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ABSTRACT
IMPROVING STATISTICAL CATCH-AT-AGE STOCK ASSESSMENTS
By
Michael J. Wilberg

My dissertation addresses three objectives: 1) to estimate fishing mortality rates
and abundance of yellow perch in southwestern Lake Michigan during 1986-2002 to
determine the contribution of fishing to the collapse of yellow perch in southwestern
Lake Michigan, 2) to determine robust methods of dealing with time-varying fishery
catchability within a statistical catch-at-age analysis (SCA) framework, and 3) to
determine whether using Bayesian model selection, specifically Deviance Information
Criterion (DIC) and an approximation of Bayes factors, results in using accurate models
for prediction of important fisheries management quantities.

In chapter 1, I conducted an age-, size-, and sex-structured stock assessment of
yellow perch to estimate population size and examine historical trends in fishing
mortality in Illinois and Wisconsin waters of southwestern Lake Michigan. Model
estimates indicated that yellow perch abundance in 2002 was less than 10% of 1986
abundance in Wisconsin and about 20% in Illinois. Annual mortality rates for females
age 4 and older averaged 69% during 1986-1996 in Wisconsin and 60% in Illinois during
1986-1997, which are quite high for a species like yellow perch that can live longer than
10 years. Estimated fishing mortality rates on adult females during 1986-1996 exceeded
widely used reference points, suggesting that overfishing may have occurred. Ibelieve
unsustainably high fishing mortality rates were a substantial contributing cause of the

rapid decline of mature females in the mid-1990s.



The relationship between fishing mortality and fishery effort (catchability) may
change over time through either density dependent or density independent processes. I
used Monte Carlo simulations in chapter 2 to evaluate how different methods of
estimating fishery catchability within an SCA model performed when models were
confronted with different data generating scenarios. I evaluated performance of the
estimation models by their accuracy and precision in determining quantities of interest
such as biomass in the last year. In many cases, including fishery effort data in the
estimation model and allowing catchability to follow a random walk performed as well or
better than other methods. Exceptions were cases where fishing mortality was low and
catchability trended over time. The estimation model that ignored fishery effort data
performed well in cases with a good survey, but performance degraded as survey
precision decreased. White noise and density dependent estimation models performed
poorly in situations where catchability trended over time. No estimation model was best
for all underlying models of catchability, hence I recommend fitting multiple SCA
models with alternative assumptions.

Structural flaws in SCA models may cause considerable bias in model estimates
of mortality rates, abundance, and recruitment. I used simulations to evaluate whether
using Deviance Information Criterion (DIC) or approximate Bayes factors to select the
best SCA model provided more accurate estimates of quantities important for
management than using a single model in all cases. Using the model selected by DIC or
approximate Bayes factors resulted in estimates with lower mean square errors than using

any single model.
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INTRODUCTION

Fishery managers need realistic predictions of future population dynamics of
individual fish stocks and predictions of how these populations will respond to
management actions. Most major fisheries are managed by a process where scientists
estimate population size and other parameters of a fish population (and uncertainty of
these estimates) and provide this information to fishery managers who then make
decisions regarding which fishery policies to implement (e.g., catch quotas, bag limits,
season or area closures). The process of estimating these quantities is called stock
assessment.

Relatively recent advances in fisheries science have allowed researchers to
estimate total abundance from fishery harvest and age or length composition data, and
other diverse data sources, with a method known as statistical catch-at-age analysis
(SCA; Fournier and Archibald 1982; Deriso et al. 1985; Megrey 1989; Methot 1990).
This approach is preferable, in many cases, to other stock assessment methods because it
can incorporate many diverse data sources and allows for a rigorous statistical approach
(i.e., promotes explicit modeling of measurement and process error). Hence, SCA can
allow estimation of uncertainty associated with parameter estimates and other model
quantities. SCA methods are being applied worldwide for many fisheries and
predominates applications to major marine fisheries in the northwestern U.S., New
Zealand, Australia, and South Africa (Radomski et al. in press).

The basic idea behind SCA is that one can infer the effect of fishing on a

population by estimating how absolute removals (e.g., fishery harvest or yield) affect



relative abundance. A model is created that describes the population and the process of
removals, and this model is statistically fit to data from a fishery. Usually, one of the key
assumptions of these models, called the separability assumption, is that fishing mortality
can be described by an overall year effect (how a certain amount of fishing effort affects
a population) and an age effect (the relative vulnerability of different aged fish to a
fishery). This basic approach has also been extended to species for which there is no
directed fishery (Szalai 2003).

In southern Lake Michigan, yellow perch abundance has declined substantially
since the mid-1980s (Marsden and Robillard 2004). As the abundance of yellow perch
declined during the mid to late 1990s, commercial fisheries in Indiana, Illinois, and
southern Wisconsin were restricted to smaller quotas, and were eventually closed during
1996-1997 (Francis et al. 1996). Stricter regulations were also imposed on the
recreational fishery with reductions in daily bag limits implemented in all states during
1996-1998, the incorporation of a slot size limit (i.e., only fish between 8 and 10 in could
be kept) in Illinois during 1997-2000, and seasonal closures of the fishery (Marsden and
Robillard 2004). Reproductive failure has been implicated as the primary cause of the
population collapse, but the role of fishing in the collapse has not previously been
rigorously investigated. My research investigates the role of fishing in the decline of
yellow perch in southwestern Lake Michigan by using SCA models.

A frequent (but somewhat outdated) criticism of SCAs is that they do not allow
for the flexibility to accurately model time-varying fishing mortality at age (NRC 1998).
Specifically, the relationship between fishery effort and fishing mortality or the age-based

vulnerability to the fishery may change over time (Butterworth et al. 2002; Radomski et



al. in press). Many methods have been developed to account for these changes over time
(e.g., Fournier and Archibald 1982; Fournier 1983; Methot 1990; Hampton and Fournier
2001; Butterworth et al. 2003), but there is not consensus on which methods are best
when faced with different underlying mechanisms for change. My research also aims to
evaluate performance of several SCA methods under many situations and to develop
guidelines to help researchers decide among several SCA model structures.

My dissertation addresses three objectives: 1) to estimate fishing mortality rates
and abundance of yellow perch in southwestern Lake Michigan during 1986-2002 to
determine the contribution of fishing to the collapse of yellow perch in southwestern
Lake Michigan, 2) to determine robust methods of modeling time-varying catchability
within an SCA framework, and 3) to determine whether using Bayesian model selection,
specifically Deviance Information Criterion (DIC) and an approximation of Bayes
factors, results in choosing models with accurate estimates of fishing mortality rates and
abundance. These objectives arose out of questions that formed during my research
program, and each chapter of my dissertation addresses an objective. Chapter 1
developed from a management need to evaluate the importance of fishing in the
population declines of yellow perch in southern Lake Michigan. In working on chapter 1,
I found that many of the model parameters were likely time-varying and wanted to
determine whether the approaches I used (or alternatives) were robust methods for
modeling these processes. This led to the evaluation of several methods for incorporating
time-varying catchability into SCA models detailed in chapter 2. Based on the results of
chapter 2 (differential performance of SCA models under different data-generating

scenarios), the question arose as to whether statistical model selection techniques could



be used to select “‘good” (i.e., accurate) models when one does not know the true
underlying pattern or mechanism of change.
Objective 1

In chapter 1, I detail my assessment model and describe results from the modeling
efforts. Ideveloped a length-, age-, and sex-based SCA model to estimate fishing
mortality rates and abundance, to determine if fishing mortality rates exceeded the
maximum that could be supported, and to integrate diverse sources of data to get the best
estimates of recruitment and population size. My model allowed fishing mortality rates
at age and sex to change over time 1) in response to changes in fishery effort, 2) by
allowing fishery catchability to change according to random walk models, and 3) by
modeling fishery selectivity as a function of length and allowing growth to change over
time to match observed changes in size at age and sex in southern Lake Michigan.

Model estimates of catchability of the recreational fishery changed approximately
five-fold during 1986-2002, and commercial fishery catchability changed approximately
four- and eight-fold in Illinois and Wisconsin respectively. However, fishing mortality
rates changed approximately 15-fold for females and eight-fold for males during 1986-
2002, indicating that changes in effort and catchability were both important to changes in
fishing mortality. This leads to questions of whether modeling fishery catchability as a
random walk, as in this application, is the best approach and whether fishery effort data
should be used at all (because of the extreme changes in fishery catchability).

Objective 2
Many SCAs of fish stocks assume that fishing mortality is directly proportional to

fishing effort (i.e., constant catchability). However, fishery catchability has often



changed in response to changes in population abundance (e.g., Peterman and Steer 1981),
environmental conditions (e.g., Ziegler et al. 2003), or changes in fishing gear or
fisherman experience (e.g., Hilborn and Walters 1992 pp. 126, 130). Likewise,
catchability in yellow perch fisheries in southwestern Lake Michigan has changed
substantially over time, perhaps due to a combination of the factors listed above.
Therefore, my second chapter describes an evaluation of several methods of modeling
time-varying catchability within SCA models. Iused Monte Carlo simulations to
compare how four different methods of estimating fishery catchability within an SCA
model performed when models were confronted with five different data generating
scenarios.

In many cases, including fishery effort data in the estimation model and allowing
catchability to follow a random walk performed better than ignoring fishery effort data.
Exceptions were cases where fishing mortality was low and catchability trended over
time. The estimation model that ignored fishery effort data performed well in cases with
a good survey, but performance degraded as survey precision decreased. White noise and
density dependent estimation models performed poorly in situations where catchability
trended over time. No estimation model was best for all underlying models of
catchability.

Objective 3

Structural flaws in SCA models may cause considerable bias in model estimates
of mortality rates, abundance, and recruitment (McAllister and Kirchner 2002). Often
researchers will make ad hoc decisions about model structure that may cause substantial

biases in their ensuing model estimates (Burnham and Anderson 2002; Gavaris and



Ianelli 2002). Given that a wide variety of models can potentially describe dynamics of a
given stock, methods to decide among several SCA models are needed. Helu et al.
(2000) evaluated performance of Akaike’s Information Criterion (AIC; Akaike 1973) and
Schwartz’s Bayesian Information Criterion (BIC; Schwartz 1978) in SCA models and
found that AIC and BIC both performed well by selecting the candidate model that was
the same as the data-generating model in most of their scenarios. Unfortunately,
although AIC or BIC may perform well in some cases, their implementation is
problematic when models differ in their random effects or hierarchical structures because
the number of parameters in these models is not easy to determine (Burnham and
Anderson 2002). Therefore, to be able to compare structurally complex SCA models
requires alternative model selection approaches that can account for random effects and
priors on parameters. DIC and Bayes factors are generally considered practical methods
to choose the best model from a set of candidate models and do not require the user to
specify the number of model parameters. However, performance of model selection
using DIC and Bayes factors has not been evaluated for SCA models.

My third chapter evaluates whether using DIC or an approximation of Bayes
factors results in choosing accurate models from the set of candidate models.
Specifically, I was interested in whether Bayesian model selection could determine an
appropriate model structure for time varying catchability because catchability is one of
the most important parameters in SCA models (scales abundance relative to catch),
catchability varied widely over time in yellow perch fisheries in southwestern Lake
Michigan, and the accuracy of different structural forms of SCA models differs

depending on the underlying true changes in catchability, quality of data, and average



fishing mortality rate. To achieve these objectives, I designed a simulation study and
challenged the model selection criteria with three estimation models, which differed in
how catchability was allowed to vary over time, and three scenarios of data accuracy and
time-varying catchability. I evaluated whether using DIC and approximate Bayes factors
to select among SCA model variants provided more accurate estimates of quantities used

for management than an approach of using a single model structure in all cases.
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CHAPTER 1
YELLOW PERCH DYNAMICS IN SOUTHWESTERN LAKE MICHIGAN DURING

1986-2002

Introduction

Yellow perch Perca flavescens is an ecologically and economically important
species in Lake Michigan (Wells and McLain 1972). Yellow perch are native to Lake
Michigan, play an important role in near-shore energy cycling and transfer (Evans 1986),
and have provided a fishery on Lake Michigan since the late 1800s (Wells and McLain
1972; Wells 1977). Yellow perch is the only native species in Lake Michigan that has
supported a commercial fishery continuously during the last century (Baldwin et al.
1979), although the fishery has only continued in Green Bay since 1998. During the
1980s and 1990s, the recreational fishery harvested more yellow perch than any other
species in Lake Michigan (Bence and Smith 1999).

In southern Lake Michigan, yellow perch abundance underwent periodic
fluctuations during 1934-1964, and declined greatly during the 1960s (Francis et al.
1996). The decline in yellow perch abundance in the 1960s coincided with a large
increase in alewife Alosa pseudoharengus abundance, and therefore alewife interference
with yellow perch reproduction (either through competition or predation) was considered
the primary cause of the decline (Wells 1977). However, exploitation was also
considered a contributing factor to the overall decline and the primary cause of the
decline of adults (Wells 1977). Prior to 1969, all the states bordering Lake Michigan

(Indiana, Illinois, Michigan, and Wisconsin) had commercial fisheries for yellow perch
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(Baldwin et al. 1979). In 1969, the state of Michigan was the first to close their
commercial fishery (Wells 1977). During the 1970s, yellow perch populations in
southern Lake Michigan began to recover (Wells and Jorgenson 1983), and abundance
was high during the 1980s with strong year-classes in 1980 and 1983-1988 (Jude and
Tesar 1985; Makauskas and Clapp 2000). Abundance declined to low levels during the
1990s with a series of weak year-classes during 1989-1997 and 1999-2000. As yellow
perch abundance declined, the sex ratio became skewed toward males, which may have
been caused by intense fishing mortality targeted on large females (Madenjian et al.
2002). The selective removal of large females may have led to further declines in yellow
perch recruitment. As the abundance of yellow perch declined in southern Lake
Michigan during the mid to late 1990s, commercial fisheries in Indiana, llinois, and
southern Wisconsin were restricted to smaller quotas (Francis et al. 1996), and were
eventually closed during 1996-1997; these fisheries remain closed. Stricter regulations
were also imposed on the recreational fishery with reductions in daily bag limits
implemented in all states during 1996-1998, the incorporation of a slot size limit in
Ilinois during 1997-2000, and seasonal closures of the fishery (Francis et al. 1996).
Reproductive failure has been implicated as the primary cause of the population collapse
(Francis et al. 1996; Heyer et al. 2001; Marsden and Robillard 2004), but the role of
fishing in the collapse has not been rigorously investigated.

Our objectives were to estimate fishing mortality rates and abundance of yellow
perch in Wisconsin and Illinois waters of southwestern Lake Michigan during 1986-2002
to determine the contribution of fishing to the collapse of yellow perch in southern Lake

Michigan. We also wanted to determine if fishing mortality rates exceeded the maximum
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that could be supported, and to integrate diverse sources of data to get the best estimates
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