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ABSTRACT

SIMULATING HARDWARE—LEVEL

BUFFER-OVERFLOW PROTECTION

By

Matthew R. Fletcher

In the realm of computer security, buffer~overflow attacks have been a serious

problem for over 15 years. Beginning with the original attack against the f ingerd

service, hundreds of programs, of many different natures, have been targeted and

exploited by buffer-overflows.

The vast majority of buffer-overflow attacks work by targetting both return ad-

dresses and function pointers. A hardware-level solution, Secure Bit, has been pro-

posed to help protect the integrity of addresses. Secure Bit works by modifying the

semantics of a processor’s instructions such that an address can be verified before

jumping to it. Secure Bit is also meant to be transparent, in that it does not affect

the regular operation of the processor. The goal of this thesis is to study the architec-

tural impact of Secure Bit on a simulated processor using the SimpleScalar toolset.

The conclusion is that Secure Bit indeed provides protection from buffer-overflow

attacks without disrupting the normal execution of the processor.
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Chapter 1

Introduction

Over the last decade, online security has become a major issue in both the field

of Computer Science and in the eye of the public. Identity theft, denial of service at-

tacks, and Internet worms have severely affected not only systems administrators, but

also ordinary end users. Internet worms have been particularly bad since they have

affected the most users and are the easiest to spread. Unknowing users can spread

worms by simply opening email attachments, installing non—trustworthy software, or

running an unpatched operating system. Many times worms only cause a headache for

a single user, but sometimes, they can cost millions of dollars to companies dependent

on stable and secure systems.

Worms and other forms of attack operate by targeting software flaws that exist

primarily at the programming level. A technique called the “buffer-overflow attac ”

exploits the fact many programming languages do not perform automatic bounds

checking on data buffers. Using this technique, an attacker can force a program to

execute code it was never meant to—~code that is invariably malicious. The first major

Internet worm, the Morris Worm of 1988, was the result of a buffer-overflow attack

against the fingerd service provided by many UNIX systems [1]. Since then, buffer—

overflow attacks have become a well—known problem [2], resulting in the infamous



MS Blaster [3], Sasser [4], and Apache Slapper [5] worms. Despite the publicity

surrounding and attention placed on buffer—overflow, to this day it remains the most

prevalent form of attack.

Various software techniques have been developed to prevent buffer-overflow at-

tacks; however, each technique has its weaknesses. That is, they either induce a

significant penalty in a program’s performance, do not protect against all common

forms of buffer-overflow, or have been defeated by crackers [6, 7, 8]. Secure Bit [9]

is a new hardware protection scheme that promises to both prevent buffer-overflow

and remain completely transparent to programs. Support for Secure Bit requires only

minimal modifications to the compiler, operating system, and processor.

The goal of this research is to understand the impact of Secure Bit on a sim-

ulated processor. While simple in theory, does the technique require substantial

modifications to the hardware? Does it create harmful pipeline hazards or memory

latencies that slow down the system? And most importantly, does Secure Bit truly

protect against buffer-overflow attacks? These are all important questions that must

be answered before Secure Bit becomes a viable solution.

To this end, we use the SimpleScalar processor simulation software [10] to analyze

Secure Bit. The SimpleScalar system is designed to be easily extensible and under-

standable, yet still provide detailed and useful statistics. This makes SimpleScalar

an ideal platform for Secure Bit simulation.

This thesis makes several contributions:

0 We describe, the buffer-overflow problem and classify the most commonly used

type of software exploit: the address-corrupting buffer-overflow attack. Then,

we describe how this type of attack can be prevented using the Secure Bit

address protection scheme.

0 We identify the relevant components of SimpleScalar and detail the modifi-

cations required to correctly implement Secure Bit. We find the amount of



modification required to be minor.

0 Using the modified simulators, we show how Secure Bit protects addresses and

stops programs from executing malicious code. We also show that Secure Bit

has almost no affect on the system’s performance.

The remainder of this thesis is organized as follows. Chapter 2 further describes

how buffer-overflow works and how Secure Bit can stop this kind of attack. Chapters 3

and 4 discuss the organization and architecture of SimpleScalar and the work done

to implement Secure Bit into the simulators. Chapter 5 demonstrates correct Secure

Bit functionality in SimpleScalar, and then charts the performance of Secure Bit. We

conclude with a summary of the results and recommendations about how to best

integrate Secure Bit into a processor.



Chapter 2

Background

The “buffer-overflow attack” is a general term used to describe a class of vari-

ous attacks that share something in common—they all operate by overwriting valid

data with malicious data. Data targeted by buffer-overflow attacks can be anything,

such as stored passwords, but the vast majority of attacks target stored program ad-

dresses. By changing an address, an attacker forces a program to mistakenly execute

deleterious code instead of the program’s own code. We call this class of attacks

“address—corrupting” buffer-overflow attacks. This chapter will focus on character-

izing precisely what address-corrupting buffer-overflow attacks are and how some

variations of them work. A new hardware-based solution to the problem, Secure Bit,

is also described.

2.1 Buffer-overflow Attacks

Most programming languages allow a programmer to allocate a buffer of data,

whether it be on the stack or on the heap. Unfortunately, many languages such as

C and C++ do not provide any sort of automatic bounds checking on these buffers.

Further, bounds checking mechanisms (performed by either the runtime environment

or the programmer) can sometimes be fooled. Buffer-overflows take advantage of this



weakness—by overflowing a buffer with carefully constructed data, an attacker can

manipulate the execution of a program. As mentioned previously, although there

are several variations of the buffer-overflow attack, most of them specifically target

addresses used in the regular operation of a program. Usually, these are function

return addresses saved on the stack; however, they can be other addresses, such as

those used by a function pointer.

2.1.1 The Stack

Every program running on a system divides its memory into several logical re-

gions. Two of these regions are the data and stack regions. In memory, the data

region grows from lower addresses to higher addresses, while the stack region grows

from higher addresses to lower addresses (it is possible for the two areas to collide, but

this is rare in modern virtual memory systems). The data region, usually called the

heap, is used by the programmer to dynamically allocate and deallocate objects and

data to be processed. The stack, on the other hand, is generally used as a temporary

“scratch pad” maintained by the processor and compiler to facilitate the execution

of the program. As a program executes, stack memory is constantly rewritten as

functions are called and return.

Whenever a function is called, the compiler creates a frame for it on the stack.

A frame can consist of:

1. The parameters passed to the callee function.

2. The return value of the callee function.

3. The return address of the caller function. This is the address where execution

will resume when the callee function returns.

4. The saved registers of the caller function. The data in registers must be saved

or else a new function may change them.



5. The frame pointer of the caller function. The frame pointer is the address of a

function’s frame on the stack.

6. The local variables used by the callee function.

The contents, the order, and even the names of objects in a frame depend heavily on

the architecture and compiler being used; however, the above order is typical.

Consider the following function func1. Figure 2.1 lists the code and Figure 2.2

illustrates a possible layout of funcl’s frame on the stack. First comes the count

parameter, followed by the return address, the frame pointer, and the two local vari-

ables i and name (an integer is 4 bytes on most systems and a char is 1 byte, so

name is twice as large as 1). Note that the buffer name is located at a lower memory

address than the return address. The order in which objects appear on the stack is

significant and is the basis of buffer-overflow attacks.

 

void func1(int count)

{

char name [8] ;

int i;

for (i = O; i < count; i++) {

printf("Enter your name: ");

gets(name);

printf("You entered Xs.\n", name);

}

return;

}   
 

Figure 2.1: A simple function

The method in which frames and return addresses are setup vary depending

on the specifics of the architecture. The Intel x86 architecture defines the CALL

instruction, which is capable of automatically saving the return address and setting

up the called function’s frame. Similarly, the RETURN instruction will destroy the
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Figure 2.2: funcl stack frame layout

frame and continue execution at the saved return address. RISC-like architectures

leave the task of managing function calls to the compiler. \Vhen a function must be

called, a Jump and Link instruction (JAL) is issued. Jump and Link will jump to

the new function and place the return address in predefined register (usually register

31). It is then up to the compiler to save the return address on the stack. When the

function is finished, the return address is loaded, jumped to, and execution continues.

In either architecture, while the return address is saved on the stack, it is vulnerable

to buffer-overflow attacks.

2.1.2 Return Address Attack

The most basic and easiest form of a buffer—overflow attack is called stack-

smashing. In many programs, it is common for functions to make use of local buffers

stored on the stack. These buffers are typically used to hold text, such as user input

or an incoming request for a web server. If the programmer or system does not verify

that the input data will fit in the buffer, the buffer will be filled until its bounds are

reached. At that point, any extra input may cause a memory access fault in the best

case, or begin overwriting program data in the worst case. As described above, other



data on the stack could be local variables, parameters, or stored memory addresses.

Stored addresses include frame pointers, function pointers, and most importantly,

function return addresses.

This means an attacker can intentionally overflow an unprotected buffer and

overwrite a return address with whatever address is desired. Generally, the new

address points to the attacker’s own malicious code, which is “injected” at the same

time the buffer is overfiowed. Figure 2.3 illustrates how a stack-smashing attack

might work. In this example, the attacker overflows the buffer and blindly writes the

address of the beginning of the buffer to each memory location, including the real

return address. We call this stack smashing since there is little precision involved

in how the stack’s memory is overwritten—all nearby memory locations are simply

overwritten with the malicious address. The attacker has also included, as input to

the buffer, injected code that will now execute when the function attempts to return.

Injected code generally does something like spawn a root shell or manipulate some of

the program’s data.

   

  

  

  

parameters buffer address

parameters buffer address

return address buffer address

frame pointer buffer address
  

buffer address
 

  

       

buffer
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Figure 2.3: Buffer-overflow attack before (a) and after (b) stack—smashing



2.1.3 Function Pointer Attack

Protecting against first-generation stack-smashing (i.e. the method described

above) is not terribly difficult, and several techniques exist to prevent it. Unfortu-

nately, these techniques have either been defeated, incur a significant performance

penalty, or focus on protecting only return addresses [6, 7, 8]. Other addresses, such

as local function pointers stored on the stack, are still vulnerable to stack-smashing.

Function pointer attacks are generally much more difficult to accomplish, since a

function must not only define both a function pointer and buffer, but they must also

appear with the function pointer following the buffer on the stack. Nevertheless,

function pointer attacks are still possible. Figure 2.4 shows the similarity between

function pointer attacks and regular stack-smashing—if the conditions are right, a

function pointer attack works the same as a stack-smashing attack.
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Figure 2.4: Function pointer smash attack before (a) and after (b)

2.1.4 Other Attacks

Attackers have developed several variations of stack-smashing. Instead of simply

overwriting a segment of memory on the stack, attackers manipulate pointers or

exploit memory alignment within data structures, modifying only a return address.

Favorable conditions for these more precise attacks are rarer than conditions needed



for simple stack-smashing; unfortunately, they still exist.

Other attacks include heap smashng and are injection. Heap smashing works by

corrupting addresses used internally by dynamic memory management routines, while

arc injection takes advantage of addresses in well-known system libraries (usually

libc) [11]. In all cases, these more sophisticated attacks maintain the spirit of stack-

smashing—they each target addresses and disrupt the expected flow of execution in

a program.

2.2 Proposed Solution: Secure Bit

Addresses are the primary target for all forms of address-corrupting buffer-

overflow attack. The processor inherently trusts the addresses given to it during

the execution of a program. After all, it makes little sense for a programmer or

compiler to compromise its own program (especially programs running with elevated

privileges). This level of trust is precisely what attackers exploit. To solve this

problem, it must be assured that addresses are trustworthy at all times. A new tech-

nique, Secure Bit, has been proposed [9] to protect the integrity of all addresses.

By protecting stored addresses, Secure Bit promises to guard against every type of

address-corrupting buffer-overflow attack.

The mechanism behind Secure Bit is relatively simple. For every word of memory,

there exists a corresponding Secure Bit. Each Secure Bit acts as a simple locking

mechanism for its word. Whenever a word of memory contains an address, the address

is considered valid and safe if the Secure Bit is “set.” If the Secure Bit is “clear,”

the address is compromised and no longer trustworthy. Secure Bits are managed

automatically by the processor and operating system, and are transparent to the

user.

The processor is primarily responsible for manipulating Secure Bits (the operat-

10



ing system’s role is outside the scope of this thesis—see [9] for more details). Figure 2.5

depicts the mechanism of Secure Bit. When a function is called, the return address

is placed in some memory word on the stack. The Secure Bit corresponding to this

memory word is set. Later, when the function is ready to return, the value of the

Secure Bit on the memory word containing the return address is tested. If the Secure

Bit is set, the return address is valid and execution continues. If the Secure Bit is

clear, a buffer-overflow has compromised the program. The CPU generates a Secure

Bit fault and execution of the program halts. How can the Secure Bit be cleared?

Every memory write operation clears the Secure Bit for the destination memory word.

Thus, if an attacker overflows a buffer and attempts to overwrite the return address,

the memory word holding the return address will have the Secure Bit cleared by the

write operation. Then, when the processor attempts to return, it will see the Secure

Bit has been cleared and halt execution. This is how return addresses are protected

by Secure Bit.

 

   

   

   

   

   

  

   

            

call: set Secure Bit write: clear Secure Bit return: test Secure Bit

0 parameters 0 buffer address 0 buffer address

0 parameters 0 buffer address 0 buffer address

1 return address 0 buffer address 7 buffer address

0 frame pointer 0 buffer address 0 buffer address set? proceed

0 buffer address 0 buffer address clear? abort

0 buffer

0 injected code 0 injected code

0 local variable 0 local variable 0 local variable

a b c    
Figure 2.5: Secure Bit operation at function call (a), after buffer-overflow (b), and

function return (c)

Buffer-overflow attacks targeting function pointers can also be prevented by Se-

cure Bit. As with return addresses, memory words on the stack holding function

pointer addresses are locked by a Secure Bit. In this case, the compiler is responsi-

11



ble for executing a new instruction, SBITSET, which will set the Secure Bit on the

memory word containing the function pointer. When the function pointer is later

used, the Secure Bit value is tested and execution aborts if an attacker has changed

the address via buffer-overflow. Because the compiler is in control of the setup and

usage of function pointers, it is not difficult to have it also insert the new instruction

supporting Secure Bit. Figure 2.6 illustrates that Secure Bit protection of function

pointers is very similar to protection of return addresses. Secure Bit is capable of

maintaining the integrity of all addresses, whatever their use may be.

 

SBITSET: set Secure Bit write: clear Secure Bit jump: test Secure Bit
 
  

 
  

   

 
  

 
  

   

  

           
 

0 parameters 0 parameters 0 parameters

0 parameters 0 parameters 0 parameters

1 return address 1 return address 1 return address

0 frame pointer 0 frame pointer 0 frame pointer

1 function address 0 buffer address 7 buffer address set? proceed

0 buffer address 0 buffer address clear? abort

0 buffer injected injected
0 0

code code

a b c   
 

Figure 2.6: Secure Bit operation at SBITSET (a), after buffer—overflow (b), and

function pointer jump (c)

There are two methods for storing Secure Bits. One method is to add an extra

bit onto every memory word, much like how a parity bit is present for every memory

byte. Another way is to store Secure Bits in a separate, dedicated memory unit

accessible only to the processor. Whenever a memory word is accessed, the address is

mapped to the necessary bit in Secure Bit memory. Assuming a system where a word

is defined as 4 bytes, one byte of Secure Bit memory is needed for every 32 bytes of

main memory. Secure Bits will also be cached by the processor in a dedicated Secure

Bit cache, like the instruction and data caches. Either way, Secure Bit values are

accessed in parallel with main memory access. In our research, we logically think of

12



Secure Bit as being present with every memory word, but actually implement Secure

Bit via the dedicated memory unit.

Other issues surrounding Secure Bit, including proof, performance, virtual mem-

ory concerns, and other types of address protection, are analyzed in [9]. This thesis

focuses on simulating Secure Bit return address and function pointer protection in

the SimpleScalar processor simulator.

13



Chapter 3

SimpleScalar

3. 1 Overview

The SimpleScalar tool set [10] provides detailed system simulation at the proces-

sor level and is used by dozens of groups to research computer architecture related

topics. Secure Bit has been successfully implemented, simulated, and analyzed in

SimpleScalar. This chapter will begin by introducing the SimpleScalar distribution,

then follow up with more in-depth descriptions of the components relevant to Se—

cure Bit. Implementation and analysis details are left to Chapter 4 and Chapter 5,

respectively.

3. 1. 1 Architecture

SimpleScalar is designed to support any architecture one is willing to simulate,

but is structured such that RISC-like architectures are favored. The SimpleScalar

distribution ships with two architectures, which include the Alpha and PISA archi-

tectures. Other research groups have developed the components necessary to simulate

other architectures, such as ARM [12] and PowerPC [13].

The PISA architecture (Portable Instruction Set Architecture) included in the

14



distribution is not a real architecture—it is solely for research purposes and is based

on MIPS [14]. SimpleScalar also comes with precompiled benchmarks, SPEC95 pro—

grams, and a special version of the GCC compiler and supporting libraries for PISA.

The research in this thesis uses PISA because it is clean, simple to understand, and

easily extensible.

3. 1.2 Organization

SimpleScalar is organized such that components fall into one of two categories:

core modules and simulators. Core modules include the simulated registers, simulated

cache, and instruction semantics. SimpleScalar also distributes several sample sim-

ulators. One of the supplied simulators, Sim-safe, executes programs as simply and

safely as possible, while sim—outorder implements a relatively full-featured processor.

Users are encouraged to modify the provided simulators, or create new simulators if

needed. All simulators require some of the modules, such as the memory and register

modules, but the branch prediction module does not need to be included if it not used.

For example, Sim-safe uses only a few core modules, while sim-outorder includes most

of them. The various core modules form something like an Application Programming

Interface (API)—-they are meant to only be included on an “as-needed” basis.

3.2 Internals

To help fully understand the decisions made during Secure Bit’s implementation

(Section 4.1), we further characterize the internal structure of the SimpleScalar system

and describe how the various pieces interact.

15



3.2.1 Core Modules and Simulators

SimpleScalar is divided into core modules and simulators. Although not all

modules were relevant to Secure Bit, several did require modification. The affected

modules were:

0 pisa.h — Defines system specifications such as memory word size, register file

sizes, and processor fault types.

0 pisa. def —— Large file of preprocessor macros that define the PISA instructions

along with their semantics.

o regs.c —— Supports the operations needed to manipulate the simulated regis-

ters.

0 memory. c —— Allocates simulated memory, supports memory access instructions

used by simulated programs, and translates between simulated and host mem-

ory.

0 cache. c — Supports simulated caching operations.

Along with the modules, the following simulators are provided in the distribution:

0 Sim-safe — Simulator that “safely” executes instructions one at a time without

any features like branch prediction, cache, or dynamic scheduling.

o Sim-fast — Similar to Sim-safe, but ignores some things, like exceptions, to run

a program straight through as quickly as possible.

0 Sim—profile — Captures statistics used to profile a program.

a sim-eio -— Allows execution via program trace.

0 sim-bpred — Implements several types of branch prediction algorithms and

provides branch prediction statistics.

16



o Sim-cache —— Allows a user to specify an arbitrary cache hierarchy and provides

caching statistics.

0 sim-outorder — The most complete simulator, as it implements dynamic

scheduling of instructions in an out-of-order pipeline, as well as branch pre-

diction and caching.

Each of these simulators was adapted to support Secure Bit. The Sim-safe simulator

was used for simple testing, with sim-outorder used for analysis. The rest were not

used regularly, since sim-outorder subsumes the functionality of them (and Sim-fast

completely ignores exceptions, including Secure Bit faultsl).

Interaction between the core and simulators is done largely through preprocessor

macros. This is done so that the core does not need to know details about the simula-

tor and vice versa. For example, one simulator could name the memory region “mem”

while another names it “memory.” Or, a file defining a completely different archi-

tecture can be used by the same simulator. Macros abstract the machine-dependent

details away so that the core modules and simulators may work independently.

3.2.2 Instruction Set

The ability to easily modify or create new instructions is an important aspect

of SimpleScalar. Although the system supports several architectures, the PISA in-

struction set shipped with the distribution is, in particular, designed to be simple to

understand and easily extensible. To this end, PISA provides two methods with which

to create new instructions. One method is to define a completely new instruction——

the instruction set encoding leaves free opcodes available for use by new instructions.

The advantage of this is obvious: the designer may define a new instruction to use

any format, input dependences, output dependences, semantics, etc. desired. The

disadvantage is that the special PISA assembler must be modified to understand the

17



new instruction and properly encode it into the binary.

To alleviate the burden of modifying the assembler, the instruction set encoding

has also left the upper 16 bits of each instruction unused. The extra bits, called

“annote” bits, are available to designers for any use. For example, the presence of

annote bits may indicate an instruction should be interpreted differently; or, annote

bits could be used by the compiler to give branch prediction hints to the architecture.

The advantage of annote bits is that the PISA assembler is already aware of them, so

adding annote bits to an instruction is trivial. The disadvantage is that an existing

instruction must be overloaded—the bits do not allow you to redefine the instruction’s

inputs, outputs, and the pipeline hazards it creates. In other words, to add a new

instruction using annote bits, an existing instruction that is a similar match, in terms

of inputs and outputs, must already exist.

The syntax for annotating an instruction is very simple. Take, for example, the

MUL instruction. The annotated MUL/A will set annote bit 1, while MUL/E will set bit

5. Annote bits can also be set in batch to a specific value, e.g. MUL/4:3(3) sets bits

3 and 4 to the value 3. Just like accessing memory and registers, an instruction may

test for the presense of annote bits by using preprocessor macros, which simply return

the result of a bitwise AND operation. If the bits are not set, the instruction executes

as normal, but if the bits are set, it may act much differently. Overall, manipulating

annote bits to redefine the semantics of an existing instruction is a quick-and-easy

way to add a “new” instruction to the ISA.

3.2.3 Pipeline

The sim-outorder simulator is the only simulator which executes through a

fully out—of—order execution pipeline. It is modeled after a classic, five stage RISC

pipeline [15], although some of the names are different. Its five stages and their tasks

are:
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1. Fetch: Instructions are fetched.

2. Dispatch: Instructions are decoded and executed. Branches are predicted.

3. Issue: Issue as many instructions as possible. Instructions may be issued when

resources are available and dependences are fulfilled.

4. VVriteback: Instructions release any resources consumed. Mispredicted branches

are cleaned up.

5. Commit: Instructions are removed from the pipeline. Store operations are

committed to memory.

The primary difference between the simulated pipeline and a real processor is that

instructions are executed as soon as they are decoded, whereas execution would nor—

mally have its own stage. This has no affect on Secure Bit. On the other hand,

Section 3.2.4 details another significant departure from a real processor that does

affect the Secure Bit implementation. Regardless, sim-outorder’s pipeline is still rel-

atively straightforward.

3.2.4 Speculative Execution

Since sim-outorder is the only simulator which provides both an out-of—order

execution pipeline and branch prediction, it has the unique capability to issue in-

structions between branch prediction and branch resolution. These instructions are

known as speculated instructions, since the processor is speculating along a predicted

path. Normally, issued instructions in the pipeline operate against speculative reg-

isters and memory until the final commit stage, at which point they are saved to

architected registers and memory. This mechanism allows the processor to safely is-

sue instructions along the speculated path. If the branch was correctly predicted, the
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results are saved; if the branch was mispredicted, the results in speculative registers

and memory are thrown away and the correct instructions are executed.

Speculative instructions are handled a bit differently in sim-outorder than ex-

pected. The following are the steps taken by sim-outorder in regards to speculation:

1. During the fetch stage, if an instruction is a branch, then the branch is predicted

and new instructions are fetched from the predicted path.

2. In the dispatch stage, the simulator resolves the branch and decides if the pre-

diction was correct or incorrect. If correct, execution proceeds as normal. If

the branch is mispredicted, then the simulator goes into “spec mode.” All new

instructions from the wrong )ath are marked as “mis-s eculated.”
b

3. Finally, when the mispredicted branch reaches the writeback stage, it is finally

resolved. The simulator backs up through the pipeline, destroys mis—speculated

instructions, and begins fetching down the correct path.

Since the program is being run through a simulator and not a real processor, the simu-

lator can “cheat” and decide early if a branch was correctly predicted or not. Instruc-

tions along an incorrect execution path are then clearly marked as mis-speculated.

When the simulator is in spec mode, memory and register accesses behave dif-

ferently. Any instructions that are executing during spec mode should not, under

correct behavior, even be executing, and they must certainly not have any permanent

affect on architected registers or memory. The simulator enforces this by taking a

copy-on—write policy with respect to mis-speculated instructions. Consider, for exam-

ple, a nus-speculated memory instruction. If the instruction is a load, the simulator

allows it to read from architected memory. On the other hand, if the instruction is a

store, the data is written into special speculative memory. Any other mis-speculated

memory instructions that reference the same memory address will then use the spec-

ulative memory. The same behavior is also true for registers. When the mispredicted
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branch is eventually resolved, the mis-speculated instructions, speculative registers,

and speculative memory are destroyed and the processor resumes regular execution.

Figure 3.1 illustrates speculation in the sim-outorder pipeline. Instructions that were

never meant to execute have no adverse affect on architected registers and memory.
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Figure 3.1: Mis-speculated instructions work against speculative registers and

memory (fetch stage not shown)

3.2.5 Caching

Both Sim-cache and sim-outorder make use of SimpleScalar’s cache functionality.

The cache module allows a user to define caches using almost any legal configuration.

Simulators then use the cache_access function whenever a cache access is appropri-

ate; cache-access simulates the access using the given configuration. Two results are

produced. First, statistics about cache hits, misses, etc. are gathered. Second, the

latency (in cycles) that would be caused by the access is returned to the simulator.
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rSimulator [Cache Type ] Total Size ] Block Size [ Sets [ Assoc. [ Algorithm ]
 

 

 

       

L1 Data 8 KB 32 256 1 LRU

sim~cache L1 Instruction 8 KB 32 256 1 LRU

L2 Unified 256 KB 64 1,024 4 LRU

L1 Data 16 KB 32 128 4 LRU

sim-outorder L1 Instruction 16 KB 32 512 1 LRU

L2 Unified 256 KB 64 1,024 4 LRU  
Table 3.1: Configuration of caches in Sim-cache and sim-outorder

By default, the Sim-cache and sim-outorder simulators make use of level 1 instruc-

tion, level 1 data, and level 2 unified caches (see Table 3.1 for default configurations).

Sim-cache uses cache only for statistics gathering.

Like Sim-cache, sim-outorder uses cache to collect statistics. However, sim-

outorder also uses the calculated latency of every cache access. At certain stages

during the pipeline (specifically, during fetch, issue, and commit), cache is accessed

and the latency is recorded for various statistics. More importantly, though, latency

is used in the issue stage to stall an instruction in the pipeline while its operands

are loaded from cache (although, the simulator does not actually copy any data to

and from the simulated cache—it simply acts like it would). Doing this allows sim-

outorder to account for memory access delays in the simulated pipeline.

Caching in the simulators may be extended by a designer in two ways. First,

completely new, independent caches can be created and used. If new caches are used,

the designer specifies the default configuration and cache heirarchy in the simulator

code. Then, through command line arguments, the caches can be adjusted by the user

to the desired configuration. The other way to extend the simulators’ caching is to use

the pre-existing “user data” field associated with each cache block as metadata. User

data may be used for whatever extra information the designer may wish to associate

with the cache block.
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3.2.6 PISA Stack Operation

In terms of stack operation, the PISA architecture is true to its RISC nature.

Function calls and returns are composed of several simple instructions, instead of com-

plex, atomic instructions such as x86’s CALL and RETURN. The compiler is responsible

for managing the instructions and stack memory used in functions calls [16].

The following steps are performed by the compiler to call a function, execute it,

and then return:

0 The JAL or JALR instruction changes the program counter to the address of the

new function and places the return address in register 31. JAL is used for regular

function calls; JALR for function pointer function calls.

0 The stack pointer is adjusted such that enough space on the stack is available

to the new function (for the return address, frame pointer, local variables, etc.).

o The address in register 31 is saved on the stack.

0 The old frame pointer value is saved on the stack.

The function then continues until it is ready to return. Upon return, the compiler

performs these steps:

0 The saved return address is loaded into register 31.

o The old frame pointer value is restored.

o The stack pointer is adjusted back to what the old function expects.

o The JR instruction changes the program counter to the address held in register

31, the return address.

Table 3.2 lists the five instructions used during function calls and returns and

their purpose. Because addresses are temporarily loaded and stored in registers during
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[ Instruction [ Name [ Purpose ] Call or Return? ]

JAL Jump and Link Changes the program counter to the Call

specified target address and loads the

return address into register 31

JALR Jump and Link Similar to JAL, but the loads target Call

Register address from a register

Lw Load Word COpies the value held in a memory Return

word to a register

SW Store Word Copies the value held in a register to Call

a memory word

JR Jump Register Changes the program counter to the Return

target address held in a register      
Table 3.2: Five PISA instructions, their purpose, and which operation (call or return)

they are used for

a PISA function call, the Secure Bit solution described in Section 2.2 must be extended

slightly—each register must also be protected by a Secure Bit.

required changes to SimpleScalar are minimal.
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Chapter 4

Implementation

4. 1 Design Decisions

Overall, SimpleScalar is quite flexible when it comes to extensibility. In many

cases, such as adding new instructions, the system can be extended in more than one

way. This means that a few major decisions had to be made about the best way to

implement Secure Bit into the system.

The first, and probably most significant, decision made was whether to store the

actual Secure Bits as either a single bit appended to every word of memory, or as a

separated, dedicated memory region. Adding a single bit to every word in memory

is how we think of Secure Bit, so implementing it in this fashion is conceptually the

simplest. Unfortunately, when it comes to actually adding an extra bit, it is not so

simple. Adding the “odd bit” presents many problems including the need to adjust

memory bus width, primitive data type size (the simulators store a word using type

unsigned int—precisely 32 bits—how can an an extra bit be added to that?), and

cache block sizes. In general, adding an extra bit to every memory word would require

substantial modifications to any component of the simulator accessing memory.

Because of this, it makes more sense to implement Secure Bit using the Secure Bit
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memory unit. Secure Bit memory is one large, contiguous area of memory dedicated

solely to Secure Bits. Whenever a Secure Bit access takes place, the memory word’s

address is mapped to the Secure Bit in Secure Bit memory, and the bit is tested, set,

or cleared. Access to Secure Bit memory occurs in parallel with main memory access,

so there is no slowdown in waiting for both accesses to happen sequentially. Not only

is this scheme much easier to add into SimpleScalar, but it still allows us to logically

think of Secure Bit existing as an extra bit on every word. We need only remember

that there is some mapping going on between the memory address and the actual

Secure Bit (Section 4.2.1.1).

Another important decision was about how to best handle the caching of Secure

Bits. Section 3.2.5 describes two possible ways to extend the caches: either create

new caches, or make use of the “user data” associated with each cache block. In this

case, user data would hold the Secure Bits associated with the words held by'that

particular cache block. From a programming perspective, implementing new caches

is much easier, as existing code can easily be reused to create Secure Bit caches; new

code to manipulate user data is not nearly so straightforward.

As it turns out, the previous choice to place Secure Bit data into a dedicated

memory unit makes the cache decision easy. Had we chosen to add a Secure Bit onto

every word of memory, manipulating the user data of each cache block is the preferred

solution. The Secure Bits for a cache block exist with that block, much like how the

Secure Bit for each memory word exists in memory along with it. However, since

we will implement Secure Bits as their own memory region, it makes the most sense

to create new Secure Bit caches that access the dedicated memory. All accesses to

Secure Bit memory go through Secure Bit cache, just as all accesses to main memory

go through instruction and data cache.

Recall from Section 2.2 that the new Secure Bit SBITSET instruction can be used

to protect memory locations holding function pointer addresses. When a function
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pointer address is loaded to a register, the compiler can insert the SBITSET instruction

to set the Secure Bit on that register. The store instruction that saves this value to

the stack, for use later on, will in turn set the Secure Bit on that memory address.

This way, function pointers are protected from buffer-overflow attacks.

Two choices were available for adding the new SBITSET instruction. One is

to take an existing PISA instruction and use one of its annote bits to flag it as an

SBITSET instruction. If the annote bit is not set, we execute the instruction as normal;

otherwise, execute it as SBITSET. This is possible because the PISA instruction set is

easily extensible.

An alternate approach is used by Piromsopa and Enbody [9] in previous Secure

Bit research. In [9], Secure Bit is added to the Intel x86 architecture—an architecture

that leaves almost no room for new instructions. Piromsopa and Enbody solve this

problem by giving special meaning to bogus LOAD instructions. Whenever a LOAD

instruction with the source memory address of -1 is encountered, a new processor

mode, “sbit mode”, is toggled on or off. If an instruction copies to a Secure Bit value

from one location to another and sbit mode is off, the value is copied. If sbit mode is

on, however, the Secure Bit is always set.

Thus, to set the Secure Bit on memory holding a valid function pointer address,

the following steps are taken:

1. A bogus LOAD instruction is issued and enables sbit mode.

2. A STORE instruction copies the address value to the function pointer’s memory

location. Since sbit mode is on, the Secure Bit on the memory is set.

3. A second bogus LOAD instruction is issued to disable sbit mode.

Using this technique, Piromsopa simulates the new SBITSET instruction without actu-

ally adding a new instruction, thereby overcoming a limitation of the x86 instruction

set.
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The question then is: is it better to create the new SBITSET instruction, as the

original Secure Bit scheme specifies, or is it better to maintain consistency with previ-

ous Secure Bit research? We chose to go ahead and create the SBITSET instruction by

using one of the annote bits for the AND instruction. AND was not chosen for any par-

ticular reason; it simply has the same input and output dependences we might expect

from the SBITSET instruction. Although it breaks consistency with previous research,

functionally, both the new instruction and Piromsopa’s approach are equivalent. In

fact, it is worth noting that overloading the meaning of the LOAD instruction by using

a bogus memory value is almost exactly the same as overloading the meaning of a

PISA instruction by setting its annote bits.

In summary, at several points during the Secure Bit implementation, various

options were available and significant decisions were made. To fully integrate Secure

Bit into SimpleScalar, we made the following choices:

1. The general Secure Bit technique described in Section 2.2 will be implemented.

2. Secure Bits will be stored in a separate, dedicated region of memory.

3. Secure Bits will be cached in their own, separate cache.

4. The SBITSET instruction will be created by using an annote bit to overload the

meaning of the AND instruction.

The next section describes, in detail, the specific changes made to to the simulators.

4.2 Secure Bit Modifications

In support of Secure Bit, several modifications were made to the components

described in Chapter 3.
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4.2.1 Registers and Memory

The changes made to registers and memory, compared to other components, were

minor. Register Operations are defined in the files regs.h and regs.c. The regs_t

structure is a simple register file containing data to represent the integer, floating

point, and other simulated registers. An array of boolean values, regs_sbit, was

added to the end of the structure to denote a Secure Bit for each register. The three

functions to set, clear, and test a register’s Secure Bit were also created.

Memory structures and functions are located in memory.h and memory. c. The

mem_t structure represents simulated main memory and corresponding statistics

tracked during simulation. A new structure, sbit_t, was created to depict Secure

Bit memory and statistics and then added to mem_t.

4.2.1.1 Virtual Memory—Secure Bit Mapping

The size of the sbit_t Secure Bit region is 226 bytes (64 megabytes). SimpleScalar

presents a 31-bit address space to simulated programs; Secure Bits for the entire range

must be present. Since a PISA word is defined as 4 bytes in size, one byte of Secure

Bits can protect 32 bytes of virtual memory. Thus, 231 bytes of memory require 226

bytes of Secure Bits.

Whenever a Secure Bit is accessed, the 31-bit virtual address must be mapped

to a 26-bit Secure Bit memory address. Figure 4.1 illustrates the mapping from one

address to another; each of the set, clear, and test Secure Bit functions added to

memory.c use this mapping. The upper 29 bits of a virtual address represent the

memory word. Of these 29 bits, the lower 3 bits are used to index the byte contain-

ing the Secure Bit. The code listing for the mem_test-sbit function in Figure 4.2

demonstrates this mapping in code. First, a counter statistic is updated. Then, the

two lowest order bits are removed from the address, the Secure Bit is indexed and, in

this case, tested. Finally, the Secure Bit value is returned.
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Figure 4.1: Mapping 31-bit Virtual Address to 26-bit Secure Bit Address

 

int

mem_test_sbit(struct mem_t *mem, /* memory space */

md_addr_t addr) /* virtual address */

{

mem->sbits.sbit_test++;

addr = addr >> 2;

return (mem->sbits.sbits[addr >> 3] & (1 << (addr & 0x07)));

}   
 

Figure 4.2: The mem_test_sbit Secure Bit function
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4.2.2 Instruction Set

4.2.2.1 Existing Instructions

Once Secure Bit memory was in place, extra functionality was added to each

of the instructions involved in function calls, returns, and function pointer jumps

(previously listed in Table 3.2). The following additions were made:

1. JAL —- Sets the Secure Bit for register 31.

JALR — Tests the Secure Bit for the register holding the destination address. If

the Secure Bit is set, the address is jumped to and register 31’s Secure Bit is

set. If clear, the simulator aborts with a Secure Bit fault.

. SW — Tests the source register’s Secure Bit. If it is set, the destination memory’s

Secure Bit is set. Otherwise, the memory’s Secure Bit is cleared.

. LW — Tests the source memory’s Secure Bit. If it is set, the destination register’s

Secure Bit is set. Otherwise, the register’s Secure Bit is cleared.

JR — Checks if the destination register is register 31. If so, it tests register 31’s

Secure Bit value. If set, the jump proceeds. If clear, the simulator aborts with

a Secure Bit fault.

All instructions that write to a register—except LW and SBITSET (see below)———-

clear the Secure Bit on the register.

4.2.2.2 New Instruction

To create the new SBITSET instruction, annote bit A of the AND instruction was

used to indicate what operations the instruction should execute. Whenever an AND

instruction is executed, annote bit A is tested. If the bit is not set, the instruction

executes like a regular AND. However, if the bit is set, the instruction works like

SBITSET would and sets the Secure Bit on the destination register.
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Both the old and new semantics for the instructions above are defined as pre-

processor macros in the file pisa.def (along with a Secure Bit fault type added to

pisa.h for use by JR and JALR). For example, Figure 4.3 is the definition of the SW

instruction. The first portion copies the register to memory, while the second portion

tests the register’s Secure Bit and then sets or clears the memory’s Secure Bit. The

other instructions’ changes are all similar to this.

 

#define SW_IMPL

{

word_t _src;

enum md_fau1t_type _fault;

_src = (word_t) GPR(RT);

WRITE_WORD(_SIC, GPR(BS) + OFS, _fault);

if (_fault != md_fau1t_none)

DECLARE_FAULT(_fault);

if (TEST_REG_SBIT(RT))

SET_MEM_SBIT(GPR(BS) + OFS);

else

CLEAR_MEM_SBIT(GPR(BS) + OFS);   
Figure 4.3: The Secure Bit SW instruction

4.2.3 Simulators

The final components of SimpleScalar that required modifications were the sim-

ulators themselves. Aside for Sim-cache and sim-outorder, the changes to the simula-

tors were minor. For the other simulators, the only additions were definitions for the

Secure Bit preprocessor macros used by the instruction set. The macros are straight-

forward: they simply call the Secure Bit register and memory functions. Figure 4.4

shows the relationship between the instructions and simulators. Once the macros

were defined, the necessary changes to these simulators was complete.
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Figure 4.4: Interaction between PISA instructions, simulators, and Secure Bit

functions

4.2.3.1 Caches

Like main memory, Secure Bit memory should also be cached, since Secure Bits

are stored in dedicated, off—chip memory. Thus, levels 1 and 2 Secure Bit caches

were added to both simulators. By default, both Secure Bit caches use the same

configurations as the data caches (see Table 3.1). Addresses protected by Secure

Bit (return addresses and function pointers) always exist in either the stack or heap,

which are part of the data segment of memory. Thus, Secure Bit cache corresponding

to instruction cache is not necessary.

Since sim-cache uses caches only for statistics gathering, adding Secure Bit cache

access was straightforward. Mimicking data cache access, whenever a Secure Bit

memory access macro is used, the cache_access function is called and the access is

accounted for. Unfortunately, adding Secure Bit cache access to sim-outorder was

not so straightforward, but still relatively simple. Recall that during the issue stage,

cache latency is used to decide how long (in cycles) an instruction should be stalled

while its operands are loaded. In the default sim-outorder, this number is determined
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by the level 1 data cache access time. To account for Secure Bit cache, the Secure Bit

cache latency is calculated by cache_access. Since data and Secure Bit cache access

should be concurrent, the larger of the two latencies is used as the overall latency.

This way, any slowdown due to Secure Bit is taken into consideration. The impact

of Secure Bit cache on simulated processor time is further discussed in Chapter 5.

4.2.3.2 Speculation

The final modification made to SimpleScalar was in the sim-outorder simulator.

As described in Section 3.2.4, the simulator enters speculative mode whenever a

branch is mispredicted. Architected registers and memory are protected, in that mis-

speculated instructions work only against special speculative registers and memory.

Without doing the same for Secure Bit registers and memory, valid Secure Bit

data will be clobbered by nus-speculated instructions. To accommodate these bogus

instructions, several changes were made to sim—outorder:

Speculative register Secure Bits were created.

Speculative Secure Bits were added to speculative memory.

0 New functions to read and write speculative Secure Bits were created.

The preprocessor macros that call Secure Bit register and memory functions

were modified to check for speculative mode.

If the simulator enters speculative mode, Secure Bit instructions operate using special

speculative Secure Bit functions rather than the regular functions. In this way, Secure

Bit data is safe from mis-speculated instructions.

Despite the amount of detail given in this chapter, the overall changes to

SimpleScalar are minimal. In fact, more time was spent in understanding the system

rather than undertaking a major overhaul. With the modifications made to registers,
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memory, instruction set, and simulators, the Secure Bit protection scheme was fully

integrated into SimpleScalar.
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Chapter 5

Analysis and Results

In this chapter, we analyze the results of our tests of the newly modified Secure

Bit SimpleScalar simulators. The goal is twofold. First, we show that the mod-

ified simulators execute programs correctly~—whether they suffer from an address-

corrupting buffer-overflow attack or not. Second, we demonstrate how performance

of the sim—outorder simulator is not hampered by Secure Bit memory and cache ac-

cess. In other words, at the hardware level, Secure Bit is shown to be both functional

in terms of security and transparent in terms of performance.

5. 1 Test Programs

Three types of programs are used to demonstrate functionality and transparency.

The different types are described here; Table 5.1 lists the programs themselves.

1. Six PISA-compiled benchmark programs ship with the SimpleScalar distribu-

tion. These programs cover integer math, floating-point math, branch-intensive

code, etc. The primary purpose of the programs is for regression testing; known

“good” outputs for the programs are available and can be compared against

the output of programs run through new or modified simulators. If the regres-
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[ Name [ Type [ Description

anagram SimpleScalar Finds anagrams for words

test-fmath SimpleScalar Tests basic floating-point math operations

test—math SimpleScalar More SOphisticated floating-point math

test—llong SimpleScalar Tests long long data type operations

test-lswlr SimpleScalar Tests basic string output

test-printf SimpleScalar More sophisticated string output

compress SPEC Data compression

gcc SPEC C compiler

go SPEC Plays the game Go against itself

attackl Created Simple stack-smashing attack

attack2 Created Simple function pointer attack    
Table 5.1: Programs used during Secure Bit SimpleScalar testing

sion tests pass, the simulators are very likely to be correct (especially when the

algorithm is known to be correct [17]).

. Several PISA—compiled SPEC programs are available for use, and they can be

used for either performance benchmarking, regression testing, or both. The

compress, go, and gcc programs are used since sample inputs for them were

freely and easily available from the SimpleScalar website [18].

. Several specially-created programs were compiled with the special gcc PISA

compiler. The programs are very small and simple, and suffer from address-

corrupting buffer-overflow attacks.

The programs that ship with SimpleScalar and the SPEC programs are used

primarily for regression testing. None of these programs normally suffer from buffer-

overflow attacks, so Secure Bit operations should not affect these programs in any

way. On the other hand, the homemade programs do suffer from buffer-overflow, so

they are used to show how the regular simulators can be damaged by buffer-overflow,

while the modified simulators catch the error.

The SPEC programs are also used in Section 5.3 to benchmark the performance

of Secure Bit memory and cache in various configurations.
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5.2 Secure Bit Functionality

The first and most important question about the Secure Bit version of

SimpleScalar is “does it work?” To work properly, the modified simulators must:

1. Allow regular execution of programs that do not have a buffer—overflow problem.

2. Halt programs that have an address corrupted by a buffer-overflow attack when

they attempt to jump to the new address.

5.2. 1 Regular Execution

As previously mentioned, both the sample programs which ship with

SimpleScalar and the three SPEC programs do not suffer from an address-corruption

problem. After the simulators were modified to support Secure Bit, all regression

tests passed—Secure Bit did not interfere with regular execution of these programs.

5.2.2 Stack-smashing Attack

Figure 5.1 is a code listing for the homemade program attackl. This program

is meant to represent the most typical kind of buffer-overflow attack: stack-smashing

via an unsafe library call accepting user input. The program and attack work as

follows:

1. Lines 5—6: The buffer attack contains several copies of the function func2’s

address. The address is stored in reverse order to accomodate little-endianess.

2. Lines 8—12: Function func2 is the arbitrary code the attack will jump to. It

prints a message indicating the function was executed before exiting.

3. Lines 14-23: Function funcl uses the name buffer, which overflows during the

attack.
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4. Lines 25—30: The main function prints out func2’s address, calls funcl, and

prints a status message before exiting.

 

1: #include <stdio.h>

2: #include <string.h>

3:

4: // func2’s address is 0x004001f0

5: char attack[] = "\xf0\x01\x40\x00\xf0\x01\x40\x00"

6: "\xf0\x01\x40\x00\xf0\x01\x40\x00";

7:

8: void func2()

9: {

10: printf("You Lose!\n");

11: exit(1);

12: }

13:

14: void func1()

15: {

16: char name[4];

17:

18: printf("Enter your name:\n");

19: // gets(name);

20: memcpy(name, attack, 16);

21:

22: printf("Returning to main.\n");

23: }

24:

25: int main(int argc, char* argv[])

26: {

27: printf("func2 address %p\n", &func2);

28: func1();

29: printf("Back to main.\n");

30: }    
Figure 5.1: attackl, a stack—smashing attack

To begin, main calls the funcl function. func1 represents a function responsible

for receiving user input and placing it into a buffer. In this case, it is a user’s name,

but could be something like a mail server accepting an SMTP command. Line 19

calls gets—a library function notorious for being unsafe. Since gets performs no

bounds checking, overflowing the destination buffer is trivial (fgets, which does limit
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the input size, should always be used instead of gets). In the case of attackl, we

simulate inputting an attack string by using memcpy on line 20 to copy 16 bytes (four

words) of the input buffer into the name buffer. The input buffer, attack, has been

carefully constructed to smash the address of func2 onto four. words of the stack.

One of the smashed words is the return address; so when funcl attempts to return,

it instead jumps to func2. func2, in turn, prints a message and ends the program.

To understand more precisely what is happening to funcl’s stack frame, examine

Figure 5.2, the assembly code used for func1.

1.

10.

Line 2: 32 is subtracted from the stack pointer, thereby allocating 32 bytes on

the stack for funcl.

Line 3: The value in register 31, the return address, is stored at the word 28

bytes above the stack pointer.

. Line 4: The old frame pointer is stored at the word 24 bytes above the stack

pointer.

Line 5: The frame pointer is set to the same value as the stack pointer.

. Lines 6—7: The first printf call (“Enter your name:”) is setup and performed.

. Lines 8—11: memcpy is setup and called. Line 8, which is setting up a parameter

for memcpy, indicates that the word for the name buffer is stored at 16 bytes

above the stack pointer.

Lines 12——13: The second printf call (“Returning to main”) is done.

Line 15: The stack pointer is set to the same value as the frame pointer.

Line 16: The return address is loaded from the stack to register 31.

Line 17: The value of the old frame pointer is restored.
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11. Line 18: 32 is added to the stack pointer, effectively destroying the stack frame

for funcl.

12. Line 19: funcl finishes by jumping to the address in register 31.

 

1: funcl:

2: subu $sp,$sp,32

3: sw $31,28($sp)

4: sw $fp,24($sp)

5: move $fp,$sp

6: 1a $4,$LC1

7: jal printf

8: addu $4,$fp,16

9: 1a $5,attack

10: 11 $6,0x00000010 # 16

11: jal memcpy

12: la $4,$LC2

13: jal printf

14: $L2:

15: move $sp,$fp

16: 1w $31,28($sp)

17: 1w $fp,24($sp)

18: addu $sp,$sp,32

19: j $31

20: .end funcl    
Figure 5.2: PISA assembly code for attackl’s funcl function

It is important to note the locations of values on the stack. Relative to the stack

pointer, name is 16 bytes higher, the stored frame pointer is 24 bytes higher, and the

return address is 28 bytes higher. When memcpy is called and told to copy 16 bytes,

name is overflowed and the values of the stored frame pointer and return address are

replaced with the address of func2. At the same time, the Secure Bit values for these

memory locations are cleared. As the function finishes, func2’s address is loaded into

the frame pointer and register 31, then func1 unintentionally jumps to func2.

Figures 5.3 and 5.4 show sample output of the regular and modified sim—outorder

simulator, respectively. Clearly, the regular version is compromised by the stack-
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smashing attack. However, since the return address’s Secure Bit value was cleared

during the attack, the modified sim-outorder throws a fault (fault 8——Secure Bit fault).

The modified simnoutorder also executes fewer instructions, since the simulator halts

the program immediately; the regular sim—outorder inadvertantly executes additional

code for the printf and exit system calls.

 

sim: command line: ./sim-outorder /home/matt/research/attack1

sim: ** starting performance simulation **

func2 address Ox4001f0

Enter your name:

Returning to main.

You Lose!

sim: ** simulation statistics **

sim_num_insn 15197 # total number of instructions committed   
 

Figure 5.3: Vanilla sim-outorder cannot prevent stack-smashing attack

 

sim: command line: ./sim-outorder /home/matt/research/attack1

sim: ** starting performance simulation **

func2 address Ox4001f0

Enter your name:

Returning to main.

fatal: non-speculative fault (8) detected Q OxOO4002f8

sim: ** simulation statistics **

sim_num_insn 12982 # total number of instructions committed   
 

Figure 5.4: Modified sim—outorder aborts upon Secure Bit fault

5.2.3 Function Pointer Attack

Another program, attack2, is listed in Figure 5.5 and demonstrates a function

pointer attack. The program works almost exactly the same as attackl, except funcl

attempts to use a function pointer to call func3 before returning. On line 22, the
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b #include <stdio.h>

#include <string.h>

// func2’s address is 0x00400250

char attack[] = "\x50\x02\x40\x00\x50\x02\x40\x00”

"\x50\x02\x40\x00";

void func3()

{

printf("Here is func3.\n");

void func2()

{

printf("You Lose!\n");

exitCl);

}

void func1()

{

char name [4] ;

void (*fptr)();

fptr = func3;

printf("Enter your name:\n");

// gets(name);

memcpy(name, attack, 12);

printf("Ca11ing func3\n");

fptrC);

printf("Returning to main.\n");

int main(int argc, char* argv[])

{

printf("func2 address %p\n", &func2);

func1();

printf("Back to main \n");

 

Figure 5.5: attack2, a function pointer attack
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function pointer is defined; and on line 24, it is set to the address of func3. Line 30

makes a function call via the function pointer; unfortunately, the memcpy call on line

27 has overflowed the name buffer and changed the value of the function pointer to

func2’s address. Figure 5.6 shows the output of running attack2 through the regular

sim-outorder.

 

sim: command line: ./sim-outorder /home/matt/research/attack2

sim: ** starting performance simulation **

func2 address 0x400250

Enter your name:

Calling func3

You Lose!

sim: ** simulation statistics **

sim_num_insn 14787 # total number of instructions committed   
 

Figure 5.6: The vanilla sim—outorder is also susceptible to function pointer attacks

To prevent function pointer attacks, we use the new Secure Bit SBITSET instruc-

tion to mark loaded addresses as valid function pointer addresses. Figure 5.7 lists

attack2’s assembly code. Only the relevant portions are shown, namely, the instruc-

tions corresponding to attacks2’s lines 24 and 30.

 

la $2,func3

add/a $2,$2,$2 # simulates SBITSET instruction

sw $2,24($fp)

1w $16,24($fp)

jalr $31,$16\
I
O
S
U
'
l
i
b
Q
J
M
f
-
t

  
 

Figure 5.7: attack2 assembly instructions for function pointer setup and function

pointer call

The function pointer is setup by loading the address of func3 into register 2

on line 1. On line 2, the annotated AND instruction is used to set the Secure Bit on
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register 2, thereby marking it a valid function address. The function pointer’s data

and Secure Bit values are then stored at 24 bytes above the stack pointer.

Lines 6 and 7 are where the function is actually called. The address, along with

its Secure Bit value, is loaded from the stack into register 16. Then, JALR tests the

Secure Bit for the register and either continues execution (Secure Bit is set) or aborts

with a Secure Bit fault (Secure Bit is clear). In the case of attack2, the memcpy

function has been maliciously used to overflow a buffer and to overwrite the function

pointer with func2’s address. In Figure 5.8, it is clear that the modified sim-outorder

correctly aborts before performing an unsafe function pointer call.

 

sim: command line: ./sim-outorder /home/matt/research/attack2

sim: ** starting performance simulation **

func2 address 0x400250

Enter your name:

Calling func3

fatal: non-speculative fault (8) detected 0 0x00400368

sim: ** simulation statistics **

sim_num_insn 12416 # total number of instructions committed   
 

Figure 5.8: The modified sim-outorder does not fall to a function pointer attack

In summary, the modified simulators not only pass the SimpleScalar regression

tests, but also use Secure Bit to avert address-corrupting attacks that the vanilla

simulators cannot. Regular stack-smashing attacks targeting return addresses are

automatically prevented, while function pointer attacks are stopped by simply insert-

ing a single SBITSET instruction during the function pointer’s setup. Programs that

do not suffer from buffer-overflow attacks still execute normally, while those which

do suffer are prevented from causing harm.
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5.3 Secure Bit Performance

In the previous section, we have seen how the modified SimpleScalar simulators

provide the Secure Bit functionality we expect. Here, we show how Secure Bit remains

transparent to programs in terms of cache and memory access latencies.

Recall from Section 3.2.5 how cache and memory access times affect sim-outorder.

W'hen load and store operations are executed, a function is called to simulate cache

access. The function uses the defined cache and memory configurations to calculate

the latency (in cycles) the memory access would cause, which is then used to stall

the pipeline appropriately. Secure Bits are stored in memory, so accessing them also

causes latency that should be taken into consideration (see Section 4.2.3.1).

In this section, the SPEC compress, go, and gcc programs are run under various

cache configurations; both data and Secure Bit caches are tested. A variety of perfor-

mance statistics are recorded and charted, and we find that Secure Bit caches much

smaller than data caches are more than sufficient to maintain pipeline performance

and efficiency.

5.3. 1 Methodology

SimpleScalar defines caches using four parameters: block size, number of sets,

set associativity, and replacement algorithm. The configuration settings for a cache

ultimately affect its size and performance. Table 5.2 lists the default parameters for

level 1 data and level 2 unified caches in sim-outorder. By default, Secure Bit levels

1 and 2 cache use the same settings.

In monitoring performance of the caches, we analyze three statistics gathered by

the simulator:

1. Miss Rate: The miss rate of the cache. Lower is better.

2. Cycles: The total number of simulated cycles consumed during the program’s
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[ Levefl Total Size] Block Size [ Sets] Assoc. Algorithm ]

L1 16 KB 32 128 4 LRU

L2 256 KB 64 1,024 4 LRU

  

        

Table 5.2: Default data and Secure Bit cache parameters in sim-outorder

execution. Lower is better.

3. IPC: The Instructions Per Cycle, which measures efficiency of the pipeline and

is a good overall performance metric. Higher is better.

Miss rate is considered so as to measure how often latency due to memory access

is introduced into the pipeline. If the requested memory is in L1 cache, the latency

is only 1 cycle. However, a miss in L1 causes a 6 cycle latency to check L2, and a

miss in L2 causes an 18 cycle delay to bring data in from memory. A higher miss

rate will increase the number of cycles needed to execute a program, which in turn

lowers the overall IPC of the pipeline. Our experiments measure the performance of

smaller and smaller Secure Bit caches and compare them against the default; finding

a good ratio of data cache to Secure Bit cache (where Secure Bit cache configuration

does not substantially lower performance) is the goal.

5.3.2 Results

To begin, Table 5.3 shows the performance of level 1 data and Secure Bit caches,

in default configurations, for the three SPEC programs. Similarly, Table 5.4 lists the

performance of level 2 data and Secure Bit caches. Data cache numbers are taken

from the regular sim-outorder, not the modified version supporting Secure Bit.

Although the miss rates for level 1 Secure Bit cache seem unnaturally low, the

results still make sense. Recall that portions of the stack are constantly being rewrit-

ten as functions are called and return. One Secure Bit byte can protect 32 bytes of

memory, so a cache block of 32 Secure Bit bytes protects a continuous, 1 KB area

of memory. Since most function calls and returns manipulate the same region of the
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[ [ L1 Data [ L1 Secure Bit ]

Program Miss Rate Cycles IPC Miss Rate Cycles IPC

compress 0.0469 47028415 1.7132 0.0001 47028415 1.7132

gcc 0.0149 303513264 0.9213 0.0000 303523290 0.9213

go 0.0096 623730884 0.8789 0.0000 623730884 0.8789        
 

Table 5.3: Default level 1 data and Secure Bit cache results

 

 

 

 

 

 

[ [ L2 Data [ L2 Secure Bit

Program Miss Rate Cycles IPC Miss Rate Cycles IPC

compress 0.0995 47028415 1.7132 0.1573 47028415 1.7132

gcc 0.0416 303513264 0.9213 0.0836 303523290 0.9213

go 0.0118 623730884 0.8789 0.5183 623730884 0.8789         
Table 5.4: Default level 2 data and Secure Bit cache results

stack, only the occasional function with a large buffer on the stack or a recursive

function will cause Secure Bit cache misses.

The miss rates for level 2 Secure Bit cache, especially for go, are much higher

than may be expected. As it turns out, there are so few level 2 accesses that many

of them naturally miss. In go’s case, there were only a total of 492 level 2 accesses——

over half of the accesses were simply populating the cache. Thus, with these cache

parameters, the relatively high miss rate of level 2 Secure Bit cache is insignificant.

Overall, the results in Tables 5.3 and 5.4 indicate that a Secure Bit cache equal in

size to data cache is probably excessive.

Next, we adjust the parameters of level 1 Secure Bit cache. Table 5.5 demon-

strates the affect of decreasing block size, number of sets, and set associativity on

miss rate and IPC. Figures 5.9, 5.10, and 5.11 chart the results for compress, gcc,

and go, respectively.
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Block Size

compress gcc go

Miss IPC Diff. Miss IPC Diff. Miss IPC Diff.

32 0.0001 1.7132 —— 0.0000 0.9213 — 0.0000 0.8789 —

16 0.0025 1.7132 0.00% 0.0002 0.9213 0.00% 0.0000 0.8789 0.00%

8 0.0102 1.7126 0.04% 0.0009 0.9212 0.01% 0.0001 0.8789 0.00% ]

Number of Sets

compress gcc go

Miss IPC Diff. Miss IPC Diff. Miss IPC Diff.

128 0.0001 1.7132 — 0.0000 0.9213 — 0.0000 0.8789 —

64 0.0024 1.7131 0.00% 0.0002 0.9213 0.00% 0.0001 0.8789 0.00%

32 0.0106 1.7107 0.15% 0.0008 0.9212 0.01% 0.0004 0.8788 0.01%

16 0.0224 1.7026 0.62% 0.0034 0.9205 0.09% 0.0083 0.8773 0.18%

8 0.0363 1.6868 1.57% 0.0117 0.9170 0.47% 0.0750 0.8516 3.21%

Set Associativity

compress gcc go

Miss IPC Diff. Miss IPC Diff. Miss IPC Diff.

4 0.0001 1.7132 -— 0.0000 0.9213 — 0.0000 0.8789 —

2 0.0030 1.7130 0.01% 0.0006 0.9211 0.02% 0.0004 0.8788 0.01%

1 0.0172 1.7010 0.72% 0.0122 0.9126 0.95% 0.0185 0.8724 0.75%
 

 
Table 5.5: Results from varying block size, numbers of sets, and set associativity of

level 1 Secure Bit cache. Miss rate, IPC, and percent difference in IPC from the

default are recorded (the first line of each section repeats the default configuration).
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Figure 5.9: compress — Secure Bit level 1 — Varying block size, number of sets, and

set associativity
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Figure 5.10: gcc — Secure Bit level 1 — Varying block size, number of sets, and set

associativity
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t.— IPC +Miss Rate]

0.890 T 0.080

0880 J]: I A T 0.060

0 0.870T __ 0.040 5

0.850 T l" 0'02” 5

0.840 T ; h a "- 0.000

0.830 TTTT T T-iT T T +— T Ti-TT TT-Ti T __ T» 0020

128 64 32 16 8

Number of Sets

Block Size vs. IPC and Miss Rate

[+1130 +Miss Rate]

1°00 *- .HH HHH:HHHHHHH Hag-2:3
0.800 T T '

l 0.000

0 0.600 T 0.000 5

5 0.400 T [ 0-000 3.

0 200 0.000 5

' ‘” 0.000

0.000 .T i = 0.000

32 16 8

Block Size

1

Associativity vs. IPC and Miss Rate l

l

t-l—IPC +Miss Rate] i

0.880 T » TT TT- TT — TT—T -.__. --—T —— —-—--— 0.020 t

0378 r T 0.015 T

o 0:876 " T 0.010 5 l

a 0.874 - 3 [

0.872 .. T 0.005 ..

0.870 T “r 0.000 [

0.868 -v -- l -T—-- -,___ lHVH — . T 0.005 T

4 2 1 T

Amclativlty l 
 

Figure 5.11: go — Secure Bit level 1 — Varying block size, number of sets, and set

associativity
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It is clear from the table and charts that configuring level 1 data and Secure Bit

caches to the same size is indeed wasteful; even with a half-sized Secure Bit cache, the

performance difference is almost zero.1 Secure Bit cache sizes one-quarter and one-

eighth the size of data cache incur a more noticeable performance decrease, although

they are all less than 1%. Setting the level 1 Secure Bit cache to one-quarter or

one-eighth the data cache size appears to give the best size and performance tradeoff.

 

 

 

 

 

         
 

 

 

 

 

 

 

 

         
 

 

 

 

 

 

           

Block Size

compress gcc go

Miss IPC Diff. Miss IPC Diff. Miss IPC Diff.

64 0.0007 1.7107 — 0.0056 0.9212 — 0.0022 0.8788 —

32 0.0013 1.7107 0.000% 0.0102 0.9212 0.00% 0.0039 0.8788 0.00%

Number of Sets

compress gcc go

Miss IPC Diff. Miss IPC Diff. Miss IPC Diff.

1024 0.0007 1.7107 — 0.0056 0.9212 —— 0.0022 0.8788 ——

512 0.0007 1.7107 0.00% 0.0056 0.9212 0.00% 0.0022 0.8788 0.00%

256 0.0007 1.7107 0.00% 0.0056 0.9212 0.00% 0.0022 0.8788 0.00%

128 0.0007 1.7107 0.00% 0.0085 0.9212 0.00% 0.0022 0.8788 0.00%

64 0.0020 1.7107 0.00% 0.0455 0.9212 0.00% 0.0030 0.8788 0.00%

Set Associativity

compress gcc go

Miss IPC Diff. Miss IPC Diff. Miss IPC Diff.

4 0.0007 1.7107 — 0.0056 0.9212 — 0.0022 0.8788 ——

2 0.0007 1.7107 0.00% 0.0057 0.9212 0.00% 0.0022 0.8788 0.00%

1 0.0064 1.7105 0.01% 0.0090 0.9212 0.00% 0.0025 0.8788 0.00%
 

 
Table 5.6: Results from varying block size, numbers of sets, and set associativity of

level 2 Secure Bit cache. Miss rate, IPC, and percent difference in IPC from the

default are recorded (the first line of each section repeats the default configuration).

The final experiment tests the level 2 Secure Bit cache configuration. In this

experiment, we configure level 1 Secure Bit cache to the suggested one-quarter data

cache size by using 32 sets (running tests with level 1 Secure Bit cache size set the

same as data cache size results in so few level 2 accesses that the data are unreliable).

Table 5.6 lists the values obtained by adjusting the level 2 Secure Bit cache size down

 

lThe SimpleScalar FAQ indicates programs may execute more or less instructions between tests

as the environment changes. The difference between full-sized and half-sized Secure Bit cache results

may be accountable solely to specific environmental conditions.
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IPC

] compress [ gcc [ go

Regular 1.7132 0.9213 0.8789

Secure Bit 1.7107 0.9212 0.8781

Percent Difference 0.15% 0.01% 0.09%

 

 

 

      

Table 5.7: Regular sim-outorder, with 16 KB level 1 and 256 KB level 2 data caches,

vs. Secure Bit sim—outorder, with 4 KB level 1 and 16 KB level 2 Secure Bit caches

from the level 2 data cache size.

Level 2 Secure Bit cache, amazingly, has almost no influence on overall IPC. In

only one case, where set associativity is 1, does the cache configuration lower IPC;

even in this case, performance drops a miniscule 0.01%. For many configurations,

the miss rate increases, while the IPC does not change. In these situations, some

other latency (perhaps a data cache miss?) in the pipeline masks the miss penalty.

In other words, although the cache misses, there is no enduring consequence. Since

Level 2 Secure Bit cache has such little influence on performance, we recommend a

very small cache.

To conclude, Table 5.7 presents the overall IPC of compress, go, and gcc running

on the both the regular version of sim-outorder and the Secure Bit sim-outorder. The

Secure Bit simulator uses a level 1 Secure Bit cache one-quarter the size of level 1

data cache (32 sets, 32 byte block size, 4 set associativity) and a level 2 Secure Bit

cache one—sixteenth the level 2 data cache size (64 sets, 64 byte block size, and 4 set

associativity).

5.4 Recommendations

Based on the results of the previous section, we propose three possible Secure

Bit cache configurations:

1. At Secure Bit’s introduction (Section 2.2), an alternative approach proposed

that, instead of maintaining separate Secure Bit memory, a single bit is added
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to every data word in memory. In this case, no caching is necessary as the

Secure Bit is implicitly loaded and stored alongside the data word.

2. Level 1 Secure Bit cache set to one-quarter the data cache size and level 2

Secure Bit cache set to one-sixteenth the data cache size results in a less than

1% performance decrease.

3. Even smaller Secure Bit caches—one-sixteenth or less the data cache size—may

be used for a very modest performance decrease (an average 1.75%).

It is up to the system designer to decide which configuration is most appropriate

for the system. A general—purpose processor may be able to spare the extra cache

to retain performance, while an embedded system may be willing to sacrifice some

speed in order to save on cache size. In either case, Secure Bit poses virtually no

performance penalty on the system, and remains completely transparent to executing

programs.
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Chapter 6

Conclusion

Buffer-overflow attacks have been a very serious and persistent problem in recent

years. They alone have led to dozens of security breaches in end-user applications,

Internet services, and operating systems themselves. Using the hardware-level Secure

Bit protection scheme, buffer-overflow attacks which have corrupted a stored program

address are correctly and efficiently identified before the program causes damage.

In this thesis, we have focused on simulating Secure Bit at the processor level

using the SimpleScalar software. Throughout the implementation and analysis of

Secure Bit, we have reached several achievements and discoveries:

1. Secure Bit protection of return addresses and function pointer addresses was

integrated into the SimpleScalar simulators.

2. Secure Bit operates as expected. Namely, programs not attacked by buffer-

overflow execute normally, while those with an address corrupted by buffer-

overflow are halted.

3. Secure Bits must be cached just like data; however, Secure Bit cache size may

be much smaller (one—quarter to one-sixteenth) than data cache size and impose

a less than 1% performance penalty.
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Using Secure Bit, developers can be much more confident that their software is

safe from malicious users. With program addresses protected, an attacker’s primary

attack vector is no longer available. Of course, keeping security in mind during

development is the best way to prevent attacks; however, Secure Bit can help alleviate

at least some of the burden.

6. 1 Future Work

Although the Secure Bit technique is extremely effective at preventing address-

corrupting buffer-overflows, at this time, it is unable to stop buffer-overflows that

attack other kinds of data. For example, buffer-overflow has been used to overwrite

passwords instead of addresses. In many of these cases, a security-concious developer

should be able to prevent the problem through better programming habits.

Nevertheless, protection of arbitrary data would still be invaluable. Unfortu-

nately, extending Secure Bit both to protect other kinds of data and remain com-

pletely transparent to the programmer would probably not be possible. Processor

support (i.e. the research done in this thesis) for this already exists—the SBITSET

and a new TESTSBIT instruction could be used by libraries or system calls. How-

ever, some sort of interface between the developer and processor’s Secure Bit features

is necessary, since developers would need to be able to define, set, and test Secure

Bit protected data. Perhaps Secure Bits for data regions could be manipulated at

the library or system call level, not unlike how process synchronization is managed.

Then, developers can “lock” valid data with Secure Bits and test them before using

the data.
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