1B) 9902 2975 10996 236 H(42A) 237 2409 233 1 122 H(41F) 8980 3402 11201 236 H(42B) - 1061 1363 2037 122 H(42D) 7490 1219 10170 281 H(42C) 151 1335 2517 122 H(42B) 8856 1472 10113 281 H(43A) -1155 3144 3547 167 H(42F) 7766 1289 9417 281 H(43B) -1899 2607 2720 167 H(43D) 8487 3068 9093 197 H(43C) -47 1 3477 2949 167 H(43B) 9791 3145 9534 197 H(53B) 4447 1 150 5608 72 169 H(43F) H(53A) H(54A) H(55A) H(56A) H(57A) H(58D) H(58B) H(5 8F) H(59D) H(59B) H(59F) H( 1 S 1 ) H(152) H( 1 83) H(ZS 1) H(282) 9456 4833 3867 1742 567 1611 4279 5212 5431 2671 2587 3642 8465 7073 7560 6942 6367 4087 2626 3121 2514 1468 1002 453 934 1600 961 611 975 37 810 1206 1313 9710 8015 7103 6794 7394 8406 9200 8604 8926 9412 9708 7632 7357 8126 6790 7424 1 97 1 10 1 52 1 66 146 94 428 428 428 392 392 392 209 209 209 202 202 H(54B) H(SSB) H(56B) H(57B) H(58A) H(58B) H(58C) H(59A) H(59C) H(59B) H(3S 1) H(352) H(4S l) H(452) H(4S3) H(SS 1) H(SS2) 6347 6893 5498 3566 2799 2206 1342 591 1471 1462 6711 7196 8588 8060 9217 8192 8665 1344 1650 1777 1670 1363 181 756 337 ~156 820 2997 2911 4607 4752 4486 2750 2656 5504 4474 3509 3620 5799 5351 5367 4082 3902 3592 7402 6721 8016 7239 7405 8023 7342 93 85 88 109 109 109 124 124 124 142 142 157 157 157 62 62 170 Table A-11.1. Crystal data and structure refinement for Mo(dmpm)(Ndip)(=CHCMe2Ph). Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume 2 Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.27° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>281gma(1)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole at9a C33H41M°N3 575.63 173(2) K 0.71073 A Orthorhombic Pna2(1) a = 26.218(6) A b = 11.061(2) A c = 10.104(2) A 2930.3(11) A3 4 1.305 Mg/m3 0.473 mrn'l 1208 0.14 x 0.18 x 0.21 mm3 1.55 to 23.27°. «26<=h<=29, -1 l<=k<=12. -11<=1<=11 12902 4192 [R(int) = 0.1590] 99.7 % Empirical 0.8150 and 0.6157 Full-matrix least-squares on F2 4192/ 1 /343 0.853 R1 = 0.0571, wR2 = 0.0876 R1: 0.1281, wR2 = 0.1034 -0.01(7) 0.0001402) 0.458 and -O.367 6A-3 171 Table A-11.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(dmpm)(Ndip)(=CHCMe2Ph). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) Mo( 1) 540(1) 3532(1) 3604(1) 21(1) C(44) 1971(4) -42(10) 5695(13) 47(4) N( 1) -240(3) 4578(6) 3770(12) 23(2) C(45) 1901(4) 992( 10) 6411(11) 43(3) N(2) 227(3) 2747(6) 1916(8) 22(2) C(46) 1587(4) 1898(8) 5896(10) 23(3) N(4) 1026(3) 2573(6) 4103(6) 16(2) C(51) 1458(4) 5287(8) 2618(10) 21(3) C(5) 915(3) 4846(8) 2823(9) 24(3) C(52) 1833(4) 421 1(9) 2602(11) 29(3) C( 1 1) 46(4) 4917(9) 4803(11) 30(3) C(53) 1817(4) 3424( 10) 1527(12) 45(3) C(12) 126(4) 3968(10) 5681(10) 34(3) C(54) 2161(5) 2465(10) 1476(15) 59(4) C(13) -135(5) 2960(11) 5180(11) 30(3) C(55) 2499(5) 2248(11) 2481(19) 76(6) C(14) -350(3) 3373(9) 3995(8) 23(3) C(56) 2519(4) 3054(11) 3460(20) 60(4) C(21) 450(4) 2413(7) 733(9) 21(2) C(57) 2191(3) 4039(8) 3623(19) 46(3) C(22) 108(4) 1823(8) —57( 10) 26(3) C(58) 1572(4) 6185(8) 3759(18) 52(4) C(23) —355(4) 1806(8) 658(10) 36(3) C(59) 1492(4) 5957(9) 1307( 10) 45(3) C(24) -266(4) 2349(10) 1814(12) 27(3) C(421) 1208(4) 479(9) 2606(11) 33(3) C(30) -628(4) 2620(8) 2969( 10) 27(3) C(422) 1535(4) -300(8) 1628(1 1) 37(3) C(31) -822(3) 1421(8) 3560(20) 49(3) C(423) 678(3) -68(8) 267 1( 10) 43(3) C(32) -1098(4) 3351(9) 2485(9) 41(3) C(461) 1485(4) 3033(8) 6683(9) 27(3) C(41) 1352(4) 1701(9) 465 1 (10) 22(3) C(462) 1964(4) 3584(9) 7278(10) 50(3) C(42) 1450(4) 628(9) 3916( 1 1) 23(4) C(463) 1 105(4) 2751(9) 7786(10) 55(4) C(43) 1762(4) -229(9) 4485(11) 35(3) Table A-11.3. Bond lengths [A] and angles [°] for Mo(dmpm)(Ndip)(=CHCMe2Ph). Mo(1)-N(4) 1.731(7) C(30)-C(32) 1.553(12) Mo( 1)-C(5) 1 .924(9) C(41)-C(46) 1.418(13) Mo(1)-N(2) 2.082(8) C(41)-C(42) 1.423(13) Mo( 1 )-C(1 1) 2.344(9) C(42)-C(43) 1 .379(12) Mo( 1 )—N( 1) 2.357(6) C(42)-C(421) 1.477(15) Mo(1)-C( l4) 2.375(8) C(43)-C(44) 1.354(14) Mo(l)-C(12) 2.413(10) C(44)-C(45) 1.366(14) Mo(l)-C(13) 2.464(12) C(45)-C(46) 1.397(12) N(1)-C(1 1) l .339(14) C(46)-C(461) 1 .509(12) N(1)-C(14) 1.383( 10) C(51)-C(59) 1.521(12) 172 N(2)-C(24) N(2)-C(21) N(4)-C(41) C(5)-C(51) C(1 1)-C(12) C(12)-C(13) C(13)-C(14) C(14)-C(30) C(21)-C(22) C(22)-C(23) C(23)-C(24) C(24)-C(30) C(30)-C(31) N(4)-Mo( 1 )-C(5) N(4)-Mo(1)—N(2) C(5)-Mo(1)-N(2) N(4)-Mo(1)—C(l l) C(5)-Mo( l )-C( l 1) N(2)-Mo(1)-C(1 1) N(4)-Mo(1)-N( 1) C(5)-Mo(1)-N(1) N(2)-Mo(1)-N(1) C(11)-Mo(1)-N(1) N(4)-Mo( 1 )-C( 14) C(5)-Mo(1)-C(14) N(2)-Mo(1 )-C(14) C(1 1)-Mo(1)-C(14) N(1)-Mo(1)-C(l4) N(4)-Mo(1)-C(12) C(5)-Mo(1)-C(12) N(2)-Mo(1)-C(12) C(1 l)-Mo( 1)-C(12) N(1)-Mo(1)-C(12) C( 14)-Mo(1)-C(12) N(4)-Mo( 1 )-C(13) C(5)-Mo(1)-C( 13) N(2)-Mo(1)-C(l3) C(11)-Mo(1)-C(13) N(1)-Mo(1)-C(13) C(14)-Mo(1)-C(13) 1.371(11) 1.380(11) 1.403(10) 1.519(12) 1.389(12) 1.403(14) 1.400(12) 1.515(11) 1.366(11) 1.413(12) 1.334(14) 1.533(14) 1.540(12) 102.0(4) 105.9(3) 100.4(3) 131.0(4) 90.0(3) 118.6(4) 156.6(4) 95.8(3) 85.5(4) 33.1(3) 129.0(3) 128.8(4) 73.6(3) 54.5(3) 34.0(3) 101.5(3) 115.8(4) 128.2(3) 33.9(3) 56.5(4) 55.0(3) 100.5(3) 145.7(4) 98.0(4) 55.7(4) 57.0(3) 33.6(3) 173 C(51)-C(52) C(51)-C(58) C(52)—C(53) C(52)-C(57) C(53)-C(54) C(54)-C(55) C(55)-C(56) C(56)-C(57) C(42 1)-C(423) C(421)-C(422) C(46 l )-C(462) C(46 1 )-C(463) N(1)-C(14)-Mo(l) C( 13)-C( 14)-Mo(1) C(30)-C( 14)-Mo(1) C(22)-C(21)-N(2) C(21)-C(22)-C(23) C(24)-C(23)-C(22) C(23)-C(24)-N(2) C(23)-C(24)—C(30) N(2)-C(24)-C(30) C( 14)-C(30)-C(24) C(14)-C(30)-C(31) C(24)-C(30)-C(31) C(14)-C(30)-C(32) C(24)-C(30)-C(32) C(31)-C(30)-C(32) N(4)-C(4 l )-C (46) N(4)-C(41)-C(42) C (46)-C(4 1 )-C(42) C(43)-C(42)-C(41) C(43)-C(42)-C(421) C(41)-C(42)-C(421) C(44)-C(43)-C(42) C (43 )«C(44)-C(45) C(44)-C(45 )-C(46) C (45)—C(46)-C(4 1) C(45)-C(46)-C(461) C(41)-C(46)-C(461 ) 1.545(13) 1.551(16) 1.392(13) 1.407(17) 1.393(14) 1 .369(17) 1.33(2) 1.399(13) 1.516(12) 1.568(12) 1.518(12) 1.527(12) 72.3(4) 76.7(6) 1 13.5(6) 1 10.9(9) 105.7(9) 107.0(9) 1 12.0( 10) 130.3( 10) 117.6( 10) 109.4(8) 11 l.6(10) 109.2(9) 108.1(8) 1 10.6(8) 107.9(8) 120.6(9) 118.5(9) 120.9(9) 117.5( 10) 123.5(11) 118.9( 10) 120.8(1 1) 123.5(1 1) 118.8(1 1) 1 18.4(9) 120.3( 10) 121.2(9) C(12)-Mo(1)-C(13) 33.4(3) C(5)-C(51)-C(59) 109.3(8) C(11)-N(1)-C(l4) 105.0(9) C(5)-C(51)-C(52) 110.5(8) C(1 l)-N( 1 )-Mo( 1) 72.9(5) C(59)-C(51)-C(52) 109.2(8) C(14)-N( 1 )-Mo( 1) 73.7(4) C(5)-C(51)-C(58) 106.6(8) C(24)-N(2)-C(21) 104.4(8) C(59)-C(51)-C(58) 108.9(8) C(24)-N(2)-Mo( 1) 124.6(7) C(52)-C(51)-C(58) 112.2(8) C(21)-N(2)-M0(1) 130.8(7) C(53)-C(52)-C(57) 120.5(11) C(41)-N(4)-Mo(1) 169.7(6) C(53)-C(52)-C(51) 118.1(10) C(51)-C(5)-Mo(1) 141.0(7) C(57)-C(52)-C(51) 12 l .4( 10) N(1)-C(11)-C(12) 111.8(9) C(52)-C(53)-C(54) 119.1(12) N( 1 )-C(1 1)-Mo(1) 74.0(5) C(55)-C(54)-C(53) 121.6(13) C(12)-C( 1 1)-Mo( 1) 75.7(6) C(56)-C(55)-C(54) 117.4(14) C(11)-C(12)-C(13) 107.3( 10) C(55)-C(56)-C(57) 125.7(17) C(1 1)-C(12)-Mo(1) 70.3(6) C(56)-C(57)-C(52) 115.4(16) C(13)-C(12)-Mo(1) 75 .3(7) C(42)-C(421)-C(423) 113.6( 10) C(14)-C(13)-C( l2) 104.2(10) C(42)-C(421)-C(422) 113.0(9) C( 14)-C( l 3)-Mo( 1) 69.7(6) C(423)-C(421)-C(422) 108.1(8) C(12)-C(13)-Mo(1) 71 .3(7) C(46)-C(461)-C(462) 1 13.3(8) N(1)-C(14)-C(13) 1 1 1.8( 10) C(46)-C(461)-C(463) 109.2(8) N(1)-C(l4)-C(30) 121.2(9) C(462)-C(461)-C(463) 109.3(8) C(13)-C(14)—C(30) 126.8( 10) Table A-ll.4. Anisotropic displacement parameters (A2 x 103) for Mo(dmpm)(Ndip)(=CHCMe2Ph). The anisotropic displacement factor exponent takes the form: 23012 a*2U” + + 2 h k a* b* 012] U11 U22 1133 {123 U13 U12 Mo(l) 20(1) 21(1) 22(1) -1(1) 0(1) 3(1) N( 1) 17(4) 20(4) 31(6) 3(6) -3(6) 4(3) N(2) 29(6) 12(5) 27(6) 2(4) 11(5) -9(4) N(4) 17(5) 12(4) 20(5) 3(3) 2(4) 1(4) C(5) 1 1(6) 32(7) 29(6) 0(5) -1(5) 7(5) C(1 l) 21 (7) 34(7) 36(8) -12(6) 1 1(6) -3(5) C(12) 32(7) 50(8) 20(7) 14(6) 3(6) 20(6) C(13) 30(9) 42(9) 18(8) 5(7) -8(6) 15(7) C(14) 6(5) 35(7) 28(9) 1(6) 2(4) -5(5) C(21) 20(7) 24(6) 20(6) 3(5) -2(6) 1(5) C(22) 25(7) 30(7) 22(7) 5(5) 3(6) 5(5) 174 C(23) C(24) C(30) C(3 1) C(32) C(41) C(42) C(43) C(44) C(45) C(46) C(5 1) C(52) C(53) C(54) C(55) C(56) C(57) C(58) C(59) C(421) C(422) C(423) C(461) C(462) C(463) 28(7) 19(7) 11(7) 47(6) 31(7) 24(6) 6(6) 31(7) 43(9) 48(8) 15(6) 25(7) 27(7) 38(8) 45(9) 36( 10) 35(7) 25(6) 45(6) 33(8) 28(8) 32(8) 43(8) 21(6) 53(8) 67(9) 46(8) 38(8) 33(6) 53(6) 66(9) 15(7) 24(6) 18(7) 30(8) 39(8) 23(7) 20(6) 20(6) 30(7) 20(8) 30(9) 62(8) 60(7) 47(7) 45(8) 23(7) 20(7) 40(7) 35(7) 50(7) 47(8) 34(7) 24(8) 38(7) 48(6) 26(6) 26(6) 40(12) 57(9) 68(10) 44(3) 3 1(7) 19(6) 40(3) 67(9) 111(14) 162(18) 8 1( l 1) 55(8) 63( 10) 57(9) 47(9) 60(9) 46(7) 23(7) 47(8) 50(8) -5(6) 2(6) 4(5) 19(1 1) 4(7) 10(5) —2(6) -2(6) 1 1(8) 11(7) -1(5) 2(5) 6(6) 7(8) -1 1(8) 4600) 3604) 2504) -14(9) 6(6) 8(6) -3(6) 23(6) 1 1(6) -12(7) 19(6) —2(6) 4(6) 3(5) 21(12) -8(5) 2(5) -10(6) 4(7) -11(8) -170) 4(5) 3(5) 14(6) 12(7) 39(9) 29(11) 0(13) 20(12) -10(10) -6(6) 6(6) -2(7) - 10(6) -1(5) 4(6) -3(7) -17(5) -4(6) -6(5) -l9(6) -2(7) -5(5) -4(5) 3(6) 12(6) 6(6) -5(5) 1(5) -10(6) -17(7) 5(7) 9(8) 0(7) 4(5) -2(5) -2(6) -l(6) 1(6) -18(6) -3(5) 2(7) 0(7) Table A-11.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Azx 103) for Mo(dmpm)(Ndip)(=CHCMe2Ph). x z U(eq) x y z U(eq) H(5) 688 5394 2445 29 H(58A) 1317 6808 3769 77 H(l 1) 176 5692 4919 36 H(58C) 1902 6542 3625 77 H(12) 316 3997 6456 41 H(52B) 1568 5761 4588 77 H(13) - 160 2192 5550 36 H(59A) 1374 5441 607 67 H(21) 787 2569 505 25 H(59B) 1840 6183 1 143 67 H(22) 168 1499 -892 31 H(59C) 1284 6670 1343 67 H(23) -663 1478 376 43 H(421) 1 174 1286 2217 39 175 H(3 1 A) H(3 1B) H(3 1C) H(32A) H(32B) H(32C) H(43) H(4-’4) H(45) H(53) H(54) H(55) H(56) H(57) -537 -1038 -1011 -1308 -1291 -984 1831 2172 2060 1580 2160 2707 2774 2208 909 1024 1581 3559 2870 4076 -943 -650 1092 3537 1959 1566 2951 4546 3759 2925 4350 3229 1874 2052 4034 6057 7226 854 741 2479 4091 4356 74 74 74 61 61 61 42 57 52 54 70 91 72 56 176 H(42A) H(42B) H(42C) H(42D) H(42B) H(42F) H(461 ) H(46A) H(46B) H(46C) H(46D) H(46B) H(46F) 1885 1410 1512 704 512 483 1330 2098 1882 2214 1266 816 996 -196 -1137 -913 28 334 3631 3051 4349 3699 2246 2338 3491 1670 743 1872 2879 183 1 3345 7942 7671 6596 8437 7422 8193 56 56 1138988: 75 75 75 82 82 82 Table A-12.1. Crystal data and structure refinement for Ru(dpma)(PCy3)(=CHCH=CMe2) °toluene. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.26° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Extinction coefficient Largest diff. peak and hole jtcx9t C4IH62N3PRu 728.98 173(2) K 0.71073 A Triclinic P-l a = 9.651402) A b = 13.390906) A c =19.128(2)A 2204.9(5) A3 2 1.098 Mg/m3 0.419 mm'1 776 0.19 x 0.23 x 0.56 mm3 1.66 to 23.26° -10<=h<=10, -14<=k<=l4, -21<=1<=21 19115 6339 [R(int) = 0.0608] 99.9 % Empirical 0.9193 and 0.8148 Full-matrix least-squares on F? 6339 / 0 / 416 1.121 R1 = 0.0980, wR2 = 0.2979 R1: 0.1251, wR2 = 0.3206 0.009(2) 3.625 and -0.489 e.A-3 177 a: 69.938(2)° 8: 76.147(2)° y = 74.182(2)° Table A-12.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Ru(dpma)(PCy3)(=CHCH=CMe2)-toluene. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) Ru 7369(1) -613(l) 7031(1) 31(1) C013) 936708) -2200(30) 921201) 16404) P 6109(3) 10(2) 8043(1) 31(1) C014) 8750(40) -3l69(17) 951501) 15604) N( l) 6205(12) - 1798(8) 7205(5) 47(2) C(115) 7180(30) -2881(11) 9776(9) 96(7) N(2) 9101(9) 191(7) 6724(5) 36(2) C(116) 6370(20) -2078(12) 9141(9) 93(6) N(3) 902601) -1727(7) 6546(5) 43(2) C021) 647304) 1291(9) 8053(6) 42(3) C(1) 625302) 320(9) 6306(6) 40(3) C022) 571506) 229500) 7519(7) 60(4) C(2) 6497(13) 1309(9) 5751(6) 42(3) C(123) 6240(30) 3282(1 1) 7437(8) 96(7) C(3) 5721(1 1) 1914(10) 5183(6) 40(3) C(124) 6000(30) 3475(12) 8195(9) 128(9) C(4) 6098(16) 2966(11) 4664(8) 65(4) C(125) 6810(30) 2494(12) 8744(9) 97(7) C(5) 450005) 163104) 5021(9) 80(5) C026) 631109) 148101) 8840(7) 69(4) C(11) 480306) -1892(12) 7286(7) 58(4) C031) 414402) -10(13) 8344(6) 59(4) C(12) 4720(20) -2838(15) 7221(8) 82(5) C(132) 3492(14) 217(19) 9104(7) 96(7) C(13) 6160(30) -3403(13) 7095(8) 90(7) C033) 197607) -110(30) 9366(8) 16504) C(14) 7049(18) -2738(11) 7080(7) 58(4) C(134) 953(16) 600(30) 8788(9) 150(12) C(21) 936502) 121300) 6520(6) 41(3) C035) 1613(14) 470(20) 8021(8) 103(8) C(22) 10817( 13) 1206(13) 6193(6) 54(3) C(136) 3142(13) 693(14) 7757(7) 65(4) C(23) 1148903) 13603) 6197(7) 57(4) C(80S) 2030(30) 4280(20) 699904) 124(10) C(24) 10433(1 1) -453(10) 6518(6) 42(3) C(8 l S) 2460(30) 4917(18) 7259(14) 121(8) C(31) 867609) -2842(10) 6951(7) 70(5) C(82S) 1830(20) 5040(20) 802308) 126(9) C(32) 10434(13) -161 8( 10) 6653(7) 54(3) C(83S) 820(40) 4708(19) 8385(15) 140(10) C(33) 9012(15) -1448(10) 5722(6) 52(3) C(84S) 320(50) 4070(30) 8040(30) 310(40) C(1 1 1) 6970(11) -1031(8) 8831(6) 36(2) C(SSS) 810(30) 3900(30) 7340(20) 171(15) C(1 12) 8593(15) -1272(15) 8569(8) 92(6) C(86S) 2750(50) 4010(30) 6346(16) 240(20) Table A-12.3. Bond lengths [A] and angles [°] for Ru(dpma)(PCy3)(=CHCH=CMe2) ~toluene. Ru-C(l) Ru-N( 1) Ru-N(2) Ru-N(3) Ru-P 1.854(11) 2.078( 10) 2.092(9) 2.141(9) 2.313(3) 178 C(24)-C(32) C(111)-C(112) C(111)-C(116) C(1 12)-C(113) C(113)-C(114) 1.491(18) 1.507(17) 1.539(17) 1.58(2) 1.45(4) P-C(121) 1.849(11) C(114)—C(115) 1.46(3) P-C(131) 1.850(12) C(115)-C(116) 1.535(19) P-C(111) 1.852(10) C(121)-C(122) 1.505(16) N(1)-C(11) 1.360(16) C(121)-C(126) 1.576(16) N(1)-C(l4) 1.364(17) C(122)-C(123) 1.49(2) N(2)-C(21) 1.366(14) C(123)-C(124) 1 .51(2) N(2)-C(24) 1.391(14) C(124)-C(125) 1.52(2) N(3)-C(32) 1 .474(16) C(125)-C(126) 1.50(2) N(3)-C(33) 1.492(14) C031)-C(132) 1.536(18) N(3)-C(31) 1.516(16) C(131)-C(136) 1.543(17) C(1)-C(2) 1.423(15) C(132)-C(133) 156(2) C(2)-C(3) 1.361(15) C( 133)-C(134) 1.55(3) C(3)-C(5) 1.458(18) C(134)-C(135) 1.50(2) C(3)-C(4) 1.500(17) C(135)-C(136) 1.517(18) C(1 1)-C(12) 1.34(2) C(808)-C(8 1 S) 1.32(3) C(12)-C(13) 1.40(3) C(808)-C(8SS) 1.34(4) C(13)-C(14) 1.38(2) C(8OS)-C(86S) 1.39(4) C( 14)—C(3 1) 1.5 1(2) C(818)—C(828) 1.49(4) C(21)-C(22) 1.391(16) C(82S)—C(83S) 1.15(3) C(22)-C(23) 1.40(2) C(83S)-C(84S) 1.47(5) C(23)-C(24) 1.359(17) C(84S)-C(85S) 1.38(5) C(1)-Ru-N(1) 89.5(4) C(21)«C(22)-C(23) 107.4(12) C(1)-Ru-N(2) 98.2(4) C(24)-C(23)-C(22) 105.9(11) N( 1 )-Ru-N(2) 160.6(4) C(23)-C(24)-N(2) 11 1.7(1 1) C( l )-Ru-N(3) 109.1(4) C(23)-C(24)—C(32) 132.2(11) N(1)-Ru-N(3) 80.4(4) N(2)-C(24)-C(32) 116.1(10) N (2)-Ru-N (3) 80.2(4) C(14)-C(31)-N(3) 108.9( 10) C(1 )-Ru-P 98.7(3) N (3)28igma(1)] R indices (all data) Largest diff. peak and hole alo3 C18H25F6M0N0352 657.45 173(2) K 0.71073 A Monoclinic P2(1)/n a = 12.694(15) A b = 15.77(3) A c = 12.87(2) A 2573(8) A3 4 1.697 Mg/m3 0.758 mm“1 1328 0.14 x 0.19 x 0.37 mm 2.04 to 24.48° -10<=h<=14, -15<=k<=l7, -14<=1<=13 11661 / 3709 [R(int) = 0.2521] 86.9 % None 01 = 90° 8 = 92.93(16)° 7 = 90' Full-matrix least-squares on F2 3709 / 0 / 325 1.001 R1 = 0.1008, WR2 = 0.2300 R1 = 0.2080, wR2 = 0.3187 1.813 and -2.866 e.A‘3 183 Table A-13.2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x 103) for Mo(NR)(OTf)2(DME). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) Mo 7718(1) 4616(1) 5922(1) 28(1) C(l’) 7501(15) 5432(18) 2436(14) 54(7) 8(1) 7047(4) 4717(4) 3479(3) 43(2) C(1) 6475(13) 4028(12) 5902(12) 35(5) 8(2) 7549(4) 4294(4) 8500(4) 45(2) C(2) 6054(14) 3072(13) 5928(13) 39(5) 0(11) 7766(8) 5020(7) 4315(8) 30(3) C(2’) 8640(20) 4516(19) 9299(16) 66(7) 0(12) 7295(11) 3960(10) 3040(9) 64(4) C(3) 6915(13) 2433(14) 5984(13) 44(5) 0(13) 5986(9) 4948(12) 3708(10) 73(5) C(4) 7712(13) 2348(17) 5006(13) 55(6) 0(21) 7855(8) 4837(7) 7553(8) 28(3) C(10) 9210(13) 3055(15) 5864(14) 40(5) C(22) 7522(13) 3370(13) 8308(11) 88(6) C(11) 10180(13) 3068(15) 6321(13) 43(6) 0(23) 6699(13) 4692(13) 9103(12) 104(8) C(12) 10755(14) 2348(15) 6283(14) 41(5) 0(31) 6782(8) 5855(8) 6093(8) 30(3) C(13) 1043805) 1603(16) 5780(14) 50(6) 0(32) 8890(8) 5796(9) 5900(8) 34(3) C(14) 9458(15) 1597(15) 5336(14) 48(6) N(l) 8594(10) 3792(12) 5865(10) 45(5) C(15) 8815(14) 2335(16) 5382(14) 45(6) F(ll) 7401(9) 6256(9) 2759(8) 59(3) C(21) 5407(15) 2953(18) 4939(15) 76(9) F(12) 8487(9) 5317(8) 2146(8) 58(3) C(22) 5270(14) 3005(15) 6886(16) 59(7) F(l3) 6916(9) 5330(9) 1613(8) 74(4) C(31’) 7359(12) 6544(14) 5704(13) 38(5) F(21) 9517(10) 4187(13) 8800(11) 112(7) C(32) 9873(13) 5661(15) 6414(16) 54(6) F(22) 8517(11) 4041(8) 10197(8) 74(4) C(32’) 8410(13) 6566(14) 6144(14) 42(5) F(23) 8770(15) 5284(13) 9506(12) 124(7) C(311) 6155(13) 6037(15) 7058(13) 47(6) Table A-l3.3. Bond lengths [A] and angles [°] for Mo(NR)(OTf)2(DME). Mo-N(l) 1.714(18) F(11)-C(l’) 1.37(3) Mo—C(1) 1.828(19) F(12)-C(1’) 1.34(2) Mo-O(21) 2.125(11) F(13)-C(1’) l.27(2) Mo-O(ll) 2.168(11) F(21)-C(2’) l.41(3) Mo-O(31) 2.303(12) F(22)-C(2’) 139(3) Mo-O(32) 2.384(13) F(23)-C(2’) 125(3) 8(1)-0(12) 1.363(15) C(1)-C(2) 160(3) 8(1)-0(13) 1.440(13) C(2)-C(3) 1.49(3) 8(1)-0(1 1) 1.456(12) C(2)-C(21) 1.49(2) S(1)-C(1 ’) 1.87(2) C(2)-C(22) 1.63(3) S(2)-O(22) l.48(2) C(3)-C(4) l.66(2) S(2)-0(23) 1.498(15) C(4)-C(15) 1.46(2) 184 8(2)-C(21) S(2)-C(2’) O(31)-C(31 ’) O(31)-C(311) C(32)-C(32) C(32)-C(32’) N( 1 )—C( 10) N(1)-Mo-C( l ) N(1)-Mo-O(21) C(1 )-Mo-O(21) N(1)-Mo-O(1 1) C(1)-Mo-O(l 1) O(21)-Mo-O(1 l) N( 1)-Mo-O(3 1) C( 1)-Mo-O(3 1) O(21)-Mo-0(3 1) 0(1 1 )-Mo-O(31) N ( 1 )-Mo-O(32) C(1)-Mo—O(32) O(21)-Mo-O(32) O(l 1)-Mo-O(32) 0(3 1 )-Mo-O(32) C(12)-S(l)-O( 13) O( 12)-S(1)-O(1 l) O(l3)-S(1)-O(11) O( 12)-S(1)-C( 1 ’) O( 13)-S(1)-C(1 ’) O(l 1)-S(1)-C(1’) O(22)-S(2)-O(23) O(22)-S(2)-0(21) O(23)-S(2)-O(21) O(22)-S(2)-C(2’) O(23)-S(2)-C(2’) O(21)—S(2)-C(2’) 8(1)-C(1 1)-Mo S(2)-O(21)«Mo C(31’)—O(31)-C(31 1) C(31’)-O(31)-Mo C(31 l)-O(31)-Mo C(32)-0(32)-C(32’) l .556(12) 1.72(2) 1.42(2) 1.536(19) 1 .398( 18) 1.40(2) 1.40(2) 100.2(8) 98.4(5) 97.2(6) 97.6(5) 101.6(6) 152.7(4) 170.4(6) 89.0(6) 77.5(4) 83.2(4) 100.6(6) 159.1(6) 82.2(4) 73.2(4) 70.4(4) 123.0( 10) 1 16.4(8) 108.8(8) 98.4(1 1) 108.7( 10) 97.4(8) 1 19.2(11) 114.6(8) 1 13.0(8) 108.2(12) 100.7(13) 97.5(10) 124.2(7) 132.3(7) 1 16.2(14) 109.8( 10) 121.8(10) 1 14.4(14) 185 C(10)-C(11) C(10)-C(15) C(11)-C(12) C(12)-C(13) C(13)-C(14) C(14)-C(15) C(31’)-C(32’) C(10)-N(1)-Mo F(13)-C(1 ’)-F(12) F(13)-C(1’)-F(11) F(12)—C(1’)-F(1 1) F(13)-C(1’)-S(l) F(12)-C(1’)-S(1) F(11)-C(1’)-S(1) C(2)-C( 1 )-Mo C(3)-C(2)-C(21) C(3)-C(2)—C( 1) C(2 1 )-C(2)-C( 1) C(3)-C(2)-C(22) C(21)—C(2)-C(22) C(1)-C(2)-C(22) F(23)-C(2’)-F(22) F(23)-C(2’)-F(2 l) F(22)—C(2’)-F(21) F(23)-C(2’)-S(2) F(22)-C(2’)-S(2) F(21)—C(2’)-S(2) C(2)-C(3)-C(4) C(15)-C(4)—C(3) C(11)-C(lO)-C(15) C(1 l)-C(10)-N(1) C(15)-C(10)-N(1) C(10)-C(11)-C(12) C(11)-C(12)-C(13) C(14)-C(13)-C(12) C(13)-C(14)-C(15) C(10)-C(15)-C(14) C(10)-C(15)-C(4) C(14)-C(15)-C(4) O(31)-C(31’)-C(32’) 1.34(2) 1.38(3) 1.35(3) 1.39(3) 1.34(2) 1.42(3) 1.42(2) 172.9(14) 105.4(17) 108.3(19) 108.5(17) 109.4(15) 116.5(16) 108.5(14) 140.0(12) 109.1(18) 113.2(15) 105.7(16) 113.3(15) 107.9(15) 107.2(15) 111.3(19) 111(2) 108(2) 114.7(19) 105.4(18) 106.5(15) 119.5(16) 111.2(14) 121.1(19) 119(2) 119.7(16) 117(2) 125.6(19) 116(2) 120(2) 119.8(18) 117.4(19) 123(2) 111.7(15) 114.7(12)| 113.2(10) I C(32)-O(32)-Mo C(32’)-O(32)-Mo O(32)-C(32’)-C(31’) 107.4(16) Table A-13.4. Anisotropic displacement parameters (A2 x 103) for Mo(NR)(OTf)2(DME). The anisotropic displacement factor exponent takes the form: -2n2 [hza*2U11 +...+2hka*b* U12] ull [J22 L133 {123 L113 U12 Mo 24(1) 43(1) 17(1) 1(1) -4(1) 2(1) S( 1) 37(3) 70(5) 22(3) -3(3) -14(2) -7(3) 8(2) 50(3) 60(4) 23(3) 7(3) -5(2) -1(3) 0(1 1) 41(7) 17(7) 30(7) 4(6) -3(5) 2(6) 0(12) 92(12) 64(12) 32(8) —26(8) -23(7) 2(9) 0(13) 20(8) 141(16) 57(9) 47( 10) -9(6) 2(8) O(21) 28(6) 25(8) 30(7) -5(5) -10(5) -4(5) O(22) 109(14) 112(17) 41(9) -6(10) -32(8) -15(12) C(23) 83(12) 160(20) 69(11) 79(12) 42(9) 76(13) 0(31) 28(7) 42(9) 20(6) 0(6) 1(5) 13(6) 0(32) 22(6) 58( 10) 20(6) -1(6) -9(5) 5(6) N(l) 1 1(7) 105(16) 16(8) - 12(9) -7(6) -9(9) F( 1 1) 78(9) 5 l (10) 44(7) 3(6) -25(6) -10(7) F(12) 58(8) 75( 10) 39(7) 1(6) 4(5) -1(7) F(13) 67(8) 1 14(12) 37(7) 19(7) -30(6) -22(8) F(21) 56(9) 200(20) 75( 10) 42(11) -18(8) 22( 10) F(22) 134(12) 55( 10) 30(7) 10(6) -28(7) 3(8) F(23) 185(18) 100(16) 78(11) 13( 10) -85(1 1) -40(13) C(l') 35(12) 100(20) 27(11) 10(13) -13(9) —19(13) C(1) 41(11) 41(14) 21(9) 1(9) -19(8) 30(9) C(2) 33(11) 50(15) 32(11) 4(9) -17(8) -4(10) C(2’) 90(19) 70(20) 31(13) -6(14) -39(12) 4(16) C(3) 32(11) 63(16) 35(11) 9(11) -6(8) -4( 10) C(4) 45(12) 90(20) 25(11) 8(11) -10(9) - l (12) C(10) 21(10) 68(17) 29(11) 0(10) 2(8) 22(11) C(11) 22(10) 84(19) 25(10) 8( 10) 1(8) 8(10) C(12) 24(11) 59(17) 41(12) 12(11) -6(8) 12(10) C(13) 35(12) 80(19) 37(12) 13(12) 16(9) 13(12) C(14) 50(13) 59(16) 33(11) 11(11) 1(10) -1(11) 186 (3(15) C(21) C(22) C(31’) C(32) C(32’) C(311) 29(11) 46(14) 33(12) 24(10) 24(1 1) 23(10) 33(1 1) 75( 18) 1 30(30) 72(18) 61(15) 76(18) 70(17) 81(19) 32(11) 48(14) 71(15) 28(10) 60(14) 32(11) 29(11) 6(12) 24(14) 26(13) 15(10) 2(12) -7(11) -2(11) 6(9) -19(11) -13(10) 0(8) -11(9) -1(8) 7(8) 10(11) -20(14) -6(11) -6(10) 2(10) 3(10) -7(11) Table A- 13.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Mo(NR)(OTf)2(DME). x y z U(eq) x y z U(eq) H(1A) 5909 4403 5864 42 H(22B) 4686 3386 6765 89 H(3A) 6593 1882 6078 53 H(22C) 5649 3155 7525 89 H(3B) 7351 2549 6609 53 H(31A) 7006 7071 5861 45 H(4A) 7550 1831 4622 66 H(31B) 7377 6496 4954 45 H(4B) 7595 2823 4535 66 H(32A) 10295 6164 6369 81 H(llA) 10448 3553 6651 52 H(32B) 10222 5197 6094 81 H(12A) 11419 2351 6622 50 H(32C) 9776 5531 7131 81 11033) 10880 1134 5752 60 H(32D) 8793 7037 5859 50 H(14A) 9200 1113 4998 57 H(32B) 8406 6636 6893 50 H(21A) 5144 2382 4904 115 H(31C) 5823 6582 6987 71 H(ZIB) 5835 3057 4359 115 H(31D) 6624 6033 7667 71 H(21C) 4825 3342 4917 115 H(31B) 5625 5608 7123 71 H(22A) 5012 2435 6935 89 187 Table A-14.l. Crystal data and structure refinement for MoC12(NAr)(=C8H12=C8H12=NAr). Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Calculated density Absorption coefficient F(OOO) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 23.24 Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>28igma(1)] R indices (all data) Extinction coefficient Largest diff. peak and hole jtcxlOt C‘“)1158C12M0N2 733.72 173(2) K 0.71073 A Monoclinic P2(1)/n a = 10.487(3) A b = 17.824(3) A c = 203470) A 3737.807) A3 4 1.304 Mg/m3 0.523 mm'1 1552 0.17 x 0.19 x 0.24 mm 1.53 to 2324' - 1 1<=h<=1 1, -19<=k<=19, -22<=1<=22 31846 / 5361 [R(int) = 0.1619] 99.9 % Empirical 0.9914 and 0.8827 Full-matrix least-squares on F2 5361 /0 / 407 0.891 R1 = 0.0521, wR2 = 0.0902 R1 = 0.1203, wR2 = 0.1077 0.00035(1 1) 0.791 and -0.842 e.A'3 188 Table A-l4.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for MoC12(NAr)(-=C8H12=C8H12=NAr). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y ‘ z U(eq) Mo 6521(1) 7754(1) 7496(1) 25( 1) C(13) 6005(6) 8836(4) 9873(3) 36(2) C1( 1) 7417(2) 6509(1) 7354(1) 38( 1) C(14) 5564(6) 8252(4) 10216(3) 46(2) C1(2) 8743(2) 8090(1) 7955(1) 39( 1) C(15) 5222(6) 7582(4) 9893(3) 44(2) N ( 1 ) 5947(4) 7957(2) 8223(2) 24( 1) C(16) 5300(6) 7476(4) 9219(3) 37(2) N(2) 4878(4) 7346(3) 6791(2) 24(1) C(21) 361 1(6) 7090(3) 6902(3) 24(2) C( 1 A) 6261(6) 8665(3) 6975(3) 25(2) C(22) 2689(6) 7642(4) 6970(3) 31(2) C( 1 B) 5162(5) 7351(3) 6190(3) 24(2) C(23) 1502(6) 7396(4) 7112(3) 38(2) C(2A) 6818(6) 8363(3) 6436(3) 26(2) C(24) 1229(6) 6650(4) 7168(3) 40(2) C(28) 6435(5) 7682(4) 6126(3) 26(2) C(25) 2140(6) 6123(4) 7070(3) 35(2) C(3A) 7984(6) 8785(3) 6273(3) 35(2) C(26) 3342(6) 6316(3) 6931(3) 26(2) C(3B) 7300(6) 7265(4) 5734(3) 37(2) C(121) 6682(6) 9398(3) 8861(3) 31(2) C(4A) 7714(8) 9258(4) 5639(3) 63(3) C(122) 5795(6) 10085(4) 8808(3) 51(2) C(4B) 6841(8) 6758(6) 5197(5) 136(5) C(123) 8050(6) 9619(4) 9196(3) 53(2) C(5A) 6638( 10) 9817(8) 5609(7) 170(8) C(161) 4884(7) 6730(4) 8887(3) 44(2) C(SB) 5985(8) 7058(5) 4547(4) 78(3) C( 162) 5434(7) 6064(4) 9302(4) 75(3) C(6A) 5980(18) 10080(7) 5958(5) 236(1 1) C(163) 3399(7) 6665(4) 8738(3) 66(2) C(6B) 5194(9) 7749(5) 4626(3) 73(3) C(221) 2920(6) 8473(3) 6903(3) 36(2) C(7A) 5339(7) 9966(4) 6518(3) 50(2) C(222) 1931(6) 8821(4) 6342(3) 58(2) C(7B) 4022(7) 7596(4) 4967(3) 55(2) C(223) 2929(6) 8874(4) 7574(3) 60(2) C(8A) 6069(6) 9481(3) 7089(3) 35(2) C(261) 4299(6) 5708(3) 6821(3) 30(2) C(88) 4216(6) 7076(3) 5587(3) 35(2) C(262) 4826(6) 5280(3) 7456(3) 44(2) C(1 1) 5781(6) 8071(4) 8881(3) 27(2) C(263) 3662(6) 5156(3) 6267(3) 42(2) C(12) 6144(6) 8761(4) 9203(3) 28(2) Table A-14.3. Bond lengths [A] and angles [°] for MoC12(NAr)(=C8H12=C8H12=NAr). Mo-N( 1 ) Mo-C( 1 A) Mo-N(2) Mo-C1(2) Mo-C1(1 ) Mo-C(2A) N( 1 )-C( l l ) 1 .736(5) 1 .932(6) 2. 154(5) 2.4192(18) 2.4478(17) 2.486(6) 1 .396(7) 189 C(7B)-C(8B) C(11)-C(16) C(11)-C(12) C(12)-C(13) C(12)-C(121) C(13)-C(14) C(14)-C(15) 1 .549(8) 1.406(8) 1.412(8) 1.404(7) 1 .496(8) 1 .379(8) 1 379(8) N(2)-C( 1 B) N(2)-C(21) C( 1 A)-C(2A) C( 1A)-C(8A) C( 1B)-C(2B) C( 1B)-C(8B) C(2A)-C(2B) C(2A)-C(3A) C(2B)-C(3B) C(3A)-C(4A) C(3B)-C(4B) C(4A)-C(5A) C(43)-C(5B) C(5A)-C(6A) C(5B)-C(6B) C(6A)-C(7A) C(6B)-C(7B) C(7A)-C(8A) N( 1 )-Mo—C( 1 A) N(1)-Mo-N(2) C( lA)-Mo-N(2) N( 1 )-Mo-C1(2) C(1A)-Mo-C1(2) N(2)-Mo-C1(2) N(1)-Mo-C1(1) C( 1 A)-Mo-C1( 1) N(2)-Mo-C1( 1) C1(2)-Mo—C1( 1) N ( 1 )-Mo-C(2A) C(1A)-Mo-C(2A) N(2)-Mo-C(2A) C1(2)-Mo-C(2A) C1( 1 )-Mo-C(2A) C(1 1)-N(1)-Mo C( 18)-N(2)-C(21) C(1B)-N(2)eMo C(2 l )-N(2)-Mo C(2A)-C( 1A)-C(8A) C(2A)-C( 1A)-Mo C(8A)-C(1A)—Mo 1.31 1(6) 1.462(7) 1.439(8) 1.492(7) 1.487(7) 1.509(7) 1.393(8) 1.523(7) 1.510(7) 1.523(8) 1.430(9) 1.498(12) 1.550(1 1) 1.175(12) 1.5 1 1( 10) 1.440(12) 1.543(10) 1.535(8) 104.9(2) 106.1(2) 84.4(2) 94.63(16) 91 .85(18) 159.23(13) 1 19.40(15) 135.70( 19) 83.83(13) 84.65(6) 140.2(2) 35.3(2) 77.43(18) 87.75(14) 100.43(15) 166.4(4) 121.0(5) 109.1(4) 129.8(4) 124.7(5) 93.9(4) 138.0(4) 190 C(15)-C(16) C(l6)-C(16l) C(21)-C(22) C(21)-C(26) C(22)-C(23) C(22)-C(221) C(23)-C(24) C(24)-C(25) C(25)-C(26) C(26)-C(261) C(121)-C(123) C( 121)-C(122) C( 161 )-C(162) C(161)-C(163) C(221)-C(222) C(221)-C(223) C(26 l )-C(262) C(261)-C(263) C(5B )-C(6B)-C(7B) C(6A)-C(7A)-C(8A) C(6B)-C(7B)-C(8B) C(1A)—C(8A)-C(7A) C(1B)-C(8B)-C(7B) N( 1 )-C(1 1)-C(16) N(1)-C(11)-C(12) C(16)-C(l 1)-C(12) C(13)-C(12)-C(11) C(13)-C(12)-C(121) C(11)-C(12)-C(121) C(14)-C(13)-C(12) C(15)-C(14)-C(13) C(14)-C(15)-C(16) C(15)-C(16)-C(11) C(15)-C(16)-C(161) C(11)-C(16)-C(161) C(22)-C(21)-C(26) C(22)-C(21)-N(2) C(26)-C(21)-N(2) C(23)-C(22)-C(21) C(23)-C(22)-C(221) 1.401(8) 1.519(8) 1 .404(8) 1 .41 1(8) 1.399(8) 1.512(8) 1 .368(8) 1.381(8) 1 .385(8) 1.522(8) 1.522(8) 1 .529(8) 1 509(8) 1.535(9) 1 525(8) 1.541(8) 1.514(7) 1.551(8) 1 13.7(7) 116.0(7) 118.5(6) 119.5(5) 115.8(5) 118.6(6) 120.0(6) 121.3(6) 117.8(6) 119.6(6) 122.6(6) 121.6(6) 1 19.6(6) 121.8(6) 117.9(6) 119.3(6) 122.8(6) 122.3(6) 117.3(5) 120.4(5) 117.1(6) 119.3(6) N(2)-C(1B)-C(2B) 1 16.5(5) C(21)-C(22)-C(221) 123.5(6) N(2)-C(1B)-C(8B) 121.8(5) C(24)-C(23)-C(22) 122.0(6) C(2B)-C(1B)-C(SB) 121.5(5) C(23)-C(24)-C(25) 119.2(6) C(ZB)-C(2A)-C( l A) 123.2(5) C(24)-C(25)-C(26) 122.7(6) C(2B)—C(2A)-C(3A) 120.5(5) C(25)-C(26)-C(21) 1 16.6(6) C(1A)-C(2A)-C(3A) l 15.9(5) C(25)-C(26)-C(261) 120.2(6) C(2B )-C(2A)-Mo 86.6(4) C(21)-C(26)-C(261) 123.2(6) C(1A)-C(2A)-Mo 50.8(3) C(12)-C(121)-C(123) 113.2(5) C(3A)-C(2A)-Mo 129.7(4) C(12)-C(121)-C(122) 111.4(5) C(2A)-C(ZB)-C(1B) 119.7(5) C(123)-C(121)-C(122) 109.6(5) C(2A)-C(2B)-C(3B) 121.1(5) C(162)-C(161)-C(16) 113.1(6) C(1B)-C(2B)-C(3B) 119.2(5) C(162)-C(161)-C(163) 108.7(6) C(4A)-C(3A)-C(2A) 1 15.3(5) C(16)-C(161)-C(163) 110.6(6) C(4B )-C(3B)-C(2B) 124.3(6) C(22)-C(221)-C(222) 111.6(5) C(5A)-C(4A)-C(3A) 1 15.1(7) C(22)-C(221)-C(223) 1 10.4(5) C(3B )-C(4B )-C(5B) 1 19.6(8) C(222)-C(221)-C(223) 11 1.5(5) C(6A)-C(5A)-C(4A) 139.6(12) C(262)-C(261)—C(26) 1 12.3(5) C(6B )-C(5B)-C(4B) 1 15.6(7) C(262)-C(261)-C(263) 109.9(5) C(5A)-C(6A)-C(7A) 146.5(12) C(26)-C(261)-C(263) 1 10.6(5) Table A-l4.4. Anisotropic displacement parameters (A2 x 103) for MoC12(NAr)(=C8H12=C8H12=NAr). The anisotropic displacement factor exponent takes the form: -2 1:2[h2 a"‘2 U11 + + 2hka* b* U12] ull {122 1133 u23 ul3 ulZ Mo 24(1) 27(1) 23(1) 0(1) 1(1) 1(1) C1(1) 32(1) 35(1) 43(1) -2(1) 0(1) 9(1) C1(2) 27(1) 51(1) 34(1) -3(1) -4(1) -2(1) N(l) 27(3) 23(3) 22(3) 2(2) 4(2) 2(2) N(2) 19(3) 20(3) 32(3) 2(3) 0(2) 1(2) C( 1 A) 30(4) 22(4) 22(4) 0(3) -2(3) -1(3) C(lB) 25(4) 14(4) 30(4) -1(3) -3(3) 5(3) C(2A) 23(4) 29(4) 23(4) -1(3) -4(3) -6(3) C(2B) 22(4) 32(4) 21(4) 4(3) 0(3) 1(4) C(3A) 29(4) 41(5) 37(4) -10(4) 9(4) -1 1(3) C(3B) 38(4) 47(5) 25(4) -9(4) 3(3) 1(4) C(4A) 80(7) 77(6) 32(5) 5(4) 13(5) -52(5) C(4B) 59(7) 244(14) 94(8) -99(9) -19(6) 68(8) 191 C(5A) C(5B) C(6A) C(6B) C(7A) C(7B) C(8A) C(8B) C(1 1) C(12) C(13) C(14) C(15) C(16) C(21) C(22) C(23) C(24) C(25) C(26) C(121) C(122) C(123) C(161) C( 162) C(163) C(221) C(222) C(223) C(261) C(262) C(263) 59(7) 61(6) 480(30) 106(8) 67(6) 70(6) 34(4) 21(4) 25(4) 21(4) 35(4) 37(5) 56(5) 38(4) 21(4) 28(4) 30(4) 25(4) 33(5) 25(4) 44(5) 48(5) 40(5) 56(5) 78(7) 77(7) 28(4) 51(5) 56(6) 29(4) 40(5) 40(5) 238(17) 137(10) 206(15) 66(6) 32(5) 47(5) 39(5) 43(5) 34(4) 37(5) 38(5) 65(6) 41 (5) 44(5) 29(5) 32(5) 38(5) 58(6) 36(5) 29(4) 25(4) 44(5) 59(6) 39(5) 41(6) 68(6) 21 (4) 40(5) 45(5) 20(4) 34(5) 40(5) 229(17) 36(5) 54(7) 34(5) 43(5) 35(4) 28(4) 40(4) 22(4) 24(4) 33(5) 35(5) 40(5) 30(4) 22(4) 32(4) 46(5) 35(4) 36(4) 23(4) 25(4) 61(5) 62(6) 38(5) 95(7) 45(5) 57(5) 77(6) 73(6) 40(4) 52(5) 49(5) 192 206( 14) -5(6) 86(8) 13(5) 8(4) -5(4) 1(3) -8(4) 0(3) -1(4) -6(4) -2(4) 7(4) 0(4) - 1(3) -1(3) -7(4) -6(4) 5(4) -2(3) 4(3) 1(4) 9(4) 0(4) -1(5) -11(4) -2(4) 4(4) -21(4) 4(3) 4(4) 4(4) 64(9) 5(5) 131(12) -20(5) -12(4) -23(4) -3(3) 3(3) 7(3) -1(3) 4(4) 9(4) 20(4) 9(4) 3(3) 3(3) 6(4) 2(3) 4(4) 0(3) 7(4) 10(4) 18(4) 14(4) -7(5) -12(5) 4(4) -7(5) -3(5) 0(3) -10(4) 1 1(4) 45(9) -30(6) 269(18) -58(6) 0(4) 4(4) -4(4) -1 1 (3) 7(3) 1 1 (3) - 1 (4) -3(4) 1 (4) l (3) -4(3) 4(4) 10(4) -4(4) -2(4) 1 (3) 6(4) 9(4) 0(4) -6(4) 16(5) -5(5) 8(3) 9(4) 10(4) -7(3) -7(4) -2(4) Table A-l4.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for MoC12(NAr)(=C8H12=C8H12=NAr). x y z U(eq) X y z U(eq) H(3AA) 8322 91 l 1 6647 42 H(25A) 1938 5617 7097 42 H(3AB) 8656 8424 623 l 42 H(12A) 6720 9236 8405 38 H(3BA) 7803 7644 5553 45 H( 12E) 4933 9945 8597 76 H(33B) 7910 6983 6059 45 H(12F) 6115 10465 8546 76 H(4AA) 8502 9525 5597 75 H( 1 26) 5781 10277 9248 76 H(4AB) 7505 8925 5258 75 H( 123) 8606 9188 9229 79 H(4BA) 6354 6367 5372 164 H(12C) 8037 9810 9636 79 H(4BB) 7594 6520 5073 164 H(12D) 8372 10000 8935 79 H(SAA) 7004 10259 5436 205 H( 16A) 5192 6709 8461 52 H(SAB) 6001 9632 5237 205 H(16B) 6364 6098 9399 1 12 H(SBA) 6543 7169 4229 94 H( 16C) 5180 5610 9059 112 H(SBB) 5397 6662 4357 94 H(16D) 5109 6059 9713 112 H(6AA) 5256 10254 5625 283 H(16E) 3153 6191 8528 99 H(6AB) 6468 10532 6102 283 H(16F) 3041 7064 8444 99 H(6BA) 4883 7965 4188 87 H(16G) 3074 6700 9148 99 H(6BB) 5752 81 17 4888 87 H(22A) 3781 8536 6788 43 H(7AA) 4503 9735 6354 60 H(22B) 1949 8560 5931 88 H(7AB) 5177 10453 6698 60 H(22F) 2141 9340 6292 88 H(7BA) 3336 7383 4634 66 H(ZZG) 1080 8783 6450 88 H(7BB) 371 1 8076 5098 66 H(22B) 3560 8642 7916 90 H(8AA) 6920 9702 7232 42 H(22C) 2086 8837 7691 90 H(8AB) 5615 9524 7462 42 H(22D) 3148 9393 7534 90 H(SBA) 3380 7002 57 17 42 H(26A) 5031 5950 6669 36 H(SBB) 4509 6591 5459 42 H(26B) 5219 5625 7796 66 H(13A) 6215 9290 10090 43 H(26C) 5463 4924 7370 66 H(14A) 5499 83 1 1 10663 55 H(26D) 4129 5019 7604 66 H( 1 5A) 493 1 7190 10128 53 H(26E) 4277 4776 6205 64 H(23A) 880 7749 7169 46 H(26F) 3392 5425 5856 64 H(24A) 440 6501 7272 48 H(26G) 2920 4925 6398 64 193 Table A-15.l. Crystal data and structure refinement for WC12(NAr)(=C8H12=C8H12=NAr). Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume 2 Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 23.28 Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Extinction coefficient largest diff. peak and hole kapillt C40H57C12N2W 820.63 173(2) K 0.71073 A Orthorhombic Pbca a = 170400) A b = 19.421(3) A c = 22.704(3) A 7513.309) A3 8 1.451 Mg/m3 3.247 mrn’l 3352 0.23 x 0.25 x 0.50 mm 1.79 to 23.28°. -18<=h<=18, -21<=k<=21, -25<=1<=25 61037 / 5405 [R(int) = 0.0500] 100.0 % Empirical 0.8387 and 0.6216 Full-matrix least-squares on F2 5405 /0 / 407 1.056 R1 = 0.0206, wR2 = 0.0460 R1 = 0.0354, wR2 = 0.0511 0.00021(2) 0.751 and -0.507 e.A‘3 194 «mg 3. 3. Table A-15.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for WC12(NAr)(=C8H12=C8H12=NAr). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) W 9278(1) 1225(1) 3781(1) 19( 1) C(13) 10127(2) 3547(2) 2632(2) 35( 1) N( 1) 9474(2) 1934(2) 3339(1) 21 (1) C(14) 10157(3) 3348(2) 2048(2) 40( 1) N (2) 8069(2) 1074(1) 3606(1) 19(1) C(15) 9964(2) 2682(2) 1898(2) 32(1) C1( 1) 9395(1) 61(1) 3422(1) 32(1) C(16) 9732(2) 2200(2) 2311(2) 24(1) C1(2) 10622(1) 1068(1) 4083(1) 32(1) C(21) 7647(2) 1340(2) 3093(2) 22(1) C(18) 7759(2) 659(2) 3999(2) 20(1) C(22) 7441(2) 2040(2) 3093(2) 25(1) C( 1 A) 8961(2) 1572(2) 4549(2) 23(1) C(23) 7105(2) 2308(2) 2581(2) 36( 1) C(28) 8244(2) 457(2) 4499(2) 22(1) C(24) 6975(2) 1903(2) 2094(2) 35(1) C(2A) 8726(2) 925(2) 4802(2) 23( 1) C(25) 7164(2) 1213(2) 2112(2) 31(1) C(38) 8203(2) -309(2) 4666(2) 27(1) C(26) 7497(2) 908(2) 2607(2) 23(1) C(3A) 9043(2) 746(2) 5411(2) 34(1) C(121) 9924(2) 3299(2) 3716(2) 29(1) C(48) 7680(2) -557(2) 5172(2) 35( 1) C(122) 10692(2) 3067(2) 4010(2) 36( 1) C(4A) 8510(3) 932(2) 5926(2) 47(1) C(123) 9799(2) 4068(2) 3821(2) 38( 1) C(58) 6796(2) -451(2) 5096(2) 37( 1) C(161) 9555(2) 1466(2) 2132(2) 27(1) C(5A) 8317(3) 1692(2) 6040(2) 51(1) C(162) 10283(2) 1021(2) 2193(2) 39(1) C(68) 6554(3) 313(2) 5054(2) 38( 1) C(163) 9214(3) 1407(2) 1511(2) 47(1) C(6A) 7880(3) 2075(2) 5548(2) 46( 1) C(221) 7535(2) 2501(2) 3632(2) 31(1) C(7B) 6365(2) 567(2) 4436(2) 31(1) C(222) 6779(3) 2534(2) 3988(2) 47(1) C(7A) 8402(3) 2540(2) 5181(2) 39( 1) C(223) 7800(3) 3230(2) 3481(2) 46( 1) C(88) 6941(2) 382(2) 3943(2) 24( 1) C(261) 7622(2) 126(2) 2596(2) 28( 1) C(8A) 9129(2) 2197(2) 4922(2) 30(1) C(262) 821 1(2) -97(2) 2128(2) 38( 1) C( 1 1) 9708(2) 2413(2) 2906(2) 22(1) C(263) 6838(2) -250(2) 2490(2) 35(1) C(12) 9913(2) 3090(2) 3074(2) 25( 1) Table A-15.3. Bond lengths [A] and angles [°] for WC12(NAr)(=C8H12=C8H12=NAr). W-N( 1) 1.736(3) C(7A)-C(8A) 1.525(5) W-C( 1 A) 1.944(4) C(11)-C(12) 1.413(5) W-N(2) 2.120(3) C(11)-C(16) 1.414(5) W-C1(2) 2.4095( 10) C(12)-C(13) 1.387(5) W-C1(1) 2.4120(10) C(12)-C(121) 1.514(5) W-C(2A) 2.567(4) C(13)-C(14) 1.382(5) 195 N(1)-C(1 1) N (2)-C( 1 B) N(2)-C(21) C( 1B)-C(28) C( 18)-C(88) C(1A)-C(2A) C(1A)-C(8A) C(2B)—C(2A) C(28 )-C(38) C(2A)-C(3A) C(3B)-C(4B) C(3A)-C(4A) C(4B)—C(5B) C(4A)-C(5A) C(SB )-C(6B) C(5A)-C(6A) C(6B)-C(7B) C(6A)-C(7A) C(7B)-C(88) N( l )-W-C( 1 A) N( 1 )-W-N(2) C(1A)-W-N(2) N( 1 )-W-C1(2) C(1A)—W-C1(2) N(2)-W-C1(2) N( 1 )-W-C1( 1) C( 1 A)-W—Cl( 1) N(2)-W-C1( 1) C1(2)-W-C1(1) N( 1 )-W-C(2A) C(1A)-W-C(2A) N(2)-W-C(2A) C1(2)-W-C(2A) C1( 1 )-W-C(2A) C(1 1 )-N(1)-W C( 18)-N(2)-C(21) C(1B)-N(2)-W C(21)-N(2)-W N (2)-C( 1 B)-C(2B) N(2)-C(1B)—C(88) 1 .41 1(4) 1.315(4) 1.462(4) 1.458(5) 1.500(5) 1.438(5) 1.507(5) 1.404(5) 1.536(5) 1.526(5) 1.532(5) 1.524(6) 1.529(6) 1.534(6) 1.543(5) 1.536(6) 1.522(5) 1.515(6) 1.531(5) 107.30(14) 100.81 (12) 86.94(13) 94.70(9) 93.04(11) 163.77(8) 122. 1 1( 10) 130.59(11) 8349(8) 84.24(3) 140.57(12) 33.73(13) 77.40(11) 9364(8) 9704(8) 168.6(3) 124.1(3) 110.3(2) 125.4(2) 117.8(3) 122.4(3) 196 C(14)-C(15) C(15)-C( l 6) C(16)-C(161) C(21 )-C(22) C(2 1 )—C(26) C(22)-C(23) C(22)-C(221) C(23)-C(24) C(24)-C(25) C(25)-C(26) C(26)-C(261) C(121)-C(123) C(121)-C(122) C(161)-C(162) C(161)-C(163) C(221)-C(222) C(221)-C(223) C(261)-C(262) C(261)—C(263) C(7A)-C(6A)-C(5A) C(6B)-C(7B)-C(88) C(6A)-C(7A)-C(8A) C(lB)-C(88)-C(7B) C( 1 A)-C(8A)-C(7A) N(1)-C(11)-C(12) N(1)-C(11)-C(16) C(12)-C(1 1)-C(16) C(13)-C(12)-C(11) C(13)-C(12)-C(121) C(11)-C(12)-C(121) C(14)-C(13)-C(12) C(15)-C(14)-C(13) C(14)-C(15)-C(16) C(15)-C(16)-C(11) C( 15)-C(16)—C( 161) C(11)-C(16)-C(161) C(22)-C(21)-C(26) C(22)-C(21)-N(2) C(26)-C(21)-N(2) C(23)-C(22)-C(21) 1.376(5) 1.384(5) 1.512(5) 1.405(5) 1.409(5) 1.396(5) 1.524(5) 1.375(5) 1.378(5) 1.392(5) 1.534(5) 1.527(5) 1.537(5) 1.518(5) 1.529(5) 1.521(6) 1.527(5) 1.526(5) 1.541(5) 113.8(4) 117.5(3) 115.4(3) 116.7(3) 114.6(3) 119.8(3) 118.7(3) 121.5(3) 117.7(4) 121.5(3) 120.7(3) 121.6(4) 119.5(4) 122.4(4) 117.2(3) 120.9(3) 121.8(3) 122.0(3) 117.7(3) 120.2(3) 117.6(4) C(28)-C(1B)-C(8B) C(2A)-C( 1 A)-C(8A) C(2A)-C(1A)-W C(8A)-C(1A)-W C(2A)-C(28 )-C( 1 B) C(2A)-C(28)-C(3B) C( lB)-C(28)-C(3B) C(2B )-C(2A)-C( l A) C(2B)-C(2A)-C(3A) C(1A)—C(2A)-C(3A) C(2B)-C(2A)-W C(1A)-C(2A)-W C(3A)-C(2A)-W C(4B)eC(3B)-C(28) C(4A)-C(3A)-C(2A) C(5B)-C(4B)-C(3B) C(3A)-C(4A)-C(5A) C(4B)-C(SB)—C(6B) C(4A)-C(5A)-C(6A) C(7B)-C(6B)-C(58) 119.8(3) 122.2(3) 97.6(2) 136.8(3) 122.5(3) 122.2(3) 115.3(3) 122.2(3) 120.3(3) 117.4(3) 85.4(2) 48.65(18) 137.7(3) 121.0(3) 115.5(3) 116.6(3) 119.0(4) 113.6(3) 116.6(4) 115.2(3) C(23)-C(22)-C(221) C(21)-C(22)-C(221) C(24)-C(23)-C(22) C(23)-C(24)-C(25) C(24)-C(25)-C(26) C(25)-C(26)-C(21) C(25)-C(26)—C(261) C(21)-C(26)-C(26l) C(12)-C(121)-C(123) C(12)-C(121)-C(122) C(123)-C(121)-C(122) C(16)-C(161)-C(l62) C(l6)-C(161)—C(163) C(162)-C(161)-C(163) C(222)-C(221)-C(22) C(222)-C(221)-C(223) C(22)-C(221)-C(223) C(262)-C(261)-C(26) C(262)-C(261)-C(263) C(26)-C(261)-C(263) 119.5(3) 122.8(3) 121.6(4) 119.6(4) 122.2(4) 117.0(3) 117.7(3) 125.2(3) 114.2(3) 110.5(3) 109.8(3) 110.4(3) 113.1(3) 110.6(3) 111.2(3) 109.3(3) 113.3(3) 112.6(3) 109.0(3) 110.6(3) Table A-15.4. Anisotropic displacement parameters (A2 x 103) for WC12(NAr)(=C8H12=C8H12=N Ar). The anisotropic displacement factor exponent takes the form: -2 n2 [ h2 a*2 U11 + + 2 hk a* b* U12] ull U22 u33 [J23 ul3 1112 w 21(1) 15(1) 20(1) 2(1) -20) 0(1) N(l) 18(2) 22(2) 24(2) -10) 40) 3(1) N(2) 21(2) 17(2) 19(2) -1(1) -30) 1(1) C10) 34(1) 20(1) 42(1) -6(1) -10) 4(1) C1(2) 25(1) 31(1) 42(1) 8(1) -70) 2(1) C(18) 27(2) 12(2) 21(2) 4(2) 2(2) 0(2) C(lA) 19(2) 23(2) 26(2) 2(2) -6(2) -1(2) C(28) 23(2) 21(2) 22(2) 2(2) 1(2) 0(2) C(2A) 22(2) 22(2) 25(2) 3(2) -2(2) 0(2) C(38) 30(2) 21(2) 31(2) 3(2) -6(2) -1(2) C(3A) 42(3) 29(2) 30(2) 8(2) -14(2) -14(2) C(48) 43(3) 26(2) 36(3) 12(2) -9(2) -9(2) 197 C(4A) C(58) C(5A) C(6B) C(6A) C(7B) C(7A) C(88) C(8A) C(1 1) C(12) C(13) C(14) C(15) C(16) C(21) C(22) C(23) C(24) C(25) C(26) C(121) C(122) C(123) C(16 1) C(162) C(163) C(22 l) C(222) C(223) C(261) C(262) C(263) 74(4) 45(3) 64(3) 38(3) 48(3) 25(2) 56(3) 24(2) 42(3) 17(2) 20(2) 36(3) 50(3) 33(3) 17(2) 20(2) 24(2) 41 (3) 35(3) 32(2) 21(2) 26(2) 37(3) 39(3) 30(2) 38(3) 62(3) 34(3) 55(3) 45(3) 34(2) 41 (3) 40(3) 42(3) 34(3) 66(3) 40(3) 52(3) 24(2) 32(3) 20(2) 25(2) 21 (2) 20(2) 19(2) 32(3) 35(3) 25(2) 24(2) 22(2) 23(2) 42(3) 39(3) 27(2) 22(2) 30(2) 27(2) 29(2) 31(2) 49(3) 20(2) 43(3) 28(2) 29(2) 37(3) 30(2) 24(2) 32(3) 24(3) 37(3) 37(3) 44(3) 29(2) 27(2) 23(2) 27(2) 34(2) 49(3) 37(3) 28(2) 29(2) 23(2) 30(2) 45(3) 29(2) 22(2) 21(2) 38(2) 41(3) 47(3) 20(2) 47(3) 29(2) 38(3) 44(3) 66(3) 23(2) 37(3) 36(2) 198 7(2) 10(2) -1 1(2) -5(2) -20(2) 2(2) -12(2) 4(2) 1(2) 8(2) 3(2) 6(2) 14(2) 5(2) 7(2) 3(2) 2(2) 10(2) 13(2) —3(2) 3(2) 0(2) 4(2) -9(2) 1(2) -7(2) 5(2) 0(2) -5(2) -11(2) 4(2) - 1 1(2) -6(2) 6(2) 5(2) 14(2) 8(2) 10(2) -1(2) -10(2) -5(2) -5(2) 0(2) 0(2) 3(2) 6(2) 3(2) -l(2) -3(2) -8(2) -12(2) -9(2) -6(2) -1(2) 1(2) -4(2) -1(2) -1(2) 4(2) -3(2) -14(2) 0(2) 4(3) -5(2) -1(2) -1(2) -28(3) -10(2) -26(3) -3(2) -3(2) -3(2) 0(2) -2(2) -13(2) 3(2) 2(2) -4(2) 4(2) 3(2) 4(2) -2(2) 0(2) 4(2) 0(2) -5(2) -1(2) -3(2) 2(2) 4(2) -1(2) 2(2) -14(2) 6(2) 42(2) -2(2) 1(2) 4(2) 5(2) Table A-15.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for WC12(NAr)(=C8H12=C8H12=NAr). x y z U(eq) x y z U(eq) H(3BA) 8043 -558 4316 33 H(12A) 9494 3054 3912 34 H(388) 8734 -456 4756 33 H028) 10761 2581 3952 54 H(3AA) 9146 255 5425 41 H(12F) 10671 3165 4424 54 H(3AB) 9541 981 5464 41 H(IZG) 11126 3309 3836 54 H(4BA) 7775 -1044 5230 42 H(128) 9317 4210 3639 57 H(4BB) 7842 -321 5528 42 H(12C) 10228 4321 3653 57 H(4AA) 8304 590 6168 56 H(12D) 9773 4156 4237 57 H(58A) 6527 -659 5428 45 H(16A) 9161 1287 2407 32 H(588) 6627 -687 4742 45 H(16E) 10494 1070 2583 58 H(SAA) 8806 1934 6116 61 H(16F) 10669 1164 1910 58 H(SAB) 8004 1720 6396 61 H(16G) 10148 548 2125 58 H(6BA) 6096 385 5301 46 H(16B) 8759 1696 1479 70 H(6BB) 6975 593 5212 46 H(16C) 9070 938 1435 70 H(6AA) 7634 1740 5291 55 H(16D) 9601 1552 1229 70 H(6A8) 7467 2351 5723 55 H(22D) 7939 2294 3884 37 H(7BA) 6322 1065 4450 37 H(22B) 6619 2076 4093 71 H(7BB) 5853 389 4328 37 H(22F) 6376 2748 3756 71 H(7AA) 8570 2923 5425 47 H(ZZG) 6866 2799 4339 71 H(7AB) 8092 2727 4861 47 H(22A) 8279 3211 3259 69 H(88A) 6972 -1 16 3919 28 H(228) 7886 3485 3838 69 H(888) 6723 545 3573 28 H(22C) 7402 3455 3252 69 H(8AA) 9407 2532 4683 36 H(26G) 7824 -15 2982 34 H(8AB) 9473 2063 5242 36 H(26D) 8703 130 2194 58 H(13A) 10253 3998 2731 42 H(26E) 8015 24 1745 58 H(14A) 10306 3661 1759 48 H(26F) 8284 -587 2148 58 H(15A) 9991 2553 1504 38 H(26A) 6471 -125 2792 53 H(23A) 6967 2771 2569 44 H(26B) 6924 -738 2499 53 H(24A) 6760 2093 1754 42 H(26C) 6632 -121 2112 53 H(25A) 7065 942 1782 37 199 Table A-16.1. Crystal data and structure refinement for [W(=C8H12=C8H12=NAI)(O)(|L-O)]2 Identification code Empirical formula Formula weight Temperature Wavelength Crystal system space group Unit cell dimensions Volume 2 Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 23.25 Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F2 Fina] R indices [I>2sigma(l)] R indices (all data) Largest diff. peak and hole k111461t C1611251305001.50W050 340.29 173(2) K 0.71073 A Triclinic P-l a = 11.155306) A b = 12.710107) A c = 13.151004) A 1554.8(3) A3 4 1.454 Mg/m3 3.745 mm'1 694 0.02 x 0.59 x 0.62 mm 1.83 to 23.25° -12<=h<=12, -14<=k<=14, -l4<=1<=14 13507 / 4475 [R(int) = 0.0393] 100.0 % None (1 = 118.851(9)° B = 98.755(8)' y = 99.161(12)° Full-matrix least-squares on F2 4475 / 0 / 334 1.023 R1 = 0.0219, WR2 = 0.0471 R1 = 0.0276, WR2 = 0.0486 0.669 and 0540 e.A-3 200 Table A-16.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for [W(=C8H12=C8H12=NAI)(O)(11-O)]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) x y z U(eq) w 3839(1) 469(1) 241(1) 18(1) C(4A) 4927(5) 5361(4) 2309(4) 44(1) N 3439(3) 1163(3) 1853(3) 18(1) C(4S) 2409(8) 1096(7) 5821(7) 112(3) 0(1) 2415(2) -507(2) -691(2) 25(1) C(5) 236(4) 739(4) 2333(3) 28(1) 0(2) 5157(2) -8(2) 931(2) 19(1) C(58) 7310(4) 2256(4) 3657(4) 41(1) O(8S) 1340(4) 2659(4) 6641(4) 75(1) C(5A) 3514(5) 5010(4) 1790(4) 43(1) C(1) 2284(4) 630(4) 2041(3) 20(1) C(6) 1343(4) 1254(4) 2175(3) 21(1) C(18) 4347(4) 2162(4) 2801(3) 20(1) C(68) 6805(4) 2335(4) 4715(4) 38(1) C(1A) 4039(4) 2175(4) 467(3) 21(1) C(6A) 3082(5) 4537(4) 444(4) 45(1) C(ls) 325(7) 4229(7) 7641(9) 123(3) C(78) 5399(4) 1738(4) 4399(4) 39(1) C(2) 2130(4) —488(4) 2037(3) 22(1) C(7A) 2615(4) 3125(4) 424(4) 37(1) C(28) 5139(4) 2991(4) 2615(4) 23(1) C(88) 4461(4) 2328(4) 4035(4) 30(1) C(2A) 4890(4) 3082(4) 1547(4) 24(1) C(8A) 3573(4) 2357(4) -568(4) 30(1) C(2S) 501(8) 3310(9) 6521(8) 127(3) C(21) 3114(4) -1229(4) 1816(4) 27(1) C(3) 1006(4) -949(4) 2203(4) 30(1) C(22) 3439(4) -1564(4) 2784(4) 40(1) C(38) 6288(4) 3920(4) 3646(4) 33(1) C(23) 2652(4) 200(4) 570(4) 38(1) C(3A) 5541(4) 4300(4) 1658(4) 31(1) C(61) 1469(4) 2443(4) 2145(4) 24(1) C(3S) 1561(9) 1770(8) 5615(7) 116(3) C(62) 386(4) 2327(4) 1203(4) 40(1) C(4) 76(4) .3470) 2356(4) 29(1) C(63) 1587(5) 3560(4) 3384(4) 46(1) C(48) 7447(4) 3415(4) 3575(4) 39(1) Table A-16.3. Bond lengths [A] and angles [°] for [W(=C8812=C8H12=NAr)(0)(n-0)]2. W-O( 1) W-O(2) W-O(2)#1 W-C( 1 A) W-N W-W#1 N-C( lB) N-C(1) 0(2)—W#1 C(88)-C(3S) C(88)-C(2S) 1 .696(3) 1 .940(2) 1 .958(2) 2.010(4) 2.021(3) 3.0475(5) 1.368(5) 1.469(5) 1.958(2) 1.370(8) 1.383(8) 201 C(28)-C(3B) C(2A)-C(3A) C(3)-C(4) C(38)-C(48) C(3A)-C(4A) C(3S)-C(4S) C(4)-C(5) C(48)-C(58) C(4A)-C(5A) C(5)-C(6) C(58)-C(6B) 1.523(5) 1.528(5) 1.367(6) 1.528(6) 1.543(6) 1.452( 10) 1.379(5) 1.514(6) 1.517(6) 1.397(5) 1.543(6) C(1)—C(6) C(1)-C(2) C( 18)-C(28) C(1B)-C(8B) C(1A)-C(2A) C(1A)-C(8A) C(1 S)-C(2S) C(2)—C(3) C(2)-C(21) C(28)-C(2A) O( 1 )-W-O(2) O( 1 )-W-O(2)#1 O(2)-W-O(2)#1 0(1)-W-C(1A) O(2)—W—C( 1 A) O(2)#1-W-C(1A) 0(1)-W-N 0(2)-W-N O(2)#1 -W-N C(1A)-W-N O( 1 )-W-W#1 O(2)-W—W#1 O(2)#1-W-W# 1 C ( 1 A)-W-W#1 N-W—W#1 C(lB)-N-C( l) C( 1B)-N-W C( 1)-N-W W-O(2)-W#1 C(3S)-O(83)—C(28) C(6)-C(1)-C(2) C(6)-C(1 )-N C(2)—C(1)-N N-C( 18)-C(2B) N-C( 18)-C(8B) C(2B)-C( 18)-C(88) C(2A)-C(1A)-C(8A) C(2A)-C(1A)-W C(8A)-C(1A)-W C(3)-C(2)—C( 1) 1.396(5) 1.401(5) 1.403(5) 1.515(5) 1.381(5) 1.517(5) 1.440( 10) 1.392(5) 1.530(5) 1.454(5) 124.84(12) 99.07(11) 77.15(11) 111.38(14) 123.69(l3) 92.15(12) 100.55(12) 85.54(11) 159.01(11) 87.60(13) 117.7 1(9) 3878(7) 3837(7) l 12.16(11) 123.39(9) 120.7(3) 115.4(2) 123.9(2) 102.85(11) 117.9(6) 122.0(3) 117.4(3) 120.5(3) 120.3(3) 117.7(3) 122.0(3) 124.6(4) 111.6(3) 121.9(3) 117.5(4) 202 C(5A)-C(6A) C(6)-C(61) C(6B)-C(7B) C(6A)-C(7A) C(7B )-C(88) C(7A)-C(8A) C(21 )-C(23) C(21)-C(22) C(61)-C(62) C(61 )-C(63) C(1B)-C(2B)-C(2A) C( 1 B)-C(28)-C(3B) C(2A)—C(28)-C(3B) C(1A)-C(2A)-C(2B) 'C(1A)-C(2A)-C(3A) C(2B )-C(2A)-C(3A) O(85)-C(28)-C( IS) C(4)-C(3)-C(2) C(2B)-C(3B)-C(4B) C(2A)-C(3A)-C(4A) O(8S)-C(3S)-C(4S) C(3)-C(4)—C(5) C(58)-C(4B )-C(3B) C(5A)«C(4A)-C(3A) C(4)-C(5)-C(6) C (4B)-C(58)-C(6B) C(4A)-C(5A)-C(6A) C(1)-C(6)—C(5) C( 1)-C(6)-C(61) C(5)—C(6)-C(6 1) C(7B)-C(6B )-C(SB) C(7A)—C(6A)—C(5A) C(6B)-C(7B)-C(88) C(6A)-C(7A)-C(8A) C(lB)—C(88)-C(7B) C( 1A)-C(8A)-C(7A) C(23)-C(21)—C(2) C(23)-C(21)-C(22) C(2).C(2 1 )-C(22) C(6)-C(61)-C(62) 1.532(6) 1.516(5) 1.525(6) 1.529(6) 1.527(6) 1.532(6) 1.525(6) 1.537(5) 1.526(5) 1.527(5) 124.5(4) 117.3(4) 118.0(3) 124.1(4) 118.1(4) 117.6(3) 114.4(7) 121.7(4) 112.4(3) 112.8(4) 114.1(7) 119.9(4) 114.7(4) 113.8(4) 121.2(4) 114.9(4) 115.4(4) 117.6(4) 123.1(3) 119.3(4) 115.5(4) 117.3(4) 118.9(4) 118.1(4) 115.7(3) 117.1(3) 110.2(3) 110.2(3) 112.0(3) 112.1(3) C(3)-C(2)-C(21) 119.5(4) | C(6)-C(61)-C(63) 111.3(3) C(1)-C(2)-C(21) 123.0(3) L C(62)-C(61)-C(63) 110.7(4) Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z Table A-16.4. Anisotropic displacement parameters (A2 x 103) for [W (=C8H12=C8H12=NAr)(O)(11-O)]2. The anisotropic displacement factor exponent takes the form: -2 n2 [h2 3*2 U11 + + 2 hk a* b* U12] ull u22 u33 u23 LIB {112 w 17(1) 18(1) 17(1) 8(1) 5(1) 5(1) N 17(2) 20(2) 22(2) 13(2) 8(2) 6(2) 0(1) 22(2) 30(2) 19(2) 10(1) 4(1) 3(1) 0(2) 22(2) 22(2) 17(2) 12(1) 9(1) 9(1) O(8S) 70(3) 98(3) 53(3) 41(3) 7(2) 16(3) C(1) 18(2) 26(2) 14(2) 10(2) 7(2) 5(2) C(18) 17(2) 22(2) 19(2) 8(2) 6(2) 7(2) C(1A) 21(2) 26(2) 21(2) 14(2) 12(2) 11(2) C(IS) 95(6) 93(6) 19000) 80(7) 23(7) 40(5) C(2) 26(2) 21(2) 21(2) 13(2) 7(2) 5(2) C(28) 23(2) 19(2) 21(2) 7(2) 5(2) 6(2) C(2A) 25(2) 22(2) 27(3) 12(2) 13(2) 7(2) C(2S) 110(7) 127(8) 138(9) 87(7) -29(6) 19(6) C(3) 33(3) 26(3) 31(3) 17(2) 9(2) 3(2) C(38) 32(3) 31(3) 24(3) 11(2) 1(2) 4(2) C(3A) 36(3) 26(3) 27(3) 14(2) 7(2) 0(2) C(3S) 146(9) 121(8) 49(5) 34(5) 18(5) -2(6) C(4) 25(3) 34(3) 27(3) 16(2) 11(2) 2(2) C(48) 21(3) 56(3) 27(3) 17(3) 3(2) 4(2) C(4A) 68(4) 20(3) 39(3) 13(2) 18(3) 6(3) C(4S) 119(7) 108(7) 66(5) 12(5) 50(5) 9(5) C(5) 21(2) 32(3) 23(3) 9(2) 6(2) 7(2) C(58) 30(3) 51(3) 31(3) 14(3) 2(2) 15(2) C(5A) 64(4) 25(3) 55(4) 23(3) 32(3) 23(3) C(6) 22(2) 23(2) 14(2) 7(2) 4(2) 4(2) C(68) 37(3) 41(3) 26(3) 15(2) -2(2) 7(2) C(6A) 54(3) 41(3) 62(4) 37(3) 25(3) 23(3) C(78) 29(3) 50(3) 50(3) 40(3) 2(2) 3(2) 203 C(7A) C(88) C(8A) C(21) C(22) C(23) C(61) C(62) C(63) 46(3) 29(3) 41(3) 28(3) 43(3) 49(3) 21(2) 37(3) 60(4) 39(3) 34(3) 27(3) 27(3) 44(3) 28(3) 24(2) 41(3) 27(3) 40(3) 22(3) 29(3) 36(3) 54(3) 45(3) 27(3) 47(3) 42(3) 29(3) 12(2) 19(2) 21 (2) 38(3) 19(2) 12(2) 30(3) 10(2) 12(2) 8(2) 10(2) 13(2) 19(3) 19(3) 7(2) 4(2) 13(3) 19(2) 1 (2) 9(2) 9(2) 1 8(2) 19(2) 5(2) 5(2) 1 2(3) Table A-16.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for [W(=C8H12=C8H12=NAr)(O)(pt-O)]2. x y z U(eq) x y z U(eq) H(l SA) -266 4639 7483 184 H(6BA) 7263 1939 5052 45 H( 1 SB) 11 16 4832 8144 184 H(6BB) 6987 3207 5336 45 H(lSC) 8 3828 8042 184 H(6AA) 2410 4899 325 54 H(ZSA) -308 2720 6012 152 H(6AB) 3779 4854 218 54 H(ZSB) 798 3723 6114 152 H(7BA) 5118 1027 4429 47 H(3A) 883 -1686 2210 36 H(7AA) 2234 2974 -1213 44 H(3BA) 6098 4121 4405 39 H(7AB) 1953 2804 -167 44 H(388) 6474 4683 3630 39 H(88A) 3637 1977 4064 36 H(3AA) 5515 4155 859 37 H(888) 4702 3215 4628 36 - H(3AB) 6418 4557 2096 37 H(8AA) 3199 1540 -1287 36 H(3SA) 1913 2169 5217 140 H(8AB) 4298 2754 -703 36 H(3SB) 764 1 177 5074 140 H(2 1 A) 3884 -712 1843 33 H(4A) -662 -669 2475 35 H(22A) 4058 -2027 2614 59 H(4BA) 7640 3230 2821 47 H(22B) 2693 -2061 2782 59 H(4BB) 8157 4063 4223 47 H(22C) 3770 -813 3560 59 H(4AA) 5096 561 1 3152 52 H(23A) 2451 -2190 -27 58 H(4AB) 53 16 6074 2269 52 H(23B) 1915 -2945 534 58 H(4SA) 2522 494 5066 168 H(23C) 3301 -2836 418 58 H(4SB) 2058 675 6193 168 H(61A) 2248 2598 1920 29 H(4SC) 3209 1672 6340 168 H(62A) 326 1620 431 60 H(5A) -406 1137 2426 33 H(628) 537 3070 1163 60 H(58A) 8125 2085 3731 49 H(62C) -388 2217 1421 60 H(SBB) 6745 1557 291 l 49 H(63A) 2272 3618 3964 69 H(SAA) 3212 5735 2229 52 H(638) 819 3455 3611 69 H(5AB) 3120 4369 1927 52 H(63C) 1744 4309 3356 69 204 Table A-l7.1. Crystal data and structure refinement for Ti(NMe2)2(dpma). Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 28.35° Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>281gma(1)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole 1 C151125 NSTi 323.30 173(2) K 0.71073 A Orthorhombic P2(1)2(1)2(1) (#19) a = 9.832(2) A b = ll.565(2) A c = 15.177(3) A 1725.8(6) A3 4 1.244 Mg/m3 0.497 mm“ 688 0.39 x 0.13 x 0.13 mm3 2.21 to 28.35° -12<=h<=13, -15<=k<=14, -19<=l<=20 20760 4189 [R(int) = 0.0764] 98.2 % Full-matrix least-squares on F2 4189/ 0/ 191 1.016 R1 = 0.0524, wR2 = 0.1297 R1 = 0.0920, wR2 = 0.1465 0.04(4) 0.0029(13) 0.450 and -0.348 e.A-3 205 Table A-17.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Ti(NMe2)2(dpma). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y 7- U(eq) x y z U(eq) Ti -7941 (1 ) -4923( 1) -2063( 1) 27( 1) C(22) -7046(5) -8204(4) -945(3) 48( 1) N( 1 ) -7709(4) -3395(3) - 1443(2) 34( 1) C(23) -5831(5) -7567(4) -790(3) 43( 1) N(2) -7346(3) -6404(3) - 1477(2) 34( 1) C(24) -6061(4) -6485(3) -1126(2) 35( 1) N (3) -5610(3) -4732(2) - 1922(2) 32( 1) C(31) —5295(4) -3482(3) -1812(3) 40( 1) N(4) -9810(3) -5138(3) -1827(2) 35(1) C(32) -5256(4) -5385(3) -1115(3) 40( 1) N (5) -7957(3) -4866(3) -3288(2) 36(1) C(33) 4876(4) -5225(4) -2685(3) 41(1) C(l 1) -8584(4) -2710(4) -959(3) 41 ( 1) C(41) -10303(4) -5333(4) -937(3) 47(1) C(12) —7873(6) - 1870(3) -528(3) 47(1) C(42) -10948(4) -5175(4) —2445(3) 52(1) C(13) -6481(5) -2016(4) -755(3) 40( 1) C(51) -8074(6) -3827(4) -3796(3) 57(1) C(14) -6431(4) -2942(3) -1312(3) 35(1) C(52) -7942(6) -5902(4) -3835(3) 62(1) C(21) -7932(5) -7486(3) - 1367(3) 47(1) Table A-l7 .3. Bond lengths [A] and angles [°] for Ti(NMe2)2(dpma). Ti-N(5) 1.859(3) N(4)—C(41) 1.453(5) Ti-N(4) 1.888(3) N(4)-C(42) 1.460(5) T1-N( 1) 2.015(3) N(5)-C(51) 1.433(5) Ti-N(2) 2.017(3) N(5)-C(52) 1.457(5) Ti-N(3) 2.312(3) C(11)-C(12) 1.364(6) N(1)-C(14) 1.377(5) C(12)-C(13) 1.421(7) N(1)-C(11) 1.381(5) C(13)-C(14) 1.365(6) N (2)-C(24) 1.375(5) C(14)-C(31) 1.487(6) N(2)-C(21) 1.388(5) C(21)-C(22) 1.363(6) N (3)-C(33) 1 479(4) C(22)-C(23) 1.423(7) N (3)-C(32) 1.480(5) C(23)-C(24) 1.370(5) N(3)-C(31) 1 488(5) C(24)-C(32) 1.498(6) N(5)-Ti-N(4) 100.74(13) C(31)-N(3)-Ti 108.0(2) N(5)-Ti-N( 1) 1 15.95(14) C(41)-N(4)-C(42) 109.7(3) N(4)-Ti-N( 1) 97.88(14) C(41)-N(4)-Ti 121 .4(3) N(5)-Ti-N(2) 118.21(14) C(42)—N(4)-Ti 128.9(3) N(4)-Ti-N(2) 94.96(13) C(51)-N(5)-C(52) 112.5(3) N ( 1 )-Ti—N(2) 120.37(12) C(51)-N(5)-Ti 124.6(3) 206 N(5)-Ti-N(3) N(4)-Ti-N(3) N(1)-Ti-N(3) N(2)-Ti-N(3) C(14)-N(1)-C(1 1) C( 14)-N(1)-Ti C(11)-N(1)-Ti C(24)-N(2)—C(21) C(24)-N(2)-T1 C(21)-N(2)-Ti C(33)-N(3)-C(32) C(33)-N(3)-C(31) C(32)-N(3)—C(3 1) C(33)-N(3)-Ti C(32)-N(3)-Ti 95.59(12) 163.58(12) 76.16(12) 75.67(12) 105.8(3) 120.3(3) 133.0(3) 105.8(3) 119.7(3) 134.3(3) 109.6(3) 111.2(3) 110.7(3) 112.0(2) 105.1(2) C(52)-N(5)-Ti C(12)-C(11)-N(1) C(11)-C(12)-C(l3) C( 14)—C(1 3)—C( 12) C(13)-C(14)-N( 1) C(13)-C(14)-C(31) N(1)—C(14)-C(31) C(22)-C(21)-N(2) C(21)—C(22)-C(23) C(24)-C(23)-C(22) C(23)-C(24)-N(2) C(23)-C(24)-C(32) N(2)-C(24)-C(32) C(14)-C(31)—N(3) N(3)-C(32)-C(24) 122.7(3) 110.2(4) 107.0(3) 106.2(4) 110.8(4) 132.2(4) 116.9(3) 109.9(4) 107.4(4) 105.8(4) 111.0(4) 133.2(4) 115.6(3) 108.0(3) 107.5(3) Table A-17.4. Anisotropic displacement parameters (Azx 103) for Ti(NMe2)2(dpma). The anisotropic displacement factor exponent takes the form: 207 -2J'|‘.2[112 a"‘2U11 + + 2 h k a* b* U12] U11 U22 {133 L123 U13 U12 ”[1 29(1) 27(1) 26(1) 1(1) -2(1) 0(1) N( 1) 38(2) 28(2) 36(2) -1( 1) 3(2) 2( 1) N(2) 32(2) 30(2) 40(2) 5(1) -2(1) —3( 1) N(3) 31(2) 32(2) 33(2) -3(1) 3(1) -2(1) N(4) 3 1( 1) 37(2) 38(2) 3(2) -1(1) -2(2) N(5) 39(2) 42(2) 27(1) -1(1) -2(1) 3(2) C(1 1) 40(2) 39(2) 43(2) 2(2) 9(2) 6(2) C(12) 73(3) 30(2) 37(2) -7(2) 13(2) 2(2) C(13) 55(3) 36(2) 30(2) -4(2) 1(2) -13(2) C(14) 44(2) 27(2) 34(2) 3(2) 3(2) -3(2) C(21) 50(2) 34(2) 55(3) 3(2) 8(2) -1(2) C(22) 64(3) 34(2) 44(2) 9(2) 8(3) 10(2) C(23) 50(3) 43(2) 36(2) 8(2) -2(2) 14(2) C(24) 39(2) 38(2) 27(2) 7(2) 1(2) 8(2) C(31) 39(2) 37(2) 42(2) -4(2) 6(2) -14(2) C(32) 34(2) 53(3) 34(2) -1(2) —5(2) 1(2) C(33) 31(2) 48(2) 44(2) -4(2) 8(2) 2(2) ' C(41) 45(2) 54(3) 44(2) 3(2) 9(2) -5(2) C(42) 34(2) 65(3) 58(3) -3(3) -10(2) 2(2) C(51) 76(4) 54(3) 42(3) 7(2) 3(3) 0(3) C(52) 82(4) 55(3) 48(3) -11(2) -2l(3) -1(3) Table A-17.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Ti(NMe2)2(dpma). x y z U(eq) x y z U(eq) H(l 1A) -9521 -2807 -930 49 H(4 1 A) -1 1273 -5423 -947 71 H(12A) -8231 -1308 -156 56 H(4lB) -10067 -4684 -573 71 H(13A) -5751 -1571 -563 48 H(4 1 C) -9893 -6021 -703 71 H(2 1 A) -8800 -7691 - 1553 56 H(42A) -11780 -5293 -2126 79 H(22A) -7206 -8969 -788 57 H(42B) -108 17 -5800 -2853 79 H(23A) -5043 -7830 -516 52 H(42C) -10996 -4458 -2762 79 H(31A) -4447 -3388 -l493 47 H(51A) -8055 -4015 -4412 86 H(318) -5201 -31 16 -2383 47 H(5 18) -7328 -3322 -3659 86 H(32A) -5478 -4935 -596 48 H(51C) -8916 -3449 -3658 86 H(328) .4290 -5555 -1 106 48 H(52A) -7957 -5683 -4445 93 H(33A) -3915 -5129 -2602 61 H(52B) ~8727 -6365 -3704 93 H(33B) -5152 -4833 -3213 61 H(52C) -7133 -6339 -3715 93 H(33C) -5085 -6034 -2735 61 208 Table A-18.1. Crystal data and structure refinement for Ti(dmpm)(NMez)2. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.29° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of—fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Largest diff. peak and hole jtcvi64t C15H21N4Ti 305.26 446(2) K 0.71073 A Monoclinic P2(1)/c a = 10.320807) A b = 12.384809) A c = 253250) A 3230.3(9) A3 8 1.255 Mg/m3 0.526 mm" 1288 0.18 x 0.08 x 0.06 mm3 1.61 to 23.29° -11<=h<=11, -13<=k<=13, -28<=l<=13 14599 4627 [R(int) = 0.2227] 99.4 % Empirical 0.9499 and 0.5252 Full-matrix least-squares on F2 4627 / 0 / 373 0.787 R1 = 0.0622, wR2 = 0.1030 R1: 0.1910, wR2 = 0.1295 0.475 and 0.377 e.A-3 209 a: 90° B= 93.708(3)° Y = 90° Table A-18.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Azx 103) for Ti(dmpm)(NMe2)2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 210 X y z U(eq) X y Z U(eq) Ti( 1) 5274(1) 3345(1) 1809(1) 27( 1) Ti(2) 362(1) 2662(1) 9619(1) 28( 1) N( 1 A) 3397(5) 4260(5) 1767(2) 32(2) N( l B) 2171(5) 3637(4) 9567(2) 32(2) N(2A) 4220(5) 2010(4) 1599(2) 23(2) N(28) 1022(5) 1671(4) 9062(2) 27(2) N (4A) 6051(5) 3723(4) 1 176(2) 30(2) N(4B) -889(5) 3431(4) 9205(2) 29(2) N(SA) 6671(5) 2908(4) 2256(2) 28(2) N(SB) -608(5) 1817(4) 10075(2) 31(2) C(1 1A) 4352(7) 5028(5) 1907(3) 32(2) C(1 lB) 1492(6) 4137(6) 9956(3) 32(2) C(12A) 4905(7) 4827(6) 2420(3) 34(2) C(128) 1497(7) 3454(6) 10408(3) 39(2) C( 13A) 4229(7) 3883(6) 2614(3) 3 1(2) C(13B) 2214(6) 2500(6) 10289(3) 27(2) C( 14A) 3336(7) 3575(6) 2199(3) 29(2) C( 148) 2621(6) 2657(6) 9778(3) 24(2) C(2 1 A) 4454(7) 1175(6) 1278(3) 26(2) C(218) 351(7) 1 102(6) 8663(3) 34(2) C(22A) 3454(7) 451 (5) 1229(3) 30(2) C(ZZB) 1 186(7) 459(5) 8405(3) 28(2) C(23A) 2509(7) 883(5) 1547(3) 31(2) C(23B) 2432(7) 609(5) 8655(3) 30(2) C(24A) 2985(6) 1822(6) 1769(3) 23(2) C(24B) 2320(7) 1361(5) 9049(3) 25(2) C(30A) 2462(6) 2599(6) 2169(3) 27(2) C(308) 3318(6) 1891(6) 9423(3) 26(2) C(3 1 A) 1048(6) 2919(5) 1990(3) 42(2) C(318) 4301(6) 2531(5) 9108(3) 41(2) C(32A) 2462(7) 2037(5) 2704(3) 43(2) C(328) 4077(6) 1064(5) 9761(3) 41 (2) C(4 1 A) 5246(7) 4033(5) 705(3) 45(2) C(4 1 8) -470(7) 4007(6) 8737(3) 52(3) C(42A) 7430(6) 3900(5) 1 104(3) 54(3) C(428) -2286(6) 3556(5) 9254(3) 44(2) C(5 1 A) 7310(6) 1965(5) 2049(3) 39(2) C(5 lB) - 1579(6) 1 154(5) 9774(3) 46(2) C(52A) 7255(7) 3136(6) 2775(3) 53(3) C(528) -557(7) 1507(6) 10636(3) 49(2) Table A-18.3. Bond lengths [A] and angles [°] for Ti(dmpm) (NMe2)2. Ti( 1)-N(5A) 1.857(6) Ti(2)-N(4B) 1.870(5) Ti(1)-N(4A) 1 896(6) T1(2)-N(58) 1 .893(5) Ti(1)-N(2A) 2.030(5) Ti(2)-N(28) 2.020(6) 11(1)-N(lA) 2.240(5) Ti(2)-N( 18) 2.234(5) Ti(1)-C(14A) 2.305(6) Ti(2)-C(1 18) 2.302(7) Ti(1)-C(1 1 A) 2.312(7) Ti(2)-C( 14B) 2.340(6) 11(1)-C(12A) 2.447(7) T1(2)-C( 1 28) 2.455(7) Ti( 1 )‘C( 13A) 2.459(7) Ti(2)-C( 1 38) 2.480(7) N( 1 A)-C( 14A) 1.390(8) N( 18)-C(1 lB) 1.391(7) N( 1A)-C(1 1A) 1.399(8) N ( lB)-C( 14B) 1.393(7) N(2A)-C(2 1 A) N(2A)-C(24A) N (4A)-C(4 1 A) N(4A)-C(42A) N(5A)—C(52A) N(5A)-C(5 1 A) C(1 1A)-C(12A) C(12A)-C( 13A) C(13A)-C(14A) C( 1 4A)-C( 30A) C(21A)-C(22A) C(22A)-C(23A) C(23A)-C(24A) C(24A)-C(30A) C(30A)-C(32A) C(30A)-C(3 1 A) N(5A)«Ti(l)-N(4A) N(5A)eTl(l)-N(2A) N(4A)-Ti(1)-N(2A) N(5A)—T1(1)-N(1A) N(4A)-Ti(l)-N(1A) N(2A)-Ti(l)-N(1A) N(5A)—T1(1)-C(14A) N(4A)-Ti(l)-C(14A) N(2A)-Ti(1)-C(14A) N(lA)-Ti(l)-C(14A) N(5A).Ti( 1 )—C(1 1A) N(4A)-"110)C01A) N(2A)-Ti(l)-C(11A) N(lA)-Ti(l)-C(11A) C( 14A)-Ti( 1)0(1 1A) N(5A)-Ti(l)-C(12A) N(4A)-Ti(1)-C(12A) N(2A)-Ti(1)-C(12A) N(lA)—Ti(1)—C(12A) C(l4A)-Ti(1)-C(12A) C(1 1A)-Ti( 1 )-C(12A) N(5A)-Ti(1)-C(13A) N(4A)-Ti(l)-C(13A) N(2A)-Ti(l)-C(13A) 1.348(7) 1.390(7) 1.460(8) 1.463(7) 1.437(8) 1.456(7) 1.407(9) 1.462(9) 1.404(9) 1.507(9) 1.367(8) 1.410(8) 1.368(8) 1.522(8) 1.524(8) 1.552(8) 103.5(2) 107.7(2) 103.2(2) 144.2(2) 104.3(2) 87.3(2) 1 15.8(3) 139.3(3) 75.4(2) 35.6(2) 120.3(3) 93.9(2) 123.0(3) 35.8(2) 57.8(2) 88.7(3) 116.2(2) 132.3(2) 58.8(2) 57.4(2) 34.2(2) 86.4(2) 149.9(2) 100.5(2) 211 N(ZB )-C(2 1 B) N(ZB )-C(24B) N(4B)-C(42B) N (4B)-C(4 1 B) N(5B)-C(528) N(SB)-C(51B) C(1 18)-C(128) C(128)-C(13B) C(13B)—C(14B) C( 14B)-C(30B) C(218)-C(22B) C(228)-C(23B) C(23B)-C(24B) C(24B)-C(3OB) C(3OB)-C(32B) C(3OB)-C(3 18) N (4B)-Ti(2)-N(SB) N (4B)-11(2)-N (28) N(SB)-'I"1(2)-N(2B) N(4B )-T1(2)-N( lB) N(5B)-Tl(2)-N( l B) N(2B)-Ti(2)-N( 1 B) N(4B)-Ti(2)-C( 1 1 B) N(58)-'I"1(2)-C(1 1 B) N(ZB )-Ti(2)-C( 1 1 B) N( 1B)-11(2)-C(1 lB) N(4B)-Ti(2)-C( 148) N (5B)-Ti(2)-C( 14B) N (28)-Ti(2)-C( 14B) N( 18)-Ti(2)-C( 14B) C(1 18)-Ti(2)-C(14B) N(4B)-Ti(2)-C( 128) ‘N(SB)-Ti(2)-C(12B) N(2B)-Ti(2)-C(12B) N( 1B)-"11(2)-C( 1 2B) C(1 18)-11(2)-C(128) C(14B)-Ti(2)-C(1ZB) N(4B)-Ti(2)-C( 1 3B) N(5B)-Ti(2)—C(13B) N(28)-Ti(2)-C( 13B) 1.381(8) 1.396(7) 1.462(7) 1.472(8) 1.469(8) 1.471(8) 1.422(9) 1.437(9) 1.399(9) 1.520(8) 1.369(8) 1.409(9) 1.375(8) 1.504(9) 1.520(8) 1.549(8) 104.5(3) 99.8(2) 107.8(2) 104.0(2) 144.2(3) 88.1(2) 96.8(3) 119.2(3) 123.8(2) 35.67(19) 137.9(3) 1 17.0(3) 75.0(2) 35.37(18) 57.5(2) 121.9(3) 88.1(3) 130.2(3) 58.3(2) 34.6(2) 56.2(2) 153.9(2) 87.2(2) 98.5(2) N(lA)-Tl(1)-C(13A) C( 14A)-Ti(] )~C( 13A) C(1 1A)-Ti(1)-C(13A) C(12A)-Ti( 1)-C( 13A) C(14A)-N(1A)—C( 1 1A) C(14A)—N( 1A)-Ti( 1 ) C(11A)-N(1A)-Ti(1) C(21A)-N(2A)-C(24A) C(21A)-N(2A)-Ti(l) C(24A)-N(2A)-Ti( l ) C(4 1 A)-N(4A)-C (42A) C(4 1 A)-N(4A)-Ti( 1) C(42A)-N(4A)-Ti( 1) C(52A)-N(5A)—C(5 1A) C(52A)-N(5A)-Ti( l) C(51A)-N(5A)-Ti(l) N( 1A)-C(1 1A)-C(12A) N( 1 A)-C(1 1 A)-Ti(1) C(12A)-C(1 1A)-Ti( 1) C(1 1A)-C(12A)-C(13A) C(1 1A)-C( 1 2A)-Ti( 1) C(13A)-C(1 2A)-Ti(1) C(l4A)-C(13A)-C(12A) C( 14A)-C(1 3A)-Ti(1) C(12A)-C(13A)-Ti(l) N( 1A)-C( 14A)-C( 13A) N( 1A)-C( 14A)-C(30A) C(13A)-C(14A)-C(30A) N( 1 A)-C( 14A)-Ti( 1) C(13A)-C(14A)-'I"l(1) C(3OA)—C( 14A)-Ti( 1) N(2A)-C(21A)-C(22A) C(21A)-C(22A)—C(23A) C(24A)-C(23A)-C (22A) C(23A)-C(24A)-N(2A) C(23A)-C(24A)-C(30A) N(2A)-C(24A)-C(3OA) C( 14A)-C(30A)-C(24A) C(14A)-C(30A)-C(32A) C(24A)-C(30A)-C(32A) C(14A)-C(30A)-C(31A) 58.5(2) 34.1(2) 57.3(3) 34.7(2) 106.3(6) 74.8(4) 74.9(4) 105.2(6) 132.0(5) 122.8(5) 1 1 1.5(6) 120.4(4) 127.5(5) 108.3(6) 139.8(5) 111.5(4) 1 10.6(7) 69.3(3) 78.1(4) 106.1(7) 67.6(4) 73.1(4) 105.7(7) 66.9(4) 72.2(4) 1 1 1.3(6) 120.4(7) 128.2(7) 69.7(3) 79.0(4) 1 14.3(4) 1 13.2(6) 104.2(6) 108.3(6) 109.2(6) 132.6(6) 1 18. 1(6) 107.7(5) 1 10.8(6) 108.9(6) l 11.0(6) 212 N(lB)-11(2)-C(13B) C(1 18)-Ti(2)-C(13B) C(l4B)-Ti(2)-C(13B) C(128)-Ti(2)-C(13B) C(1 1B)-N(lB)-C(14B) C(1 18)-N( 18)-Ti(2) C(14B)-N( 18)-Ti(2) C(218)-N(2B)-C(24B) C(218)-N(28)-Ti(2) C(24B)-N(2B)-Ti(2) C(428 )-N(4B)-C(4 lB) C(428 )-N(4B)-Ti(2) C(4 1 B)-N(4B)-Ti(2) C(528)-N(SB)-C(51B) C(528)-N(SB)-Ti(2) C(518)-N(SB)-Ti(2) N(lB)-C(11B)-C(128) N( 18)-C(1 18)-Ti(2) C(12B)—C( 1 18)-Ti(2) C(1 18)-C(128)-C(13B) C(1 18)-C(12B)-Tl(2) C(13B)-C(12B)-Ti(2) C(14B)-C(13B)-C(12B) C(l4B)-C(13B)-Ti(2) C(12B)-C(13B)-Ti(2) N(lB)-C(14B)-C(13B) N(lB)-C(14B)-C(30B) C(13B)-C(14B)-C(3OB) N( 1 B)-C(14B)-Ti(2) C(13B)—C(14B)-Ti(2) C(3OB)-C(14B)-Ti(2) C(228)—C(21B)-N(28) C(2 1 B)-C(228)-C(23B) C(24B )-C(23B)-C(22B) C(23B)-C(24B)-N(28) C(23B)-C(24B)-C(3OB) N(28)-C(24B)-C(30B) C(24B)-C(3OB)-C(14B) C(24B )—C(3OB)-C(3ZB) C( 14B )—C(30B)-C(328) C(24B )-C(3OB)-C(3 lB) 58.3(2) 57.4(2) 33.6(2) 33.8(2) 106.7(6) 74.8(4) 76.5(3) 106.2(6) 130.2(5) 123.5(5) 1 11.1(6) 130.9(5) 1 18.0(4) 109.6(5) 138.4(5) 111.2(4) 109.2(6) 69.5(4) 78.6(4) 107.2(7) 66.8(4) 74.0(4) 105.6(7) 67.7(4) 72.1(4) 111.2(6) 118.5(7) 129.9(7) 68.1(3) 78.7(4) 113.8(4) 110.2(7) 107.0(6) 107.3(6) 109.3(7) 131.7(7) 1 18.9(6) 108.3(6) 111.7(6) 109.5(6) 110.1(6) C(24A)-C(30A)-C(3 1 A) C(32A)-C(30A)-C(31A) 109.6(6) | C(14B)—C(308)-C(318) 109.6(6) 108.7(6)| C(328)-C(308)-C(318) 107.7(6) Table A-18.4. Anisotropic displacement parameters (A2 x 103) for Ti(dmpm)(NMe2)2. The anisotropic displacement factor exponent takes the form: -21t2[h2 a*2U” + + 2 h k a* b* U12] U” U22 U33 U23 U13 U12 11(1) 27(1) 26(1) 27(1) -l(1) 6(1) 1(1) N( l A) 25(4) 33(4) 39(5) 6(4) 4(4) 4(3) N (2A) 30(4) 22(4) 17(4) -2(3) 12(3) 3(3) N(4A) 29(4) 28(4) 34(4) 3(3) 10(4) -3(3) N(5A) 30(4) 28(4) 27(4) -15(3) 3(4) 1(3) C(1 1A) 28(5) 21(5) 48(6) -14(5) 5(5) 2(4) C(12A) 3 1(5) 26(5) 48(7) -6(5) 13(5) 9(4) C(13A) 20(5) 36(5) 38(6) -24(5) 8(5) 6(4) C( 1 4A) 37(5) 19(5) 34(6) -4(5) 25(5) 1(4) C(2 1 A) 23(5) 30(5) 27(5) —3(4) 2(4) 4(4) C(22A) 35(5) 21(5) 33(6) -1 1(4) 6(5) 8(4) C(23A) 34(5) 29(5) 30(5) -6(4) 6(5) -13(4) C(24A) 27(5) 22(5) 19(5) -2(4) 10(4) -1(4) C(30A) 25(5) 35(5) 23(5) 6(5) 6(4) 3(4) C(3 1 A) 29(5) 46(6) 51(6) -12(5) 12(5) 0(4) C(32A) 59(6) 33(5) 37(6) -5(4) 14(5) 0(4) C(4 1 A) 55(6) 54(6) 27(6) 4(5) 15(5) - l (5) C(42A) 36(6) 53(6) 74(7) 14(5) 24(5) -7(4) C(5 1 A) 30(5) 36(5) 52(6) 1(5) 7(5) 1(4) C(52A) 42(5) 75(7) 42(6) -8(5) -7(5) 16(5) Ti(2) 26(1) 29(1) 29(1) 0(1) 7(1) 0(1) N ( 1B) 26(4) 25(4) 46(5) 4(4) 10(4) -5(3) N(28) 20(4) 25(4) 36(4) -2(4) 1(4) 2(3) N(4B) 19(4) 36(4) 31(4) 6(4) 4(3) 7(3) N(5B) 35(4) 30(4) 28(4) 1(4) 10(4) -9(3) C(1 18) 17(4) 44(6) 35(6) -20(5) 10(5) -6(4) C(12B) 40(5) 32(5) 43(6) -6(5) -1 1(5) -7(4) C(13B) 27(5) 40(5) 13(5) -12(5) 2(4) -4(4) C( 148) 15(4) 14(5) 43(6) -3(5) -4(4) -2(4) C(218) 33(5) 40(5) 30(6) -10(5) 2(5) -2(4) 213 C(22B) 44(5) 24(5) 17(5) -3(4) 6(5) -5(4) C(23B) 33(5) 27(5) 30(6) 6(4) 11(5) 3(4) C(24B) 29(5) 18(5) 30(5) 3(4) 5(5) -2(4) C(3OB) 21(4) 40(5) 18(5) -3(4) 1(4) 1(4) C(3lB) 41 (5) 41(5) 41(5) 0(5) 8(5) -8(4) C(328) 39(5) 37(5) 47(6) 0(5) 14(5) 8(4) C(4lB) 52(6) 52(6) 53(7) -4(5) 4(6) 1(4) C(42B) 31(5) 47(6) 54(6) -16(5) -3(5) 16(4) C(5 18) 43(5) 45(6) 52(6) 7(5) 15(5) -21(4) C(528) 64(6) 50(6) 37(6) 7(5) 19(5) - 1(5) Table A-18.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Ti(dmpm)(NMe2)2. X y z U(eq) X y z U(eq) H(2 1 A) 5219 1098 1106 32 H(218) -539 1148 8581 41 H(22A) 3407 -183 1031 36 H(228) 970 9 8119 34 H(23A) 1701 582 1598 37 H(23B) 3191 262 8570 35 H(3 1 D) 705 3382 2252 63 H(3 1 A) 4754 2043 8890 62 H(31E) 523 2281 1951 63 H(3 1 B) 4913 2889 9350 62 H(31F) 1039 3293 1658 63 H(31C) 3846 3058 8889 62 H(32D) 3326 1801 2809 64 H(32A) 3494 672 997 1 61 H(32B) 1892 1424 2676 64 H(328) 4715 1427 9990 61 H(32F) 2167 2531 2962 64 H(32C) 4502 571 9537 61 H(41 D) 5361 4788 637 67 H(4 1 A) -910 3712 8424 78 H(4 1 E) 4350 3893 761 67 H(4 l B) 451 3923 8717 78 H(4 1 F) 5498 3621 407 67 H(41C) -676 4759 8765 78 H(42D) 7697 3449 823 80 H(42A) -2501 4310 9257 67 H(42B) 7928 3723 1426 80 H(428) -2522 3228 9577 67 H(42F) 7569 4643 1017 80 H(42C) -2751 3212 8959 67 H(5 1 A) 8219 2113 2029 59 H(51D) - 1372 404 9824 69 H(518) 6931 1799 1703 59 H(51B) - 1577 1330 9405 69 H(51C) 7203 1361 2280 59 H(5 1 F) -2424 1295 9897 69 H(52D) 7134 2531 3003 80 H(52A) -1390 1628 10774 74 H(52B) 6854 3764 2915 80 H(52B) 86 1934 10831 74 H(5 2F) 8167 3267 2752 80 H(52C) -334 757 10670 74 214 Table A-19.1. Crystal data and structure refinement for Ti(dppm)(NMe2)2. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(OOO) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 23.28° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) largest diff. peak and hole shi60t C19H32N4Ti 364.39 173(2) K 0.71073 A Monoclinic P2(l)/c a = 9.9440(14) A b = 152660) A c = 13.696(2) A 2075.8(5) A3 4 1.166 Mg/m3 0.419 mm'1 784 0.16 x 0.28 x 0.43 mm3 2.00 to 23.28° -11<=h<=9, -13<=k<=16, -15<=1<=15 9353 2980 [R(int) = 0.2034] 99.9 % Empirical 0.9830 and 0.6436 Full-matrix least-squares on F2 2980 / 0 / 223 0.971 R1 = 0.0876, wR2 = 0.2273 R1 = 0.1837, wR2 = 0.3346 1.194 and -1414 e.A-3 215 01: 90° B= 93.252(3)° v = 90° Table A-19.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for Ti(dppm)(NMe2)2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. X y 2 U(eq) X y 2 U(eq) Ti( 1) 9038(2) 2369(1) 1725(1) 35(1) C(24) 8014(10) 1046(5) 3156(6) 27(2) N( 1) 8063(9) 1184(5) 967(5) 36(2) C(30) 6808(10) 977(5) 2453(6) 31(2) N(2) 8902(8) 1711(4) 3018(5) 30(2) C(31) 6519(10) 5(5) 2164(6) 36(2) N(4) 10876(8) 2205(5) 1473(5) 38(2) C(32) 5324(12) -143(6) 1463(6) 50(3) N(5) 8810(9) 3574(5) 1981(5) 38(2) C(33) 5161(15) -1110(7) 1185(9) 82(5) C(1 l) 8158(12) 1814(7) 257(7) 48(3) C(34) 5580(10) 1395(6) 2925(7) 40(3) C(12) 7414(11) 2501(7) 364(7) 44(3) C(35) 5001(11) 885(6) 3782(7) 42(3) C(13) 6634(1 1) 2299(6) 1 193(6) 38(3) C(36) 3915(13) 1380(7) 4266(8) 67(4) C(14) 7160(10) 1488(6) 1543(6) 31(2) C(41) 11422(14) 1308(7) 1361(9) 72(4) C(21) 9962(10) 1642(6) 3774(6) 35(2) C(42) 11938(15) 2837(8) 1285(9) 77(4) C(22) 9636(13) 967(6) 4372(6) 46(3) C(51) 7877(11) 4277(6) 1688(7) 46(3) C(23) 8414(11) 581(5) 3981(6) 37(3) C(52) 9811(11) 3889(6) 2744(7) 48(3) Table A-l9.3. Bond lengths [A] and angles [°] for Ti(dppm)(NMe2)2. Ti( 1 )-N(5) 1.889(7) N(5)-C(52) 1.482(12) 11(1)-N(4) 1.896(9) C(11)-C(12) 1.296(14) Ti(1)-N(2) 2.046(7) C(12)-C(13) 1.444(14) Ti(1)-N(1) 2.275(7) C(13)-C(14) 1.416(12) Ti(1)-C(14) 2.303(9) C(14)-C(30) 1.529(12) 11(1)-C(11) 2.308(9) C(21)-C(22) 1.367(13) Ti(1)-C(12) 2.405(9) C(22)-C(23) 1.427(14) 11(1)-C(13) 2.461(10) C(23)-C(24) 1.374(11) N(1)-C(14) 1.313(11) C(24)-C(30) 1.498(13) N(l)-C(11) 1.376(11) C(30)-C(34) 1.551(13) N(2)-C(24) 1.366(11) C(30)-C(31) 1.559(11) N (2)-C(21) 1.440(11) C(31)-C(32) 1.501(13) N(4)-C(42) 1.464(14) C(32)-C(33) 1.530(13) N(4)-C(41) 1 .484(12) C(34)-C(35) 1 .547(12) N(5)-C(51) 1.460(12) C(35)-C(36) 1 .503(14) N(5)-Ti(1)-N(4) 106.8(4) C(41)-N(4)-Ti(l) 120.2(7) N(5)-Ti(1)-N(2) 107.6(3) C(51)-N(5)-C(52) 110.2(7) 216 N(4)-Ti(l)-N(2) N(5)-Ti(1)-N(1) N(4)-Ti(1)-N(l) N(2)-Ti( 1 )-N( 1) N(5)-Ti(1)-C(14) N(4)-Ti(l)-C(14) N(2)-Ti(1)-C(14) N(l)—Ti(l)-C(14) N(5)-Ti(1)-C(11) N(4)-Ti(1)-C(l 1) N(2)-Ti(1)-C(1 1) N(1)-Ti(1)-C(11) C(14)-Ti(l)-C(11) N(5)-Ti(l)-C(12) N(4)-Ti(1)-C(l2) N(2)-Ti(1)-C(12) N(1)-Ti(1)—C(12) C(14)-T1(1)-C(12) C(11)—Ti(l)-C(12) N(5)—Ti( 1 )-C( 1 3) N(4)-Ti( 1 )-C(13) N(2)-Ti(l)-C(13) N(1)-Ti(l)—C( 13) C(14)-Ti(1)-C(13) C(11)-Ti(l)-C(13) C(12)-Ti(l)-C(13) C(14)-N(1)-C(l 1) C(14)-N(1)-Ti(l) C(11)-N(1)—Ti(1) C(24)-N(2)-C(21) C(24)-N(2)-Ti(1) C(21)-N(2)-Ti(1) C(42)-N(4)-C(41) C(42)-N(4)-Ti(1) 101.8(3) 143.8(3) 101.7(3) 87.6(3) 118.9(4) 133.4(3) 73.4(3) 33.3(3) 1 18.4(4) 96.6(4) 122.3(3) 34.9(3) 55.0(3) 88.8(3) l 18.8(4) 129.6(3) 57.5(3) 57.3(3) 31.8(3) 88.4(3) 150.5(3) 97.2(3) 56.6(3) 34.4(3) 54.0(4) 34.5(3) 104.7(8) 74.5(5) 73.8(5) 107.3(7) 124.1(5) 125.2(6) 108.5(9) 131.1(8) 217 C(51)-N(5)—Ti(l) C(52)-N(5)-Ti(1) C(12)-C(11)-N(1) C(12)-C(11)-Ti(1) N(1)-C(11)-Ti(l) C(11)-C(12)-C(l3) C(11)-C(12)-Ti(1) C(13)-C(12)-Ti(1) C(l4)—C(13)—C(l2) C(14)-C(13)-Ti(1) C(12)-C(l3)-Ti(1) N(1)-C(14)-C(13) N(1)-C(14)—C(30) C(13)-C(l4)—C(30) N(1)-C(14)-Ti(1) C(13)-C(14)-Ti(l) C(30)-C(14)-Ti(1) C(22)-C(21)-N(2) C(21)-C(22)-C(23) C(24)-C(23)-C(22) N(2)-C(24)—C(23) N(2)-C(24)—C(30) C(23)-C(24)-C(30) C(24)-C(30)-C(14) C(24)-C(30)—C(34) C(l4)—C(30)—C(34) C(24)-C(30)-C(31) C(l4)-C(30)-C(31) C(34)-C(30)-C(31) C(32)-C(3 1 )-C(30) C(3 1)-C(32)-C(33) C(35)-C(34)-C(30) C(36)-C(35)-C(34) 138.3(7) 1 l 1.3(6) 1 15.0( 10) 78.2(6) 71 .2(5) 104.6(8) 70.0(6) 74.9(5) 104.4(9) 66.7(5) 70.6(6) 1 1 1.0(8) 120.3(8) 128.7(9) 72.2(5) 79.0(6) 115.5(5) 107.3(8) 108.2(8) 107.2(8) 109.9(8) 1 17.6(7) 132.5(9) 106.1(7) 108.9(7) 1 10.6(7) 1 l 1.1(7) 109.0(6) 1 11.1(8) 1 15.7(8) 1 1 1.9(9) l 16.4(8) 112.9(8) Table A-19.4. Anisotropic displacement parameters (A2 x 103) for Ti(dppm)(NMe2)2. The anisotropic displacement factor exponent takes the form: -2:rt2[ h2 a*2Ull + + 2 h k a* b* U12] U11 U22 u33 U23 U13 U12 Ti(l) 53(1) 27(1) 25(1) 4(1) -5(1) -5(1) N( 1) 48(6) 33(5) 27(4) -5(3) 8(4) -8(4) N (2) 36(5) 26(4) 28(4) 5(3) 2(4) 2(4) N(4) 38(6) 40(5) 37(4) 6(4) 5(4) -8(4) N (5) 59(6) 26(4) 28(4) 8(3) 1(4) -5(4) C(1 1) 70(9) 41(7) 33(6) 1(5) 4(5) -29(6) C(12) 58(8) 39(6) 32(5) 16(5) -19(5) -23(6) C(13) 48(7) 30(5) 34(5) 10(4) -12(5) 1(5) C(14) 30(6) 36(6) 24(5) -1(4) -15(5) -1 1(5) C(21) 31(6) 45(6) 27(5) -8(4) -11(4) -8(5) C(22) 90(9) 30(5) 15(4) 0(4) -20(5) 9(6) C(23) 65(8) 20(5) 25(5) -2(4) -2(5) 6(5) C(24) 42(7) 18(5) 21(4) 5(4) 0(4) 8(5) C(30) 54(7) 13(4) 24(5) -1(3) -1(5) -6(4) C(31) 56(7) 23(5) 29(5) -3(4) -2(5) -11(5) C(32) 84(9) 35(6) 31(5) -6(4) -9(6) -9(6) C(33) 127(13) 42(7) 72(8) -10(6) -39(8) -23(8) C(34) 41(7) 40(6) 37(5) 1(4) -10(5) -1(5) C(35) 45(7) 46(6) 35(5) -6(5) 3(5) -10(5) C(36) 82( 10) 66(8) 55(7) -9(6) 28(7) -6(7) C(41) 85(1 1) 43(7) 91(9) 2(6) 27(8) 4(7) C(42) 101(12) 70(8) 59(8) 22(6) 2(8) -17(8) C(51) 50(8) 34(6) 55(6) 1(5) 8(6) -5(5) C(52) 53(8) 43(6) 47(6) -6(5) -2(6) -19(6) 218 Table A-19.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for Ti(dppm)(NMe2)2. x y z U(eq) x y z U(eq) H( 1 l) 8715 1753 -262 57 H(3SB) 5725 756 4265 51 H(12) 7389 3010 -9 53 H(36A) 4277 1919 4530 100 H(13) 5943 2627 1440 46 H(36B) 3582 1032 4783 100 H(21) 10727 1992 3843 42 H(36C) 3192 1507 3793 100 H(22) 10125 790 4937 55 H(4 1 A) 11882 1273 765 108 H(23) 7971 104 4237 44 H(4 1 B) 10697 893 1342 108 H(3 1 A) 7310 -232 1875 43 H(41C) 12042 1178 1905 108 H(318) 6385 -326 2755 43 H(42A) 12640 2798 1794 1 15 H(32A) 5430 200 876 60 H(428) 1 1568 3418 1270 1 15 H(328) 4516 57 1759 60 H(42C) 12303 2708 667 1 15 H(33A) 6000 -1331 974 123 H(51A) 7364 4439 2232 69 H(33B) 4480 -1 167 664 123 H(5 18) 7279 4079 1159 69 H(33C) 4902 - 1437 1743 123 H(51C) 8376 4775 1480 69 H(34A) 5839 1974 3158 48 H(52A) 10310 4368 2491 72 H(34B) 4867 1469 2419 48 H(528) 10418 3421 2930 72 H(35A) 4637 332 3539 51 H(52C) 9355 4081 3304 72 219 u)[l11]]]]ll[]ljlj[ll[l)[ll