
k
‘
I
’

I
‘
l
l
.

,
,

.
w
.

.
1
.

.
.
i
.
.
:
.
.

‘
x

.
.

.
.

.
:
J
n

.
o

A
p
r
“
.
.
.

:
1
.

I
.

.
.
.
k

..
.

.
A

w
A

“
\
i
f
n
g
l

:
.

_,
u
n
g
fi
g

.
3
%
.

3
3
5

p
“
S
i
fi
‘
w
fi
a

E
d
a
m

ta
r
:

.r
.

T
a
fi
n
g
fi
é
.
E
é

.
.
$

7
.
.
.
.
.
.

-
.
0
u

1
,
.
2
.

d
i
s
g
u
i
a
m
m
:

:
U
~
h
u
.
r
.
.
l
m
-
:
m

a
»

..
.
_
.
A
l
?

\

$
0
.
.
»

.
(
Q
l
‘
h
fl
u

1
:
5
}

.

L
.
3
.
2
.
5
5
.
1
.
3
?

.
7
.
"
-

5
1

_
.

1
.
0
.
!

.
V
l

.
3
.
4
4
9
1
“
J

.
3
“
.
d
e

I
,

LIBRARIES

MICHIGAN STATE UNIVERSITY

EAST LANSING, MICI-I 48824-1048

This is to certify that the

dissertation entitled

OCTREE-BASED ANIMATED GEOMETRY COMPRESSION

presented by

Jinghua Zhang

has been accepted towards fulfillment

of the requirements for the

vMéfor Professor'sSignature

Feed) 17 2005"

'Date

MSU is an Minn-live AcdonEquoi Opportunity institution

PLACE IN RETURN Box to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

2/05 c:/ClFtC/DateDue.l

15‘

OCTREE —BASED ANIMATED GEOMETRY COMPRESSION

By

Jinghua Zhang

A DISSERTATION

Submitted to

MICHIGAN STATE UNIVERSITY

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2005

ABSTRACT

OCTREE-BASED ANIMATED GEOMETRY COMPRESSION

By

Jinghua Zhang

Geometry compression is the compression of the 3D geometric data that provides

a computer graphics system with the scene description necessary to render images.

Geometric data is quite large and, therefore, needs effective compression methods to

decrease the transmission and storage requirements. A large amount of research has been

focused on static geometry compression, but only limited research has addressed

animated geometry compression, the compression of temporal sequences of geometric

data. The goal of this thesis is to represent 3D animation sequences with a reduced set of

motion vectors that take advantage of the large data coherence in space and time. An

octree-based motion representation method is proposed. In this approach, a small set of

motion vectors are generated for each frame by accessing two consecutive frames at a

time. These motion vectors represent the differential motion from the previous frame to

the current frame. They are used to predict the vertex positions for each frame. The

octree motion representation process generates a hierarchical octree structure for each

frame in the sequence. Based on this approach, a hybrid coding method is proposed that

combines the octree-based approach and delta coding method. Given the same threshold

requirement, the hybrid approach performs better than the octree only approach in terms

of compression ratio. Both the octree and hybrid approaches can represent 3D

animated sequences with high compression factors while maintaining reasonable quality.

These two approaches are easy to implement and have a low cost encoding process and a

fast decoding process, which make them very suitable for real time application.

DEDICATION

To my parents, my husband (Jinsheng), my son (Haiming) and my sister (Songhua).

iv

ACKNOWLEDGMENTS

I would like to express my appreciation to my adviser, Dr. Owen for his generous

guidance and encouragement during my Ph.D. study. I also thank him for valuable

suggestions and comments on the thesis. I also would like to thank my other committee

members, Dr. Ofria, Dr. Hughes and Dr. Stapleton for their support and comments on the

thesis.

I would like to thank my entire family members for their support and love.

I want to thank Andrew Glassner for providing access to the Chicken data and

MIT CSAIL Graphics Lab for the Dance sequence used in this thesis. I also want to thank

Professor Craig Gotsman for providing the TG coder.

TABLE OF CONTENTS

LIST OF TABLES-m"---- - - - VIII

LIST OF FIGURES -- ----- - X

1 INTRODUCTION - - ‘ - - -1

1.1 Background ...3

1.2 Thesis statement .. 5

1.3 Major contributions ...6

1.4 Thesis structures .. 7

2 DATA COMPRESSION TECHNIQUES _ - - - 9

2.1 Text compression and Entropy.. 10

2.1.1 Entropy... 12

2.1.2 Huffman coding ... 14

2.1.3 Arithmetic Coding ... 16

2.2 Media data compression.. 17

2.2.1 Fourier Transform (FT).. 18

2.2.2 Wavelets ... 19

2.2.3 Vector Quantization ...22

2.2.4 JPEG ..24

2.2.5 MPEG ..26

2.3 Summary ...28

3 RELATED WORK ON 3D COMPRESSION 29

3.1 Static geometry compression ..29

3. 1 . 1 Introduction ..30

3.1.2 Geometric data representations .. 31

3.1.3 Vertex compression techniques ...33

3.1.4 Connectivity compression techniques..37

3.2 Animated geometry compression ..46

3 .2. 1 Introduction ..46

3.2.2 Time-dependent geometry compression ..46

3.2.3 Principle component analysis approach ...47

3.2.4 Dynapack ...48

3.2.5 Geometry Video ...49

3.2.6 Soft—body animation compression ...50

3.3 Summary ...50

4 OCTREE-BASED ANIMATED GEOMETRY COMPRESSION - -- - 42

4.1 Data representation..52

4.2 Test data sets ...55

4.3 Octree-based approach ..57

4.3.1 Encoding process ...58

vi

4.3.2 Motion—modeling process .. 59

4.3.3 Tri-linear interpolation ...62

4.3.4 Motion vector computation ..64

4.3.5 Adaptive arithmetic coding ..66

4.4 Evaluations ..67

4.4.1 Octree results ...67

4.4.2 Octree vs. PCA...74

4.4.3 Octree vs. pure static compression mechanism 81

4.4.4 Octree vs. other approaches ... 81

4.5 Conclusions ...82

5 DELTA APPROACH... - - - -- 83

5.1 Delta encoding process ...84

5.2 Evaluations ..85

5.2.1 Delta approach results .. 85

5.2.2 Overall compression ratio comparison: delta vs. octree88

5.2.3 Frame-wise compression ratio comparison: delta vs. octree90

5.3 Conclusions ...92

6 HYBRID APPROACH--- - -- -94

6.1 Hybrid encoding process ...94

6.2 Evaluations ..96

6.2.1 Hybrid approach results ...96

6.2.2 Compression ratio comparison: hybrid, octree and delta................. 103

6.3 Conclusions ... 105

7 SYSTEM - 106

7.1 System design ... 107

7.2 System features ... 110

8 CONCLUSIONS AND FUTURE WORK.-....... - -113

8.1 Conclusions ... 113

8.2 Future work ... 114

REFERENCES - - - - - --------- - -- ..117

vii

LIST OF TABLES

Table 2.1: Probability of each symbol in the message.. 15

Table 2.2: Huffman codes. .. 15

Table 4.1: Test data sets information. ... 56

Table 4.2: Compression ratios of the Chef animation. The Chef animation has 75 flames

and each frame has 8162 triangles and 4241 vertices. The object size is 440

units in x dimension, 148 units in y dimension and 455 units in z dimension.

Original file size is 3,816,900 bytes. Max Distance threshold =p% *455 units,

where p=1, 2, 3, ...7. .. 68

Table 4.3: Compression ratios of the Chicken Crossing animation. The Chicken Crossing

animation has 400 frames and each frame has 5664 triangles and 3030 vertices.

The object size is 2.556 units in x dimension, 2.23 units in y dimension and 1.07

units in z dimension. The original file size is 14,544,000 bytes. Max Distance

threshold= p% *2.556 units, where p=2.5, 5, 7.5, 10, 20. 68

Table 4.4: Compression ratios of the Dance animation. The Dance animation has 201

flames and each flame has 14118 triangles and 7061vertices. The object size is

0.0758 units in x dimension, 0.172 units in y dimension and 0.074 units in z

dimension. Original file size is 17,031,132 bytes. Max Distance

threshold=p%*0.l72 units, where p=l, 2, 3, 8. ... 68

Table 5.1: Compression ratios of the Chef animation using the delta approach. The Chef

animation has 75 flames and each flame has 8162 triangles and 4241 vertices.

The object size is 440 units in x dimension, 148 units in y dimension and 455

units in z dimension. Original file size is 3,816,900 bytes. Max Distance

threshold =p% *455 units, where p=1, 2, 3, ...6. ... 86

Table 5.2: Compression ratios of the Chicken animation using the delta approach. The

Chicken Crossing animation has 400 flames and each frame has 5664 triangles

and 3030 vertices. The object size is 2.556 units in x dimension, 2.23 units in y

dimension and 1.07 units in z dimension. The original file size is 14,544,000

bytes. Max Distance threshold= p% *2.556 units, where p=2.5, 5, 7.5, 10, 15,

20. ... 86

Table 5.3: Compression ratios of the Dance animation using the delta approach. The

Dance animation has 201 flames and each frame has 14118 triangles and

7061vertices. The object size is 0.0758 units in x dimension, 0.172 units in y

dimension and 0.074 units in z dimension. Original file size is 17,031,132 bytes.

Max Distance threshold-=p%*0.172 units, where p=1, 2, 3, 4, 5, 6. 86

Table 6.1: Percentage of the octree encoded and delta encoded flames in the hybrid

method. ... 97

Table 6.2: Compression ratios of the Chef animation using the hybrid approach. The Chef

animation sequence has 75 flames and each frame has 8162 triangles and 4241

viii

vertices. The object size is 440 units in x dimension, 148 units in y dimension

and 455 units in z dimension. Original file size is 3,816,900 bytes. Max Distance

threshold =p% *455 units, where p=l, 2, 3, ...6. ... 98

Table 6.3: Compression ratios of the Chicken Crossing animation using the hybrid

approach. The Chicken Crossing animation has 400 flames and each frame has

5664 triangles and 3030 vertices. The object size is 2.556 units in x dimension,

2.23 units in y dimension and 1.07 units in z dimension. The original file size is

14,544,000 bytes. Max Distance threshold= p% *2.556 units, where p=2.5, 5,

7.5, 10, 15, 20. .. 98

Table 6.4: Compression ratios of the Dance animation using the hybrid approach. The

Dance animation has 201 flames and each flame has 14118 triangles and

7061vertices. The object size is 0.0758 units in x dimension, 0.172 units in y

dimension and 0.074 units in z dimension. Original file size is 17,031,132 bytes.

Max Distance threshold=p%*0.l72 units, where p=1, 2, 3, 4, 5, 6. 98

ix

LIST OF FIGURES

Figure 2.1: Huffman tree... 15

Figure 2.2: Arithmetic coding process. ... 17

Figure 2.3: One-dimensional VQ.. 22

Figure 2.4: Two-dimensional VQ. .. 23

Figure 2.5: JPEG compression diagram.. 25

Figure 2.6: Illustration of an inter-coded P frame... 26

Figure 2.7: Illustration of an inter-coded B flame. ... 26

Figure 3.1: This head model has 11,703 vertices and 23,402 triangle faces. (a) Wire

frames. (b) Shaded Illustration. (c) Triangle mesh representation. 33

Figure 3.2: Parallelogram Rule. .. 36

Figure 3.3: Triangle strip. ... 40

Figure 3.4: Generalized triangle strip. .. 41

Figure 3.5: Edge collapse operation.. 44

Figure 3.6: Vertex insert operation. .. 44

Figure 4.1: 3D animation representation. ... 53

Figure 4.2: Histogram of vector length differences between the motion of the vertex and

the average motion of the nearest four neighboring vertices. 54

Figure 4.3: Histogram of vector angle differences between the motion of the vertex and

the average motion of the nearest four neighboring vertices. 55

Figure 4.4: Sample flames flom original Chef animation sequence. 56

Figure 4.5: Sample frames flom original Chicken animation sequence. 57

Figure 4.6: Sample frames flom original Dance animation sequence. 57

Figure 4.7: Logical flow of encoding process for compressing 3D animated flames. 59

Figure 4.8: (a) Eight motion vectors. (b) The splitting process. (0) Corresponding octree

representation. .. 61

Figure 4.9: Tri-linear Interpolation. .. 63

Figure 4.10: A selected set of reconstructed Chef animation. The top row is the original

animation. The reconstructed animation by using Max Distance threshold = 1%,

3%, 5%, 7% are shown in row 2, 3, 4, 5 respectively. The compression ratio is

12:1, 33:1, 50:1, and 93:1 in row 2, 3, 4, 5 respectively. 69

Figure 4.1 1: A selected set of reconstructed Chicken Crossing animation. The top row is

the original one. The reconstructed animation by using Max Distance threshold

= 5%, 10%, 15% and 20% are shown in row 2, 3, 4, 5 respectively. The

compression ratio is 18:], 40:1, 67:1 and 117:1 in row 2, 3, 4, 5 respectively. 70

Figure 4.12: A selected set of reconstructed Dance animation. The top row is the original

animation. The reconstructed animation by using Max Distance threshold = 1%,

3%, 5%, 7% are shown in row 2, 3, 4, 5 respectively. The compression ratio is

15:1, 36:1, 59:1, and 92:1 in row 2, 3, 4, 5 respectively. 71

Figure 4.13: L2 distances of some sample flames in the reconstructed Chef animation by

using Max Distance threshold = 1%, 3%, 5% and 7% respectively. The

compression ratio is 12:1, 33:1, 50:1, and 93:1 respectively. 73

Figure 4.14: L2 distances of some sample flames in the reconstructed Chicken animation

by using Max Distance threshold = 5%, 10%, 15% and 20% respectively. The

compression ratio is 18:1, 40:1, 67:1 and 117:1 respectively. 73

Figure 4.15: L2 distances of some sample flames in the reconstructed Dance animation by

using Max Distance threshold = 1%, 3%, 5% and 7% respectively. The

compression ratio is 15:1, 36:1, 59:1, and 92:] respectively. 74

Figure 4.16: L2 distance comparison between the octree and PCA approaches using the

Chef animation. This comparison is based on approximately the same

compression ratio (12:1). To get this ratio, threshold in the octree approach is set

to be 1% of the initial cubic bounding box size. It corresponds to PCA with 6

bases. .. 75

Figure 4.17: L2 distance comparison between the octree and PCA approaches using the

Chef animation. This comparison is based on approximately the same

compression ratio. The compression ratio of PCA with 3 bases is 24:1 and the

compression ratio of the octree with threshold 2.5% is 27:1. 76

Figure 4.18: Image in the middle is the original flame 25. The reconstruction using the

octree approach with threshold 2.5% and PCA with 3 bases are shown in the

first and last image respectively. .. 76

Figure 4.19: L2 distance comparison between the octree and PCA approaches using the

Chicken animation. This comparison is based on approximately the same

compression ratio. The compression ratio of PCA with 19 bases is 19:1 and the

compression ratio of the octree with threshold 5% is 18:1. 77

Figure 4.20: L2 distance comparison between the octree and PCA approaches using the

Chicken animation. This comparison is based on approximately the same

compression ratio (40:1). To get this ratio, threshold in the octree approach is

10%. It corresponds to PCA with 9 bases. ... 78

Figure 4.21: Image in the middle is the original flame 300. The reconstruction using the

octree approach with threshold 5% and PCA with 19 bases are shown in the first

and last image respectively... 78

Figure 4.22: L2 distance comparison between the octree and PCA approaches using the

Dance animation. This comparison is based on approximately the same

xi

compression ratio. The compression ratio of PCA with 14 bases is 14:] and the

compression ratio of the octree with threshold 1% is 15:1. 79

Figure 4.23: L2 distance comparison between the octree and PCA approaches using the

Dance animation. This comparison is based on approximately the same

compression ratio. The compression ratio of PCA with 4 bases is 48:1 and the

compression ratio of the octree with threshold 5% is 59:1. 79

Figure 4.24: Image in the middle is the original flame 150. The reconstruction using the

octree approach with threshold 1% and PCA with 14 bases are shown in the first

and last image respectively... 80

Figure 5 . 1: Logical flow of the encoding process of the delta method............................. 84

Figure 5.2: L2 distances of some sample flames in the reconstructed Chefanimation using

the delta approach given different threshold settings. .. 87

Figure 5.3: L2 distances of some sample flames in the reconstructed Chicken animation

using the delta approach given different threshold settings. 87

Figure 5.4: L2 distances of some sample flames in the reconstructed Dance animation

using the delta approach given different threshold settings. 88

Figure 5.5: Compression ratio comparison between the delta and octree approach using

the Chef animation. .. 89

Figure 5.6: Compression ratio comparison between the delta and octree approach using

the Chicken animation. ... 89

Figure 5.7: Compression ratio comparison between the delta and octree approach using

the Dance animation. .. 90

Figure 5.8: Frame-wise compression ratio comparison between the delta and octree

approach using the Chef animation given the same threshold settings.

(threshold=2%). .. 91

Figure 5.9: Ftame-wise compression ratio comparison between the delta and octree

approach using the Chicken animation given the same threshold settings.

(threshold=5%). .. 91

Figure 5.10: Frame-wise compression ratio comparison between the delta and octree

approach using the Dance animation given the same threshold settings.

(threshold=1%). .. 92

Figure 6.1: Logical flow of the hybrid encoding process for compressing 3D animation

sequence. .. 94

Figure 6.2: A selected set of reconstructed Chef animation using the hybrid approach.

The top row is the original animation. The reconstructed animation by using

Max Distance threshold = 1% and 5% are shown in row 2and 3 respectively.

The compression ratio is 22:1 and 78:1 in row 2 and 3 respectively. 99

Figure 6.3: A selected set of reconstructed Chicken Crossing animation using the hybrid

approach. The top row is the original one. The reconstructed animation by using

Max Distance threshold = 5%, 10% and 15% are shown in row 2, 3, and 4

xii

respectively. The compression ratio is 47:1, 77:1 and 112:1 in row 2, 3 and 4

respectively. .. 100

Figure 6.4: A selected set of reconstructed Dance animation using the hybrid approach.

The top row is the original animation. The reconstructed animation by using

max distance threshold = 1% and 3% are shown in row 2 and 3 respectively. The

compression ratio is 17:1 and 37:1 in row 2 and 3 respectively. 101

Figure 6.5: L2 distances of some sample flames in the reconstructed Chef animation using

the hybrid approach given different threshold settings. 102

Figure 6.6: L2 distances of some sample flames in the reconstructed Chicken animation

using the hybrid approach given different threshold settings........................... 102

Figure 6.7: L2 distances of some sample flames in the reconstructed Dance animation

using the hybrid approach given different threshold settings........................... 103

Figure 6.8: Compression ratio comparison among the hybrid, octree and delta approach

. using the Chef animation. ... 104

Figure 6.9: Compression ratio comparison among the hybrid, octree and delta approach

using the Chicken animation. ... 104

Figure 6.10: Compression ratio comparison among the hybrid, octree and delta approach

using the Dance animation. .. 105

Figure 7.1: System Diagram. .. 108

xiii

Chapter 1

1 Introduction

3D graphics are rapidly achieving mainstream success, both in motion pictures

and computer gaming. The confluence of fast real-time hardware and advanced modeling

and rendering capabilities is opening the door to a world where the animated films of the

future will be rendered and viewed on the desktop with varying viewpoints, high

resolutions, and with output devices ranging flom cell-phones to theatre-sized projection.

But, as these models grow more complex, more detailed, and longer format, it becomes

increasingly difficult to efficiently store and transmit the huge 3D models that form the

basic input for these future rendering systems. Geometric data is quite large and,

therefore, needs effective compression methods to decrease the transmission and storage

requirements.

The focus of this thesis is the design of efficient and powerful algorithms for

compressing and transmitting animated geometric data. Geometry compression is the

compression of the 3D geometric data that provides a computer graphics system with the

scene description necessary to render images. Animated 3D models require even larger

memory and transmission bandwidth since a sequence consists of a large number of

frames and every flame is an already large static 3D object. Therefore, efficient

compression techniques need to be applied to the 3D animation sequence before

distributing it over the network.

Animated geometry compression is the compression of temporal sequences of

geometric data. Compressed animated geometry models make possible the incorporation

of rich animations in the interactive applications of the fiiture. As a simple example, an

efficient and powerful mechanism for animated geometry compression allows for the

delivery of an animated motion picture such as Shrek as a 3D model using the least

possible bandwidth in real time on demand or as a multicast. Rather than rendering the

film to video flames in advance, the rendering can be done at the delivery point.

Symmetric Multi-Rendering with Dynamic Load Balancing mechanism proposed by

nVidia may accelerate rendering process dramatically [1]. Delivering content as a 3D

model rather than as video flames opens up a new realm of applications. A user can then

view the film flom different and arbitrary viewpoints, in stereo, or in an immersive

Virtual Reality environment such as Improvisational Theater Space. The Improvisational

Theater Space is an interactive theatre where the users are put into the characters and

perform together with virtual actors [2]. To achieve this data delivery in real time, a

method that can achieve high compression ratios while maintaining good quality is

required.

Animation systems typically represent animation with a relatively small

parameter space. The motion of a limb may be represented by only two discrete motion

points modeled on a Bezier path, with the vertex motion being interpolated using

algorithms sensitive to the skeletal properties of the animated character. Hence,

animation should lend itself to high levels of compression since this underlying

parameterization implies a great deal of correlation among vertex data. Indeed, if the

underlying parameterizations were available, an encoder could likely create highly

efficient representations. However, this data is generally not available for distribution

and likely to remain unavailable to rendering systems for several reasons. Often the

animation systems incorporate modeling techniques that are proprietary in nature, using

algorithms subject to intellectual property protection. The mechanisms necessary to

conversion of parameterized graphical models to animated meshes are ofien complex,

particularly in relation to physical modeling systems such as water, fire, or explosions [3,

4] and online rendering is neither practical or economical. And, distribution of structural

model data and associated animation parameterization greatly simplifies unauthorized

manipulation of the models, aiding greatly those who would steal the complex model

designs in these systems for unauthorized derivative works.

Indeed it is likely that distribution will be limited to simple polygon or triangle

meshes, rather than complete hierarchical scene graphs so as to limit user modifications

of sequences. Hence, this thesis assumes the mostly simplistic representation of the

geometric data: a temporal sequence of polygonal meshes for each discrete flame of the

animated sequence.

1.1 Background

The basis for this thesis is the transmission of animated geometric data. Clearly,

the genesis for this work is the efficient compression of static data. The general field of

geometry compression is concerned with efficient compression of 3D data, be it animated

or static. Most initial work has been focused on static geometry. This section provides a

short overview of the current state of the art in geometry compression. More detail on

compression methods is provided in later chapters.

Deering first proposed geometry compression techniques in 1995 with

compression ratios of 6-10 to 1 [5]. Since that time, various strategies for geometry

compression have been reported [6-9]. Progressive compression provides for partial data

transmission at reduced resolution and is particularly useful when varying levels of detail

are required. Progressive compression techniques have been discussed since Hoppe’s

progressive meshes [10-18]. Boosen provides a comprehensive overview of the reported

geometry compression techniques [19]. Another geometry compression survey paper was

written by Shikhare [20]. Luebke wrote a survey on polygonal simplification algorithms

[21]. All these techniques focus on static geometry. Less attention has been paid to

animated geometry compression [22-26].

Lengyel presented a prediction compression method that splits vertices into sets

and uses affine transformations to approximate the vertex paths [22]. His method is

effective only when the animation is well represented by the supported transformations.

Alexa and Miiller proposed an interpolation predictor to represent animations by

principal components [23]. Principal Component Analysis (PCA) makes their approach

expensive. It requires significant memory usage and processing time. The PCA approach

cannot achieve high compression ratios if the number of flames is significantly smaller

than the number of vertices. Ibarria and Rossignac proposed a time-space predictor for

all the vertices and all the flames [24]. Bricefio et al. proposed an algorithm to generate

geomefly video from 3D animated meshes [25]. They extended the geometry images

proposed by Gu et al.[27]. To construct a geometry video, all the flames in the animation

sequence are replaced by the corresponding geometry images. Conventional video

compression techniques are applied to encode geometry video.

The TG coder proposed by Touma and Gotsman can compress a typical input to

approximately 9 bits per vertex [8]. In the raw data, each vertex has 3 coordinates and

each coordinate needs 32 bit floating point number to represent it, so the typical

compression ratio is about 10 to 1. If this technique is used to compress an animation

sequence, the compression ratio it can achieve is still about 10 to 1. The size of an

animation sequence depends on the number of vertices in each flame and the number of

frames in the sequence. The raw data size of an animation sequence is numflames *

numvertices * 96 bits. The PCA approach can achieve 39.8 to 1 with reasonable quality,

but it has too many limitations. Therefore a better approach is needed to compress

animated geometry.

1.2 Thesis statement

The goal of this thesis is to design new compression algorithms for animated

geometry that improve on existing methods, both in compression ratios and quality. The

methods presented herein represent 3D animation sequences with a reduced set of motion

vectors that take advantage of the large vertex data coherence in space and time.

This thesis focuses on the compression of vertex positions for each flame in the

animation sequence and the connectivity is assumed to be the same for all the flames. An

octree-based motion representation method is proposed that hierarchically represents 3D

animation [28]. This method only needs to access two consecutive flames at a time to

generate differential motion between flames. It controls the quality of every flame in the

reconstructed sequence. It achieves high compression ratios with reasonable quality.

This approach is easy to implement and has low cost features. An additional delta coding

method is also presented that is effective for selected data sequences, but is not generally

the best solution. To further increase the performance of the octree-based motion

representation method, a hybrid coding method is proposed that combines the octree-

based and delta coding approaches [29]. The hybrid coding method achieves higher

compression ratios given similar quality requirements.

1.3 Major contributions

The contribution of this thesis is listed as follows:

0 A novel new octree-based approach is proposed and implemented that efficiently

represents the data coherence in a 3D animation sequence.

0 A novel new delta coding mechanism is proposed and implemented that

represents the data coherence in a 3D animation sequence and is efficient as a

compression mechanism on some pair-wise flame sequences.

0 A hybrid coding approach is proposed and evaluated that combines the octree-

based approach and delta approach to improve the performance over the octree

only approach.

0 All the systems are evaluated in terms of compression ratio and L2 norm.

0 The octree-based approach is compared to a pure static compression mechanism

and the existing PCA animated geometry approach. The systems are compared in

terms of L2 norm.

0 The delta approach is compared to the octree-based approach in terms of the

overall performance and the flame-wise performance.

o The hybrid approach is compared to the octree—based approach and the delta

approach in terms of compression ratio.

0 A systems-layer is proposed for animated geometry compression that supports

practical application of these methods in distribution systems including stream

joining, random access in sequences, merging with additional multimedia streams

and playback controls.

1.4 Thesis structures

This thesis is organized as follows. Chapter 2 reviews previous work on text and

media compression, providing the basic context for all compression methods. In

particular the relation of the mature field of video compression to animated geometry

compression is examined. Chapter 3 reviews existing work on static and animated

geometry compression. Chapter 4 presents a new representation of 3D animation using an

octree-based motion representation method. The chapter includes evaluation results

between the octree-based approach and PCA approach. Brief comparisons with other

approaches are also included. Chapter 5 describes a delta coding approach to represent

animated geometric data. It presents evaluation results between the octree-based

approach and the delta coding approach in terms of compression ratio. Chapter 6 presents

a hybrid coding approach that combines the octree-based approach and delta coding

approach. By selectively incorporating these two mechanisms, the method is able to

achieve better performance than any of these methods individually. Evaluation results

for the mechanism are presented in detail. Chapter 7 describes the system implementation

of a flame-based geometry system with particular emphasis on support for practical

playback requirements including stream joining, playback controls, and error correction.

The details of such a system are contrasted to the mature MPEG systems layer designs.

Chapter 8 includes the conclusions of this thesis and describes possible extensions of the

current work.

Chapter 2

2 Data compression techniques

Data compression is the conversion of an input data stream into another data

stream that has smaller size [30]. Data compression is of great importance because it

allows users to save storage space and to transmit data efficiently. The use of data

compression makes it possible to store more data on a disk and transmit more data in an

available bandwidth. This chapter illustrates some basic compression concepts by

presenting how they are utilized in text and media data compression. Many elements of

these techniques form the basic tools for the implementation of 3D geometry

compression.

Compression techniques can be classified in many ways [31]. One such

partitioning is to subdivide the various methods into lossless techniques and lossy

techniques. Loss/ess compression refers to data compression methods where the data can

be completely recovered after decompression and the recovered data is bit-wise identical

to the original data. Lossy compression refers to data compression methods where the

data cannot be completely recovered afier decompression and the recovered data is not

identical to the original data because some information has been lost. Typically, the

information that is lost is chosen so as to be imperceptible. The advantage of lossy

compression is that it typically achieves much greater compression ratios than the best

lossless methods. Lossy techniques take advantage of the fact that, in many applications,

exact data representation may not be necessary. If the data after compression is

perceptually indistinguishable flom the original in the application context, it does not

matter if the data is bit-wise identical. This is particularly the case for media data such as

images and audio. Consequently, lossy methods are especially useful in compressing

images, movies or sounds but rarely suitable for text compression.

This chapter is organized as follows: Section 2.1 reviews text compression

techniques. The concept of entropy and entropy coding methods such as Huffman coding

and arithmetic doing are introduced. Section 2.2 reviews media compression techniques.

Transform coding methods are illustrated by presenting how they are used in media data

compression, such as Fourier transform and wavelet transform. JPEG and MPEG are also

included in this section as an illustration ofhow these methods are applied in static image

compression and moving sequence compression. The goal of this chapter is to introduce

tools and concepts that will be further developed in the context of geometry compression.

2.1 Text compression and Entropy

Methods that represent text using fewer bits or bytes are referred to as text

compression [32]. Text data is highly sensitive to bit-wise modifications; even a single bit

change will change a letter in context and modify the meaning. Hence, text compression

methods must be lossless, i.e. able to reconstruct the original text exactly. Most modern

data compression algorithms break the compression process into two parts, a predictive

modeler and an entropy encoder [32]. The predictive modeler assigns probabilities to

symbols by analyzing the pattern of usage in the input data and the encoder translates the

symbols into a sequence of bits representing a compressed version of the original

message. These two processes are almost completely independent. The encoder does not

10

need to know the prediction process, so different prediction models can be applied in

various applications. The encoder and modeler development have proceeded

independently.

As an example, assume a text data set consisting only of the symbols a, b, and c.

A predictive modeler will decide the symbols actually subject to encoding and their

probabilities in the data stream. In this case, assume that the letter a has probability 0.5

and b and c have probabilities 0.25. This is the determination a predictive modeler seeks

to make. This determination might have been made by analyzing the input data or known

in advance by analysis of a standard corpus of source data with similar distributions.

In this example, an encoder may choose to assign the bit sequence 0 to represent

a, 01 to represent b, and 00 to represent c. This assignment takes advantage of the fact

that the symbol a is more flequent and, therefore, should be represented with fewer bits.

Static modeling assumes that the encoder and decoder agree in advance on a fixed

model. In the previous example, drawing probabilities flom a standard corpus would be

an example of static modeling. In adaptive modeling, the code used for particular data is

dependent on the data actually being transmitted [33]. In the above example, drawing the

probabilities from the input data would be an example of adaptive modeling. It is

common that adaptive modeling will all continuously adjust the symbol probabilities as

the data is streamed, thereby adapting to changing characteristics of the input streams.

Numerous methods exist for predictive modeling of text data [31]. Descriptions

of these methods are beyond the scope of this thesis. However, it is illustrative to discuss

the concept of symbol assignment in text compression. There is no reason that a symbol

must be a single character. Indeed, methods for text compression have been proposed

11

based on single character symbols, bi-grams, tri-grams, and complete word units as

symbols. An important element in the design of any predictive modeler is the choice of

symbols.

2.1.1 Entropy

Entropy is one of the most important terms in data compression. It is a measure of

the actual information content of data [32]. It plays a central role in information theory

as a measure of information, choice and uncertainty. If there is considerable redundancy

in a data set then the value of entropy is small because redundancy implies copies of data,

not new data. If a data set is highly predictable, the entropy is low, since predictability

implies a lesser amount of actual information content.

As an example, the entropy of a stream of heads/tails selections of a coin, where

the coin has equal probability of each result, will be 11, where n is the number of coin

tosses. The events are independent, so each new coin toss cannot be predicted; each new

coin toss represents a new datum. However, if the coin has a 90% chance of coming up

heads, the entropy will be much less, since each coin toss can be predicted with a high

degree of certainty. The only real data in this case are the number of tosses and the cases

where the coin does not come up heads. The entropy of this stream turns out to be 0.47n

bits, as will be demonstrated shortly.

Entropy is intimately related to data compression. In an ideal (theoretically

optimum) case, the encoded message length would be equal to its entropy.

Suppose that there is a set of n possible events with known

probabilities p, , p2 p" that sum to l. The entropy of this set measures how much choice

is involved in the selection of the event and how uncertain we are of the outcome.

12

Shannon postulated that the entropy E(p,, p,...p") should have the following required

properties [34]:

1) B should be continuous in p,;

2) If each event is equally likely, B should be a steadily increasing function of n.

3) If a choice is broken down into successive choices, the original B should be the

weighted sum of individual values of E.

Shannon demonstrated that the only function E that satisfies the above three

requirements is in the form of Equation 2.1, the equation for entropy.

Erp. 422.42,,)=- k2 12. log 12. (2.1)

i=1

In Equation 2.1, k is a positive constant and governs the unit in which entropy is

measured. In computer applications this unit is typically the “bit”, where k=l and logs are

taken with base 2. In this case, the entropy function is in the form of Equation 2.2.

E(p1,pz-~p.)=- Zia-1082 p,- (2.2)

i=1

The minus sign guarantees the result for entropy to be a positive value. This

means that the message with greater probability contains less “information”. Therefore

the overall entropy is the average of the entropy of the individual decisions involved.

In the previous coin toss example, if the coin has a 90% chance of coming up

heads and 10% chance of coming up tails, the entropy of each coin toss is shown in

Equation 2.3 after applying Equation 2.2. The minimum number of bits needed to present

13

the toss result of a biased coin turns out to be 0.47 bits. The entropy of the coin toss

stream turns out to be 0.47n bits, where n is the number of tosses.

—0.1"‘log2 0.1 —0.9"‘log2 0.9 (2.3)

2.1.2 Huffman coding

D.A. Huffman discovered a way to achieve compression by constructing codes

based on a set of message probabilities. This is the well-known coding method called

Huflinan coding. It is a variable length coding method. The basic idea is that shorter

codes are used to encode symbols that occur flequently and longer codes are used to

encode symbols that seldom occur.

Huffman’s algorithm takes a list of probabilities and constructs a full binary tree

whose leaves are labeled with the probabilities associated with the source messages.

Initially there is a forest of single node trees, one for each probability in the list. In each

step, locate two trees corresponding to the smallest probabilities, p, and pj. They are

selected to construct a new tree with a combined probability ofp, + pj. with the previous

trees becoming subtrees of the new tree. The probabilities p, and pj. are replaced by

p,+ pj. for the new tree. This process is repeated until only one value exists in the list.

The final tree is the Huffman coding tree. This is best illustrated by an example. Given

five symbols with probabilities as shown in Table 2.1, the Huffman tree is shown in

Figure 2.1 and the final Huffman code is shown in Table 2.2. Therefore CAD can be

encoded using 9 bits (101] 100 11).

14

Table 2.1: Probability of each symbol in the message.

Symbols Probabilities (p)

A 0. 13

B 0.40

C 0. 10

D 0.29

E 0.08

Total 1 .00

 0.08 0.10

Figure 2.1: Huffman tree.

Table 2.2: Huffman codes.

Symbols Binary Codes

A 100

B 0

C 10 l l

D l 1

E 1010
Huffman coding provides the optimal solution if the optimum number of bits per

symbol is integral. In this case, all symbol probabilities are exact powers of %. But this is

seldom practical. To make Huffman coding more effective, symbols can be blocked into

15

n-grams and these n-grams can be used as the coding units. This is the shortcoming of

Huffman coding.

2.1.3 Arithmetic Coding

Arithmetic coding was invented by Rissanen [35]. It is also an entropy-based

lossless coding method. However, it is much more flexible than Huffman coding.

Arithmetic coding guarantees that any message can be encoded in the number of bits

dictated by its entropy. Arithmetic coding encodes symbols using non-integral numbers

of bits. This coding method is computationally efficient and computes the code

incrementally, one symbol at a time. In arithmetic coding, a message is represented by an

interval for real numbers between 0 and 1. The longer the message, the more precision is

required for the real numbers. It means the number of bits needed to specify the range

increases. Before anything is processed, the range for the message is [0,1). As each

symbol is processed, the range is narrowed to the portion allocated to the symbol. The

arithmetic coding process is illustrated in Figure 2.2. The symbol probabilities are shown

in Table 2.1. Any value in the final range can be used as an encoding of CAD.

16

0.0 1.0

E D c B A

0.37
0.47

E D C B A

0.457 0.47

0.45804 0.46181

Figure 2.2: Arithmetic coding process.

2.2 Media data compression

Media data ofien exhibits high degrees of redundancy. As an example, the value

of a pixel in an image can be predicted with high probability based on the value of

neighboring pixels. This predictability often extends of large areas of media data.

Hence, simple first order predictions or models are often insufficient. What is desired is

a way to decrease the redundancy in the media data as a unit rather than attempt to

predict this redundancy.

Transform coding methods convert source data to an alternative representation

that decorrelates the data, thereby reducing the redundancy. Fourier Transforms, Wavelet

Transforms, Vector Quantization and Fractal are important transform techniques used in

media data compression. The main reason for using transform-coding methods on media

data is to take advantage of correlations among media data. For example, image

compression can be achieved by transforming its pixels to a decorrelated representation.

17

An original image is represented as pixels in a spatial domain. If the image is subject to a

Fourier transform, the data is transformed to the Fourier domain. This domain exhibits

information packing, meaning the information in the image is packed into fewer actual

data points, each of which is orthogonal to all other data points. JPEG and MPEG are

discussed in this section as an illustration of how these methods are applied in static

image compression and moving sequence compression.

2.2.1 Fourier Transform (FT)

The Fourier transform is used to transform a continuous time signal into the

frequency domain [36, 37]. Joseph Fourier showed that any function could be expressed

as an infinite sum of sinusoids of different flequencies. Sine waves of different

flequencies are orthogonal. The transformed signal contains exactly the same information

as that of the original fimction and they differ only in the information presentation [38].

The Fourier transform is an invertible transform. The transformed flequency domain

signal can be converted back to the original time domain signal and vice versa.

Continuous Fourier transform

For a continuous function, the Fourier transform pair is given by the following

two formulas. Equation 2.4 is the forward transform. Equation 2.5 is the reverse

transform.

00") = [gar-Wat (2.4)

g0) =]G(f)ej2””df (2.5)

18

In the above equations, j is the square root of -1. g(t) is a continuous function in

the time domain and G(f) is the corresponding FT of the function in the flequency

domain.

Discrete Fourier transform

In the case of sampled discrete functions that are represented by values at equally

spaced points, the discrete Fourier transform is utilized. It is an invertible linear

transformation and widely used for the analysis and design of signals and systems.

Although the Fourier transform has been widely used in many areas, it has its

limitations. This transform is not a suitable technique for non-stationary signals. A Non-

stationary signal is a signal that has different characteristics at different times.

2.2.2 Wavelets

Wavelets are functions that meet certain mathematical requirements and are

utilized to represent other functions and data [39]. The main idea of wavelet transform is

to select a mother wavelet, a wavelet prototype function, and use it to explore the

properties of a nonzero function in a small interval. The mother wavelet is then translated

to another interval of t and used in the same way. Different flequency resolutions are

explored by sealing the mother wavelet with a scale factor. The original signal can then

be represented using coefficients in a linear combination of the wavelet functions. If

some coefficients are ignored based on a predefined threshold, the original data is

represented by a small number of coefficients. This makes wavelets an excellent tool in

the field of data compression.

l9

Wavelet transforms are oflen classified into two categories, namely the

continuous wavelet transform (CWT) and the discrete wavelet transform (DWT). The

continuous transform is defined as a continuous, multi-resolution transform built up flom

a mother wavelet. It decomposes a function into a set of basis functions. More detailed

information about CWT can be found in the book written by Chui [40]. The discrete

wavelet transform is applied to discrete data sets and generates discrete outputs. DWT is

more commonly used in practice than the CWT because the information being

transformed is usually discrete. The discrete wavelet transform provides sufficient

information both for analysis and synthesis of the original signal. The signal is passed

through a series of high pass filters to analyze the high flequencies and a series of low

pass filters to analyze the low flequencies [41].

Wavelet transforms are especially useful for compressing image data. An image

can be represented as sets of real coefficients afler applying the wavelet transform. Most

of the wavelet coefficients of a typical image are close to zero, so the image thus is well

approximated with a small number of large wavelet coefficients. Wavelet compression is

achieved by quantizing and encoding wavelet coefficients.

The Haar transform is an example of the simplest wavelet transform. An example

of applying Haar wavelet transform to a gray image will be demonstrated shortly. The

Haar wavelet transform uses a scale function and a wavelet to represent a large number of

functions. Calculating averages and differences is the principle of the Haar transform.

Each step of Haar transform computes a set of wavelet coefficients (differences) and a set

. n n .
of averages. For a n-element data set, there Will be -2- averages and Ewavelet coefficrent

values after the first step. The averages will be used as inputs for the next wavelet

20

calculation step until a single average and a single wavelet coefficient are computed.

This replaces the original data set with an average followed by a set of differences.

It is easy to explain the Haar transform using matrix multiplication. Suppose

there is a simple grayscale 8 by 8 image and the values of the first row pixels are (8, 7, 6,

5, 4, 3, 2, 1). Matrix Al, A2 and A3 as shown in Equation 2.6 are used in the first, second

and third steps of the Haar transform respectively. For this data set it only needs 3 steps

to get Haar wavelet transform of the original data items. The result is shown in Equation

2.7.

\

(11000000

2211 nloooooo‘-— r w

11 00——0000 2.

000000;; 5’5000000 00100000

Al: A2: A3:1-1000 00 001—10000 00010000

22 003021000 00001000

001__1_0000 00000100

22 00000100
11 0 0 10 00000010

0000—-—oo ° 000 (00000001)
22]] (00000001)

00 000———

l 2 2/

/8\ (4.5\

7 2

6

5 1

A3 * A2 * A1* = (2.7)

4 0.5

3 0.5

2 0.5

The above example shows that the Haar transform can be achieved by building

matrices and multiplying them to get a result matrix W. The matrix W is used to convert

21

the original data set to a set of wavelet coefficients. To compute the Haar transform of a

complete two-dimensional image, the standard algorithm starts by applying W to all the

rows of the original image and then it applies W to all the columns of the transformed

image. After applying the Harr wavelet transform, the pixel values of final image should

be smaller than the corresponding values in the original image. The final values can be

compressed using some basic coding methods. Lossy wavelet image compression can be

achieved by discarding some small coefficients.

2.2.3 Vector Quantization

Due to the fact that adjacent data items in an image or digitized voice are often

highly correlated, vector quantization (VQ) is commonly used to compress images and

digitized sound [42]. It is a lossy data compression method. A vector quantizer is an

approximator. As a simple illustration, a one-dimensional two-bit VQ is shown in Figure

2.3 and a formalized representation of this quantizer in Equation 2.8.

00 01 10 11

4 4 l —O l a i 4 >

3 2 -1 0 1 2 3

—3 x 2

VQ(x)==< '1 ‘2 S x S 0 (2.8)
1 05x32

. 3 _

A two-dimensional VQ is illustrated in Figure 2.4. A two-dimensional quantizer

assigns any input point (a pair of number) in the plane to one of a particular set of 4 black

22

dots in the plane. In this example, there are 4 regions and 4 black dots. This is a two-

dimensional, two-bit VQ. In these two examples, the black dots are called code vectors

and the region associated with each dot is called an encoding region. The codebook

consists of all the code vectors and all encoding regions form a space partition.

 " 1 1 1 1 1 r

- - - 2 w
—
l

Figure 2.4: Two-dimensional VQ.

When the VQ method is applied to image compression, the image is first divided

into small blocks of pixels, typically 2x2 or 4x4. The compression is achieved by

compressing the pixel blocks instead of individual pixels. The encoder maintains a

codebook. For each image block, the encoder outputs a pointer that points to the

corresponding entry in the codebook and writes it on the compressed stream. Linde et al.

proposed an efficient algorithm (LBG) for designing an optimal vector quantizer for a

23

given signal source. The LBG algorithm is the basis of many vector quantization methods

used in image and voice compression [43].

Fractal compression is a form of vector quantization that utilizes a virtual

codebook [44]. Compression is achieved by locating self-similar sections of an image,

then using a flactal algorithm to generate the sections. This technique generates lossy

compression. Compression is slow but decompression is fast. Fractal techniques are

widely used. They are used in generating terrain world, image compression and so on.

2.2.4 JPEG

JPEG stands for Joint Photographic Experts Group and is a standardized image

compression mechanism. It is designed for compressing continuous-tone still images

[45]. JPEG utilizes the fact that the human eyes perceive small chrominance changes less

accurately than small luminance changes. Thus, JPEG compressed images are suitable to

be looked at by humans but not for machine image analysis. JPEG provides several

operation modes so the user can choose different modes to compress the image according

to different needs. JPEG is a lossy compression mechanism. JPEG allows the user to

achieve a desired compression/quality tradeoff by adjusting compression parameters.

Storing full color information (24 bits/pixel) is also an advantage of JPEG.

Discrete Cosine Transform (DCT) is a variant of the discrete Fourier transform. It

can transform an image flom the spatial domain to the frequency domain. Given a n by 11

image, the general equation for its two dimensional DCT is defined by the Equation 2.9.

JPEG standard uses 11 equal to 8.

n—ln-l

00j): —f—_—C(i)C(j)ZZp(x.Zzy)cos(”—‘———xl)’)coMfg-£91) (2.9)
x-0y=0

24

1 .

where C(i): :5- fort—l andOSi,an—l.

1 otherwise

In Equation 2.9, p(x, y) is the intensity of the pixel in row x and column y; D(i, j) is the

DCT coefficient in row i and column j of the DCT matrix. For most images, much of the

image information lies at low flequencies. The upper left values of the DCT matrix

represent lower flequencies. The higher flequencies are represented by the lower right

values. The lower right values are often small, so the DCT makes it possible to achieve

image compression by neglecting those values with little visible distortion.

Figure 2.5 shows the JPEG compression diagram. The color images are

transformed flom RGB color space to luminance/chrominance color space and organized

in groups of 8 x 8 pixel blocks. The JPEG standard applies the two dimensional DCT to

each 8 x 8 pixel block to generate an 8 x 8 coefficient matrix for the corresponding

flequency components. Each DCT coefficient is divided by its quantization coefficient

(QC) and rounded to an integer. The 64 quantized DCT coefficients of each pixel block

are encoded using entropy encoder to generate the compressed bit stream. JPEG is a

symmetric compression method because the decoder performs the reverse steps.

_ , 01 100...

Quantization

8x8 pixel block

Figure 2.5: JPEG compression diagram.

25

2.2.5 MPEG

MPEG stands for Moving Pictures Experts Group. The MPEG group has devised

numerous standards for compression and representations of digital video and multimedia

data. The MPEG standards for compressed video data include MPEG-1, MPEG-2 and

MPEG-4 [46]. MPEG-1 is intended for intermediate data rates, on the order of 1.5 M

bits/s. MPEG-2 is intended for high data rates of at least 10M bits/s. MPEG—4 is intended

for very low data rates of less than 64 K bits/s.

MPEG represents video sequence using three types of flames: I, P and B—flames. 1

stands for intra—coded flames. I-frames are coded independently. I-frames are basically

encoded using JPEG compression algorithm. A P-frame is inter-coded using its

predecessor. A P-frame is a differential representation of a flame based on the previously

reconstructed I or P-flame as shown in Figure 2.6. A B-flame is inter-coded based on

both past and future I-flame and P-frame as shown in Figure 2.7. MPEG utilizes

differentially encoded flames to take advantages of interflame correlation of digital

video.

I P P P

W

Figure 2.6: Illustration of an inter-coded P frame.

Figure 2.7: Illustration of an inter-coded B frame.

26

The macroblock is the basic building block of an MPEG picture. It is composed

of a 16 x 16 block of luminance samples and two 8 x 8 chrominance sample blocks,

therefore a macroblock has six 8 x 8 blocks of samples. To compress a macroblock, the

MPEG standard applies a DCT to each 8 x 8 sample block to create decorrelated values,

quantizes the DCT coefficients and encodes the quantized results. The main difference

flom JPEG is that MPEG uses different quantization tables, different code tables and

different rounding methods for I-flames and non I-flames.

Motion Compensation is an important element in MPEG inter compression. It can

only be used for non I-flame coding. In this mode, the pels are predicted by the previous

reference flame. The smallest detail that can be reproduced in a picture is about the size

of a picture element, referred to as a pel in video terminology [47]. Before applying DCT,

the pels are subtracted to get the difference. The results are quantized and encoded.

Motion is normally the main cause of differences between the current picture and the

previous reference picture. Matching a region in the current picture with different

regions in the previous reference picture can provide a template for the region that is a

good prediction of the actual data values. Macroblocks are used as an elementary region

in motion compensation. A P-flame uses an earlier I-flame or P-frame as a reference

picture, so P-frame uses forward prediction. Forward prediction means that a target

macroblock to be encoded is matched with a set of displaced macroblocks of the same

size in a past reference picture. A B-frame may use forward or backwardprediction, or

both. Backward prediction means that a target macroblock can be predicted by a

prediction macroblock flom the future reference picture.

27

For decompression, MPEG reconstructs the pels of the entire video sequence. It

reads the codes of a block flom the compressed data stream, decodes them, recovers the

quantized DCT coefficients and takes the inverse DCT. For P and B-flames, motion

compensated prediction should be added to the result of inverse DCT. The entire video

sequence is decoded picture by picture and macroblock by macroblock for each picture.

2.3 Summary

This chapter reviewed some standard compression techniques for both text and

multimedia data. These methods are not directly applicable to 3D geometry. The text

compression methods are ineffective because the actual symbol properties in geometric

data are not well distributed. There is a much larger set of symbols and they are used

with small frequency. Hence, predictive methods based on symbol probabilities are not

generally effective. Pure transform techniques have been applied to geometry

compression [48] and animated geometry compression [23, 26], but the methods that will

be presented in this thesis are more closely related to wavelet compression methods.

The system design features of MPEG take advantage of the temporal redundancy

in video sequence and are well developed in their support of playback controls and

stream joining. Many of the general concepts of MPEG will be applicable to 3D

geometry compression, though with considerable changes, as illustrated in Chapter 4 and

Chapter 7.

28

Chapter 3

3 Related work on 3D compression

The standard compression techniques discussed in the previous chapter are

effective for text and media compression. However, these methods are not well adapted

to compression of 3D geometric data. This chapter reviews existing work on static and

animated geometry compression and provides the foundation for new development in

animated geometry compression. Section 3.1 reviews the related work on geometry

compression and the animated geometry compression techniques are reviewed in Section

3.2.

Geometry compression can be divided into static and animated methods. Static

methods encode a single geometry model for transmission and are typically applied to

walkthroughs and applications where the animation is provided locally (such as some

gaming applications). They also provide the intraflame coding necessary for any

practical animated geometry compression solution, such as the basic concepts of JPEG

compression are used to provide the intra-coded frame solution in MPEG compression.

Animated geometry compression encodes a sequence of geometry models and is

suitable for delivery of fully animated content such as movies or interactive games.

3.1 Static geometry compression

This section reviews existing static geometry compression techniques. Section

3.1.2 presents different ways to represent 3D geometry. Static geometry compression

29

techniques can be grouped into two categories, vertex compression techniques and

connectivity compression techniques. Section 3.1.3 and Section 3.1.4 review vertex

compression and connectivity compression techniques respectively.

3.1.1 Introduction

With the increasing popularity of 3D graphics, large amounts of 3D data are

routinely accessed over the Internet, while whole new applications for 3D graphics await

more efficient ways to access the data. Due to the increasing complexity of 3D graphics,

it becomes more difficult to efficiently store and transmit the massive 3D models that

form the input for any rendering system. Geometric data is quite large and, therefore, it is

valuable to develop effective compression methods to decrease the transmission and

storage requirements.

Geometry compression has become a rapidly growing field since Deering

proposed a geometry compression technique [5]. Various strategies have been developed

for geometry compression since then. Geometry compression has initially focused on

non-progressive techniques. Progressive geometry compression has become an active

topic since Hoppe introduced progressive meshes [10]. Progressive techniques provide

for partial data transmission at reduced resolution. It is good to compress 3D models in

progressive fashion to meet the need of progressive transmission, display and Level of

Detail (LOD) control. For progressive compression, information is compressed at

different resolutions. The coarsest version of the model is encoded first and followed by

finer detailed versions of the model. Most common geometry compression techniques are

in a non-progressive fashion [5-9, 49-51]. Researchers have proposed progressive

compression techniques [10-18, 52, 53].

30

View-independent methods compute LODs for each object in the scene. At run

time the rendering system selects a proper LCD for each object based on the distance. As

the object is further away flom the viewer, the coarser LCD for this object is used. View-

dependent approaches use a dynamic representation of the model [53-56]. It is

continuously queried at run time to produce an appropriate representation of the model to

the user’s current viewpoint. View-dependent approaches address the problem of view-

dependent LOD control. They find and update a mesh according to the viewing

parameters. View-dependent methods have some advantages over view-independent

approaches. An object can be rendered at multiple LODs. It is a very useful tool for real

time rendering complex 3D environments. Hoppe’s work represents an arbitrary triangle

mesh as a hierarchy of geometrically optimized refinement transformations [54, 55]. This.

representation makes it easier to retrieve accurate approximating meshes based on view

parameters. Increased run-time computation is one drawback of view-dependent

approaches.

3.1.2 Geometric data representations

Geometric data is used to represent 3D objects in a computer. It provides

foundations for computer graphics, computer-aided geometric design and visualization.

3D models can be represented in many different ways. These representations can be

classified into four categories: raw data, surfaces, solids and high-level structures [57].

Raw data is unstructured data acquired directly flom 3D modeling devices. It includes

point clouds, range images and polygon soups. Point clouds are obtained flom range

scanners as a set of unstructured 3D point samples. Range images are obtained flom a

range scanner and are a set of points mapping to pixels as a depth image. Unstructured

31

sets of polygons are called polygon soups. Mesh, subdivision surfaces, parametric

surfaces and implicit surfaces are in the surface category. Connected sets of polygons are

called Mesh surfaces. The polygon mesh is the most common modeling method for 3D

computer graphics. Surfaces can also be built by using coarse meshes and subdivision

rules that specify how resolution is increased on the mesh. This representation is referred

to as subdivision surfaces. Parametric surfaces describe surfaces using a small set of

parameters such as control points. Spline and Bezier patches are examples of parametric

surfaces. A surface can also be defined in an implicit way, an implicit surface, using a

function to describe all the points on a surface. An equation for a sphere defines an

implicit surface.

Solids categories include Voxels and BSP trees. As an example, voxels obtained

from CAT or MRI are a uniform grid of volumetric samples. From polygonal

representations, binary space partitions with solid cells labeled can be constructed. Scene

graphs and skeletons are high-level structures to represent 3D objects. A scene graph is a

hierarchical representation of a graphical scene.

Although many representations have been proposed for 3D models, the polygon

mesh (and the more constrained triangle mesh) is the most prevalent representation. A

polygon mesh is a very flexible and simple means of describing a 3D surface. 3D

graphics adapters optimized for triangles reinforce this trend and, in fact, encourage the

trend to make the polygons all triangles. Since all other representations can be converted

to triangle meshes, triangle mesh representation has become a popular format to represent

3D models.

32

A triangle mesh is represented by vertex data and connectivity information.

Vertex data consists of coordinates of all the vertices and (optionally) vertex normal

vectors and texture coordinates. Connectivity information is simply a triangle list where

each triangle is a list of vertices. Figure 3.1 illustrates a 3D model and its representation.

The PLYfile format is an example of this data structure [58]. A PLY file consists of a

header followed by a list of vertices and a list ofpolygons.

(a) (b)

Vertex1 :X1 Y1 Z1 Face1 : 3 1 4

+Vertex2 : X2 Y; Z; Face2 : 2 1 3

Vertex3 : X1 Y; Z; Face3 :2 5 1

(C)

Figure 3.1: This head model has 1 1,703 vertices and 23,402 triangle faces. (a) Wire frames. (b) Shaded

Illustration. (c) Triangle mesh representation.

3.1.3 Vertex compression techniques

Vertex data and connectivity information are the main elements of the geometry.

The standard geometry representation used in modern graphics hardware is a set of

33

vertices containing xyz coordinates, and a set of faces containing indices referring to the

vertices. Geometry compression techniques can be classified into two categories: vertex

compression and connectivity compression techniques.

Vertex data consists of coordinates of all the vertices and optional normal vectors

and textures. Each coordinate component of a vertex is usually a floating-point number.

According to the survey by Gotsman et al. [59], there are three vertex compression

techniques in the literature, namely quantization, prediction methods and spectral

methods.

3.1.3.1 Quantization

Quantization is a common technique to compress numerical data by discarding

excess resolution. It is a lossy compression method because the recovered data after

decoding is not identical to the original data. Uniform quantization is a typical form of

quantization, though the vector quantization methods described in Chapter 2 are all

applicable. If the input range is divided into levels with equal spacing, a uniform

quantizer is described; otherwise it is non-uniform quantization. They both have

advantages and disadvantages. Uniform quantization is easy to implement and fast to

quantize/dequantize, but the quality of reconstructed data is not optimal. A non-uniform

quantizer has higher computation cost, but the reconstructed data has optimal quality.

Deering used a uniform quantizer to reduce the number of bits for each

coordinate component of each vertex to 16 bits [5]. After quantization, vertex locations

and colors were delta coded followed by modified Huffman compression. He used a

table-based approach for normal vectors. In this method, any normal can be represented

by l8-bit index and many normals can be represented with 8 bits or smaller index deltas.

34

3.1.3.2 Prediction methods

Some researchers have proposed a prediction idea that improved Deering’s

method by considering the features in the geometry. Predictive encoders work better than

pure quantization methods. A predictive encoder takes the advantage of the correlation

between the position of a vertex and the position of its neighboring vertices. Predictive

encoders are based on vertex estimation that is derived flom the incidence graph and

flom previously decoded vertex positions. Taubin and Rossignac used a linear predictive

encoder [6]. Vertex coordinate components are first quantized to a fixed number of bits

(8,10 or12 bits) by bounding the interval in which the coordinates lie. A vertex-spanning

tree is used to predict the geometry of each vertex as a linear combination of the

geometry of its ancestors in the tree. The geometry of a new vertex can be expressed as

’1le + 112v2 + 13v, + e, where A, , 112 and 13 are estimated by minimizing the prediction

errors over the entire mesh, where v1 ,v2 and v3 are the immediately proceeding ancestors

of this new vertex in the vertex spanning tree, and where e represents the prediction error.

Geometry is predictively encoded and the prediction errors are encoded with standard

lossless entropy coding techniques. Other properties, such as normals, colors and texture

coordinates are encoded in a similar way. This method can compress the geometry to

approximately 12 bits per vertex. Touma and Gotsman proposed a more sophisticated

prediction scheme to achieve a more accurate prediction [8]. The “parallelogram” rule

was used to predict vertex positions. Using this rule, the geometry of a vertex is predicted

flom the geometry of vertices surrounding it on the mesh surface. This rule is based on

the assumption that the two adjacent triangles in a smooth mesh can approximately form

a parallelogram, so the geometry of fourth vertex may be predicted flom the other three

35

vertices. The vertex d of the triangle incident on the edge bc can be predicted by

d” = c+b —a , where a is the third vertex of the other previously processed triangle

incident upon edge bc , as shown in Figure 3.2 [59]. For typical inputs, their method can

achieve approximately 9 bits per vertex.

pPredicted Vertex

b

Figure 3.2: Parallelogram Rule.

Pajarola and Rossignac used a butterfly prediction method to estimate the original

non-collapsed vertex positions [11]. The basic idea of their approach is to predict the

position of a vertex by computing the weighted sum of surrounding vertices at

topological distance 1 or 2 on the triangulation graph.

3.1.3.3 Spectral methods

Spectral methods are similar to the transform coding methods used for image and

signal compression. Kami and Gotsman [48] first employed mesh spectral analysis to

compress vertex coordinates of polygonal meshes. They built a set of geometric data that

represents basis functions for the geometry of the entire mesh. Transform coding

methods work by transforming a function (in this case the discrete vertex locations) to an

36

alternative domain such that the original data can be reconstructed as a weighted sum of

the basis functions in the domain.

Their method computes the spectral coefficients by building a mesh Laplacian

matrix flom the topology information of the mesh. The Laplacian matrix is a n by n

matrix, where n is the number of vertices in the mesh, and each element in the matrix is

computed using Equation 3.1, where d, is the degree of vertex i. The next step of their

approach is to compute the eigenvectors of this matrix to obtain a set of basis functions.

The spectrum of the geometry can be obtained flom the spectral basis functions. For

meshes containing more than 1000 vertices, it is not practical to compute eigenvectors. In

this case, an efficient partitioning algorithm must be used to generate submeshes and

mesh spectral analysis can be applied to each submesh separately [48].

1 if i andj are the same vertex

L . = —— i and j are neighbors (3.1)

0 otherwise

3.1.4 Connectivity compression techniques

A large part of geometry compression research has been focused on connectivity

information compression. Connectivity compression aims to find a way to reduce

repeated references to vertices shared by many triangles. Most of these techniques

compress connectivity information in a lossless way [6, 8, 9, 49]. Vertex positions can be

subject to some loss, but actual geometry loss must be controlled carefully so as to create

an object that is perceptually identical to the original.

Some existing connectivity compression methods assume specific structures in

the geometric data such as triangle strips [5] or spanning trees [6, 49]. Rossignac’s

37

Edgebreaker is a technique suitable for triangle manifold meshes [9]. In a manifold mesh,

the neighborhood of each vertex can be continuously deformed to a disk and each edge is

shared by no more than two triangles [60]. In their method, they used a preprocessing

stage to renumber the vertices of the mesh and represent the model in a half edge data

structure, then traverse triangles, recording the history in terms of 5 op-codes. The op-

code is used to describe the topological relation between the current triangle and the

boundary of the remaining part of the mesh [9]. Connectivity is encoded in 1.5 to 2 bits

per triangle. Isenburg and Snoeyink extended the edgebreaker approach proposed by

Rossignac to compress polygonal manifold meshes [50]. King et al. have worked on

compressing irregular quadrilateral meshes [51]. Some researchers also extended earlier

efforts to handle non-manifold meshes. Till now, connectivity compression techniques

have been well developed. Connectivity representation and several significant previous

published connectivity compression techniques are summarized in the following sections.

3.1.4.1 Connectivity representation

The simplest representation of each triangle is to store a list of vertex coordinates

that consist of three coordinates of each vertex in the triangle. For this approach, each

triangle is stored independently and the location of a vertex is repeated 6 times on

average, which turns out to be very inefficient. To avoid storing the same vertex multiple

times, the vertices are stored in an indexed list and the connectivity (each triangle) is

stored as a list of indices into the vertex list. Each triangle can be represented using 3

integer numbers and 310g 2(I V I) bits are needed for each triangle, where |V| stands for

number of vertices in the model [9]. An improved method is to combine the advantages

of the above two methods by storing only the triangles, each represented by 3 vertex

38

descriptors [9]. In this scheme, each vertex descriptor begins with one bit switch

indicating a new vertex or previously seen vertex. If it is a new vertex, the switch bit is

followed by the three coordinates of this vertex; else if this is a known vertex, the switch

bit is followed by the [log,(p)-lbits that identify one of the P previous seen vertices.

Using this method, connectivity cost is 2.5 log 2 (| V |) +0.5 bits for each triangle [9]. Later

on, Bar-Yehuda and Gotsman proposed a method to visit the triangles in an order that

guarantees no more than 13(|V|)°'5 vertices are exposed at any given time [61].

Connectivity cost can be lowered down to 1.2510g2 (l V l) +9.75 bits per triangle with this

improved method.

3.1.4.2 Triangle-strip based technique

Deering presented the idea of triangle strips. A mesh representation based on this

idea is supported by OpenGL [62] and other graphics libraries. This representation aims

to reduce the number of times the same vertex is transferred and processed by the

graphics subsystem. In a triangle strip, each triangle is represented by combining a new

vertex with two previous seen vertices. To achieve this, ordering the triangles is needed

to make consecutive triangles adjacent to each other. Each new triangle shares an edge

with the previous triangle in the strip. Therefore a triangle strip is a series of connected

triangles. The Figure 3.3 is an example of a triangle strip that consists of 4 triangles: 0 l

2;213;234;435

39

012345...

Figure 3.3: Triangle strip.

Some geometry, such as that in Figure 3.3, can be represented by one triangle

strip, but geometry such as that in Figure 3.4 is not suitable to represent using a single

triangle strip. The interior vertices will appear twice in the strip, which is undesirable.

Deering used a generalized technique to avoid references to old data. Figure 3.4 is an

illustration of generalized triangle mesh [5].

40

Generalized Triangle Strip:

R6, 01, O7, 02, 03. M4, M8. 05, O9. 010, M11,

M17, M16, M9, 015, 08, 07, M14, 013, M6,

012, M18,M19,M20, M14, 021.015.022.016.

023, 017, 024, M30. M29, M28. M22, 021, M20,

M17, 026, M19. 025. 018

Generalized Triangle Mesh:

R6p, O1, 07p, 02. 03, M4, Map, 05, 09p. 010, M11,

M17p, M16p, M-3, 015p, 0-5, 06, M14p, 013p, M—9,

O12, M18p, M19p, M20p, M-5, 021p, 0-7, 022p, 0-9,

023, 0-10, 0-7, M30, M29, M26, M-1. 0-2, M-3.

M27, 026, M-4, 025, 0-5

Legend:

First Letter: R=Restart. 0=Replace Oldest, M= Replace Mlddle

Trailing 'p'=push into mesh buffer

Number is vertex number,-number is mesh butter reference where —1 is

most recent pushed vertex.

Figure 3.4: Generalized triangle strip.

Deering’s method is achieved by encoding geometry using generalized triangle

strips and by using lossy techniques to encode vertex coordinates and other properties [5].

In the first step, the triangle data are converted into generalized triangle strips which are a

near-optimal representation of triangle mesh given fixed storage. After that, quantization

techniques are used to quantize vertex coordinates, color and vertex normals. The

quantized results are delta encoded between neighbors and the last step is to encode the

delta values using modified Hufflnan encoding method. Compression ratios obtained by

using this technique are between 6 and 10 to 1 based on the original representation format

41

and the desired result quality. Deering’s compressed format is designed for reducing the

bandwidth requirements of the rendering hardware [5]. His work has been incorporated

into the Java3d API by Sun Microsystems.

3.1.4.3 Topological surgery approach

Taubin and Rossignac’s work on geometry compression through topology surgery

[6] improved on Deering’s [5] earlier results. Their method is not directly suitable for

hardware rendering with limited on board memory. It aims to achieve high compression

efficiency for transmission over networks. This approach can preserve the connectivity

information. It is a single-resolution mesh compression scheme. It is derived flom the

body of work on encoding of planar graphs for traversal of manifold meshes in a

particular fashion to obtain a vertex spanning tree. To encode the connectivity

information, a binary triangle spanning tree of the mesh is constructed by cutting through

the edges of the vertex spanning tree. The triangle spanning tree can be encoded in the

same way as the vertex spanning tree.

3.1.4.4 Progressive approaches

This section summarizes the multi-resolution mesh compression schemes.

Compressing polygonal meshes in progressive fashion can meet the need of progressive

transmission, display and LOD control. It is a requirement for progressive transmission.

These techniques can further improve the performance of graphics rendering hardware.

The mesh with reduced resolution is used when it is far away flom the camera, and the

high-resolution mesh is used when it is closer to the camera. Progressive compression is

used to create a compressed representation for geometry models so that the compressed

42

file consists of coarse version of the model followed by more detailed versions of the

objects. Progressive techniques provide for partial data transmission at reduced

resolution. Another advantage of this representation is that the user can view the coarse

model before the entire object is decoded.

Hoppe proposed progressive meshes representation [10]. It can be used to

transmit a 3D mesh progressively, starting flom a coarse mesh and refining the mesh by

inserting new vertices one by one. He applied a vertex insertion operation, which is the

inverse of the edge collapse operation used in many mesh simplification methods [63].

Progressive mesh representation is a scheme for storing and transmitting arbitrary

triangle meshes. The advantage of this representation is that it keeps the geometry of the

original mesh and its overall appearance.

The first step to generate a progressive mesh is edge collapse transformations. An

edge collapse transformation merges two adjacent vertices into a single vertex and two

(one if boundary edge) adjacent faces disappear in the process as illustrated in Figure 3.5.

The process starts flom the original mesh and does a sequence of edge collapse

transformations until it reaches a much coarser mesh. Because edge collapse

transformations are invertible, the original mesh can be recovered flom the coarser mesh

using a sequence of vertex insert operations as shown in Figure 3.6.

43

VR

VR

Edge Collapse

Transformation

Figure 3.5: Edge collapse operation.

R

Vertex Insert

Operation

Figure 3.6: Vertex insert operation.

VR

v
The key point of this approach is to determine which edge to collapse during the

process. If this edge is randomly selected, the progressive mesh will not be able to keep

its appearance during reconstruction. The author improved the energy function proposed

in his earlier paper and used that as the metric [63]. Each edge selection attempts to

minimize the energy function. Therefore, the overall quality of progressive meshes is

decided by the energy function.

Hoppe’s progressive mesh representation is naturally a compact encoding method.

For a mesh with n vertices and approximately 2n faces, the author estimated that the size

of vertex insert records requires about (log(n) + 5)n bits. Using a similar method used in

Deering’s method with the progressive mesh representation, the geometry of the mesh

can be encoded in 31n to 50h bits.

Taubin et al. proposed a method to group Hoppe’s insertions into refinements

[15]. A mesh is split into a forest of spanning trees of vertex runs. The forest split

operation can be seen as a grouping of several consecutive edge split operations into a

set. This decomposition is invertible so that the complete connectivity can be used to

reconstruct the original mesh. A high compression ratio can be achieved by using this

method when the size grows exponentially with LOD.

Li and Kuo combined progressive transmission of connectivity refinements with

progressive transmission of vertex coordinates [12]. A vertex decimation scheme is used

to produce series of operations that decrease the LOD of the model. Their approach leads

to 0.510g2(| V l) + 5 bits for each triangle. Pajarola and Rossignac attempted to compactly

encode progressive mesh representations for triangle meshes [l 1]. It extends Hoppe’s

idea by grouping simplifications and refinements to increase connectivity compression

efficiency. Khodakovsky et al. proposed a wavelet based scheme for progressive

geometry compression that works well on regular and semi-regular connectivity meshes

[17]. The limitation of their method is that it does not work effectively on arbitrary

45

meshes. They defined wavelet basis functions over manifold surfaces for multi-resolution

analysis. The multi-resolution technique provides LOD progressively.

3.2 Animated geometry compression

A large body of geometry compression research has been focused on static

geometry, while only limited research has addressed animated geometry compression

[22-26, 64-66]. This section aims to review some notable compression techniques used

for 3D animation sequences.

3.2.1 Introduction

Animated geometry compression is the compression of temporal sequences of

geometric data. Animated geometry compression makes possible the delivery of an

animated motion picture as a 3D model using the least possible bandwidth in real time on

demand or as a multicast. Animated 3D geometry models require larger memory and

transmission bandwidth since a sequence consists of a large number of flames and every

frame is an already large static 3D object. Therefore, efficient compression techniques

need to be applied to the 3D animation sequence before distributing it in the network. The

following sections give a survey of recent notable work in animated geometry

compression.

3.2.2 Time-dependent geometry compression

Lengyel’s work aims to transmit and play-back large time-dependent geometry in

real time using the minimum required bandwidth [22]. His method is based on the idea

that with proper mesh representation, the gross movement of a geometric mesh can be

46

coded with a small set of controls and the residual differences can be quantized and

coded in a low bit rate. He presents a new view of time-dependent geometry as a media

stream and presents a new technique for taking advantage of the large amount of

coherence in time. This method exploits the coherence across animated flames by using a

predictive encoder and describes a method to compress a generic animated geometry

stream by solving for few-parameter models and encoding the residual. This prediction

compression method splits vertices into sets and uses affine transformations to

approximate the vertex paths.

This method is effective only when the animation is well represented by the

supported transformations.

3.2.3 Principle component analysis approach

Alexa and Muller proposed an interpolation predictor to represent animations by

principal components [23]. Their compression scheme works as follows: Given a 3D

animated mesh with n vertices and m flames, all shapes are translated so the center of the

mass is in the original, and then an affine transformation flom each flame to the first

frame is computed using the linear least square fit to normalize all the flames. They then

build a 3n by m matrix A using the result flames flom the normalization step, where each

column of the matrix A is the geometry of one flame. Singular value decomposition is

performed on matrix A to obtain the eigenvectors of AAT. These eigenvectors are stored

in the result matrix U. It is used to define a new basis replacing the original flames. This

is a transform coding method, where the basis functions are determined directly flom the

data set.

47

Principal components analysis makes their approach expensive. The approach

requires significant memory usage and processing time. It cannot achieve high

compression ratios if the number of flames is significantly smaller than the number of

vertices. It is also hard to control the quality of individual flames in the animation

sequence. Since the method is global over a large range of flames, some flames may

exhibit considerably larger errors than others or the average. It is good in terms of

smoothness of the shape.

Among those notable approaches, PCA can achieve higher compression ratios. In

order to compare PCA approach to the octree-based approach, PCA approach was

reimplemented in this thesis. The detailed comparison results can be found in Chapter 4.

3.2.4 Dynapack

Ibarria and Rossignac proposed a time—space predictor for all the vertices and all

the flames [24]. The geometry of a vertex is predicted based on the geometry of its

neighbors in the same frame and the geometry of corresponding vertices in the previous

flame.

The dynapack encoder runs very fast [26]. Additionally, it is predominantely

lossless in nature. The only lossy element of the algorithm is caused by quantization,

which can be ignored by using 12-bit quantization. This approach requires re-ordering the

vertices of the mesh to meet the needs of a particular configuration of neighboring

vertices in the current and previous flame. The compression ratio this approach can

achieve is approximately 10-22 to 1.

48

3.2.5 Geometry Video

Bricefio et al. proposed an algorithm to generate geometry video flom a 3D

animation sequence [25]. This approach is based on the geometry image representation

proposed by On et al. [27]. A geometry image unwraps a polygon mesh surface onto a 2D

color image that can then be subjected to conventional image compression methods. The

method exploits conventional image compression methods indirectly by converting

geometric data into images.

A geometry video consists of a sequence of geometry images. To generate a

geometry video flom a 3D animation sequence, they extend the three major steps of

constructing geometry image: cut, parameterization and compression. The algorithm

works as follows: They first slice the mesh using the cut algorithm in order to create a

surface with the topology of a disk. Slicing converts a manifold surface into a surface.

Given a single cut that is the same for all the flames in the sequence, they aim to seek a

single parameterization that minimizes the error across all the flames. Once they have

determined a cut and a parameterization that work well across all the flames, each flame

in the animation sequence can be transformed into a geometry image. All the flames in

the animation sequence are replaced by the corresponding geometry images. The

resulting geometry image sequence is called geometry video. They apply standard video

compression techniques such as MPEG to encode the geometry video.

Their approach supports LOD because it is easy to get a coarse version of the

mesh by removing every other pixel in each direction of the geometry images.

49

3.2.6 Soft-body animation compression

Kami and Gotsman presented a technique to compress soft-body animation

sequences [26]. Their approach is based on the principle component analysis idea

proposed by Alexa and Mfiller [23]. Linear prediction coding is applied to the PCA

coefficients in order to achieve firrther code reduction by capturing the temporal behavior

present in the sequence. Their compression scheme works as follows: they first applied

singular value decomposition to a 3n by m matrix A, where n is the number of vertices

and m is the number of flames in the animated 3D mesh. The eigenvectors of matrix AAT

are stored in matrix U. Coefficient matrix (UTA) is obtained by projecting the original

animation onto the new basis. Using only low frequency parts results a new k by m

coefficient matrix. In the end they apply linear prediction coding on the resulting

coefficients.

3.3 Summary

This chapter reviewed geometry compression techniques, both static and

animated. Static geometry compression techniques can be divided into two categories:

vertex compression and connectivity compression techniques. These techniques are

suitable for static 3D meshes.

Connectivity compression is not the focus of this dissertation. This dissertation is

focused on compressing animated polygonal meshes with fixed connectivity. Compared

to the huge amount of geometry information in each flame, connectivity information is

negligible because it needs to be transmitted only once. A straightforward way to

compress 3D animated meshes is to apply static geometry compression algorithm

50

individually to each flame in the animation sequence, but this does not capture the

temporal coherence present in the animation sequence. Animation compression

techniques need to exploit not only the space coherence, but also the temporal coherence

existed in the sequence.

The chapter also reviewed recent efforts to compress animated 3D meshes. All

these approaches assume fixed connectivity. Each approach has its advantages and

disadvantages. The time-dependent geometry compression scheme needs to split the

dataset to fit different transforms. PCA approach is computationally expensive for large

meshes. Dynapack requires re-ordering of the vertices of the mesh. The soft-body

animation compression scheme also suffers flom significant memory usage and

processing time because it is based on PCA approach. Geometry videos, while interesting

and colorful, are not really competitive as animated geometry compression methods.

In the next chapter, a novel octree-based animated geometry compression

approach is presented. This approach can achieve high compression ratios and quality

with no restriction on the data set. A simple and a low cost encoding process and a fast

decoding process make this approach quite suitable for real time applications.

51

Chapter 4

4 Octree-based animated geometry compression

This chapter presents a new algorithm for animated geometry compression. The

algorithm uses an octree-based motion representation with motion vectors associated with

the corners of the octree cells. The motion vectors capture the motion coherence within

spatial localities. This new method efficiently compresses 3D animated geometric data.

Section 4.1 introduces the data representation for 3D animation. In this thesis,

three different data sets are used to evaluate the performance of new algorithms in

relation to the existing methods. Section 4.2 presents these data sets. Section 4.3

describes the octree-based animated geometry compression in detail. Section 4.4 presents

the compression results, the comparison between the octree and PCA approaches and the

comparison between the octree approach and a simplistic approach that compresses each

frame in the sequence using static geometry compression.

4.1 Data representation

This chapter assumes the mostly simplistic representation of the geometric data:

triangle meshes for each discrete flame in the animated sequence. The connectivity

information is assumed to remain unchanged for each flame in the animation sequence.

Any polygonal mesh can be converted into a triangle mesh through triangulation [67, 68].

A triangle mesh is represented by its vertex data and connectivity information. Vertex

data consists of coordinates of all the vertices and, optionally, vertex normal vectors and

52

texture coordinates. Connectivity information is simply a triangle list. Each triangle

contains indices referring to the vertices. Figure 4.1 shows the data representation for 3D

animation.

WEE}? X1 71 21‘

iii 7 Vertex 2: x Y z m if
leed connectivity] 2 2 2 ' Frame 1

_- J ”I, , Vertex 3: X3 Y3 Z3

Vertex 1: X, Y1 Z1

Vertex 2: X2 Y2 Z2

, H ‘,___- Vertex 3: X3 Y3 Z3

Vertex 1: X1 Y1 Z,

Vertex 2: X2 Y2 Z2W

Vertex 3: X3 Y3 Z3

Figure 4.1: 3D animation representation.

This thesis is focused on compressing vertex positions for all the flames.

Polyhedral simplification techniques are not suitable to compress animated geometric

data because these methods cannot maintain the exact connectivity of the model. The

straightforward way to compress 3D animated meshes is to apply vertex data

compression techniques [5, 6, 8, 11] individually to each flame in the animation

sequence, but this approach does not take advantage of the temporal coherence present in

the animation sequence. Animation compression techniques need to exploit not only the

spatial coherence, but also the temporal coherence in the sequence.

To show the data coherence in the animation sequence, the following tests are

conducted on the dance sequence. For each vertex, compare the motion of the vertex to

the average motion of its nearest four neighboring vertices in terms of vector length and

53

angle between these two vectors. Figure 4.2 shows the histogram of vector length

differences between the motion of the vertex and the average motion of the nearest four

neighboring vertices. Figure 4.3 shows the histogram of vector angle differences. These

tests show that the motion of a vertex is predictable flom its neighbors. There is a great

deal of coherence among moving vertices.

1

| Dance Sequence Correlation (1)

l 600000

l 500000

' 5400000
= l

] 8300000

] I$200000

] 100000

i 0 .. 7' . ., . .

NOODWI‘FIOF‘NMCDLOFN

] 35889338§§R88$

] §S555§§8 03388
.0990. . -°.°.°.°.°.°°.

] eeqeeeeooooooo

1 Vector Length Difference

L-,_, ,_,_,___#L L4 L7 L__i L.___ -_,m

Figure 4.2: Histogram of vector length differences between the motion ofthe vertex and the average motion

of the nearest four neighboring vertices.

54

F" - - - - L L, - - - , , , --_A),---_-_-_-,_,_Lw__

Dance Sequence Correlation (2)

600000 ,

500000

F
r
e
q
u
e
n
c
y

.
s
s
s
s

0
.
5
1
5
0
8
5

1,
.

“

0') V V ID to 8 O O O O 8 O 8

l\ v- 10 N ix 3 ‘— CO N

g Ix (O t!) CO (V) 1- N a N O 1‘

to N (D m N ‘- 0 CD 1‘ V N 1-

O N I!) <1) g 1‘ O (O In no 1- N O (‘0

O. ‘- N. ‘2 . 'fi 0’. Q ". “l V. . ‘9. °Q °’
C O O O O O O ‘- 0- 1— ‘- \— v- 1- 1-

Vector Angle leference {
k
-
L
F
.
‘
4
7
_
_
7
4
_
_
_
_
_
_
_
_
,
4
i

A
4

Figure 4.3: Histogram of vector angle differences between the motion ofthe vertex and the average motion

ofthe nearest four neighboring vertices.

4.2 Test data sets

In this thesis, three different animation datasets are used to evaluate the

performance of the octree-based approach and compare to other approaches. The data

sets include “Chef”, “Chicken Crossing” and “Dance”. The Chef data was generated flom

a 3D Studio Max animation. It was used as an initial test data set. “Chicken Crossing”

was created by Andrew Glassner et al.[69]. It was used as a test data set in the dynapack

approach proposed by Ibarria and Rossignac [24] and PCA approach proposed by Alexa

and Muller [23]. The “Dance” sequence was created by the MIT CSAIL Graphics Lab. It

was used in the geometry video approach proposed by Bricefio et al.[25]. To make it

easier to compare the octree-based approach to other approaches in the literature,

“Chicken Crossing” and “Dance” sequence were chosen as standard test data sets. Table

55

4.1 shows the properties of “Chef”, “Chicken Crossing” and “Dance” animation

sequences.

Table 4.1: Test data sets information-

Data sets Properties Chef animation Chicken animation Dance animation

Number of vertices 4241 3030 7061

Number of triangles 8162 5664 14118

Number of frames 75 400 201

Total size (bytes) 3,816,900 14,544,000 17,031,132

Figure 4.4 shows the first frame and every 5‘h frame of the original Chef

animation sequence. Figure 4.5 shows the first frame and every 20'h frame of the original

Chicken animation sequence. Figure 4.6 shows the first frame and every 10‘h frame of the

original Dance animation sequence.

Figure 4.4: Sample frames from original Chef animation sequence.

56

O 260

110 120 130 140 150 160 170 180 190 200

Figure 4.6: Sample frames flom original Dance animation sequence.

4.3 Octree-based approach

The octree-based approach presented in this chapter takes advantage of the spatial

and temporal coherence present in the data. Two consecutive flames are needed to

generate a reduced set of motion vectors that represent the motion flom the previous

flame to the current flame. The motion vectors are used to predict the vertex positions in

57

the decoder side for each frame except for the first flame. The process generates a

hierarchical octree motion representation for each flame.

The method can be classified as a predictive modeler in that it attempts to create a

reduced set of data that can be used to predict the actual vertex motion over a localized

area. The motion vectors are then subject to encoding using arithmetic coding.

4.3.1 Encoding process

In a raw animated data set, an animated 3D model is represented by the vertex

positions for each flame. Connectivity is assumed to remain constant. This is an

assumption in all of the current work on animated geometry compression, though future

work must eventually address dynamic changes in topology. Chapter 7 discusses system

issues including the interspersing of intra-coded flames which can support geometry

additions or modifications as well as scene cuts.

In the motion modeling process, each flame except the first flame is represented

by a set of motion vectors, which are stored in an octree. In a client—server scenario,

when the server wishes to send an animated 3D model to the client, it will send the

encoded first flame (using an intraflame encoding method) together with an encoded

octree for each of the subsequent flames rather than sending vertex positions for each

new flame. The encoded octree is significantly smaller than the corresponding original

frame. The vertex locations for each flame are approximated by the corresponding octree

on the client side.

The logical flow of the encoding process is illustrated in Figure 4.7. To encode

the current flame, the previous flame needs to be available to the decoder, so the first

flame is encoded using an intraflame coding technique. A complete system will include

58

occasional intra-coded flames so as to provide synchronization points, as in MPEG video

and as discussed in Chapter 7. The previous and current flames are used to generate

vertex delta values representing the differential motion between the flames. Motion

vectors are obtained by using a Least Square Error estimation method to estimate the

motion of enclosed vertices. The motion vectors are then subject to encoding using

adaptive arithmetic coding. To continue encoding the following flames, a local decoder

is called to generate a decoded version of the current flame as known to the receiving

system, which can be used to encode the next flame at the encoder side. This process is

repeated for each new flame.

Previous Frame

.
Arithmetic

Delta 3D Motion Vectors Octree Coder

Current

Frame

De Frame 21 Decoder

Encoded Frame

Figure 4.7: Logical flow of encoding process for compressing 3D animated frames.

4.3.2 Motion-modeling process

The most important step of the encoding process is the construction of an octree.

This process is called the motion-modeling process. Jackins and Tanimoto showed that

octrees can be used to represent 3D objects [70]. Ahuja and Nash improved the idea

presented by Jackins and Tanimoto, and proposed a method to represent moving 3D

objects using octree structures [71]. The octree representation of the occupancy of space

59

by objects is obtained by recursive decomposition of the space into octants. Octrees are a

common method for modeling 3D data.

Instead of using an octree to represent a 3D object, this thesis uses an octree to

represent motion within space. Constructing a minimum cube (axis parallel bounding

box) that contains all the vertices of a 3D object as a starting box or cell is the initial step

of motion-modeling process. A motion vector is associated with each comer of the cell as

illustrated in Figure 4.8 (a). These eight motion vectors approximate the motion of the

enclosed vertices using interpolation of the motion vectors over the space. If the motion

of all vertices in the current cell is not well approximated by the motion vectors, the cell

is subdivided into eight child octants as shown in Figure 4.8 (b) and the corresponding

tree node generates eight children as shown in Figure 4.8 (0). Each octant has new

motion vectors that are stored in the corresponding tree nodes. The splitting process

continues until the motion of the enclosed vertices is estimated to be below a specified

threshold. Therefore, any reconstructed vertex in any flame in the reconstructed

animation sequence satisfies the requirement that the error between the reconstructed

vertex and the corresponding original vertex is smaller than the threshold as illustrated in

Equation 4.1. In this thesis, the Max Distance threshold measurement is examined for the

splitting process. Distance for a vertex is defined as Euclidean error between the original

vertex and the reconstructed vertex. Max Distance is the maximum error of all the

enclosed vertices. The threshold is set to be the maximum allowed distance between the

reconstructed vertex and its corresponding original vertex. It is represented by the

percentage of the edge length of the initial cubic bounding box of the object as illustrated

in the Equation 4.2.

60

Figure 4.8: (a) Eight motion vectors. (b) The splitting process. (c) Corresponding octree representation.

Vv 6 current cell

. , . 2 . 2 (4.1)

1/(1’. — V.)“ + (v), — vy) + (vz — v) < threshold

v and v' represent the original vertex and the corresponding reconstructed vertex.

Threshold = %Length (4.2)

61

Length is the edge length of the initial cubic bounding box. The chosen percentage

influences the quality; as the percentage increases the quality decreases.

The tree representation of the subdivision process is shown in Figure 4.8 (0). Each

node has eight motion vectors. Motion vectors of all the leaf nodes represent the motion

of the entire object. Black nodes (leaf nodes) represent motion vectors that can

approximate all the vertex movements enclosed in this cell to a defined threshold; white

nodes indicate that the current cell needs to split into eight octants and the current tree

node will generate eight children.

4.3.3 Tri-linear interpolation

Motion for vertices within a cell is approximated using tri-linear interpolation of

the motion vectors. Given a cell of size s, lower left rear comer (minimum x,y,z)

<bx,by,bz>, motion vectors m,,...,m8, and a vertex v=<vx,vy,vz> as shown in Figure 4.9,

the ratio p,r in the x direction is computed using Equation 4.3.

= vx —bx

p. (4.3)
S

In a similar way, the ratios py in the y direction and ,02 in the z direction can be

computed. The weight for each motion vector w1, ...,w8 is computed using Equation 4.4.

62

W1 = (1— pomp.

W2 =(l-p.)(1-py)p.

W3 =p.(1-py)p.

m=mmm

W5 =(1-p.)(1-p,)(l-p.)

W6 =p.(1-py)(1—p.)

W7 :pxpy(l—pz)

W8 =(1—p.)p,.(1-p.)

(4.4)

The vertex motion Av for the target point is then computed using tri-linear

interpolation of the eight motion vectors of the cell [72], as illustrated in Equation 4.5.

8

Av 2' Zwim, (4.5)

'=1

II’TIB / m7

1

l

1

l /

m4 1 ' m3

1
l

l

: Target 0(vxvyvz)

: point

Y 1
l

[I‘m-5—

/

I

x ,’

l

I

2 m1

Figure 4.9: Tri-linear Interpolation.

The use of tri-linear interpolation of comer representational motion vectors for

estimation of vertex motion accommodates a wide variety of motion styles including

affine motion, the most common rigid motion in computer animation. Non-linear motion

or discrete (independent) object motion is approximated using the octree subdivisions.

63

Other methods for motion estimation for a cell will be explored in later work including

compact quatemion representations and tri-cubic interpolations.

4.3.4 Motion vector computation

Each node in the octree approximates the motion of enclosed vertices. The key

point of the motion-modeling process is to compute the motion vectors. Motion vectors

are assumed to approximate the motion of the enclosed vertices using tri-linear

interpolation of the motion vectors over the space. Let n be the number of vertices

enclosed in a given cell. Matrix A is a 3n by 24 matrix and is built as illustrated in

Equation 4.6.

rw10 Ow20 0---w80 0—

0 W1 0 0 W2 0 "' 0 W8 0

21:99”? 99‘1“???“ (4.6)

Vector b, a 3n element vector is computed using Equation 4.7.

—Avx11

AV)“

Av,l

Av,r2

b: Avy2 (4.7)

Av,2

L - .

64

rmxl- ”Av,“-

" in Avyr

1w, 0 0 w, 0 0 W8 0 0 m2} Av,

0 WI 0 0 wz O 0 WS 0 mx, Avxz

*m. em.
m,2 Av,2

- ' t - ' - (4.8)

The motion vectors for a given cell are then computed using least square

estimation of x in the equation Ax=b as shown in Equation 4.8, where x is a 24 element

vector consisting of the <x, y, z> components of eight motion vectors. This process finds

the vector x that minimizes the sum of residual squares as illustrated in Equation 4.9. In

the implemented solution, the least square estimation is computed using QR

decomposition. The matrix A is decomposed into a 3n-by-24 orthogonal matrix Q and a

24-by-24 upper triangular matrix R so that A = QR. Template Numerical Toolkit (TNT)

and JAMA/C++ linear algebra library are used to compute vector x [73]. A least square

estimate of the motion vectors in this application minimizes the Euclidian distance

between the motion vectors. This is identical to minimizing the Euclidian distances

between the reconstructed and actual vertex locations after motion.

3n

Residual sum = Z(Aix — b,)2 (4.9)

i=1

To avoid accumulative error, the previous decoded flame is utilized to compute

the next set of motion vectors rather than the previous input flame on the encoder side.

For example, to build an octree representation of flame 3, construct a minimum bounding

65

box that contains all the vertices of the 3D model as the first step. Given decoded flame 2

and original flame 3, vector b can be obtained easily; matrix A can be built by using the

tri-linear interpolation factors for all the vertices in the current cell based on the

reconstructed flame 2 locations. Using least square estimation, motion vectors are

computed, which provide the best estimate of the motion of the enclosed vertices in the

current cell. After obtaining the motion vectors for the current bounding cell, the

accuracy of the estimation is evaluated. A distance threshold is used to measure accuracy

of the current motion vectors. If maximum distance is larger than a specified threshold,

the current cell is subdivided into eight octants, each with eight new motion vectors to

estimate the motion of its enclosed vertices.

The splitting process continues until the motion estimated by the motion vectors is

less than the threshold. Therefore all leaf nodes of the octree contain the motion vectors

for the entire object. The octree is stored into two parts: the tree structure and the motion

vectors. ‘0’ is used to indicate an interior node and use ‘1’ to indicate a leaf node. The

tree structure is represented with prefix traversal of the tree. The tree structure can be

restored uniquely using this representation. The motion vectors are stored in the leaf

nodes. The motion vectors can be consecutively stored in the leaf nodes flom left to right.

4.3.5 Adaptive arithmetic coding

Adaptive arithmetic coding is used to encode the octree. Adaptive coder has

several advantages. It does not need two passes and there is no need to transmit the

probabilities of the symbols. An adaptive model changes the probabilities of the symbols

in the compression process in order to adapt to the changing contexts. Both the encoder

and decoder assume some initial basic model. Then in the compression process, the

66

model gets adapted by the symbols transmitted before. The point is that the model gets

adapted only by the symbols that have already been transmitted, since the decoder needs

to mirror the encoder’s operation later in the decompression process. The decoder can

therefore use the symbols transmitted before to adapt the model in the same way as the

encoder did.

The version implemented by Witten et al. is utilized in the octree coding [74]. An

improved implementation of this arithmetic coding is described in the paper written by

Moffat et al. [75].

4.4 Evaluations

This section presents an evaluation of the performance of the octree-based motion

representation method in terms of the compression ratio and L2 distances. PCA approach

was reimplemented and compared to the octree-based approach in detail. This section

includes brief comparison between the octree approach and pure static mechanism. A

brief comparison of the octree approach to other animated geometry compression

techniques is also included.

4.4.1 Octree results

Test results for the octree approach using all three test data sets are presented in

this section.

4.4.1.1 Compression ratios

The compression ratio results for the Chef, Chicken Crossing and Dance

animation are shown in Table 4.2, Table 4.3 and Table 4.4 respectively. A selected set of

67

reconstructed Chef, Chicken Crossing and Dance animations are shown in Figure 4.10,

Figure 4.1 l and Figure 4.12 respectively.

Table 4.2: Compression ratios of the Chef animation. The Chef animation has 75 frames and each flame

has 8162 triangles and 4241 vertices. The object size is 440 units in x dimension, 148 units in y dimension

and 455 units in z dimension. Original file size is 3,816,900 bytes. Max Distance threshold =p% *455 units,

where p=1, 2, 3, ...7.

Chef Max Distance

Animation

1% 2% 3% 4% 5% 6% 7%

Encoded Size 309,593 173,853 1 15,689 90,752 77,101 50,474 41,112

Ratio 12:1 22:1 33:1 42:1 50:1 77:1 93:1

Table 4.3: Compression ratios of the Chicken Crossing animation. The Chicken Crossing animation has

400 frames and each flame has 5664 triangles and 3030 vertices. The object size is 2.556 units in x

dimension, 2.23 units in y dimension and 1.07 units in z dimension. The original file size is 14,544,000

bytes. Max Distance threshold= p% ”2556 units, where p=2.5, 5, 7.5, 10, 20.

Chicken
Max Distance

Animation

2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20%

Encoded Size 1,540,423 820,417 517,648 367,387 270,287 218,639 165,678 124,254

Ratio 9.421 18:1 28:1 40:1 54:1 67:1 88:1 117:1

Table 4.4: Compression ratios of the Dance animation. The Dance animation has 201 flames and each

flame has 14118 triangles and 7061vertices. The object size is 0.0758 units in x dimension, 0.172 units in

y dimension and 0.074 units in z dimension. Original file size is 17,031,132 bytes. Max Distance

threshold=p%*0.172 units, where p=l, 2, 3, 8.

Max Distance

Dance

Animation

l % 2% 3% 4% 5% 6% 7% 8%

Encoded Size 1,118,420 687,636 478,444 369,675 287,510 227,481 185,108 161,163

Ratio 15:1 25:1 36:1 46:1 59:1 75:1 92:1 106:]

68

1
1

.1
1

i .l ,

I‘
1
,
1
1
1

1
3
"

\

l

1
;
,
1
-

H
»
”
-

.
-
-

‘
l

'
\
n
‘

It
.
'
M
H
M
U
J
H
U
J

‘

K

V

E
.
)

Figure 4.10: A selected set of reconstructed Chef animation. The top row is the original animation. The

reconstructed animation by using Max Distance threshold = 1%, 3%, 5%, 7% are shown in row 2, 3, 4, 5

respectively. The compression ratio is 12:1. 33: 1, 50:1, and 93:1 in row 2, 3, 4, 5 respectively.

69

Figure 4.1 l: A selected set of reconstructed Chicken Crossing animation. The top row is the original one.

The reconstructed animation by using Mar Distance threshold = 5%, 10%, 15% and 20% are shown in row

2, 3, 4, 5 respectively. The compression ratio is 18:1, 40:1, 67:1 and 117:1 in row 2. 3, 4, 5 respectively.

70

Figure 4.12: A selected set of reconstructed Dance animation. The top row is the original animation. The

reconstructed animation by using Max Distance threshold = 1%, 3%, 5%, 7% are shown in row 2, 3, 4, 5

respectively. The compression ratio is 15:], 36:1, 59:1, and 92:1 in row 2, 3, 4, 5 respectively.

71

4.4.1.2 Quality

Quantitatively evaluating the visual quality of the reconstructed 3D model is not

easy, and assessing the visual quality of 3D animation is even more difficult. L2 distance

is widely used in the literature to measure the quality so this thesis uses it to evaluate the

quality of reconstructed flames in the animation sequences. This is done in a similar way

to Bricefio et al. [25]. This L2 metric is also used in the following section in order to

compare the octree—based method to PCA approach proposed by Alexa and Muller [23]

The L2 distance flom surface X to surface Y is defined as follows:

1
__....._ Ixexd(x, Y)2dx]3

area(X)

d(X, Y) =[

(4.7)

Where d(x, Y) is defined as the minimum Euclidean distance flom the point x to

the surface Y. The distance computed flom Equation 4.7 is not syMetric, so the L2

distance of two surfaces is defined as the max (d(X, Y), d(Y,X)) . This thesis utilized the

gtscompare functionality provided in the GTS library [76]. For the integral

approximation, 0.5 percent of the side length of the initial bounding box diagonal is used

for the delta step. For simplified surfaces, L2 distance can be obtained by using Metro

tool [77]. Figure 4.13 shows comparison of L2 distance for some sample flames in the

reconstructed Chef animation given different threshold settings. Similarly Figure 4.14

and Figure 4.15 show the comparison results for Chicken and Dance animation

respectively.

72

Jo: Janie;174 i

+Octree 3% i

—-t——Octree 5%

- - K- - Octree 7% .

Octree approach: L2 distances

1
L
2
D
l
s
t
a
n
c
e

1015 20 25 30 35 40 45 50 55 60 65 70

Frame Number

Figure 4 13: L2 distances of some sample flames in the reconstructed C - .- y usrng Max

Distance threshold—- 1%, 3%, 5% and 7% respectively. The compression ratio is 12:1, 33:1, 50: l, and 93:1

respectively.

—-0—-Octree5%-]

-I—Octree 10% 1,

-t—Octree 15% l

1

1

‘1

Octree approach: L2 distances 1

1

1- -«r; oaeeav»
0.45

0.4

0.35

0.3

0.25

0.2

L
2
D
i
s
t
a
n
c
e

0.1

0.05

Frame Number

Figure 4.14: L2 distances of some sample flames in the reconstructed Chicken animation by using Max

Distance threshold = 5%, 10%, 15% and 20% respectively. The compression ratio is 18:1, 40:1, 67:1 and

117:1 respectively.

73

Octree approach: L2 distances — "— 'Octree 1% 1

—O—Octree 3% ‘

—t—Octree 5% I

" - - x- - Octree 7% ,

.3, .9 .31, 41. .51. (:1. gr gt (a 45"

Frame Number
Figure 4.15: L2 distances of some sample frames in the reconstructed Dance animation by using Max

Distance threshold = 1%, 3%, 5% and 7% respectively. The compression ratio is 15:1, 36:1, 59:1, and 92:1

respectively.

4.4.2 Octree vs. PCA

To compare the octree approach with existing approaches in the literature, the

PCA approach was reimplemented and evaluated. PCA was chosen for comparison

because it can achieve relatively high compression ratios with reasonable quality. Three

different animation data sets: “Chef”, “Chicken Crossing” and “Dance” were used for

comparison. The compressed size of the octree approach is the sum of encoded octree

size for each flame. The compressed size of PCA approach should include the affine

transformations for each flame, matrix U (number of bases * number of vertices * 12

bytes/vertex), matrix S (number of bases*4) and matrix V (number of bases “ number of

flames*12). Given approximately the same compression ratio, L2 distances of two

systems are compared. Some comparison results for the Chef animation sequence are

74

shown in Figure 4.16 and 4.17 respectively. In Figure 4.17, the average L2 distance for

the octree approach and PCA approach are 8.7 and 19.1 respectively. This means the

octree approach can consistently achieve better results. Figure 4.18 shows the

reconstructed frame 25 using the octree approach and PCA approach.

- - I- - PCA6 bases ‘1

+77 Octreei1% i1

12 , --:

L
2
D
i
s
t
a
n
c
e

0
'
) i 1

 o 1 if ."‘“"F' " '4’ '

10 15 20 25 30 35 4o 45 50 55 60 65 70

Frame Number

Figure 4.16: L2 distance comparison between the octree and PCA approaches using the Chef animation.

This comparison is based on approximately the same compression ratio (12:1). To get this ratio, threshold

in the octree approach is set to be 1% of the initial cubic bounding box size. It corresponds to PCA with 6

bases.

75

L
2
D
l
s
t
a
n
c
e

.
4

_
x

N
N

O
0
1

0
0
1

U
"

Figure 4.17: L2 distance comparison between the octree and PCA approaches using the Chef animation.

This comparison is based on approximately the same compression ratio. The compression ratio of PCA

L2 distances: PCA vs. Octree 1

- - D- - SPCA 3 basesl‘

.+091!eeZ-5% l‘

 f

10 15 20 25 30 35 4O 45 50

Frame Number

with 3 bases is 24:1 and the compression ratio of the octree with threshold 2.5% is 27:1.

Figure 4.18: Image in the middle is the original frame 25. The reconstruction using the octree approach

with threshold 2.5% and PCA with 3 bases are shown in the first and last image respectively.

76

L2 distance comparison between the octree and PCA approach using the Chicken

animation sequence are shown in Figure 4.19 and 4.20 respectively. In Figure 4.20, the

average L2 distance for the octree approach and PCA approach are 0.167 and 0.18

respectively. Figure 4.2] shows a reconstructed sample frame using the octree and PCA

approaches. Figure 4.19 shows that the octree approach has much larger L2 distance error

for frame 300 than PCA approach. However the quality of the reconstructed image using

PCA approach is similar to the quality of the octree approach as shown in Figure 4.21.

L2 distance could not exactly reflect the visual quality of the reconstruction. To get more

accurate quality evaluation, the quality metric may take into account the effect of human

visual system (HVS).

L2 distances: PCA vs. Octree 1- :7-7- :PCK 19 bases

‘—I-— Octree 5% .

L
2
D
l
s
t
a
n
c
e

Frame Number Lg, n_,,_i ;.7,,__—_ __ fin v , ,

Figure 4.19: L2 distance comparison between the octree and PCA approaches using the Chicken animation.

This comparison is based on approximately the same compression ratio. The compression ratio of PCA

with 19 bases is 19:1 and the compression ratio ofthe octree with threshold 5% is 18: 1.

77

if 7 if ifvvvvvv.vVV_-K1Avfi

1

T::WP‘CAfi-as;es#
L2 distances: PCA vs. Octree !

—t—Octreei1§%fi .

L
2
D
i
s
t
a
n
c
e

.
0
M

0.15

0.1 -

0.05 - 7*

2 5
0

7
5

1
0
0

2
5

1
5
0

7 o 2 5 7
5

'
'

~

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

Frame Number

Figure 4.20: L2 distance comparison between the octree and PCA approaches using the Chicken animation.

This comparison is based on approximately the same compression ratio (40: l). To get this ratio, threshold

in the octree approach is 10%. It corresponds to PCA with 9 bases.

Figure 4.21: Image in the middle is the original frame 300. The reconstruction using the octree approach

with threshold 5% and PCA with 19 bases are shown in the first and last image respectively.

L2 distance comparison between the octree and PCA approaches using the Dance

animation are shown in Figure 4.22 and 4.23 respectively. In Figure 4.22, the average L2

distance for the octree approach is 0.0014 and the average L2 distance for PCA approach

is 0.019.

78

1“”—‘——1

L2 distances: PCA vs. Octree 1' ' " ' PCA 14 bases 1

1 —a— Octree 1 %

1

1

1

1

1

1

1

1

1

1

1

1

.3, r.31, 431, 4» 0;» ,5» (gt (.31, ((1, an,

Frame Number

1

1

1

1

1

,,,,,,,, , ,, 1

Figure 4.22: I.2 distance comparison between the octree and PCA approaches using the Dance animation.

This comparison is based on approximately the same compression ratio. The compression ratio of PCA

with 14 bases is 14:1 and the compression ratio of the octree with threshold 1% is 15:1.

1

L2 distances: PCA vs. Octree 7- nftiK4bases

T.#0981514, 1

L
2
D
i
s
t
a
n
c
e

 a 03" cs» 4» 5% Ne e
'\ 65L\

Frame Number

Figure 4.23: L2 distance comparison between the octree and PCA approaches using the Dance animation.

This comparison is based on approximately the same compression ratio. The compression ratio of PCA

with 4 bases is 48:1 and the compression ratio ofthe octree with threshold 5% is 59:1.

79

Figure 4.24: Image in the middle is the original flame 150. The reconstruction using the octree approach

with threshold 1% and PCA with 14 bases are shown in the first and last image respectively.

Figure 4.24 shows a reconstructed sample frame using the octree and PCA

approaches.

Compared to PCA approach, the octree-based approach has some advantages.

PCA approach requires significant memory usage and processing time. The octree-based

approach has a much smaller memory requirement and runs much faster. The octree-

based approach compresses the animation sequence equally well no matter how many

frames are in the animation sequences. PCA approach cannot achieve high compression

ratios if the number of flames is significantly smaller than the number of vertices. The

PCA approach can not control the quality of an individual flame in the animation

80

sequence. Some reconstructed flames have outrageous error. However, the octree

approach can control the quality of each flame in the sequence by setting the threshold.

The average L2 distance comparison shows that the octree approach is better than PCA

approach in terms of result consistency. PCA approach is good in terms of smoothness of

the shape.

4.4.3 Octree vs. pure static compression mechanism

Another way to compress animated 3D models is to apply static geometry

compression algorithm individually to each flame in the animation sequence, but this

does not take advantage of the temporal coherence present in the animation sequence.

Additionally this approach is expensive for large models. This approach is tested using

the “parallelogram” approach proposed by Touma and Gotsman [8]. For the test data sets

used in this thesis, the TG coder can compress the animation with a compression ratio of

9 to 1, not a competitive animation result. Compared to this approach, the octree-based

approach exploits not only the space coherence, but also the temporal coherence existed

in the sequence. It can achieve higher compression ratios and better reconstruction

quality.

4.4.4 Octree vs. other approaches

According to the results interpreted by Ibarria and Rossignac, dynapack approach

can compress the entire chicken animation with 13.7:1 compression ratio when it uses 11-

bit quantization and Lengyel’s approach can achieve 14:1 compression ratio with

comparable accuracy [24]. To get more accurate results, Lengyel’s approach can get 2:1

compression ratio and dynapack can achieve 108:] with lS-bit quantization [24]. Ibarria

81

and Rossignac claimed their approach could achieve undistinguishable result flom the

original using 13-bit quantization. In this case, the compressed ratio is 10:8 to 13.7: 1.

The octree approach can achieve 18:1 compression ratio with quality undistinguishable

from the original animation. When less accuracy is allowed, the octree-based approach

can achieve 100:1 compression ratio. Compared to the results obtained by previously

published animation compression techniques [22-24], the octree approach can achieve

higher compression ratios with comparable animation quality.

4.5 Conclusions

This chapter described the octree-based motion representation method in detail.

This method presents a novel way to implement predictive, differential flame

compression. It achieves the goal of this thesis: represent 3D animation sequence with a

reduced set of motion vectors that take advantage of the large data coherence in space

and time. This approach presents a novel way to represent 3D animation. It is easy to

implement and has a low cost encoding process and fast decoding process. Compared to

other approaches, it can achieve higher compression ratios and at the same time achieve

very good quality.

82

Chapter 5

5 Delta approach

This chapter presents a new delta coding approach and evaluation of the

performance of this method for animated geometry compression. The delta coding

approach generates 3D delta values flom two consecutive flames. The method achieves

the compression by quantizing the 3D delta values. Different flames in the animation

sequence can use different quantization levels. Quantized values are coded using

arithmetic coding to achieve further data reduction. This method is simple and easy to

implement.

During the course of this research, the delta coding was explored as an alternative

to the octree-based approach. This chapter will show that the delta coding method does

not achieve the consistent level of the performance demonstrated by the octree approach.

However, in limited cases the delta approach does outperform. Hence, it is explored here

in isolation, and then incorporated into a hybrid compression approach in Chapter 6.

83

5.1 Delta encoding process

Reconstructed

I Previous Frame

Search for

_.. Delta the Error of Reconstruct : .

3D quanta-non Frame < Threshold ?

Current level

Frame

Quantization

Arrth'metic

coding

De Frame 2'1 Decoder

Encoded

current

frame

Figure 5.1: Logical flow of the encoding process of the delta method.

The logical flow of the encoding process is illustrated in Figure 5.1. To encode

the current flame, the previous reconstructed flame needs to be available in the encoder

side. Therefore the first flame is encoded differently flom other flames in the sequence. It

is encoded using an intraflame coding method. The first step in the delta encoding

process is to generate delta 3D values between two consecutive flames, namely the

reconstructed previous flame and the current original frame. Delta 3D data presents the

differential motion between two flames. After the first step, the delta approach seeks the

best quantization level with the minimum number of bits for the current delta 3D that

satisfies a predefined threshold. After the number of bits for the quantization is

determined, the linear quantization over the range of each possible vertex is applied to

the delta 3D as illustrated in Equation 5.1. The quantized values are encoded using

84

adaptive arithmetic coding to further achieve data reduction. To this step, the current

flame is completely delta encoded. In the local decoding step, a linear inverse

quantization is applied to the quantized samples as shown in Equation 5.2.

7c : [24[_EELJJ (5.1)

xmax _ xmin

_ _ =1: -
= (xmax xmm) x . (5.2)

The above steps are repeated for every flame except for the first flame in the

animation sequence.

5.2 Evaluations

In order to compare the results of different approaches, the same test data sets as

those in octree approach are used to evaluate the performance of the delta approach.

Compression ratio and the L2 distance results of the delta approach for different

animation sequences are presented. This section also includes the overall and flame-wise

compression ratio comparison between the delta approach and octree approach.

5.2.1 Delta approach results

This section presents the compression ratio results for Chef, Chicken Crossing

and Dance animation sequences given different threshold settings. Table 5.1 shows the

results for Chef animation. Similarly Table 5.2 and Table 5.3 show the results for the

Chicken Crossing and Dance animation respectively.

85

Table 5.]: Compression ratios of the Chef animation using the delta approach. The Chef animation has 75

flames and each frame has 8162 triangles and 4241 vertices. The object size is 440 units in x dimension,

148 units in y dimension and 455 units in z dimension. Original file size is 3,816,900 bytes. Max Distance

threshold =p% *455 units, where p=1, 2, 3, ...6.

Delta approach Max Distance

Chef sequence 1% 2% 3% 4% 5% 6%

Compression Ratio 17:1 21:1 31 :1 32:1 32:1 34:1

Table 5.2: Compression ratios of the Chicken animation using the delta approach. The Chicken Crossing

animation has 400 flames and each flame has 5664 triangles and 3030 vertices. The object size is 2.556

units in x dimension, 2.23 units in y dimension and 1.07 units in z dimension. The original file size is

14,544,000 bytes. Max Distance threshold= p% *2.556 units, where p=2.5, 5, 7.5, 10, 15, 20.

Delta approach Max D1stance

Chieken sequence 2.5% 5% 7.5% 10% 15% 20%

Compression Ratio 21:1 26:1 28:1 30:1 33:1 35:1

Table 5.3: Compression ratios of the Dance animation using the delta approach. The Dance animation has

201 frames and each flame has 14118 triangles and 7061vertices. The object size is 0.0758 units in x

dimension, 0.172 units in y dimension and 0.074 units in z dimension. Original file size is 17,031,132

bytes. Max Distance threshold=p%*0.l72 units, where p=1, 2, 3, 4, 5, 6.

Delta approach Max Distance

Dance sequence 1% 2% 3% 4% 5% 6%

Compression Ratio 102] 1511 18:] 1921 21:] 2321

L2 distance results for the test data sets given different threshold settings are also

included in this section. Figure 5.2 shows the L2 distance results for the Chef animation.

Similarly L2 distance results for the Chicken animation and Dance animation are shown

in Figure 5.3 and Figure 5.4 respectively.

86

Delta approach: L2 distances ._ -o— oeua 1%

—I—Delta 3%

- - I- - Delta 5%

10 15 20 25 30 35 40 45 50 55 60 65 70

Frame Number

 1*, m, ,n nwnr -1, In n-7,”, #2 n niinm

Figure 5.2: L2 distances of some sample flames in the reconstructed Chef animation using the delta

approach given different threshold settings.

Delta approach: L2 distances

—-—DeIta 15%

- - a- - Delta 20%

0.6

0.5

0.4

0.3

L
2
D
l
s
t
a
n
c
e

0.2

0.1

1

1

1

1

1

1

1

1

0

: (to 93° «(O '96 (to (00 ’3‘) W®$$$¢D (500 (5(6) (593% 4‘) “0°

1

1

Frame Number

Figure 5.3: L2 distances of some sample flames in the reconstructed Chicken animation using the delta

approach given different threshold settings.

87

.7..;7--Deltai1‘;/o‘11

_._Delta 3%11

11

.....--De|ta 5%_1

Delta approach: L2 distances

L
2
D
i
s
t
a
n
c
e

.3. .31. .51, .{1 (51. (a, (.31, (on. ((1,

Frame Number
Figure 5.4: L2 distances of some sample flames in the reconstructed Dance animation using the delta

approach given different threshold settings.

5.2.2 Overall compression ratio comparison: delta vs. octree

Compression ratio is one of the most important measurements to evaluate the

performance of an approach. This section presents the overall compression ratio

comparison between the delta approach and the octree approach. Compression ratio

comparisons for the Chef animation are shown in Figure 5.5. Similarly Figure 5.6 and

Figure 5.7 show the comparison results for the Chicken Crossing animation and Dance

animation.

88

r

80

Compression ratio: Delta vs. Octree

70

U
!

D

0

”
C
o
m
p
r
e
s
s
i
o
n
R
a
t
l
o
m

0
.
)

O

1

1

1

160

1

1

1:
1

3 4

Threshold

+DeltaiApproach

Le- - Octree Approacl'L

Figure 5.5: Compression ratio comparison between the delta and octree approach using the Chef animation.

C
o
m
p
r
e
s
s
i
o
n

R
a
t
l
o

—
|

—
l

_
|

A
0
'
)

c
o

0
N

J
:

O
O

O
O

O
O

M 0

Compression ratio: Delta vs. Octree

, » 77 1

1+Delta Approach

- - o- - Octree Aprcach

O

5% 10% 1 5%

Threshold

20%

Figure 5.6: Compression ratio comparison between the delta and octree approach using the Chicken

animation.

89

+77777 Delta approachi 7‘Compression ratio: Delta vs. Octree

- - I- - Octree approach 1

C
o
m
p
r
e
s
s
i
o
n
R
a
t
i
o

1% 2% 3% 4% 5% 6%

Threshold

Figure 5.7: Compression ratio comparison between the delta and octree approach using the Dance

animation.

5.2.3 Frame-wise compression ratio comparison: delta vs. octree

The overall compression ratio comparison results show that the delta coding

method does not achieve the consistent level of performance demonstrated by the octree

approach. However, in limited cases the delta approach does outperform. The flame-

wise compression ratio comparisons were conducted. Figure 5.8 shows the flame—wise

compression ratio comparison between the delta and octree approach given the same

threshold settings for the Chef animation. In this case, the delta approach is better than

the octree approach for 18% flames. Figure 5.9 shows the flame-wise comparison results

for the Chicken Crossing animation. For 22% flames, the delta approach can achieve

higher compression ratios given the same threshold settings. Figure 5.10 shows the

comparison results for the Dance animation. The delta approach is better than the octree

approach for 9% flames.

90

Delta 2%

------ Octree 2%

Frame-wise Comparison: Deita vs. Octree

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

 1 Frame Number

Figure 5.8: Frame-wise compression ratio comparison between the delta and octree approach using the

Chef animation given the same threshold settings. (threshold=2%).

Delta 5%

------ Octree 5%

Frame-wise Comparison: Delta vs. Octree

Frame Number

1

1

1 700

Is“00
it§5oo

15400

1%
12300

D.

15200
0

10100

‘ o

1 03(0000 gFQI-DNCDOMON

NWVLOLD [\NwmmoFNN

‘ FFFF F‘— 1- NNNN

1

Figure 5.9: Frame-wise compression ratio comparison between the delta and octree approach using the

Chicken animation given the same threshold settings. (threshold=5%).

91

I .
o I

Frame-Wise Companson: Delta vs. Octree Dena” 1

------ Octree1%1

, 60

1 r
l

1 I 2
:" ~

1 0'3 40 i I; , '3 e
1 e : :‘ -.

1 .2 I. it ‘ ~.m.'1 "~ 5' '1 '
1§3°zri I. 33,5: 131;.

1 '5 20:5“ 1 3:3. 1": I'm” ;. ' Iii "1.5 13"

. 0:11 ~ ' 11115411111-1 5" ' I '3 1'.

1 8 10 A2151:ANMJLA.“ : V we v.5;

1

1 O 11v rm 1* 11*Frrr 1111111 r Ill 1111 1111 r11» 11111 11111 11 17 1 H1 i 111!

1815222936435057647178859299

Frame Number

Figure 5.10: Frame-wise compression ratio comparison between the delta and octree approach using the

Dance animation given the same threshold settings. (threshold=l%).

5.3 Conclusions

This chapter presented the delta approach to compress animated geometric data.

This approach is straight forward. It is easy to implement. But it has its limitation. The

big problem is that it can not achieve consistently high compression ratios. From the

compression ratio comparisons with the octree approach, the compression ratio curves for

the delta approach stop growing after they achieve certain level. Obviously the delta

approach could not be used alone to achieve animated geometry compression.

However, flame-wise compression ratio comparison results between the delta

approach and octree approach showed that the delta approach could achieve higher

compression ratios for some flames of the animation sequence. Although the delta

approach does not have good performance when it is used alone, it may increase the

performance of the octree approach if they are combined. This is not the case of the PCA

method. Although it also exhibits a great deal of variability among flames, the PCA

92

method must work over an entire sequence and cannot be efficiently applied to a single

differential flame reconstruction. The delta approach, like the octree approach, is a pair-

wise approach and can be applied to flames in isolation. In the following chapter, a

hybrid approach is presented based on the combination of these two mechanisms.

93

Chapter 6

6 Hybrid approach

This chapter presents a hybrid coding approach to compress animated geometric

data by combining the octree and delta coding approaches. The motivation of this

approach comes flom the observation that the encoded octree size is sometimes larger

than the encoded size of the delta encoding. Section 6.1 presents the encoding process of

the hybrid approach and Section 6.2 presents the results of this approach and the

comparison among the octree approach, delta approach and hybrid approach.

6.1 Hybrid encoding process

1 l frApply Delta De ta coded ame

Reconstructed Coding to the

Previous Frame current Frame

Apply Octree

Current Coding to the

Frame current Frame Octree coded

frame

De Frame 2'1 Decoder Encoded
Current

Frame

Encoded

Animation

Sequence

Figure 6.1: Logical flow of the hybrid encoding process for compressing 3D animation sequence.

94

To overcome the shortcomings of the octree approach, the hybrid approach is

presented in this chapter. The logical flow of the encoding process using the hybrid

approach is shown in Figure 6.1.

This approach uses a threshold to control the quality of the output. The threshold

is used to control the subdividing process of the octree coding and the number of bits

used in the quantization step of the delta coding. For the octree encoding process, if the

error (Euclidean distance) of any reconstructed vertex is larger than the threshold, it will

subdivide the current bounding box and repeat the motion vector computation step. For

the delta encoding process, if the error of any reconstructed vertex is larger than the

threshold, it will continue search for the best quantization level that drops the

reconstruction error below the threshold. Therefore, any reconstructed vertex in any

flame in the reconstructed animation sequence satisfies the criteria that the error between

this vertex and the corresponding original vertex is smaller than the threshold as shown in

Equation 4.1. The threshold in the hybrid coding method is set to be the maximum

allowed distance between the reconstructed vertex and its corresponding original vertex.

It is represented by the percentage of the edge length of the initial cubic bounding box of

the object as illustrated in the Equation 4.2.

To encode each frame except the first frame in the sequence, both the octree

coding method and delta coding method are applied in parallel. If the size of the encoded

delta is smaller than the encoded octree, the encoded octree is replaced with the encoded

delta. A single bit in the output data stream is used to indicate if it is an octree coding or

delta coding.

95

6.2 Evaluations

To evaluate the performance of the hybrid approach, three different animation

datasets: “Chef’, “Chicken Crossing” and “Dance” are used in the evaluation as shown in

Figure 4.4, Figure 4.5 and Figure 4.6 respectively. This section presents the compression

ratio results of the hybrid approach, the reconstruction given different threshold settings

and L2 distance results. It also includes the compression ratio comparison among the

hybrid, octree and delta approach given the same threshold settings.

6.2.1 Hybrid approach results

The hybrid method generates a mixed sequence of the octree encoded and delta

encoded frames. Table 6.1 shows the percentage of the octree encoded and delta encoded

flames for different animation sequences and different thresholds. The delta encoding

contributes significantly to the hybrid method. It takes up to 41% of the encoded flames.

However, as the threshold increases, the percentage of the delta coded flames in the

encoded sequence decreases. This is because the performance of the octree approach is

much better than the delta coding approach as the threshold increases.

96

Table 6.1: Percentage of the octree encoded and delta encoded flames in the hybrid method.

Hybrid Threshold Octree Delta

Chef 1% 59% 41%

2% 82% 18%

3% 86% 14%

4% 90% 10%

Chicken 2.5% 64% 36%

5% 78% 22%

7.5% 85% 15%

10% 88% 12%

Dance 1% 91% 9%

2% 92% 8%

3% 95% 5%

4% 97% 3%

This section also presents the compression ratio results for the hybrid approach.

Table 6.2, 6.3 and 6.4 present the compression ratios of the Chef, Chicken Crossing and

Dance animation sequence using the hybrid approach. Some reconstructed sample

frames of the Chef, Chicken Crossing and Dance animation sequence using the hybrid

approach are shown in Figure 6.2, 6.3 and 6.4 respectively. L2 distance comparison

results among different threshold settings using the hybrid approach are presented in

Figure 6.5, 6.6 and 6.7 respectively.

97

Table 6.2: Compression ratios of the Chef animation using the hybrid approach. The Chef animation

sequence has 75 frames and each frame has 8162 triangles and 4241 vertices. The object size is 440 units in

x dimension, 148 units in y dimension and 455 units in z dimension. Original file size is 3,816,900 bytes.

Max Distance threshold fib% *455 units, where p=l, 2, 3, ...6.

Hybrid approach Max Distance

Chef animation 1% 2% 3% 4% 5% 6%

Compression Ratio 2221 32:1 4121 6511 7811 9621

Table 6.3: Compression ratios of the Chicken Crossing animation using the hybrid approach. The Chicken

Crossing animation has 400 flames and each flame has 5664 triangles and 3030 vertices. The object size is

2.556 units in x dimension, 2.23 units in y dimension and 1.07 units in z dimension. The original file size

is 14,544,000 bytes. Max Distance threshold= p% *2.556 units, where p=2.5, 5, 7.5, 10, 15, 20.

Hybrid approach Max Distance

Ch‘d‘e“ ammatlon 2.5% 5% 7.5% 10% 15% 20%

Compression Ratio 2921 47:1 60:] 7721 11221 15311

Table 6.4: Compression ratios of the Dance animation using the hybrid approach. The Dance animation has

201 flames and each flame has 14118 triangles and 7061vertices. The object size is 0.0758 units in x

dimension, 0.172 units in y dimension and 0.074 units in z dimension. Original file size is 17,031,132

bytes. Max Distance threshold=p%*0.l72 units, where p=1, 2, 3, 4, 5, 6.

Hybrid Approach Max Distance

Dance “man” 1% 2% 3% 4% 5% 6%

Compression Ratio 17:1 28:1 37:1 48:1 62:1 72:1

98

\
-
-
L
-
n

A
“

.
1
.

‘1
1

2.
.

l 1
l
l
l
g
fi
l

-
r

..- -

2

Figure 6.2: A selected set of reconstructed Chef animation using the hybrid approach. The top row is the

original animation. The reconstructed animation by using Mar Distance threshold = 1% and 5% are shown

in row 2and 3 respectively. The compression ratio is 22:1 and 78:1 in row 2 and 3 respectively.

99

Figure 6.3: A selected set of reconstructed Chicken Crossing animation using the hybrid approach. The top

row is the original one. The reconstructed animation by using Max Distance threshold = 5%, 10% and 15%

are shown in row 2, 3, and 4 respectively. The compression ratio is 47:1, 77:1 and 112:1 in row 2, 3 and 4

respectively.

Figure 6.4: A selected set of reconstructed Dance animation using the hybrid approach. The top row is the

original animation. The reconstructed animation by using max distance threshold = 1% and 3% are shown

in row 2 and 3 respectively. The compression ratio is 17:1 and 37:1 in row 2 and 3 respectively.

101

Hybrid approach: L2 distances — "- 'Hybrid 1%

1+Hybrid 3%

- - t- - Hybrid 5%
L
2
D
l
s
t
a
n
c
e

1O 15 20 25 30 35 4O 45 50 55 60 65 70

FrameNumber

Figure 6.5: L2 distances of some sample frames in the reconstructed Chef animation using the hybrid

approach given different threshold settings.

—-—Hybrid 5% ‘

— -0--Hybn'd10% ‘

—-— Hybrid 15% 1

' ' 9,: ”BEE/‘3‘

Hybrid approach: L2 distances 1

1

0.45 1

0.35

P w

1

1

1 0.4

1

1
0.25

L
2
D
i
s
t
a
n
c
e

9 N

1

1

1 0.15

1 0.1

0.05

0

'13) ‘9 «ODQer'f’x‘? Cgrfingrfiorfigs°°éf°¢§9®g 99°

Frame Number
1

1

1

1

1

Figure 6.6: L2 distances of some sample flames in the reconstructed Chicken animation using the hybrid

approach given different threshold settings.

102

— +- -Hybrid 1% 1

—-——Hybrid 3% 1

- ... - Hybrid 5% 1

Hybrid approach: L2 distances

 0.009

0.008 '3

0.007 '

0.006

0.005

0.004

0.003

0.002 ' -

0.001
0 _

.3, 8;» 2;» 41, .51 ((1 (5'1, «‘9’ <0, '9'»

L
2
D
i
s
t
a
n
c
e

Frame Number

Figure 6.7: L2 distances of some sample flames in the reconstructed Dance animation using the hybrid

approach given different threshold settings.

6.2.2 Compression ratio comparison: hybrid, octree and delta

This section presents the compression ratio comparison results among the hybrid,

octree and delta approaches. Figure 6.8 shows the results using the Chef animation.

Similarly, Figure 6.9 and Figure 6.10 show the results using the Chicken Crossing and

Dance animation respectively.

103

. - - Hybrid Approach

_._Octree Approach

—.— Delta Approach

Compression ratio: Hybrid, Octree, Delta

40

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

8

20 .

1% 2% 3% 4% 5% 6%

Threshold

Figure 6.8: Compression ratio comparison among the hybrid, octree and delta approach using the Chef

animation.

Compression ratio: Hybrid, Octree, Delta """‘Hyb'id Appmc“

—-—Octree Aproach

—.— Delta Approach

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

,1 5% 10% 15% 20% ’

1 Threshold J

Figure 6.9: Compression ratio comparison among the hybrid, octree and delta approach using the Chicken

animation.

. . .. - - - Hybrid Approach

Compression Ratio: Hybrid, Octree, Delta , Octree Appmch,

 —.— Delta Approach

70 ac‘

60

50 .

40

30

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

20 "

1% 2% 3% 4% 5%

Threshold
Figure 6.10: Compression ratio comparison among the hybrid, octree and delta approach using the Dance

animation.

6.3 Conclusions

The hybrid approach outperforms the octree-only approach in terms of

compression ratio given the same threshold settings. It provides a simple and efficient

way to improve the performance of the octree-based motion representation method.

105

Chapter 7

7 System

A well developed concept in digital video compression is the layering of

components into systems. MPEG video compression includes a structure for combination

of differential flame representations and intraflame coding such that streams can be

rejoined and errors do not accumulate over time [78]. This system, the well known

combination of I, P, and B-flames allows MPEG to exploit the massive interframe

correlations of digital video while still providing occasional points where the stream can

be picked back up for decoding. In addition, the MPEG systems standard defines another

layer of stream encoding that allows for the merging of a video stream with additional

media streams such as audio [79].

In this chapter, a systems-layer is proposed for animated geometry compression

that supports practical application of these methods in distributed systems including

stream joining, random access in sequences, merging with additional multimedia streams,

and playback controls. It describes the system implementation of a flame-based geometry

system with particular emphasis on support for practical playback requirements including

stream joining, playback controls, and error correction. The details of such a system are

contrasted to the mature MPEG systems layer designs. A system block diagram is

illustrated in Figure 7.1.

106

7.1 System design

Similar to MPEG, the complete hybrid compression system has I-flames and P-

frames. I-flames (intra-coded flames) are coded independently using a static geometry

compression method as discussed in Chapter 3. P-flames (octree or delta predicted

flames) are inter-coded flames. P-flames are predicted flom temporally preceding 1-

flames or P-flames in the animation sequence as described in Chapter 4, 5, and 6. P-

frames are encoded using the hybrid coding method.

MPEG gains advantage flom the recognition that motion is often continuous.

Hence, the motion flom one flame to another may be easily deduced by the location of

content before and after the flame. The MPEG B-flames allow for interpolation of

motion between preceding and succeeding video flames. Though this thesis does not

explore the concept in detail, it is easy to propose the concept of a B-flame for animated

geometry compression.

B-frames are predicted flom the nearest preceding and following I or P-flames in

the sequence. B-flames could be encoded with an interpolation method. As an example, a

simple flaction can indicate the distance the vertices are expected to move along a linear

or cubic path between the preceding and succeeding flame vertex locations. Then a

differential of that motion (the error afier the prediction) is simply encoded using the

hybrid encoding method. This closely mirrors the concept of DCT compression of

residuals in MPEG B-flames.

I-flames are required to support random access playback at the decoder side.

Decompression must always begin with an I-flame for any sequence. I-flames also allow

for stream joining, the acquisition in sequence of a broadcast stream, and recovery after

107

errors. It is common that broadcast multimedia streams utilize forward error correction

(FER) to mask the effects of errors. If errors exceed the correction threshold, I-flames

provide a later place to recover decoding following the error.

Increasing the quantity of I-flames will lower the compression ratio, since intra-

coded flames are considerably larger than inter-coded flames. Having more inter—coded

flames increases the compression ratio at the risk of reducing the reconstructed animation

quality. The distribution of I, P, and B-flames in MPEG video is typically application

dependent, allowing applications to choose the granularity of stream random access and

the quality of the content for a given data rate. The same idea clearly applied to animated

geometry compression.

Step 1: Decide insertion criteria

Step 2: Encode Connectivity

Store

Original . ‘

3D animation - I ' Encoded '" 9 -
Se uence Step 3. App y static geometry Media \ a

9 compressron to Lirames or I -frames Sequence

and apply the hybrid approach to P

frames

Network

Encode
——-_—-_———-—-—-_—--—-—-——_—_——--—--1--_-

Decode

; Decode l-frame using static method

1 Decode P-frame using the hybrid

\. approach

2‘ i 4&0 Decoded lframe or P-irame

Figure 7.1: System Diagram.

Animated geometry compression methods actually induce two possible variants

on the I-flame. The data for a given flame consists of vertex and connectivity

108

information. A complete intra-coded flame will include both elements, allowing for the

stream to be joined in progress and all data for rendering decoded. However, in many

cases the connectivity information will remain constant. This leads to a reduced I-flame

version (the I’-frame) consisting only of vertex data. Such a flame does not support

stream joining, but will allow error recovery if the geometry does not change during the

stream loss and will support random access, since the geometric data can be stored in the

file header or in relation of some grouping of flames.

A hybrid animated geometry compression system works as follows: given a 3D

animated sequence, the user needs to specify some parameters in the beginning, namely

I-flame, I’-flame, P-flame and B-flame interval or insertion criteria. Insertion criteria

might include a maximum spacing and automatic insertion of I-flames following

geometry changes (due to cuts or new object inclusion). Connectivity may be assumed to

remain unchanged for the entire sequence, so it can be encoded and transmitted only

once, though new connectivity can always be transmitted using an I-flame. The

connectivity information is encoded with each I-flame where connectivity has changed or

stream joining capabilities are to be supported. Other information like the number of

vertices and number of flames is also stored with the I-flame.

According to those parameters, each flame can be encoded as an I-flame, 1’-

frame, P-flame or possibly a B-flame. Apply static geometry compression method for 1-

frames; apply the hybrid approach for the P-flames. After all the flames are encoded, the

encoded I and P-flame sequence are stored into media. The encoded data could be

transmitted through network to a decoder side. The decoder reads the stream data flom

the encoder side. It first reads the insertion criteria information to decide parameters such

109

as l-frame, P-flame and B-flame intervals. It also restores the connectivity information. It

then retrieves an encoded I-flame or P-flame record and decodes it. An l-flame is

decoded using static geometry compression method; a P-flame is decoded using the

hybrid approach. After decoding a flame, it could be rendered on the screen or saved into

a file. This process is repeated until all the flame records are retrieved flom the network.

7.2 System features

As a complete hybrid compression system which is similar to the MPEG system

[80], the system design described in this chapter can support several desired features for

practical applications.

0 Stream joining

Stream joining feature allows joining the stream in progress when user switches

the geometry channel. I-flames can be used to support this feature.

0 Random access

Random access requires that a compressed bit stream be accessible in its

middle [80]. It is an essential feature that a flame based compression system

should support. This feature can be achieved by providing access points within

the sequence. Intra-coded flame can serve as access points for the random access.

Any full system will need to support the transmission of intra-coded data in

addition to the inter-coded data in order to support scene changes and new content

entering the scene. I-flames are intra-coded. To support random access, the

nearest I-flame to the requested access point is located and the decoder can

directly jump to the record of the I-flame.

110

Interleaved audio support

It is possible to add audio support to the system. At the encoder, 3D animated

data and audio are encoded separately and then interleaved using a system layer

standard such as that defined for the MPEG standards. The decoder decodes

audio and animation flom the interleaved stream. Time Division Multiplexing can

be used if the delay flom the sender to the receiver is fixed. However, in a

packetized system the delay is usually not fixed and the methods described in this

thesis are fundamentally variable bit-rate mechanisms. Some means of

synchronizing audio and animation packets are required. The solution used by

MPEG-2 system can be adopted [47]. Decoding Time Stamps (DTS) indicates

when a unit to be decoded; Presentation Time Stamps (PTS) indicates when a unit

to be rendered, displayed or played. When the System Time Clock (STC)

advances to the DTS, the unit is decoded. Likewise, when the STC advances to

the PTS, the unit is presented. This relatively simple system has been applied to a

variety of media types and compression methods.

Error correction

During the transmission of an encoded animation, errors may occur. The error

may be propagated by differential hybrid decoding. However, I-flames will be

able to correct the previous errors and restart the correct animation sequence.

How soon the system can recover flom an error depends on the flequency of 1-

frames.

111

VCR controls

The hybrid compression system as described in this chapter can support VCR

controls such as pause, fast forward. Fast forward is basically a more demanding

form of random access. Several different levels of fast forward can be supported.

The fastest level is done through decoding only I-flames and skipping all inter-

coded flames. If B-flames are included, the next level is supported by decoding P-

flames and skipping B-flames.

112

Chapter 8

8 Conclusions and Future work

This chapter presents some conclusions that can be drawn flom this thesis and

some possible future extensions to the current work. This thesis has presented three novel

approaches to efficiently represent 3D animation sequences, an octree-based approach,

delta coding approach and hybrid approach. These approaches have been compared and

evaluated using the “Chef”, “Chicken Crossing” and “Dance” animation sequences.

8.1 Conclusions

This thesis began with a review of the basic techniques for data compression,

some notable efforts in geometry compression and animated geometry compression. It

then described the implementation of a novel octree-based approach that efficiently

represents the data coherence in a 3D animation sequence in detail. In order to evaluate

this approach, PCA method was implemented and compared to the octree-based method

in terms of compression ratio and L2 distance. The results show that the octree-based

approach is significantly better in L2 distance given the same compression ratio.

Compared to a purely static mechanism, the octree approach can achieve much higher

compression ratios.

A delta coding mechanism was also introduced that represents the data coherence

in a 3D animation sequence and is efficient as a compression mechanism on some pair-

wise flame sequences. This approach was evaluated by comparing its performance to the

113

octree-based approach in terms of overall and flame-wise compression ratios. In some

pair-wise flame cases it did out-perform the octree-based method. However, it is shown

that it is not suitable as a general solution because the compression ratio does not scale

with the number of vertices of a flame. Although the delta coding approach could not

achieve good performance when it is used alone, it can increase the performance of the

octree-based approach when they are combined.

A hybrid approach was then presented that combines the octree-based method and

delta coding method. The results show that the hybrid approach outperforms both the

octree-based and delta-encoding approaches in terms of compression ratio.

This thesis also described the system implementation of a flame-based geometry

system with particular emphasis on support for practical playback requirements including

stream joining, playback controls, and error correction. The details of such a system were

contrasted to the mature MPEG systems layer designs.

8.2 Future work

This section presents some possible extensions to the current work.

0 A better 3D visual quality measure

Finding a good visual quality measure is a difficult task. In this thesis, L2

distance was used as a distortion measurement. However, it is not an accurate

visual quality measurement. For instance, there are many cases that one may have

larger L2 distance but have better visual quality. A better measure may need to

take into account more factors, such as issues of the human visual system and

characteristics of the rendered images. In addition to comparing the distortions of

114

individual flames in an animation sequence, there is also a need to measure the

reconstructed motion quality. Good visual quality measurements may help the

compression system adjust parameters to achieve improved ratio/distortion

performance.

Several variations on the octree design

In order to increase the performance of the current design, the

modification of the splitting criteria deserves more exploration. Other alternative

ways to estimate and model motion for a cell may worth further exploration, such

as a compact quaternion representation and cubic interpolations.

Motion clustering

The concept of clustering vertices so as to partition the data into groups

with greater motion coherence is another area that deserves exploration.

Compression methods take advantage of the motion coherence among vertices.

This is clearly the case for vertices within an object, but may not be the case

among independently moving objects. Clustering the data into groups that mimic

independently moving objects may allow for better motion modeling within the

groups, thereby increasing quality.

Progressive compression

To support a system that can provide for partial data transmission at

reduced resolution, the octree-based implementation needs to be modified. One

possible approach is to store the motion vectors not only at the leaf, but also at

internal nodes of an octree. A child node constructs a motion vector based on the

results of its parent’s reconstructed flame. One research issue is how to traverse

115

the octree to provide a smooth and balanced increase of LOD for all parts of an

object.

0 Dynamic changes in topology

Connectivity is assumed to remain constant in this thesis; future work

needs to address dynamic changes in topology.

Animated geometry compression is a relatively new area, but one with great

promise. Numerous applications will be enabled by practical and high quality solutions

to the problem. This thesis presents methods that significantly improve on existing

methods, particularly in the area of design simplicity, performance, and consistency flom

frame to flame and a preliminary description of how to integrate this work into a system

is presented. It is not assumed that this is the final solution of the problem, but the

general method is very promising as a flamework for developing a solution with wide

applicability.

116

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

"Nvidia brings back SLI,"

http://www.gamespot.com/news/2004/06/28/news 6101476.html

F. Sparacino, K. Hall, C. Wren, G. Davenport, and A. Pentland, "Improvisational

Theater Space," Proceedings ofThe Sixth Biennal Symposiumfor Arts and

Technology, New London, CT, 1997.

N. Foster and R. Fedkiw, "Practical Animation of Liquids," Proceedings ofACM

SIGGRAPH'01 , 2001.

N. Foster and D. Metaxas, "Modeling Water for Computer Animation,"

Communications ofthe ACM, vol. 43, no. 7, pp. 60-67, 2000.

M. Deering, "Geometry Compression," Proceedings ofACMSIGGRAPH'95, pp.

13-20, 1995.

G. Taubin and J. Rossignac, "Geometric compression through topological

surgery," ACM Transactions on Graphics, vol. 17, no. 2, pp. 84-115, 1998.

G. Taubin and J. Rossignac, "3D Geometry Compression," ACMSIGGRPAH'98

Course Notes 21, Orlando, Florida, 1998.

C. Touma and C. Gotsman, "Triangle Mesh Compression," Proceedings of24th

Conference on Graphics Interface (GI-98), pp. 26-34, San Francisco, 1998.

J. Rossignac, "Edgebreaker: Connectivity Compression for Triangle Meshes,"

IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 1, pp. 47-

61, 1998.

H. Hoppe, "Progressive meshes," Proceedings ofACMSIGGRAPH'96, vol. 30,

pp. 99-108, New Orleans, Louisiana, 1996.

R. Pajarola and J. Rossignac, "Compressed progressive meshes," IEEE

Transactions on Visualization and Computer Graphics, vol. 6, no. 1, 2000.

117

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Li and C. C. Kuo, "Progressive coding of 3D graphic models," Proceedings of

IEEE Multimedia and Systems, pp. 1052-1063, 1998.

C. L. Bajaj, V. Pascucci, and G. Zhuang, " Progressive compression and

transmission ofArbitrary triangle meshes," Proceedings ofIEEE Visualization

'99, pp. 67-72, 1999.

D. Cohen-Or, D. Levin, and O. Remez, "Progressive compression of arbitrary

triangular meshes," Proceedings ofIEEE Visualization '99, pp. 67-72, Los

Alamitos, California, 1999.

G. Taubin, A. Gueziec, W. Horn, and F. Lazarus, "Progressive Forest Split

Compression," Proceedings ofACMSIGGRAPH'98, pp. 123 - 132, 1998.

P.-M. Gandoin and O. Devillers, "Progressive lossless compression of arbitrary

simplicial complexes," Proceedings ofACMSIGGRAPH’02, pp. 372-379, Texas,

2002.

A. Khodakovsky, P. Schroder, and W. Sweldens, "Progressive geometry

compression," Proceedings ofACMSIGGRAPH'00, pp. 271- 278, 2000.

J. Popovic and H. H. A. 1997, "Progressive simplicial complexes," Proceedings

ofACMSIGGRAPH'97, pp. 217-224, 1997.

F. Bossen, "On The Art Of Compressing Three-Dimensional Polygonal Meshes

And Their Associated Properties," Ph.D. Thesis, cole Polytechnique Fdrale de

Lausanne (EPFL), 1999.

D. Shikhare, "State of the Art in Geometry Compression," National Centre for

Software Technology, 2000.

D. Luebke, "A survey ofpolygonal simplification algorithms," Dept. Computer

Science, University ofNorth Carolina, Chapel Hill, Tech. Report TR97-045,

1997.

J. E. Lengyel, "Compression ofTime-Dependent Geometry," Proceedings of

ACMSymposium on Interactive 3D Graphics, pp. 89 -95, New York, ACM Press,

1999.

118

[23]

[24]

[25]

[26]

[27]

[28]

[30]

[31]

[32]

[33]

[34]

M. Alexa and W. Miiller, "Representing Animations by Principal Components,"

Computer Graphics Forum, vol. 19, no. 3, pp. 411-418, 2000.

L. Ibarria and J. Rossignac, "Dynapack:Space-Time Compression of the 3D

animations of triangle meshes with fixed connectivity," Proceedings of

Eurographics/SIGGRAPH Symposium on Computer Animation, 2003.

H. M. Bricefio, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe, "Geometry

Videos: A new representation for 3D Animations," Proceedings of

Eurographics/SIGGRAPH Symposium on Computer Animation(SCA03), San

Diego, California, 2003.

Z. Kami and C. Gotsman, "Compression of soft-body animation sequences,"

Computers & Graphics, vol. 28, pp. 25-34, 2004.

X. Gu, S. Gortler, and H. Hoppe, "Geometry images," Proceedings ofACM

SIGGRAPH '02, pp. 355--361, 2002.

J. Zhang and C. B. Owen, "Octree-based Animated Geometry Compression,"

Proceedings ofData Compression Conference (DCC'04), pp. 508-517, Snow

Bird, UT, 2004.

J. Zhang and C. B. Owen, "Hybrid Coding for Animated Polygonal Meshes:

Combining Delta and Octree," Proceedings ofIEEE International Conference on

Information Technology (ITCC’05), Las Vegas, NV, 2005.

D. Salomon, Data Compression: The Complete Reference, 2nd, 2000.

K. Sayood, Introduction to Data Compression, 2nd, Morgan Kauflnann

Publishers, 2000.

T. C. Bell, J. G. Cleary, and L. H. Witten, Text Compression, Prentice Hall, 1990.

A. Moffat and A. Turpin, Compression and Coding Algorithms, Kluwer

Academic Publishers, 2002.

C. E. Shannon, "A Mathematical Theory of Communication," The Bell System

Technical Journal, vol. 27, pp. 379-423 and 623-656, 1948.

119

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Rissanen and G. G. Langdon, "Arithmetic coding," IBMJ. Res. Develop, vol.

23, no. 2, pp. 149-162, 1979.

R. N. Bracewell, The Fourier Transform & Its Applications, 3rd, McGraw-Hill

Science/Engineering/Math, 1999.

E. Brigham, Fast Fourier Transform and Its Applications, lst, Prentice Hall,

1988.

O. Riol and M. Vetterli, "Wavelets and signal processing," IEEE Signal

Processing Magazine, vol. 8, no. 4, pp. 14-3 8, 1991.

A. Graps, "An Introduction to Wavelets," IEEE Computational Science &

Engineering, vol. 2, no. 2, pp. 50-61, June 1995.

C. K. Chui, An Introduction to Wavelets: Wavelet Analysis and its Applications,

Academic Press, 1992.

R. Polikar, "The Wavelet Tutorial,"

http://users.rowan.edu/~polilgar/WAVELETS/WTtutorial.html

A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer

Academic Press, 1992.

Y. Linde, A. Buzo, and R. M. Gray, "An Algorithm for Vector Quantization

Design," IEEE Transactions on Communications, vol. 28, pp. 84-95, 1980.

J. Kominek, "Introduction to Fractal compression,"

http://wwwfaqs.org/faqs/compression—fagflaart2/Section—8.html

W. B. Pennebakcr and J. L. Mitchell, Jpeg: Still Image Data Compression

Standard, lst edition, 1992.

J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video

compression standard, Chapman & Hall, 1996.

B. G. Haskell, A. Puri, and A. N. Netravali, Digital video: an introduction to

MPEG-2, Kluwer Academic Publishers, 1996.

120

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Z. Kami and C. Gotsman, "Spectral compression of mesh geometry," Proceedings

ofACMSIGGRAPH’00, pp. 279-286, 2000.

S. Gumhold and W. Strasser, "Real time compression of triangle mesh

connectivity," Proceedings ofACMSIGGRAPH'98, pp. 133-140, 1998.

M. Isenburg and J. Snoeyink, "Face Fixer: Compressing Polygon Meshes With

Properties," Proceedings ofACMSIGGRAPH'00, pp. 263-270, New Orleans,

Louisiana, 2000.

D. King, J. Rossignac, and A. Szymczak, "Connectivity compression irregular

quadrilateral meshes," Georgia Tech, Tech. Rep. TR-99-36,GVU, 1999.

O. Staadt, M. Gross, and R. Weber, "Multiresolution Compression and

Reconstruction," Proceedings ofIEEE Visualization '97, pp. 337-364, 1997.

C. Zach and K. Karner, "Progressive Compression of Visibility Data for View-

dependent Multiresolution Meshes," Proceedings of WSCG'2003, Czech

Republic, 2003.

H. Hoppe, "View-dependent refinement of progressive meshes," Proceedings of

ACMSIGGRAPH'97, pp. 189--l98, 1997.

H. Hoppe, "Smooth view-dependent level-of-detail control and its application to

terrain rendering," Proceedings ofIEEE Visualization '98, pp. 35-42, 1998.

D. Schmalstieg and G. Schaufler, "Smooth Levels of Detail," Proceedings of

IEEE Virtual Reality Annual International Symposium (VRAIS'97), pp. 12-19,

New Mexico, 1997.

T. Funkhouser, "Advanced Computer Graphics Lecture Notes: Mesh

Representations,"

hm)://www.cs.princeton.edu/courses/archive/faLII02/cs526/1ectures/repspdf

"The Stanford 3D Scanning Repository,"

http://graphics.stanford.edu/data/3Dscanrep/

121

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

C. Gotsman, S. Gumhold, and L. Kobbelt, "Simplification and compression of 3D

meshes," Proceedings ofthe European Summer School on Principles of

Multiresolution in Geometric Modelling (PRIMUS), Munich, 2001.

A. Guiziec, F. Bossen, G. Taubin, and C. Silva, "Efficient Compression of Non-

manifold Polygonal Meshes," Proceedings ofIEEE Visualization ’99, 1999.

R. Bar-Yehuda and C. Gotsman, "Time/space tradeoffs for polygon mesh

rendering," ACM Transactions on Graphics, vol. 15, no. 2, pp. 141-152, 1996.

J. Neider, T. Davis, and M. Woo, OpenGL programming Guide, Addison-Wesley,

1993.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, "Mesh

optimization," Proceedings ofACMSIGGRAPH’93, pp. 19-26, 1993.

M. Davis and M. Tuceryan, "Coding of Facial Image Sequences by Model-Based

Optical Flow," Proceedings ofInternational Workshop on Synthetic-Natural

Hybrid Coding and Three Dimensional Imaging (IWSNHC3DI'97), Greece, 1997.

H. Tao, T. S. Huang, H. H. Chen, and T.-P. J. Shen, "Data compression for

animated three dimensional objects," Rockwell Science Center,1nc., 1998.

D. Cohen-Or, Y. Mann, and S. Fleishman, "Deep Compression for Streaming

Texture Intensive Animations," Proceedings ofACMSIGGRAPH'99, 1999.

A. Fournier and D. Y. Montuno, "Triangulating simple polygons and equivalent

problems," ACM Trans. on Graphics, vol. 3, pp. 153-174, 1984.

R. Seidel, "A simple and fast incremental randomized algorithm for computing

trapezoidal decompositions and for triangulating polygons," Computational

Geometry: Theory andApplications, vol. 1, no. 1, pp. 51-64, 1991.

A. Glassner, T. McClure, S. Benza, and M. V. Langeveld, "Chicken Crossing,"

SIGGRAPH Video Review, 1996.

122

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

C. L. Jackins and S. L. Tanimoto, "Oct-tree and their use in representing three-

dimensional objects," Proceedings ofComputer Graphics andImage Processing,

vol. 14, pp. 249-270, 1980.

N. Ahuja and C. Nash, "Octree Representations of moving objects," Proceedings

ofComputer Vision, Graphics andImage Processing, vol. 26, pp. 207-216, 1984.

" 3D Trilinear Interpolation,"

http://www.siggraph.org/education/materials/HyperVis/vised/VisTech/VisProcess

NisInterp/interpS .html

R. Pozo, "Template Numerical Toolkit," http://m_ath.nistgov/tnt/index.html

I. Witten, R. Neal, and J. Cleary, " Arithmetic Coding for data compression,"

Communications ofthe ACM, vol. 30, no. 6, pp. 520-540, 1987.

A. Moffat, R. M. Neal, and I. H. Witten, "Arithmetic Coding Revisited," ACM

Transactions on Information Systems, vol. 16, no. 3, pp. 256-294, 1998.

"GNU Triangulated Surface Library v. 0.7.2," http://gtssourcefogenet/

P. Cignoni, C. Rocchini, and R. Scopigno, "Metro: Measuring Error on Simplified

Surfaces," Computer Graphics Forum, vol. 17, no. 2, pp. 167-174, 1998.

"Coding of moving pictures and associated audio for digital storage media at up to

about 1.5Mbit/s-Part2: Video," ISO/IEC 11172-2, 1993.

"Coding of moving pictures and associated audio for digital storage media at up to

about 1.5Mbit/s-Part1: Systems," ISO/IEC 11172-1, 1993.

D. L. Gall, "MPEG: A Video Compression Standard for Multimedia

Applications," Communications ofthe ACM, vol. 34, no. 4, pp. 46-58, 1991.

123

a“ Stair-Vin?»
Fifi-$1.. ,,,,

,,,,,,

 ulimitiiilliliiattain

