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ABSTRACT

IMPROVING STATISTICAL CATCH-AT-AGE STOCK ASSESSMENTS

By

Michael J. Wilberg

My dissertation addresses three objectives: 1) to estimate fishing mortality rates

and abundance of yellow perch in southwestern Lake Michigan during 1986-2002 to

determine the contribution of fishing to the collapse of yellow perch in southwestern

Lake Michigan, 2) to determine robust methods of dealing with time-varying fishery

catchability within a statistical catch-at-age analysis (SCA) framework, and 3) to

determine whether using Bayesian model selection, specifically Deviance Information

Criterion (DIC) and an approximation of Bayes factors, results in using accurate models

for prediction of important fisheries management quantities.

In chapter 1, I conducted an age-, size-, and sex-structured stock assessment of

yellow perch to estimate population size and examine historical trends in fishing

mortality in Illinois and Wisconsin waters of southwestern Lake Michigan. Model

estimates indicated that yellow perch abundance in 2002 was less than 10% of 1986

abundance in Wisconsin and about 20% in Illinois. Annual mortality rates for females

age 4 and older averaged 69% during 1986-1996 in Wisconsin and 60% in Illinois during

1986-1997, which are quite high for a species like yellow perch that can live longer than

10 years. Estimated fishing mortality rates on adult females during 1986-1996 exceeded

widely used reference points, suggesting that overfishing may have occurred. I believe

unsustainably high fishing mortality rates were a substantial contributing cause of the

rapid decline of mature females in the mid-19903.



The relationship between fishing mortality and fishery effort (catchability) may

change over time through either density dependent or density independent processes. I

used Monte Carlo Simulations in chapter 2 to evaluate how different methods of

estimating fishery catchability within an SCA model performed when models were

confronted with different data generating scenarios. I evaluated performance of the

estimation models by their accuracy and precision in determining quantities of interest

such as biomass in the last year. In many cases, including fishery effort data in the

estimation model and allowing catchability to follow a random walk performed as well or

better than other methods. Exceptions were cases where fishing mortality was low and

catchability trended over time. The estimation model that ignored fishery effort data

performed well in cases with a good survey, but performance degraded as survey

precision decreased. White noise and density dependent estimation models performed

poorly in situations where catchability trended over time. No estimation model was best

for all underlying models of catchability, hence I recommend fitting multiple SCA

models with alternative assumptions.

Structural flaws in SCA models may cause considerable bias in model estimates

of mortality rates, abundance, and recruitment. I used simulations to evaluate whether

using Deviance Information Criterion (DIC) or approximate Bayes factors to select the

best SCA model provided more accurate estimates of quantities important for

management than using a single model in all cases. Using the model selected by DIC or

approximate Bayes factors resulted in estimates with lower mean square errors than using

any single model.
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INTRODUCTION

Fishery managers need realistic predictions of future population dynamics of

individual fish stocks and predictions of how these populations will respond to

management actions. Most major fisheries are managed by a process where scientists

estimate population size and other parameters of a fish population (and uncertainty of

these estimates) and provide this information to fishery managers who then make

decisions regarding which fishery policies to implement (e.g., catch quotas, bag limits,

season or area closures). The process of estimating these quantities is called stock

assessment.

Relatively recent advances in fisheries science have allowed researchers to

estimate total abundance from fishery harvest and age or length composition data, and

other diverse data sources, with a method known as statistical catch-at-age analysis

(SCA; Foumier and Archibald 1982; Deriso et a1. 1985; Megrey 1989; Methot 1990).

This approach is preferable, in many cases, to other stock assessment methods because it

can incorporate many diverse data sources and allows for a rigorous statistical approach

(i.e., promotes explicit modeling of measurement and process error). Hence, SCA can

allow estimation of uncertainty associated with parameter estimates and other model

quantities. SCA methods are being applied worldwide for many fisheries and

predominates applications to major marine fisheries in the northwestern US, New

Zealand, Australia, and South Africa (Radomski et al. in press).

The basic idea behind SCA is that one can infer the effect of fishing on a

population by estimating how absolute removals (e. g., fishery harvest or yield) affect



relative abundance. A model is created that describes the population and the process of

removals, and this model is statistically fit to data from a fishery. Usually, one of the key

assumptions of these models, called the separability assumption, is that fishing mortality

can be described by an overall year effect (how a certain amount of fishing effort affects

a population) and an age effect (the relative vulnerability of different aged fish to a

fishery). This basic approach has also been extended to species for which there is no

directed fishery (Szalai 2003).

In southern Lake Michigan, yellow perch abundance has declined substantially

since the mid-19803 (Marsden and Robillard 2004). As the abundance of yellow perch

declined during the mid to late 19903, commercial fisheries in Indiana, Illinois, and

southern Wisconsin were restricted to smaller quotas, and were eventually closed during

1996-1997 (Francis et al. 1996). Stricter regulations were also imposed on the

recreational fishery with reductions in daily bag limits implemented in all states during

1996-1998, the incorporation of a slot size limit (i.e., only fish between 8 and 10in could

be kept) in Illinois during 1997-2000, and seasonal closures of the fishery (Marsden and

Robillard 2004). Reproductive failure has been implicated as the primary cause of the

population collapse, but the role of fishing in the collapse has not previously been

rigorously investigated. My research investigates the role of fishing in the decline of

yellow perch in southwestern Lake Michigan by using SCA models.

A frequent (but somewhat outdated) criticism of SCAs is that they do not allow

for the flexibility to accurately model time-varying fishing mortality at age (NRC 1998).

Specifically, the relationship between fishery effort and fishing mortality or the age-based

vulnerability to the fishery may change over time (Butterworth et al. 2002; Radomski et



al. in press). Many methods have been developed to account for these changes over time

(e.g., Fournier and Archibald 1982; Fournier 1983; Methot 1990; Hampton and Fournier

2001; Butterworth et al. 2003), but there is not consensus on which methods are best

when faced with different underlying mechanisms for change. My research also aims to

evaluate performance of several SCA methods under many situations and to develop

guidelines to help researchers decide among several SCA model structures.

My dissertation addresses three objectives: 1) to estimate fishing mortality rates

and abundance of yellow perch in southwestern Lake Michigan during 1986-2002 to

determine the contribution of fishing to the collapse of yellow perch in southwestern

Lake Michigan, 2) to determine robust methods of modeling time-varying catchability

within an SCA framework, and 3) to determine whether using Bayesian model selection,

specifically Deviance Information Criterion (DIC) and an approximation of Bayes

factors, results in choosing models with accurate estimates of fishing mortality rates and

abundance. These objectives arose out of questions that formed during my research

program, and each chapter of my dissertation addresses an objective. Chapter 1

developed from a management need to evaluate the importance of fishing in the

population declines of yellow perch in southern Lake Michigan. In working on chapter 1,

I found that many of the model parameters were likely time-varying and wanted to

determine whether the approaches I used (or alternatives) were robust methods for

modeling these processes. This led to the evaluation of several methods for incorporating

time-varying catchability into SCA models detailed in chapter 2. Based on the results of

chapter 2 (differential performance of SCA models under different data-generating

scenarios), the question arose as to whether statistical model selection techniques could



be used to select “good” (i.e., accurate) models when one does not know the true

underlying pattern or mechanism of change.

Objective 1

In chapter 1, I detail my assessment model and describe results from the modeling

efforts. I developed a length-, age-, and sex-based SCA model to estimate fishing

mortality rates and abundance, to determine if fishing mortality rates exceeded the

maximum that could be supported, and to integrate diverse sources of data to get the best

estimates of recruitment and population size. My model allowed fishing mortality rates

at age and sex to change over time 1) in response to changes in fishery effort, 2) by

allowing fishery catchability to change according to random walk models, and 3) by

modeling fishery selectivity as a function of length and allowing growth to change over

time to match observed changes in size at age and sex in southern Lake Michigan.

Model estimates of catchability of the recreational fishery changed approximately

five-fold during 1986-2002, and commercial fishery catchability changed approximately

four- and eight-fold in Illinois and Wisconsin respectively. However, fishing mortality

rates changed approximately 15-fold for females and eight-fold for males during 1986-

2002, indicating that changes in effort and catchability were both important to changes in

fishing mortality. This leads to questions of whether modeling fishery catchability as a

random walk, as in this application, is the best approach and whether fishery effort data

should be used at all (because of the extreme changes in fishery catchability).

Objective 2

Many SCAs of fish stocks assume that fishing mortality is directly proportional to

fishing effort (i.e., constant catchability). However, fishery catchability has often



changed in response to changes in population abundance (e. g., Peterman and Steer 1981),

environmental conditions (e.g., Ziegler et al. 2003), or changes in fishing gear or

fisherman experience (e.g., Hilbom and Walters 1992 pp. 126, 130). Likewise,

catchability in yellow perch fisheries in southwestern Lake Michigan has changed

substantially over time, perhaps due to a combination of the factors listed above.

Therefore, my second chapter describes an evaluation of several methods of modeling

time-varying catchability within SCA models. I used Monte Carlo simulations to

compare how four different methods of estimating fishery catchability within an SCA

model performed when models were confronted with five different data generating

scenarios.

In many cases, including fishery effort data in the estimation model and allowing

catchability to follow a random walk performed better than ignoring fishery effort data.

Exceptions were cases where fishing mortality was low and catchability trended over

time. The estimation model that ignored fishery effort data performed well in cases with

a good survey, but performance degraded as survey precision decreased. White noise and

density dependent estimation models performed poorly in situations where catchability

trended over time. No estimation model was best for all underlying models of

catchability.

Objective 3

Structural flaws in SCA models may cause considerable bias in model estimates

of mortality rates, abundance, and recruitment (McAllister and Kirchner 2002). Often

researchers will make ad hoc decisions about model structure that may cause substantial

biases in their ensuing model estimates (Bumham and Anderson 2002; Gavaris and



Ianelli 2002). Given that a wide variety of models can potentially describe dynamics of a

given stock, methods to decide among several SCA models are needed. Helu et al.

(2000) evaluated performance of Akaike’s Information Criterion (AIC; Akaike 1973) and

Schwartz’s Bayesian Information Criterion (BIC; Schwartz 1978) in SCA models and

found that AIC and BIC both performed well by selecting the candidate model that was

the same as the data-generating model in most of their scenarios. Unfortunately,

although AIC or BIC may perform well in some cases, their implementation is

problematic when models differ in their random effects or hierarchical structures because

the number of parameters in these models is not easy to determine (Bumham and

Anderson 2002). Therefore, to be able to compare structurally complex SCA models

requires alternative model selection approaches that can account for random effects and

priors on parameters. DIC and Bayes factors are generally considered practical methods

to choose the best model from a set of candidate models and do not require the user to

specify the number of model parameters. However, performance of model selection

using DIC and Bayes factors has not been evaluated for SCA models.

My third chapter evaluates whether using DIC or an approximation of Bayes

factors results in choosing accurate models from the set of candidate models.

Specifically, I was interested in whether Bayesian model selection could determine an

appropriate model structure for time varying catchability because catchability is one of

the most important parameters in SCA models (scales abundance relative to catch),

catchability varied widely over time in yellow perch fisheries in southwestern Lake

Michigan, and the accuracy of different structural forms of SCA models differs

depending on the underlying true changes in catchability, quality of data, and average



fishing mortality rate. To achieve these objectives, I designed a simulation study and

challenged the model selection criteria with three estimation models, which differed in

how catchability was allowed to vary over time, and three scenarios of data accuracy and

time-varying catchability. I evaluated whether using DIC and approximate Bayes factors

to select among SCA model variants provided more accurate estimates of quantities used

for management than an approach of using a single model structure in all cases.
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CHAPTER 1

YELLOW PERCH DYNAMICS IN SOUTHWESTERN LAKE MICHIGAN DURING

1986-2002

Introduction

Yellow perch Percaflavescens is an ecologically and economically important

species in Lake Michigan (Wells and McLain 1972). Yellow perch are native to Lake

Michigan, play an important role in near-shore energy cycling and transfer (Evans 1986),

and have provided a fishery on Lake Michigan since the late 18003 (Wells and McLain

1972; Wells 1977). Yellow perch is the only native species in Lake Michigan that has

supported a commercial fishery continuously during the last century (Baldwin et al.

1979), although the fishery has only continued in Green Bay since 1998. During the

19803 and 19903, the recreational fishery harvested more yellow perch than any other

species in Lake Michigan (Bence and Smith 1999).

In southern Lake Michigan, yellow perch abundance underwent periodic

fluctuations during 1934-1964, and declined greatly during the 19603 (Francis et a1.

1996). The decline in yellow perch abundance in the 19603 coincided with a large

increase in alewife Alosa pseudoharengus abundance, and therefore alewife interference

with yellow perch reproduction (either through competition or predation) was considered

the primary cause of the decline (Wells 1977). However, exploitation was also

considered a contributing factor to the overall decline and the primary cause of the

decline of adults (Wells 1977). Prior to 1969, all the states bordering Lake Michigan

(Indiana, Illinois, Michigan, and Wisconsin) had commercial fisheries for yellow perch
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(Baldwin et al. 1979). In 1969, the state of Michigan was the first to close their

commercial fishery (Wells 1977). During the 19703, yellow perch populations in

southern Lake Michigan began to recover (Wells and Jorgenson 1983), and abundance

was high during the 19803 with strong year-classes in 1980 and 1983-1988 (Jude and

Tesar 1985; Makauskas and Clapp 2000). Abundance declined to low levels during the

19903 with a series of weak year-classes during 1989-1997 and 1999-2000. As yellow

perch abundance declined, the sex ratio became skewed toward males, which may have

been caused by intense fishing mortality targeted on large females (Madenjian et al.

2002). The selective removal of large females may have led to further declines in yellow

perch recruitment. As the abundance of yellow perch declined in southern Lake

Michigan during the mid to late 19903, commercial fisheries in Indiana, Illinois, and

southern Wisconsin were restricted to smaller quotas (Francis et a1. 1996), and were

eventually closed during 1996-1997; these fisheries remain closed. Stricter regulations

were also imposed on the recreational fishery with reductions in daily bag limits

implemented in all states during 1996-1998, the incorporation of a slot size limit in

Illinois during 1997-2000, and seasonal closures of the fishery (Francis et al. 1996).

Reproductive failure has been implicated as the primary cause of the population collapse

(Francis et al. 1996; Heyer et al. 2001; Marsden and Robillard 2004), but the role of

fishing in the collapse has not been rigorously investigated.

Our objectives were to estimate fishing mortality rates and abundance of yellow

perch in Wisconsin and Illinois waters of southwestern Lake Michigan during 1986-2002

to determine the contribution of fishing to the collapse of yellow perch in southern Lake

Michigan. We also wanted to determine if fishing mortality rates exceeded the maximum
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that could be supported, and to integrate diverse sources of data to get the best estimates

of recruitment and population size. Our approach was to fit age-, size-, and sex-

structured population models to fishery and survey data. No previous population model-

based stock assessments have been conducted for yellow perch in southern Lake

Michigan. Similar age-structured assessments have been applied to lake trout Salvelinus

namaycush (Sitar et al. 1999), lake Whitefish Coregonus clupeaformis (Ebener et al. in

press), walleye Sander vitreus (Deriso et al. 1988), and yellow perch (Lake Erie Yellow

Perch Task Group 2001) in other areas of the Great Lakes.

Methods

We implemented statistical catch-at-age models (detailed description in Appendix

A) for yellow perch in southwestern Lake Michigan (Figure 1.1). Statistical catch-at-age

models are age-structured models that follow cohorts of fish over time and consider the

catch-at-age data to be measured with error (Megrey 1989). Such models consist of

population and observation submodels, where the model parameters are estimated by

fitting the models to data (Megrey 1989). Our assessment models contained annual time

intervals and considered the period from 1986 to 2002, and ages 2 through 9 (age 9 was

an aggregate age class that included all fish age 9 and older). We began our models in

1986 because recreational fishery data were not available for earlier years. During model

development, we tested the effect of sequentially changing the aggregate age class lower

(down to age 6) and results were similar to those we report. Our models also contained

two fisheries, recreational and commercial, and a fishery independent gillnet survey. Our

models produced estimates of fishing mortality rates, abundance, biomass, and spawning

stock biomass (SSB). We defined SSB as the biomass of mature females in the
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population and calculated this based on a length-based maturation curve derived outside

our model fitting process (see Appendix A).

Our assessment model was age-, size-, and sex-structured. In statistical catch-at-

age models, relative vulnerability (i.e., selectivity) to the fisheries is usually modeled as a

time-invariant function of age (Quinn and Deriso 1999). However, this assumption does

not appear to be reasonable for yellow perch, because these fisheries are highly size

selective (Kraft and Johnson 1992) and yellow perch size-at-age has changed

substantially over time (Marsden and Robillard 2004). Also, yellow perch show sexually

dimorphic growth, with females growing faster and to larger sizes than males, which is

suspected to cause higher fishing mortality rates for females (Wells and Jorgenson 1983;

Madenjian et al. 2002). We modeled selectivity of the fisheries and surveys as functions

of length and allowed growth to change over time with a time-varying von Bertalanffy

growth model (Szalai et a1. 2003). We accounted for temporal variations in growth by

allowing the von Bertalanffy parameters to change in accord with random walk

submodels (see Appendix A). Our approach allowed the relative vulnerability of

different age-sex categories of yellow perch to change over time as their mean length-at-

age changed, even though relative vulnerability was a constant function of length that did

not differ between the sexes (Methot 1990; Hampton and Fournier 2001). We also

included a different selectivity pattern to capture changes in recreational fishery

selectivity during 1997-2000 when a slot size limit was implemented in Illinois. We

assumed a time-, sex-, and age-invariant natural mortality rate, M, of 0.37, which was

consistent with estimates ofM for yellow perch in Indiana waters of southern Lake
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Michigan (Allen 2000) and with values used for stock assessments of yellow perch in

Lake Erie (lake Erie Yellow Perch Task Group 2001).

As well as allowing for changes in the relative vulnerability of different ages in

response to changes in growth, our model allowed for temporal changes in the

vulnerability of the most selected size of yellow perch, so that the fishing mortality

imposed by a given amount of fishing effort could change over time. As for the growth

model this was done by having fishery catchability parameters vary according to random

walk models (see Appendix A).

Genetic analyses have found that yellow perch in the southern basin of Lake

Michigan form a single genetic stock (Miller 2003). However, our approach implicitly

assumed that there was no net migration for either of the model areas (Illinois, and

Wisconsin WM-4 to WM-6; Figure 1.1). We believe this assumption is a reasonable

approximation because preliminary tagging data suggest that the median dispersal

distance for adult yellow perch in southwestern Lake Michigan was relatively low ( < 30

km; D. Glover, University of Illinois at Urbana-Champaign, personal communication).

Also, Horns (2001) attributed differences in growth patterns among yellow perch stocks

in southern Lake Michigan to geographic segregation. Evidence from physical current

modeling studies suggests that genetic structure of the yellow perch population of

southern Lake Michigan may be caused by mixing during the larval stage (Beletsky et al.

2004).

Model Fitting

We took a Bayesian approach to obtain posterior probability estimates for the

parameter values and quantities of interest such as fishing mortality rates, abundance,
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biomass, and SSB. We fitted our models to commercial yield, recreational harvest,

commercial length frequency, recreational length frequency, commercial effort,

recreational effort, mean length-at-age in the survey, age composition of the survey by

sex, total survey CPE by sex, and survey length composition by sex. The objective

function contained 11 additive components for the Wisconsin model and 12 additive

components for the Illinois model (Appendix A). Each component represented a type of

data or a specified informative distribution (i.e., prior distribution) for parameters.

Variations in catchability and growth model parameters according to random walks were

included as components. We estimated 149 parameters for the Wisconsin model and 151

parameters for the Illinois model. We used Markov Chain Monte Carlo (MCMC)

simulations with a Metropolis-Hastings algorithm to estimate posterior probability

intervals (the Bayesian analog of confidence intervals) of several model parameters and

estimates (Otter Research Limited 2000). We ran the MCMC chain for 2,000,000 steps,

sampling every 250 steps, and discarded samples from the initial 250,000 steps as a burn

in period, which reduces the effect of starting values on the MCMC results (Gelman et al.

2004). We determined that the length of our burn in period was long enough by

separating the MCMC chains (of the objective function) into several smaller chains and

comparing the distributions of these blocks (Gelman et al. 2004); the distribution of each

block was nearly identical to the other blocks.

We assumed that total catch for all fisheries was median-unbiased, and that the

coefficient of variation (CV) of the catches was constant for each fishery (i.e., we

assumed lognormal errors). We set the CV for the commercial fishery by assuming that

recorded yield was accurate to within approximately 10% in Illinois and 20% Wisconsin
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95% of the time. The CV for the recreational fishery was set to approximately 10%

based on estimates of the CV from the Wisconsin recreational fishery during 1998-2001

(Wisconsin Department of Natural Resources [WDNR], unpublished data). Independent

estimates for the CV of the Illinois recreational fishery were not available. The CV3 of

survey CPEs and effective sample sizes of the age and length compositions of the surveys

and recreational and commercial fisheries were estimated using an iterative approach

where we adjusted the assumed initial CVs and effective sample sizes of the objective

function components to match the residual variance (McAllister and Ianelli 1997).

Effective sample sizes for survey age composition determined by otoliths or anal fin

spines were weighted five times higher than those determined by scales because scale

aging is thought to be a less accurate method of aging yellow perch (Baker and

McComish 1998; Robillard and Marsden 1996; Wisconsin Department of Natural

Resources, unpublished data). For the Illinois model, we set the CVs of the random walk

deviations for commercial and recreational catchability to about 25%. For the Wisconsin

model, we used the same CV for recreational fishery catchability, but used a higher CV

of about 40% for commercial catchability because, based on the large amounts of

unreported catch, we thought the commercial effort data were less accurate for Wisconsin

than for Illinois. For the Wisconsin model, we set the CVs to about 5% for the random

walk deviations for the L,o and K parameters of the growth model because mean length-

at-age of the older age groups rarely changed rapidly from year to year. In contrast, we

set the CV of the random walk deviations for mean length-at-age 2 to 10% because mean

length-at-age 2 showed more variation from year to year than older ages. Using the same

CV values for L00 and K in the Illinois model as in the Wisconsin model resulted in poor
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convergence. Therefore, we set the CV3 on Loo and K to about 2.5% to further constrain

the growth model for Illinois, but the CV for deviations in mean length-at-age 2 was the

same as the Wisconsin model.

Sensitivity Analyses

We performed sensitivity analyses to determine the effects of some of our

assumptions on the results of the analysis. To test the sensitivity of the model estimates

to the weighting factors for each data source, we increased and decreased the weighting

factors for each data source five-fold and refit the models. We also tested the sensitivity

of our estimates to our assumed value ofM by increasing and decreasing M by 20% and

refitting our models. We then evaluated sensitivity of the model estimates to the change

by comparing model estimates of abundance, biomass, and mean fishing mortality rates

for females and males age 4 and older in 2002 to those obtained with the baseline

weighting factors and natural mortality rate. Also, because of large suspected amounts of

unreported commercial harvest in Wisconsin during 1989-1992, we tested the effects of

three levels (one to three times the reported amount) of commercial harvest during those

years on our results.

Data

Commercial yield and effort were estimated from mandatory bimonthly reports

submitted by commercial fishermen. In some cases, these reports were validated by law

enforcement officials, but underreporting may have been a large problem, especially in

Wisconsin. The exact magnitude of underreporting is unknown, but during 1990-1992

commercial yield in Wisconsin was underreported by at least 44%, which law

enforcement officials documented during a multi-year sting operation (WDNR,
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unpublished data). Two commercial fishermen indicted for unreported harvest testified

that unreported harvest was two to three times reported harvest. Wisconsin implemented

a commercial quota for yellow perch in the summer of 1989, so there was less incentive

for commercial fishermen to underreport prior to 1989. For observed commercial yield

in Wisconsin during 1989-1992, we added the reported commercial yield and the verified

illegal yield and multiplied the number by two. In Illinois, unreported commercial

harvest was thought to be relatively low (Illinois Department of Natural Resources

[IDNR], unpublished data). Length frequency estimates of the commercial catch were

collected by dockside monitoring. Sampling did not occur for most lifts.

Creel surveys were conducted by the Wisconsin DNR and the Illinois DNR to

estimate recreational fishery harvest, effort, and composition of the harvest (details in

Austen et a1. 1995). Creel clerks visited access points and interviewed anglers to

determine target species and angler effort. Anglers’ catches were examined for species

composition and length frequency.

Graded-mesh gillnet surveys were conducted in Wisconsin (2.54-7.62 cm stretch-

measure with 0.64 cm increments) in the winter and in Illinois (254-889 cm stretch-

measure with 1.27 cm increments) in June of each year to obtain fishery independent

relative abundance data. Nets were set overnight in the same locations each year at

multiple depths. CPE was measured as the number of yellow perch per 30.5 m gillnet.

The length of each fish was measured, and the age composition of the catch was

estimated by estimating ages for a randomly chosen subsample and applying the

subsequent age-length key to the length frequency. Ages were estimated by counting the

annuli on scales during 1986-1999 in Wisconsin and 1986-1993 in Illinois. However,
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this method was found to be fairly unreliable (Robillard and Marsden 1996; Baker and

McComish 1998; WDNR, unpublished data). Therefore, Illinois estimated ages of fish

by counting annuli in otoliths during 1994-2002, and Wisconsin estimated ages of fish by

counting the annuli in anal fin spines during 2000-2002. Ages estimated by different

readers of spines and otoliths agreed 86% of the time (WDNR, unpublished data).

Rams

Model Fits

Most of our data sources contained relatively large amounts of contrast and our

models produced reasonable fits to all data sources. Fishery and survey catch was

relatively high in the beginning of our time series and decreased to low levels during the

mid 19903. Our models predicted observed commercial yield and recreational harvest

within 5% of observed values in most years (Figure 1.2). For total survey CPE, our

models produced the same declining trend as was observed, but produced lower

predictions of survey CPE than was observed in most years prior to 1991 (Figure 1.2).

This may be due to decreases in survey catchability caused by increases in water clarity

since the colonization of Lake Michigan by zebra mussels Dreissena polymorpha.

Relative differences between observed and predicted survey CPE tended to be larger than

fishery catch residuals (especially for the Wisconsin survey); this result is not surprising

given that survey CPE had relatively high CV3 and that CV3 were higher for the

Wisconsin survey than for the Illinois survey. Mean age in the survey was relatively

stable during 1986-1992, increased during 1992-1997, and decreased thereafter (Figure

1.3). Deviations between model predictions and observations of mean age in the survey

were usually less than 15%. Mean length in the recreational fishery and surveys

19



increased during 1986-2002, but did not show a trend for commercial fisheries (Figure

1.4). Predicted mean length was usually within 10% of the observed value for the

commercial fishery and surveys and within 5% of observed values for the recreational

fishery (Figure 1.4). Predicted mean length of females in the Illinois survey during 1986-

1992 was lower than observed values and may be low because the survey mainly targets

mature fish; after 1990, a smaller proportion of females were immature.

Model Estimates

Model estimates of mortality rates were generally higher for females than males,

and were higher during the mid-19803 through the mid-19903 than in the late 19903 and

after (Figure 1.5). In Wisconsin, the commercial fishery was the predominant source of

fishing mortality until the commercial fishery was closed, and in Illinois, the recreational

fishery was the predominant source of fishing mortality. Estimated instantaneous fishing

mortality rates for females age 4 and older exceeded 1.0 in most modeled years prior to

1996 in Wisconsin waters and averaged 1.16, which corresponds to an annual mortality

rate of about 69%. In Illinois, estimated fishing mortality rates were not as high as in

Wisconsin, although total mortality rates averaged about 0.92 (annual mortality rate of

about 60%) for females age 4 and older during 1986-1997. In Wisconsin during 1986-

1996, instantaneous total mortality rates for males age 4 and older averaged 0.67 (annual

mortality rate of about 49%), and in Illinois during 1986-1997, instantaneous total

mortality rates averaged 0.57 (annual mortality rate of about 44%). Until severe

restrictions were placed on commercial and recreational fisheries (1996-1997), fishing

was the predominant source of mortality for female yellow perch age 4 and older in

Wisconsin and Illinois. After the fisheries were considerably restricted in 1996 in
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Wisconsin and 1997 in Illinois, fishing mortality rates declined substantially and natural

mortality was the predominant source of mortality.

Model estimates of recruitment in Illinois and Wisconsin showed similar patterns,

with recruitment generally higher in Illinois than in Wisconsin (Table 1.1; Figure 1.6).

Recruitment was relatively high during 1984-1989 and was substantially lower than

19803 levels thereafter, except for the 1998 year-class. The largest year-class during the

19803 was in 1988 and the largest year-class during the 19903 was in 1998. Model

estimates of average recruitment of the 1984-1989 year-classes were 13 times higher in

Illinois and 23 times higher in Wisconsin than the estimated average recruitment of the

1990-1997 year-classes. Recruitment was not strongly related to stock size and yellow

perch produced weak year-classes across a wide range of stock size (Figure 1.6).

Estimated abundance of yellow perch in Wisconsin waters of southwestern Lake

Michigan increased from 1986 to 1990, and then decreased from 1991 to 2002 except for

a small increase in 2000 (Figure 1.7). Estimated abundance of yellow perch in Illinois

waters declined from 1986 to 2002, except during 1990 and 2000. In 2002, yellow perch

abundance was approximately 8% of 1986 abundance in Wisconsin and approximately

20% of 1986 abundance in Illinois. Model estimates of relatively high abundance

throughout the 19803 resulted from high estimated recruitment during that period.

Abundance decreased drastically during the 19903 because recruitment declined and

fishing mortality rates were relatively high.

Changes in estimated biomass were smaller than changes in abundance; estimated

biomass in 2002 was approximately 74% of 1986 biomass in Wisconsin and 123% of

1986 biomass in Illinois (Figure 1.7). Estimated biomass showed somewhat different
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trends over time than abundance because the age structure of the population changed and

growth rates increased. In 1986, the population was composed of mostly age-2 and 3

yellow perch. In 2002, the majority of the population was age-4 and substantially larger

at a given age due to faster growth.

Patterns of estimated SSB were similar to patterns of biomass (Figure 1.7).

Model estimates of SSB increased during 1986-1992 in Illinois and during 1986-1991 in

Wisconsin, and decreased until the late 19903. Estimated SSB increased greatly during

1997-2002 in Illinois and during 1999-2002 in Wisconsin. In 2002, SSB was at its

highest level since the early 19903 and was 346% and 854% of 1986 levels in Illinois and

Wisconsin, respectively. The large increase in SSB during 1999-2002 was due to the

relatively good recruitment of the 1998 year-class, low fishing mortality rates, and rapid

growth and maturity of females. We estimated that spawning stock biomass per recruit

(SSB/R) was approximately 0.46 kg in Wisconsin and 0.44 kg in Illinois in 2002. We

compared these SSB/R values to scenarios without fishing mortality, and estimated that

2002 SSB/R was approximately 84% of the unexploited scenario in Wisconsin and 87%

of the unexploited scenario in Illinois. In contrast, SSB/R during 1986-1995 was

approximately 0.03 kg (18% of the unexploited scenario) in Wisconsin and 0.06 kg (33%

of the unexploited scenario) in Illinois. These dramatic differences in SSB/R occurred

because fishing mortality rates were much lower during 2002 than during 1986-1995 and

yellow perch were growing faster, and therefore maturing at younger ages, during 2002

than during 1986-1995.

Females grew faster and to larger sizes than males (Figure 1.8); the mean length-

at-age of females at all ages older than age-2 were higher than males of the same age.
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Estimated mean length-at-age remained relatively stable during 1986-1994 and increased

substantially during 1994-2000. During 2000-2002, mean length-at-age decreased

slightly, but was still higher than during the 19803 and early 19903. In Wisconsin, yellow

perch were generally smaller at a given age than in Illinois.

Selectivity patterns of the recreational fisheries in Wisconsin and Illinois were

quite similar to one another when no length-based regulations were in effect (Figure 1.9).

Commercial selectivity patterns were also similar. This latter result was not surprising

because the scarcity of biological data for the Illinois commercial catch had led us to

assume an informative prior for the selectivity parameters, based on the results of the

Wisconsin assessment (see Appendix A). Due to differences in selectivity of the

commercial and recreational fisheries, yellow perch recruited to the recreational fishery at

smaller sizes than to the commercial fishery. Selectivity of the Illinois recreational

fishery changed substantially when a slot size limit was implemented during 1997-2000.

In Illinois during 1997-2000, average mortality rates for males age-4 and older were

slightly higher than for females due to the selectivity pattern of the recreational fishery.

Selectivity patterns in the survey were substantially different between Illinois and

Wisconsin. Differences in selectivity patterns are likely attributable to differences in the

surveys such as mesh sizes of assessment gillnets and time of year of the survey.

Sensitivity Analyses

The models were somewhat sensitive to changes in the assumed CV3 and

effective sample sizes for the different data sources (Table A4). The Illinois model was

slightly less sensitive to these assumptions than the Wisconsin model. In general, five-

fold changes in the weights for each data source usually resulted in less than 15%
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changes in mean fishing mortality rates, abundance, and biomass. Weights that resulted

in increased estimates of mean fishing mortality rates usually resulted in decreased

estimates of abundance and biomass. The Illinois model was most sensitive to changes in

the CV and effective sample sizes associated with females caught in the survey and the

effective sample size of the length composition from the recreational fishery. The

Wisconsin model was most sensitive to CV and effective sample size associated with

males caught in the survey and the CV for catchability of the commercial fishery.

Increasing M by 20% resulted in higher model estimates of average fishing mortality

rates and lower estimates of abundance and biomass. The Illinois model was less

sensitive to our assumed value ofM than the Wisconsin model; Illinois model estimates

changed approximately 12% and Wisconsin model estimates changed approximately

47%.

The Wisconsin model estimates of abundance, biomass, and mean fishing

mortality rates were also somewhat sensitive to the different levels of commercial harvest

(Table 1.2). When we fit the model using only reported yield, model estimates of

abundance and biomass in 2002 were more than 20% lower than the baseline (2x reported

during 1989-1992) scenario, and estimates of mean fishing mortality rates were about

27% higher than baseline estimates. Under the 3x reported yield scenario, abundance and

biomass were about 20% greater than the baseline scenario, but mean fishing mortality

rates were about 17% lower than the baseline.

Discussion

The decline in abundance of yellow perch in southwestern Lake Michigan during

the 19903 was likely caused by a combination of recruitment failure and relatively high
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fishing mortality rates, and our results are consistent with other authors’ descriptions of

the decline. During 1989-1994, yellow perch larvae were abundant shortly after

hatching, but recruitment to age 0 in the fall was poor, which has led some researchers to

propose that at least the initial decline in recruitment was not due to fishing (Francis et al.

1996; Robillard et al. 1999; Marsden and Robillard 2004). Our results also indicated that

several successive year-classes failed despite relatively high SSB. However, after 1994,

the relative abundance of yellow perch larvae was less than 10% of the relative

abundance during the early 19903, which may indicate that SSB had decreased to low

enough levels to limit recruitment (Francis et al. 1996; Marsden and Robillard 2004). We

estimated that between 1991 and 1996 yellow perch SSB in Wisconsin declined almost

94% and between 1992 and 1997 yellow perch SSB in Illinois declined almost 90%. The

resultant low SSB may have prolonged the period of poor reproduction.

The decline of yellow perch SSB in southern Lake Michigan would probably not

have occurred at such a rapid pace if fishing mortality rates had been lower. We

projected dynamics for the 1986 through 1996 period using our estimated recruitment

time series and age-based selectivity estimates, while changing the overall level of F.

Our projections indicated that SSB in 1996 would have been more than five times higher

than our model estimates in Wisconsin and nearly twice as high in Illinois if fishing

mortality rates for fully selected ages and sexes had been equal to the natural mortality

rate (0.37) during 1986-1997. While our simple projections do not account for

compensatory changes that might have occurred if fishing mortality had been lower, we

believe they do illustrate that high fishing mortality rates on adult females were a

substantial contributor to the rapid decline in SSB that occurred. An alternative
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hypothesis to the effect of fishing yellow perch population dynamics is that natural

mortality decreased concurrently with restrictions on the fisheries. In a supplemental

analysis (detailed results not reported), we explored this possibility by adding one more

estimated parameter to each model that allowed natural mortality to change from one

level for the 1986-1996 period to another for 1997 and after. The estimated changes in M

were opposite in sign for the Wisconsin and Illinois models and were much less than the

estimated changes in fishing mortality for these periods.

The declines of yellow perch abundance in southern Lake Michigan were similar

in the 19603 and 19903, and recruitment failures of several successive year-classes may

be likely in the future. In the early 19603, yellow perch suffered a recruitment failure

(Wells 1977) similar to the recruitment failure observed in the early 19903 (Robillard et

a1. 1999; Marsden and Robillard 2004). The recruitment failure in the 19603 was

preceded by an increase in abundance during the late 19503 (Wells 1977), which was

similar to the increase in abundance during the late 19803 (Francis et al. 1996). Adult

abundance had decreased rapidly by the mid-19603 due to intense fisheries (Wells 1977).

Yellow perch growth was slow during the 19503 (Wells 1977) and the 19803 (Marsden

and Robillard 2004). Extremely high fishery catches preceded both declines in

abundance. However two major differences in the Lake Michigan community exist

regarding exotic species: alewife abundance in Lake Michigan was extremely high

during the 19603 compared to relatively low alewife abundance in the 19803 and 19903,

and zebra mussels were absent from Lake Michigan in the 19603, but their abundance

was high in the 19903 (Madenjian et al. 2002). Because the reproduction failure in the

19603 was associated with extremely high levels of alewife abundance, the decline in
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recruitment was blamed on alewife (Eck and Wells 1987). Schroyer and McComish

(2000) found a negative correlation between alewife abundance and yellow perch

recruitment in Indiana waters of Lake Michigan during 1988-1997, but little direct

evidence of alewife preying upon yellow perch larvae has been observed in southern

Lake Michigan (Dettmers et al. 2003). Also, alewife abundance during the 19903 was

substantially lower (perhaps more than 20 times lower) than during the mid-19603

(Madenjian et a1. 2002), the period when alewife interference with yellow perch

recruitment was originally proposed as a cause for yellow perch reproduction failure.

Marsden and Robillard (2004) suggested that declines in yellow perch recruitment may

be exacerbated by changes in the ecosystem due to zebra mussel colonization, and

Janssen and Leubke (2004) found that poor recruitment was correlated with the presence

of zebra mussels in Indiana waters of Lake Michigan. Indeed, zebra mussels can alter the

composition of the zooplankton community (MacIsaac et al. 1992), which may decrease

food supplies for larval yellow perch. However, yellow perch recruitment did not

collapse after invasion of zebra mussels in Oneida Lake (Mayer et al. 2000) or the

western basin of Lake Erie (Tyson and Knight 2001).

Based on several reference points, yellow perch likely experienced overfishing in

southwestern Lake Michigan during 1986-1996. Beverton (1998) recommended the use

of the F95 reference point (F at which yield is 95% of maximum sustainable yield) to

sustainably manage fisheries. A rough estimate of F95 is usually around M for medium-

lived species (Beverton 1998), which would be approximately 0.37 for yellow perch in

southern Lake Michigan. Others have argued that M should be an upper bound on fishing

mortality rates that maximize yield (Deriso 1982, Quinn and Deriso 1999). Fishing

27



mortality rates for adult females were well above M in Illinois (1-2 times M) and

Wisconsin (2-4 times M). A number of US. marine commercial fisheries are managed to

keep fishing mortality below levels that would reduce SSB/R below a set percentage of

the unfished situation (Fx%), and typical percentages have been in the 35% to 45% range

(Quinn and Deriso 1999). In Wisconsin and Illinois, F was higher than F35% during

1986-1996.

Regulation changes likely helped to substantially reduce fishing mortality rates.

In 1996 in Wisconsin, the commercial quota was set to zero and a daily bag limit of five

yellow perch per angler was implemented for the recreational fishery (reduced from 50 to

25 in 1995). When these policies were introduced, fishing mortality decreased

noticeably. Recreational effort decreased, but may not have been a direct consequence of

the implemented bag limit. When stricter bag limits were implemented in some inland

Wisconsin lakes for walleye, anglers preferred to fish in lakes that had less restrictive bag

limits (Beard et al. 2003). In Illinois in 1995, the recreational daily bag limit was reduced

from no limit to 25 yellow perch per angler. In 1997, the commercial quota was reduced

to zero and a daily bag limit of 15 yellow perch per angler and a slot size limit of 8-10 in

(fish within this range could be kept) were implemented for the recreational fishery.

Mortality rates also declined substantially in Illinois, as they did in Wisconsin;

commercial effort was reduced to zero, and recreational fishing effort decreased

noticeably. Also, the slot size limit caused the recreational fishery selectivity to change

so that average fishing mortality rates were higher for age-4 and older males than for age-

4 and older females.
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We did not incorporate age-estimation error into our model and this may bias our

estimates of recruitment and mortality rates. Our results likely underestimate the amount

of variability in recruitment because age-estimation error tends to blend strong and weak

year classes together (Richards and Schnute 1998). Specifically, our estimates of

recruitment of the 1989 and 1990 year-classes are probably high because of age-

estimation error associated with the 1988 year-class. However, our estimates of

recruitment are consistent with external estimates of year-class strength from age-0

assessments (Pientka et a1. 2003). Our mortality rate estimates are likely biased low for

the beginning of the time series when ages of yellow perch were estimated from scales.

Younger yellow perch tended to be aged as older when ages were estimated from scales

(Robillard and Mardsen 1996; Baker and McComish 1998; Wisconsin DNR, unpublished

data) and the overrepresentation of older fish in the data is most likely interpreted by the

model as an indication that older fish were more abundant. Annual mortality rates in the

late 19703 in Indiana and Illinois were estimated to be about 70% for males age-3 and

older and substantially higher for females age-3 and older (Wells and Jorgenson 1983).

These mortality rate estimates are similar to our estimates for Wisconsin in the late 19803

and for Illinois in the mid-19803.

Yellow perch growth may be density dependent and may also have increased due

to zebra mussel colonization. Patterns of growth during 1986-1998 resembled growth

during 1954-1979 for yellow perch in southern Lake Michigan. Yellow perch growth

may have been density dependent during 1986-2002 and 1954-1975 (Wells 1977). We

found similar growth patterns in Wisconsin and Illinois; growth was relatively slow when

yellow perch were at high abundance and growth was fastest at low abundance.
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However, growth during 1999-2002 (low abundance) was the fastest observed for yellow

perch in southern Lake Michigan during the last five decades. This increased growth

coincided with substantial changes in yellow perch habitat due to colonization by zebra

mussels. Thayer et al. (1997) found increased adult yellow perch growth associated with

zebra mussels in ponds enclosures and Tyson and Knight (2001) found increased growth

of age-2 and age-3 yellow perch in the western basin of Lake Erie after zebra mussel

colonization; these increases in growth were attributed to increased food availability.

However, Mayer et al. (2000) found no increase in adult yellow perch growth associated

with zebra mussel colonization in Oneida Lake.

Management Implications

Since 1998, recruitment has continued to be poor in southern Lake Michigan

except for the 2002 year-class (Pientka et al. 2003; Clapp and Dettmers 2004; Fitzgerald

et al. 2004). Success of the 1998 year-class has renewed pressure on the agencies to

implement less restrictive regulations. Based partially on development of the models

described here, the Lake Michigan Yellow Perch Task Group recommended that

regulations remain unchanged for the time being. The models we developed will

continue to be used to monitor changes in the population and to advise managers.

Overexploitation of yellow perch has not previously been considered a likely

hypothesis for the decline of yellow perch in southern Lake Michigan (Francis et al.

1996). However, we found that SSB had reached very low levels by the mid-19903 and

intense fishing likely compounded the rapidity of the decline in SSB. Although exotic

species or climatic changes may have affected recruitment, fishing mortality rates during

the late 19803 and early 19903 probably were above levels that would be sustainable over
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the long term. Therefore, management of yellow perch in Lake Michigan should focus

on limiting fishing mortality and be flexible to adjust to future recruitment failures.

Despite poor recruitment, SSB has increased to its highest point since the early 19903 in

Wisconsin and Illinois. This is partly a response to extensive management actions taken

by Wisconsin and Illinois, which have reduced fishing mortality rates. However,

relatively few year-classes are represented in the population and future increases in

biomass and SSB will depend upon relatively strong recruitment of future cohorts to the

adult population.
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Table 1.1. Model estimates of yellow perch abundance-at-age (in thousands) during

1986-2002 in Illinois and Wisconsin waters of southwestern Lake Michigan.

 

 

Age

Year 2 3 4 5 6 7 8 9+

Illinois

1986 9,674 1 1,417 2,082 769 284 105 39 14

1987 9,598 6,682 7,518 862 146 33 10 4

1988 ‘ 6,807 6,629 4,518 3,715 247 32 6 2

1989 7,255 4,701 4,457 2,567 1,245 67 8 2

1990 17,535 5,011 3,180 2,759 1,370 545 30 4

1991 5,432 12,110 3,322 1,837 1,383 633 231 15

1992 2,521 3,726 8,070 1,949 969 694 31 1 1 16

1993 444 1,718 2,401 4,930 1,090 526 371 224

1994 22 302 1,070 1,370 2,691 573 270 295

1995 190 15 188 598 727 1,434 298 284

1996 325 127 9 102 310 378 747 292

1997 1,153 216 70 4 48 144 175 476

1998 130 787 143 45 3 31 93 420

1999 879 89 529 96 30 2 21 342

2000 8,91 1 599 59 349 63 20 l 240

2001 38 6,144 404 40 235 43 14 163

2002 38 26 4,139 265 26 153 28 1 15
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Table 1.1. Continued.

 

Wisconsin

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

1&863

fi083

5L757

1L438

1L935

fi221

L237

310

102

83

60

289

128

373

3,115

29

29

1L702

ALOSO

iiSlO

(1045

51826

1L23O

21603

853

214

71

57

42

200

88

258

2J47

20

1A90

'L922

2L776

2L353

IL994

IL786

<L964

2315

572

144

49

39

29

138

61

175

L405

300

741

4L246

L676

L250

ZLOZO

L665

1L227

L327

336

85

33

27

20

93

41

111

101

106

195

L718

694

530

682

627

L043

579

158

54

22

18

13

62

26

4O

21

20

71

578

287

161

225

285

408

231

96

35

14

11

39

16

19

204

78

48

96

108

153

139

63

22

47

34

33

53

122

170

147

107

77

53
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Table 1.2. Model estimates of abundance (N; 10003), biomass (B; 1000 kg). mean rate of

fishing mortality for females age-4 and older (F4+ females), and mean rate of fishing

mortality for males age-4 and older ( F4, males) for 2002 under three scenarios of

unreported commercial harvest in Wisconsin waters of southwestern Lake Michigan

during 1989-1992.

 

 

N B 174+ females F4+ males

Reported 1,33 1 280 0.095 0.077

2 X Reported 1,690 356 0.075 0.060

3 X Reported 2,020 427 0.062 0.050
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Figure 1.1. Map of Lake Michigan statistical districts with modeled areas shaded. WM

indicates Wisconsin waters, IL indicates Illinois waters, IN indicates Indiana waters, and

MM indicates Michigan waters.
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Figure 1.2. Model fits to commercial yield (1000 kg), recreational harvest (10003), and

gill net survey catch-per-effort (CPE; number per 30.5 m) in Illinois and Wisconsin

waters of southwestern Lake Michigan during 1986-2002. Model predictions are

represented by solid lines and observed values are represented by dots.
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Figure 1.3. Mean age of yellow perch caught in gill net surveys in Illinois and Wisconsin

waters of southwestern Lake Michigan during 1986-2002. Lines represent model

predictions and dots represent observed values.
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Figure 1.5. Model estimates of average instantaneous mortality rates for yellow perch

age-4 and older in Illinois and Wisconsin waters of southwestern Lake Michigan during

1986-2002.
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CHAPTER 2

PERFORMANCE OF TIME-VARYING CATCHABILITY ESTIMATORS IN

STATISTICAL CATCH-AT-AGE ANALYSIS

Introduction

Statistical catch-at-age analysis (SCA) is used to provide estimates of absolute

abundance, recruitment, and fishing mortality for many fisheries throughout the US. and

the rest of the world (National Research Council [NRC] 1998; Quinn and Deriso 1999).

In contrast to virtual population analysis and its variants, SCAs generally assume that

fishing mortality rate-at—age can be modeled as a function of a year effect and an age

effect (selectivity). This approach allows statistical estimation where fishery catch-at-age

data are assumed to contain some amount of measurement error (Megrey 1989; Fournier

and Archibald 1982). These models require catch-at-age data as well as an index of

abundance; other data sources can also be included in the model (Deriso et al. 1985).

Under many conditions, SCA provides more accurate estimates of stock size and other

important management quantities than other stock assessment techniques (NRC 1998,

Punt et al. 2001, Radomski et al. in press)

Many SCAs use fishery catch per effort (CPE) as an index of relative abundance,

and thus assume that fishery CPE is proportional to abundance (Quinn and Deriso 1999).

However, violations of this assumption can cause SCA models (and other stock

assessment models) to produce biased estimates (NRC 1998). Time-varying catchability

has been documented in a wide range of fisheries, spanning commercial and recreational

fisheries and freshwater and marine systems. In some cases, catchability may change

with abundance or the area inhabited by a stock (e.g., Peterman and Steer 1981; Winters
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and Wheeler 1985; Crecco and Overholtz 1990; Harley et al. 2001), environmental

effects (Ziegler et al. 2003), or due to changes in fisherman behavior or gear (Hilbom and

Walters 1992). Interactions between population size, stock area, and fisher behavior can

lead to hyperstable fishery CPE, where CPE remains high despite decreases in abundance

(Hilbom and Walters 1992; Harley et al. 2001). Hyperstable CPE in combination with a

stock assessment model that does not account for this can lead to overestimated stock size

and catch limits (NRC 1998).

Methods have been developed to account for time-varying fishery catchability,

but there is little consensus about best practices in this area (e.g., Fournier and Archibald

1982, Fournier 1983; Methot 1990, Fournier et al. 1998, NRC 1998). Generally, fishery

effort or CPE data are ignored if an independent survey is available for a stock (NRC

1998). However, in many fisheries, survey data are not available and ignoring fishery

effort data is not an option (NRC 1998). Likewise, ignoring fishery effort data may

decrease the accuracy and precision of SCA estimates in some cases because fishery CPE

may be informative about changes in relative population size or survey data may be poor.

Our objective was to determine how well different methods of estimating time-varying

catchability performed within an SCA framework. Specifically, we tested four

estimation models to determine how well they performed in scenarios where catchability

changed over time.

Methods

We used Monte Carlo simulations to compare how four different methods of

estimating fishery catchability within an SCA model performed when models were

confronted with different data generating scenarios. Our data generating models included
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five cases where catchability changed abruptly or gradually over time and where

catchability was explicitly a function of population abundance. Our data generating

models also contained three levels of fishing mortality and three levels of survey

measurement error. While the general influence of fishing mortality level and survey

measurement error on the performance of SCA methods is well understood (e.g., Bence

et al. 1993), we included these factors to determine whether they act to change the

relative performance of different approaches of modeling time-varying catchability. We

generated 1000 datasets for each scenario (45 total scenarios). For data sets that included

survey data, we fit each data set with four different models that made different

assumptions regarding fishery catchability; catchability was modeled as white noise, a

random walk, density dependent, or catchability was effectively estimated as a free

parameter for each year. This last method ignores any information contained in fishery

CPE or effort. For data sets that did not include survey data we used the first three of

these estimation methods. Each scenario used the same sets of random numbers.

All models contained 15 years of data and eight age classes with the last age class

representing all fish that age and older. Data generating models were based on

commercial fisheries for lake Whitefish (Coregonus clupeaformis) in the upper Great

Lakes. Symbols and equations defining the data generating models and estimation

models are presented in Tables 2.1 and 2.2. Equations are referred to in the text as eq.

Tx.y, where x is the table number and y is the equation number within Table x. To avoid

redundancy, equivalent quantities and parameters in estimation and data generating

models are not differentiated except when they both appear in the same equation, in

which case estimated quantities are denoted with a caret above the symbol.
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Data Generating Model

The data generating model described the population dynamics and created data

sets of total fishery catch, the age composition of the fishery catch, and in some scenarios

total survey CPE and the age composition of the survey. For the population dynamics,

we used an age-structured model that followed cohorts over time. Recruitment

(abundance at age 1) was generated from a lognormal distribution with a coefficient of

variation (CV) of 100%. Numbers-at-age in the first year were calculated assuming a

stable age distribution with lognormal errors, where recruitment and mortality rates prior

to the first year of the simulation were on average the same as in the first year (eq.

T2.2.1). Cohorts were tracked over time by applying a simple exponential mortality

model (eq. T2.2.2a); the last age class was treated as representing all fish age 8 and older

(eq. T2.2.2b). Biomass each year was the sum of age-specific abundance and mean

weight-at-age (eq. T2.2.3).

We used a separable model to generate fishing mortality rates. The total mortality

rates were determined by the natural mortality rate and age-specific fishing mortality

rates (eq. T2.2.4). M was held constant across ages and years at 0.25. The instantaneous

fishing mortality rate was a function of catchability, fishing effort, and age-specific

selectivity (eq. T2.2.5). We used three levels of fishing mortality where F at fully

selected ages was approximately 2M (high), M (medium), and 0.5 M (low). We allowed

fishing mortality to change over time by allowing effort to change (Figure 2.1) and by

incorporating several processes of time-varying catchability (see below). For a given

level of fishing mortality, each of the models used the same effort series and each effort
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series had the same amount of contrast in absolute terms. The selectivity pattern for the

fishery was dome shaped to simulate a gill net fishery (Figure 2.2).

We included five models for time-varying catchability, which incorporated a

range of possible ways that catchability could vary over time. The logc of catchability

was modeled as white noise to simulate a fishery where catchability varied from year to

year about a constant mean (eq. T2.2.6), perhaps due to environmental effects, but where

year-to-year deviations were not correlated. We also included four treatments that had

varying amounts of autocorrelation: first order autoregressive (ARI), density dependent,

linear increase, and abrupt change. The ARI process was also on the loge-scale and

could mimic catchability changes from many sources (eqs. T2.2.7a, T2.2.7b), such as

density dependent catchability or correlated environmental effects. We set the correlation

(p) of the AR] process to 0.9 and the CV (08) to 0.16. Density dependent catchability

followed a power relationship where catchability declined with increasing abundance (eq.

T2.2.8; Paloheimo and Dickie 1964). Because each of the different levels of fishing

mortality had different average levels of abundance, we used three sets of parameters (a

and ,6) to define the density dependent power function, one for each level of fishing

mortality. In the linear increase scenario, catchability increased linearly over time (eq.

T2.2.9), which could represent learning by fishers or increases in gear efficiency. In the

abrupt change scenario, catchability was constant until year eight of the time series and

increased to a higher level where it remained for the rest of the time series (eq. T2.2.10).

This scenario simulated the adoption of a more efficient technology by the fishery. All

models were parameterized to have the same expected catchability (over the time series)

and similar variances of logcqf. We achieved this by simulating data sets and adjusting
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the catchability parameters until the mean and variance of catchability were the same as

in the white noise case. We used a value of 0.2 for the standard deviation of the log of

catchability as the standard for all other catchability models. This value is similar to

estimates of the CV of catchability for commercial fisheries in New Zealand (Francis et

al. 2003), but was less than median values of the CV of fishery CPE estimated by Harley

et al. (2001) for International Council for the Exploration of the Sea fisheries of 0.4-0.8,

which should be an upper bound.

Fishery catch was calculated with the Baranov catch equation (eq. T2.2.13; Quinn

and Deriso 1999). We multiplied total catch by a lognormal measurement error to

calculate observed fishery catch (eq. T2.2.14); the measurement error CV for fishery

catch was 10%. Observed age compositions were generated by drawing a sample from a

multinomial distribution of size n (100 for the fishery) with proportions equal to the

expected catch-at-age in the fishery. Survey CPE-at-age was calculated as the product of

survey catchability, abundance, and survey selectivity (eq. T2.2.15), and observed survey

CPE was the product of total survey CPE and a lognormal measurement error (eq.

T22. 16). Our simulation model contained three levels of survey quality with differing

levels of measurement error: good CV=O.25, poor CV=1.0, and no survey. Catchability

of the survey was constant over time. Observed survey age compositions were generated

by drawing a random sample from a multinomial distribution of size 75 with proportions

equal to the expected CPE at age in the survey.

Estimation Model

The estimation models were largely the same as the simulation models except for

how catchability was estimated and how numbers-at-age in the first year and recruitments
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were handled. Common parameters among models included N1,1...N15,1 (Recruitment),

N13. . .N1,3 (numbers-at-age in the first year), and s”. . .S7_f (fishery selectivity); models

with surveys also included s,,_,...sz, (survey selectivity) and q, (survey catchability).

Numbers-at-age in the first year and recruitment for each year were estimated as

parameters during the model fitting process. After the first year and age, abundance-at-

age followed a standard exponential mortality model with the last age representing all

fish that age and older (eqs. T2.2.2a, T2.2.2b).

The total mortality rate (ZN) was the sum ofM and F,3 (eq. T2.4); M was

assumed known at 0.25 (the true value from the simulation models). Fishing mortality

followed a separable model for all of our estimation models. Fishery and survey

selectivities were estimated as individual parameters by setting selectivity at the oldest

age-class to one. Estimation models contained four methods of estimating catchability:

white noise, random walk, density dependent, and no catchability (directly estimating

fishing mortality) with survey data. The first estimation model allowed fishery

catchability to vary with white noise about a constant mean (eq. T2.2.6). The second

estimation model allowed fishery catchability to vary according to a random walk (eq.

T2.2.16). The third estimation model allowed catchability to be a density dependent

function (eq. T2.2.8). The density dependent model did not contain any random

deviations. In our fourth estimation model, we estimated the fishing mortality rate for

fully selected age classes as a parameter, and then applied the estimated fishery

selectivity to calculate age-specific fishing mortality rates (eq. T2.2.l7). This method

does not use fishery effort as a data source. The estimation models also predicted

proportions of fishery and survey catch-at—age.
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Model Fitting and Convergence

We fit the models using a likelihood-based approach where we used a numerical

search to find parameter values that minimized our objective function. The objective

function was the sum of the likelihood components and each component was the negative

of the log—likelihood for a single data source or a penalty related to time-varying

catchability (eq. T2.3.1).

Our estimation models assumed lognormal distributions of errors for total catch

for the fishery (eq. T2.3.2) and survey CPE (eq. T233) and multinomial distributions for

age compositions of the fishery (eq. T2.3.4) and the survey (eq. T2.3.5; Fournier and

Archibald 1982). Effective sample sizes and CVs of the fishery and survey catch and age

compositions were set to their true values from the generating models. The likelihood

components for survey CPE and age composition were only included in models that

included survey data.

For estimation models that used fishery effort as a data source, fishery CPE was

not explicitly modeled. Instead, fishing mortality was an explicit function of effort, and

catch was linked to abundance and fishery effort by estimating the catchability

coefficient. We assumed lognormal deviations for catchability in the white noise (eq.

T2.3.6) and random walk (eq. T2.3.?) estimation models. The CV for the white noise

catchability was set to the true expected value, which was 0.2 for all data generating

models. For the random walk model, we set the CV to 0.165, the CV that on average

created a time series with a sample CV of 0.2. This component in the objective function

can be thought of as a penalty that produces a shrinkage estimator (in the Frequentist

case) or as a Bayesian prior and penalizes large deviations from mean catchability (for
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the white noise model) or large year-to-year deviations (in the random walk model).

Estimation models that contained density dependent catchability or ignored effort data

did not contain likelihood component 2 5.

We minimized the objective function iteratively using an efficient quasi-Newton

implementation in AD Model Builder software that takes advantage of automatic

differentiation (Otter Research Limited 2000). We minimized the objective function in

stages, where the initial stages were penalized if the model estimates deviated from the

expected average fishing mortality rates under each scenario (early stages can be viewed

as providing starting values for subsequent stages). This constraint was removed for the

final stage of fitting and therefore did not penalize final model estimates. Iterative

adjustment of the parameters terminated when the maximum gradient of parameters with

respect to the objective function was less than 0.0001 , or more than 1000 function

evaluations had occurred. We denoted any terminated parameter estimates where the

maximum gradient component was less than 0.0005 as converged, based on trial

investigations after the completion of the simulations that used different parameter

starting values.

Evaluation ofEstimation Model Performance

In stock assessments, estimated quantities in the last year are often most important

for forecasting and management. Therefore, we evaluated estimation model performance

by calculating the relative error (RE) of estimated biomass in the last year.

_ estimated — true
 (2. 1) RE

true

We report only results for stock size measured in biomass. Other common

measures of stock size (e.g., measures of exploitable abundance) showed similar patterns
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and estimates of fully selected F or exploitation rate reflected similar but inverse patterns

(i.e., if estimated biomass was higher than the true value, estimated F was usually lower

than the true value and vice versa). We evaluated systematic over or under estimation

using the median of the relative error (MRE). If MRE equals zero, half of the estimates

are higher than the true value and half are lower than the true value. Throughout the rest

of the paper we use the term unbiased as meaning median unbiased (i.e., MREs near

zero). We also compared estimation model performance using the median of the absolute

values of relative error (MARE), which indicates the width of the distribution of RES if

the median is zero. In situations where the RES are either all (or mostly) positive or

negative, the MRE will equal the MARE. We compared relative performance of the

estimation models by calculating the difference of their MAREs and report these

differences as percentages because the units of MARE are percent. We used MRE and

MARE instead of mean relative error and root mean squared error because mean values

were heavily influenced by several cases with large relative errors (>100). We checked

whether these outliers represented false convergence by restarting the estimation with

different starting values. Convergence was verified and obtained the same parameter

estimates.

Results

All estimation models performed best in situations with high fishing mortality and

low survey CV and worst in cases with low fishing mortality and no survey (Table 2.4,

Table 2.5). The performance of a given estimation model depended on the level of

fishing mortality, survey quality, and data generating model. In almost all cases,

estimation models that made use of both survey CPE and fishery effort outperformed
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models that used only fishery effort or survey CPE. Performance of the estimation model

that ignored fishery effort data was independent of the underlying catchability model that

generated the data and was only a function of survey quality and fishing mortality. The

estimation model that ignored effort data was relatively unbiased (MRE near zero) in all

cases, but the MARE was often significantly higher than for estimation models assuming

white noise and random walk catchability and the relative performance of this method

was highly dependent on survey quality. For the other estimation models, the results can

be separated into two categories: ones where all estimation models were relatively

unbiased (white noise, autoregressive, and density dependent) and ones where some

estimation models had substantial bias (linear increase and abrupt change). Although the

density dependent estimation model was relatively unbiased in many cases, it performed

relatively poorly overall because it did not converge for 15-35% of the simulated data

sets that did not contain density dependent catchability; the other estimation models

usually failed to converge less than 1% of the time. This lack of convergence likely

occurred because the two parameters describing density dependent catchability were

confounded with one another (i.e., many combinations of a and 0 could produce equally

good fits) for many data sets, and thus the optimization procedure could not find a unique

best solution. Because of problems with convergence in most cases, we did not believe

that the density dependent estimation model was a viable candidate for most situations.

White Noise, First Order Autoregressive, and Density Dependent

In cases where the data generating models contained white noise catchability, first

order autoregressive catchability, or density dependent catchability, all estimation models

produced relatively unbiased estimates of biomass in the last year (i.e., MREs near zero;
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Table 2.4), with the most biased estimation model in these scenarios having an MRE of

only -6.1% (random walk estimation model fitting density dependent generation model

with low mortality and no survey). There were larger differences in precision among the

estimators and this was reflected in MARE and the tightness of the distributions of

relative errors (Table 2.4). For cases where the estimation model was the same as the

generating model (white noise and density dependent), the estimation model that matched

the generating model performed best (i.e., had the lowest MARE and tighter

distributions). In the case of the ARl data generating model, the random walk model

performed best in most cases. Differences in MARE among estimation models that

modeled catchability as white noise, a random walk, or ignored fishery effort were

usually less than 5% for cases with good surveys (Figure 2.3; Figure 2.4). However,

MAREs of random walk and white noise estimation models were 7-30% lower than

estimation models that ignored fishery effort in cases with a poor survey. Differences in

estimation model relative performance were largely accounted for by differing

performance of random walk and white noise catchability models because the

performance of the estimation model that ignored fishery effort data was relatively

constant for a given level of fishing mortality and survey quality. White noise and

random walk models were most accurate in cases with white noise catchability,

somewhat less accurate for cases with density dependent catchability, and least accurate

in cases with ARI catchability.

Linear Increase and Abrupt Change

The white noise and random walk estimation models were biased in cases where

catchability increased linearly or changed abruptly, but the amount of bias depended on
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survey quality, fishing mortality rate, and data generating model. The MREs of biomass

in the last year for estimation models with white noise and random walk catchability were

above zero in all cases, indicating a positive bias (Table 2.5). The positive bias seen in

our simulations undoubtedly reflects the direction of change in catchability built into our

simulations, where the estimation models did not fully account for the increase in fishery

catchability. Neither the white noise nor the random walk estimation models performed

well in cases with no survey, trending catchability, and low mortality. The amount of

bias was highest in cases where fishery catchability changed abruptly and fishing

mortality rates were low and decreased as the level of fishing mortality increased and as

survey quality improved.

Although the random walk estimation model was biased, it usually had a lower

MARE than our other estimation models, but performance relative to the other estimation

models depended on the treatment. In cases with a good survey, the MARE of the

estimation model that ignored fishery effort and the MARE of the random walk

estimation model were within 5% of one another (Figure 2.3). However, in cases with a

poor survey, the random walk model usually had MAREs 10-20% lower than the

estimation model that ignored fishery effort. The estimation model that ignored fishery

effort data only outperformed the random walk model in the scenario with an abrupt

change in catchability and low fishing mortality. The estimation model that ignored

fishery effort and the random walk estimation model clearly outperformed the white

noise estimation model in these cases and had MAREs 12-50% lower than the white

noise estimation model (Figure 2.4).
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Discussion

Often stock assessment scientists will not use or will substantially downweight

(i.e., specify an arbitrarily large CV) fishery effort or CPE data in an SCA if a fishery

independent index of abundance is available for a given stock. Indeed, the NRC (1998)

recommended that fishery dependent indices of abundance should be ignored if an

independent index of abundance is available based on the results of their simulations.

However, our results argue against automatically ruling out the use of fishery dependent

indices of abundance when a survey is present. In cases where the survey CV is large,

we believe that use of fishery dependent indices is justified if they are believed to contain

information on stock size. Of course fishery effort should be adjusted for known changes

in fishing efficiency, and the estimation model should allow for flexible changes in

catchability over time, as was the case for our random walk estimator. The reliability of

fishery effort data may be suspect in some fisheries and, in these cases, it may make

sense to ignore fishery effort. Using methods that do not allow for trends in catchability

can lead to severely biased SCA estimates, and modeling fishery catchability as white

noise (which is often done) may not provide the necessary flexibility for models to

accurately depict system dynamics. Also, there may be a tendency to overstate the

precision of survey data and understate the precision of fishery data in SCAs, which is

what Francis et a1. (2003) found for assessments of many New Zealand commercial

fisheries.

Our recommendations are contrary to NRC (1998), because we evaluated a wider

range of structural models for time-varying fishery catchability within SCAs, but our

results yield similar insights for the cases they explored. In the NRC (1998) study,
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fishery catchability increased over time combined with density dependence; their survey

had a CV of 30% (near the level of our “good” survey). Also, the NRC (1998) study

mainly included SCA estimation models that contained white noise models for

catchability or ignored fishery effort data (see Restrepo (1998) for details of models used

in the NRC (1998) study). The exception was one estimation model where fishery

catchability was modeled as a mixture of random walk and white noise processes (Ianelli

and Fournier 1998). However, the CV of the white noise term was large relative to the

CV of the random walk term (Ianelli and Fournier 1998), which likely caused the model

to perform similarly to a white noise model. Similar to the results of NRC (1998), we

also found that that SCA models that ignored fishery effort data outperformed SCA

models that modeled fishery catchability as white noise in cases with trending

catchability.

Independent survey indices of abundance or relative abundance are extremely

important for obtaining accurate SCA estimates, especially in situations with low fishing

mortality. Our results agree with the NRC (1998) recommendation to use survey data if

they are available. In our study, estimation models that utilized fishery effort data and

survey data (even with a CV of 100%) outperformed models that used only fishery effort

data, especially in cases where catchability trended over time and fishing mortality was

not high.

It is important to standardize effort series to remove catchability trends to as large

an extent as possible. Our experiments showed that SCA estimates were most biased

when trends or abrupt changes in fishery catchability occurred and that all our estimation

models performed reasonably well in cases where catchability did not trend over time.
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Trending fishery catchability is probably common. Many mechanisms could lead to

trends in fishery catchability, such as increasing power of the fishery, increasing

aggregation of fish stocks and fishers, or trending recruitment dynamics and density

dependent catchability. Salthaug and Aanes (2003) presented a method to correct CPE

for the spatial distribution of fishing effort, which has been shown to affect catchability

(Winters and Wheeler 1985; Rose and Kulka 1999). Also, improvements in vessels, and

other fisher behaviors can be accounted for either by preprocessing (e.g., analyzing CPE

data to estimate mean CPE by accounting for vessel characteristics and spatial and

temporal patterns of fishing) fishery data or by integrating the standardization process

into the stock assessment model (e.g. Maunder 2001; Maunder and Starr 2003; Maunder

and Punt 2004). The procedure of simultaneously standardizing catch and effort data and

fitting the stock assessment model can lead to improved estimates over the two—step

approach of standardizing catch and effort data and then fitting the assessment model

with the standardized values (Maunder 2001; Maunder and Langley 2004).

Our results probably provide a best-case view of the performance of SCAs when

faced with time-varying catchability and may exaggerate the accuracy of all estimation

models used in our study. Except for the catchability aspect, the structure of the

estimation models was correct (i.e., the same as the data generating model). In reality, it

is likely that M may vary among years and ages and that the data analyst will not know

the true M. Fishery selectivity may vary over time, which can cause biased estimates

from SCA models if it is not accounted for (Radomski et al. in press). Likewise, our

models did not contain trends in survey catchability over time or correlation with changes

in fishery catchability, which could cause models that used survey indices of abundance



to generate less accurate estimates. Lastly, our data generating models contained a

survey with an asymptotic selectivity pattern, which allows SCA models to produce more

accurate estimates than other survey selectivity patterns (Bence et al. 1993).

While our results favored the random walk model in general, this was not true

under all circumstances. We recommend that data analysts fit multiple stock assessment

models with different assumptions about time-varying catchability. One may be able to

then determine the best catchability model using a Bayesian framework, where each of

the catchability models we fit is a special case of a “full” model (McAllister and Kirchner

2002; Gelman et al. 2004). For instance, the estimation models that ignore effort data,

use white noise, or a random walk are all special cases of a first order autoregressive

process (eq. T2.8). In the case of white noise, the correlation coefficient (p) equals 0. In

the case of random walk, p equals 1. And in the case of ignoring effort data, the CV of

the random deviations (a) is infinity. Thus, one possible procedure would be to allow

catchability to follow a first order autoregressive process and estimate the p and 0

parameters. If the CVs of the other likelihood components are specified, these

parameters (p and a) may be estimable and this method could lead to better SCA

estimates of parameters and uncertainty. Alternative approaches would be to select

among our special case models using the deviance information criterion (Spiegelhalter et

al. 2002) or other measures that account for both goodness of fit and model complexity,

or to average over the alternative models using Bayesian Model Averaging (McAllister

and Kirchner 2002). These are topics warranting future research.
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Table 2.]. Symbols and descriptions of variables for data generating and estimation

 

 

models.

Symbol Description Value (if needed in the

data generating model)

E Average recruitment 1,000,000

N Abundance by age and year

y,a

By Biomass

Zy a Total instantaneous mortality rate by age and

year

Fy a Instantaneous fishing mortality rate by age

and year

M Instantaneous natural mortality rate 0.25

Saf Fishery age-specific selectivity See figure 2.2

3a S Survey age-specific selectivity See figure 2.2

Ey Fishery effort See figure 2.1

Fishe catchabilit4y,f 1')’ Y

q Survey catchability 0.0001

s

21'f Mean fishery catchability 0.05

C Expected fishery catch-at-age

y,a
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Expected survey catch-at-age

 

Iy’a

5 Observed total fishery catch

y

1" Observed total survey catch

y

Proportion of catch-at-age in fishery

“Ma-f

Proportion of catch-at-age in survey

“y,a,s

Wa Mean weight at age 0.16, 0.45, 0.82, 1.2, 1.55,

1.86, 2.11, 2.3

6y Deviations for white noise catchability

6y Deviations for first order autoregressive

catchability

my Deviations for random walk catchability

a, ,6 Parameters for density dependent catchability 175, 0.53; 90, 0.49; 35,

(low, medium, high) 0.42

a, b Parameters for linear increase in catchability 0.032, 0.00225

q1 , q; Parameters for abrupt change in catchability 0.0402, 0.0598

f Fishing intensity by year

y

p Correlation parameter for autoregressive 0.9

catchability

a}, CV for recruitment variation 1.0

70

 



Fishery measurement error CV

Survey measurement error CV

CV for white noise catchability deviations

CV for autoregressive catchability deviations

CV for random walk catchability deviations

0.1

0.25; 1.0

0.2

0.16

0.165
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Table 2.2. Data generating and estimation model equations.

 

 

Population model equations Application

(T2.2. 1) a -1 Generation

_ _ )3 Zl,a +7a 2

N =Re “-1 ;7~N(0,0')
La 7

(T2.2.2a) — Z Both

: e y’a

y + l, a + 1 y, a

(T2.2.2b) — Zy 7 — Zy 8 Both

Ny+ 1,8 = y,7" +Ny,8e

(T2.2.3) B = 2N w Both

y y,a a

a

(T2.2.4) Z a = M + F Both

(T215) F = q E s BOII'I

y,a y y a

Catchability model equations

(T2.2.6) White noise Both

lo :10 - +5 ;5 ~N(0,0'2)

ge qy.f ge qf y y 5

(T2.2.7a) First order autoregressive Generation

_ 03
loge ql,f ~ N loge qf,-1———2—

‘P

(T2.2.7b) Generation

loge qy+l,f = loge qf +p(loge qy,f —loge c7)+ey

6 ~ N(0,0'2)

y e
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(T2.2.8)

(T2.2.9)

(T2.2.10)

(T2.2.11)

(T2.2.12)

(T2.2.13)

(T2.2.14)

(T2.2. 15)

(T2.2.16)

Density dependent

_ -fl

qy.f 'aNy

Linear increase

qy.f =a+b(y)

Abrupt change

q1 ify<8

qy.f —q2ify28

Random walk

_ . ~ 2
loge qy+1,f —loge qytf +a)y,a)y N(0,0'w)

Freely estimate f3, (ignorefishery effort)

F = s

Ma fy a. f

Observation model equations

-e y,a )N

y,a Z y,a

T
.. _ y . ~

C —e Ecyfl’ry N(0,0'T)

y

I =q s N '
y,a sa y,a

I =e I ;v ~N0,0'

, 2;... , < .9

Both

Generation

Generation

Estimation

Estimation

Both

Both

Both

Both
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Table 2.3. Objective function equations for statistical catch-at-age analysis simulation

study. Equations T2.3.3 and T2.3.5 were only used in estimation models that considered

survey data. Equations T2.3.6 and T2.3.7 were only used in estimation models that

modeled fishery catchability as white noise or a random walk respectively.

 

(T2.3.l)

(T2.3.2)

(T2.3.3)

(T2.3.4)

(T2.3.5)

(T2.3.6)

(T2.3.7)

L=Z€i

i

i :

~ A 2

1 2(loge(cy>—loge(cy))_1__

2
207 y

1 ~ A 2

£2 =—§-Z(loge(ly)-loge(ly))
20’” y

(’3 :_nf§§uy,a,f loge(uy,a,f)

(4 z—nszzuy,a,s loge(uy,a,s)

ya

1 3 2

e=—zl l
5 20'2y y

4

1 2

e=——z(o)
5 20'3y y

Objective function

Fishery catch

Survey catch-per-effort

Proportion at age in the fishery catch

Proportion at age in the survey catch

White noise catchability

Random walk catchability
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Table 2.4. Simulation results for statistical catch-at-age estimation model performance in

cases where data generating models included white noise catchability (WN), first order

autoregressive catchability (AR), and density dependent catchability (DD). Shown are

median relative error (MRE) and median of the absolute values of relative error (MARE)

for estimated biomass in the last year (year 15) from four statistical catch-at-age

estimation models: white noise (WN), random walk (RW), density dependent (power

relationship; DD), and freely estimated F at maximum selectivity (i.e., not fitted to

fishery effort data; FF). Data generating models included three levels of fishing mortality

(high [F=2M], medium [F=M], and low [F=0.5M]), and 3 levels of survey precision

(good [CV=25%], poor [CV=100%], and no survey). Estimation models with the lowest

MARE for each treatment are indicated in bold.

 

 

 

Estimation Model

MRE ME.

g-Model Mortality Survey WN RW DD FF WN RW DD FF

WN low good -0.005 0.009 0.007 0.017 0.196 0.212 0.259 0.216

WN low poor -0.006 -0.010 0.016 0.018 0.214 0.258 0.284 0.493

WN low none 0.006 -0.019 0.000 0.231 0.255 0.319

WN medium good 0.001 0.009 0.019 0.024 0.133 0.155 0.191 0.170

WN medium poor 0.012 0.002 0.031 0.036 0.156 0.213 0.219 0.400

WN medium none 0.018 0.006 0.035 0.183 0.234 0.233

WN high good 0.012 0.015 0.015 0.024 0.103 0.1 19 0.143 0.146

WN high poor 0.01 1 0.001 0.025 0.046 0.124 0.166 0.149 0.308

WN high none 0.020 0.017 0.041 0.141 0.185 0.179

AR low good -0.004 0.004 0.022 0.000 0.271 0.222 0.356 0.226

AR low poor 0.009 -0.025 0.030 -0.001 0.355 0.335 0.434 0.498

AR low none 0.020 -0.015 0.01 1 0.409 0.419 0.456

AR medium good 0.008 0.006 0.006 0.031 0.21 1 0.164 0.302 0.169
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AR

AR

AR

AR

AR

DD

DD

DD

DD

DD

DD

DD

DD

DD

medium

medium

high

high

high

low

low

low

medium

medium

medium

high

high

high

poor

none

good

poor

none

good

poor

none

good

poor

none

good

poor

110116

0.002

0.031

0.007

0.004

0.018

-0.019

-0.025

-0.025

-0.026

-0.023

-0.020

-0.010

-0.012

0.004

-0.045

-0.031

0.009

-0.022

-0.037

0.022

-0.006

-0.061

0.009

-0.031

-0.047

0.005

-0.028

-0.030

0.034

0.028

0.029

0.029

0.025

0.006

0.009

0.007

0.024

0.023

0.018

0.027

0.020

0.022

0.014

0.030

0.019

0.013

0.046

0.027

0.039

0.031

0.037

0.297

0.332

0.174

0.236

0.271

0.244

0.342

0.401

0.177

0.252

0.295

0.137

0.193

0.218

0.278

0.340

0.131

0.196

0.236

0.233

0.324

0.384

0.163

0.249

0.292

0.121

0.178

0.213

0.365

0.373

0.251

0.301

0.311

0.195

0.234

0.273

0.139

0.177

0.199

0.114

0.130

0.155

0.412

0.148

0.314

0.243

0.514

0.185

0.418

0.146

0.329

 

76



 

Table 2.5. Simulation results for statistical catch-at-age estimation model performance in

cases where data generating models included linearly increasing catchability (LI) and an

abrupt increase in catchability (AC). Shown are median relative error (MRE) and median

of the absolute values of relative error (MARE) for estimated biomass in the last year

(year 15) from four statistical catch-at-age estimation models: white noise (WN), random

walk (RW), density dependent (power relationship; DD), and freely estimated F at

maximum selectivity (i.e., not fitted to fishery effort data; FF). Data generating models

included three levels of fishing mortality (high [F=2M], medium [F=M], and low

[F=0.5M]), and 3 levels of survey precision (good [CV=25%], poor [CV=100%], and no

survey). Estimation models with the lowest MARE for each treatment are indicated in

 

 

 

bold.

Estimation Model

MRE MARE

q-Model Mortality Survey WN RW DD FF WN RW DD FF

LI low good 0.353 0.050 0.437 0.013 0.353 0.187 0.437 0.234

LI low poor 0.762 0.419 0.647 0.044 0.762 0.419 0.647 0.501

LI low none 0.751 0.635 0.642 0.751 0.635 0.642

LI medium good 0.345 0.074 0.488 0.029 0.345 0.150 0.488 0.174

LI medium poor 0.671 0.299 0.653 0.032 0.671 0.302 0.653 0.390

LI medium none 0.716 0.429 0.647 0.716 0.429 0.648

LI high good 0.322 0.072 0.482 0.031 0.322 0.121 0.482 0.140

LI high poor 0.551 0.172 0.598 0.033 0.551 0.189 0.598 0.280

LI high none 0.605 0.21 l 0.61 1 0.605 0.213 0.61 1

AC low good 0.571 0.165 1.386 0.018 0.571 0.255 1.386 0.242

AC low poor 1.154 0.655 2.145 0.055 1 . 154 0.655 2.145 0.491

AC low none 1.755 1.413 2.462 1.755 1.413 2.462

AC medium good 0.371 0.088 0.730 0.029 0.371 0.168 0.730 0.171
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Figure 2.1. Effort series used for high, medium, and low fishing mortality rate scenarios

in the data generating models. The average fishing mortality rates for fully selected age

classes were approximately 2M for the high scenario, M for the medium scenario, and

0.5M for the low scenario.
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Figure 2.2. Fishery and survey selectivity patterns used in the data generating model.
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Figure 2.3. Relative performance of the estimation model that ignores fishery effort

versus the random walk estimation model measured by the difference of median of the

absolute value of the relative errors (MARE). Positive values indicate that the estimation

model that ignored fishery effort data had a larger MARE than the random walk

estimation model and vice versa. Data generating models are indicated by the symbol

shape: WN - white noise, AR — autoregressive, DD — density dependent, LI — linear

increase, and AC — abrupt change. Two letters identify each treatment: the first letter for

level of fishing mortality (L - low, M — medium, H — high) and the second letter for level

of survey quality (G — good, P — poor).

81



051 oWNIAFl .

 

 

ADD <>L|

0'4“ .AC 3 . .

. <> 0 e

8 0.3" o

c

93

g 0.2~ O Q 8

0

pg 01- 0

< I I I

2 o a a 5 ' 4 1 t t F

-0.1-

-0.2
 

LG MG HG LP MP HP LN MN HN

Treatment

Figure 2.4. Relative performance of white noise versus random walk estimation model

measured by the difference of median of the absolute value of the relative errors

(MARE). Positive values indicate that the white noise estimation model had a larger

MARE than the random walk estimation model and vice versa. Data generating models

are indicated by the symbol shape: WN — white noise, AR — autoregressive, DD -— density

dependent, LI — linear increase, and AC — abrupt change. Two letters identify each

treatment: the first letter for level of fishing mortality (L — low, M - medium, H —- high)

and the second letter for level of survey quality (G - good, P — poor, N — none).
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CHAPTER 3

PERFORMANCE OF BAYESIAN MODEL SELECTION IN STATISTICAL CATCH-

AT-AGE ANALYSIS

Introduction

Development of a fishery stock assessment often involves fitting alternative

models and using what is thought to be the best among them to provide management

advice. The “best” model is often selected by ad hoc criteria with unknown performance

characteristics. Model selection is an area of importance because estimated quantities

important for management, such as exploitable biomass, can be extremely sensitive to

model structure (McAllister and Kirchner 2002). Common uncertainties in statistical

catch-at-age (SCA) model structure include stock-recruitment relationships, selectivity

functions, and assumptions linking fishery catch with abundance and effort (McAllister

and Kirchner 2002). In some cases, results from several models will be reported to

managers, but quantitative estimates of the relative likelihood a particular model being

most “correct” are typically not provided (McAllister and Kirchner 2002).

Model selection has been applied to SCA models, but previous applications have

been limited in the types of models that could be compared. Helu et al. (2000) evaluated

performance of Akaike’s Information Criterion (AIC; Akaike 1973) and Schwartz’s

Bayesian Information Criterion (BIC; Schwartz 1978) to assess model selection in SCA

models and found that AIC and BIC both performed well by selecting the candidate

model that was the same as the data-generating model in most of their scenarios.

Unfortunately, although AIC or BIC may perform well in some cases, their

implementation is problematic when models differ in their random effects or hierarchical
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structures because the number of parameters in these models is not easy to determine

(Bumham and Anderson 2002). Therefore, to be able to compare structurally complex

SCA models requires alternative model selection approaches that can account for random

effects and priors on parameters.

The Deviance Information Criterion (DIC) has been developed relatively recently

to select among complex hierarchical models where the number of effective parameters is

not readily apparent (Spiegelhalter et al. 2002). Much like AIC and BIC, DIC selects

among models by trading off goodness of fit and model complexity. DIC is a

generalization of AIC and reduces to AIC in the case of a model with diffuse priors

(Spiegelhalter et al. 2002). DIC is particularly applicable to models with random effects

or hierarchical structure because it estimates the effective number of parameters rather

than requiring the user to provide this. Unlike BIC, DIC does not depend on the number

of data points directly in its calculation.

Although DIC has been applied in many studies (e.g., Zhu and Carlin 2000; Barry

et al. 2003), relatively few studies have evaluated the performance of DIC model

selection (Spiegelhalter et al. 2002; Cardoso and Tempelman 2003; Kizilkaya and

Tempelman 2003; Berg et al. 2004; Kizilkaya and Tempelman 2005; van der Linde

2005). In general, these studies found that DIC usually selected the correct model (i.e.,

the model that generated the data) from the set of candidate models and that the estimated

number of effective parameters seemed reasonable for their given models.

Bayes factors are another method to compare models that can account for random

effects and hierarchical structure (Gelman et al. 2004). Fournier et al. (1998) used

posterior Bayes factors (an approximation to Bayes factors; Aitkin 1991) to estimate
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“weight of evidence” of one model over another (Lavine and Schervish (1999) showed

that weight of evidence is not quite an accurate description of Bayes factors). However,

like AIC and BIC, posterior Bayes factors also require the number of parameters as an

input to the calculation. McAllister and Kirchner (2002) estimated Bayes factors for

several competing assessment models of Namibian orange roughy (Hoplostethus

atlanticus) using the sampling-importance resampling algorithm. To date, there are no

published studies of fishery stock assessments that have evaluated the performance of

model selection or model averaging based on Bayes factors. However, in complex

models, such as SCA models, Bayes factors can be difficult to calculate and sensitive to

priors (Kass and Raftery 1995; Lavine and Schervish 1999; Han and Carlin 2001).

My objectives were to determine if using DIC or an approximation of Bayes

factors as model selection criteria resulted in choosing an appropriate model structure and

level of complexity. Also, I wanted to evaluate whether using formal model selection

methods provided more accurate estimates of important fishery management quantities,

such as fishing mortality rate and biomass in the last year. To achieve these objectives, I

designed a simulation study and challenged the model selection criteria with three

estimation models and three scenarios of data accuracy and time-varying catchability.

Methods

I evaluated whether using DIC and approximate Bayes factors to select among

SCA model variants provided more accurate estimates of quantities used for management

than an approach of using a single model structure in all cases. My data-generating

models contained three basic scenarios, which differed in their relationship between

fishing mortality and observed effort. These scenarios included (1) modeling fishery
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catchability as white noise, (2) modeling fishery catchability as increasing a constant

amount each year, and (3) treating fishing mortality as unrelated to observed effort. I

chose these data-generating scenarios because previous results indicated that the relative

performance of different estimation models was likely to change over this range of

conditions. Three different estimation models were fitted to each of the 30 datasets (ten

from each scenario). These estimation models contained different assumptions regarding

fishery catchability; (1) catchability was modeled as white noise, (2) as a random walk,

and (3) where catchability was effectively estimated as a free parameter for each year.

This last method ignores any information contained in fishery effort data.

All models contained 15 years of data and eight age classes with the last age class

representing all fish that age and older. Data-generating models were based on

commercial fisheries for lake Whitefish (Coregonus clupeafonnis) in the upper Great

Lakes. Symbols and equations defining the data-generating models and estimation

models are presented in Tables 3.1 and 3.2. Equations are referred to in the text as eq.

Tx.y, where x is the table number and y is the equation number within Table x. To avoid

redundancy, equivalent quantities and parameters in estimation and data-generating

models are not differentiated except when they both appear in the same equation, in

which case estimated quantities are denoted with a caret above the symbol.

Data-generating Model

The data-generating model described the population dynamics and created data

sets of total fishery catch, the age composition of the fishery catch, total survey CPE, the

age composition of the survey, and fishery effort. To model population dynamics, I used

an age-structured model that followed cohorts over time. Recruitment (abundance at age
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l) was generated from a lognormal distribution with a coefficient of variation (CV) of

100%. Numbers-at-age in the first year were calculated assuming a stable age

distribution with lognormal errors, where recruitment and mortality rates prior to the first

year of the simulation were on average the same as in the first year (eq. T3.2.1). Cohorts

were tracked over time by applying a simple exponential mortality model (eq. T3.2.2a);

the last age class was treated as representing all fish age 8 and older (eq. T3.2.2b).

Biomass each year was the sum of age-specific abundance and mean weight-at-age (eq.

T3.2.3).

I used a separable (i.e., fishing mortality was the product of an age effect and a

year effect) model to generate fishing mortality rates. The total mortality rates were

determined by the natural mortality rate and age-specific fishing mortality rates (eq.

T3.2.4). M was held constant across ages and years at 0.25. The instantaneous fishing

mortality rate was a function of catchability, fishing effort, and age-specific selectivity

(eq. T3.2.5). I allowed fishing mortality to change over time by allowing fishery effort to

change and by incorporating two processes of time-varying catchability (see below).

The overall level of fishing mortality varied among simulations. This was

accomplished by multiplying the baseline effort (Figure 3.1) by a Uniform(1,2) number

selected for each simulation. The baseline effort series was designed to produce an

average level of F for fully selected ages approximately equal to M. Thus, this procedure

led to F for fully selected ages varying among simulations between M and 2M. For the

white noise catchability and linearly increasing catchability scenarios observed effort

equaled true effort. For the scenario with uninforrnative effort, the observed effort series

was drawn as uniform random numbers between the minimum true effort (effort in year
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1) and the maximum true effort (effort in year 8). The selectivity pattern for the fishery

was dome shaped to simulate a gill net fishery (Figure 3.2).

I included two models for time-varying catchability, which caused SCA models to

have variable performance (chapter 2). The loge of catchability was modeled as white

noise to simulate a fishery where catchability varied from year to year about a constant

mean (eq. T3.2.6), perhaps due to environmental effects. In the second scenario,

catchability increased linearly over time with a small amount of white noise error (eq.

T3.2.9), which could represent learning by fishers or increases in gear efficiency. Both

models were parameterized to have the same expected catchability (over the time series)

and similar variances of logeqf. I achieved this by simulating data sets and adjusting the

catchability parameters until the mean and variance of catchability were the same as in

the white noise case. I used a value of 0.2 for the standard deviation of the loge of

catchability. This value is similar to estimates of the CV of catchability for commercial

fisheries in New Zealand (Francis et al. 2003), but was less than median values of the CV

of fishery CPE estimated by Harley et al. (2001) for International Council for the

Exploration of the Sea fisheries of 0.4-0.8, which should be an upper bound on the CV of

catchability.

Fishery catch was calculated with the Baranov catch equation (eq. T3.2.13; Quinn

and Deriso 1999). I multiplied total catch by a lognormal measurement error to calculate

observed fishery catch (eq. T3.2. 14); the measurement error CV for fishery catch was

about 0.1. Observed age compositions for the fishery catch were generated by drawing a

random sample from a multinomial distribution of size 200 with proportions equal to the

true proportions of catch-at-age in the fishery. Survey CPE-at-age was calculated as the
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product of survey catchability, abundance, and survey selectivity (eq. T3215), and

observed survey CPE was the product of total survey CPE and a lognormal measurement

error (eq. T3.2. 16).

As was the case for average fishing mortality, survey quality varied randomly

among simulated datasets. This was accomplished by selecting the measurement error

CV for each simulation from a Uniform(0.2,0.8) distribution. These levels of survey CV

were selected because they provided contrast in performance of several estimation

models in chapter 2. Catchability of the survey was constant over time. Observed survey

age compositions were generated by drawing a random sample from a multinomial

distribution of size 150 with proportions equal to the true pr0portions of CPE at age

calculated from eq. T3.2.15.

Estimation Model

The estimation models were largely the same as the simulation models except for

how catchability was estimated and how numbers-at-age in the first year and recruitments

were handled. Common parameters among models included N1,,...N15,1 (Recruitment),

N12. . .Nm (numbers-at-age in the first year), and s1J. . .s7J (fishery selectivity), s”. . .37”,

(survey selectivity) and q, (survey catchability). All models had 52 unique estimated

parameters. Parameterization of the models to reduce correlations among parameters is

described in Appendix B. Numbers-at-age in the first year and recruitment for each year

were estimated as parameters during the model fitting process. After the first year and

age, abundance-at-age followed a standard exponential mortality model with the last age

representing all fish that age and older (eqs. T3.2.2a, T3.2.2b).
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The total mortality rate (2”,) was the sum ofM and FM (eq. T2.4); M was

assumed known at 0.25 (the true value from the simulation models). Fishing mortality

followed a separable model for all of my estimation models. Fishery and survey

selectivities were estimated as individual parameters by constraining the log of the age-

specific selectivities to sum to zero. This method was used to reduce correlations among

selectivity parameters. Estimation models contained three methods of estimating

catchability: white noise, random walk, and no catchability (directly estimating fishing

mortality). The first estimation model allowed loge fishery catchability to vary with

white noise about a constant mean (eq. T3.2.6). The second estimation model allowed

loge fishery catchability to vary according to a random walk (eq. T3.2. 16). In my third

estimation model, I estimated the fishing mortality rate for fully selected age classes as a

parameter, and then applied the fishery selectivity to calculate age-specific fishing

mortality rates (eq. T3.2.17). This method does not use fishery effort as a data source.

The estimation models also predicted proportions of fishery and survey catch-at-age.

Model Fitting and Convergence

I fit the models using a Bayesian approach as implemented in AD Model Builder

version 6.0.2 (Otter Research Ltd. 2000). The objective function was the sum of the

likelihood components and priors. Each component was the negative of the log-

likelihood for a single data source or an informative prior related to time-varying

catchability (eq. T3.3.1). My estimation models assumed lognormal distributions of

errors for total catch for the fishery (eq. T332) and survey CPE (eq. T333) and

multinomial distributions for age compositions of the fishery (eq. T3.3.4) and the survey

(eq. T3.3.5; Fournier and Archibald 1982). Effective sample sizes and CVs of the fishery
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and survey catch and age compositions were set to their true values from the generating

models.

For estimation models that used fishery effort as a data source, fishing mortality

was an explicit function of effort and catch was linked to abundance and fishery effort by

estimating the catchability coefficient. I assumed lognormal deviations for catchability in

the white noise (eq. T3.3.6), and random walk (eq. T3.3.7) estimation models. The

standard deviation for the white noise and random walk catchability deviations (on the

logc scale) was assumed known at 0.2, which was approximately equal to the expected

standard deviation in the data-generating models. This component in the objective

function is a prior and penalizes large deviations from mean catchability (for the white

noise model) or large year-to—year deviations (in the random walk model). Note that

priors 8 5 contained the constants for the likelihood function so that the priors were

comparable to compare approximate Bayes factors. I placed uninformative uniform

priors on common parameters among models and these priors were the same in each

model.

The AD Model Builder implementation of Markov Chain Monte Carlo (MCMC)

includes first estimating the maximum likelihood parameter estimates and asymptotic

variance-covariance matrix, then using the estimated parameters as starting values for the

MCMC chain. The Metropolis-Hastings algorithm sampled from a scaled multivariate

normal distribution with variances and covariances proportional to the asymptotic

variance covariance matrix. Iran the MCMC chain for each model for 5,000,000 cycles

and saved values from every 100‘h cycle. To estimate the precision of the DIC estimates,

I estimated the variance of a shorter chain (as a minimum estimate for my cases) using
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the “brute force” method of Zhu and Carlin (2000), which involves running many parallel

MCMC chains, estimating DIC, and then estimating the variance of DIC from the parallel

chain estimates. The MCMC chains were divided into subchains of 500,000 cycles to

estimate the variance of DIC for a chain of that length. I dropped the initial 100,000

cycles of each chain as a burn in period, which reduces the effect of starting values on the

MCMC estimates (Gelman et al. 2004). In some cases, the models did not converge to a

stable mixing distribution for at least 1,000,000 cycles. In these cases, I used a burn in

period of 1,500,000 cycles. I then estimated the variance of DIC estimates from the ten

subsamples (seven in the cases with long burn in periods) for each chain. If the MCMC

chain has converged to a stable mixing distribution, this method should provide the same

result as running ten independent chains.

DIC Calculations

DIC, like other information-theoretic information criteria, trades off a measure of

model fit (estimated deviance) and a measure of model complexity (effective number of

parameters; Spiegelhalter et al. 2002).

DIC=D+pD

The average deviance, D , for model j is an estimate of model adequacy and is estimated

by

5.:J —2loge p(data | 0c)

1

(
3
|
.
—

H
M
O

C

where C is the number of MCMC cycles saved minus the burn in, and log, p(data I 0,)

was the natural logarithm of the likelihood function (Spiegelhalter et a1. 2002). Like with

AIC and BIC, smaller DIC values indicate better models. I estimated the effective

92



number of parameters as the difference between the average deviance and the deviance

evaluated at the maximum likelihood parameter estimates,

pD =D—D(0

ML) '

Normally, the effective number of parameters is estimated as the difference between the

mean deviance and the deviance evaluated at the mean of the parameter vector, which is

estimated by the mean parameters from the MCMC chain (Spiegelhalter et al. 2002).

However, Spiegelhalter et al. (2002) noted that other measures of the central tendency,

such as the mode or median of the parameters could be used. DIC differences calculated

using the maximum likelihood estimates were usually within 0.1 DIC units of DIC

differences calculated with the mean of the parameters from the MCMC chain. I also

attempted a third method of estimating the effective number of parameters, which used V2

of the variance of the deviance chain values to approximate the effective number of

parameters (Gelman et al. 2004),

 1 C D0 13 2

pD_2(C—1)C_Z__1( (c.j)_ 1')

This method performed poorly (large DIC variance) and almost always estimated more

parameters for the model than the actual number of parameters in the models.

Approximate Bayes Factors

The probability that model M,- is the best in a set of candidate models can be

approximated by

lMi)p(M )= pildataIOMLlp. (OML

. IMi) ’

l gpi (data I OML )pi(0ML
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where pildata 10 l is the likelihood evaluated at the maximum likelihood estimates of

ML

the parameters, and pl. (0 | Mi) is the prior for the parameters conditional on model i
ML

(Hilbom and Mangle 1997). Throughout the rest of the paper, this method for estimating

the posterior probability that a model is the best in the set of candidate models is referred

to as approximate Bayes factors. However, the term “approximate Bayes factors” in the

model selection literature usually refers to using BIC differences to approximate Bayes

factors (Kass and Raftery 1995).

Evaluation ofEstimation Model Performance

I determined how often the correct structural model was selected, even though

there was not a truly correct model in the scenario with a linear increase in catchability or

in the uninformative effort scenario. In the white noise case, the white noise estimation

model was correct. In the linear increase case, the random walk model was considered

the correct model because it tended to perform better than other models in this scenario

(chapter 2) and because it is designed to allow for gradual changes. In the case with

uninforrnative effort data, the model that ignored fishery effort data was considered the

correct model.

In stock assessments, estimated quantities in the last year are often most important

for forecasting and management. Therefore, I evaluated estimation model performance

by calculating the relative error (RE) of estimated biomass and average fishing mortality

(for ages 4-8) in the last year.

estimated — true

RE =
 

true
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I evaluated systematic over or under estimation using the mean of the relative error

(MRE). I also calculated the mean square relative error (MSE), which summarizes the

variance and bias of model predictions. If the bias of the estimates is zero, MSE equals

the variance of the estimator.

Results

Most of the MCMC chains appeared to have converged to their stable mixing

distribution within 10,000 cycles. However, in several cases, the MCMC routine

required nearly 1,500,000 cycles as a burn in period. The estimated standard deviation

for DIC from a chain of 500,000 cycles was about 0.3. This indicates that, for a chain

length of 500,000 cycles, DIC differences less than one are probably not important. For

the 5,000,000 cycle chains, effective sample sizes were usually greater than 19,000 (from

an actual sample size of 49,000 saved cycles) and DIC estimates should have lower

standard deviations than from a substantially smaller chain.

Estimates of the effective number of parameters, pp, were generally less than the

actual number of estimated parameters, 52. The effective number of parameters for the

estimation model with random walk catchability was the lowest with a mean of 47.7 and

a range of 47.0—48.4. The estimation model with white noise catchability had the second

fewest effective parameters with a mean of 48.8 (range 47.4-50.0). The estimation model

that freely estimated fishing mortality for each year had the most effective parameters

with a mean of 52.4 (range 51.4-54.1), which was quite close to the true number of

estimated parameters.

DIC usually selected the correct model. However, DIC differences between the

best model and the other models were usually less than seven, except in the
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uninformative fishery effort scenario, indicating that the evidence was not

overpoweringly in favor of the model with the lowest DIC (Figure 3.3). In the white

noise catchability case, DIC selected the white noise model (correct model) eight out of

ten times. In the two times when the white noise estimation model was not selected, the

white noise catchability model and the random walk catchability model were quite close

in terms of DIC scores (<0.7). In the linear increase catchability scenario, the random

walk model was selected in nine out (of ten cases. In the only case where DIC did not

choose the correct model, the white noise estimation model was chosen and the

difference in DIC scores was less than 1.0. In the uninformative effort scenario, the

model that ignored fishery effort was always selected.

Model selection using approximate Bayes factors performed somewhat differently

than DIC model selection and always selected the correct model in the case of white

noise catchability (between 80-99% probability). However, approximate Bayes factors

only selected the correct model six out of ten times for scenarios with a linear increase in

catchability or uninformative fishery effort data. In the scenario where effort data were

uninformative, approximate Bayes factors selected the white noise model twice and

random walk model twice. In the scenario where catchability increased linearly,

approximate Bayes factors did not choose any model strongly; posterior model

probabilities were between 55 and 91% for the best model, and only the white noise

model was selected in cases where the random walk model was not. The posterior model

probabilities for the estimation model that ignored fishery effort were always less than

0.1% in both scenarios with informative effort data.
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In general, using Bayesian model selection helped to choose relatively accurate

models. Models selected using either DIC or approximate Bayes factors had smaller

MSEs than always using any single model (table 3.3, figure 3.4). DIC model selection

slightly outperformed approximate Bayes factors, but the difference was probably not

significant because of the small sample size.

Discussion

In general, DIC and approximate Bayes factor model selection produced better

point estimates of biomass and fishing mortality in the last year on average than relying

on any single model. However, the best DIC or approximate Bayes factor model did not

always produce the best estimates of biomass and fishing mortality rates in the last year.

Indeed, DIC and approximate Bayes factors only selected the model with the lowest

relative errors in fishing mortality or biomass in the last year between 7% (for DIC and

fishing mortality) and 14% (approximate Bayes factors and biomass) of the time. Helu et

al. (2000) also found that incorrect models often produced more accurate estimates of

biomass in the last year than the structurally correct model in their study of AIC and BIC

model selection for SCA models.

DIC model selection seems to perform well in cases where increased model

complexity is warranted, but may not perform as well in determining when less

complexity is warranted. Kizilkaya and Tempelman (2005) found that DIC strongly

selected their model with heteroskedastic residual variances when residual variances were

heteroskedastic, but did not strongly select the simpler model when variances were

homoskedastic in linear mixed models and generalized linear mixed models. This is

similar to my results where DIC fairly strongly selected the model that ignored fishery
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effort data (the most complex model) in cases where fishery effort data were

uninformative, but did not strongly select the models with fewer effective parameters

when fishery effort data were informative. Indeed, Spiegelhalter et al. (2002) and van der

Linde (2005) suggested that DIC does not provide a large enough penalty for model

complexity for models with exponential family likelihoods. This family of distributions

includes the normal and multinomial distributions that I used in the objective functions of

my estimation models. However, increasing the penalty term for DIC would increase

selection of simpler models in cases where a more complex model may be warranted.

Although MCMC methods can be quite time-consuming, calculating DIC should

not be prohibitive in terms of time, given current levels of computer speed. In general,

estimation models took about 1.5-2 hours to run 5,000,000 cycles on a computer with 2.8

gHz processors (Intel Xeon). These times are probably overestimates because I ran these

models longer than was necessary (in most cases) to ensure convergence and to estimate

the variance of DIC estimates for shorter chains. However, models that are structurally

more complex or have more data (i.e., more years or age classes) will require longer run-

times.

In most cases, model averaging provides superior predictive performance than

using only the best model selected by DIC (or some other method) because estimates

from a single model ignore uncertainty in model selection (Hoeting et al. 1999; Bumham

and Anderson 2002; Bumham and Anderson 2004 and references therein). Therefore, I

calculated model average estimates of biomass in the last year with the approximate

Bayesian posterior model probabilities and posterior model probabilities derived from

DIC differences (by adapting the method of Bumham and Anderson (2002) for AIC).
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Both methods of model averaging had slightly larger MREs (about 1%) and slightly

smaller MSEs (0.1-0.3%) than using only the “best” model. Differences in performance

between the best model and the model average were probably slight because the best

models were the same as or quite similar to the data-generating models. However, in real

world applications it is unlikely that the estimation models will be as similar to the data-

generating reality as was the case in this study. Therefore, model average estimates may

provide a larger increase in performance than in this study. Interestingly, using DIC

differences to estimate model probabilities and average model results seemed to perform

reasonably well, although Spiegelhalter et al. (2002) describe this as an area requiring

more research.

Certainly DIC and approximate Bayes factors are not exhaustive tools for model

selection. Factors such as model plausibility, sensitivity, and examination of residual

patterns should also be considered when choosing among models. However, DIC does

show some promise for helping select among stock assessment models even when models

are quite similar.
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Table 3.1. Symbols and descriptions of variables for data-generating and estimation

 

 

models.

Symbol Description Value (if needed in the

data-generating model)

E Average recruitment 1,000,000

ANy,a bundance by age and year

Biomass

By

Zy,a

Fy,a

qyf

U
1
1

Total instantaneous mortality rate by age and

year

Instantaneous fishing mortality rate by age

and year

Instantaneous natural mortality rate 0.25

Fishery age-specific selectivity See figure 3.2

Survey age-specific selectivity See figure 3.2

Fishery effort See figure 3.1

Fishery catchability

Observed fishery effort

Survey catchability 0.0001

Mean fishery catchability 0.05
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CM

[y,a

“y,a.f

“y,a.s

Expected fishery catch-at-age

Expected survey catch-at-age

Observed total fishery catch

Observed total survey catch

Proportion of catch-at-age in fishery

Proportion of catch-at-age in survey

Mean weight at age 0.16, 0.45, 0.82, 1.2, 1.55,

1.86, 2.11, 2.3

Deviations for white noise catchability

Deviations for linear increase catchability

Deviations for random walk catchability

Parameters for linear increase in catchability 0.032, 0.00225

Fishing intensity by year

Standard deviation for loge recruitment 1.0

variation

Standard deviation for loge fishery 0.1

measurement error

Standard deviation for loge of survey 0.2-0.8
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measurement error

Standard deviation for loge catchability

deviations for white noise

Standard deviation for log, catchability

deviations

Standard deviation for log, random walk

catchability deviations

0.2

0.05

0.2
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Table 3.2. Data-generating and estimation model equations.

 

 

Population model equations Application

(T3.2.1) a - 1 Generation

— Z Z + 7

_ a - 1 1, a N O 2

N1, a Re ’ 7 ~ ’ 07

(T3.2.2a) - 2 Both

_ y,a
— e

y + l, a + l y, a

(T3.2.2b) — Zy 7 — Zy 8 Both

Ny+1,8 = y,7e +Ny,8e

(T3.2.3) B = ZN w Both

y y,a a

a

(T324) Z = M + F Both

(T3.2.5) F : q E 3 Both

y,a y y a

Catchability model equations

(T3.2.6) White noise Both

log q =log c7 +6 ;5 ~N(0,0’2)

e y. f e f y y 5

(T3 .2.9) Linear increase Generation

q =a+b(y)+£ :8 ~N(O,0'2)
y. f y y 8

(T3.2.1 1) Random walk Estimation

log q =log q +0) :0) ~N[0,0'2)

6’ y + 1. f e y. f y y w

(T3.2.12) Freely estimatefy (ignorefishery efiort) Estimation
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(T3.2.13)

(T3.2. 14)

(T3215)

(T3216)

F

y,a =fyscuf

Observation model equations

 

F a -z

= y, (l—e y,a)N

y,a Z y,a

y,a

Ty
Cy=e 2Cy,a,r ~N(0,aT)

a

[y,azqssa y,a

I =e I ;v ~N0,cr

y Ey, y ( v)
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Table 3.3. Objective function equations for statistical catch-at-age analysis simulation

 

study.

(T3.3.1) L=Z£i Objective function

i

(T3.3.2) 2 Fishery catch

€1=—2(loge (Cy )—loge (Cy))

20'2 y

(T333) 2 Survey catch-per-effort

l2=—Z(loge (1y )—loge (Iy))

20'2 y

(T3.3.4) (, ) Proportion at age in the fishery

l =—n 10 u

3 f2§“y.a,f ge y,a.f
y catch

(T335) [4 =—n 22“ log (a ) Proportion at age in the survey

s y,a,s e y,a,s

y a catch

(T3.3.6) 2 White noise catchability

e =-nyelog J27mq+—z(5)
5 2 y

0' y
q

T3.3.7) 2 Random walk catchability

( €5=—ny loge J27:0'q+—Z(c’b )

20'2 y y

q

(T3.3.8) ( 1 ] Freely estimateF

I =—n log —

5 y e 20
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Table 3.4. Mean relative error (MRE) and mean square error (MSE) of models selected

using deviance information criterion (DIC), approximate Bayes factors (ABF), only white

noise catchability estimation model (WN), only random walk catchability estimation

model (RW), and only using the estimation model that estimated fishing mortality for

each year independent of effort (FF).

 

 

DIC ABF WN RW FF

Biomass MRE 0.182 0.189 0.279 0.203 0.246

Biomass MSE 0.077 0.087 0.151 0.092 0.159

Fishing Mortality MRE -0.028 -0.037 -0.111 -0.016 0.005

Fishing Mortality MSE 0.046 0.056 0.058 0.066 0.080
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Figure 3.1. Baseline effort series used in data-generating models.
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Figure 3.2. Fishery and survey selectivity patterns used in data-generating models.
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Figure 3.3. Deviance Information Criterion (DIC) differences among models.

Differences from the best model for each data set are shown. Data-generating models are

indicated by WN for white noise catchability, LI for linear increase in catchability, and

UE for the case where observed effort data were uninformative. Estimation model

comparisons are indicated by X vs. Y (legend), where Y is the hypothetical best

estimation model for the scenario. Positive DIC differences indicate that the model Y is

better than model X. Points are randomly jittered to reduce overlap.
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Figure 3.4. Box plots of relative error of estimates of biomass and average fishing

mortality in year 15. The middle line indicates the median, the box indicates the

interquartile range, and the whiskers indicate the 95% quantile range. Estimation

methods are indicated by ABF for approximate Bayes factors, DIC for deviance

information criterion, FF for the estimation model that freely estimated F, RW for the

estimation model with random walk catchability, and WN for the estimation model with

112



APPENDD( A

Appendix A describes the yellow perch assessment models and additional results

for chapter 1.

Description of Yellow Perch Models

The population submodel predicted how yellow perch numbers-at-age and size-at-

age changed over time, while the observation submodel predicted observed quantities

given the predicted dynamics. Symbols used in the population and observation

submodels are in Table A.1, and equations for these submodels are in Table A2. We

used the posterior likelihood to determine the best fit parameters.

Population Submodel

Total recruitment (defined as age-2 numbers) at the start of each year was

estimated as a free parameter, and the sex ratio at recruitment was assumed to be 1:1 (eq.

A.2.1). Numbers-at-ages 3 and 4 for each sex in the first year (1986) were also estimated

as parameters. Numbers at ages 5-9+ in 1986 were calculated based on an assumption

that each of those cohorts had the same abundance at age-4 as was estimated for age-4 in

1986 and suffered an estimated mortality rate that was sex specific (Wisconsin) or the

same for both sexes (Illinois) (eq. A22 and eq. A.2.3). We used this approach because

sample sizes for ages five and above were low and these cohorts were not observed for

many subsequent years. For Illinois we used a common mortality parameter for both

sexes because sexes were aggregated in the Illinois survey data for 1986-1988. These

assumptions about numbers-at-age in the first year have a relatively small effect on

model estimates, because there were few old yellow perch in 1986.
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Abundance-at-age of these cohorts were then tracked over time by applying age-

and sex-specific mortality rates (eq A.2.10). Biomass was simply the product of the

number of fish in a given length bin and their length-specific weight summed over sexes,

ages, and lengths. Spawning stock biomass (SSB) was calculated using only females and

a time-invariant maturity schedule based on length, which we estimated by fitting a

logistic function to maturity-at-length data from Indiana waters of Lake Michigan (Ball

State University, unpublished data) outside the model fitting process.

Total mortality rate for a given age and sex was the sum of the natural mortality

rate and the age-, sex-, and year-specific fishing mortality rates for the two fisheries

(recreational and commercial) (eq. A.2.5). Fishing mortality rates at age for a sex were

calculated as a weighted average of the length specific fishing mortality rates, with

weights equal to the proportion of fish that were a given age, sex, and length (eq. A26).

The age specific rates were calculated from length specific ones. For each

fishery, fishing mortality rates for a given length bin of yellow perch for the commercial

and recreational fisheries was the product of catchability, effort, and selectivity, and the

log of catchability followed a random walk (eq. A27) and therefore was year-specific

for each fishery. We modeled selectivity as constant functions of length, based on the

midpoint for each length bin. Note that the fishing process influences fish in the same

length in the same way, irrespective of their sex or age. We used a double logistic

function to model the dome-shaped selectivity pattern (Quinn and Deriso 1999) for the

commercial gill net fisheries (Kraft and Johnson 1992) and for the Illinois recreational

fishery during 1997-2000 when a slot limit was in effect (eq. A.2.8). For the Illinois and
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Wisconsin recreational fisheries (except for the Illinois fishery during 1997-2000), we

modeled the selectivity pattern with an asymptotic logistic function (eq. A.2.9).

Growth was modeled using a stochastic von Bertalanffy growth model, where the

parameters were allowed to vary over time (Szalai et al. 2003). For 1986, mean length at

age (for the beginning of the year) was calculated assuming these fish had lived under

constant growth conditions with all cohorts starting with mean length-at-age 2 as in 1986,

and experiencing constant Leo and K pre-1986 values (eq. A.2.4). Mean length-at-age 2

was equal for males and females, but changed over time with a random walk (eq. A.2.14).

For years after 1986, mean length-at-ages 3-8 were equal to the mean from the previous

age and year plus the increments from the von Bertalanffy model (eq. A.2.11). The same

model was used to estimate the mean length for the aggregated age-9 and older group, but

this was based on a weighted average of growth expected for age-8 and age-9 fish, with

weights determined by the contribution of the two ages to this group in the next year (eq.

A2. 12). To estimate mean length at age in the fall, fish were grown for 8/10th of the year

(eq. A.2.13). Like length at-age-2, asymptotic mean length and the Brody growth

coefficient also changed over time with with a random walk (eq. A.2.14), which were

modeled separately for males and females. The modeled length composition for a given

age was normally distributed with a mean predicted by the von Bertalanffy equation. The

proportion in each one cm length bin was calculated from the corresponding standard

normal cumulative distribution function ((1) ) (eq. A.2.15). The standard deviation of

each normal distribution was the product of the mean length-at-age and an age and sex-

specific coefficient of variation (CV). We used a hockey stick function to describe how

the CV decreased with increasing age for ages 2 to 5, and then remained constant after
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age 5. This pattern of decreasing variation in length-at-age with increasing age is

common to many teleost fishes (Bowker 1995), and the CVs we used were based on

observed variation of length-at-age (WDNR, unpublished data).

Observation Submodel

Catch-at-length (in numbers) for the commercial and recreational fisheries was

calculated with the Baranov catch equation (eq. A216 and eq A2. 17). Commercial

catch calculations used numbers-at-length calculated from numbers-at-age reassigned to

length categories based on the fall distribution of length-at-age whereas recreational catch

calculations were based on spring length distributions. This is an approximation that is

intended to account for the fact that the two fisheries are prosecuted at different times

during the year (commercial fishery centered in the fall, recreational fishery in the spring

and summer), that fish grow during the year, and that fishery selectivity is length-based.

Total catch in numbers was simply the sum over length bins of catch-at-length.

Commercial yield was calculated by multiplying catch-at-length by weight-at-length

(from fall lengths) and summing over length categories.

Catch per effort (CPE) at-length and sex for the survey were calculated as the

product of catchability, selectivity, and numbers-at-length (eq. A218). Catchability of

the survey was sex-specific for Illinois, but the same for males and females in Wisconsin,

because of differences in survey design between the two surveys. We modeled survey

selectivity using the same logistic function of length used for recreational fishery

selectivity (eq, A.2.9). Total CPE by sex for the survey was the sum over lengths of the

length-specific survey CPEs. CPE at-age and sex for the survey was calculated as the

product of the survey catchability, numbers at age and sex, and the age— and sex-specific
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survey selectivity (given by a weighted sum of length specific selectivity values) (eq.

A.2.19). For each year proportions of the catch for the fisheries and the survey falling

into each length bin and proportions of the survey catch for each age were calculated for

comparison with observed proportions.

Model predictions of mean length-at-age seen in the survey were calculated by

taking the modeled population length distribution at age and adjusting it for the estimated

survey selectivity (eq. A.2.20).

Likelihood Equations

Our objective function was the posterior negative log-likelihood, A = Z I i , with

i

individual negative log-likelihood components and priors (dropping some ignored

constants) given by l i . Our point estimates minimized this function. One set of

components had the general form:

I.
I

1 2
2)];XJ. (A1)

Where Xj is an assumed standard normal variate andj is an index distinguishing the terms

being summed for the i‘h component. These likelihood components were based on an

assumed independent normal (mean length-at-age) or lognormal distribution (fishery total

catch or survey total catch per unit effort) for deviations between observed quantities and

model predictions or an informative normal prior distribution for random walk errors (for

mean length-at-age 2, L00, K, and catchability for the commercial and recreational

fisheries) and for two parameters of the Illinois commercial fishery selectivity function

(Table A3). We used an informative prior for two of the four Illinois commercial fishery
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selectivity parameters because the observed length composition of the Illinois

commercial catch contained relatively few measurements, and we based these priors on

the point estimates and standard errors for of the same parameters from the Wisconsin

model. Small constants were added to observed and predicted values (for the lognormal

distributions) to reduce the influence of very small values (Hampton and Fournier 2001).

An additional set of components took the general form:

ll. =-anZZuT’k loge(uT’k +c) (A2)

k yT

based on our assumption that multinomial distributions led to the observed proportions at

length and age for all data sources for which there were observations. This included a

component for the fishery length compositions, and components for the survey length and

age compositions. The outer sum is over categories of data (k), which were fisheries 1

and 2 (for the fishery length compositions) and sexes (for survey age and length

compositions), and the inner sum was over types (7) of fish within a category and year

(lengths bins or ages). Small constants (c = 0.0001 for length compositions and c =

0.001 for age compositions) were added to likelihood functions to reduce the effect of

small proportions during model fitting (Fournier and Archibald 1982).

For completeness we note that for parameters other than those with the normal

priors described above, we assumed uniformly distributed priors on the scale they were

estimated. These priors did not enter explicitly into the objective function because they

were implemented by placing bounds on the allowed parameter range during estimation.
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Table A. 1. Symbols representing parameters, data, and calculated quantities for

assessment models.

 

 

4f

M}

LG

Ly,2

Parameter Definition

Indicator Variables

a Age-class; 2-9+

y Year; 1986-2001

I Midpoint of each length bin; 8-38 cm

G Sex; male or female

f Fishery; commercial = 1, recreational = 2 or, survey = 3

Estimated Parameters

Ry Recruitments for each year

N Numbers at age in 1986 for ages 3 and 4

1986,a, G

Mortality rate for the final five age classes in the first year

in itG

qf Catchability

Parameters for logistic and double logistic selectivity functions

Asymptotic length

Brody growth coefficient

Mean length-at-age 2

Rate of natural mortality time-, sex-, and age-invariant
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7L0

)nG

y,f

y,a,l,G

Fy.a.l,G.f

py,a,l,G

Ny,a,l,G

Ny,a,l,G

Ly,a.G

l
)

y,a.G

Ly,a.G

Sf

)

y,a,l,G

“y,a,l,G,f

Random walk deviations for mean length-at-age 2

Random walk deviations for L“

130

Random walk deviations for K“G

Random walk deviations for catchability

Calculated Quantities

Total instantaneous mortality rate

Instantaneous rate of fishing mortality

Proportions-at-length for each age

Numbers-at-age, length in the beginning of the year, and sex in year y

Numbers-at-age, length in the fall of the year, and sex in year y

Mean length-at-age in population in beginning of year

Model predicted mean length-at-age measured by survey

Mean length-at-age in population in fall

Selectivity

Survey index of abundance

Model prediction of proportions of catch-at-age, length, and sex
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y.l.f

E
)

N

1

y,a,G

y,a,l,G

“y,a,l,G,f

y.l.f =2

y,l.f=1

Model prediction of catch

Model predicted commercial yield (kg)

Likelihood Weighting Components

Sample size of fish aged for the mean length-at-age likelihood function

and effective sample size for age and length compositions

CV for fishery catches

Standard deviation for mean length-at-age 2 random walk deviations

Standard deviation for L“ 0 random walk deviations

Y.

Standard deviation for K110 random walk deviations

Standard deviation for fishery catchability random walk deviations

Standard deviation for commercial selectivity prior for Illinois

Data

Observed mean length-at-age in the survey

Observed CPE in the survey

Observed proportions at age and length in the fisheries

Harvest (numbers) in the recreational fishery

Yield (kg) in the commercial fishery
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Fishery effort

Weight-at-length

Number of fish aged by age year and sex

Mean parameter for the prior of commercial selectivity function for

Illinois

Instantaneous rate of natural mortality (age- and sex-independent)
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Table A2. Equations for population and observation submodels.

Population submodel

Recruitment, initial abundances at age, initial mean length at age

R

- (a — 4)ZinitG

Ny=1986 a G =Ny=l986 a=4 Ge ;a>4, Wisconsin (A.2.2)

—(a—4)Zinit ' ' 2 3
Ny=1986,a,G =Ny=1986,a=4,Ge ,a>4,Illrnors (A. . )

 
 

   

 

 

 

Ly: 1986,a+1,G = Ly = 1986,a,G +

— A.2.4

L _L 1_e Ky=prel986,G ( )

°° y=l986,a,G

y=pre1986,G

Mortalityrates

2

2110:“+ Z Fy.a.G.f
(A25)

f=l

Fy’a’G’f :§pyaa.l,GFY.l,f
§py,a.l,G=l

(AH26)

Eyf

F .___ E = ’ A.2.7

y.l.f qxf y.fsl.f qy+1,f qy,fe ( >

f
V

l

51f = 1 1- 1 (A28)

’ - A (0—1 ] - 1 (l)—,t ]
4.

\l+e [l’f 3’f A 1+e 2,f f)

1

51f =
(A.2.9)

’ — ,1 (l)-/l ]

1+e 1’f 2’f
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Population and length-at-age dynamics

 

 

 

    

_ y,a,G
Ny+1,a+l,G _Ny,a,Ge (A.2.10)

L 2L +(L —L )(1—e—Ky’G) (A211)
y+l,a+l,G y,a,G coy G y,a,G ° '

—K

_ _ #3

Ny,a=8,G Ly,a=8,G+(LooyG Ly,a=8,G)1 e

Ly+1,a=9,G = N +N +

y,a=8,G y,a=9,G

—K

_ _ x0

Ny,a=9,G Ly,a=9,G+[Looy G Ly,a=9,G]l e

(A.2.12)

Ny,a=8,G+Ny,a=9,G

—O.8K

- G

= —L l—e y,Lyfl,G Ly,a,G+(L°°yG y,a,Gx ) (A.2.l3)

6 7

L +12: 28 y L00 :1” 8 LG
y ’ y’ y+l,G y,G

a7

= ”9 A.2.14
Ky+1,G y,Ge ( )

r \ r \

(l+1)-L l—L

p alG= y’a’G -<I> ——y’“’G (A.2.15)
y, 9 9 0,1 0.1

K a,G } K (1,0 )
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Observation submodel

F -Z

A )5],le yl '
C =-————— 1— , N

y.l,f=1 Zyl ( e )3 y,l,G

F —Z

,. y,l.f=2 ylC =___1_ ’ N
fo=2 Zyl ( e )3 LLG

A

5,1,0 = qG,f = 3‘z,f = 3Ny,l,G

A

[y,a,G = qG,f =3Ny,a,G§‘1,f = 3py,a,l,G

A

~
Fm =3Py,a,z,G(’)
 

y,a,G =

§3Lf=3
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(A.2.17)

(A.2.18)

(A.2.19)

(A.2.20)



Table A3. Specification of terms for normal and lognormal negative log-likelihood

components (see equation Al).

 

Standard normal variate Squared variates summed over

these indices

 

~ _ .2. y, a, G

(Ly,a,G Ly,a,G)/(ay,a,G/ my,a,G)

(logeWy,f=l-10gewy,f=1)/Uf=1 y

(loge(Cy’f=2)-loge(Cy,f=2))/0'f=2 y

_ " ,G
(loge(ly,G) loge(1y,G))/df=3 y

6y/0'6 Y

,67y,G/Uy,G and my,Glow,G y

e /0' y,f
, ey f f

j.j<3
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Table A4. Results of sensitivity analyses of changes of weights of data sources in the

objective function for yellow perch catch-at-age models for Illinois and Wisconsin waters

of southwestern Lake Michigan. Differences from baseline estimates are displayed as

percentages. Baseline model estimates of abundance (N; 10005), biomass (B; 1000 kg),

mean fishing mortality for females age-4 and older (R4 + females), and mean fishing

mortality for males age-4 and older ( f4 + males) for 2002 are displayed for comparison.

In two cases the model’s parameter estimates failed to converge to values that minimized

the objective function and these are denoted by NC.

 

Illinois Baseline Adjustment N B F

4 + 4 +

”1
'1

value factors

females males

 

 

Baseline 4,790 81 8 0.058 0.025

Commercial yield 0.0025 5 -3.1 -3.1 3.3 3.2

Commercial yield 0.0025 0.2 0.7 0.7 -0.8 07

Commercial catchability 0.06 5 -16.1 -16.6 12.8 5.8

Commercial catchability 0.06 0.2 41.7 43.1 -30.5 -28.7

Commercial length 32 5 -10.2 -10.9 12.8 5.8

Commercial length 32 0.2 -2.0 -0.7 0.4 5.0

Recreational harvest 0.01 5 2.3 2.0 -5.4 -6.7

Recreational harvest 0.01 0.2 -0.7 -0.6 3.4 4.1

Recreational catchability 0.06 5 3.5 2.9 -0.5 -2.7

Recreational catchability 0.06 0.2 -7.6 -6.2 3.4 9.5

Recreational length 367 5 -24.1 -24.4 34. l 7 .6

Recreational length 367 0.2 17.6 1 1.5 -15.1 -12.1
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Survey CPE, females

Survey CPE, females

Survey female ages

Survey female ages

Survey female lengths

Survey female lengths

Survey CPE, males

Survey CPE, males

Survey male ages

Survey male ages

Survey male lengths

Survey male lengths

Female Loo

Female LC>0

Female K

Female K

Male Loo

Male Lco

Male K

Male K

Length-at-age 2

Length-at-age 2

M

M

0.19

0.19

27

27

61

61

0.22

0.22

53

53

58

58

0.0006

0.0006

0.0006

0.0006

0.0006

0.0006

0.0006

0.0006

0.01

0.01

0.37

0.37

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

1.2

0.8

30.7

-32.6

17.2

-10.1

25.1

-21.8

4.3

-4.9

17.0

3.2

5.3

-1.4

-l9.1

0.0

-O.2

-3.2

6.1

12.8

29.3

-31.0

11.0

17.0

-l7.1

4.2

2.7

-13.9

2.1

4.5

-l.2

—4.7

-15.2

5.7

-11.5

16.3

-22.8

45.8

7.2

-20.4

23.2

4.0

5.4

7.3

6.2

16.5

-3.8

2.7

-4.4

1.8

5.4

19.6

1.0

17.2

-15.8

-25.8

53.0

~30.7

20.5

-248

40.1

-4.5

6.4

21.5

14.0

15.3

30.5

-1.9

-6.4

0.9

37.8

-l.8

0.5

5.0
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Wisconsin

 

 

Baseline 1,690 356 0.075 0.060

Commercial yield 0.0125 5 -3.7 -3.8 4.2 3.8

Commercial yield 0.0125 0.2 3.9 4.0 -4.0 -3.8

Commercial catchability 0.16 5 25.8 25.2 -20.3 -21.2

Commercial catchability 0. 16 0.2 -22.8 -22.1 28 .2 31 .4

Commercial length 43 5 -7.9 -7.7 8.3 9.0

Commercial length 43 0.2 5.8 2.4 -0.8 -8.3

Recreational harvest 0.01 5 4.0 3.7 6.0 5.5

Recreational harvest 0.01 0.2 -2.0 -1.9 0.6 0.7

Recreational catchability 0.06 5 6.6 6.3 -7.8 —8.2

Recreational catchability 0.06 0.2 -16.1 -15.4 27.1 28.7

Recreational length 141 S -1.4 3.2 -3.3 5.7

Recreational length 141 0.2 -7.7 -8.5 9.4 7.8

Survey CPE, females 1.06 5 4.0 3.8 -3.8 39

Survey CPE, females 1.06 0.2 -4.2 -3.8 4.0 4.6

Survey female ages 31 5 13.6 10.7 -10.0 -7.9

Survey female ages 31 0.2 -17.9 -17.2 21.8 20.1

Survey female lengths 45 5 NC NC NC NC

Survey female lengths 45 0.2 0.2 —0.1 0.6 -0.1

Survey CPE, males 0.92 5 25.0 24.6 -20.1 -20.6

Survey CPE, males 0.92 0.2 -41.3 -40.9 72.0 74.]

Survey male ages 50 5 NC NC NC NC

Survey male ages 50 0.2 -33.3 -33.3 50.6 52.5
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Survey male lengths

Survey male lengths

Female Loo

Female L<>0

Female K

Female K

Male Loo

Male Loo

Male K

Male K

Length-at-age 2

Length-at-age 2

M

M

63

63

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.01

0.01

0.37

0.37

0.2

0.2

0.2

0.2

0.2

0.2

1.2

0.8

20.0

6.6

-1.2

-0.4

-l.3

13.7

-18.7

-34.3

49.4

14.4

8.9

-1.0

-1.0

0.3

13.0

~18.3

-2.0

1.8

0.3

-35.0

50.8

-11.9

0.2

1.5

0.9

0.6

-11.8

23.2

2.0

-1.7

-1.2

7.4

59.0

-36.1

-19.6

1.5

0.1

1.7

0.2

-13.1

24.8

2.0

-1.9

0.0

6.0
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-35.5
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Figure A. 1. Estimated catchability coefficients for Wisconsin and Illinois recreational

and commercial fisheries in southwestern Lake Michigan during 1986-2002.
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APPENDIX B

Appendix B describes the parameterization of estimation models used in chapter 3

to reduce correlations among parameters. The MCMC algorithm I used was very

sensitive to parameter correlations greater than about 0.8. Under these conditions, the

MCMC algorithm mixed very poorly and produced very “sticky” MCMC chains (i.e.,

chains with high autocorrelation). Therefore, I reparameterized aspects of the models to

reduce these correlations. All parameters described below were estimated on the log

scale. Two groups of parameters were highly correlated within each group: parameters

that determined overall scale of population size, and selectivity parameters for the fishery

and survey. Parameters that determine the overall scale of the population size included,

in this case, mean recruitment, mean abundance at age in year 1, fishery catchability (or

mean F in the model that ignored fishery effort data), and survey catchability. In order to

minimize correlation among these parameters, I parameterized the model by estimating

the log, of mean recruitment and a deviation from this for each of these other “scale-

setting” parameters. The other parameters that had high correlations were the selectivity

at age for the fishery and the survey. To reduce these correlations, the models were

parameterized to estimate deviations from a mean loge selectivity that was forced to equal

zero. This constraint serves to make the selectivity parameters identifiable and not

confounded with the associated catchability (for fishery or survey), in the same way that

the more usual approach of setting selectivity to 1.0 for a fully selected age (e.g.,

Fournier and Archibald 1982) does.
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