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ABSTRACT

STATISTICAL METHODS FOR IDENTIFYING GENETIC ASSOCIATIONS

By

Lan Tong

This thesis introduces three bio-statistical concepts: Hardy-Weinberg equilibrium,

linkage disequilibrium, and haplotype reconstruction and haplotype frequency estimation.

Three statistical methods have been discussed and utilized to test these concepts for a

population genetics study.

Hardy-Weinberg equilibrium is a basis for genetic inference. It is tested through

the exact test implemented by the Arlequin software package. Linkage disequilibrium is

an important tool for mapping disease genes. It is tested with a likelihood-ratio test,

whose key procedure is the Expectation-Maximum algorithm, implemented by the

Arlequin software package. Haplotype information is essential for mapping disease. The

haplotype frequencies are estimated through the Bayesian estimation method

implemented by the PHASE software package. '

The above concepts and tests have been applied to the Isle of Wight cohort study.

It has been found that all the loci of interest (hCV8932056, hCV15862743, hCV8932053,

and hCV8932052 on the 11.13 gene) are in Hardy-Weinberg equilibrium, and that all pair-

wise loci are in linkage disequilibrium. The haplotypes of the most informative SNP

pair, hCV8932056 and hCV8932052, have been reconstructed; their frequencies are

estimated for eight phenotypes of interests. The contingency tests suggest that there is no

association between the haplotype patterns CA/CG/TA/TG and CA/TA/TG and allergic

asthma.
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CHAPTER 1 INTRODUCTION

Section 1 Background

The purpose of this thesis is to discuss three bio-statistical topics: Hardy-

Weinberg equilibrium, linkage disequilibrium, and haplotype reconstruction and

haplotype frequency estimation, and their applications in population genetics.

The Hardy-Weinberg law plays a very important role in the field ofpopulation

genetics and often serves as a basis for genetic inference (Crow, 1988). This law says

that in a large random-mating population with no selection, mutation, or migration, the

allele frequencies and the genotype frequencies are constant from generation to

generation and that, furthermore, if the alleles A 1, A2, Am have relative frequenciesf1,

f2, fm respectively, then the relative frequency ofhomozygous genotypes such as AA is

gt,- =fi2, and the relative frequency of a heterozygous genotype such as AA ( i ¢j ) is g.)-

= 2f”? Because of its importance, a lot of effort has been made to test if a population

exhibits Hardy-Weinberg equilibrium. This paper discusses, in detail, one of the

statistical methods, exact test, used to test Hardy-Weinberg equilibrium.

Linkage disequilibrium is an important tool for mapping disease genes. It

describes the nonrandom association of alleles at linked loci. When only genotype and

not haplotype frequencies are available, linkage disequilibrium between a pair of loci is

tested with a likelihood-ratio test. This paper discusses the likelihood ratio test, with

highlight on its key procedure, the Expectation-Maximum algorithm which resolves

double heterozygous genotypes into haplotypes when not assuming linkage equilibrium.

Haplotype information is essential for mapping disease. When individuals are

homozygous at every locus, haplotypes can be easily determined; however, when



individuals are heterozygous at more than one locus, haplotypes cannot be deducted from

genotype information. Statistical approaches can be used to reconstruct haplotypes and

estimate the relative frequencies of all possible haplotypes. This paper introduces the

Bayesian estimation method ofreconstructing haplotypes and estimating haplotype

frequencies.

All the above three concepts have been applied to the Isle of Wight birth cohort

study. This study is committed to identify the genetic susceptibility loci responsible for

asthma and allergy by studying a group of children born on the Isle of Wight, United

Kingdom. The Hardy-Weinberg equilibrium and linkage disequilibrium for the four

SNPs: hCV8932056, hCVI5862743, hCV8932053, and hCV8932052 on the 1L13 gene

have been tested using the Arlequin software package. Haplotype reconstruction and

frequency estimation for SNPs hCV8932056 and hCV8932052 have been performed

using the PHASE software package.

Both the Arlequin and PHASE software packages are designed for population

genetics data analysis. Arlequin implements exact test and likelihood-ratio test to

examine the Hardy-Weinberg equilibrium and linkage disequilibrium, respectively. It is

available for free at http://lgbunige.ch/arlequin. PHASE implements the Bayesian

algorithm to approximate the posterior distribution ofhaplotype configurations. It is also

free and can be downloaded at http://www.stat.washington.edu/stephens/sofiwarehtml.

Chapter 1 of this thesis introduces the background, the basic genetic concepts

involved in the study, and the data of Isle of Wight birth cohort. Chapter 2 describes

Hardy-Weinberg equilibrium, its significance, exact test of Hardy-Weinberg equilibrium,

and testing the Isle of Wight birth cohort for Hardy-Weinberg equilibrium using



Arlequin. Chapter 3 discusses linkage disequilibrium, its significance, likelihood ratio

test of linkage disequilibrium, and testing the Isle of Wight birth cohort for linkage

disequilibrium using Arlequin. Chapter 4 explains the motif ofhaplotype reconstruction

and frequency estimation, Bayesian estimation method, and estimating the Isle of Wight

birth cohort for haplotype frequencies using PHASE. Finally, in Chapter 5, the test

results in the previous chapters are summarized.



Section 2 Genetic Concepts

To better understand genetic research and the Isle of Wight birth cohort study, it

is helpful to explore some basic genetic definitions and concepts.
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Figure 1 Levels of Information Transferl

Genetics is the study of traits passed on from parent to child and variation of those

traits within and between individuals. It is about the transfer of information among many

different levels (Figure 1). The foundation level is the molecule called DNA (1). The

information in DNA is organized into genes (2). Genes, in turn, make up chromosomes

(3), which when taken all together form an organism's genome (4). Every nucleus in an

individual (5) contains the genome.



Instructions that provide almost all of the information necessary for a living

organism to grow and function are in the nucleus of every cell. The instructions are in

the form of a molecule called deoxyribonucleic acid, or DNA (Figure 2).

In humans, the DNA molecule consists of two ribbon—like strands that wrap

around each other, resembling a twisted ladder. The rungs of the ladder are nucleotide

base pairs. The bases are called adenine (“ ”), cytosine (“C"), guanine (“G”) and

thymine (“I“). These bases always pair up as A+T and C+G.
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Figure 2 DNA:

 

' This figure was originally created by GlaxoSmithKline. It is available in the online article ‘Genetics at

GlaxoSmithKline’ at http://genetics.gsk.com/link.htm, 2004.

2 This figure was originally created by GlaxoSmithKline. It is available in the online article ‘Genetics at

GlaxoSmithKline’ at http://genetics.gsk.com/link.htm, 2004.



Before DNA was discovered, gene was defined as a discrete unit which is

inherited from parent to offspring and which exerts control on a single character. After

DNA was discovered, gene was redefined as a segment ofDNA that codes for a protein

subunit. The word gene may also be used to refer to a functional DNA segment or a class

of functional DNA segments that have the same position, structure and function (Sham,

1998)

DNA is contained in tightly coiled packets called chromosomes. Chromosomes

consist of the double helix ofDNA wrapped around proteins. Each human cell nucleus

contains 23 pairs of chromosomes.

A locus is a specific position in the genome (the complete set of genes). The DNA of

most people hare highly similar. The presence of different DNA sequences at the same

locus in a population is known as a polymorphism. The alternative DNA sequences at a

locus on a chromosome pair are known as alleles (Figure 3). People can have two

identical or two different alleles for a particular gene. A person who has two identical

alleles for a gene is said to be homozygous for that gene. A person with two different

alleles is said to be heterozygous. The pair of alleles a person has at a specific location

in the genome is called genotype. Genotype affects phenotype, which is the observable

effect of the allele, such as eye color. A combination of alleles is termed haplotype.

Haplotypic phase refers to whether a gametic (a gamete is a sperm or an egg that fuse

during reproduction) haplotype changes during recombination (GlaxoSmithKline, 2004).
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Many diseases are related in some way to genes. Many common diseases result

from a change in one or a few susceptibility genes.

To find a gene that is involved in a specific disease, scientists must search for

DNA changes that are present more often in people who have a particular disease

compared to people who do not have the disease (GlaxoSmithKline, 2004).

A contemporary kind of genetic map, called a high-density single nucleotide

polymorphism (“SNP”) (Figure 4) map, has the potential to promote this research. SNPs

are single-base differences in the DNA sequence that can be observed between different

 

3 This figure was originally created by GlaxoSmithKline. It is available in the online article ‘Genetics at

GlaxoSmithKline’ at http://genetics.gsk.com/link.htm, 2004.



individuals in the population. For example, a SNP might change the DNA sequence

AAGGCTAA to ATGGCTAA. SNPS are the simplest and most common forms ofDNA

polymorphism. They are present throughout the human genome. Groups of neighboring

SNPS may have alleles that show distinctive patterns of linkage disequilibrium and as

such may create a haplotypic diversity that can be exploited in both genetic linkage and

direct association studies. The simple structure of SNPS also allows rapid and efficient

genotyping. In addition, SNPS are also evolutionarily stable - not changing much from

generation to generation - making them easier to follow in population studies. These

features of SNPS in the genome make them particularly valuable as genetic markers

(Schork et a1, 2000).
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4 This figure was originally created by GlaxoSmithKline. It is available in the online article ‘Genetics at

GlaxoSmithKline’ at http://genetics.gsk.com/link.htm, 2004.



Using the information that SNPS provide, it may be possible to predict people’s

genetic risk of developing a certain disease, to diagnose a disease more accurately, or to

predict how people most likely will respond to a medicine.



Section 3 Case Study

The Isle of Wight birth cohort study represents an unselected whole population

birth cohort based on the Isle of Wight, United Kingdom. The Isle of Wight is a small

island (13 x 23 miles) just off the South coast of England with a resident population Of

133,000.

The ethnic background of the island residents is mainly Caucasian. While the Isle

of Wight population is not genetically homogeneous, it is stable to the extent that the

majority of children in the cohort has not moved away and has thus been available for

follow up.

Enrollment took place at birth. Of the 1,536 children born on the Isle of Wight

between January 1, 1989 and February 28, 1990, informed consent was obtained from the

parents of 1,456 children. These children have Since been seen at the ages of l (n = 1,167;

80.2%), 2 (n = 1,174; 80.6%), 4 (n = 1,218; 83.7%) and 10-years (n = 1,373; 94.3%)

(Kurukulaaratchy et al, 2003).

At birth, information on family history of allergy, household pets, parental

smoking, socioeconomic status and birth weight were recorded. At every follow-up (1, 2,

4 and IO-years), detailed questionnaires were completed with the parents for each child

regarding asthma and allergy prevalence. For each child, the following phenotype

information has been recorded: asthma at 1 or 2 years, asthma 4 years, currently

diagnosed asthma (CDA) at 10 years, wheezing at 1 or 2 years, wheezing at 4 years,

wheezing at 10 years, chronic asthma, and no symptoms. With high cohort retention, this

prospectively followed population provides a uniquely characterized resource for

ongoing studies (Kurukulaaratchy et al, 2003).

10



A segment of the data file is presented in Table 1.

Table 1 Sample of Data Set

asthma asthma

32056 1 15862743 1 32053 1 32052 1 1

CC CC GG

CC CC GG

 

Among the total of 1,536 children, 625 children have complete information about

SNPS hCV8932056-10, hCV15862743-1 0, hCV8932053-10, and hCV8932052-10. There

are two indices under each phenotype with “1” indicating positive result (case) and “0”

negative result (control). The population that has complete information about the four

SNPS, including cases and controls, is used to test Hardy-Weinberg equilibrium and

linkage disequilibrium. The population that has complete information about the most

informative SNP pair hCV8932056-10 and hCV8932052-10, but including cases only, is

estimated for its haplotype frequency on the basis of phenotypes.

ll



CHAPTER 2 HARDY-WEINBERG EQUILIBRIUM

Section 1 Introduction

In a large population, in the absence of natural selection, mutation, or migration,

when the mating type frequencies arise from random mating, the ratios of the different

genotypes follow a mathematical result established independently by the English

mathematician Hardy and the German physician Weinberg. This phenomenon is named

“Hardy-Weinberg Equilibrium”. We need to examine all polymorphisms for Hardy-

Weinberg equilibrium in order to produce valid and significant results in allelic

association studies.

Consider a biallelic locus with alleles A 1 and A2. Let the relative frequencies of

the three genotypes A [A ,, AA; and A2A2 in a large population be g”, 2g”, and g2; such

that g” + 2g]; + g2; = 1. Hardy’s result was that, if individuals in the population mated

with each other at random, these relative frequencies would be such that

8122 = 811822.

Moreover, if these offspring are mated at random, then the relative frequencies of

the genotypes will remain unchanged after a second generation. It follows that these

relative frequencies will continue to be in the Hardy-Weinberg ratio as long as mating in

the population are random with respect to the locus.

The Hardy-Weinberg equilibrium enables us to relate genotype frequencies to

allele frequencies. If the relative frequencies of alleles A, and A2 aref; andf2,

respectively, then under normal conditions, the relative frequencies of gametes with

alleles A 1 and A2 will bef, andf2. According to the Hardy-Weinberg law, under random

mating, the relative frequencies of genotype A ,A 1, A [A2 and A2A2 are g,,=f,2, g12=2ftf2,

12



and g2; =f22, regardless of the genotype frequencies in the parental generation. Since the

allele frequencies corresponding to these genotype frequencies remain unchanged atf,

andf2, the same genotype frequencies will be maintained in subsequent generations as

long as random mating applies in the population.

The same principle can be applied to a locus with more than two alleles. Let the

alleles be A}, A2, A,,,, with relative frequencies1”,, f2, fm. Under Hardy—Weinberg

equilibrium, the relative frequency of a homozygous genotypes such as AA is g,,- =fl)

and the relative frequency of a heterozygous genotype such as A,A,- (i ¢j ) is gy- = Zfif]

(Sham, 1998).

Hardy-Weinberg equilibrium has many important applications. The

demonstration of the ratio provides strong evidence for a genetic basis for a trait.

13



Section 2 Exact Test of Hardy-Weinberg Equilibrium

Due to the importance of the Hardy-Weinberg law in the development of

population genetics, testing of the null hypothesis that a population exhibits Hardy-

Weinberg equilibrium has drawn a lot of attention during the past decades.

The methods proposed to test Hardy-Weinberg equilibrium can be categorized

into two groups. One consists of large-sample goodness-Of-fit tests that lean heavily on

asymptotic results. However, it has been recognized that such tests can sometimes lead

to false rejection or acceptance of Hardy-Weinberg equilibrium when the sample sizes

are small and/or some cell frequencies are small or zero. The other approach involves the

exact test, which is preferred when the sample size is small and/or some cell frequencies

are small or zero (Guo et al, 1992). The exact test is named so because it does not rely on

approximations. The Arlequin software package that we used to test Hardy-Weinberg

equilibrium for the Isle of Wight birth cohort, implements the exact test. The exact test

for Hardy-Weinberg equilibrium for multiple alleles is discussed below.

Consider an autosomal locus that has m alleles A 1, A2, Am. A sample of size n

is sampled from a population of interest. Let Cij (1 S j S i S m) denote the observed

count of genotype A,-Aj. Then the data can be presented as the contingency table

 

 

 

 

      

Al Cu

A2 02/ 622

Am Cm] Cm2 ... Cmm

A] A2 Am
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Use c = (c11,021,c22,...,cmm) to designate this table. Let c,- denote the number

ofA, alleles 1n the sample. Then cl- = Cii +Zj=1cij (where cij =cj,- 1f j>l).

The table of the count of genotype AjAj is a random variable. Let C denote this

random variable. Then under random mating and the constraint that the number of allele

A,- remains unchanged from generation to generation, the distribution of C satisfies

multivariate hypergeometric distribution. Thus, the probability of obtaining the sample c

is:

m

n!Hc,-! 291'

Pr(C = c) =my” ,

j>i

where 26,] is the number of heterozygous individuals.

j>i

The exact test for the Hardy-Weinberg equilibrium given observed sample c has

to evaluate

P: ZPr(c'),

c'eT

where T = {c'z Pr(c') S Pr(c),and{c;-} = {0,}, wherec; =# alleleAi} (Guo et al, 1992).

In order words, the P—value of the test is the sum of the probabilities of the tables

that have a probability smaller than or equal to the observed contingency table c and have

the same allele counts as does c. Rejection or acceptance of the null hypothesis depends

on whether P is smaller than a pre-specified significance level or. A large P-value means

that the probability of obtaining a sample as extreme or more extreme than the actually

observed is large, thus it suggests Hardy-Weinberg equilibrium (Schneider, 2004).

15



Since there may be innumerable contingency tables having identical marginal

counts, simply enumerating such tables is unrealistic. The Arlequin software modifies

the Metropolis algorithm (Guo et a1, 1992) to construct a Markov chain of contingency

tables that have the same allelic counts (the same marginal counts) as the observed table,

and a limiting distribution matching Pr(C). This approach starts with the observed

contingency table. In order to create a new contingency table from an existing one, we

randomly select two distinct rows i1, i2 and two distinct columnsj1, j2. Neither the two

rows nor the two columns have to be next to each other. The new table is obtained by

decreasing the counts of the cells (i1. jI) (i2, j2) and increasing the counts of the cells (iI,

j2) (i2, j2) by one unit. This leaves the alleles counts {c,-} unchanged. For example, by

decreasing the counts of the cells (C31, C43) and increasing the counts of the cells (C33, C41)

by one unit in the original sample table c, we obtain a candidate for the new table. Note

that the marginal counts of rows c3 and c4 and of columns c, and C3 remain the same as

those in table c.

 

A1 0/1

 

A2 6'21 022

 

A3 6'31“] C32 033'”

 

A4 641+] C42 643-1 C44

 

 

Am Cm] CmZ cm3 Cm4 - - - Cmm       
 

A! A2 A3 A4 Am

Whether to accept this candidate table or not depends on a probability R equal to:

16



_ Pr(c(k+l)) _ ci1j1ci21'2 (1 +6111} )(1 +512}? )
  

 

  

1.R — vifi1¢110fi2¢jz
Pr(c(k)) (Ciljz + 1)(Ci2j1 +1) (1+ 6i1j2 )(1+ 6i2j1 )

P “(+1) C' . c. . 4

2, R: ‘(C k l: ‘1“ ‘212 —,ifi1 =j1 and i2=j2
Pr(c( )) (Ciljz +1)(Ci2j1 +2) 1

P (k't'l) c. . (c. . —1)

3. R: 1‘(C k )2 1111 1212 1,1fl1 = j2 and 12 =j1

Pr(c( )) (Ciljz + 1)(ci2j1 + 1) 4

where k is the created table number, and 6,-1- = 0 if i at j, 1 if i = j. R is the ratio of the

probabilities of the two tables.

The switch to the new table is accepted ifR is larger than 1. The resulted Markov

chain has a limiting probability distribution that is the same as the distribution ofthe

m

nlnci! Z Cij

i=ll 2j>l

(2n)!l—Icij!

j>i

contingency tables, Pr(C = c) =

In practice, the Markov chain starting from the observed contingency table is

biased. In order for the chain to be unbiased, it is ideal to start the chain from a random

table chosen from the distribution Pr(C). One solution is to start the chain from the

observed table and run for a long time so that the initial table is “forgotten”. This process

is referred to as “dememorization”.

After the dememorization, the Markov chain is constructed for a long time, which

results in a large number of selected tables. The limiting probability of the Markov chain

in a particular table can be interpreted as the long-run proportion of time that the chain

stays in that table. Therefore, following the computation ofP—value in the exact test, the

17



P-value of the test is the proportion of the selected tables that have a probability smaller

than or equal to the observed contingency table.

18



Section 3 Arlequin Implementation of Exact Test and Case Study

The Arlequin software package is employed to test Hardy-Weinberg equilibrium

for the Isle of Wight birth cohort Study. The goal of Arlequin is to provide the users in

population genetics with a large set of methods and statistical tests, in order to extract

information on genetic and demographic features of a collection ofpopulation samples

(Schneider, 2004). The software is available on line at http://1@.unige.ch/arlequin.

Arlequin input file with extension .arp contains both “Profile”, descriptions of the

properties of the data, as well as “Data”, the raw data themselves. The Profile section

specifies the title of the project, the number of samples present in the project, the type of

data to be analyzed, if the project deals with haplotypic or genotypic data, if the gametic

phase of genotypes is known and so on. The sample of our project is defined as DNA

multi-locus data with unknown gametic phase. The Data section includes a name of the

sample, the size of sample, and the data itself.

A SAS program (Appendix A) has been written to obtain the information required

by Data section for our project. The children with complete genotype information at

SNPS hCV8932056-10, hCV15862743-10, hCV8932053-10, and hCV8932052-10 are first

selected. There are a total of 625 such children (Table 2). Next, the individual genotypes

for the four loci are output on two separate lines according to Arlequin’s instruction. For

instance, sample #1532 has genotype pattern TT// CC//CT//AG. A combination of the

first allele at each locus, namely TCCA, forms the first line for this individual; likely,

TCTG forms the second line. It should be noted that the sequence of the loci must be

kept in the order of their physical positions.

19



Table 2 Sample of Data Set with Genotype Information on Four SNPs

 

 

 

 

 

 

 

asthma asthma no

ID C8932056_10C15862743_10C8932053_jOC8932052_10 1,2 4 chronic symptom

2 CC CC CC GG 1 1 0 1

3 CC CC CC GG 1 1 0 0

1530 CC CC CC GG 1 1 0 1

1532 "IT CC CT AG 2 1 O 0         
 

The input file (with partial dataset) of our project is displayed as follows:

[Profile]

Title="Isle of Wight Asthma HWE test"

NbSamples= 1

DataType= DNA

GenotypicData= 1

LocusSeparator= WHITESPACE

GameticPhase= O

RecessiveData= 0

RecessiveAllele= null

MissingData= '?'

Frequency= ABS

CompDistMatrix= 0

FrequencyThreshold= 1.0e-5

EpsilonValue= 1.0e-7

[Data]

[[SamPICSl]

SampleName="Isle of Wight Asthma HWE test"

SampleSize=625

SampleData= {

21 CCCG

CCCG

15321 TCCA

TCTG

Once the project file is built, “Calculation Settings” of Arlequin interface is

decided. In our project, Hardy-Weinberg equilibrium test with 100,000 steps in Markov

chain, 1,000 dememorisation steps, and a significance level of 5% has been set. The

number of steps in Markov chain sets the maximum number of alternative tables to
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explore. A figure of 100,000 is in order. The number ofdememorization steps sets the

number of steps to perform before beginning to compare the alternative table

probabilities to that of the observed table. 1,000 steps are necessary to reach a random

starting point corresponding to a table independent from the observed table.

The output of the test is presented below:

Hardy-Weinberg equilibrium: (Isle of Wight Asthma HWE test)

 

Exact test using a Markov chain (for all Loci):

Forecasted chain length :100000

Dememorization steps 21000

Locus #Genot Obs.Heter. Exp.Heter. P. value s.d. Steps done

1 625 0.30880 0.58841 1.00000 0.00000 100172

625 0.16640 0.49639 0.80856 0.00122 1001722

3 625 0.30720 0.58422 0.79268 0.00123 100172

4 625 0.28480 0.58663 0.08930 0.00084 100172

As shown above, the P-values of the test at all loci are larger than 0.05,

suggesting acceptance of null hypothesis; namely, all the loci are in Hardy-Weinberg

equilibrium. Once Hardy-Weinberg equilibrium is established, we can proceed to test

whether two loci are in linkage disequilibrium.
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CHAPTER 3 LINKAGE DISEQUILIBRIUM

Section 1 Introduction

Genetic Linkage

The aim ofgenetic linkage analysis is to infer the relative positions of two or

more loci by examining the patterns of allele-transmission from parent to offspring, or the

patterns of allele-sharing by relatives.

The genotype of an individual at two loci is formed by the haplotypes oftwo

gametes, each inherited from one parent. A gamete may contain two alleles fi‘om the

same parental gamete or one allele from each parental gamete. In the first case, the

haplotype of the gamete is the same as the haplotype of one of the parental gametes.

Such gametes are defined as non-recombinants. In the second case, however, the

haplotype of the gamete constitutes a new combination of alleles different from either

parental haplotype. Such gametes are defined as recombinants. The recombination

fraction, usually denoted as 6 , between the two loci on the same chromosome is defined

as the probability that a gamete is recombinant. Two loci with a recombination fraction

of less than 1/2 are said to be in linkage. The closer the two loci, the smaller the

recombination fraction is, and the more tightly linked are the two loci (Sham, 1998).

Allelic Association

As a result of linkage, some combinations of alleles, i.e. haplotypes, on short

chromosomal segments may be preserved over a large number of generations and become

quite frequent in the population. The excessive co-occurrence of certain combinations of

alleles in the same gamete because of tight linkage is known as allelic association.
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Consider two loci A and B, with alleles A1,A2,...,Am,and Bl,Bz,...,Bn. By

definition, if the occurrence of allele A,- and allele Bj in a haplotype are independent

events, then the relative frequency of the haplotype AiBJ- is equal to the product of the

allele frequencies of A,- and Bj, i.e. hij- = f,-(A)fJ-(B). If hij ¢ fi(A)fj(B), then the

occurrences of A,- and Bj are not independent, and the two alleles are said to be

associated (Sham, 1998).

Maintenance ofAllelic Associations: Linkage Disequilibrium

In a large, closed, randomly mating population, let the relative frequency of the

haplotype AiBj in the current generation be hl-J-O. In the next generation, if the

haplotype is a recombinant, then the probability that it is AiBJ- is

Pr(AiBj) = fi(A)fj(B);

If the haplotype is a non-recombinant, then the probability that it is A,-Bj is simply

Pr(Al-Bj) = hijo.

The total probability that a haplotype transmitted to the next generation is AiBj is

therefore

hm = Pr(Aij) = 0%(A)f,-(B)+ (1— 9)hzj‘0-

The change in haplotype frequency from generation 0 to generation 1 is

hijl ' hijo = 9(fi(A)fj(B) " hyo).

When fi(A)f]-(B) = hijo for all i,j at the two loci, i.e. ifthere is no allelic

association, there will be no change in haplotype frequencies from generation to

23



generation, and we say that the two loci are in linkage equilibrium. Otherwise the two

loci are said to be in linkage disequilibrium.

For most human populations and for most regions of the genome, substantial

linkage disequilibrium is only likely to occur between loci with a recombination fraction

of less than 1%. This is the rationale behind the use of association analysis as an

important tool for mapping susceptibility loci (Sham, 1998).
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Section 2 Likelihood Ratio Test of Linkage Disequilibrium

For genotypic data where the haplotypic phase is unknown, linkage

disequilibrium between a pair of loci is tested for genotypic data using a likelihood-ratio

test. The likelihood ratio is between the likelihood of the data assuming linkage

equilibrium (denoted L0) and the likelihood of the data not assuming linkage equilibrium

(denoted L 1)- L0 is computed by using the fact that, under the hypothesis of linkage

equilibrium, the haplotype frequencies are obtained as the product of the allele

frequencies. L, is obtained by applying the Expectation-Maximum algorithm to estimate

haplotype frequencies. Both L0 and L I assume Hardy-Weinberg equilibrium (random

mating). The ratio ofL0 and L 1 suggests the degree of deviation from linkage equilibrium

(Schneider et al, 2000).

Suppose that two loci A and B, with distinctive alleles A1,A2,...,Am and

BI , 82 ,...,B,, , have been genotyped in a random sample of the population. Each

individual has a genotype of the form A,- Aj // BkBl. There are m(m + 1)/ 2 possible

genotypes at locus A , and n(n + 1) / 2 possible genotypes at locus B , so that the total

number ofjoint genotypes is (m(m + 1) / 2)(n(n + l) / 2) . The aim is to test the null

hypothesis of linkage equilibrium between A and B.

Computation ofL0

Under the assumption Of linkage equilibrium, the relative frequency of a

haplotype is equal to the products of the allele frequencies:

hik=fi(A)fic(B)

htl=fi(A)fl(B)

hjk=fi(A)fi(B)
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hfl=fi(A)fz(B).

where the allele frequencies can be obtained by simple counting on the basis of given

genotype information.

Under the assumption of random mating, the genotype frequencies can be

expressed as follows:

g... = 11.12.. = 12.2 aim/nor

g,“ = 11,11, + huh”, = 211,12, = 2f,-(A)2f,(B)fi,(B)

g,“ = 12,72, + 111,12, = 2h,,h,, = 2fi(A)fi(A)f,,(B)2

g,“ = h,,hj, + hj,h,, + huh], + 121,11, = 4f,(A)fj(A)f, (B)f, (B) .

The observed genotypic counts CH”. c”12 , c follow a multinomial
III/"II"

distribution with parameters cm (the sample size) and the genotypic frequencies 81111,

glnz, gmmnn. The log-likelihood of observing cijkl is therefore

ln L0 = Z cijkl ln(g,-J-k1),

',j l,...,m

l l n

where the summation is taken over all (m(m +1)/2)(n(n + 1) / 2) possible genotypes.

The maximum likelihood estimate of a population genotype frequency is simply the

sample genotype frequency (Sham, 1998).

Computation ofL1

When not assuming linkage equilibrium, in the case that an individual is

heterozygous for both loci, the haplotypes cannot be deduced from the genotype. For

example, the genotype A,- Aj // Bk B, can be made up of the haplotype pairs Ain /Aj B,

or Aj Bk / AiBl. In order to estimate the haplotype frequencies, we use the criterion of
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maximizing the likelihood of observing genotype data, L,. From the discussions in the

preceding subsection, we know

1nL1: 2 can 1n(gijk1),

',j l,...,m

l l ,n

where Cijkl are the observed genotypic counts, gijkl are the estimated genotype

frequencies, which are calculated from the estimated haplotype frequencies under the

assumption of random mating as follows:

giikk = hikhik = hik 2

giikl = hik hi1 + hilhik = 2hilhik

gijkk = hikhjk + hjkhik = Zhikhjk

8in = hikhjl + hjlhik + hilhjk + hjkhil = 2(hikhjl + hjkhil)-

In the following, we use an iterative method of counting based on the

Expectation-Maximum algorithm to obtain the maximum likelihood estimation of

haplotype frequencies.

The EM algorithm is a numerical method of finding maximum likelihood

estimates for parameters given incomplete data. It begins by setting the initial haplotype

frequencies as haw , u = l,...,m,v = l,...,n. It is reasonable to set these initial haplotype

frequencies as the products of the allele frequencies, just as the haplotype frequencies

under the assumption of Hardy-Weinberg equilibrium and linkage equilibrium.

The count of genotype A, AJ- // BkB, can be considered as the sum of 2

unobserved counts: Cijkl = Cik,jl +c,,,jk , where Cijkl is the count of genotype

A, Aj // Bk 8,, Cik.jl is the number of individuals with haplotype pair A,Bk / Aj B, , and
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Cil,jk is the number of individuals with haplotype pair AiB, / AjBk . For any

heterozygous genotype AiAj // Bk 8,, the initial expected values of the unobserved

counts of haplotype pairs are calculated as follows:

Under Hardy-Weinberg equilibrium, gik,jl = hik hjl and gm], = h,,hjk , where

gm], and gi,‘jk are the relative frequencies of the genotypes obtained from the

haplotype pairs Ain / A1B, and AB, / AjBk respectively. Therefore, the fraction of

genotype A, Aj // Bk B, that is obtained by the haplotype pair Ain / A1B, is

hik,0th,0
 , and the count ofhaplotype pair A-Bk / A -B, is

hik,0h21,0 + hil,0hjk,0 I J

Cijkl (hik,0hjl,0)

hik,0hjl,0 + hil,0hjk,0

 

Cik,jl,0 =

Similarly, the count of haplotype pair AiB, / AjBk is

Cijkl (hi1,0hjk,0)
 

Cil,jk,0 = -

hik,0h11,0 +hil,0hjk,0

This step of computing the expected counts ofhaplotype pairs is called expectation step.

Using the initial expected values as real data, we can compute the number of

heterozygous haplotypes and get a set of revised haplotype counts as follows:

6qu = Zcpqsno ’

s=l,...,m

t=l,...,n

where p = 1,...,m,q = 1,...,n . The revised haplotype frequencies are, therefore,
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cuv,l

h 1 =———,

W, Zcuvd

u=l,...,,m

v=l,...,n

where u =1,...,m,v = l,...,n.

This step of reevaluating the haplotype frequencies from the relative probabilities of the

possible haplotype pairs is called maximization step. The maximum likelihood estimate

of population haplotype frequency is simply the sample haplotype fi'equency.

In the next iteration, this set of revised haplotype frequencies are used to obtain a

set of revised expected values of the unobserved counts, which are denoted as Cik,1,1 and

 

 

Cll,jk,l , CIC.

C cijkl (hik,l h21,1 )

ik,jl,l :

hik,l hjl,1 + hil,1hjk,l

Cijkl (hil,l ’1jk,1 )

Cil,jk,1 =

hik,l hjl,1 + hil,1hjk,1

The cycle of revising the haplotype frequencies, revising the expected values of

the unobserved counts, and counting the haplotypes is repeated until the changes in

haplotype frequencies from one iteration to the next become negligible, i.e. convergence

is reached. These are then the local maximum likelihood estimates of the haplotype

frequencies (Sham, 1998).

While the EM algorithm guarantees convergence, it is not guaranteed to converge

to the global maximum when there are multiple local maximums. To increase the chance

of obtaining the global maximum, it is best to try numerous initial values for the

haplotype frequencies (Long et al, 1995). In Arlequin, initial values of 100 and more are
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in order (Schneider et a1, 2004). The set of haplotype frequencies with the highest local

maximum likelihood is then used as the final estimation.

After the haplotype frequencies are estimated, the genotype frequencies and lnL,

are computed in the same way as in the computation ofL,,.

Likelihood-ratio test

In L0 and In LI have (m — l) + (n — l) and mu —1 estimated parameters,

respectively. The likelihood ratio statistic given by

S = —2(lnLO — 1n L1)

has an asymptotical Chi-square distribution with (mn — 1) — ((m - 1) + (n - 1)) =

(m — l)(n - 1) degrees of freedom. A statistically significant P -value suggests rejection

of null hypothesis.

In the case of small samples with large number of alleles per locus, the Chi-square

distribution does not apply to the likelihood ratio distribution. In order to better

approximate the underlying distribution of the likelihood ratio statistic, we perform a

randomization test. Such test is non-parametric, not based on asymptotic approximation,

and applicable to context with few data sets. The procedure is as follows:

1. Permute the alleles between individuals at one locus only.

2. Re-estimate the likelihood of the data L, by the EM algorithm. L0 is unaffected by

the permutation procedure.

3. Repeat steps 1-2 a large number of times to get the null distribution ofL,, and

therefore the null distribution of S .

The P -value is calculated by
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Z"(Si)

”(809101)

2"(SH ,

where S, is the log likelihood ratio of the observed data (Schneider, 2004).

P — value =

Section 3 Arlequin Implementation of Likelihood Ratio Test and Case Study

The Arlequin software package is used to test linkage disequilibrium for the Isle

of Wight birth cohort. Exactly the same project file is prepared as the test of Hardy-

Weinberg equilibrium. Under “Calculation Settings”, pair-wise linkage disequilibrium

test with 16,000 permutations, 100 initial conditions, and a significance level of 5% has

been set. Number of permutations sets the number ofrandom permuted samples to

generate. 16,000 permutations guarantee to have less than 1% difference with the exact

probability in 99% of the cases. Number of initial conditions sets the number of random

initial conditions from which the EM is started to repeatedly estimate the sample

likelihood. The haplotype frequencies globally maximizing the sample likelihood will be

eventually kept. In our project, 100 initial conditions are used.

The output of the test is presented below:

Pairwise linkage disequilibrium: (Isle of Wight Asthma LD test)

 

Permutation test using the EM algorithm

Number of permutations: 16000

Number of initial conditions for EM: 100

Pair(0, 1)

LnLHood LD : -788.23438 LnLHood LE : -790.29395

Exact P= 0.04306 +- 0.00149 (16002 permutations done)

Chi-square test value= 4.11914 (P = 0.04240, 1 d.f.)

Pair(0, 2)

LnLHood LD : -839.46460 LnLHood LE : -942.81079

Exact P= 0.00000 +- 0.00000 (16002 permutations done)

Chi-square test value=206.69238 (P = 0.00000, 1 d.f.)
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Pair(1, 2)

LnLHood LD : -761.75385 LnLHood LE : -780.76373

Exact P= 0.00000 +- 0.00000 (16002 permutations done)

Chi-square test value=38.01978 (P = 0.00000, 1 d.f.)

Pair(O, 3)

LnLHood LD : -861.22888 LnLHood LE : -958.38812

Exact P= 0.00000 +- 0.00000 (16002 permutations done)

Chi-square test value=194.31848 (P = 0.00000, 1 d.f.)

Pair(1, 3)

LnLHood LD : -777.89398 LnLHood LE : -796.34106

Exact P= 0.00000 +- 0.00000 (16002 permutations done)

Chi-square test value=36.89417 (P = 0.00000, 1 d.f.)

Pair(2, 3)

LnLHood LD : -564.50177 LnLHood LE : -948.85785

Exact P: 0.00000 +- 0.00000 (16002 permutations done)

Chi-square test value=768.71216 (P = 0.00000, 1 d.f.)

Table of significant linkage disequilibrium (significance level=0.0500):

Locus #IOI 1| 2| 3|

0|*+++

1|+*+

2|++*

3|+++ *
+
+

Loci 0, 1, 2, and 3 refer to SNPs hCV8932056-10, hCV15862743-10,

hCV8932053-10, and hCV8932052-1 0 respectively.

As shown above, the P -values of all the pair-wise tests are less than 0.05,

suggesting rejection of null hypothesis; namely, all the pairs of loci are in linkage

disequilibrium.
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CHAPTER 4 HAPLOTYPE FREQUENCY ESTIMATION

Section 1 Introduction

Haplotype information is an essential ingredient in many analyses of fine-scale

molecular genetics data. For example, haplotype analysis is an important tool for linkage

disequilibrium assessment, disease-gene discovery, genetic demography, and

chromosomal-evolution studies. However, many haplotype analysis methods rely on

phase information from the individuals under study. As mentioned in Section 2 of

Chapter 3, for autosomal loci, when only the multi-locus genotypes for each individual

are provided, the phase information for those individuals with multiple heterozygous

phenotypes is inherently ambiguous. Phase can be established by genotyping family

members of each study subject to infer parental chromosomes, but this requires

recruitment and genotyping of relatives, which is expensive and may not be realistic.

Laboratory techniques have also been used. to determine haplotypes, but these approaches

are technologically demanding and often cost-prohibitive. Alternatively, statistical

methods can be used to infer phase at linked loci from genotypes and to estimate

frequency of all possible haplotypes (Fallin et al, 2000).

The problem of unknown phase and one of its possible solutions can be explained

in the example of Clark’s algorithm. In Clark’s algorithm, when a homozygote is found,

a haplotype is unambiguously identified. When a single-locus heterozygote is found, a

possible haplotype pair is inferred. For each of the remaining multi-locus heterozygotes,

we need to determine whether it can produce a haplotype that has been established. If it

can, identify the complementary haplotype by using the established haplotype as one of

the actual haplotypes that it implies. Continue this process until the phase information
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for all individuals is either resolved or identified as unresolved. This algorithm is

intuitively appealing and effective in resolving haplotypes when the dataset contains a

sufficient number of homozygous individuals. It also performs well for relatively small

sample sizes. However, three problems can arise with this procedure. It may not be

possible to start the iterative algorithm if there is no unambiguous or single-locus

heterozygous individuals in the sample. There may be unresolved haplotypes left at the

end. In addition, haplotypes may be erroneously inferred if a crossover product oftwo

actual haplotypes is identical to another true haplotype (Clark, 1990).

Compared with Clark’s algorithm, the Bayesian method is more accurate in

inferring haplotype information and can handle more loci. For the Isle of Wight birth

cohort, we estimate the haplotype frequencies using the PHASE software package that

implements the Bayesian algorithm. The Bayesian algorithm will be introduced in the

following section.
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Section 2 Bayesian Estimation Method for Haplotype Frequency

Suppose there is a sample of n diploid individuals from a population. Let

G = (G1,...,G,,) denote the (known) genotypes for the individuals, and let

H = (H1 ,...,Hn) denote the (unknown) corresponding haplotype pairs.

The Bayesian algorithm regards the unknown haplotypes as unobserved random

quantities and aims to evaluate their conditional distribution given the genotype data.

Gibbs sampling, a type of Bayesian approach, is used to obtain an approximate sample

from the posterior distribution ofH given G, Pr(H | G) . Inforrnally, the algorithm starts

with an initial guess 11“” for H, repeatedly chooses an individual at random, and estimates

that individual’s haplotypes under the assumption that all the other haplotypes are

correctly reconstructed. Repeating this process enough times results in an approximate

sample from Pr(H | G) . Formally, this method involves constructing a Markov chain

14“” , H”) , Hm, ..., with stationary distribution Pr(H | G), on the space ofpossible

haplotype reconstructions, using an algorithm of the following form.

Start with some initial haplotype reconstruction 11“”. Fort = 0, 1, 2, obtain

H("1’ from Hm using the following three steps:

1. Choose an individual, i, uniformly and at random from all ambiguous individuals

(i.e., individuals who are heterozygous at more than one loci).

2. Sample Hy“) from Pr(H, |G,H£ti)), where H_-
l

is the set of haplotypes excluding

individual i. The conditional probability Pr(Hi IG, HS?) depends on the genetic

and demographic models.

3. Set H§t+1)=H§-t) forj =1, n,j :r-‘i.
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It has been proved that this process produces a Markov chain (Gilks et al, 1996).

To help illustrate Gibbs sampling, let us consider a simple example. Suppose that

a random sample of two individuals from a population have been genotyped for two loci

A and B. We have G = {G1,G2} , where G, ={A1A2 //Ble} and

G2 = {A3A4 // B3 B4}. The corresponding haplotype pair H, is either {A181 “1232} or

{A182 / A231 } . Similarly, the corresponding haplotype pair H 2 is either

{A383 /A4B4} or {A384 /A4B3}. The purpose is to find the distribution of H1 and H2

conditional on G , i.e.

Pr(Hl ={A1B1/A282}|G)and Pr(Hl ={A132/A231HG)

and

Pr(H2 = {A383 /A4B4} | G) and Pr(H2 = {A384 /A4B3} I G).

From a certain genetic model we know the conditional probabilities Pr(H1 | G, H_1) and

Pr(H2 I G, H_2), in this case, i.e. Pr(HI |G,H2)and Pr(H2 IG,H1).

Starting with an initial guess H(O) for H , say

0 0 0

H‘ ’=(H,‘ ’,H§ ))=({AiBz/A281}. {A383/A4B4I),

we obtain H (I) from 11(0) as follows:

1. Choose an individual uniformly and at random from G . Say we get individual #1,

i.e. 1111(0) .
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2. Since the genetic model gives Pr(H1 IG, Hgm) and we have

H:30) = {A3 B3 / A484 } , thus we know the distribution of H1 conditional onH50) ,

say

Pr(Hl = {A132 /AzBl } I 0,115") = {A333 /A4B4}) = 0.2

and

Pr(Hl .—. {A181 /A2132} | G, 1,5,0) = {A383 /A4B4}) = 0.8.

Randomly drawing H1(1) on the basis of this distribution, we obtain, say,

H1“) = A181 /AZBZ.

3. Set Hg) = H50).

So far we obtain a new sample Ha) =(H1(1), Hg”) =({A131 /AZBZ}, {A383 /A4B4 }).

Next, by repeating the above steps, we obtain H (2) from H(1) :

1. Choose an individual uniformly and at random from G . Say we get individual #2 this

time.

2. Since the genetic model gives Pr(H2 | G, H11), we know the distribution of H2

conditioned on H1(1) , say

Pr(H2 .-. {A384 /A4B3} I 0,111“) = {/11132 /AZB, }) = 0.4

and

Pr(I-I2 = {A383 /A4B4} l G,H1(1) = {.11132 /A;,191 }) = 0.6.
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Again, we randomly draw H$2) on the basis of this distribution, say we Obtain

2

Hg ) = A384 /A4B3.

3. Set 111(2) = H1“).

Now we Obtain another sample HQ) =(r11‘2),Ir§2))=({A,B2 /AZB, }, {A384 /A4B3 }).

Let this process continue for a large number of times, say 10,000 times. We

obtain a sample of 10,000 H's , from which the distribution of Hl and H2 conditional

on G, Pr(H, | G) and Pr(H2 | G) can be calculated.

As shown by Stephens et al., the Bayesian method has three major advantages

over Clark’s method and the EM algorithm: increased accuracy, wider applicability (for

instance, it can handle a large number of loci), and the facility to assess accurately the

uncertainty associated with each phase call (Stephens et al, 2001).
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Section 3 PHASE Implementation of Bayesian Estimation and Case Study

The PHASE software package is used to estimate the haplotype frequencies for

the children of Isle of Wight. PHASE implements the Bayesian statistical method for

reconstructing haplotypes and estimating haplotype frequencies from genotype data, and

for estimating recombination rates and identifying recombination hotspots (Stephens et

a1, 2003). The program is available on line at http://www.stat.washington.edu/stephens/

softwarehtml.

We want to choose the SNP pairs that are in linkage equilibrium to conduct

haplotype analysis. Although all of the SNP pairs are in linkage disequilibrium, since the

combination of SNPS hCV8932056 and hCV8932052 is found to be most informative by

the preliminary study, we choose these two SNPS to perform haplotype frequency

estimation on the basis of eight phenotypes: asthma at 1 or 2 years, asthma at 4 years,

currently diagnosed asthma at 10 years, wheezing at 1 or 2 years, wheeze at 4 years,

wheeze at 10 years, chronic asthma, and no symptom at all ages.

PHASE input file specifies how many individuals there are to be analyzed, how

many loci each individual has been typed at, what physical positions the loci are, what

sort of loci these are (SNP or microsatellite), and the ID and the genotypes for each

individual.

A SAS program (Appendix B) has been written to obtain the information required

by PHASE input file. The children who have complete information on SNPs

hCV8932056 and hCV8932052 and are positive (i.e. “2” if the phenotype has indices “1”

and “2”, and “1 ” if the phenotype has indices “0” and “1”) within each phenotype are

first selected. There are a total of 164 such children in the group “asthma at 1 or 2
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years”, 99 in “asthma at 4 years”, 92 in “currently diagnosed asthma at 10 years”, 48 in

“wheeze at 1 or 2 years”, 145 in “wheeze at 4 years”, 228 in “wheeze at 10 years”, 34 in

“chronic asthma”, and 308 in “no symptoms at all age”. Next, the individual genotypes

for the two loci are output on two separate lines according to PHASE’S instruction. In

fact, it is the same way as Arlequin. It should also be noted that the sequence of the loci

must be kept in the order of their physical positions.

As an example, the input file (with partial raw data) for the phenotype group

“asthma at 1 or 2 years” of our project is displayed as follows:

164

2

P 128122939 128126575

SS

8

CG

CG

16

CA

TG

1510

CG

CG

1524

CG

TG

This presentation says that there are 164 children (who have asthma at 1 or 2

years) typed at two loci (hCV8932056 and hCV8932052) whose relative positions along

the chromosome are 128122939 and 1281265 75, and which are bi-allelic. The genotype

information then follows, with the ID and two lines for each child. For example, the

individual #8 has the genotype pattern CC//GG.

PHASE produces a number of output files: a summary report and additional
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reports whose suffixes indicate the contents of the file. “_freqs” estimates the sample

haplotype frequencies; “_pairs” lists the most likely pairs of haplotypes for each

6

individual, together with their probability; ‘ recom” contains estimates of recombination

parameters across the region; and “_monitor” measures the goodness of fit of the

estimated haplotypes to the underlying model. Among them the output file “_freq”

directly pertains to the research purpose of the Isle of Wight Birth Cohort Study. The

output files “_freq” of the eight groups of children are consolidated and presented in

Table 3.

Figure 5 produced by a Matlab program (Appendix C) visualizes the haplotype

frequency estimation in Table 3. In the graph, a12 stands for the phenotype of “asthma at

1 or 2 years”, a4 for “asthma at 4 years”, cdalO for “currently diagnosed asthma at 10

years”, w12 for “wheeze at 1 or 2 years”, w4 for “wheeze at 4 years”, w10 for “wheeze

at 10 years”, chronic for “chronic asthma”, and control for “control”.

It can be clearly seen that haplotype CG is found in all of the eight phenotypes with high

probabilities ranging from 0.663015 to 0.790994. The other haplotypes are also found in

all the other phenotypes, but with very low probabilities.

In order to view better the relationship between each haplotype and phenotype,

graphs of the relative frequencies of each haplotype vs. each phenotype are shown in

Figure 6, which is produced by Matlab (Appendix C).
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Table 3 Haplotype Frequency Estimation for SNPs hCV8932056 and hCV8932052 by Phenotypes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Phenotypes Haplotype E (freq) SE

Asthma at l or 2 years CA 0.080212 0.004531

(n=164) CG 0.706373 0.004531

TA 0.124056 0.004531

TG 0.089359 0.004531

Asthma at 4 years CA 0.070573 0.005364

(n=99) CG 0.742559 0.005364

TA 0.126397 0.005364

TG 0.060472 0.005364

Currently diagnosed asthma at 10 years CA 0.040528 0.003686

(n=92) CG 0.790994 0.003686

TA 0.117081 0.003686

TG 0.051398 0.003686

Wheeze at 1 or 2 years CA 0.060431 0.009539

(n=48) CG 0.679152 0.009539

TA 0.158319 0.009539

TG 0.102098 0.009539

Wheeze at 4 years CA 0.074331 0.004659

(n=145) CG 0.763600 0.004659

TA 0.104979 0.004659

TG 0.057090 0.004659

Wheeze at 10 years CA 0.066354 0.003643

(n=228) CG 0.753822 0.003643

TA 0.117857 0.003643

TG 0.061968 0.003643

Chronic asthma CA 0.116397 0.014663

(n=34) CG 0.663015 0.014663

TA 0.148309 0.014663

TG 0.072279 0.014663

Control CA 0.071836 0.003412

(n=308) CG 0.7301 12 0.003412

TA 0.124593 0.003412

TG 0.073459 0.003412    
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Figure 5 Haplotype Frequency Estimation for SNPs hCV8932056 and hCV8932052 by Phenotypes

As shown in Figure 6, haplotype CG is prominently related with the phenotype of

“currently diagnosed asthma at 10 years” with relative frequency of 0.791. It has the

least relationship with the phenotype of “chronic asthma” with relative frequency of

0.663. Haplotype TA is found in “wheeze at l or 2 years” with the highest relative

frequency of 0.158 and in “wheeze at 4 years” with the lowest relative frequency of

0.106. Haplotype CA is found in “chronic asthma” with the highest relative frequency of

0.116 and in “currently diagnosed asthma at 10 years” with the lowest of relative

frequency of 0.04. Haplotype TG is found in “wheeze at 1 or 2 years” with the highest

relative frequency of 0.102 and in “currently diagnosed asthma at 10 years” with the

lowest relative frequency of 0.05.
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Figure 6 Relationship between Haplotypes and Phenotypes
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In order to examine whether there exist any statistically significant associations

between the haplotypes and the phenotypes, we conducted a contingency test. The

contingency tables of the haplotype counts of each infected group vs. the haplotype

counts of the control group are first formed, which are shown in Table 4-Table 10.

Table 4 Two-way Contingency Table of Asthma 1 or 2 vs. Control

 

 

 

      

CA CG TA TG

A12 13 1 16 20 15

control 22 225 38 23
 

Table 5 Two-way Contingency Table of Asthma 4 vs. Control

 

 

 

CA CG TA TG

a4 7 74 13 6

control 22 225 38 23       

Table 6 Two-way Contingency Table of CDA10 vs. Control

 

 

 

CA CG TA TG

CDA10 4 73 1 1 5

control 22 225 38 23       

Table 7 Two-way Contingency Table of Wheeze 1 or 2 vs. Control

 

 

 

      

CA CG TA TG

w12 3 33 8 5

control 22 225 38 23
 

Table 8 Two-way Contingency Table of Wheeze 4 vs. Control

 

 

 

      

CA CG TA TG

W4 1 1 1 1 l 15 8

control 22 225 38 23
 

Table 9 Two-way Contingency Table of Wheeze 10 vs. Control

 

 

 

      

CA CG TA TG

w10 15 172 27 14

control 22 225 38 23
 

Table 10 Two-way Contingency Table of Chronic vs. Control

 

 

 

      

CA CG TA TG

chronic 4 23 5 2

control 22 225 38 23
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A SAS program has been written to perform the contingency tests. The SAS code

has performed the contingency test between the haplotype CA/CG/TA/TG of asthma at 1

or 2 and control is shown in Appendix D. Below is the test report for the group of asthma

at 1 or 2 years vs. the control group:

Contingency Test between Asthma at 1 or 2 and Control (Haplotypes: CA/CG/TA/TG)

Statistics for Table of group by haplotype

 

Statistic DF Value Prob

Chi-Square 3 0.5449 0.9089

Likelihood Ratio Chi-Square 3 0.5371 0.9107

Mantel-Haenszel Chi-Square 1 0.1329 0.7155

Phi Coefficient 0.0340

Contingency Coefficient 0.0340

Cramer's V 0.0340

Fisher's Exact Test

Table Probability (P) 0.0018

Pr <= P 0.8957

Sample Size = 472

Although SAS gives the P- values of several kinds of Chi-square tests, it should

be noted that since some ofthe cells have expected counts less than 5, Chi—square may

not be a valid test. Instead, Fisher’s exact test’s result is used when deciding if there is

any association between the haplotypes and the phenotypes. As shown above, the P-

value of 0.8957 suggests that the probabilities for the group of asthma at 1 or 2 and the

control group are independent of the haplotypes CA/CG/TA/TG.

Table 11 summarizes the seven contingency tests. As we can see, the P-values

range from 0.1599 to 0.9914, suggesting that haplotypes CA/CG/TA/TG are not

associated with asthma and wheeze symptoms.
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Table 11 Summary of Contingency Tests (Haplotype CA/CG/TA/TG)

Fisher's Exact Test

 

 

 

 

 

 

 

  

Comparison Groups P-value Sample Size

a12 vs. control 0.8947 472

a4 vs. control 0.9914 408

CDA10 vs. control 0.7222 401

w12 vs. control 0.6792 357

w4 vs. control 0.8143 453

w10 vs. control 0.9200 536

chronic vs. control 0.6813 342   
 

Since CG is the most predominant haplotype, it is interesting to know if the less

common haplotypes affect asthma and allergy. Thus, similar contingency tests are

performed to examine the association between each infected group and the control group

for the haplotypes CA/TA/TG only. The test results shown in Table 12 suggest that

haplotypes CA/TA/TG are not associated with asthma and wheeze symptoms either.

Table 12 Summary of Contingency Tests (Haplotype CA/TA/TG)

Fisher's Exact Test 

 

 

 

 

 

 

 

  

Cormarison Groups P-value Sample Size

a12 vs. control 0.8953 131

a4 vs. control 0.9574 109

CDA10 vs. control 0.8092 103

w12 vs. control 0.8814 99

W4 vs. control 0.8109 117

w10 vs. control 0.9744 139

chronic vs. control 0.7817 94   
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CHAPTER 5 CONCLUSIONS

This thesis has discussed three bio-statistical concepts: Hardy-Weinberg

equilibrium, linkage disequilibrium, and haplotype reconstruction and haplotype

frequency estimation, and their applications in the Isle of Wight cohort study which aims

to identify genetic susceptibility loci for allergic asthma.

Hardy-Weinberg equilibrium has been tested through the exact test implemented

by the Arlequin software package. It is found that all the loci of interest (hCV8932056,

hCV15862743, hCV8932053, and hCV8932052 on the IL13 gene) are in Hardy-Weinberg

equilibrium. This test result provides a valid assumption for the test of linkage

disequilibrium.

Linkage disequilibrium between pair-wise loci is tested with a likelihood-ratio

test, whose key procedure is the Expectation-Maximum algorithm, implemented by the

Arlequin software package. It is found that all the pair-wise loci are in linkage

disequilibrium.

The PHASE software package, which implements the Bayesian estimation

method, is used to reconstruct haplotypes and estimate haplotype frequencies of the most

informative SNP pair, hCV8932056 and hCV893205. The subsequent contingency test

suggests that there is no association between the haplotype patterns CA/CG/TA/TG and

CA/TA/TG and allergic asthma.
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APPENDIX A

SAS CODE TO CREATE INPUT FILES FOR ARLEQUIN

data thesisl .hweldl ;

set thesis.asthmagroups;

ct_dash=0;

if C8932056_lO="-" then ct_dash=ct_dash+1;

if C8932056_10="-" then C8932056_10="??";

if C 1 5862743_1 0="-" then ct_dash=ct__dash+1;

if C15862743_10="-" then C15862743_10="??";

if C8932053_10="-" then ct_dash=ct_dash+1;

if C8932053_10="-" then C8932053_10="??";

if C8932052_10="-" then ct_dash=ct_dash+1;

if C8932052_10="-" then C8932052_10="??";

if ct_dash>=l then delete;

freq=1;

if

CDA10="0"|CDA10="1"|asthm312="1"lasthmal2="2"|asthma4="1"|asthma4="2"|wheez

e12="1"|wheezel2="2"|wheeze4="1 "|wheeze4="2"|wheeze10="1"|wheeze10="2"|nosym

ptoms="0"|nosymptoms="1" then output;

run;

data thesis.hweld2;

set thesis.hweldl;

c11=substr(C8932056_10,1,1);

c21=substr(C15862743_10,1,1);

c31=substr(C8932053_10,1,1);

c41=substr(C8932052__10,1,1);

c12=substr(C8932056_10,2,1);

c22=substr(C] 5862743__10,2,1);

c32=substr(C8932053_10,2,1);

c42=substr(C8932052_10,2,1);

SNP1=trim(c11) || trim (c21) || trim (031) || trim(c41);

SNP2=trim(c12) || trim (c22) || trim (C32) || trim(c42);

run;

data thesis.hweld3;

set thesis.hweld2 nobs=nobs;

filename fn 'C:\ hweld.txt';

file fn;

put@20IDfreq@30cll"c21"C31”c41/@30012"c22"c32"c42;

run;
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APPENDIX B

SAS CODE TO CREATE INPUT FILES FOR PHASE

data thesi52.a12_1;

set thesisZasthmagroups;

ct_dash=0;

if C8932056_10="-" then ct_dash=ct_dash+1;

if C8932056_10="-" then C8932056_10="??";

if C8932052_10="-" then ct_dash=ct__dash+1;

if C8932052_10="-" then C8932052_10="??";

if ct_dash>=1 then delete;

if asthma12="2" then output;

run;

data thesis2.a12_2;

set thesis2.a12_1;

cl 1=substr(C8932056_10,1,1);

c21=substr(C8932052_10,1,1);

c12=substr(C8932056_10,2,1);

c22=substr(C8932052_10,2,1);

SNP1=trim(c11) || trim(c21);

SNP2=trim(c12) || trim(c22);

run;

data thesi52.a12_3;

set thesi52.a12_2 nobs=nobs;

filename fn 'C:\snp56_52_al2_2_no_mis.txt';

file fn;

put ID / SNPl /SNP2;

run;
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APPENDIX C

MATLAB CODE TO CREATE FIGURES OF HAPLOTYPE FREQUENCY

% For each haplotype combination, plot freq vs. subject group

clear all;

close all;

freq_fii_label= {

'ast_grp_al 2_no__mis.out__freqs', 'a12';

'ast_grp_a4_no_mis.out_freqs', 'a4';

‘ast_grp_CDA 1 0_no_mis.out_freqs', 'CDA10';

'ast_grp_wl 0_no_mis.out_freqs', 'WI 0';

'ast_grp_w 1 2_no_mis.out__freqs', 'w12';

'ast_grp_w4_no_mis.out_freqs', 'w4';

'ast_grp_chron_no_mis.out_freqs', 'chron';

'ast_grp_control_no_mis.out__freqs', 'control'

};

[no_fn tmp]=size(freq_fn_label);

for fn_ct=1 : no_fi1

%check the number of lines in the file

fid=fopen(char(freq_fn_label(fn_ct,1)));

data_ct=0;

while ~feof(fid)

data_line=fgetl(fid);

data_ct=data_ct+1 ;

end

fclose(fid);

%Do not count the first head line

freq_data(fir_ct).no_data=data_ct—l ;

fid=fopen(char(freq_fn_label(fi1_ct, 1 )));

% Get rid of the first line

fgetl(fid);

% Read data

for data_ct=1 : freq_data(fii_ct).no_data;

freq_data(fn_ct).idx(data_ct)=fscanf(fid, '%i',1);

freq_data(fn_ct).haplotype {data_ct} =fscanf(fid, '%l Os',1 );

freq_data(fii_ct).freq_ave(data_ct)=fscanf(fid, '%f’,1);

freq_data(fii_ct).freq_se(data_ct)=fscanf(fid, '%f‘, 1 );

end
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fclose(fid);

%Sort the data w.r.t. freq ave

[sort_data sort_idx]=sort(-freq_data(fn_ct).freq_ave);

freq_data(fn_ct).idx=freq_data(fn_ct).idx(sort_idx);

freq_data(fn_ct).haplotype=freq_data(fn_ct).haplotype(sort_idx);

freq_data(fir_ct).freq_ave=freq_data(fn__ct).freq_ave(sort_idx);

freq_data(fii_ct).freq_se=freq_data(fn_ct).freq_se(sort_idx);

end

%Enumerate all haplotypes

haplotype_set=freq_data( 1 ).haplotype;

no_haplotype=freq_data( 1 ).no_data;

for i=2 : no_fn

for j=1 : freq_data(i).no__data

b_find=0;

for k=l : no_haplotype

if strcmp( char(haplotype_set(k)), char(freq_data(i)haplotype(j)) )

b_find=1;

break;

end

end

% Add to haplotype_set if the same haplotype is not found in haplotype_set

if ~ b_find

no_haplotype=no_haplotype+1 ;

haplotype_set(no_haplotype)=freq_data(i).haplotype(j);

end

end

end

%Construct the structure to hold the freq_ave and freq_se for each haplotype in each file

for fn_ct=1 : no_fii

haplotype(fi1_ct).freq_ave=zeros(1 ,no_haplotype);

haplotype(fn_ct).freq_se=zeros( 1 ,no_haplotype);

for i=1 : freq_data(fii_ct).no_data

for j=1 :no_haplotype

if strcmp( char(haplotype_set(j», char(freq_data(fn__ct).haplotype(i)) )

haplotype(fn_ct).freq_ave(j)=freq_data(fii_ct).freq_ave(i);

haplotype(fn_ct).freq_se(j)=freq_data(fn_ct).freq_se(i);

break;

end

end

end

end

%plot 1
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bar_freq=zeros(no_fn,no_haplotype);

for fn_ct=1 : no_fn

for j=1 : freq_data(fir_ct).no_data

bar_freq(fn_ct,j)=freq_data(fi1_ct).freq_ave(i);

bar_label_pos(fn_ct,j)=sum(freq_data(fn_ct).freq_ave(1 :j ));

end

end

figure(1);

%Draw the bars

bar(bar_freq,.3,'stack');

%Draw the labels

for fn_ct=l : no_fn

for j=1 : freq_data(fi1_ct).no_data

text(fii_ct-.8,j/ 16,char(freq_data(fi1_ct)haplotype(j)));

end

end

%hold on;

title('Distribution');

ylabel('Frequency (%)');

fn_fig=['distrib.jpg'];

set(gca,'XTick',[ 1 :no_fii],'XTickLabel',freq_fi1_label(:,2)');

print(fii_fig,'-djpeg');

%plot 2

for i=1 :no_haplotype

figure(2);

for j=1 :no_fn

y(j)=haplotype(j).freq_ave(i);

e(j)=haplotype(j).freq_se(i);

end

errorbar([1 :no_fn],y,e,'X');

title(char(haplotype_set(i)));

ylabel('Frequency (%)');

set(gca,'XTick',[] :no_fn],'XTickLabel',freq_fii_label( :,2)');

fii_fig=[char(haplotype_set(i)) '.jpg'];

print(fi1_fig,'-djpeg');

end
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APPENDIX D

SAS CODE TO CONDUCT CONTINGENCY TESTS

data thesis3.contingency;

do group=1 to 2;

do haplotype=1 to 4;

input count @@;

output;

end;

end;

cmdg

13 116 20 15

22 225 38 23

9

proc freq data=thesisl .contingency;

weight count;

tables group*haplotype / exact;

title 'Contingency Test between Asthma at 1 or 2 and Control (CA/CG/TA/TG)’;

run;
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Symbols

A, B,

A,, i=1, m

, 1 =1, m

c,, i=1, m

gjj,i,j:1, ...,m

gut-1. if = 1. m,

k,j = 1, n,

gik ._,'1

Ci}, l,j =1, ..., m

60],], l,j :1, ..., m,

k,j = I, n,

Cik./’I

hi1“, l,j=1, ...,m

APPENDIX E

NOTATIONS

Notations

Loci

Alleles at locus A with m alleles

Relative frequencies of alleles at a locus with m alleles

Counts of alleles at a locus with m alleles

Relative Frequencies of genotypes at a locus with m alleles

Relative frequencies of genotypes at two loci which have m alleles

and n alleles respectively.

Relative frequencies of genotypes obtained from haplotype pair

Ain /AJ-B, at loci A and B.

Counts of genotypes at a locus with m alleles

Counts of genotypes at two loci which have m alleles and n alleles

respectively.

Counts of genotypes obtained from haplotype pair Ain / Aj B, at

loci A and B.

Relative frequencies of haplotypes at a locus with m alleles

57



BIBLIOGRAPHY

58



BIBLIOGRAPHY

Clark, A. G. Inference of haplotypes from PCR-arnplified samples of diploid populations.

Molecular Biology Evolution. 1990: 7(2): 111-122.

Crow, J. F. Eighty years ago: the beginnings ofpopulation genetics. Genetics 1988 Jul:

119 (3): 473-6.

Excoffier, L. & Slatkin, M. Maximum-likelihood estimation of molecular haplotype

frequencies in a diploid population. Molecular Biology Evolution. 1995: 12(5): 921-927.

Fallin, D. & Schork, J. Accuracy of haplotype frequency estimation for biallelic loci, via

the expectation-maximization algorithm for unphased diploid genotype data. American

Journal of Human Genetics 2000: 67: 947-959.

Gilks, W. R., Richardson S., & Spiegelhalter, D. J. Markov Chain Monte Carlo in

Practice. London: Chapman & Hall, 1996.

GlaxoSmithKline. Genetics at GlaxoSmithKline. [On-Line]. Available:

http://genetics.gsk.com/link.htm, 2004.

Guo, S. W., & Thompson, E. Performing the exact test of Hardy-Weinberg proportion for

multiple alleles. Biometrics 1992: 48: 361-372.

Kurukulaaratchy, R. J ., Fenn, M. H., Waterhouse L. M., Matthews, S. M., Holgate, S. T.,

Arshad, S. H. Characterization of wheezing phenotypes in the first 10 years of life.

Clinical and Experimental Allergy 2003: 33: 573-578.

Kurukulaaratchy, R. J ., Matthews, S., Holgate, S. T., Arshad, S. H. Predicting persistent

disease among children who wheeze during early life. European Journal of Respiratory

Diseases 2003: 22: 719-720.

Kurukulaaratchy, R. J ., Matthews, 8., Waterhouse, L., Arshad, S. H. Factors influencing

symptom expression in children with bronchial hyperresponsiveness at 10 years of age.

The Journal of Allergy and Clinical Immunology 2003: 112: 311-316.

Long, J. C., Williams, R. C. & Urbanek, M. An E-M algorithm and testing strategy for

multiple-locus haplotypes. American Journal ofHuman Genetics 1995: 56:799-810.

Schneider, S., Roessli, D., & Excoffier, L. Arlequin ver. 2.000: A software for population

genetics data analysis. Genetics and Biometry Laboratory, University of Geneva,

Switzerland, 2000.

Schork, N. J ., Fallin, D., & Lanchbury, S. Single nucleotide polymorphisms and the

future of genetic epidemiology. Clinical Genetics 2000: 58:250-264.

59



Sham, P. Statistics in Human Genetics. New York: Oxford University Press, 1998.

Stephens, M., Smith, N. J ., & Donnelly, P. A new statistical method for haplotype

reconstruction from population data. American Journal ofHuman Genetics 2001: 68:

978-989.

Stephens, M., Smith, N. J ., & Donnelly, P. Documentatin for PHASE ver.2.02.

Department of Statistics, University of Washington, Seattle, WA, 2003.

60



  

Ilflll‘lljllllllzlll’lll[llljlfl

 A
.
‘

'


