

This is to certify that the thesis entitled

DISTRIBUTION OF METHADONE AND EDDP IN POSTMORTEM TOXICOLOGY CASES

presented by

1

1

ł

Jessica Amanda Jennings

has been accepted towards fulfillment of the requirements for the

M.S.	degree in	Forensic Science
	N.X I.	
	iviajor Proje	ssor's Signature
	' 'il	
		240)

Date

MSU is an Affirmative Action Equal Opportunity Institution

LIBRARIES MICHIGAN STATE UNIVERSITY EAST LANSING, MICH 48824-1048 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

	DATE DUE	DATE DUE	DATE DUE
I			
			2/05 c:/CIRC/DateDue.indd-p.15

DISTRIBUTION OF METHADONE AND EDDP IN POSTMORTEM TOXICOLOGY CASES

By

Jessica Amanda Jennings

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN FORENSIC SCIENCE

School of Criminal Justice

ABSTRACT

DISTRIBUTION OF METHADONE AND EDDP IN POSTMORTEM TOXICOLOGY CASES

By

Jessica Amanda Jennings

Methadone, a legal synthetic opioid, has been used for the treatment of heroin and morphine addiction for over 40 years now in addition to being used as an analgesic. This drug is less addictive than its opioid counterparts, but it is still abused. Consequently, methadone accounts for a large portion of drug deaths each year. At the State of Delaware Office of the Chief Medical Examiner, 100 methadone-related deaths from September 6, 2001 through March 1, 2005 were analyzed to determine the distribution of methadone and its main metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in these cases. The cases were divided into six groups based on their causes and manners of deaths. Methadone toxicity is difficult to interpret due to overlapping concentrations in therapeutic and lethal concentrations. Several factors contribute to this overlap including tolerance and individual variability in metabolism. Postmortem redistribution also complicates interpretation. The main specimens that were analyzed in this study included vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents, and liver. Average concentrations of methadone and EDDP were determined for each specimen in each group. The group in which death was due to methadone toxicity alone had the highest concentration of methadone for all specimen types with the exception of liver. In addition, ratios of parent drug to metabolite and ratios of vitreous, brain, and liver to blood were calculated. These ratios provided valuable information in some instances, but methadone deaths still remain a challenging category of deaths.

This thesis is dedicated to my Mom and Dad with love and gratitude.

ACKNOWLEDGEMENTS

I would like to first thank Dr. Rebecca Jufer Phipps for all of her guidance and generosity throughout this research project. She is the one who proposed the project and also the one who served as my primary advisor. Even though she no longer supervises or works with me, she continued to help me, which I greatly appreciate. Dr. Jufer has provided a wealth of knowledge and assistance over the past year. She has taught me basically everything I know about forensic toxicology. Additionally, I would like to acknowledge Dr. Jay Siegel who also served as an advisor and committee member. Dr. Siegel is one of the main reasons I decided to go to Michigan State—due to his outstanding reputation in forensic science. He has been an inspirational person and role model ever since I met him. Also serving on my committee is Dr. Sheila Maxwell. I would like to thank her for her time and concern as well.

I owe a huge thank-you to the staff of the State of Delaware Office of the Chief Medical Examiner for allowing me to partake in this project using their instruments and supplies. I would like to especially thank John Marino and Rick Pretzler for their special efforts on my behalf. Thank you also to my family and friends for all of their love and support. My parents and sister have always encouraged me and believed in me. I cannot express my gratitude enough to my parents—for both their emotional and financial support. I could not have accomplished this goal without them. I owe a warm special thank-you to my Mom for her countless hours of proofreading. Finally, I would like to thank the love of my life—my fiancé Jeffrey. He and our kitten Gracie have kept me smiling throughout this entire endeavor.

iv

TABLE OF CONTENTS

LIST OF TABLES v	vii
LIST OF FIGURES i	ix
KEY TO SYMBOLS AND ABBREVIATIONS	xi
INTRODUCTION. Aims of this Project. History and Usage of Methadone. Metabolism and Excretion. Drug Interactions. Pharmacodynamics. Postmortem Redistribution. 1 Toxicological Analysis.	1 1 2 5 9 9 1 3
EXPERIMENTAL. 1 Specimens. 1 Chemicals and Materials. 1 Extraction. 1 Instrumentation. 2 Chromatography and Mass Spectrometry. 2 Quantitation and Acceptability. 2	16 19 19 20 21
RESULTS AND DISCUSSION.2Methadone and EDDP Concentrations.3Group 1A.3Group 1B.34Group 2.34Group 3.36Group 4.4Group 5.4Additional Specimens.44Summary.44Ratios of Methadone to EDDP and Other Matrices to Blood.52Group 1A.52Group 1B.52Group 1A.52Group 1A.52Group 1A.52Group 3.56Group 4.56Group 4.56Group 5.66Additional Specimens.66Additional Specimens.66	91146611136233666600
Additional Specimens	iU 53

TABLE OF CONTENTS (cont'd).

Central-to-Peripheral Ratios	68
CONCLUSIONS AND FUTURE WORK	70
APPENDIX	74
REFERENCES	86

LIST OF TABLES

Table 1. Table showing all of the specimens that were analyzed for each case
Table 2. Concentrations of vitreous humor, peripheral blood (femoral), heart blood,brain, gastric contents (total amount), and liver for each case in Group 1A. Averages,standard deviations, number of positive cases (n), and ranges are also included
Table 3. Concentrations of vitreous humor, peripheral blood (femoral), heart blood,brain, gastric contents (total amount), and liver for each case in Group 1B. Averages,standard deviations, number of positive cases (n), and ranges are also included
Table 4. Concentrations of vitreous humor, peripheral blood (femoral), heart blood,brain, gastric contents (total amount), and liver for each case in Group 2. Averages,standard deviations, number of positive cases (n), and ranges are also included
Table 5. Concentrations of vitreous humor, peripheral blood (femoral), heart blood,brain, gastric contents (total amount), and liver for each case in Group 3. Averages,standard deviations, number of positive cases (n), and ranges are also included
Table 6. Concentrations of vitreous humor, peripheral blood (femoral), heart blood,brain, gastric contents (total amount), and liver for each case in Group 4. Averages,standard deviations, number of positive cases (n), and ranges are also included
Table 7. Concentrations of vitreous humor, peripheral blood (femoral), heart blood,brain, gastric contents (total amount), and liver for each case in Group 5. Averages,standard deviations, number of positive cases (n), and ranges are also included
Table 8. Concentrations of additional specimens for each case in all six groups
Table 9. Table summarizing the averages, standard deviations, number of positive cases(n), and ranges for listed specimens in each group
Table 10. Ratios for cases in Group 1A. Averages, standard deviations, number of cases(n), and ranges are also included
Table 11. Ratios for cases in Group 1B. Averages, standard deviations, number of cases(n), and ranges are also included
Table 12. Ratios for cases in Group 2. Averages, standard deviations, number of cases(n), and ranges are also included
Table 13. Ratios for cases in Group 3. Averages, standard deviations, number of cases (n), and ranges are also included

LIST OF TABLES (cont'd).

Table 14. Ratios for cases in Group 4. Averages, standard deviations, number of cases(n), and ranges are also included
Table 15. Ratios for cases in Group 5. Averages, standard deviations, number of cases(n), and ranges are also included
Table 16. Ratios for additional specimens. 62
Table 17. Table summarizing the averages, standard deviations, number of cases (n),and ranges for listed ratios in each group
Table 18. Ratios of methadone in heart blood to methadone in peripheral blood(femoral) for each case in all groups
Table A1. Information for all 100 cases, including case number, age, sex, race, briefhistory, cause of death, manner of death, group, and other quantitative results

LIST OF FIGURES

Figure 1. Chemical structures of methadone and its metabolites—EDDP and EMDP 5
Figure 2. Total ion chromatogram of EDDP and methadone
Figure 3. Ion chromatogram (top) and SIM mass spectrum (bottom) of d ₃ -EDDP 23
Figure 4. Ion chromatogram (top) and SIM mass spectrum (bottom) of EDDP 24
Figure 5. Ion chromatogram (top) and SIM mass spectrum (bottom) of d ₃ -methadone. 25
Figure 6. Ion chromatogram (top) and SIM mass spectrum (bottom) of methadone 26
Figure 7. Ion chromatogram of ethyl acetate, which was used as a solvent blank 27
Figure 8. Bar graph showing the average concentrations in ng/mL of EDDP and methadone in vitreous humor for the six groups
Figure 9. Bar graph showing the average concentrations in ng/mL of EDDP and methadone in peripheral blood (femoral) for the six groups
Figure 10. Bar graph showing the average concentrations in ng/mL of EDDP and methadone in heart blood for the six groups
Figure 11. Bar graph showing the average concentrations in ng/g of EDDP and methadone in brain for the six groups
Figure 12. Bar graph showing the average totals in mg of EDDP and methadone in gastric contents for the six groups
Figure 13. Bar graph showing the average concentrations in ng/g of EDDP and methadone in liver for the six groups
Figure 14. Bar graph showing the average ratios of methadone to EDDP in peripheral blood (femoral) for the six groups
Figure 15. Bar graph showing the average ratios of methadone to EDDP in heart blood for the six groups
Figure 16. Bar graph showing the average ratios of methadone to EDDP in liver for the six groups

LIST OF FIGURES (cont'd).

Figure 17. Bar graph showing the average ratios of methadone in vitreous humor to methadone in peripheral blood (femoral) for the six groups
Figure 18. Bar graph showing the average ratios of methadone in brain to methadone in peripheral blood (femoral) for the six groups
Figure 19. Bar graph showing the average ratios of methadone in liver to methadone in peripheral blood (femoral) for the six groups

KEY TO SYMBOLS AND ABBREVIATIONS

Symbol or Abbreviation	Meaning
°C	degrees Celsius
>	greater than
/	per
%	percent
±	plus or minus
(±)	racemic
®	Registered trademark
μL	microliter
μm	micrometer
Α	accident
AA	African American
ACS	American Chemical Society
alpha-1-AGP	alpha-1-acid glycoprotein
Ante	antemortem
ASCAD	arteriosclerotic coronary artery disease
ASCVD	arteriosclerotic cardiovascular disease
Bld	blood
С	Caucasian
C/P	central-to-peripheral
CNS	central nervous system
COD	cause of death
СОНЬ	carboxyhemoglobin
(cont'd).	continued
COPD	chronic obstructive pulmonary disease
СҮР	cytochrome P450
d ₃	deuterated
DI	deionized/distilled
dL	deciliter
e.g.	example given
EDDP	2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine
EMDP	2-ethyl-5-methyl-3,3-diphenylpyrroline
F	female
g	gram
GC	gas chromatography

KEY TO SYMBOLS AND ABBREVIATIONS (cont'd).

Symbol or Abbreviation	Meaning
GC (in tables)	gastric contents
Н	Hispanic
HB	heart blood
Hep C	Hepatitis C
Hg	mercury
HIV	human immunodeficiency virus
Hosp	hospital
HPLC	high-performance liquid chromatography
HTCVD	hypertensive cardiovascular disease
HTN	hypertension
kg	kilogram
L	liter
m	meter
Μ	male
MDN	methadone
mg	milligram
min	minute
mL	milliliter
mm	millimeter
mM	millimolar
MMT	methadone maintenance treatment
MOD	manner of death
Mol. Wt.	molecular weight
MS	mass spectrometry
n	number of positive cases
Ν	natural
NA	not applicable
ND	none detected
ng	nanogram
NPD	nitrogen-phosphorus detection
OCME	Office of the Chief Medical Examiner
P	pending
PB(Fem)	peripheral blood (femoral)
PB(Sub)	peripheral blood (subclavian)

KEY TO SYMBOLS AND ABBREVIATIONS (cont'd).

Symbol or Abbreviation	Meaning
pH	potential of hydrogen
pKa	ionization constant
PM/AM	postmortem-to-antemortem
R	Rectis (Latin for right)
RPM	revolutions per minute
S	Sinister (Latin for left)
S (in Table A1)	suicide
SD	standard deviation
SIM	selected ion monitoring
SML	serum methadone level
SPE	solid-phase extraction
U	undetermined
UCR	urinary cortisol ratio
UCT, Inc.	United Chemical Technologies, Incorporated
VH	vitreous humor

-

INTRODUCTION

Aims of this Project

In Delaware, there have been 100 methadone-related deaths between September 6, 2001 and March 1, 2005. According to the records of the State of Delaware Office of the Chief Medical Examiner (OCME), there were six deaths in the final four months of 2001. Twenty-three deaths involving methadone toxicity occurred in 2002, 37 in 2003, and 28 in 2004. In the first three months of 2005, six deaths were associated with methadone.

Much research has been devoted to methadone-related deaths, but most of the published articles focus on establishing a lethal methadone concentration range. However, due to the overlapping concentrations in deaths attributable to methadone toxicity and those unrelated to it, this is practically impossible. Confounding factors such as tolerance and postmortem redistribution partially account for this overlap. There has been little research aimed at evaluating the distribution of parent drug to metabolite in such cases. One aim of this research project was to determine ratios of methadone to its main metabolite in Delaware's methadone cases over the past three and a half years to see if these would help in classifying such deaths. Since methadone is widely distributed in tissues such as the liver and kidney, it is possible that these specimens (that are typically not studied) could provide valuable information. In addition to assessing ratios, another goal was to determine methadone and metabolite concentrations in other matrices to determine their usefulness in the evaluation of methadone-related deaths.

History and Usage of Methadone

Methadone is a potent synthetic opioid that produces both circulatory and respiratory depression. Since it is generally less addictive than heroin and morphine, methadone (also known as Dolophine[®]) has been clinically used as an analgesic and as a legal alternative for opioid addiction through methadone maintenance treatment (MMT) programs. When used as an analgesic, methadone's effects only last for four to six hours. Methadone's main uses as a painkiller are for chronic pain (most often back pain), cancer, and terminal illnesses. Compared to heroin, methadone has a longer duration of action so it effectively reduces cravings and withdrawal symptoms for up to 72 hours. Additionally, the highs and lows experienced with methadone are less intense than those resulting from heroin (Inaba and Cohen, 2000).

During World War II, methadone was first synthesized in Germany (Baselt and Cravey, 1995). Methadone has been used to treat opioid addiction in the United States since the 1960s when Vincent Dole and Marie Nyswander developed MMT in New York City (Ali and Quigley, 1999; Inaba and Cohen, 2000). This opioid alternative has been shown to decrease the amount of illicit drug use, the spread of the human immunodeficiency virus (HIV) among intravenous drug users, and the amount of criminal activity. Other advantages of methadone include re-employment, social functioning and rehabilitation, and an improved quality of life. Methadone is also less expensive than heroin and other opioids. Moreover, the risks of fatal drug overdose have declined as a result of methadone maintenance (Ali and Quigley, 1999; Wolff, 1998; Toombs and Kral, 2005).

Although methadone is less addictive than heroin, it is unfortunately still abused. There are strict regulations enforced at methadone clinics, but methadone is still sold illicitly. Additionally, patients will often combine methadone with other drugs such as benzodiazepines (e.g. alprazolam), heroin, or illicit methadone to enhance the high (Ali and Quigley, 1999; Inaba and Cohen, 2000). For these reasons, methadone accounts for a high portion of drug deaths each year (Inaba and Cohen, 2000). Wolf et al. (2004) reported a remarkable increase in methadone deaths in Palm Beach County, Florida from 2 in 1998 to 87 in 2002. Research has identified inadequate dosing as a major cause for patient noncompliance (Ali and Quigley, 1999). A California study spanning 24 years showed that terminating opioid use takes a long time. Those who are continuing to abuse opioids in their late 30s are unlikely to ever cease their use (Wolff, 1998).

Finding the optimal methadone dose for a particular patient is crucial to its success as a maintenance drug. When MMT programs prescribe patients inadequate doses, they will experience withdrawal symptoms, leading them to return to illicit drugs. Withdrawal symptoms include depression, irritability, insomnia, nausea, fatigue, and hot/cold flashes. More severe symptoms include twitching, diarrhea, vomiting, anxiety, fever, and hypertension. Conversely, signs of overmedication are drowsiness, miosis (constriction of the pupil), itching, hypotension, and respiratory depression. When a patient experiences neither withdrawal symptoms nor overmedication symptoms, he or she is considered to be in the therapeutic range (Leavitt et al., 2000).

Routine drug monitoring has been recommended as a means to determine this therapeutic range. This can be done by analyzing serum methadone levels (SMLs). The level of methadone detected in serum shows what is happening to methadone in the body.

In the study by Leavitt et al. (2000), there was no correlation between dose and SMLs. Individual variations in metabolism partially account for this variation. According to this study, doses of 120-700 mg/day may be more effective than the usual 100 mg/day or less. Serum methadone levels cannot be used in isolation when determining a person's optimal methadone dose. The patient's symptoms and clinical state must also be monitored for dosing decisions.

Methadone is available in several forms including liquid, injectable, and tablet. The preferred method is to dissolve it in juice so that it may be taken at a clinic. If a patient cannot come into a clinic one day, there are take-home tablets available, but these often get diverted to the streets (Inaba and Cohen, 2000). Tablets and drinks also run the risk of being consumed by children when inadvertently left out (DiMaio and DiMaio, 1973). The risk of illicit sale is high with injectable methadone as well (Wolff, 1998). A typical starting dosage is 10-20 mg daily. With time, this dose may be increased to 40-100 mg/day with some as high as 180 mg/day (Milroy and Forrest, 2000).

Another problem with methadone is the increased risk of death within the first two weeks of maintenance treatment. This is often due to the dose being increased too quickly, resulting in respiratory depression (Karch and Stephens, 2000). In New South Wales, Caplehorn and Drummer (1999) showed that the risk of accidental toxicity during the first two weeks was 6.7 times that of addicts not in MMT programs. During this time also, the risk is nearly 98 times higher than that of patients who have been in therapy longer than two weeks. This data shows that the first two weeks of treatment are definitely a precarious time. Despite these statistics, it is probable that MMT programs in New South Wales saved 68 lives in 1994 alone.

Metabolism and Excretion

When administered orally, methadone is absorbed quite rapidly into the body. The drug is widely distributed in tissues such as the liver, kidney, lungs, and spleen. In the liver, methadone undergoes biotransformation to the main inactive metabolites 2ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3diphenylpyrroline (EMDP) as shown in Figure 1. This process occurs primarily through mono- and di-N-demethylation. These metabolites are then eliminated by the kidney and excreted through the bile, urine, and feces. Smaller amounts of methadol and normethadol are also formed (Jenkins and Cone, 1998; Kerrigan and Goldberger, 2003).

Figure 1. Chemical structures of methadone and its metabolites—EDDP and EMDP.

Methadone, a Schedule II narcotic, is typically dispensed as a 50:50 racemic mixture of the active R-enantiomer and the inactive S-enantiomer (Toombs and Kral, 2005). This basic drug is highly lipophilic with a pK_a value between 8.6 and 9.2. Methadone's volume of distribution (defined as the dose divided by the concentration at equilibrium) is 4-5 L/kg (Baselt and Cravey, 1995; Garrido and Trocóniz, 1999; Karch and Stephens, 2000). Since methadone distributes itself extensively throughout the body (due to its high lipophilicity), it has a long elimination phase. In a study of MMT patients, 5-50% of the dose was excreted as methadone and 3-25% as EDDP. This variation is due to factors such as the dose, metabolic rate, and urine pH. When the urine was acidified, the percentage of unchanged methadone was greater (Baselt and Cravey, 1995).

Methadone has a long elimination half-life that ranges between 15 and 55 hours. This is the main reason why methadone is so useful as a treatment drug. Since its effects are long-lasting, patients normally only have to take it once daily. The half-life of morphine (the primary active metabolite of heroin), on the other hand, is only two to three hours, so patients go through withdrawal only hours after its use (Baselt, 2004). The oral bioavailability of methadone has been reported to range between 0.67 and 0.95 (Garrido and Trocóniz, 1999).

Following oral administration, peak blood concentrations of methadone are attained approximately four hours after dosing. Four hours after a single 15-mg oral dose, a peak plasma concentration of 75 ng/mL has been reported. This concentration slowly declined to 30 ng/mL after 24 hours with a half-life of 15 hours. Peak concentrations in brain occur one to two hours after dosing (Jenkins and Cone, 1998). A

study involving nasal administration revealed that peak plasma concentrations occurred within seven minutes, proving its uptake was very quick (Dale et al., 2002).

Methadone is metabolized by cytochrome P450 (CYP) enzymes in human liver. Iribarne et al. (1996) studied 20 human liver microsomes to determine the involvement of this family of enzymes in the oxidative N-demethylation of methadone. They determined that CYP3A4 is, on average, the principal enzyme involved in this metabolism. Out of nine heterogeneously expressed CYP enzymes, CYP3A4 accounted for 63% of the catalytic activity. Furthermore, this isoform made up 32% of the total CYP group. The other CYP isoforms were CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2D6, CYP3A5, and CYP1E1. Only five of the nine were found to contribute to catalysis— CYP1A1, CYP2C8, CYP2C18, CYP2D6, and CYP3A4. Data published by Wang and DeVane (2003) indicate that CYP3A4, CYP2C8, and CYP2D6 are the three prominent enzymes involved in methadone metabolism. Two other enzymes may also play a role, and they are CYP2C9 and CYP2C19 (Foster et al., 1999).

The CYP3A4 enzyme is inhibited by several mechanism-based inhibitors such as gestodene. Other substances such as quinidine and sulfaphenazole did not inhibit methadone metabolism to the extent of the mechanism-based inhibitors. Inhibition was only 10% for sulfaphenazole—compared to 60-72%, which was seen with the mechanism-based inhibitors (Iribarne et al., 1996). In another study by Oda and Kharasch (2001), it was shown that methadone is metabolized by human intestinal microsomes as well. Methadone undergoes first-pass metabolism in the intestine due to CYP3A4 activity.

Several other factors are thought to affect the metabolism of methadone. For example, people who are chronic alcohol abusers metabolize methadone more slowly. Certain individuals are poor metabolizers because they are deficient in the responsible enzyme. Vitamins, diet, pregnancy, and physical condition may also influence one's metabolism (Leavitt et al., 2000). Studies have shown that methadone concentrations are increased in users who are infected with HIV (Karch and Stephens, 2000). All such people are thus potentially at increased risk for accidental overdose of methadone.

Methadone toxicity is difficult to evaluate due to an overlap in therapeutic and fatal concentrations. One of the main reasons for these coinciding concentrations is tolerance amongst users. Tolerance is defined as an individual's decreased response to a drug following extended use. The body will react to continued drug use in a variety of ways, leading to tolerance. For example, the metabolism and excretion of the drug may increase, and nerve cells may become desensitized. Due to these changes, a user must increase his or her dose to have the same effects. Opioid tolerance occurs quite rapidly and can develop with sustained use (Inaba and Cohen, 2000).

Research has shown that MMT patients have high tolerance in comparison to heroin addicts who are not undergoing treatment. Consequently, an MMT patient can take heroin and survive while a street addict could die from doing so. Even just years after MMT programs were established, lack of opioid tolerance contributed to nearly half of the methadone fatalities (Greene et al., 1974). Tolerance may develop quickly and extensively, but it can be lost quickly, too. There have been instances in which opioid addicts go to prison where their tolerance levels become drastically diminished. Upon being released, they use opioids in the same fashion as they did before going to prison.

Quite often though the results are fatal due to this loss of tolerance (Milroy and Forrest, 2000).

Drug Interactions

Another main factor affecting methadone metabolism is co-medication or drug interactions. As was previously mentioned, methadone users often combine this drug with other substances to enhance the high. Certain P450 enzyme-inducing drugs increase the clearance of methadone. Examples of these drugs include amitriptyline, barbiturates, phenytoin, and rifampicin. Other drugs such as diazepam and cimetidine do just the opposite—they inhibit methadone metabolism and therefore account for increased concentrations of methadone (Oda and Kharasch, 2001). Benzodiazepines such as alprazolam, diazepam, and lorazepam are commonly detected in conjunction with methadone. These, in addition to alcohol, may augment respiratory depression when used in combination with methadone (Barrett et al., 1996; Rogers et al., 1997). A study of oxycodone and hydrocodone fatalities revealed that multiple-drug overdoses are seen with these substances as well (Spiller, 2003).

Pharmacodynamics

Methadone primarily binds to three opioid receptors—mu, kappa, and delta—in the central nervous system (CNS). Another opioid receptor that is less relevant is the sigma receptor. These receptors are primarily located in the brain, spinal cord, and digestive tract (Inaba and Cohen, 2000). Both methadone and morphine are selective to the mu receptor, although morphine's affinity is higher. The mu receptor is primarily

responsible for respiratory depression, euphoria, pain relief, blood pressure, pupil contraction, the gastrointestinal tract, and physical tolerance and dependence. The kappa receptor, on the other hand, generates dysphoria but is also responsible for pain relief and sedation (Garrido and Trocóniz, 1999; Inaba and Cohen, 2000; Kerrigan and Goldberger; 2003). Studies have suggested that tolerance is partly due to changes in mu-receptor function (Garrido and Trocóniz, 1999).

Cross-tolerance is a type of tolerance that results in a reduced response to an opioid following treatment with another one. For instance, a person who has built up tolerance to heroin will also exhibit tolerance to morphine and other opioids. However, it is important to remember that opioids are selective to certain receptors. Thus, a person who has acquired a tolerance to an opioid that works at the mu receptor will not have as much tolerance to a drug that works at a different receptor (Inaba and Cohen, 2000). Research has indicated that methadone does not induce cross-tolerance as readily as morphine (Garrido and Trocóniz, 1999).

In an analysis of 21 methadone deaths in Milwaukee, Wisconsin, the role of pharmacogenomics was assessed. In this study, Wong et al. (2003) studied whether or not CYP2D6 variant alleles were the cause of atypical metabolism, which would lead to methadone toxicity. They found no significant associations between CYP2D6 mutations and methadone toxicity. Therefore, the results of genotyping in this study did not provide any additional information for interpreting the methadone cases and assigning causes and manners of death. According to their article, methadone metabolism involves CYP1A2, CYP3A4, and CYP2D6 enzymes, which differs slightly from those previously discussed.

A study aimed at evaluating methadone's pharmacokinetics and pharmacodynamics involved eight drug-free women who were given a single oral dose. During a four-day period, their vital signs and CYP3A activity were monitored. As part of examining their vital signs, the subjects' eyes were photographed to determine pupil diameters, which indicate pain intensity. All of the subjects' pupils were constricted, which is a common effect of opioids. In addition to measuring CYP3A activity, the concentrations of alpha-1-acid glycoprotein (alpha-1-AGP) were determined (Boulton et al., 2001b; Dale et al., 2002).

Methadone readily binds to this glycoprotein, and Boulton et al. (2001b) concluded that it may function in the first-pass metabolism of R-methadone. While CYP3A and alpha-1-AGP binding can elucidate the activity of R-methadone, these factors do not explain the disposition of S-methadone. For these reasons, this glycoprotein and enzyme may affect the interindividual variability in methadone action. Research has shown that the urinary cortisol ratio (UCR) may also be a marker for CYP3A activity. Following oral dosage of methadone, UCR declines, which suggests that methadone inhibits CYP3A (Boulton et al., 2001a).

Postmortem Redistribution

In addition to tolerance, another phenomenon that complicates interpretation of methadone toxicity is known as postmortem redistribution. This is the process by which drugs move between bodily fluids and tissues after death. They essentially diffuse from areas of higher concentration to areas of lower concentration after cellular membranes have been disrupted (Cook et al., 2000; Drummer, 2004). Drugs that are highly lipophilic

and have increased concentrations in tissues are more susceptible to redistribution. Drummer (2004) evaluated 23 different drugs/drug classes based on their extent of redistribution. The extent was categorized as either low, low to moderate, or moderate. Of these three, methadone's extent of redistribution was classified as moderate. This makes sense considering methadone is a highly lipid soluble drug with a large volume of distribution.

If the gastrointestinal tract contains large amounts of unabsorbed drug, this could leak to surrounding tissues and fluids. Analyses of heart blood in the central region and peripheral blood (such as that acquired from the femoral vein) have shown that the latter is less subject to contamination. Peripheral blood (femoral) is thus the preferred specimen for toxicological analysis the majority of the time. Due to the perplexing factor of postmortem redistribution, it is important for toxicologists to know the approximate timing of specimen collection relative to the time of death (Cook et al., 2000).

A case at the OCME in Baltimore, Maryland prompted Levine et al. (1995) to study 15 methadone cases to evaluate site dependence of this drug. The methadone concentrations in this initial case were 2.4 mg/L in heart blood and 0.8 mg/L in subclavian blood. In addition to testing heart blood, an alternative sample such as subclavian blood was analyzed for each case. They then compared the ratios of these samples and found variation of concentrations. Only four of the 15 cases had results within 20% of each other. From their study, they could not conclude that one sample would always have a higher concentration than another or that one sample was preferential to another.

Milroy and Forrest (2000) also examined postmortem site dependence and drug redistribution of methadone. Of their 111 cases, gastric contents were analyzed for 94 of them. Furthermore, multiple site sampling was performed for 26 of the cases. This is the process of collecting peripheral blood in both the arm and leg and comparing their methadone concentrations. They found extreme unpredictable variation in concentrations from the different sites, suggesting redistribution.

Toxicological Analysis

A variety of acceptable toxicological analysis schemes for methadone have been reported in the literature. In addition to the method of gas chromatography/mass spectrometry (GC/MS) utilized herein, high-performance liquid chromatography (HPLC) has been used as well as gas chromatography with nitrogen-phosphorus detection (GC-NPD). The most common type of extraction used for methadone analysis is solid-phase, although liquid-liquid extraction has been documented as well (Levine et al., 1995; Rio et al., 1987). When methadone toxicity is suspected, pathologists nearly always perform a full autopsy and collect a combination of the following samples: heart blood, peripheral blood, vitreous humor, brain, liver, kidney, gastric contents, urine, and bile (Drummer, 2004). Of these samples, blood, liver, and urine are the most common specimens analyzed in drug-suspected cases. Due to postmortem redistribution, it is important for medical examiners to collect two different blood specimens (one from the central region and one from a peripheral site) so that their concentrations may be compared. In addition to redistribution, there are other difficulties of working with postmortem samples, especially in cases of decomposition. These oily samples are useful for drug screening,

but they are not favorable for quantitative analysis. In instances of severe decomposition, skeletal muscle is oftentimes the only available specimen for collection (Drummer, 2004).

Blood is definitely a useful indicator of drug toxicity. Since metabolism primarily occurs in the liver, results from this tissue can be valuable as well. Analysis of vitreous humor has provided the detection of drugs, although this type of testing is especially useful for the quantitation of ethanol and other volatiles. Since many drugs act on the brain, toxicologists have analyzed this tissue for drug concentrations. However, these results are often difficult to interpret due to the uneven distribution of drugs there. Gastric contents function mainly for determining time and type of drug administration (Drummer, 2004).

Karch and Stephens (2000) reviewed 38 methadone-related deaths at the San Francisco Medical Examiner's Office. The average concentration of methadone in blood for these cases was 957 ng/mL, and that for EDDP was 253 ng/mL. The mean ratio of parent drug to EDDP was 13.6 with a range of 0.572 to 60. Diazepam was the most common drug detected in addition to methadone. They also reported that methadone concentrations were increased in HIV patients.

Baselt and Cravey (1995) report methadone concentrations in fatalities for various specimens. The average concentrations in blood and brain were 1.0 mg/L and 1.0 mg/kg, respectively, and that in kidney was 2.9 mg/kg. Liver was the tissue with the highest concentration of methadone at 3.8 mg/kg. Other reported methadone concentrations ranged from 0.18-3.99 mg/L for deaths caused or related to drug toxicity. In this same study, the range for deaths not related to methadone toxicity was 0.18-3.03 mg/L

(Gagajewski and Apple, 2003). For deaths attributable to methadone overdosage in a separate study, the listed range was 0.114-1.939 mg/L. For those due to trauma, the range was 0.072-2.7 mg/L. The maximum concentration here is much higher than that from the former group, and again there is an overlap (Wolf et al., 2004).

EXPERIMENTAL

Specimens

The cases included in this study were all methadone-positive postmortem cases received at the State of Delaware OCME during a three and a half year period—from September 2001 through the beginning of March 2005. All specimens collected during autopsy (with the exception of bile and urine) were analyzed for methadone and its primary metabolite (EDDP). When available, the following specimens were analyzed: vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents, liver, and kidney. In some instances, antemortem blood or serum specimens were also available for analysis. Table 1 shows all of the specimens that were analyzed for each of the 100 cases. Following collection at autopsy, specimens were placed into refrigerated storage at approximately 5°C. Specimens were later transferred to a freezer for long-term storage (approximately -10 to -12°C).

One milliliter of blood or vitreous humor was required for analysis. Solid tissue specimens such as brain, liver, and kidney were homogenized with deionized/distilled (DI) water to prepare a 1:4 tissue homogenate for analysis. All gastric contents were initially prepared at a 1:25 dilution. If the initial results fell outside of the linear range of the calibration curve, specimens were reanalyzed at an appropriate dilution. All dilutions were prepared with DI water.

Case	Specimens
1	НВ
2	НВ
3	Blood
4	Cavity Fluid
5	НВ
6	Blood
7	НВ
8	Ante Blood
9	HB
10	Blood
11	PB(Fem)
12	HB
12	HB
14	HB
15	HR
15	HB Liver
10	
17	ID Aceta Placed
10	
20	PB(rem)
21	HB
22	HB
23	Ante Blood
24	HB
25	
26	PB(Fem)
27	PB(Sub)
28	PB(Sub)
29	PB(Fem)
30	VH, PB(Fem), HB, Brain, GC, Liver
31	VH, HB, Brain, GC, Liver
32	VH, PB(Fem), HB, Brain, GC, Liver
33	VH, PB(Fem), HB, Brain, GC, Liver, Kidney
34	VH, PB(Fem), HB, Brain, GC, Liver
35	VH, HB, Liver
36	VH, PB(Fem), PB(Sub)
37	VH, PB(Fem), HB, Brain, GC, Liver
38	VH, PB(Fem), HB, Brain, GC, Liver, Kidney
39	VH, PB(Fem), HB, Brain, GC, Liver
40	VH, PB(Fem), Brain, Liver, PB(Sub)
41	VH, PB(Fem), HB, GC, Liver
42	VH, PB(Fem), HB, Brain, GC, Liver
43	VH, PB(Fem), HB, Brain, GC, Liver
44	VH, PB(Fem), HB, Brain, GC, Liver
45	VH, PB(Fem), HB, GC
46	Brain, GC, Liver
47	HB, Brain, Liver
48	VH, PB(Fem), HB, GC, Liver
49	VH, PB(Fem), HB
50	VH, PB(Fem), HB, Brain, GC, Liver

Table 1. Table showing all of the specimens that were analyzed for each case.

Table 1 (cont'd).

Case	Specimens
51	VH, PB(Fem), HB, Brain, GC, Liver
52	VH, PB(Fem)
53	VH, PB(Fem), HB, Brain, GC, Liver
54	VH, HB, GC, Liver, PB(Sub)
55	VH, HB, Brain, GC, Liver, PB(Sub)
56	VH, HB, Brain, GC, Liver, PB(Sub)
57	VH, PB(Fem), HB, Brain, GC, Liver
58	VH, PB(Fem), HB, Brain
59	VH, HB, Brain, GC, Liver
60	VH, PB(Sub)
61	VH, HB
62	VH
63	VH, PB(Fem), HB, Brain, GC, Liver
64	VH, PB(Fem), HB
65	VH, PB(Fem), HB, Brain, GC, Liver
66	VH, PB(Fem), HB, Brain, GC, Liver
67	VH, PB(Fem), HB, Brain, GC, Liver
68	VH, PB(Fem), HB, Brain, GC, Liver
69	VH, HB, Brain, GC, Liver, Blood
70	VH, HB
71	Ante Blood, Ante Serum
72	VH, PB(Fem), HB, Brain, GC, Liver
73	VH, PB(Fem), HB, Brain, GC, Liver
74	VH, PB(Fem), HB, Brain, GC, Liver
75	VH, PB(Fem), HB
76	VH, PB(Fem), HB, GC, Liver
77	VH, PB(Fem), PB(Sub)
78	VH, PB(Fem), HB, Brain, GC, Liver
79	VH, PB(Fem), HB, Brain, GC, Liver
80	PB(Fem), HB, Brain, GC, Liver
81	Ante Blood, Ante Serum
82	DP(Form) UP Proin CC Liver
83	VH DD(Fem) HD Liver
85	
86	VH PB(Fem) HB Brain GC Liver
87	VH. PB(Fem) HB Brain, GC Liver
88	Brain GC Liver Kidney
89	VH PB(Fem) HB Brain GC Liver
90	VH, FB(Fein, FIB, Blain, CC, Biver
91	VH. PB(Fem), HB. Brain, Liver
92	PB(Fem), HB, Liver
93	VH. PB(Fem), HB, Brain, GC, Liver
94	VH. PB(Fem), HB, Brain, GC, Liver
95	VH. PB(Fem), HB, Brain, GC, Liver, Kidney
96	VH, PB(Fem), PB(Sub)
97	VH, PB(Fem), HB, Brain, GC, Liver
98	VH, PB(Fem), HB, Brain, GC, Liver
99	VH, PB(Fem), HB, Brain, Liver, Kidney, Ante Blood, Ante Serum
100	VH, HB

Chemicals and Materials

(±)-Methadone, (±)-Methadone-d₃, EDDP, and EDDP-d₃ standards were purchased from Cerilliant[®] (Round Rock, Texas). The following reagents were required as well: methanol, sodium phosphate monobasic, sodium phosphate dibasic, glacial acetic acid, methylene chloride, isopropanol, concentrated ammonium hydroxide, and ethyl acetate (absolute). All reagents were ACS Grade and purchased from Fisher Scientific (Pittsburgh, Pennsylvania). Solid-phase extraction columns (ZSDAU020) were purchased from United Chemical Technologies (UCT), Inc. (Bristol, Pennsylvania).

Extraction

For each run, a matrix blank and six calibrators containing both methadone and EDDP were prepared (using calibrated pipettes) in properly labeled 16 x 125 mm test tubes. The calibrators were prepared in drug-free whole blood and ranged in concentration from 25 ng/mL to 1000 ng/mL. Two whole blood controls were prepared at concentrations of 100 and 500 ng/mL. Case specimens were prepared in 1-mL aliquots. Solid tissue specimens were prepared in duplicate, and one aliquot was spiked with 500 ng of methadone and 500 ng of EDDP. The spiked tissue specimens were prepared so the method of standard addition could be used to ensure that there were no significant matrix effects on the quantitation of methadone and EDDP in solid tissue specimens (Andollo, 1998). Internal standard containing both d₃-methadone and d₃-EDDP (100 ng each) was added to all calibrators, controls, and case specimens. All samples were then mixed with 4 mL DI water and 2 mL phosphate buffer (100 mM, pH

6.0) and vortex-mixed for 15 seconds. The samples then sat at room temperature for 5 minutes followed by centrifugation at 3000 RPM for 10 minutes.

Solid-phase extraction of methadone and EDDP was performed with combination reverse phase/cation exchange columns using a method adopted from UCT, Inc. (Moore, 1994). The SPE columns were conditioned with 3 mL methanol, 3 mL DI water, and 2 mL phosphate buffer. The supernatant of each sample was then applied to a column, allowing gravity flow to pull it through. The columns were washed with 3 mL DI water, 1.25 mL 100 mM acetic acid, and 3 mL methanol, respectively. Following this, the columns were dried for 5 minutes under vacuum (>10 inches Hg).

The analytes were eluted with 3 mL Basic Drug Elution Solvent (containing methylene chloride/isopropanol/ammonium hydroxide—78/20/2) into properly labeled 5-mL conical centrifuge tubes. Extracts were evaporated to dryness at approximately 35° C under nitrogen in an adjustable temperature evaporator and then reconstituted in 50 µL ethyl acetate. Final extracts were transferred to autosampler vials with reduced volume inserts, and a 1-µL aliquot was injected into the gas chromatograph for analysis.

Instrumentation

Analysis of methadone and EDDP was performed on a Hewlett Packard (HP) model 6890 gas chromatograph (GC) with an Agilent 5973 Network Mass Selective (MS) Detector (Wilmington, Delaware). An HP5-MS column (30 m length x 250 μ m diameter x 0.25 μ m film thickness) was used for separation. The GC was operated in the constant pressure mode; the pressure was variable to maintain a constant retention time for methadone. The GC oven temperature program started at 90°C where it was held for
1 minute, then ramped to 200°C at 25°C/min, increased and then ramped to a final temperature of 300°C at 20°C/min where it was held for 2 minutes for a total run time of 12.40 minutes. The GC inlet mode was pulsed splitless with an inlet temperature of 260°C. The purge flow was 50 mL/min with a purge time of 1.00 minute. Ultrapure helium was the carrier gas.

The mass spectrometer was operated in the selected ion monitoring (SIM) mode. The transfer line temperature was set to 280°C. The ions monitored for d_3 -EDDP and EDDP were 276, 277, 278, 279, 280, and 281. The ions monitored for d_3 -methadone and methadone were 223, 226, 294, 297, 309, and 312.

Chromatography and Mass Spectrometry

Figure 2 is a total ion chromatogram of EDDP and methadone, showing that EDDP elutes first. Figures 3-6 are ion chromatograms and corresponding SIM mass spectra of d₃-EDDP, EDDP, d₃-methadone, and methadone, respectively. These figures illustrate the peaks and ions used to identify and quantitate the analytes for each case. As Figures 3 and 4 show, the retention time for d₃-EDDP was 8.47 min, and that for EDDP was 8.49 min. The retention time for d₃-methadone was 9.00 min, and that for methadone was 9.02 min (Figures 5 and 6). The deuterated internal standards (which contain three deuterium atoms in place of three hydrogen atoms) were identified by ions that were three atomic mass units heavier than those seen with EDDP and methadone. Ethyl acetate was used as a solvent blank between standards, controls, and case specimens where necessary. An ion chromatogram of ethyl acetate is also shown as Figure 7. There was no carryover present in any of the blanks.

Figure 2. Total ion chromatogram of EDDP and methadone.

Figure 3. Ion chromatogram (top) and SIM mass spectrum (bottom) of d₃-EDDP.

Figure 4. Ion chromatogram (top) and SIM mass spectrum (bottom) of EDDP.

Figure 5. Ion chromatogram (top) and SIM mass spectrum (bottom) of d₃-methadone.

Figure 6. Ion chromatogram (top) and SIM mass spectrum (bottom) of methadone.

Figure 7. Ion chromatogram of ethyl acetate, which was used as a solvent blank.

Quantitation and Acceptability

A multi-point linear calibration curve containing seven points was constructed for each separate analytical batch. Each calibration curve had a linear correlation coefficient of 0.985 or better. All data files were quantitated, and calculations were based on the internal standardization method. The internal standards were detected in all samples. The limits of quantitation for methadone and EDDP were 25 ng/mL and 50 ng/mL, respectively. Quantitative results for all calibrators were within $\pm 20\%$ of their expected values. Qualifier ion ratios were also evaluated. The ratios of positive findings were required to be within 20% of the ion area ratios of a calibrator of similar concentration. All quantitative results for the controls were also within $\pm 20\%$ of their target values.

RESULTS AND DISCUSSION

This study included 100 methadone-related deaths that were identified during a three and a half year period—September 6, 2001 through March 1, 2005—in the small state of Delaware. Of the total, 61 were male and 39 were female. Eighty-one percent were Caucasian, 18% were African American, and only one person was Hispanic. The average age of the decedents was 41 years old (with a range of 16-65). These statistics are very similar to those reported from other states.

In a study by Wolf et al. (2004) of 125 methadone-related deaths in Palm Beach County, Florida, 98 (78%) were males. The average age was 39 years old, and all but one of their decedents was Caucasian. Similarly, in Hennepin County, Minnesota, over 90% of the methadone decedents from 1992 to 2002 were Caucasian, nearly 80% were male, and the average age was 45 years old (Gagajewski and Apple, 2003). These same figures were seen in the past as well. A Harris County, Texas study from 1987 to 1992 revealed that 77% of the methadone decedents were male, 85% were Caucasian, and the median age was 35 years old (Barrett et al., 1996).

For this study, investigative reports were reviewed for case histories including any known methadone usage, and toxicology reports were examined to determine additional positive drug findings. Additional drugs were detected in approximately 70% of the 95 completed cases. Eighteen decedents were positive for ethanol. Eight decedents had alprazolam in their systems, nine had diazepam, and 12 had nordiazepam (the major metabolite of diazepam). Alprazolam and diazepam are benzodiazepine tranquilizers that are primarily used to treat anxiety disorders. Cocaine was detected in ten cases, and

benzoylecgonine and ecgonine methyl ester (metabolites of cocaine) were found in 23% and 20% of the 100 cases examined, respectively.

Autopsy reports were also reviewed for the causes and manners of death in each case. The manner of death in over half the cases was accident, which accounted for 54 cases. Of the remaining 46 cases, 26 were classified as natural deaths, seven were classified as suicides, four were undetermined, and nine are still pending. From this information, the cases were categorized into groups as follows:

Group 1A) Drug-related deaths in which death was due to methadone only;

Group 1B) Drug-related deaths in which death was due to methadone in combination with other drugs;

Group 2) Drug-related deaths in which methadone was not a contributing factor;

Group 3) Deaths in which methadone was an incidental finding (e.g. deaths due to trauma);

Group 4) Natural deaths that were aggravated by methadone; andGroup 5) Undetermined or pending cases.

Of the 100 cases, 13 were placed in Group 1A, 27 in Group 1B, 6 in Group 2, 33 in Group 3, 9 in Group 4, and 12 in Group 5. Table A1, which can be found in the Appendix, is a compilation of all this information. As the table shows, there were several frequent findings. These include a history of heroin, cocaine, alcohol, and/or prescription medication abuse, a history of depression and/or suicide attempts, back pain, Hepatitis C, cirrhosis, HIV, and pneumonia. Karch and Stephens (2000) listed similar findings such as cirrhosis, pneumonia, and HIV.

Methadone and EDDP Concentrations

All available specimens from each case were analyzed. Following GC/MS analysis, the methadone and EDDP concentrations were determined. These results have been categorized in tables according to the various groups so that trends in concentrations could be evaluated. In all subsequent tables, any blank spaces indicate that a given specimen was either not analyzed (due to an insufficient quantity) or not received. The average, standard deviation (SD), number of positive cases (n), and range is included for each category as well. An asterisk next to a case number indicates that additional specimens such as antemortem blood were analyzed.

Group 1A

The concentrations for Group 1A (drug deaths attributable to methadone only) are shown on the next page in Table 2. As the table shows, the average concentration of methadone in vitreous humor was 260 ng/mL (n = 10). EDDP was detected in vitreous humor in only one case (Case 82) in this group. This case also happened to have the highest methadone concentration detected in this specimen (840 ng/mL) amongst all six groups. This analyte was only detected in one other vitreous sample from Group 1B. The peripheral blood (femoral) concentrations ranged from 330-1800 ng/mL for methadone with an average of 950 ng/mL (n = 9; SD = 510). The average concentration of EDDP in peripheral blood was 110 ng/mL with a range of 50-220 ng/mL (n = 8; SD = 54).

Case	EDDP (1	ng/mL) MDN	EDDP	(ng/mL)	EDDP EDDP	g/mL) MDN	EDDP	(ng/g) MDN	GC (. EDDP	mg) MDN	EDDP	(g/gn)
-	5 0 	erse a.L.	100	103	QN	300	27. 1.4.	2		20	1.0	00
15	ar	10	101		QN	130	he			282		00
25	he ni				QN	350					day.	
36 *	ND	680	120	1400		10		0.9				
50	ND	110	92	460	QN	250	ND	1300	0.18	7.2	970	5000
59	ND	110		1	86	640	ND	1600	QN	1.0	700	4100
65	QN	150	64	610	11	570	QN	1300	QN	0.59	720	4800
99	DN	60	QN	330	QN	240	QN	580	QN	QN	QN	1500
68	QN	300	110	1800	85	1500	ND	2700	0.11	2.7	006	4800
74	ND	120	50	1200	QN	800	QN	2100	QN	0.42	360	3700
76	QN	170	140	1100	130	1000	-		0.045	4.2	062	5600
82	120	840	220	1200	100	670	QN	3500				
89	ND	84	73	440	96	600	ND	1000	QN	0.34	310	2600
verage	NA	260	110	950	96	590	NA	1800	0.11	2.3	680	4000
SD	NA	270	54	510	19	390	NA	960	0.069	2.6	250	1400
u	1	10	80	6	9	12	0	80	3	1	1 2	8
Range	NA	60-840	50-220	330-1800	77-130	130-1500	NA	580-3500	0.045-0.18	0.34-7.2	310-970	1500-5600

Table 2. Concentrations of vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents (total amount), and liver for each case in Group 1A. Averages, standard deviations, number of positive cases (n), and ranges are also included. In a study of 125 methadone-related deaths in Palm Beach County, Florida, the deaths were grouped as follows: methadone toxicity, combined drug toxicity, other drugs, natural causes, and trauma. These groupings are very similar to those chosen for this project. In deaths attributable to methadone toxicity alone, the mean concentration of methadone in peripheral blood was 559 ng/mL with a range of 114-1939 ng/mL (Wolf et al., 2004). The average in this study for Group 1A was significantly higher. In another study by Milroy and Forrest (2000), the average concentration of methadone for a category in which methadone was the only drug involved was 584 ng/mL, which is again less than that seen in this project. The case with the highest reported methadone concentration in this group was Case 68. Referring back to Table A1, it is interesting to see that this was the only case in this group in which the manner of death was suicide (intentional overdose). All others were accidents.

In heart blood, the mean concentration of EDDP was 96 ng/mL (n = 6). That for methadone was 590 ng/mL (n = 12). The case with the maximum methadone concentration was again Case 68. EDDP was not detected in brain for any of the cases. The average concentration of methadone in this tissue was 1800 ng/g (n = 8). The highest concentration was not seen with Case 68 this time but with Case 82 (Caucasian female on methadone for chronic back pain).

The average total amount of methadone in the gastric contents was 2.3 mg (n = 7). The highest total amount (7.2 mg) was seen for Case 50, which was deemed an accident. Gastric contents can be particularly useful to establish route of administration or a minimum dose administered. However, one must ensure that the entire gastric contents is collected and that it is homogenized prior to analysis to obtain a reliable result. The

concentration range for liver was 310-970 ng/g for EDDP (n = 7; mean = 680; SD = 250) and 1500-5600 ng/g for methadone (n = 8; average = 4000; SD = 1400). Case 76 had the highest concentration of methadone, and this was another person who was taking methadone for back pain. He could have been taking the drug for an extended time, which would cause it to accumulate in his body.

Group 1B

Table 3 provides concentrations of the various specimens for cases in Group 1B (multiple drug deaths involving methadone). The mean concentration of methadone in vitreous was 160 ng/mL (n = 16). The average concentration of methadone in peripheral blood was 640 ng/mL (n = 16; SD = 370; range = 170-1500). The average for EDDP was 180 ng/mL (n = 10; SD = 130; range = 64-450). Referring back to the study by Wolf et al. (2004), the average concentration of methadone in deaths due to combined drug toxicity was 411 ng/mL. Again, the average for this study is higher. Case 49 had the concentration of 1500 ng/mL, which was the maximum for this group. It is worthy to note that this person was HIV positive. As was already mentioned, research has indicated that methadone concentrations tend to be high in individuals infected with HIV (Karch and Stephens, 2000).

The mean EDDP concentration in heart blood was 190 ng/mL (n = 11). For methadone, the average was 530 ng/mL (n = 20). The average concentration of methadone in brain was 1300 ng/g (n = 13). The maximum concentration of 2900 ng/g was seen with a person who was on methadone up to three times a day for chronic back pain (Case 34). This case also had the highest total amount of methadone in the gastric contents (5.9 mg). The average was 0.80 mg (n = 14). The average concentration of

3 3 50 10	Case	EDDP EDDP	g/mL) MDN	PB(Fem) EDDP	(Jm/gu)	EDDP EDDP	g/mL) MDN	EDDP	NDN MDN	EDDP	(mg)	EDDP	(g/gu)
8* 130 610 130 610 130 610 130 610 130 610 130 610 130 610 130 610 130 610 130 610 130 610 130 610 130 610 140 600 160	7	3				32	520		1			2	
17 130 610 630 610 630 610 630 <td>* 8</td> <td></td>	* 8												
18* 6 400 140 60 80<	17	1				130	610						
19 66 400 140 600 140 600 140 600 140 600 140 600 140 600 140 600 140 600 140 600 140 600 140 600 140 600 150	18 *												
20 ND 1200 9 160 170 90 170 90 170 90 90 833 180 110 0.83 100 0.83 100 130 0.11 230 90 833	19			99	400	140	600						
223 169 160 <td>20</td> <td></td> <td></td> <td>QN</td> <td>1200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	20			QN	1200								
23.4 Image: mark of the state	22					69	160						
29 N 180 100 30 ND 500 900 500	23 *												
30 ND 47 ND 230 ND 360 373 360 373 360	29			180	1100								
31 ND 66 ND 500 ND 1100 0.71 320 331	30	QN	47	QN	230	QN	350	QN	500	QN	0.83	QN	066
34 ND 300 73 690 75 640 ND 2900 0.34 59 590 50 500	32	QN	66	QN	500	QN	400	QN	1100	QN	0.71	320	3800
35 ND 110 300 120 300 130 300 130 300 130 300 130 300 130 300	34	QN	300	73	069	75	660	QN	2900	0.34	5.9	590	5800
41 ND 120 98 540 67 460 ND 010 001 690 300	35	QN	110			QN	92					500	1500
43 ND 160 ND 740 ND 630 ND 1500 ND 0101 680 551 46 ND 110 ND 360 ND 1300 ND 0113 680 532 230 236 46 ND 110 ND 360 ND 440 ND 0113 013 330 331 3	41	QN	120	98	540	67	460			QN	0.010	600	3000
46 ND 10 810 ND 610 ND 613 320 280 51< ND 110 ND 360 ND 440 ND 1100 ND 656 330 360 </td <td>43</td> <td>QN</td> <td>160</td> <td>QN</td> <td>740</td> <td>QN</td> <td>630</td> <td>ND</td> <td>1500</td> <td>QN</td> <td>0.015</td> <td>680</td> <td>5500</td>	43	QN	160	QN	740	QN	630	ND	1500	QN	0.015	680	5500
40 ND 410 230 1500 270 1300 ND 100 0.5 330 366 51 ND 110 ND 120 ND 700 900 1100 ND 130 350 390 366 54 ND 120 ND 700 900 1100 ND 130 350 390 366 56 ND 120 ND 230 ND 910 0.21 220 230 310 73 ND 130 ND 130 ND 0.21 230 310	46							QN	810	QN	0.13	320	2800
S1 ND 110 ND 360 ND 120 ND 136 330 367 360	49	QN	410	280	1500	270	1300						
55 ND 120 ND 700 900 1100 ND 1300 ND 130 33 53 33	51	QN	110	QN	360	QN	440	QN	1100	QN	0.56	330	3600
54* ND 72 ND 230 ND 010 012 230 230 230 230 230 230 230 230 230 230 230 231 230 230 230 231 230 230 231 230 230 231	53	QN	120	QN	700	006	1100	QN	1300	QN	1.3	530	3900
55* ND 240 ND 150 ND 1100 ND 0.21 220 290 290 300 300 310	54 *	QN	72			QN	250			QN	0.15	250	2200
56* ND 130	55 *	QN	240			QN	150	ND	1100	QN	0.21	220	2900
73 ND 56 300 350 ND 190 ND 040 ND 043 470 377 77 7 ND 110 450 170 64 50 350 300 360 300 360 370 370 380 390 920	56 *	QN	130			QN	230	QN	980	QN	0.39	530	3100
77* ND 110 450 170 86 780 ND 1900 ND 0.43 580 380	73	QN	56	300	350	QN	190	QN	490	QN	0.45	470	3700
83 ND 97 64 530 86 780 ND 990 ND 0.43 530 380 390 390 300 900	* 44	ND	110	450	170		1						10
86 ND 97 65 280 65 230 ND 1000 ND 0.16 530 12 91 65 470 890 290 490 ND 1900 ND 1500 953 954 130 77 254 230 230 201 <	83			64	630	86	780	QN	1900	QN	0.43	580	3800
I 65 470 270 890 250 1400 ND 1900 A 1500 920	86	QN	76	65	280	65	230	QN	1000	QN	0.16	530	1200
Average NA 160 180 640 190 530 NA 1300 NA 0.80 530 360 360 360 360 360 360 360 360 230 360 200<	16	65	470	270	890	250	1400	QN	1900	1		1500	9200
SD NA 130 130 370 250 380 NA 660 NA 15 300 200 n 1 16 130 370 236 380 0 13 1 14 15 14 16 14 15 14	Average	NA	160	180	640	190	530	NA	1300	NA	0.80	530	3600
n 1 16 10 16 11 20 0 13 1 14 15 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	SD	NA	130	130	370	250	380	NA	660	NA	1.5	300	2000
Range NA 47-470 64-450 170-1500 32-900 92-1400 NA 490-2900 NA 0.010-5.9 220-1500 990-5	u	1	16	10	16	11	20	0	13	1	14	15	16
	Range	NA	47-470	64-450	170-1500	32-900	92-1400	NA	490-2900	NA	0.010-5.9	220-1500	990-9200

Table 3. Concentrations of vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents (total amount), and liver for each case in Group 1B. Averages, standard deviations, number of positive cases (n), and ranges are also included. EDDP in liver was 530 ng/g (n = 15; SD = 300; range = 220-1500). That for methadone was 3600 ng/g (n = 16; SD = 2000; range = 990-9200). The decedent with the maximum methadone concentration here (Case 91) was known to go to the methadone clinic daily for heroin abuse.

Group 2

Group 2 consists of drug deaths in which methadone was not contributory. Table 4 contains concentrations for cases in this group. The mean concentration of methadone in vitreous was 110 ng/mL (n = 3). Peripheral blood had an average methadone concentration of 410 ng/mL (n = 3; SD = 290; range = 82-600). Averages for heart blood were as follows: EDDP-60 ng/mL (n = 2) and methadone-480 ng/mL (n = 4).

Methadone was detected in the brain at an average amount of 1000 ng/g (n = 3). The average total amount of EDDP in gastric contents was 0.017 mg (n = 2), and that for methadone was 1.0 mg (n = 3). Liver had an average EDDP concentration of 570 ng/g with a range of 400-780 ng/g (n = 3; SD = 190). The mean methadone concentration in liver was 5000 ng/g with a range of 2800-7900 ng/g (n = 3; SD = 2600). The majority of the concentrations in this group (with the exception of liver) were lower than those from Groups 1A and 1B.

Group 3

This group, which was the largest of all, contains deaths in which methadone was an incidental finding. Table 5 displays results from this group. The average methadone concentration in vitreous was 180 ng/mL (n = 16). EDDP was detected in peripheral blood at a mean concentration of 100 ng/mL (n = 6; SD = 31; range = 63-150). Methadone was detected at an average concentration of 630 ng/mL (n = 12; SD = 370; Table 4. Concentrations of vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents (total amount), and liver for each case in Group 2. Averages, standard deviations, number of positive cases (n), and ranges are also included.

	PH (ng	/mL)	PB(Fem)) (ng/mL)	HB (n	g/mL)	Brain	(g/gn)) 29 CC (mg)	Liver	(ng/g)
Case	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN
6					Q	35						
10 *												
38 *	DN	DN	DN	DN	QN	QN	DN	DN	DN	DN	QN	DN
57	DN	93	120	550	QN	440	QN	1200	0.021	0.73	400	4400
72	DN	150	DN	600	54	680	QN	1200	DN	0.71	540	2800
87	ND	80	QN	82	6 6	780	DN	700	0.013	1.7	780	7900
Average	NA	110	NA	410	60	480	NA	1000	0.017	1.0	570	5000
SD	N A	37	٧V	290	8.5	330	NA	290	0.0058	0.57	190	2600
a	0	3	1	3	2	4	0	3	2	3	3	3
Range	VN	80-150	NA	82-600	54-66	35-780	NA	700-1200	0.013-0.021	0.71-1.7	400-780	2800-7900

* Additional specimens analyzed

Table 5. Concentrations of vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents (total amount), and liver for each case in Group 3. Averages, standard deviations, number of positive cases (n), and ranges are also included.

Case	VH (ng/mL) EDDP MDN	PB(Fem) (ng EDDP 1	(mL)	HB (n EDDP	g/mL) MDN	Brain EDDP	(ng/g) MDN	GC	(mg) MDN	Liver EDDP	NGM (g/gu).
2				ND	30						
3*	100 mar										
4*											
5				QN	11						
• 9											
12				ND	240						
13				37	350						
14				62	350						
16			1	100	006					700	5300
21				30	140						
26		84	840								
27 *											
28 *											
31	ND 240			110	670	QN	1700	DN	0.21	1600	6200
33 *	ND 38	QN	450	ND	650	DN	1300	ND	0.42	300	4200
37	ND 140	86	440	57	620	QN	1200	0.088	3.8	370	2300
39	ND 110	QN	430	QN	370	QN	006	ND	0.80	480	2900
45	ND 69	DN	220	71	600			ND	1.3		
48	ND 280	150	1400	180	2300			QN	0.79	1300	19000
58	ND 290	100	890	99	970	QN	2100				
* 09	ND 32										
61	ND 100			ND	450						
64	ND 120	QN	280	QN	170						
* 69	ND 160			94	690	QN	1800	ND	0.23	1100	3700
70	ND 89			QN	380						
* 14											
75	ND 100	120	860	100	800						

Table 5 (cont'd).

l

30	NH (III	ig/mL)	PB(Fem) (ng/mL)	HB (n	g/mL)	Brain	(b/gu)	CC (I	ng)	Liver	(g/gn) -
Case	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN
78	QN	100	QN	640	QN	600	QN	1100	QN	0.71	240	3200
* 18			1									
84	QN	400	63	950	52	910					340	5600
85					ND	130						
* 06	ND	670					ND	4600				
93	ND	ND	ND	120	ND	440	ND	220	060.0	4.6	1200	4200
Average	NA	180	100	630	80	560	NA	1700	0.089	1.4	094	5700
SD	NA	160	31	370	41	470	NA	1200	0.0014	1.6	490	4800
u	0	16	9	12	12	23	0	10	2	9	10	10
Range	NA	32-670	63-150	120-1400	30-180	30-2300	NA	220-5600	0.088-0.090	0.21-4.6	240-1600	2300-19000

* Additional specimens analyzed

range = 120-1400). The average EDDP amount in heart blood was 80 ng/mL (n = 12) while that for methadone was 560 ng/mL (n = 23). The average concentration of methadone detected in brain was 1700 ng/g (n = 10). For gastric, the mean total amount of methadone was 1.4 mg (n = 9), and that for EDDP was 0.089 mg (n = 2).

The average liver concentration was 760 ng/g for EDDP (n = 10; SD = 490; range = 240-1600) and 5700 ng/g for methadone (n = 10; SD = 4800; range = 2300-19000). This maximum concentration of methadone in liver (19000 ng/g) was seen with Case 48. This was the greatest liver concentration amongst all the groups. It is very interesting to note that the decedent here was an African American female (34 years old) who was pregnant and taking methadone for heroin and cocaine addiction. The cause of death in this case was ruptured ectopic pregnancy—not drug toxicity. Even though this was the maximum concentration of methadone detected in liver for this project, studies have actually shown increased clearance rates of methadone in pregnant women (particularly during the second and third trimesters) (Nanovskaya et al., 2004).

A study by Wong et al. (2003) involved a female decedent who was six months pregnant. This woman had a known history of drug and alcohol abuse and had been taking methadone and amitriptyline (an antidepressant). The methadone levels in this case were elevated due to deficient CYP2D6 metabolism, resulting from a mutation of this enzyme. Perhaps genetic predisposition causing poor drug metabolism is the explanation for the high methadone levels seen with Case 48 in this study. Another explanation could be that the woman had acquired tolerance to methadone after possible prolonged use. This case clearly illustrates the problem of overlapping concentrations in methadone-related deaths.

Group 4

Group 4 consists of natural deaths that were aggravated by methadone. Table 6 contains information on concentrations for this group. The average concentrations of EDDP and methadone in peripheral blood were 100 ng/mL (n = 4; SD = 45; range = 60-140) and 400 ng/mL (n = 7; SD = 150; range = 160-630), respectively. The mean values in heart blood were 73 ng/mL for EDDP (n = 5) and 410 ng/mL for methadone (n = 6). The average methadone concentration in vitreous was 120 ng/mL (n = 7) and in brain was 1000 ng/g (n = 6). The average total EDDP content in stomach contents was 0.13 mg (n = 3). The mean total methadone content was 1.5 mg (n = 5).

Liver EDDP concentrations ranged from 240-1000 ng/g with an average of 560 ng/g (n = 6; SD = 290). Methadone was detected at a mean concentration of 2700 ng/g (n = 6; SD = 1500; range = 1400-5600). The maximum liver concentration (Case 80) was more than double that of any other reported amount in this group. This person died from bronchopneumonia, which was aggravated by methadone. The presence of pneumonia in such cases often indicates methadone ingestion or complications of intravenous opioid use (Ropero-Miller and Winecker, 2004; Karch and Stephens, 2000).

Group 5

The final group contains the 12 cases that are either undetermined or pending and could thus not be grouped in one of the main groups. The average vitreous concentration for methadone was 87 ng/mL (n = 8). That for brain was 1100 ng/g (n = 8). Peripheral blood had a mean EDDP concentration of 91 ng/mL (n = 5) and a mean methadone concentration of 310 ng/mL (n = 9). The averages in heart blood were 110 ng/mL for EDDP (n = 4) and 300 ng/mL for methadone (n = 9). The average total amount of

	n) HV	g/mL)	PB(Fem)	(ng/mL)	HB (n	g/mL)	Brain	1 (ng/g)	0 C ((bul)	Liver	(ng/g)
Case	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN
24	19				37	170						20
40 *	ND	69	DN	160			ND	660			580	1800
42	QN	91	60	280	58	260	ND	1100	0.12	0.86	580	2300
44	ND	160	140	440	66	450	ND	1500	0.13	1.0	720	2600
52	ND	67	ND	630								
62	ND	200										
63	ND	140	QN	470	QN	450	ND	860	QN	0.55	250	2300
67	ND	110	65	400	60	560	QN	860	QN	2.3	240	1400
80		1	140	440	110	600	ND	1100	0.14	3.0	1000	5600
verage	NA	120	100	400	73	410	NA	1000	0.13	1.5	560	2700
SD	NA	50	45	150	31	170	NA	290	0.0092	1.0	290	1500
n	0	7	4	7	5	6	0	9	3	5	9	6
Range	NA	67-200	60-140	160-630	37-110	170-600	NA	660-1500	0.12-0.14	0.55-3.0	240-1000	1400-5600

Table 6. Concentrations of vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents (total amount), and liver for each case in Group 4. Averages, standard deviations, number of positive cases (n), and ranges are also included.

Additional specimens analyzed

methadone in the gastric contents was 0.71 mg (n = 6), which was the smallest average seen for all the groups. The mean liver concentration was 670 ng/g for EDDP (n = 6) and 2900 ng/g for methadone (n = 9). The decedent with the highest concentration of 6800ng/g (Case 99) had an extensive history of prescription medication abuse, which is a common finding among methadone users. All of this information for Group 5 can be found on the following page in Table 7.

Additional Specimens

As Table 8 shows, additional specimens were available for approximately a quarter of the cases. Such samples included peripheral blood (subclavian), kidney, antemortem blood and serum, blood (type not indicated), aorta blood, and cavity fluid. At the Delaware OCME, subclavian blood is typically collected during inspections when a full autopsy is not performed (whereas heart blood is collected during autopsies). Of particular interest to this project are concentrations in kidney since this is yet another type of tissue. Unfortunately though, this specimen was only available for five cases.

For Case 33, the concentration of methadone in kidney was 1100 ng/g. For this same case, methadone was found at 1300 ng/g in brain and 4200 ng/g in liver. Similarly, for Case 95, the kidney concentration for methadone was 1300 ng/g, which closely compares to the amount of 1400 ng/g in brain. The concentration in liver was 5500 ng/g. Case 99 also had comparable findings. The amount of methadone in kidney was 2000 ng/g. That in brain was 1900 ng/g, while that in liver was 6800 ng/g. These three specific cases suggest that methadone concentrations are similar in brain and kidney. Liver, on the other hand, tends to have the highest concentration of all the samples.

Table 7. Concentrations of vitreous humor, peripheral blood (femoral), heart blood, brain, gastric contents (total amount), and liver for each case in Group 5. Averages, standard deviations, number of positive cases (n), and ranges are also included.

11 47 79 88 * 92	NUM JUU	EDDP	NDN MDN	EDDP	g/mL)	EDDP	(lag)	EDDP	(mg) MDN	EDDP	(g/gu) MDN
47 79 88 * 92		120	390								
79 88 * 92				QN	150	QN	1300		1111	ND	2600
88 * 92	ND 44	QN	230	QN	150	QN	480	ND	0.80	470	1300
92						QN	1000	QN	0.12	180	3700
		09	110	89	77					400	470
94	ND 45	ND	220	DN	350	ND	470	QN	0.27	ND	1400
95 *	ND 100	93	390	130	410	ND	1400	0.18	1.2	1100	5500
* 96	ND 58	QN	320								
70	ND 130	63	580	79	570	QN	1500	ND	1.5	390	2600
98	ND 73	ND	210	DN	250	QN	680	QN	0.34	ND	1700
* 66	ND 200	120	350	140	570	ND	1900			1500	6800
100	ND 44			QN	170						
verage	NA 87	91	310	110	300	NA	1100	NA	0.71	670	2900
SD	NA 55	29	140	25	180	NA	520	NA	0.57	510	2100
u	0 8	s	6	4	6	0	80	-	9	9	6
Range	NA 44-200	60-120	110-580	89-140	77-570	NA	470-1900	NA	0.12-1.5	180-1500	470-6800

230 ND 33
ND 33
ND 33
\square

Table 8. Concentrations of additional specimens for each case in all six groups.

Summary

Table 9 is included to summarize all the averages, standard deviations, and ranges for each of the specimens in each of the groups. Additionally, bar graphs have been incorporated to show the average concentrations of the main specimen types in each of the six groups (Figures 8-13). Both this table and these figures illustrate that the average methadone concentration was highest in Group 1A for all specimens except liver. Group 3 had the greatest concentration, and this is also the group that contained the value of 19000 ng/g (the pregnant woman). Even after eliminating this value from the average, it is still 4200 ng/g, which would be the second highest average after Group 2. Even with all the variables affecting methadone concentrations and metabolism, one would expect to see the greatest concentrations of methadone in each of the samples in Group 1A since this is the group in which death was due solely to methadone toxicity.

While viewing the bar graph for vitreous humor, one can see that EDDP is not readily detected in this matrix. Ziminski et al. (1984) studied methadone, barbiturates, and morphine in vitreous humor, blood, and several tissues. Their study showed that water-soluble drugs are more likely to diffuse from the blood to the vitreous. Drugs must also have adequate lipid solubility and must not be significantly affected by protein binding. This suggests that EDDP does not have these characteristics since it was only detected in two cases. The group with the second highest methadone average in vitreous was Group 3—the group in which methadone was an incidental finding.

Figure 9 graphically shows the results for femoral blood. As was already mentioned, the average is greatest for Group 1A. When comparing the bar graphs for all the blood and tissue samples, it is clear that the average for femoral blood stands out most

		T) HA	ig/mL)	PB(Fem)	(ng/mL)	HB (n	g/mL)	Braii	(<u>n</u> g/g)	9 C (mg)	Liver	(ng/g)
Group		EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN	EDDP	MDN
14	Average	AN	260	110	950	%	590	NA	1800	0.11	2.3	089	4000
	SD	NA	270	54	510	19	390	NA	960	0.069	2.6	250	1400
	a	1	10	~	6	9	12	0	∞	m	7	7	∞
	Range	NA	60-840	50-220	330-1800	77-130	130-1500	NA	580-3500	0.045-0.18	0.34-7.2	310-970	1500-5600
18	Average	NA	160	180	640	190	530	NA	1300	VN	0.80	530	3600
	SD	NA	130	130	370	250	380	NA	660	NA	1.5	300	2000
	Ľ	1	16	10	16	11	20	0	13	-	14	15	16
	Range	NA	47-470	64-450	170-1500	32-900	92-1400	NA	490-2900	NA	0.010-5.9	220-1500	990-9200
2	Average	NA	110	NA	410	60	480	AN	1000	0.017	1.0	570	5000
	SD	NA	37	NA	290	œ	330	NA	290	0.0058	0.57	190	2600
	c	0	m	-	ę	7	4	0	ŝ	7	ŝ	3	ę
	Range	NA	80-150	NA	82-600	54-66	35-780	NA	700-1200	0.013-0.021	0.71-1.7	400-780	2800-7900
3	Average	NA	180	100	630	80	560	AN	1700	680.0	1.4	092	5700
	SD	NA	160	31	370	41	470	NA	1200	0.0014	1.6	490	4800
	c	0	16	9	12	12	23	0	10	2	6	10	10
	Range	NA	32-670	63-150	120-1400	30-180	30-2300	NA	220-5600	0.088-0.090	0.21-4.6	240-1600	2300-19000
4	Average	NA	120	100	400	73	410	AN	1000	0.13	1.5	995	2700
	ß	NA	50	45	150	31	170	NA	290	0.0092	1.0	290	1500
	c	0	7	4	7	s	9	0	9	m	\$	9	9
	Range	NA	67-200	60-140	160-630	37-110	170-600	NA	660-1500	0.12-0.14	0.55-3.0	240-1000	1400-5600
ŝ	Average	NA	87	16	310	110	300	NA	1100	٧N	0.71	670	2900
	ß	NA	55	29	140	25	180	NA	520	NA	0.57	510	2100
	c	0	×	S	6	4	6	0	80	1	9	9	6
	Range	NA	44-200	60-120	110-580	89-140	77-570	NA	470-1900	NA	0.12-1.5	180-1500	470-6800

Table 9. Table summarizing the averages, standard deviations, number of positive cases (n), and ranges for listed specimens in each group.

Figure 8. Bar graph showing the average concentrations in ng/mL of EDDP and methadone in vitreous humor for the six groups.

Figure 9. Bar graph showing the average concentrations in ng/mL of EDDP and methadone in peripheral blood (femoral) for the six groups.

Figure 10. Bar graph showing the average concentrations in ng/mL of EDDP and methadone in heart blood for the six groups.

Figure 11. Bar graph showing the average concentrations in ng/g of EDDP and methadone in brain for the six groups.

Figure 12. Bar graph showing the average totals in mg of EDDP and methadone in gastric contents for the six groups.

Figure 13. Bar graph showing the average concentrations in ng/g of EDDP and methadone in liver for the six groups.

as being the greatest. For the other sample types, the averages are closer in range, so the bar lines are closer in height. For peripheral blood, the group with the second highest average was 1B (multiple drug deaths involving methadone), which again would be expected. Group 3 was very close though; there was only a 10 ng/mL difference between Groups 1B and 3. Methadone's metabolite had the highest average in Group 1B, and all the others were very similar in concentration.

The heart blood graph (Figure 10) reveals that concentrations in this specimen are close in range amongst the various groups (mainly Groups 1A, 1B, 2, and 3). Group 1B has the largest EDDP concentration again. Brain is similar to vitreous in that EDDP is not normally present. Figure 11 illustrates that Group 1A has the greatest concentration of methadone in brain, followed by Group 3. The figure for gastric contents is interesting as well. The average total for Group 1A is far greater than those for the other groups. Again, this would be expected since these are deaths of known methadone toxicity. Surprisingly though, all groups registered having EDDP except Group 1B. This is probably just coincidental since this compound is not readily present in gastric contents.

The bar graph for liver concentrations is the most baffling of the six. The reason for this is that Group 3 has the maximum average followed by Group 2, and that is not what would be expected. It is rather difficult to assess these results without a more detailed history for each case including how long each person had been on methadone. This information would help determine a person's potential tolerance level at the time of death. People who are poor metabolizers would have increased concentrations of methadone. From the provided histories, it is hard to determine which individuals, if any, had slower metabolisms. Thus, no additional conclusions could be made from this data.

Looking back to the cases with kidney samples, one can see that the concentration of methadone in liver is between three and four times the concentration in brain or kidney. This data compares closely to published data containing methadone concentrations in brain and liver. It is important to note though that such data is scarce. In an article by Bastos and Galante (1976) on traumatic deaths, they report median blood and brain concentrations of 0.13 mg/100 mL. A median liver concentration of 0.53 mg/100 mL is also given. From these averages, one can see that the median liver concentration is four times that of brain.

Ratios of Methadone to EDDP and Other Matrices to Blood

Most published data on methadone-related deaths focus on determining a lethal concentration range. There are also many articles devoted to the pharmacodynamics and pharmacokinetics of this drug. The specimen commonly analyzed in these studies is blood (most often peripheral). A purpose of this study was to determine if other sample types provide valuable information for the interpretation of methadone deaths. Another focus was to study whether or not ratios of parent drug to metabolite and ratios of other matrices to peripheral blood would help in classifying methadone deaths. When possible, ratios of methadone to EDDP were calculated for peripheral blood (femoral), heart blood, and liver. Additionally, ratios of methadone in vitreous, brain, and liver to methadone in femoral blood were also calculated. These results are displayed in tables for each of the groups. Averages, standard deviations, and ranges are included.

Group 1A

For methadone intoxication deaths (Table 10), the average methadone-to-EDDP ratio was 11 for peripheral blood (n = 8), 8.9 for heart blood (n = 6), and 7.0 for liver (n = 7). The average ratio of vitreous to peripheral blood for methadone was 0.27 (n = 9). The corresponding ratio for brain was 2.2 (n = 7), and that for liver was 5.7 (n = 7). Ropero-Miller and Winecker (2004) report liver-to-central ratios of 6.2 and 7.5 for two different groups of methadone-related deaths. These are in the same broad range as the average for this study. Perhaps the reason for their increased ratio is that they used central blood for the calculation rather than peripheral blood. Another explanation could be a different sampling site in the liver.

The maximum ratio of methadone to EDDP in peripheral blood was 24 and in liver was 10. These were seen with Case 74. The maximum in heart blood was 18 (Case 68). Both of these high ratios can be partially explained by information obtained from the investigative reports. Case 74 involved a 23-year-old Caucasian male who recently purchased methadone tablets from an illicit source. If this was one of his initial exposures to methadone, then it would likely result in acute overdose. The second case was a suicide, so intentional overdose would justify the high ratio.

Group 1B

Table 11 contains ratios for Group 1B. The mean methadone-to-metabolite ratio was 5.1 for peripheral blood (n = 10), 6.1 for heart blood (n = 11), and 7.7 for liver (n =15). Case 7 had the highest ratio in heart blood, and perhaps this was due to a recent switch from a morphine-based medication to methadone. Methadone is not cross-tolerant to morphine tolerance, which could help explain the ratio (Garrido and Trocóniz, 1999).

Liver/PB(Fem) Ratio for MDN 2.7-11 6.7 6.5 2.9 4.5 12 2.1 2.7 F Brain/PB(Fem) Ratio for MDN 1.5-2.9 0.55 2.8 1.8 2.9 2.1 5.2 1 MDN/EDDP Ratio | MDN/EDDP Ratio | MDN/EDDP Ratio | Vitreous/PB(Fem) Ratio for MDN 0.10 - 0.700.24 0.25 0.18 0.17 0.10 0.15 0.70 0.19 0.27 6 for Liver 5.2-10 5.2 6.7 2 8.4 7.0 1.8 for HB 6.3-18 7.4 8.9 4.3 7.4 1.7 6.7 18 6.3 9 for PB(Fem) 5.0-24 5.0 16 7.9 5.5 8.6 9.5 = Average Range Case SD 36 20 20 68 =

Table 10. Ratios for cases in Group 1A. Averages, standard deviations, number of cases (n), and ranges are also included.

Table 11. Ratios for cases in Group 1B. Averages, standard deviations, number of cases (n), and ranges are also included.

Case	MDN/EDDP Ratio for PB(Fem)	MDN/EDDP Ratio for HB	MDN/EDDP Ratio for Liver	Vitreous/PB(Fem) Ratio for MDN	Brain/PB(Fem) Ratio for MDN	Liver/PB(Fem) Ratio for MDN
-		16	2	61		
17		4.7				
19	6.1	4.3				
22		2.3				
29	6.1					
30				0.20	2.2	4.3
32			12	0.13	2.2	7.6
34	9.4	8.8	9.8	0.43	4.2	8.4
35			3.0			
41	5.5	6.9	5.0	0.22		5.6
43			8.1	0.22	2.0	7.4
46			8.8			
49	5.4	4.8		0.27		
51			11	0.31	3.1	10
53		1.2	7.4	0.17	1.9	5.6
54			8.8			
55			13			
56			5.8			
73	1.2	2	6.1	0.16	1.4	11
77	0.38	14	5 · · 3	0.65		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
83	9.8	9.1	6.6		3.0	6.0
86	4.3	3.5	2.3	0.35	3.6	4.3
91	3.3	5.6	6.1	0.53	2.1	10
Average	5.1	6.1	L'1	0.30	2.6	7.3
SD	3.1	4.1	3.1	0.16	0.87	2.3
u	10	II	15	12	10	11 -
Range	0.38-9.8	1.2-16	2.3-13	0.10-0.65	1.4-4.2	4.3-11

The average ratio of vitreous to femoral blood was 0.30 (n = 12). The average ratio of brain to femoral blood was 2.6 (n = 10), and that for liver was 7.3 (n = 11).

Group 2

Ratios for Group 2 are listed in Table 12. The mean methadone-to-EDDP ratio was 12 for heart blood (n = 2), and 8.8 for liver (n = 3). The average ratio of vitreous to peripheral blood was 0.46 (n = 3), that for brain was 4.2 (n = 3), and that for liver was 36 (n = 3). The reason for this extremely high liver-to-blood ratio is due to Case 87, which has an individual ratio of 96. This decedent was in early stages of decomposition, which could have affected the concentrations. This case is one that demonstrates why it is important to know the history and circumstances surrounding death before interpreting the drug findings.

Group 3

Table 13 consists of information for Group 3. In peripheral blood, the average ratio of methadone to EDDP was 9.3 (n = 6). The ratio in heart blood was 9.5 (n = 12) and in liver was 8.9 (n = 10). All ratios are fairly close in range here. Moreover, the maximum in each of these three groups was seen with Case 84—a Caucasian male (44 years old) with a history of asthma, Hepatitis C, and heavy smoking. The average ratio of vitreous to peripheral blood was 0.26 (n = 10). The brain-to-blood ratio was 2.3 (n = 6), and the liver-to-blood ratio was 12 (n = 7).

Group 4

The average ratio of methadone to EDDP in peripheral blood for Group 4 was 4.3 (n = 4). This data can be found in Table 14. The ratio in heart blood was 5.7 (n = 4) and in liver was 5.2 (n = 6). The mean ratio of vitreous to peripheral blood was 0.30 (n = 6).
Table 12. Ratios for cases in Group 2. Averages, standard deviations, number of cases (n), and ranges are also included.

	MDN/EDDP Ratio	MDN/EDDP Ratio	MDN/EDDP Ratio	Vitreous/PB(Fem)	Brain/PB(Fem)	Liver/PB(Fem)
Case	for PB(Fem)	for HB	for Liver	Ratio for MDN	Ratio for MDN	Ratio for MDN
57	4.6		11	0.17	2.2	8.0
72		13	5.2	0.25	2.0	4.7
87		12	10	1.0	8.5	96
Average	NA	12	8.8	0.46	4.2	36
SD	VN	0.5	3.1	0.44	3.7	52
a	1	2	3	3	3	3
Range	NA	12-13	5.2-11	0.17-1.0	2.0-8.5	4.7-96

Table 13. Ratios for cases in Group 3. Averages, standard deviations, number of cases (n), and ranges are also included.

Case	MDN/EDDP Ratio for PB(Fem)	MDN/EDDP Ratio for HB	MDN/EDDP Ratio for Liver	Vitreous/PB(Fem) Ratio for MDN	Brain/PB(Fem) Ratio for MDN	Liver/PB(Fem) Ratio for MDN
13		9.5				
14		5.6				
16		9.0	7.6			
21		4.7				
26	10					
31		6.1	3.9			
33			14	0.084	2.9	9.3
37	5.1	11	6.2	0.32	2.7	5.2
39			6.0	0.26	2.1	6.7
45		8.5		0.31		
48	9.3	13	15	0.20		14
58	8.9	15		0.33	2.4	
64				0.43		
69		7.3	3.4			
75	7.2	8.0		0.12		
78			13	0.16	1.7	5.0
84	15	18	16	0.42		5.9
93			3.5		1.8	35
Average	9.3	9.5	8.9	0.26	2.3	12
SD	3.3	3.8	5.1	0.12	0.5	11
u	9	12	10	10	9	7
Range	5.1-15	4.7-18	3.4-16	0.084-0.43	1.7-2.9	5.0-35

-	MDN/EDDP Ratio	MDN/EDDP Ratio	MDN/EDDP Ratio	Vitreous/PB(Fem)	Brain/PB(Fem)	Liver/P
Case	for PB(Fem)	for HB	for Liver	Ratio for MDN	Ratio for MDN	Ratio for
24	uis ub	4.6	in Lic	12 0 50	nie lie	1.
40	0	ien id	3.1	0.43	4.1	11
42	4.7	4.5	4.0	0.33	3.9	8.2
44	3.1	4.5	3.6	0.36	3.4	5.9
52	51			0.11		
63		y.	9.2	0.30	1.8	4.9
67	6.2	9.3	5.8	0.28	2.2	3.5
80	3.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.6		2.5	13
verage	4.3	5.7	5.2	0.30	3.0	7.7
SD	1.4	2.4	2.2	0.11	1.0	3.7
u	4	4	9	9	9	9
Danco	2167	1503	21.07	0.11-0.43	10.41	2513

Table 14. Ratios for cases in Group 4. Averages, standard deviations, number of cases (n), and ranges are also included.

That for brain was 3.0 (n = 6), and that for liver was 7.7 (n = 6). The maximum ratio of liver to blood in this group was 13 (Case 80). This was the person who died from bronchopneumonia (aggravated by drugs).

Group 5

The various ratios were determined for Group 5 as well. The average ratio of parent drug to metabolite was 4.3 for peripheral blood (n = 5), 3.5 for heart blood (n = 4), and 6.8 for liver (n = 6). It is interesting to note that the maximum ratio in liver was from Case 88, which was an exhumed body. The body was exhumed due to suspicion of poisoning, which surfaced after burial. The mean vitreous-to-blood ratio was 0.28 (n = 7). The average ratio of brain to blood was 3.2 (n = 6), and the average ratio of liver to blood was 8.9 (n = 7). This information is listed in Table 15.

Additional Specimens

When possible, ratios were determined for additional specimens as well (Table 16). The ratio of methadone to EDDP was calculated for peripheral blood (subclavian), kidney, antemortem blood and serum, blood, and aorta blood. These ratios were low for kidney and antemortem blood and serum (compared to those seen with the typical specimens). Additionally, subclavian-to-femoral ratios were determined for methadone as well as kidney-to-blood ratios.

In this study, antemortem blood was only available in five cases. Antemortem serum was also available in three of these cases. The work of Cook et al. (2000) showed that postmortem-to-antemortem (PM/AM) ratios are typically similar to central-to-peripheral (C/P) ratios. When the C/P ratio is high for a given drug, it is likely that the PM/AM ratio will also be high. In 11 cases they examined, the average PM/AM ratio

1 MD	MDN/EDDP Ratio	MDN/EDDP Ratio	MDN/EDDP Ratio	Vitreous/PB(Fem)	Brain/PB(Fem)	Liver/PB(Fem)
Case	for PB(Fem)	for HB	for Liver	Ratio for MDN	Ratio for MDN	Ratio for MDN
11	3.3					
64			2.8	0.19	2.1	5.7
88			21			
92	1.8	0.87	1.2			4.3
94				0.20	2.1	6.4
95	4.2	3.2	5.0	0.26	3.6	14
96				0.18		
16	9.2	5.9	6.7	0.22	2.6	4.5
98				0.35	3.2	8.1
66	2.9	4.1	4.5	0.57	5.4	19
Average	4.3	3.5	6.8	0.28	3.2	8.9
SD	2.9	2.1	7.0	0.14	1.3	5.7
=	5	4	9	7	9	7
Range	18-02	087-59	12-21	0 18-0 57	21-5.4	43-19

Table 15. Ratios for cases in Group 5. Averages, standard deviations, number of cases (n), and ranges are also included.

s	
2	
1	
.2	
చ	
<u> </u>	
ŝ	
-	
5	
5	
· H	
P	
· 🖌	
5	
4	
Ś	
0	
÷	
~	
œ.	
-	
63	
-9	
- 65	

1.1		4			_	_									
1											1.1			0.78	
101		7.2													
101	in the			3.8	6.6								1		
10	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	in a second					1	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	an)	10	100	1.1	2 0 2	
-	01.4		10						1.7		1			1	~~~
								1.1				0.72	0.27		
17			6.9			5.4	4.8			29					
36	*	18	77	3	9	27	28	33	11	90	40	88	95	96	00
	1A 36 17 5 5 5 5 5 5 5 5 5	IA 36 17 5	IA 36 17 9 17 9 9 17 18 18 18 11 18 11 14 14 15 17 12 <td>IA 36 17 9 72 1B 8 114 5 72 77 6.9 14 72</td> <td>IA 36 17 14 72 18 11.4 11.4 72 72 17 6.9 11.4 38 72</td> <td>IA 36 17 1.4 1.4 7.2 18 18 1.4 1.4 7.2 7.2 77 6.9 3.8 7.2 7.2 3 6 9.9 9.9 9.9</td> <td>IA 36 17 4 5 72 1B 8 14 14 72 72 77 69 14 53 32 72 3 3 54 99 99 99</td> <td>IA 36 17 14 72 18 8 14 73 72 18 69 99 99 23 54 99 99</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{bmatrix} 1A & 36 & 17 \\ 8 & & & & \\ 17 & 6.9 & & & \\ 3 & 3 & 3 \\ 6 & & & & \\ 27 & 5.4 & & & \\ 33 & 4.8 & 1.1 & 1.7 & & \\ 33 & 4.8 & 1.1 & 1.7 & & \\ 31 & 1.1 & 1.7 & & \\ 32 & 5.8 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	IA 36 17 9 72 1B 8 114 5 72 77 6.9 14 72	IA 36 17 14 72 18 11.4 11.4 72 72 17 6.9 11.4 38 72	IA 36 17 1.4 1.4 7.2 18 18 1.4 1.4 7.2 7.2 77 6.9 3.8 7.2 7.2 3 6 9.9 9.9 9.9	IA 36 17 4 5 72 1B 8 14 14 72 72 77 69 14 53 32 72 3 3 54 99 99 99	IA 36 17 14 72 18 8 14 73 72 18 69 99 99 23 54 99 99	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{bmatrix} 1A & 36 & 17 \\ 8 & & & & \\ 17 & 6.9 & & & \\ 3 & 3 & 3 \\ 6 & & & & \\ 27 & 5.4 & & & \\ 33 & 4.8 & 1.1 & 1.7 & & \\ 33 & 4.8 & 1.1 & 1.7 & & \\ 31 & 1.1 & 1.7 & & \\ 32 & 5.8 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72 & & \\ 32 & 0.72 & & \\ 31 & 0.72 $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

was 1.4. In this present study, Case 99 was the only case in which a PM/AM ratio could be calculated. The PM/AM ratio for this case was 1.3, which compares closely with the average reported by Cook et al. The C/P ratio for Case 99 was 1.6, showing that the PM/AM ratio is also similar to this value.

Summary

Table 17 is provided to summarize all the average ratios for all the different specimens and groups. Bar graphs have been included as graphical representations of this data as well (Figures 14-19). Figure 14 shows that the mean methadone-to-EDDP ratio was the greatest in Group 1A, which is again what was expected. Group 3 had the second highest ratio. In heart blood, however, the maximum ratio was seen in Group 2. This confirms that peripheral blood is the preferred specimen for analysis.

The ratios of parent drug to metabolite in liver were very similar amongst the six groups. For the ratios of alternate matrices to blood, Group 2 had the maximum average ratio for each. This is, however, due to the fact that Case 87 was in this group. Since there were only three cases, this one case significantly skewed the ratios. If this ratio of 96 for liver-to-blood (Case 87) was eliminated from the average, the average ratio would drop from 36 to 6.3. This value would place Group 2 in the same range as the other groups.

Liver/PB(Fem) **Ratio for MDN** 13-11 4.7-96 5.0-35 2.7-11 5.9 2.7 ņ 53 36 52 3 2 1.7 Brain/PB(Fem) Ratio for MDN 5-2.9 4-4.2 7-2.9 2.0-8.5 0.55 0.47 0.87 3.7 3.0 2 2.0 01 47 ŝ 3 9 Vitreous/PB(Fem) **Ratio for MDN** 0.084-0.43 0.10-0.70 0.10-0.65 0.17-1.0 0.19 0.30 0.16 0.46 0.44 0.26 0.12 0.30 0.27 12 10 6 ŝ **MDN/EDDP Ratio** for Liver 2.3-13 5.2-10 5.2-11 3.4-16 1.8 7.0 1.1 3.1 15 8 3.1 8.9 2.1 10 2.2 2 3 MDN/EDDP Ratio for HB .2-16 6.3-18 2-13 4.7-18 0.55 4.3 12 9.5 3.8 21 5.7 6.8 3 4.1 Ξ 2 9 MDN/EDDP Ratio for PB(Fem) 0.38-9.8 5.0-24 5.1-15 6.6 ٧N AN 8 5.1 3.1 10 NA 9.3 3.3 43 = -9 Average Range Average Average Range Average Range Average Range SD SD SD SD E g E F Group ≤ 18 2 3 4

3.5-13

8-4.1

0.11-0.43

3.1-9.2

4.5-9.3

3.1-6.2

Range

5

Average

5

SD

2.1

2.9

9

9

0.28 0.14

9

3.2 3

9

8.9 5.7

3.7

0.1

0.11

2.2 6.8 2.0

2.4 3.5

1.4 43

SD

4

4

4.3-19

2.1-5.4

0.18-0.57

1.2-21

0.87-5.9

1.8-9.2

Range

F

9

5

9

Table 17. Table summarizing the averages, standard deviations, number of cases (n), and ranges for listed ratios in each group.

Figure 14. Bar graph showing the average ratios of methadone to EDDP in peripheral blood (femoral) for the six groups.

Figure 15. Bar graph showing the average ratios of methadone to EDDP in heart blood for the six groups.

Figure 16. Bar graph showing the average ratios of methadone to EDDP in liver for the six groups.

Figure 17. Bar graph showing the average ratios of methadone in vitreous humor to methadone in peripheral blood (femoral) for the six groups.

Figure 18. Bar graph showing the average ratios of methadone in brain to methadone in peripheral blood (femoral) for the six groups.

Figure 19. Bar graph showing the average ratios of methadone in liver to methadone in peripheral blood (femoral) for the six groups.

Central-to-Peripheral Ratios

Since postmortem redistribution is a recognized phenomenon with methadone, its role was considered in this project. The central blood in this study was heart blood, and femoral blood was used for the peripheral blood. The ratio of heart blood to peripheral blood was calculated for each case when possible. An average of all the cases as one big group was also determined (Table 18). The average was 1.3 with a range of 0.54-9.5 (n = 47; SD = 1.3). The greatest C/P ratio of all the cases was 9.5 (Case 87). This high ratio is not surprising considering this was a decomposed body so there was ample time for the drugs to move between the tissues and blood. When specimen collection occurs more than 72 hours following death, peripheral blood is preferred for analysis as it is less subject to contamination and redistribution (Wong et al., 2003).

The average C/P ratio from this research project correlates strongly with C/P ratios reported by Ropero-Miller and Winecker (2004). For methadone-related deaths, the C/P ratio was 1.5 for Group 1 (tolerant users) and 1.8 for Group 2 (non-tolerant users). Another source sites a study in which the average C/P ratio was 1.1 (Wong et al., 2003). From published data by Levine et al. (1995), the average heart blood-to-alternate blood ratio for 15 methadone cases was calculated to be 1.3—the same exact ratio seen in this study. In the study by Levine, the alternate blood was subclavian for nine of the cases, pericardial for three of the cases, inferior vena cava for two of the cases, and femoral for just one of the cases. The mean C/P ratio from this research project closely agrees with values from the literature. Methadone is a highly lipophilic drug, so it will readily diffuse from higher concentrations to lower concentrations, redistributing in the body (Drummer, 2004).

		HB/PB(Fem)
Group	Case	Ratio for MDN
1A	50	0.54
	65	0.93
	66	0.73
	68	0.83
	74	0.67
	76	0.01
		0.51
	02	0.30
	07	1.4
IB	19	1.5
	30	1.5
	32	0.80
	34	0.96
	41	0.85
	43	0.85
	49	0.87
	51	1.2
	53	1.6
	73	0.54
	93	1.2
	96	0.82
•	01	0.82
	91	1.0
2	57	0.80
	72	1.1
	87	9.5
3	33	1.4
	37	1.4
	39	0.86
	45	2.7
	48	1.6
	58	1.1
	64	0.61
	75	0.93
	78	0.94
	84	1.0
	93	3.7
4	42	0.93
	44	1.0
	63	1.0
	67	1.4
	80	14
5	70	0.65
5	92	0.05
	04	1.6
	04	1.0
	73	1.1
	7/	1.0
	78	1.2
	77	1.0
Ave	rage	1.3
S	D	1.3
	n <u> </u>	47
Ra	nge	0.54-9.5

Table 18. Ratios of methadone in heart blood tomethadone in peripheral blood (femoral) for each case in all groups.

CONCLUSIONS AND FUTURE WORK

In conclusion, this project has demonstrated the value of analyzing alternative specimens such as brain and liver for methadone-related deaths to determine the distribution of this drug and EDDP. The usefulness of calculating ratios of parent drug to metabolite and concentrations in other matrices has also been assessed. Methadone is a highly lipophilic drug with a high volume of distribution, so it is extensively distributed throughout the body following administration. After dividing the 100 cases into six different groups based on methadone's contribution to death, the mean concentration of methadone and its metabolite were determined for each specimen in each group. Additionally, blood concentrations were related to concentrations in alternative matrices.

Group 1A (drug deaths in which death was attributable to methadone only) had the highest concentration for all specimens except liver. The maximum methadone concentration in liver (19000 ng/g) was actually seen with a case in Group 3 (deaths in which methadone was an incidental finding). Liver concentrations were greater than blood concentrations in all cases. The liver-to-blood ratios ranged from 2.7 to 96 among all groups and were, on average, between five and ten. Brain concentrations were greater than corresponding blood concentrations in all cases. Brain-to-blood ratios ranged from 1.4 to 8.5 among all groups and were, on average, between two and four. The vitreousto-blood ratios were less than or equal to one in all cases. The maximum mean methadone-to-EDDP ratio in peripheral blood was observed for Group 1A (average = 11; n = 8). No noticeable patterns were observed for these ratios in the other specimens.

It is important to note that Baselt and Cravey (1995) report fatal methadone concentrations of 1.0 mg/L in blood, 1.0 mg/kg in brain, and 3.8 mg/kg in liver. This would equate to a brain-to-blood ratio of 1.0 and a liver-to-blood ratio of 3.8. These results are from a study of only 10 methadone cases and are reported in *Disposition of Toxic Drugs and Chemicals in Man* (a popular reference material among forensic toxicologists). The average brain-to-blood ratios from this research project are all greater than one. Thus, the results from this study of 100 methadone cases could provide an additional reference guide to toxicologists concerning the distribution of methadone in tissues.

Factors such as tolerance and individual differences in metabolism make methadone deaths difficult to interpret due to overlapping therapeutic and toxic concentrations. Drug interactions also complicate interpretation, and additional drug findings are common among methadone deaths. Users will often take other drugs such as benzodiazepines to increase the effects of their highs. These drugs are known to increase respiratory depression when taken with methadone. Individuals who have acquired some tolerance to heroin or morphine can still overdose on methadone since methadone accumulates in the body and does not induce tolerance as readily as other opioids (Garrido and Trocóniz, 1999).

Another problem with interpretation of methadone-related deaths is the phenomenon of postmortem redistribution. The extent of redistribution was evaluated in this study by determining heart blood-to-peripheral blood ratios. The average C/P ratio was 1.3 (n = 47), which is very close to reported values for methadone (Levine et al., 1995; Ropero-Miller and Winecker, 2004). One case in this study had a C/P ratio of 9.5,

which was not unexpected since the decedent was in early stages of decomposition. In other words, there was a long time interval between death and specimen collection in which redistribution occurred.

The findings from this study re-emphasize the importance of obtaining additional information when evaluating the role of methadone in death. There was a considerable overlap of concentrations and ratios between the various groups. Consequently, blood concentrations in isolation are not always useful in interpreting deaths involving methadone. If a blood concentration were ever questionable, then analyzing tissues would help the toxicologist assess the distribution of methadone throughout the body. If the concentrations in these alternative specimens were within the ranges reported in this study, then the toxicologist would be able to better evaluate the blood concentrations.

This research is particularly useful for pathologists and toxicologists in methadone cases where the cause and manner of death are uncertain. This project is not suggesting that additional specimens such as brain and gastric contents be routinely analyzed for methadone cases as this would be ineffective and time-consuming. When applicable though, analysis of alternative specimens may aid in evaluating methadonerelated deaths. These cases, however, still remain challenging when little information is known (e.g. dosing history).

Future work could include more in-depth evaluation of drug interactions for each of the specific cases. Additionally, it would be interesting to attempt to retrieve additional case information from methadone clinics in the state. In several cases where high concentrations were unexplainable, it would be valuable to learn of the decedent's dosing history and how long he or she had been taking methadone. This information

.

would help in assessing the person's probable tolerance. Future work might also involve comparing these postmortem methadone concentrations with concentrations obtained from "Driving Under the Influence" cases in which the methadone users are alive. Comparing concentrations and ratios across these two groups might prove educational. APPENDIX

Table A1. Information for all 100 cases, including case number, age, sex, race, brief history, cause of death, manner of death, group, and other quantitative results.

Case	Age	Sex	Race	Brief History	COD	MOD	Group	Other Quantitative	Results	Sample
1	40	ы	ပ	- Addicted to prescription drugs	Overdose of	A	١A	Diphenhydramine	80 ng/mL	HB
				- Went to MDN clinic earlier that day						
7	99	F	ပ	- Had a lot of back pain recently due	Atherosclerotic	z	m	Diphenhydramine	80 ng/mL	HB
				to a previous injury	Heart Disease			Diazepam	110 ng/mL	HB
				- Was on two different prescriptions				Nordiazepam	200 ng/mL	Ð
				of morphine				Codeine	400 ng/mL	HB
e	55	н	ပ	- History of HTN, diabetes,	Broncho-	z	3	Diphenhydramine	27 ng/mL	Blood
				and chronic pain syndrome	pneumonia			Fluoxetine	160 ng/mL	Blood
					due to cardiac			Meprobamate	2.4 mg/L	Blood
					arrhythmia					
4	39	ц	ပ	- Was on a MDN program	Blunt impact	V	Э	None		
				- Had complained of sleep	to torso					
				disturbances						
s	54	F	ပ	- History of HTN and chronic	Obesity	z	3	Nordoxepin	37 ng/mL	PB(Fem)
				back pain						
				- Had morphine pump in abdomen						
و	22	Μ	Η	- History of drug abuse including	Ligature	S	Э	Ethanol	0.075 g/dL	Blood
				heroin, cocaine, and marijuana	hanging					
7	65	Μ	AA	- History of HTN and chronic back	Acute intoxication -	A	1B	Cyclobenzaprine	200 ng/mL	HB
				pain	multiple drugs			Amitriptyline	1300 ng/mL	HB
				- Recently switched from morphine-				Nortriptyline	450 ng/mL	HB
				based medication to MDN				Tramadol	1200 ng/mL	HB
								N-Desmethyltramadol	200 ng/mL	HB
œ	42	ц	ပ	- History of drug abuse (specifically	Multiple drug	۷	1B	Ethanol	0.029 g/dL	Hosp Serum
				cocaine and heroin)	intoxication			Alprazolam	120 ng/mL	Hosp Bld

- 3	
÷	
5	
Ħ	
5	
ల	
-	
<	
•	
-	
F	
-	

Case	Age	Sex	Race	Brief History	COD	MOD	Group	Other Quantitative	e Results	Sample
6	43	X	U	 History of sleeping and anxiety disorders Chronic alcohol abuser 	Chronic alcoholism	A	2	Flurazepam Desmethylcitalopram Desalkylflurazepam Oxycodone	23 ng/mL 66 ng/mL 30 ng/mL 200 ng/mL	田田田田
10	52	14	AA	- History of drug abuse including crack cocaine	Adverse drug reaction to cocaine	A	2	Benzoylecgonine Ecgonine Methyl Ester	200 ng/mL 28 ng/mL	Blood Blood
11	44	14	U	- Was in early stages of decomposition - Recently had heart surgery	Undetermined	D	5	Norfluoxetine Fluoxetine	430 ng/mL 1400 ng/mL	PB(Fem) PB(Fem)
12	41	M	U	 Had back problems due to a fall Heavy smoker and alcohol abuser Was part of a pain clinic 	ASCAD	z	3	Doxepin Nordoxepin Codeine	200 ng/mL 120 ng/mL 170 ng/mL	HB HB
13	38	<u>ш</u>	AA	- Had pain in knee - Complained of nausea and vomiting	ASCVD	z	3	None		1
14	40	Μ	υ	- History of injuries resulting in back pain	Seizure disorder	z	3	Venlafaxine	64 ng/mL	HB
15	46	Σ	AA	- Known heroin and crack cocaine abuser	Acute MDN intoxication	A	IA	None		The state
16	35	Σ	AA	- History of HTN, asthma, and drug abuse	Asthma	z	3	None	Terrar	Stores -
17	46	м	0	 Was on MDN due to chronic back pain History of bipolar disorder, Hep C, drug dependence, and seizure disorder - HIV positive 	Multiple drug intoxication	V	IB	Diazepam Nordiazepam Temazepam Oxazepam Fentanyl	180 ng/mL 470 ng/mL 190 ng/mL 39 ng/mL 12 ng/mL	88888
18	48	ц.	U	 History of chronic back pain and depression Was on several prescription drugs 	Adverse reaction to multiple drugs	< C	IB	Sertraline Desmethylsertraline Promethazine Diphenhydramine Meelizine Hydrocodone	1600 ng/mL 2600 ng/mL 550 ng/mL 240 ng/mL 87 ng/mL 77 ng/mL	Aorta Bld Aorta Bld Aorta Bld Aorta Bld Aorta Bld Aorta Bld

Case	Age	Sex	Race	Brief History	COD	MOD	Group	Other Quantitative	Results	Sample
19	32	W	U	- Was seen ingesting handfuls of pills	Adverse reaction	V	IB	Alprazolam	90 ng/mL	HB
				unat mignt	senin on		-		1 1 1	-
20	37	Σ	AA	- Had recently gone to the emergency	Adverse reaction	V	118	Cocaine	49 ng/mL	HB
-		1		room due to pain in his joints	to drugs			Benzoylecgonine	1800 ng/mL	HB
				associated with sickle cell anemia				Ecgonine Methyl Ester	400 ng/mL	HB
21	52	Σ	U	- Was in early stages of decomposition	ASCVD	z	3	Ethanol	0.21 g/dL	HB
				- Chronic alcohol abuser				Chlordiazepoxide	400 ng/mL	HB
-	-		-	- Had been drinking prior to collapsing				Nordiazepam	610 ng/mL	HB
				and the state of the state.				Oxazepam	110 ng/mL	HB
22	29	Μ	υ	- History of heroin abuse	Acute intoxication -	A	1B	Benzoylecgonine	530 ng/mL	HB
				The second to a star	multiple drugs			Ecgonine Methyl Ester	87 ng/mL	HB
23	38	Μ	C	 History of HTN, diabetes, HTCVD, and alcohol abuse 	Acute intoxication - multiple drugs	A	1B	Oxycodone	340 ng/mL	HB
24	58	Μ	C	- History of HTN, heart disease, and alcoholism	Chronic alcoholism	A	4	Ethanol	0.013 g/dL	PB(Fem)
25	55	Μ	AA	- History of heart problems, HTN,	Acute MDN	A	1A	Dextromethorphan	210 ng/mL	PB(Fem)
				strokes, and bipolar disorder	intoxication			Doxylamine	120 ng/mL	PB(Fem)
								Hydroxyzine	760 ng/mL	PB(Fem)
								Paroxetine	230 ng/mL	HB
26	45	M	U	- History of depression, anxiety, drug	Chronic	z	3	Nordiazepam	100 ng/mL	PB(Fem)
				and alcohol abuse, and suicide attempts	pneumonitis			Diazepam	59 ng/mL	PB(Fem)
				- Was using cocaine, heroin, and				Ecgonine Methyl Ester	160 ng/mL	PB(Fem)
	-			prescription drugs	COLLOUD	10		Benzoylecgonine	2400 ng/mL	PB(Fem)
27	65	Ľ.	U	- History of COPD	ASCVD and COPD	z	e	Oxycodone	72 ng/mL	PB(Sub)
				- Was on several prescription drugs	March					
28	19	L	U	- Lost control of vehicle and	Multiple blunt	A	e	None		
				was ejected	force injuries			Nextherapper	Lond me/mL	PH(Fast)
29	50	H	U	- Was diagnosed with bipolar manic	Acute intoxication -	s	IB	Alprazolam	93 ng/mL	PB(Fem)
				depression	multiple drugs			Olanzapine	310 ng/mL	PB(Fem)
				- Was part of a MDN clinic				Discrepant		
				- History of drug abuse				Econory/segouine	130 agend.	213(Two).

Case	Age	Sex	Race	Brief History	COD	MOD	Group	Other Quantitative	e Results	Sample
30	37	ч	C	- History of COPD, HTCVD, and crack cocaine abuse	Adverse reaction to multiple drugs	V	IB	Paroxetine Temazepam Albrazolam	560 ng/mL 22 ng/mL 42 ng/mL	PB(Fem) HB HB
31	43	Μ	C	- Had lower back brace due to motor vehicle accident 10 years ago	Lobar pneumonia	z	e	None		
32	49	ц	AA	- Was a recovering heroin addict	Adverse reaction to multiple drugs	A	IB	Cocaine Ecgonine Methyl Ester	170 ng/mL 260 ng/mL	PB(Fem) PB(Fem)
33	44	ц	U	- History of depression, anxiety, sleep apnea, and severe asthma	COPD	z	e	None		
34	38	Σ	U	 Was on MDN up to 3 times daily for chronic back pain 	Adverse effects of multiple drugs	×	IB	None		
35	22	M	AA	- History of drug abuse including cocaine	Acute intoxication - multiple drugs	A	IB	Benzoylecgonine	220 ng/mL	Hosp Bld
36	58	Μ	AA	 History of COPD Went to MDN clinic every morning 	Acute MDN intoxication	×	IA	None		
37	50	ц	C	 History of back pain and crack cocaine abuser Heavy smoker 	Broncho- pneumonia	z	m	Nordiazepam Diazepam Ecgonine Methyl Ester Benzoylecgonine	330 ng/mL 290 ng/mL 44 ng/mL 810 ng/mL	PB(Fem) PB(Fem) PB(Fem) PB(Fem)
38	21	M	U	- History of drug abuse for 6 years	Adverse effects of alpha methyltryptamine	×	2	Delta-9 carboxy THC	6.5 ng/mL	HB
39	55	Z	U	- History of Hep C, COPD, and abuse of over-the-counter medications	COPD with emphysema and fibrosis	z	ω	None	No openio	
40	48	M	C	 Was on several prescription drugs Previous suicide attempts 	ASCVD complicated by adverse reaction to drugs	V	4	Ethanol Nordiazepam Oxazepam Temazepam Diazepam	0.095 g/dL 1100 ng/mL 120 ng/mL 170 ng/mL 1100 ng/mL	PB(Fem) PB(Fem) PB(Fem) PB(Fem) PB(Fem)

÷
P
Ħ
õ
9
◄
P.
Å.
Ē

Case	Age	Sex	Race	Brief History	COD	MOD	Group	Other Quantitative	: Results	Sample
41	51	ц	ပ	- History of prescription drug abuse,	Adverse reaction	۲	18	Amitriptyline	330 ng/mL	PB(Fem)
				insomnia, Hep C, and depression	to multiple drugs			Paroxetine	250 ng/mL	PB(Fem)
				- Traded her medications with others				Diphenhydramine	430 ng/mL	PB(Fem)
				- Was on MDN				Nortriptyline	440 ng/mL	PB(Fem)
								Cocaine	27 ng/mL	PB(Fem)
								Benzoylecgonine	85 ng/mL	PB(Fem)
42	50	Σ	ပ	- History of COPD, IV drug abuse,	COPD aggravated	A	4	Nordiazepam	44 ng/mL	PB(Fem)
				Hep C, and opiate dependency	by multiple drugs			Ecgonine Methyl Ester	470 ng/mL	PB(Fem)
				- Heavy smoker				Cocaine	41 ng/mL	PB(Fem)
								Benzoylecgonine	4100 ng/mL	PB(Fem)
								Morphine	43 ng/mL	PB(Fem)
\$	40	Σ	ပ	- History of spina bifida, HTCVD, and	Adverse effects	۲	1B	Ethanol	0.22 g/dL	PB(Fem)
				heroin and alcohol abuse	of multiple drugs			Oxazepam	30 ng/mL	PB(Fem)
				- Was part of a MDN clinic				Nordiazepam	56 ng/mL	PB(Fem)
4	48	ц	ပ	- Chronic drug and alcohol addict	ASCAD	z	4	Amitriptyline	190 ng/mL	HB
				- Recently admitted to a MDN clinic	complicated			Nortriptyline	130 ng/mL	HB
				- History of Hep C and COPD	by drugs			Chlorpromazine	360 ng/mL	HB
								Doxepin	100 ng/mL	HB
								Phenobarbital	10 mg/L	HB
45	43	Σ	ပ	- History of heavy tobacco abuse,	ASCVD	z	e	Nordiazepam	90 ng/mL	PB(Fem)
				COPD, HTCVD, obesity, and sleep	and HCVD			Diazepam	100 ng/mL	PB(Fem)
				apnea				Ecgonine Methyl Ester	170 ng/mL	PB(Fem)
								Cocaine	92 ng/mL	PB(Fem)
-								Benzoylecgonine	1300 ng/mL	PB(Fem)
								Oxycodone	65 ng/mL	PB(Fem)

Sample)g Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	, Hosp Serun		PB(Fem)	, PB(Fem)		, PB(Sub)	, PB(Sub)	L PB(Sub)				PB(Fem)	, PB(Fem)	PB(Fem)	L PB(Fem)	, PB(Fem)			PB(Fem)	L PB(Fem)	
e Results	0.089 g/100	870 ng/g	4 mg/kg	m 280 ng/g	160 ng/g	930 ng/g	200 ng/g	210 ng/g	11 ng/g	0.037 g/dL		64 ng/mL	370 ng/mL		530 ng/ml	150 ng/mL	3500 ng/m]				31 ng/mL	290 ng/mI	41 ng/mL	4000 ng/m]	4.4 ng/mL			96 ng/mL	1400 ng/m	
Other Quantitativ	Ethanol	Diphenhydramine	Phenobarbital	Alpha-hydroxyalprazola	Cocaine	Benzoylecgonine	Ecgonine Methyl Ester	Cocaethylene	Fentanyl	Ethanol		Ecgonine Methyl Ester	Benzoylecgonine		Ecgonine Methyl Ester	Cocaine	Benzoylecgonine		None		Alprazolam	Ecgonine Methyl Ester	Cocaine	Benzoylecgonine	Fentanyl			Ecgonine Methyl Ester	Benzoylecgonine	
Group	1B									5		ε			1B				1A		1B				4			1B		
MOD	۲									D		z			۷				۲		A				A			۷		
COD	Adverse reaction	to multiple drugs								Undetermined		Ruptured ectopic	pregnancy		Adverse effects	of multiple drugs			Acute MDN	intoxication	Adverse reaction	to multiple drugs			HTCVD	complicated	by drugs	Adverse reaction	to multiple drugs	
Brief History	- Was in advanced stages of	decomposition	- History of prescription drug abuse,	alcohol abuse, depression, and	anxiety	- Had Lupus				- Was embalmed	- History of alcohol abuse	- History of asthma	- Was on MDN for heroin and cocaine	addiction	- History of chronic alcohol and	cocaine abuse and congestive heart	failure	- HIV positive	- History of depression and suicide	attempts	- History of depression and	drug abuse			- History of back pain for 10 years	-History of pain medication and	alcohol abuse	- History of drug abuse including	cocaine for 20 years	
Race	ပ							_		AA		AA			AA				AA		ပ				ပ			ပ		
e Sex	Σ						,			ц		ч			<u>ш</u>				ц		Σ				Σ			X		
e Agi	46					_				55		34			48				16		24				45			39		
Cas	\$									47		48			49				ŝ		51				52			S		

Ġ
ont'
<u>s</u>
I
ubke
Ĥ

÷
Ξ.
00
A1
9
9
La

Case	Age	Sex	Race	Brief History	COD	MOD	Group	Other Quantitative	Results	Sample
55	46	Σ	υ	- Was diagnosed as bipolar	Adverse reaction	A	IB	Ethanol	0.01 g/dL	HB
				- History of prescription drug abuse	to multiple drugs			Nordiazepam	87 ng/mL	PB(Sub)
								Diazepam	180 ng/mL	PB(Sub)
								Alprazolam	120 ng/mL	PB(Sub)
56	34	Μ	c	- History of heroin abuse	Adverse reaction	A	IB	Ecgonine Methyl Ester	88 ng/mL	PB(Sub)
					to multiple drugs			Benzoylecgonine	1200 ng/mL	PB(Sub)
57	46	ц	υ	- Was part of a MDN clinic	Adverse reaction	A	2	Ethanol	0.13 g/dL	PB(Fem)
					to opiates			Amitriptyline	650 ng/mL	PB(Fem)
				H.C.	and ethanol			Nortriptyline	310 ng/mL	PB(Fem)
58	17	Σ	C	 Previous suicide attempts Was part of a MDN clinic for 	Gunshot wound to head	s	m	None		
				heroin abuse						
59	44	Μ	c	- Chronic back pain for 4 years	Adverse effects	A	IA	None		
1	-			 Was taking several prescription drugs 	of MDN					
60	27	Z	C	- Was on MDN for heroin abuse	Asphyxia due to	s	~	Morphine	370 ng/mL	PB(Sub)
				- Smoked cigarettes dipped in	hanging			Phencyclidine	210 ng/mL	PB(Sub)
				formaldehyde						
61	47	Χ	C	- History of HTCVD and alcohol and	ASCVD	z	ŝ	Ethanol	0.12 g/dL	HB
	10	2	4	11:	APOLI MIN	-	-	A mitminte dime.	10100 ma/m1	DD/Ch)
70	90	Σ	5	- History of alcohol abuse, diabetes,	ASUVD	¥	4	Nortrintvline	580 na/ml	PB(Sub)
				- Stole MDN pills	by drugs			Venlafaxine	800 ng/mL	PB(Sub)
		ñ	-	Livery of advint and telecopture	Auto drug	-	4	Desmethylvenlafaxine	300 ng/mL	PB(Sub)
				Partie- quelle retains altaure	antoxi-stoon			Butalbital	0.98 mg/L	PB(Sub)
ī	-		-	- Massimo of protocophicits and phone	Aurate MUN	-	14	Alprazolam	110 ng/mL	PB(Sub)
63	24	Μ	υ	- History of IV drug abuse including	ASCAD -	A	4	None		
				heroin	MDN contributory					
64	46	M	υ	- History of depression, suicide	ASCVD, HCVD,	z	e	Nordiazepam	620 ng/mL	PB(Fem)
				attempts, alcohol and prescription	and cirrhosis			Diazepam	280 ng/mL	PB(Fem)
				drug abuse, and chronic pain				1 emazepam	77 ng/mL	PB(Fem)

Sample		PB(Fem)			Blood	HB HB		PB(Fem) PB(Fem) PB(Fem)	PB(Fem) PB(Fem)		8
e Results		48 ng/mL			60 ng/mL 71 ng/mL	51 ng/mL 47 ng/mL		5700 ng/mL 400 ng/mL 1000 ng/mL	0.17 g/dL 69 ng/mL		ELMCOMP.
Other Quantitative	None	Temazepam	None	None	Nordiazepam Diazepam	Alprazolam Morphine	None	Benzoylecgonine Cocaine Ecgonine Methyl Ester	Ethanol Oxycodone	None	None
Group	IA	IA	4	IA	б	m	e	5	18	1A	ŝ
MOD	A	V	×	s	z	z	z	A	V	A	z
COD	Acute MDN intoxication	Adverse reaction to MDN	ASCVD and HCVD complicated by MDN	Acute MDN intoxication	Acute hemorrhagic pancreatitis	Interstitial pneumonia	Hypertension	Adverse reaction to crack cocaine	Acute drug intoxication	Acute MDN intoxication	ASCVD
Brief History	 Was a recovering heroin addict and recently started MDN treatments Went to MDN clinic the previous day 	 History of IV drug abuse including heroin Was on MDN for back pain 	 History of chronic back pain and HTN 	 History of bipolar disorder, chronic pain, depression, and suicide attempts Heavy smoker 	 Recently had migraines and was under a lot of stress 	 History of asthma Complained of nausea and difficulty breathing 	- History of HTN and drug abuse	 Was part of a MDN clinic History of crack cocaine abuse 	 History of alcohol and prescription pain medication abuse 	-History of prescription drug abuse - Purchased MDN tablets from an an unknown source	 History of bipolar disorder and heroin abuse Went to MDN clinic daily
Race	AA A	C	U .	C	C	J	C	C	C	C	C
Sex	X	н	X	ц	Σ	M	M	M	W	X	Ľ.
Age	40	27	51	32	41	40	49	38	50	23	35
Case	65	99	67	68	69	70	11	72	73	74	75

Case	Age	Sex	Race	Brief History	COD	MOD	Group	Other Quantitative	: Results
76	53	X	U	 History of injuries and accidental medication overdoses Was on MDN for lower back pain 	Adverse reaction to MDN	V	IA	None	
11	49	<u>с</u> ь	υ	- Was under a doctor's care for a bladder problem and ear infection	Adverse reaction to drugs	A	1B	Oxycodone	29 ng/mL
78	43	Σ	U	 History of bipolar disorder, depression, and suicide attempts History of drug abuse including crack cocaine and prescription drugs 	ASCAD and HCVD	z	ω.	None	
79	45	<u>د.</u>	C	- History of depression and intentional overdoses	Cardiac dysrhythmia	n	S	Sertraline Bupropion Citalopram Desmethylcitalopram Phenobarbital	240 ng/ml 120 ng/ml 500 ng/ml 90 ng/mL 0.92 mg/L
80	23	M	U	 Had viral meningitis Complained of vomiting and headaches 	Broncho- pneumonia aggravated by drugs	A	4	None	
81	53	<u>ст</u>	AA	 History of HTN, Hep C, and cirrhosis Was on MDN for heroin addiction Complained of vomiting and dizziness 	Hep C cirrhosis	z	3	None	
82	38	ц.	U	- Was on MDN for chronic back pain	Acute MDN intoxication	A	1A	None	
83	28	M	υ	- History of cocaine and heroin abuse	Adverse reaction to multiple drugs	V	1B	Ecgonine Methyl Ester Benzoylecgonine	120 ng/ml 980 ng/ml
84	44	M	U	 History of shoulder pain, Hep C, and asthma Heavy smoker 	Pneumonia and COPD	z	6	None	2.00 million
85	30	M	C	- Careless smoking considered the	Smoke inhalation	A	3	Carboxyhemoglobin	51 %COH

PB(Fem) PB(Fem) PB(Fem) HB

PB(Fem) PB(Fem)

HB

51 %COHb

Smoke inhalation and thermal burns

probable cause

PB(Fem)

PB(Sub)

Sample

Age Sex Race Brief History COD MOD Group 35 M AA - History of depression and HTN Adverse reaction A 1B	Sex Race Brief History COD MOD Group M AA - History of depression and HTN Adverse reaction A 1B	Race Brief History COD MOD Group AA - History of depression and HTN Adverse reaction A 1B	Brief History MOD Group History of depression and HTN Adverse reaction A 1 1 1	COD MODGroup Adverse reaction A 1B	MOD Group A 1B	Group 1B		Other Quantitative Venlafaxine	Results 300 ng/mL	Sample PB(Fem)
- Had been vomiting blood to multiple drugs	- Had been vomiting blood to multiple drugs	- Had been vomiting blood to multiple drugs	- Had been vomiting blood to multiple drugs	to multiple drugs			3	Desmethylvenlafaxine	140 ng/mL	
								Ecgonine Methyl Ester	84 ng/mL	PB(Fe
50 F C - Was in early stages of decomposition Multiple drug U	F C - Was in early stages of decomposition Multiple drug U	C - Was in early stages of decomposition Multiple drug U	- Was in early stages of decomposition Multiple drug U	Multiple drug U	Ъ		2	Ethanol	0.016 g/dL	HB
- Had several back surgeries intoxication - History of depression	- Had several back surgeries intoxication - History of depression	- Had several back surgeries - History of depression	- Had several back surgeries - History of depression	intoxication				Oxycodone	45 ng/mL	PB(Fem
37 F C - Was exhumed due to possible Pending P	F C - Was exhumed due to possible Pending P	C - Was exhumed due to possible Pending P	- Was exhumed due to possible Pending P	Pending P	Ч		S	Ethanol	0.073 g/dL	Brain
poisoning	poisoning	poisoning	poisoning					Methanol	0.062 g/dL	Brain
23 M C - History of alcohol, cocaine, and Adverse reaction A	M C - History of alcohol, cocaine, and Adverse reaction A	C - History of alcohol, cocaine, and Adverse reaction A	- History of alcohol, cocaine, and Adverse reaction A	Adverse reaction A	۲		1 A	None		
heroin abuse to MDN	heroin abuse to MDN	heroin abuse to MDN	heroin abuse to MDN	to MDN		-				
58 M C - History of depression and Hep C Gunshot wound S	M C - History of depression and Hep C Gunshot wound S	C - History of depression and Hep C Gunshot wound S	- History of depression and Hep C Gunshot wound S	Gunshot wound S	S		3	Ethanol	0.23 g/dL	PB(Sub)
to the head	to the head	to the head	to the head	to the head				6-Acetylmorphine	15 ng/mL	PB(Sub)
								Codeine	50 ng/mL	PB(Sub)
								Morphine	470 ng/mL	PB(Sub)
44 F C - Went to MDN clinic daily for heroin Combined S	F C - Went to MDN clinic daily for heroin Combined S	C - Went to MDN clinic daily for heroin Combined S	- Went to MDN clinic daily for heroin Combined S	Combined S	S		1B	Ethanol	0.032 g/dL	PB(Fem)
abuse drug toxicity	abuse drug toxicity	abuse drug toxicity	abuse drug toxicity	drug toxicity				Ecgonine Methyl Ester	490 ng/mL	PB(Fem)
- History of depression	- History of depression	- History of depression	- History of depression					Cocaine	62 ng/mL	PB(Fem)
								Benzoylecgonine	2300 ng/mL	PB(Fem)
24 F C - History of bipolar disorder and Pending	F C - History of bipolar disorder and Pending	C - History of bipolar disorder and Pending	- History of bipolar disorder and Pending	Pending		Ρ	5	None		
suicide attempts	suicide attempts	suicide attempts	suicide attempts							
- Many MDN pills of a recent	- Many MDN pills of a recent	- Many MDN pills of a recent	- Many MDN pills of a recent							
prescription were missing	prescription were missing	prescription were missing	prescription were missing							
22 F C - Driver was under the influence of Blunt force /	F C - Driver was under the influence of Blunt force /	C - Driver was under the influence of Blunt force	- Driver was under the influence of Blunt force /	Blunt force /		-	3	Ethanol	0.11 g/dL	PB(Fem)
drugs and alcohol trauma	drugs and alcohol trauma	drugs and alcohol trauma	drugs and alcohol trauma	trauma				Meprobamate	6.1 ng/mL	PB(Fem)
24 M C - History of drug and alcohol abuse Pending P	M C - History of drug and alcohol abuse Pending P	C - History of drug and alcohol abuse Pending P	- History of drug and alcohol abuse Pending P	Pending P	P .		5	Ecgonine Methyl Ester	89 ng/mL	PB(Fem)
- Recently purchased MDN from	- Recently purchased MDN from	- Recently purchased MDN from	- Recently purchased MDN from					Benzoylecgonine	590 ng/mL	PB(Fem)
a friend	a friend	a friend	a friend							
53 F C - Not available Pending I	F C - Not available Pending I	C - Not available Pending I	- Not available Pending I	Pending		<u>.</u>	5	Norpropoxyphene	340 ng/mL	PB(Fem)

f	
-	
-	
-	
-	
-	
-	
_	
-	
-	
-	
41	
_	
_	
-	
Ē	
I	

	2	INACC.	DIRI HISTORY	COD	MOD	Group	Other Quantitative Results 5.	Sample
96 54	M	C	- Recently diagnosed with acute	Pending	Р	5	Testing not completed	
1		1	bronchitis					
97 32	W	C	- Not available	Pending	Ρ	5	Testing not completed	
98 43	M	c	- History of IV drug abuse, accidental	Pending	Р	5	Testing not completed	
			overdoses including crack cocaine					
	_		and prescription drugs					
99 33	H	U	- History of prescription drug abuse	Pending	Ρ	5	Testing not completed	
100 50	1	0	- History of chronic pain, depression,	Pending	Р	5	Testing not completed	
			arthritis, back spasms, COPD, and					
		1	HTCVD					
	_	_	- Heavy smoker					

REFERENCES

- Ali RL and Quigley AJ. Accidental drug toxicity associated with methadone maintenance treatment. *Med J Australia* 170: 100-101 (1999).
- Andollo W. Quality assurance in postmortem toxicology. In Drug Abuse Handbook, Karch SB, Ed. CRC Press, Boca Raton, FL, 1998.
- Bastos ML and Galante L. Toxicological findings in victims of traumatic deaths. J Forensic Sci. 21: 176-186 (1976).
- Barrett DH, Luk AJ, Parrish RG, and Jones TS. An investigation of medical examiner cases in which methadone was detected, Harris County, Texas, 1987-1992. *J Forensic Sci.* 41: 442-448 (1996).
- Baselt RC and Cravey RH. Disposition of Toxic Drugs and Chemicals in Man, 4th ed. Chemical Toxicology Institute, Foster City, CA, 1995.
- Baselt RC. Disposition of Toxic Drugs and Chemicals in Man, 7th ed. Biomedical Publications, Foster City, CA, 2004.
- Boulton DW, Arnaud P, and DeVane CL. A single dose of methadone inhibits cytochrome P-4503A activity in healthy volunteers as assessed by the urinary cortisol ratio. *Br J Clin Pharmacol.* 51: 350-354 (2001a).
- Boulton DW, Arnaud P, and DeVane CL. Pharmacokinetics and pharmacodynamics of methadone enantiomers after a single oral dose of racemate. *Clin Pharmacol Ther.* 70: 48-57 (2001b).
- Caplehorn JRM and Drummer OH. Mortality associated with New South Wales methadone programs in 1994: lives lost and saved. *Med J Australia* 170: 104-109 (1999).
- Cook DS, Braithwaite RA, and Hale KA. Estimating antemortem drug concentrations from postmortem blood samples: the influence of postmortem redistribution. *J Clin Pathol.* 53: 282-285 (2000).
- Dale O, Hoffer C, Sheffels P, and Kharasch ED. Disposition of nasal, intravenous, and oral methadone in healthy volunteers. *Clin Pharmacol Ther*. 72: 536-545 (2002).
- DiMaio DJ and DiMaio T. Fatal methadone poisoning in children: report of four cases. J Forensic Sci. 18: 130-134 (1973).

- Drummer OH. Postmortem toxicology of drugs of abuse. Forensic Sci Int. 142: 101-113 (2004).
- Foster DJ, Somogyi AA, and Bochner F. Methadone N-demethylation in human liver microsomes: lack of stereoselectivity and involvement of CYP3A4. Br J Clin Pharmacol. 47: 403-412 (1999).
- Gagajewski A and Apple FS. Methadone-related deaths in Hennepin County, Minnesota: 1992-2002. J Forensic Sci. 48: 668-671 (2003).
- Greene MH, Luke JL, and DuPont RL. Opiate overdose deaths in the District of Columbia. II. Methadone-related fatalities. *J Forensic Sci.* 19: 575-584 (1974).
- Garrido MJ and Trocóniz IF. Methadone: a review of its pharmacokinetic/ pharmacodynamic properties. J Pharmacol Toxicol Methods. 42: 61-66 (1999).
- Inaba DS and Cohen WE. Uppers, Downers, All Arounders: Physical and Mental Effects of Psychoactive Drugs, 4th ed. CNS Publications, Inc.TM, Ashland, OR, 2000.
- Iribarne C, Berthou F, Baird S, Dreano Y, Picart D, Bail JP, Beaune P, and Menez JF. Involvement of cytochrome P450 3A4 enzyme in the N-demethylation of methadone in human liver microsomes. *Chem Res Toxicol*. 9: 365-373 (1996).
- Jenkins AJ and Cone EJ. Pharmacokinetics of specific drugs. In Drug Abuse Handbook, Karch SB, Ed. CRC Press, Boca Raton, FL, 1998.
- Karch SB and Stephens BG. Toxicology and pathology of deaths related to methadone: retrospective review. *West J Med.* 172: 11-14 (2000).
- Kerrigan S and Goldberger BA. Opioids. In *Principles of Forensic Toxicology*, 2nd ed. Levine B, Ed. AACC Press, Washington, DC, 2003.
- Leavitt SB, Shinderman M, Maxwell S, Eap CB, and Paris P. When "enough" is not enough: new perspectives on optimal methadone maintenance dose. *Mount Sinai* J Med. 67: 404-411 (2000).
- Levine B, Wu SC, Dixon A, and Smialek JE. Site dependence of postmortem blood methadone concentrations. *Am J Forensic Med Pathol.* 16: 97-100 (1995).
- Milroy CM and Forrest AR. Methadone deaths: a toxicological analysis. J Clin Pathol. 53: 277-281 (2000).
- Moore CM. Principles of Solid-Phase Extraction. Am Assoc Clin Chem. 15: 205-218 (1994).

- Nanovskaya TN, Deshmukh SV, Nekhayeva IA, Zharikova OL, Hankins GD, and Ahmed MS. Methadone metabolism by human placenta. *Biochem Pharmacol*. 68: 583-591 (2004).
- Oda Y and Kharasch ED. Metabolism of methadone and levo-alpha-acetylmethadol (LAAM) by human intestinal cytochrome P450 3A4 (CYP3A4): potential contribution of intestinal metabolism to presystemic clearance and bioactivation. J Pharmacol Exp Ther. 298: 1021-1032 (2001).
- Rio J, Hodnett N, and Bidanset JH. The determination of propoxyphene, norpropoxyphene, and methadone in postmortem blood and tissues by highperformance liquid chromatography. J Anal Toxicol. 11: 222-224 (1987).
- Rogers WO, Hall MA, Brissie RM, and Robinson CA. Detection of alprazolam in three cases of methadone/benzodiazepine overdose. *J Forensic Sci.* 42: 155-156 (1997).
- Ropero-Miller JD and Winecker RE. Evaluation of debated questions: do postmortem methadone concentrations of alternative specimens have interpretive value? *Abstracts of the Society of Forensic Toxicologists Meeting*, Washington, DC, 2004.
- Spiller HA. Postmortem oxycodone and hydrocodone blood concentrations. *J Forensic* Sci. 48: 429-431 (2003).
- Toombs JD and Kral LA. Methadone treatment for pain states. Am Fam Physician. 71: 1353-1358 (2005).
- Wang JS and DeVane CL. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. *Drug Metab Dispos*. 31: 742-747 (2003).
- Wolf BC, Lavezzi WA, Sullivan LM, and Flannagan LM. Methadone-related deaths in Palm Beach County. *J Forensic Sci.* 49: 375-378 (2004).
- Wolff K. Substitute prescribing. In Drug Abuse Handbook, Karch SB, Ed. CRC Press, Boca Raton, FL, 1998.
- Wong SH, Wagner MA, Jentzen JM, Schur C, Bjerke J, Gock SB, and Chang CC. Pharmacogenomics as an aspect of molecular autopsy for forensic pathology/toxicology: does genotyping CYP 2D6 serve as an adjunct for certifying methadone toxicity? J Forensic Sci. 48: 1406-1415 (2003).
- Ziminski KR, Wemyss CT, Bidanset JH, Manning TJ, and Lukash L. Comparative study of postmortem barbiturates, methadone, and morphine in vitreous humor, blood, and tissue. *J Forensic Sci.* 29: 903-909 (1984).

