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ABSTRACT

A UNIFIED MOMENTUM EQUATION APPROACH FOR

FLUID-STRUCTURE INTERACTION (FSI) PROBLEMS

WITH STATIONARY BOUNDARIES

By

Jagadish Gattu

A unified momentum equation approach based on velocity variables is presented

for solving fluid-structure interaction problems. This approach has unique advantages

in that the momentum equations of the solid and liquid domains are coupled so as to

obtain a unified momentum approach allowing to treat the fluid and solid domains

as a whole. This is accompanied by a description of spatial discretization over a

staggered grid and a fully implicit temporal discretization. The resulting set of non-

linear algebraic equations is solved by using a segregated approach, embedding a

SIMPLE algorithm for the pressure calculation. The model has been applied to a test

problem of flow between two parallel plates and the numerical results Show favorable

agreement with those obtained from ABAQUS. Results for other test problems are

also presented to demonstrate the capabilities of the present model. Results show that

this new method has several advantages over the previous methods such as consistent

and uniform discretization, no interfacing algorithms, incorporation of the interface

boundary conditions inherently into the formulation while maintaining the system

stable by avoiding ill-conditioned systems.
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CHAPTER 1

Introduction

1.1 Background and Literature Survey

A great number of real-life systems, important for industrial applications and

academic research, involve interactions amongst a range of physical phenomena

(e.g. viscous, turbulent, thermal, chemical, mechanical, electromagnetic or plasma

processes). In some systems the time and length scales of processes studied differ in

orders of magnitude. Also these interactions can occur between particles of different

phases. Fluid—structure interaction is one such important phenomenon, commonly

observed in multi-physics problems which is being studied in this thesis. In order to

fully realize their potential, and reduce the development time and cost in industries,

it is important to understand and thereby develop models with minimum deviation

from the real life. Numerical simulations provide an excellent cost effective solution

to fully understand and predict the efficiency of a model. Hence this research

attempts to develop an effective model with efficient numerical algorithms and



computational techniques to understand and simulate the problems of fluid-structure

interaction.

The development of an efficient and accurate solver for fluid-structure prob-

lems is still a challenging task in research. In order to solve the problem accurately,

both the fluid and structure have to be solved simultaneously. The partitioned

method is introduced by Park et al. [29]. In this method, the fluid is solved first

and the pressures at the interface are transferred onto the solid domain and then the

solid is updated. Once the solid is updated the fluid mesh is updated according to

the corresponding deformation in the solid domain and then the cycle repeats. The

partitioned approach is preferred because of its ability to use different solvers for

fluid and solid domains. This helps in not developing an entirely new method but

to use the already existing methods for the fluids and solids. However this method

is suitable to problems in which the fluid and the solid are loosely coupled. The

main drawbacks of this method are that it has a limited domain of stability [6] and

there is always a time lag between the structure and the fluid which can lead to loss

of dynamical equivalence between the model and numerical algorithm [4]. Other

works trying to improve the stability and the time lag have also been proposed.

Introduction of predictor-corrector algorithms and interaction algorithm where the

fluid and structure are integrated in time by an explicit fourth order Runge—Kutta

scheme [3] are some of the examples which tried to extend the model to strongly

coupled problems.



In case of strong interactions, simultaneous solutions or monolithic schemes

[6, 3, 17, 25, 19] are preferable in order to get accurate and stable solutions. In

monolithic schemes, a single system of equations is developed for the entire region

and is solved simultaneously [6] or the system of equations for the fluid and solid

are simultaneously solved in a single iteration loop with consistent time integration

schemes [3]. If the discretization method is the same for both the solid and liquid,

the entire domain is treated as a whole and the convergence of the system is ensured

even though the subsystem strongly differs from the whole system. However the

monolithic schemes require a common time-step for the entire region which can some—

times reduce the efficiency of the method. Furthermore, the development of single

system of equations requires formulation of coupling matrices which are difficult to

compute. The final system of equations obtained may also be ill-conditioned in which

case appropriate pre-conditioners [17] are required. Comparisons were made between

the monolithic and partitioned approaches [25] to get a better understanding of them.

Coming to the discretization techniques, a wide range of techniques are avail-

able in the literature. A Lagrangian formulation [23] has the advantage of clear

marking and tracking of the boundaries and is more suited to solids since the

boundaries deform with the solid. When the fluid is modeled using Lagrangian

approach the mesh deformation in the fluid region becomes unmanageable and so

mesh regeneration is often sought which is computationally expensive and is avoided

as much as possible. On the other hand an Eulerian [30, 31] approach has the

clear advantage that strong deformations can be taken care of but it comes at an



expense of precise interface definition. Due to these restrictions, an intermediate

method known as Arbitrary Lagrangian-Eulerian method [18, 12], which combines

the advantages of the two methods was deveIOped. The generalized descriptions

for ALE formulations were initially developed for finite difference formulations [18].

Later, Donea et al. [12] first applied ALE concepts to finite element methods to

solve transient dynamic fluid-structure interaction problems.

The main advantage of ALE is the ability to move the fluid mesh indepen-

dent of the motion of the fluid itself. This allows the fluid nodes to remain fixed

with the solid nodes and hence the fluid-structure coupling is simplified. The

advantages in ALE come with a price. The freedom in moving the fluid mesh

offered by the ALE can be overshadowed by the burden of specifying grid velocities.

Also, even though the ALE formulation overcomes the problem of boundary clarity,

it still has the problem of handling large deformations. Although most of the

ALE formulations have mesh updating, when the distortions become large, mesh

regeneration becomes unavoidable. Researchers [32] tried to develop possible ways

to control the distortion of the mesh. Later more features of the fluid modeling like

turbulence have been incorporated into the ALE model [36, 2]. Despite the relative

advantages of ALE, the requirement of re—meshing at some point introduces artificial

diffusivity, and is also difficult and time-consuming to perform with sufficient robust-

ness and accuracy for three dimensional problems. Due to this reason researchers

developed other numerical methods like Fictitious Domain [1, 11, 5, 14], space-time

elements[19, 16, 7, 20, 21, 15, 34].



Fictitious domain methods are advantageous for the fact that that they allow

the use of fairly structured meshes on a simple shape auxiliary domain containing

the actual one, allowing fast solvers. Glowinski et al. [14] proposed a model taking

the systematic advantage of the Lagrange multipliers associated with the boundary

condition imposed on the actual boundary. Later Baijens [1] developed a method

combining the fictitious domain method and the mortar element method for solving

fluid-structure interaction problems. However, these methods are accompanied by

the need to store information concerning the actual geometry which is not trivial for

complex geometries.

In elastodynamics, time-discontinuous stabilized space-time elements were in-

troduced by Hughes and Hulbert [20]. Brooks and Hughes [7] and Hughes et al.

[21] presented stabilized finite elements, while Tezduyar et al. [34] and Hansbo

[15] applied the space-time formulation for solving the incompressible Navier-Stokes

equations on moving meshes. Later these were extended to solve fluid-structure

interaction problems. Hubner et a1. [19] proposed a monolithic approach based on

velocity variables for both solid and liquid domains, while Hansbo et al. [16] com-

bined Nitsche’s method with space—time finite elements to mimic ALE simulations.

The advantage of this method is its consistent discretization of both space and time

domain including space-time adaptive meshes. Furthermore the movement of the

fluid domain is natural as the elements vary with time. However the main drawback

is the limitation of finite elements in time.



On the other hand, a family of methods called meshless methods has been de—

veloped. These ideas were proposed by Nayroles et al. [26], later used by Idelsohn et

al. [23]. The advantages are high order continuity at element boundaries and easy

generation of adequate discretization meshes for complex tri-dimensional domains.

Nevertheless they follow the Lagrangian approach and face difficulties with large

deformations.

The other important discretization technique for doing numerical simulation is

finite volume method (FVM) which is more used for solving fluid problems. Even-

though finite element and finite volume methods share a number of features like mesh

discretization and approximation, they take a very different approach in treating the

convective terms. For solving Navier-Stokes equations the FVM is more consistent

and hence preferable over the FEM [22]. Due to this reason researchers [30, 31] have

developed finite volume methods to solve fluid—structure interaction. Slone et al.

[30] developed a finite volume method for solving dynamic structural problems and

later Slone et a1. [31] applied it to solve dynamic fluid-structure interaction problems.

Another important concern in discretization is transfer of information from

one domain to the other. The role of fluid structure interfacing (FSI) algorithms

is to ensure appropriate coupling between the solid and liquid domains along their

interface. The types of interfaces can be classified as conforming and non-conforming

meshes. Examples of FSI algorithms for conforming meshes include fluid structure



interaction of the ALE (permanent) type (FSA) [8] and Uniform Pressure (UP) [9]

methods. In conforming interfaces the fluid and structure elements must have the

same size at the interface. This has a major disadvantage in that the degree of

resolution required for liquid and solid is different and having same sized elements

at the interface compromises either the solid or the liquid resolution for the other.

These disadvantages have led the path to FSI algorithms [10, 13] for non-conforming

meshes which is more general and is more suitable to partitioned methods which are

preferred due to their ability to use established solution methods in each discipline.

1 .2 Motivations

In summary, the various approaches used in the past to tackle FSI problems can be

generally classified in terms of numerical methods (Monolithic and Partitioned), grid

generation and discretization techniques (Lagrangian, Eulerian, ALE, Fictious do-

main methods, Space—time and meshless methods) and interfacing algorithms (FSA

and UP based on conforming and non-conforming meshes). These different ap—

proaches try to reduce the differences in the formulation of fluid and solid domains

which can be generalized as following; requirements in terms of mesh reference, grid

resolution and variables to be solved for solid and liquid domains. These differences

end up as extra costs in terms of coupling two systems of equations, providing inter-

face algorithms to transfer data from one domain to other, and mesh movement. An

ideal method to solve the fluid-structure interaction problem would be one which has

a uniform and consistent spatial and temporal discretization along with a mechanism



to interact among the phases freely without any interfacing algorithms. Some of the

attempts to reduce these differences are displacement based elements for fluids [35],

potential based formulation for fluids [28, 27, 24, 33] and velocity based formulations

for solids [19]. However they only succeeded partially in improving the solution. The

aim of this research is to further move a step closer to reducing the differences between

the fluid and solid formulations and come with an approach which can interact freely

among the phases without any need for interfacing algorithms along with a consistent

discretization throughout the domain.

1.3 Summary of the Study

In this research a novel monolithic finite volume scheme based on a unified momen-

tum equation with velocity variables is proposed. This approach has been tested and

validated by applying it to a Poiseuille flow between parallel plates. The numerical

results of the flow and stress fields are in good agreement with those obtained from

analytical computation. Later this method is successfully applied to a driven cavity

problem. The results from the simulations show that this approach has several

unique advantages. Firstly, the momentum equations of the solid and liquid domains

are coupled to obtain a unified momentum approach. This allows in treating the

fluid and solid domains as a whole which means that a single numerical algorithm

can be applied to both phases. Also the interface boundary conditions, such as

continuity of velocities and displacements, and consideration of shear and normal

stresses, have been automatically taken into account during the formulation. This



means that there is no need to match the boundary conditions with this method.

Computationally, the consideration of velocity variables for the solid domain removes

the burden of interpolation of variables from one domain to other. On the other

hand the finite volume method makes it simple to understand and easy to extend

the method to more complicated and unstructured problems. Also this method does

not generate ill-conditioned matrices unlike other monolithic schemes.

The organization of the thesis is as follows. In Chapter 2, we describe the

governing equations for fluid and solid domains and construct the unified momentum

equation governing the fluid-structure problem. Chapter 3 deals with the discretiza-

tion and solution methodology used to implement the unified momentum equation

approach. Chapter 4 consists of test problems which are solved using the current

approach along with the detailed discussion of the results. Conclusions are made in

Chapter 5 while Chapter 6 consists of future work.



CHAPTER 2

Equation Formulation

In this section the problem is formulated and the necessary assumptions are specified.

The fluid is considered as newtonian while the solid is modeled using elastodynamic

model. These are further explained in the coming sections.

2. 1 Fluid Formulation

The governing equations for the fluid flow consist primarily of the Navier Stoke’s

equation, including conservation of mass and momentum. The conservation of mass

is represented by the continuity equation (Equation 2.1) which is required to close

the set of equations.

0 Continuity Equation

—+V-(pu)=0 (2.1)

10



0 Conservation of Momentum

D(pU)

Dt

 
= V ' 0'] + f (2.2)

where of is the stress vector, f is the external force,

of = —pI + 2pR (2.3)

where n denotes viscous constant and R is the rate of strain,

1 T
R = 5(Vu + Vu ) (2.4)

where u represents the velocity vector. Substituting Equations 2.3 and 2.4 in Equation

2.2 and rearranging the terms we have

3(pU)

0t

 + V - (puu + hVu — p1) = f (2.5)

In the above Equation 2.5 the term V ' (puu) represents the convective terms whereas

uVu represents the viscous terms.

2.2 Solid Formulation

The solid domain is formulated using elastodynamic equation representing the con-

servation of momentum. For the case of solids, the continuity equation is not required

as it is used to determine the density, which for the case of solids is assumed to be

constant. Hence the elastodynamic equation is sufficient to solve for the displacement

or velocity variables.

11



0 Conservation of Momentum (elastodynamic Equation)

82d
__ = . 8 f 2.p 3152 V a’ + ( 6)

Here, d is displacement vector defined as

d = d; + (1,} + dzfc (2.7)

and a, is the stress temsor for solids, and f is the external body force that includes

gravity, electromagnetic forces, and phase transformation terms. If the left-hand side

of Equation 2.6 is written in terms of velocity u and convective terms included, the

following momentum equation is obtained.

D(pu) _

Dt _

 V - as + f (2.8)

Here, the stress vector is defined as,

a, = 2m: + (I\'Dr(s))1 (2.9)

where 8 represents the strain tensor,

1 T
a = §(Vd + Vd ) (2.10)

and /~\ and [i are Lame’s constants, defined in terms of modulus of elasticity (E) and

Poisson’s ratio (u).

~ EV ~ E
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Substituting Equation 2.10 into Equation 2.9 and rearranging terms the following

equation for the stress tensor is obtained.

a, = ,1(Vd) + ()1 + i1)(v - d)I (2.12)

Substituting the Equation 2.12 in Equation 2.8 and expanding the total derivative,

we obtain

80911)

at

 + v - (puu) = v- (mva) + (Z\ + i1)(v - d)1) + f (2.13)

Finally, rearranging the Equation 2.13, we obtain the following form of the momentum

equation for solids.

30011)

at

 + v- (puu — 11(Vd) — (I\ + [luv-(1)1) = r (2.14)

The term puu in the Equation 2.14 represents the convective terms. Unlike the case

for fluids, the displacements and velocities in the solid domain are so small that these

convective terms can be neglected. Some of the evident and direct differences between

the fluid and solid formulations which can be noticed in the above formulations are the

requirement of the continuity equation and the convective terms in the fluid domain.

For the fluid, the convective terms contribute significant amount of flux, where as

the continuity equation is required to close the set of equations. This is however

not the case with solids. The next section focusses on reducing these differences and

representing them as the unified momentum equation common to both the domains.

13



2.3 Unified Momentum Equation Approach

The unified momentum equation enables us to combine both the momentum equations

into a single generalized equation which is then solved for the entire domain. By

observing the Equations 2.5 and 2.14, the unified momentum equation can be derived

as

8n

where J represents the stress tensor given as

J={Jf=puu—/1Vu+pl for fluids (2.16)

J, = puu — [1(Vd) —— (A + ii)(V - d)I for solids

The stress tensor J is different from the actual stress tensor 0' in that it includes the

convective stress puu. Observe that Jf and J3 are very similar.

It is important to note that the unified momentum equation is not just a way

of representation, it symbolizes the Newton’s second Law of motion and every term

in Equation 2.15 has its own physical meaning. The term J has the units of stress

equivalent to force acting per unit area and J is calculated based on the type of

phase. So, this principle can further be extended to other phases provided J can be

explicitly represented as a function of variables pertaining to that phase. This is the

first step in moving towards developing a single numerical algorithm which can be

applied to both phases.

Even though there are several numerical methods to solve the conservation

14



equations, the finite volume method is particularly suitable for the unified momen-

tum equation formulation. The finite volume method starts with the integral form

of the conservation equation to obtain a final equation with flux contributions from

each side of the control volume. The Navier-Stokes equations have the property that

the momentum in any control volume (microscopic or macroscopic) is changed only

by flow through the surface, forces acting on the surface, and volumetric body forces.

This important property is inherited by the discretized equation if the Finite Volume

approach is used and surface fluxes for adjacent control volumes are identical. If this

is done, then the integral over the entire domain, being the sum of the integrals over

the microscopic control volumes, reduces to a sum over the surface of the domain.

Overall mass conservation follows in the same way from the continuity equation.

This method is particularly suitable for the unified momentum equation approach as

the flux contributions from each side of the control volume have already been defined

in the unified momentum equation. This is another important advantage with the

unified momentum equation approach. This advantage becomes more evident as

we proceed further through this section. Writing the Equation 2.15 using indicial

notation, we have

300%) 31a _
at + 8% _ f,- (2.17) 

As an example, let’s consider the x-component of the unified momentum equation

8(p-u) BJH 8J3”, asz_
at + 8x + By + az —f,, (2.18)  

15



Integrating Equation 2.18 over a control volume of dimensions Ax, Ag and A2 we

obtain

 
£V(B(W)+8J3x+§fl+%€)

at a: ay 32. ___ Mfr (2'19)

which upon expansion results in

30311)

at

 
AJSAyAZ + ((Jxx)e — (Jxx)w) AyAZ-I-

((133,), — (ny)b) AxAz + ((Jzz)n — (sz),)A:z:Ay = foxAyAz

or

awn)
WAV + ((Jxx)e _ (Jxx)w) AA$+

(my). — (J..).)AA. + (Us). — (J..).)AA. = flAv (2.20)

Here, we define the volume of cell and the three cell face areas in :zr—, y—,

 

 
 

 

b

\

J;c AA
ny)bAAy\ e ( U)! y

/\(Jxr)eAAx

\

Figure 2.1. Control volume

z—directions as AV, AA,“ AA,, and AA; respectively (Figure 2.1). Also p is the

16



volume-averaged density, and fl is the volume-averaged body force. The subscripts

e,w,t,b,n and 3 denote east (+23), west (—:r), top (+y), bottom (-y), north (+2),

and south (-z) faces 0 the cell (Figure 2.1). For example, (Jn)e denotes the normal

stress in the sis-direction at the cell face 6, and (nyh is the shear stress at the cell

face t. Since, J has the units of stress, the terms containing J in the Equation 2.20.

Therefore, the physical meaning of the term (sz)nAAz is the surface force acting on

the surface n in the x-direction.

A careful observation of the Equation 2.20 emphasizes that it can be applied

to any control volume independent of whether the control volume is surrounded by

fluid or solid or both. When a face is surrounded by a fluid, the stress J at that face

can be evaluated using Jf given by the Equation 2.16. Alternately, When the face

is surrounded by solid, the stress J can be evaluated using J, given by the Equation

2.16. This allows us to solve for the momentum equation for the entire domain

using a single algorithm without having to solve for fluid and solid domains separately.

As an example, consider the surfaces 8, b, n are surrounded by a solid and

the rest of the surfaces are surrounded by a fluid, then J, is used to evaluate (Ju)e,

(nylb, (JR),, and J; is used to evaluate (Jw)w, (Jig), and (J12), In this case we

17



obtain the following momentum equation for the cell

    

 

  

agitaAV + (puu — [280:]: — (A + [1) (8;: + a—gt—y + 8512))6AAI—

(puu — rig: + p)wAAx + (puu —— pg—Z)tAAy —- (11(ng + %))bAAy—

(mg: + é:,):‘i))nAA, — (pwu — ”299.4, = flav (2.21)

In this way it is possible to tailor the momentum to any kind of fluid-structure

interface configurations. Next, discretization of the governing equations is discussed

in Chapter 3.
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CHAPTER 3

Desicretization and Solution

Methodology

In this section, the spatial and temporal discretization of the conservation equations is

discussed in detail. First, the spatial discretization is discussed which is then followed

by temporal discretization. Next, the boundary conditions are presented for both the

fluid and solid domain. Finally, the solution methodology will be discussed in detail.

3.1 Spatial Discretization

A staggered grid is considered for the spatial discretization. In Cartesian coordinates,

the staggered arrangement introduced by Harlow and Welsh (1965) offers several

advantages over the collocated arrangement. This arrangement for a two-dimensional

grid is shown in Figure 3.1. A dot indicates the position where a scalar quantity such

as pressure is stored, while the arrows indicate the points where velocity components

19



are stored whose direction is represented by the arrow direction. The shaded and non-

shaded regions indicate the different phases solid and fluid respectively. For a three

dimensional case, a staggered grid will have 4 different control volumes corresponding

to three velocity components and a scalar variable.
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Figure 3.1. Staggered grid

Despite the increased number of control volumes the staggered grid is preferred due to

its advantages. The advantages being pressure and diffusion terms can be naturally

approximated by central difference approximations without interpolation, the velocity

derivatives needed for the diffusive terms can be readily computed at the CV faces

and the the evaluation of mass fluxes in the continuity equation on the faces of a

pressure CV is straightforward. But the biggest advantage of the staggered grid is

the strong coupling between the velocities and the pressure. These positive features

of the staggered grid justify the selection of staggered grid over the collocated grid

as it also avoids some types of convergence problems and oscillation in pressure and

20



velocity fields.

3.1.1 Unified Momentum Equation

The discretization of the unified momentum equation is done at two levels. The

first level is the discretization of the unified momentum equation into flux terms

over a single control volume. Next, the resulting equation with flux terms is further

discretized in terms of the grid variables in the second level. The flux terms obtained

from the first level of discretization include both JI and J8 which has been discussed

in Section 2.3. Each of these terms is then separately discretized to complete the

discretization process. The generalized equation obtained by integrating the unified

momentum equation over a control volume can be defined as

3(fiui)

at

 
AV + ((Jij)j+ — (Jij)j‘)AAi = f—z'AV (3-1)

The term (J,j)j+ represents the if" component of the J stress tensor, whereas the

subscript j+ indicates the face in the positive direction of the j-axis in the control

volume at which the flux is being evaluated. Hence for a 3-dimensional control

volume we have three different fluxes, each of which needs to be evaluated at two

different faces and hence totally 6 fluxes show up in Equation 3.1. This completes

the first level of discretization.

The Equation 3.1 consists of the flux terms which are further to be discretized

in order to write the conservation equations in terms of the variables, which are

being solved for. The flux term is discretized for different cases corresponding to
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the region in which the face is located. These cases of discretization are further

explained in the coming sections. Before continuing further, the notation followed

N

 
 

 
   

 \.

Figure 3.2. Nodal arrangement in a control volume

in the discretization needs to be addressed. All the variables are represented with

respect to the cell center. For a given control volume shown in Figure 3.2, the node

P represents the cell center whereas the nodes E, W, N, S, T and B represent the

cell centers of its neighboring cells. Also, the face centers are represented by small

letters 6, w, n, s, t and b corresponding to their directions.

Fluid Face

In this case the face completely lies in the fluid region. Hence the flux terms can be

evaluated using the Jf obtained from the Equation 2.16. Consider a component Jij,
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which needs to be evaluated at f“ face or 3" face. Now it can be written as

Bu,-

Jij = pin-u]- — ”6—13- + P59“ (3.2)

J

The discretized representation of the flux term is given for all the three u, v and 211

control volumes. For each control volume, six flux terms need to be evaluated which

are provided below. J indicates the stress Jij multiplied with the area of the face Aji

at which it is being evaluated.

0 u-control volume

.1: = aE(uE — up) + p... Jff, = aw(up — Uw) - pw

j: = aN(uN — Up) j: = 03(Up - Us)

J—tu = aT(uT — Up) j: = a3(up — 113)

o v-control volume

J: = (15(ng — ’Up) J3, = apt/(”Up — ’Uw)

J: = aN(vN — ’Up) J3 = a3(vp — v5)

Jtv = an‘UT — UP) +Pt j: = 6113(1)}D — ’UB) — Pb

o w-control volume

J2” = aE(wE - 10;?) J11: = aw(wp — ww)
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where

a3 = D,3 + max(—F,, 0) aw = D, + max(Fw, 0)

em 2 Dn + max(—Fn,0) a5 = D, + max(F,,0)

aT = D, + max(—Ft,0), a3 = D, + max(Fb,0)

where F is the mass flux arising due to the convection terms and D is the diffusion

flux or conductance arising due to the diffusion terms. These are defined as follows.

F, = (p11,),AyAz E, = (pu)wAyAz

Fn = (pw),,AzA:r F, = (pw),AzAa:

Ft = (P’UltA-‘EAZJ Fb = (pv)bA:rAy

,ueAyAz uwAyAz

D, = —— Du, z ——
(6:6),» (516),,

pnAzAx p3AzAx

1),, = —— D, = ——
(5.11),; (53/),

MAM-y ubeAy
D = —-——-——— D = ——-—-———-

‘ (52.), b (5.2),,

Solid Face

In this case, the face completely lies entirely in the solid domain. Hence the flux can

be calculated from the Equation 2.16. The discretized representation of the flux terms

is given in sync with the notation in Figure 3.2. As discussed earlier, for each control

volume, six flux terms need to be evaluated which are provided below. J indicates

the stress J,,- multiplied with the area of the face Aji at which it is being evaluated.
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O u-control volume

«72‘

O v-control volume
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2 WW”
; — (132,13) + AAe(dy‘t€A—yd

y~b€ + d2,neA—zd2,se

WWW— dzyv) +RAM
W + dwwgzdmw

J,“ = i1A,(dx’TA;ydx,P
+ dyiegxdm)

j: : flAb(dx,PA-ydz
,3 + dytegmdytw)

J: = MAME—2&5 + 1%..)

ju : ILA, (dapA-Z
dLS + dmegxdmw

)

— W<dyf — d,,p) +MAW
+ Egg-gig)

WWW— dag) +MA
W+91%)

J: = fiAe(g&E—A—g—y-’5 + W
M)

J73 = [MAW
+W)

J: = 2A,.(dy’NA—zdw + twig/cm

.7: = 11.44%?Aldus + dz.st;yd.,.b)

)

(3.3)



o w-control volume

 

 

 

 

 

j: 2 WWW — (12,19) + AAnde’neA—xdx’nw "I" dy'ntgydy’nb)

; =mm“ mm)
Jé” = [1146((12 EA—xdzy dr,enAzdx,es) (3.5)

jw = 111410 (dz,PA—xdz,W d1,wn.Azdx,-ws)

jtw _ flAt(dz’TA_ydz‘P dy,tnA—zdy,es)

J: = flAb(dz,P;ydz,B dy,mA—Zdy.bs)

where d,,m,, indicates the 2' component of displacement vector and the subscript mn

indicates the position of the displacement component di. mn indicates the center

of the edge at the intersection of m and 77. faces. For example, the subscript 93,68

indicates the r-component of the displacement vector at the center of edge at the

intersection of east and south faces.

As observed from the discretized equations for the solid and liquid faces, one

major difference can be noticed. The interdependence of individual momentum

components in solid stress is much higher than in the case of liquid. This is due to

the influence of y and 2: components on fluxes for the u-control volume and similarly

the influence of other components in evaluating flux terms for the solid face for v

and 10 control volumes. This is much less in the case of flux terms for liquid face.
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3.1.2 Continuity Equation

As mentioned earlier, the continuity equation (Equation 2.1) appears because of

the liquid domain. The unified momentum equation consists of pressure terms

coming from the flux terms pertaining to the fluid domain. Since pressure is also an

unknown variable which needs to be solved for, the continuity equation is required

to close the set of equations. However the numerical algorithm will take care of the

continuity equation in such a way, that no special consideration is required because

of this difference between the two phases. This will addressed in the solution section.

The velocity field in the liquid domain is subject to the constraint that it

should satisfy continuity equation. Hence substituting the velocities obtained from

momentum equations with an incorrect or guessed pressure field in the continuity

equation and rearranging the terms, one can rewrite the continuity equation in terms

of the velocities and pressures. Following this basic principle, the pressure correction

equation based on SIMPLE algorithm can be written as

aszP = ‘1ng + aft/19w + ‘17va + “1.21193 + (11711)} + (17313]; + S’P (3'6)

where

0’2: = (pdA)e a’év = (pd/1),,

aiv = (pd/0n 0% = (pd/1), (3-7)

a; = (Pd/4h GI); = (Pd/4):;
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afizag+afv+af§+a§+a§~+ag (3.8)

and

d = i (3.9)

where A represents the area of the face at which (1 is being evaluated and up is

given by the discretized momentum equation corresponding to the variable at the

face center. For example if the face center consists the x—component of the velocity

vector, ap corresponds to the coefficient from the discretized u-momentum equation.

Equation 3.6 represents the discretised continuity equation as an equation for

pressure correction p’. The source term S, in the equation is the continuity

imbalance arising from the incorrect velocity field.

3.2 Temporal Discretization

The present algorithm employs a fully implicit scheme for temporal discretization for

all variables. Considering a function (b which is dependent on variables u). Following

the implicit scheme we have

du,

dt

 

= $0“)

=> u?“ = u? + gb(u))”+1At (3.10)

Hence from Equation 3.10 it can be noticed unknown quantities appear on both

sides of the equation and hence need a set of equations which have to be solved
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simultaneously to determine the unknown variables.

The principal reason for using implicit solution methods, which are more com-

plex to implement and require more computational effort in each solution step, is

due to the fact that it is unconditionally stable, allowing for large time-step sizes.

However since the unified momentum equations for each component and the conti-

nuity equation are being solved solved in a staggered manner, it is not reasonable to

assume a very large time step to get reasonably accurate results. Another important

advantage of the implicit method is its ability to obtain accurate intermediate

results. Even though time marching explicit schemes are computationally efficient

than the implicit schemes, they can only be used to obtain the steady state solution.

3.3 Final Equations

As mentioned above, the discretized equations are written in terms of the field vari-

ables i.e.., velocities in the fluid region and displacements in the solid region. In order

to avoid the interpolation of variables from one domain to another which is one of the

disadvantages of the earlier methods, the displacements in the solid domain from the

flux terms are converted to velocities. The following first order implicit formulation

is used to represent the equations in terms of velocities throughout the domain.

t(n+1)

d"+1=/ udt+dnzu"'+1At+d” (3.11)
t(n)
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Since the displacements at the nth level are known the last term in Equation 3.11 is

a known quantity and hence goes to the source term in the final discretized equation

with velocities throughout the domain. Finally, rearranging the discretized equations,

they can be represented as

up 217;)“ = En), an), 112:1 + S, (3.12)

where P is the index of an arbitrary velocity node representing the center of the

control volume, and index nb denotes neighbor points corresponding to the centers of

the neighboring cells, that appear in the discretized momentum equation. The source

term S contains all of the terms that may be explicitly computed in terms of u" as

well as any body force or other linearized terms that may depend on u".

3.4 Boundary Conditions

3.4.1 Liquid domain

Usually there are three types of boundary conditions which are common for the liquid

domain and they are inlet, outlet and wall boundary conditions. These are discussed

further in this section.

0 Inlet

At an inlet boundary, all quantities have to be prescribed or be able to calculate

from the known variable values at the inlet boundary.

0 Outlet
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At the outlet, most of the quantities are extrapolated along grid lines from the

interior to the boundary. The simplest approximation of zero gradient along

grid lines is followed in this present work.

0 wall

A no—slip condition is applied at the wall boundary. This condition follows from

the fact that viscous fluids stick to solid boundary without any slip. Hence, the

following condition is applied at the wall

21 = uwau (3.13)

The above mentioned boundary conditions can be applied in two different ways. The

first one is to apply them while calculating the flux at the boundary face of a control

volume. The second method is more direct by working with the coefficients in the

discretized equation such that the boundary conditions are satisfied. The second

method is followed in the present work.

3.4.2 Solid domain

Consider the stress vector on on an oblique plane P with unit normal It through

point 0 of a medium as shown in Figure 3.3. The boundary conditions for the solid

domain can be expressed as

a, - n = f (3.14)

where the unit normal vector to the plane is defined as

n = in, + jny + kn, (3.15)
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Figure 3.3. Stress on an oblique plane

with n,- as the directional cosines of the unit vector 71. relative to axes (X, Y, Z).

By definition, the stress vector on may be represented in terms of its (X, Y, Z)

projections. Hence

0,, = i0", + jany + ken, (3.16)

where 0",, any, and on, are the (X, Y, Z) projections of the vector on. Consequently,

we have

Una: : ”$032: + nyaxy + nzarz

any 2 may, + nyayy + may, (3.17)

0712 : ”22:02:: + nyazy 'I' nzazz
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Equations 3.17 represent the components of stress at a point 0 on an oblique plane

P (whose unit normal has direction n) in terms of the six components of stress

0,,- (0,,- = 0],). If point 0, is in the surface bounding a medium, and if plane P is

tangent to the surface at point 0, Equations 3.17 are the stress boundary conditions

at point 0 in terms of the stress components. Substitution of Equation 2.9 into

Equations 3.17 yields the boundary condition equations in terms of grid variables.

3.5 Solution Methodology

The conservation equations which are needed to be solved in order to get the flow

field and the stress field in the entire domain are the

o Unified Momentum equation (For the entire domain)

0 Continuity equation (For the fluid domain)

Solution of the Navier-Stokes equations is complicated by the lack of an independent

equation for the pressure, whose gradient contributed to each of the three momentum

equations. Furthermore, the continuity equations does not have a dominant variable

in incompressible flows. This is not however the case for solid domain. Since there is

no pressure term involved in the conservation of momentum (or unified momentum

flux terms), this complication is avoided and it is enough that the conservation

of momentum equation alone is solved to obtain the displacement of the veloc—

ity field. However a solution procedure which can accommodate these differences

between the domains and successfully solve for the field variables is extremely critical.
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The pressure correction method is one solution where the momentum equa-

tions are solved with a guessed pressure field and then, the pressure field is corrected

so as to guarantee satisfaction of the continuity equation. This method of solution

allowing to separate the momentum and the continuity equations helps in coping

with the differences between the domains. In the present work a modified form of

SIMPLE (Semi Implicit Method for Pressure Linked Equations) is employed in order

to solve the unified momentum and the continuity equations.

The discretized set of unified momentum equations can be represented as

tip it?“ = Enb an), 112,,“ + S, (3.18)

where P is the index of the center of the control volume and nb denotes the centers

of the neighboring cells that appear in the discretized unified momentum equation.

8 represents the source term which can be either computed with the known variables

at time level n or can be guessed variables such as pressure. The appearance of

pressure in the Equation 3.18 depends on whether the fluid region appears at the

control volume and does not appear if the control volume is entirely in the solid

domain.

Due to the non-linearity and coupling of the underlying differential equations,

the Equations 3.18 need to be solved iteratively. Since the computation is done for

an unsteady flow, iteration must be continued within each time step.
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The solution begins with initializing variables and assuming an initial pressure

field for the fluid domain. Then, the unified momentum equations are solved

sequentially i.e.., the set of algebraic equations for each component of the momentum

is solved in turn, treating the grid point values of its dominant velocity component

as the sole set of unknowns. Since the pressure used at fluid control volumes in

these iterations was obtained from the previous time step, the velocities computed

from Equations 3.18 do not normally satisfy the discretized continuity equation. To

enforce the continuity condition, the velocities need to be corrected; this requires

correcting the pressure field which is described further. Since the velocities in

fluid and solid domains are interdependent on each other once the velocities in are

corrected it is necessary to make sure that the solution satisfies both the unified

momentum and the continuity equation. Hence this iterative process is carried until

both the unified momentum equation and the continuity equation are simultaneously

satisfied.

The velocity at node P, obtained by solving the linearized momentum equa—

tions (3.18) can be formally expressed as:

m—l u mu:

Su _ Zn!) anbunb

u

“P

 

m*_

up — (3.19)

where m indicates the outer iterations which are iterations within one time step. ”(L7)"

is not the final value of the velocity for iteration m; it is predicted value as indicated

by the asterisk (*). The corrected final values should satisfy the continuity equation
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for the liquid domain. Hence the next step is to solve the pressure correction equation

(continuity equation). Since the Equation 3.20 is required only for the liquid domain,

the pressure correction in the solid domain is taken as zero.

a’}, pp 2 En), a‘;, p"), + 5,, (3.20)

where the coeflicients up are evaluated based on if". Once the pressure correction is

known, the correct pressure field may be obtained using formula (3.21).

I

pm 2 pm-1 + 019 (3.21)

and the corresponding corrected velocities are calculated using

a}? 2 it?” + up where u]; = dp(Ap’)p (3.22)

where d is given from Equation 3.13. The new velocity field at the new iteration

remains unchanged for the solid domain as the pressure correction is zero in the

solid domain. However u}? in the liquid domain satisfies the continuity condition,

but the velocity and pressure fields do not satisfy the unified momentum equations

simultaneously. Hence a new outer iteration and the process is continued until a

velocity field which satisfies both the unified momentum and continuity equations is

obtained.
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Figure 3.4. Flow chart of the solution procedure
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CHAPTER 4

Numerical Tests

The objective of this section is to discuss the accuracy, efficiency and versatility of the

unified momentum approach explained in the previous sections by means of numerical

examples. In the first example, a flow between two parallel plates is considered. The

objective of this analysis is to solve for both the flow field and the stresses observed

in the plates simultaneously. However due to the symmetry, the resultant stress field

is shown only for the bottom plate. The results obtained from the numerical method

are compared with the results from ABAQUS. The second example is a driven cavity

problem where the objective is study the interaction between the fluid flow and the

stresses in the container holding the fluid. Unlike the poiseuille flow, the interaction

between the fluid and the container is more complex and dynamic. Images in this

thesis are presented in color.
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4. 1 Poiseuille flow

Poiseuille flow is one of the most commonly observed phenomenon. One of it’s main

applications is study of blood flow in arteries. Poiseuille flow can be described as

the flow of a viscous fluid in a channel. The setting is described in the Figure 4.1.

The fluid flows between two parallel plates which are 0.04 m apart and 0.3 m in

length. Each of the plates itself is 0.04 m wide and 0.3 m in length. The plates

are supported by rollers on all the remaining sides other than the fluid. A pressure

gradient is applied at the ends of the channel. The pressure at the intake is 30 Pa

while it is 1 Pa at the outlet.

The fluid in the channel is modeled as water with a density of 1000 Kg/m3

and a viscosity of 2.00 x 10‘2 N/m2. The bottom plate material is considered as

steel with a density of 7860 Kg/m3, Young’s Modulus of 2.03 x 1011 N/m2 and

Poisson ratio of 0.33.

0-04 Top Plate

0.04 __, Flow Channel

0.04 Bottom Plate

 
0.3m

Figure 4.1. Poiseuille flow between parallel plates
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4. 1 . 1 Validation

The validation solution for the problem is computed assuming steady state

conditions(8u/8t = 0). The no—slip boundary condition at the top and bottom edges

of the channel reads it = 0. Since the viscous forces should balance the pressure force

we have,

3211 319

— = — 4.1M ay2 8:1: ( )

Integrating twice and imposing the boundary conditions we obtain

1 Ap 2 2
: ________ 2 _. 4.2u(y) 2”, [(a/) ,1 < >

where a is the width of the channel in the y-direction, and l is the length in the

zit-direction.

The velocity profile given by Equation 4.2 is a parabola, with the fluid in the

center of the channel having the highest speed. With the velocity profile known, the

stresses acting on the plate can be calculated from the Equation 2.3 as

01:11: 2 —p

ayy = —p (4.3)

Bu

Gary : ”(a—y)

Hence the shear stress acting on the plates is calculated from the Equations 4.3 and

4.2, which is obtained as 2 Pa. This along with the normal stresses are then applied

on the plates using ABAQUS. Due to the symmetry of the problem only the bottom
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plate is further considered for the stress analysis. The top surface of the plate is loaded

with shear stress and normal stress obtained from the analytical solution of Poiseuille

flow. The plate is modeled as a 2-Dimensional deformable part with 200*200 grid

points in the mesh. A static solver is used to obtain the equilibrium stress distribution

in the plate in ABAQUS. The results are shown in the Figure 4.2. The normal stress

in the zit-direction (Figure 4.2(a)) has a maximum value of 4.5 Pa and a minimum

value of —14.6 Pa. The normal stress in the y-direction (Figure 4.2(b)) has a very

similar pattern to the pressure in the fluid flow as it is very less affected by the shear

stress acting on the top of the plate. The shear stress (Figure 4.2(c)) however varies

from a maximum of 1.9 Pa at the top surface to 0 Pa at the bottom surface.

4. 1 .2 Numerical Results

The numerical model is implemented in FORTRAN 90 with 200 *200 grid on a single

processor machine with Intel Pentium 4 3.20 GHz processor. The running time for

the entire simulation is approximately 8 hrs. A Line TDMA ('Iti Diagonal Matrix

Algorithm) solver is employed to solve the inner iteration for individual velocity

components and the pressure corrections.

Considering the normal stress in the zit-direction at different intermediate times

shown in the Figure 4.3, the subtle variations in the stress field inside the solid can

be noticed. The variations in the stresses inside the fluid region are very less as it

is dominated by the pressure which reaches equilibrium pretty quickly. Initially the
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(v) Shear Stress in the plate (nm)

Figure 4.2. Steady state stress distribution in the solid from ABAQUS
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Figure 4.3. Normal stress distribution in :r—direction(o,,) at different time intervals
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stress remains uniform in the solid plate, however as the flow develops and the shear

stress increases the normal stress in :r-direction starts to vary and at a time of 29.05 3

reaches steady state. Also by observing Figure 4.3(c) a clear discontinuity can be

noticed at the interface between the fluid and solid domains. This is as expected

since the normal to the interface is in the y-direction whereas the stress which is

being considered is in x-direction.

However, by observing the Figure 4.4, it can be inferred that the normal stress in

y-direction is continuous at the interface in both the phases, which is very much

in accordance with the interface boundary conditions. The normal stress in the

y-direction is very less affected by the flow development and increase in the shear

stress as the shear stress (2 Pa) is considerably small with respect to the normal

stresses in the y-direction acting on the plate due to the fluid flow.

The variations in the shear stress inside the fluid and solid region can be noticed

from the Figure 4.5. Initially at time 4.15 s (Figure 4.5(a)), the shear stress in the

fluid region is negligibly small due to the very low velocities while there is a slight

amount of shear stress shown as circular regions at the side ends in the solid region

due to the normal stresses inside the solid region. As time progresses these circular

patterns inside the solid region tend to merge as can be observed from Figure 4.5(b)

and finally as the flow develops and the shear stress increases in the fluid region the

shear stress in the plate tends to stabilize and reach its steady state (Figure 4.5(d)).

44



 

U

 

0 0.1 0.2 0.

X-axis (m)

m)t=415s

0.03

E
CD

0.04

3i
>.

0

(
d

 

0.1 0.2 0.

X—axis (m)

(b)t28303

O

 

02 03O O .
.

Y
-
a
x
l
s
(
m
)

9
.
0

O
o

O
A

(
D

 

X—axis (m)

(c) t 212.45 s

0 1 0 2 0 3

X-axis (m)

(d) t 229.05 s (steady state)

0

Y
-
a
x
i
s
(
m
)

.
0

.
0

O
O

O
#

(
D

 

Figure 4.4. Normal stress distribution in y-direction (0ny at different time intervals
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The stresses in the plate at the steady state obtained from the numerical re-

sults (Figures 4.3(d), 4.4(d) and 4.5(d)) are in good agreement with the results from

the ABAQUS model (Figure 4.2). A close observation reveals that the order of the

stresses as well as their pattern are almost the same. This provides the validation

for the current proposed model.

The velocity vector field for the entire domain is shown in Figure 4.6. As expected

the velocities in the solid region are very much negligible compared to those in the

fluid domain. The development of the parabolic velocity profile in the fluid region

can be noticed, which agrees with the analytical result derived for the Poiseuille flow.

As the orders of the velocities in fluid and solid domains are very different, a different

set of images showing the vector field in the solid are presented (Figure 4.7). At time

4.15 s, the velocities at the top surface in the solid plate tend to go down due to the

sudden increase in the pressure initially which can be observed from Figure 4.7(a) as

well as Figure 4.8(a), however this tendency decreases and the vertical component

of the velocities tend to decrease as time progresses and the pressure becomes

more steady. This can be observed in Figure 4.8(b) and Figure 4.8(c). Finally

at the steady state (Figure 4.7(d) and Figure 4.8(d)), the velocities in the plate

become zero due to which there are no streamlines in the solid region in Figure 4.8(d).
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Figure 4.6. Velocity vector field in the fluid at different time intervals

((1) t 229.05 s (steady state)
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Figure 4.7. Velocity vector field in the solid at different time intervals

(d) t 229.05 s (steady state)
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Figure 4.8. Stream lines at different time intervals
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4.2 Driven Cavity Problem

The Driven Cavity problem is one of the common benchmark problems in CFD

literature. The schematic model of the present problem is shown in Figure 4.9. As

in the case of Poiseuille flow, the driven cavity problem also has a fluid flow inside a

solid container. The dimensions of the cavity in the container are 0.07 m x 0.07 m

whereas those of the container are 0.14 m x 0.14 m. The top layer of the fluid flow

is driven by a lid at a constant velocity of 0.05 m/s due to which flow in induced

inside the fluid region. The flow induces pressure (stresses) which in turn act on the

metal container holding the fluid creating stresses in the container.

  

    
 

0.035m 0.035m

[l 0 l "’ " "’ "’ " " "‘ Q 0

C O

C 0.07m Fluid 3

C 0

0.14m O V O

C I 0.07m I O

c Solid Container 3

C O

V   
 

OOOOOOO

0.14m

Figure 4.9. Schematic representation of driven cavity flow

The fluid in the channel is modeled as water with a density of 1000 Kg/m3 and a
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viscosity of 6.00 x 10‘3 N/m2. The bottom plate material is considered as steel with

a density of 7860 Kg/m3, Young’s Modulus of 2.03 x 1011 N/m2 and Poisson ratio

of 0.33.

4.2.1 Numerical Results

The numerical model is implemented in FORTRAN 90 with 200 * 200 grid on a

single processor machine with Intel Pentium 4 3.20 GHz processor. The running

time for the entire simulation is approximately 6.5 hrs. A Line TDMA solver is

employed to solve the inner iteration for individual velocity components and the

pressure corrections. The results are shown below.

The normal stresses in :c-direction inside the domain are shown in Figure 4.10.

Initially, the normal stresses in :c-direction are very much symmetric concentrated

heavily at the top left and right corners of the fluid-structure interface (Figure

4.15(a)). As time progresses, the stresses become more biased towards the top right

corner of the interface due to the flow direction. The beginning of the formation of a

vortex can be observed from Figure 4.15(b) to Figure 4.10(h), during which the pres-

sure field inside the fluid flow varies. This variation results in the change of the stress

pattern inside the solid domain which can be noticed as the increase of the stresses

at the bottom portion of the solid container. The normal stresses in cr-direction

inside the solid domain are a little higher in magnitude at the right end because of
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the direction of flow pattern which is as expected. Also, the continuity of the normal

stress in the :c-direction can be observed at the left and right interfaces and not

at the bottom interface which is in accordance with the interface boundary conditions.

The normal stresses in y-direction inside the domain are shown in Figure 4.11.

The variations in the normal stresses in y-direction follow very much the same

pattern as the normal stresses in :r—direction. Stresses are symmetric at the

initial stages (Figure 4.11(a)) and as time progresses, the they become more

pronounced. The beginning of the formation of a vortex can be observed from

Figure 4.11(b) to Figure 4.11(h), during which the change of the stress pattern

inside the solid domain which can be noticed as the increase in the stresses at the

bottom portion of the solid container. However one important difference between

the normal stresses in a: and y directions is that the normal stresses in y direc-

tion (Figure 4.11) are continuous across the bottom interface whereas the normal

stresses in .7: direction (Figure 4.10) are continuous across the left and right interfaces.

The shear stresses inside the domain are shown in Figure 4.12. Initially, the shear

stresses (Figure 4.12(a)) in the entire domain are negligible as the flow is still

undeveloped, however the shear stress patterns become more pronounced in the

later stages. Inside the fluid domain (Figure 4.12(b) to Figure 4.12(b)) we have a

higher shear stress at the top layer and at the top right interface where the velocity

gradients are high. This results in a higher shear stress in the right side of solid

domain compared to that in the left region. The formation of the circular region in
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the bottom region of the container observed in Figure 4.12(b) and Figure 4.12(c) can

be explained from the fact that the solid particles tend to move in a circular mode at

these stages. Later as the velocities of the solid region become more flat, this circular

region separates into two halves as can be noticed in Figure 4.12(d) to Figure 4.12(b).

Considering the velocity vector fields (Figures 4.13 and 4.14) and streamlines (Figure

4.15) shown at different time intervals, it can be inferred that the particles in both

the fluid and solid regions have a similar velocity pattern at the initial stages. As the

flow develops it can be observed that the velocities in the solid tend to decrease and

the streamlines become more and more flat while the velocities in the fluid region

tend to develop further. This is due to the fact that velocities inside the solid region

are dependent on the rate of change of pressure at the interface. As the flow reaches

steady state, the variation in the pressure field decreases and hence solid velocities

become zero.
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Figure 4.13. Cont’d
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CHAPTER 5

Conclusion

A unified momentum equation approach is developed in this work to solve the fluid-

structure interaction problems, using a uniform and consistent spatial and temporal

discretization through out the domain along with a mechanism to interact among the

phases freely without any interfacing algorithms. This model combines the advantages

of having the same governing equations in both the phases along with the finite volume

approach to solve the fluid-structure interaction problems. The main advantages

include:

o Treating the fluid and solid domains as a whole which means that a single

numerical algorithm can be applied to both phases

0 No boundary conditions required at the fluid-structure interface as they are

inherently taken care of the force balance formulation

0 Interpolation of data from one phase to another not required as the grid is

continuous with velocities as the field-variables for both the phases.
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o Coupling of separate system of equations for solid and liquid not required

thereby avoiding the formation of ill—conditioned system of equations.

The method is then tested for different problems involving fluid-structure interactions.

First, it is applied to a flow between two parallel plates where stresses are induced

in the plates due to the flow field inside. The numerical results are then compared

with analytical results obtained from traditional approach of solving the fluid and

structural dynamics separately. The analytical solution for the fluid flow is used as

input for the ABAQUS model to obtain the stresses in the plates. Both the numerical

and the analytical results show good agreement with each other. Not only the pattern

and order of the stress field in the two results are quite close to each other but also the

continuity of the stresses in the normal direction is also satisfied at the interface. The

model is further successfully applied to the lid driven cavity problem to determine

the flow field and the stress distribution in the container simultaneously.
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CHAPTER 6

Future Work

This chapter describes how the present work can be extended to further improve it.

o The present model needs to be extended to problems in which the solid-fluid

interfaces intersect the computational-cell walls obliquely

0 Even though the validation of the proposed model is established with the

poiseuille flow, several other problems need to be studied and compared with the

experimental results to fully establish the accuracy of the method in predicting

the stresses for several other fluid-structure interaction problems

0 The present model needs to be further extended to include the energy equa—

tion so that the thermal and phase transformations in the domain can also be

captured simultaneously in both the phases

0 Developing a more robust model allowing interface movement and boundary

displacement in the solid domain
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o Improvements to make the present numerical method more efficient and accu-

rate need to be further developed.
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