

) 00³⁵ 63766643

This is to certify that the thesis entitled

IDENTIFICATION AND MAPPING OF DIFFERENTIALLY EXPRESSED GENES IN FETAL AND POSTNATAL PIG SKELETAL MUSCLE

presented by

VALENCIA DANIELLE RILINGTON

has been accepted towards fulfillment of the requirements for the

Master Of Science

degree in

Animal Science

Major Professor's Signature

Date

MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARIES MICHIGAN STATE UNIVERSITY EAST LANSING, MICH 48824-1048 PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

2/05 c:/CIRC/DateDue.indd-p.15

IDENTIFICATION AND MAPPING OF DIFFERENTIALLY EXPRESSED GENES IN FETAL AND POSTNATAL PIG SKELETAL MUSCLE

Ву

Valencia Danielle Rilington

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Animal Science

2005

ABSTRACT

IDENTIFICATION AND MAPPING OF DIFFERENTIALLY EXPRESSED GENES IN FETAL AND POSTNATAL PIG SKELETAL MUSCLE

BY

Valencia Danielle Rilington

Fetal myogenesis and postnatal skeletal muscle hypertrophy in growing pigs are critical yet poorly understood processes. Global gene expression analyses can identify key genes and pathways controlling these processes. In addition, integration of gene expression data with genome map information will facilitate identification of genes controlling economically important trait phenotypes. This study was designed to identify differentially expressed genes in developing pig skeletal muscle and locate them on the pig genome map. The specific objectives were: 1) Identify differentially expressed genes in hind limb skeletal muscle of pigs at 60 days of gestation and 7 weeks of age; and 2) Determine the map locations for differentially expressed genes. A combination of differential display RT-PCR, cDNA microarray analysis and oligonucleotide microarray analysis were used to identify differentially expressed genes. In total, over 200 differentially expressed genes were revealed and expression patterns for eight genes were evaluated by relative real time RT-PCR, confirming differential expression for seven of them. Twenty-four genes were mapped to 13 different pig chromosomes using the INRA-University of Minnesota (IMpRH) 7,000 rad radiation hybrid panel. This study represents a first step toward characterizing the transcriptional profile of developing pig skeletal muscle and it improves the porcine-human comparative map.

I dedicate this thesis to my	mother, Patric	ia Rilington who	se love and support
has kept me going throughd mother and role model.	out the years.	Mom, thank you	for being the best

iii

ACKNOWLEDGEMENTS

I would like to begin by acknowledging my family and friends who have given me courage and strength throughout my years at Michigan State University.

My major professor, Dr. Cathy Ernst who believed I could be a graduate student and a full time employee, Thank you. My guidance committee, Dr. Coussens, Dr. Doumit, Dr. Ewart and Dr. Tempelman, for their valuable suggestions, accessibility and time.

To Nancy Raney, I am grateful that you are my friend and a fabulous laboratory technician.

Dr. Bates for the informational drives through the Midwestern states and help with statistical analysis. Dr. Peter Saama, your assistance with SAS for my classes and thesis.

Everyone at the Center for Functional Animal Genomics at MSU, specifically S. Sipkovsky, X. Ren, S. Suchyta and J. Yao for their technical assistance. The long of list of people who helped with many tissue collections, the Meat Laboratory and the MSU Swine Research and Teaching Facility and staff.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF FIGURES	viii
CHAPTER 1	
Literature Review	
Introduction	1
Skeletal Muscle Development	
Fetal myogenesis	
Postnatal hypertrophy	
Gene Expression Profiling of Skeletal Muscle	
DNA Microarrays	
Comparative Mapping	
Summary	
Literature Cited	16
CHAPTER 2	- 24
Differential Gene Expression in Fetal and Postnatal Pig Skeletal Muscl Abstract	
Introduction	
Materials and Methods	
Tissue samples and RNA isolation	
Northern blot analyses of myogenin and myogenic factor 6	
Differential display reverse transcription-PCR	
cDNA microarray	
Oligonucleotide microarray	
cDNA synthesis, hybridization and scanning	
Normalization and statistical analysis of microarray data	
Relative real-time reverse transcription PCR	
Results	
mRNA abundance of myogenin and myogenic factor 6	
Identification of differentially expressed genes by DDRT-PCR	
Identification of differentially expressed genes by cDNA microarray	
analysis	36
Identification of differentially expressed genes by oligonucleotide	
microarray analysis	37
Confirmation of differential expression	
Discussion	
Acknowledgements	
Literature Cited	
Chapter 2 Tables and Figures	54

Summary	72
Keywords	72
Introduction	72
Materials and Methods	73
Results and Discussion	74
Acknowledgements	76
Literature Cited	77
Chapter 3 Tables	80
Chapter 4	
Summary and Recommendations for Future Research	84

LIST OF TABLES

CHAPTER 2

Table 1. Real-time RT-PCR primer sequences	54
Table 2. Differentially expressed genes observed by differential display reverse transcription PCR (DDRT-PCR)	55
Table 3. Differentially expressed genes observed on the cDNA microarray	56
Table 4. Differentially expressed genes observed on the oligonucleotide microarray	59
CHAPTER 3	
Table 1. Primer sequences and PCR amplification conditions for porcine skeletal muscle ESTs	80
Table 2. Radiation hybrid mapping results for porcine skeletal muscle ESTs	82

LIST OF FIGURES

CHAPTER 2

Figure 1. Relative mRNA abundance of myogenin (MYOG) and myogenic factor 6 (MYF6)	68
Figure 2. Relative mRNA abundance of genes encoding contractile proteins	69
Figure 3. Relative mRNA abundance of genes encoding cytoskeletal proteins	.70
Figure 4. Relative mRNA abundance of TPT1	71

CHAPTER 1

Literature Review

Introduction

Skeletal muscle is the most abundant tissue in animals and, as meat, it is an economically important food source. The amount of muscle an animal has at market weight is predetermined by the size and number of muscle fibers (reviewed by Novakofski and McCusker, 1993) and fiber number is determined during fetal development (Swatland and Cassens, 1973). Fetal myogenesis is thus an extremely important research topic and many reports discuss the structural changes, contractile proteins and regulatory factors involved in the process of skeletal muscle development. Still, relatively little is known about the complex gene expression patterns associated with this process. Postnatal growth expands the prenatally developed fibers by increasing the diameter and length of the skeletal muscle. Researchers have discovered a number of important genes involved in this process including several growth factors and transcription factors. However, the complete transcriptional profile of developing skeletal muscle is unknown.

Gene expression profiles must be integrated with genome maps to fully understand complex biological mechanisms such as skeletal muscle development. Mapping of differentially expressed genes facilitates integration of genetic variants that affect phenotypic expression of economically important traits. Specifically for pigs, this will lead to maps that will be more informative for

study of biological mechanisms controlling economically important traits such as muscle growth and meat quality. Such integrated maps will also facilitate research using the pig as an animal model for human studies.

Skeletal Muscle Development

Fetal myogenesis

Fetal myogenesis is a complicated process involving coordinated regulation of proliferation and differentiation of myogenic cells. At around day 18 to 20 of gestation in pigs, mesenchymal cells differentiate into committed myogenic precursor cells. These mononucleated proliferating cells migrate from the somites into the growing limb buds to eventually become myoblasts (reviewed by Novakofski and McCusker, 1993). The migrating cells can not become myoblasts until the transcription factor, paired box gene 3 (PAX3) is expressed (Epstein et al., 1996). PAX3 activiates the transcription of c-met, which then interacts with scatter factor (or hepatocyte growth factor, HGF; Dietrich et al., 1999). In order for myogenic precursor cells to become myoblasts, myogenic regulatory factors (MRFs) need to be expressed. PAX3 induces expression of the MRFs, myogenic factor 3 (MYOD1) and myogenic factor 5 (MYF5), which are helix-loop-helix transcription factors. MYOD1 and MYF5 are required at the determination step to commit proliferating precursor cells to the myogenic lineage (Rudnicki et al., 1993). The myoblasts then proliferate, further differentiate into myocytes and mature into myofibers through the action of the MRFs, myogenin (MYOG) and myogenic factor 6 (MYF6; reviewed by Sabourin and Rudnicki, 2000). Myoblast proliferation and

differentiation is also regulated by growth factors. Insulin-like growth factor-I (IGF-I) and IGF- II stimulate myoblast proliferation and differentiation, while fibroblast growth factor (FGF) stimulates myoblast proliferation. Transforming growth factor $-\beta$ (TGF- β) inhibits FGF and decreases both proliferation and differentiation (reviewed by Florini and Magri, 1989).

Myoblasts proliferate and begin to align with other myoblasts and fuse. The fusing myoblasts form primary myotubes (reviewed by Novakofski and McCusker, 1993). In pigs, production of myotubes or primary fibers begins at approximately 40 days of gestation and primary fibers determine the future size and location of the muscle tissue. At around 50 to 60 days of gestation, secondary fibers form by adhering to the primary fibers (Wigmore and Stickland, 1983). By 70 days of gestation, primary fiber formation has slowed down compared to secondary fiber formation, and by 90 days of gestation secondary fiber formation has also slowed (Beermann et al., 1978) so that at birth (approximately 114 days), the number of muscle fibers in the animal is set.

Postnatal hypertrophy

After birth, muscle growth occurs through hypertrophy by which the muscle increases in size and length. Muscle size is affected by growth factors and exercise, and myogenic satellite cells mediate the postnatal growth of muscle (Schultz, 1989, 1996). Muscle fiber hypertrophy is associated with an increase in DNA content. Because the differentiated myonuclei do not have the ability to synthesize DNA, satellite cells contribute new nuclei by fusing with the growing muscle. Thus, the roles of satellite cells include muscle regeneration,

muscle hypertrophy and postnatal muscle growth (Darr and Schultz, 1987; Grounds, 1998; Grounds and Yablonka-Reuveni,1993; Rosenblatt et al., 1994). The IGFs, FGF, TGF-β and platelet-derived growth factor (PDGF) have all been shown to affect satellite cell proliferation and differentiation. PDGF stimulates satellite cell proliferation (for review see Yablonka-Reuveni, 1995) and FGF stimulates proliferation and depresses differentiation, whereas IGF-I stimulates both proliferation and differentiation, and TGF-β depresses proliferation and inhibits differentiation (Allen and Boxhorn, 1989).

Gene Expression Profiling of Skeletal Muscle Tissue

Several techniques have been developed for evaluating mRNA abundance in tissues or cells. Techniques such as northern blot analysis and real-time reverse transcription PCR (RT-PCR) are effective, but they are limited to examination of only one or a few genes at a time. Thus, screening of hundreds or thousands of genes using these techniques would be time and cost prohibitive. More global approaches are needed to simultaneously examine expression patterns of large numbers of genes. One technique for doing this is differential display RT-PCR (DDRT-PCR; Liang and Pardee, 1992). However, large-scale DDRT-PCR analyses can also be time consuming and expensive. The mapping of the human genome spurred a new generation of gene expression techniques and DNA microarray technologies have emerged as popular methods for identifying differentially expressed genes.

DNA Microarrays

Types of microarrays include different platforms to which the probes are adhered including nylon membranes, glass slides and silicon chips. The probes can either be spotted cDNAs, PCR amplification products, short (25-30mer) oligonucleotides or longer (50-70mer) oligonucleotides. Each of these platform and probe types has been used successfully in many research areas.

Microarrays produced by Affymetrix, a short oligonucleotide chip company, have not commonly been used by investigators involved in livestock animal research because chips specific for these species have not been available, although Affymetrix is currently in the process of introducing these products. Other platforms have been very popular for livestock animal research and, as cDNA library and expressed sequence tag (EST) database resources have been developed, both cDNA and long oligonucleotide microarrays have been produced.

Microarrays are heavily integrated into research in many different aspects of the scientific community. Thousands of studies using microarray technologies have been reported. Therefore, the discussion of microarray experiments in this literature review will focus on studies involving gene expression profiling of skeletal muscle. Microarrays have been used to examine skeletal muscle gene expression in humans, mice, rats, zebrafish, cattle and pigs. This research has covered a broad range of subject matter including diseases, exercise and nutritional effects on gene expression. For example, skeletal muscle gene expression profiles have been reported for cancer studies (Basso et al., 2004,

Kappler et al., 2004), Duchenne muscular dystrophy (DMD) studies (Companaro et al., 2002; Muntoni et al., 2002; Noguchi et al., Porter et. al., 2002; Porter et al., 2003a; Porter et al., 2003b; 2003; Winokur et al., 2003;), and studies of hormonal effects (Rome et al., 2003; Sreekumar et al., 2002a, Viguerie et al., 2004; Yang et al., 2002), dietary effects (Linnane et al., 2002, Reverter et al., 2003; Sreekumar et al., 2002b,c) and exercise effects (Carson et al., 2002; Hittel et al., 2003; Mu et al., 2003; Wu et al., 2003).

Additional gene expression profiling studies in humans, mice and rats have identified differentially expressed transcripts between quadriceps (white muscle) and soleus (red muscle) in mice (Campbell et al., 2001), the effect of neuregulin, a heparin sulfate proteoglycan on primary human myotubes (Jacobson et al., 2004), the effects of forkhead type transcription factor 1 on skeletal mass (Kamei et al., 2004), and metabolic adaptations in skeletal muscle during lactation (Xiao et al., 2004). Other experiments identified candidate genes involved in skeletal muscle injury in mice (Summan et al., 2003), examined the anti-oxidative response of carbonic anhydrase III in skeletal muscle (Zimmerman et al., 2004), and determined effects of reducing temperatures in adult zebrafish (Malek et al., 2004). Zhou et al. (2004) identified distinct gene expression clusters in idiopathic inflammatory myopathies in muscle biopsies. Transcriptional differences were also examined in muscle wasting due to spaceflight (Nikawa et al., 2004, Taylor et al., 2002) and in burn victims receiving anabolic steroid treatment (Barrow et al., 2003). Finally, in a unique application of microarray analysis, Cronin et al. (2004) used an oligonucleotide microarray to

demonstrate that protein-coated poly(L-lactic acid) fibers were a suitable substrate for growing human skeletal muscle cells because expression profiles did not differ from cells grown on standard tissue culture plates.

As discussed above, myoblast differentiation is a critical step in early fetal skeletal muscle development. Tomczak et al. (2004) used expression profiling to examine gene expression during a 12-day time course of differentiating C2C12 myoblasts. The differentiating C2C12 cells progressed through a predictable pattern of myogenic events as the myoblasts ceased proliferating and began differentiating. Tomczak et al. (2004) found that MYF5 expression decreased gradually while MYOD1 transcripts peaked at the onset of differentiation, and MYOG and MYF6 were induced later in the time course. These results were expected because MYF5 and MYOD1 are required at the determination step to commit proliferating myoblasts, whereas MYOG and MYF6 are required for myoblast differentiation. Several transcripts involved in cell-cycle regulation, cell signaling, ion transport, and nucleic acid and protein metabolism exhibited high expression levels in the proliferating myoblasts and decreased over the rest of the time course. Another group of transcripts including genes involved in muscle contraction, muscle development, metabolism, cell signaling, ion transport and transcription were observed to be undectable or lowly expressed during proliferation but to increase progressively throughout the rest of time course. The use of microarrays to examine proliferating and differentiating myoblasts in this study identified both genes known to be involved in muscle development and also previously unknown genes. Moran et al. (2002) also performed a study with

proliferating and differentiating myoblasts that covered a shorter time course. Their results were similar to Tomczak et al. (2004) in that differentially expressed genes fell into functional categories including muscle contraction, cell adhesion, extracellular matrix, cellular metabolism, mitochondrial transport, DNA replication, cell cycle control, mRNA transcription and immune regulation.

The role of growth factors in muscle development was also discussed above. IGF action is critical both for maintaining viability during the transition from proliferating to differentiating myoblasts and for facilitating differentiation. PDGF can sustain cell survival but inhibits differentiation. Kuninger et al. (2004) used microarrays to identify genes induced by IGF-I and PDGF in myoblasts. This study identified 28 muscle-specific genes whose expression was uniquely stimulated by IGF-I including MYOG, several enzymes such as a calcium-dependent ATPase and creatine kinase, numerous transcripts for components of the contractile apparatus such as α -actin, several troponins, myosin heavy and light chains, and tropomyosin, and two sarcoglycans, among others. In contrast, no muscle-specific transcripts were identified among the 41 known genes that were differentially induced by PDGF. Thus, this study begins to define a transcriptional profile of genes induced by IGF-I and PDGF in skeletal muscle.

Transcriptional changes in skeletal muscle associated with aging have been examined in humans, mice and rats. Roth et al. (2002), in a study to determine the influence of age, sex, and strength training (ST) on gene expression patterns in skeletal muscle, identified 50 genes affected by age that represented structural, metabolic, and regulatory gene classes. Welle et al.

(2001) examined gene expression differences in young vs. old skeletal muscle of both mice and men. They identified 17 differentially expressed genes that were similar in mice and men and 32 that were dissimilar. Six were classified as overexpressed in both mice and men, 19 as overexpressed in mice but not in men, 11 as underexpressed in both mice and men, and 13 as underexpressed in mice but not in men. This study demonstrated not only gene expression differences associated with aging, but also species differences in skeletal muscle gene expression patterns.

In 2003, Welle et al. reported a more thorough study that examined gene expression profiles between younger (21-27 yr old) and older men (67-75 yr old). A total of 718 genes were differentially expressed and older muscle was observed to express several hundred more genes than younger muscle. Genes that encode proteins involved in energy metabolism and mitochondrial protein synthesis were expressed at lower levels in older muscle. Genes encoding metallothioneins, high-mobility-group proteins, heterogeneous nuclear ribonucleoproteins and other RNA binding/processing proteins, and components of the ubiquitin-proteasome proteolytic pathway were expressed at higher levels in older muscle. Subsequently this research group conducted a similar study in young and old women (Welle et al., 2004) and the results agreed with those of the men's study. Approximately 1,000 genes were differentially expressed with more genes expressed in older muscle. In addition, over 100 genes involved in energy metabolism were expressed at lower levels in older muscle and over 40

genes encoding proteins that bind to pre-mRNAs or mRNAs were expressed at higher levels in older muscle.

Zhang et al. (2002) observed gene expression patterns in skeletal muscle of young (3 months) vs. old (30 months) rats. The study found 127 differentially expressed genes, among which some genes down-regulated in older muscle were involved in energy metabolism and signal transduction, while some upregulated genes were related to protein degradation and cell apoptosis. A similar study by Pattison et al. (2003) examined rats of the same ages and identified 682 differentially expressed genes, of which 347 were decreased in older muscle relative to younger muscle with a major category being genes that encode extracellular matrix and cell adhesion proteins. Of the 335 genes increased in older muscle, many were involved in immune response, proteolysis, or stress/antioxidant response. These studies examining aging in skeletal muscle provide insight into genes that may be involved in skeletal muscle development.

To date, only a few studies have been reported involving microarray analysis of pig skeletal muscle. However, the availability of resources for conducting such studies is rapidly increasing. Complementary DNA libraries for pig skeletal muscle have been constructed from adult *biceps femoris* (Davoli et al., 1999) and from an ontogeny of samples from five developmental time points (Yao et al., 2002). These projects have increased the number of ESTs available from pig skeletal muscle. Before pig microarrays became available, Moody et al. (2002) reported successful cross species hybridization using human nylon microarrays with porcine skeletal muscle samples. Zhao et al. (2003) produced a

cDNA nylon macroarray that contained 327 pig ESTs and reported 28 genes that were differentially expressed in pig hind limb skeletal muscle at 75 days of gestation and 1 week of age. Specifically, genes including elongation factor 1 alpha, vimentin, splicing factor arignine/serine rich 12, GABA-A, tubulin, protein phosphatase 2C alpha, several genes encoding ribosomal proteins and several genes of unknown function were more highly expressed at 75 days of gestation, a timepoint when secondary fibers are rapidly forming. Also, glyceraldehyde-3-phosphate dehydrogenase and a gene of unknown function were more highly expressed at 1 week of age when muscle is undergoing rapid hypertrophy. This study gives insight into genes involved in skeletal muscle development.

Bai et al. (2003) reported development of a microarray that included 5,500 clones from two developmentally distinct pig skeletal muscle cDNA libraries and they performed an initial screen of the array with *psoas* and *longissimus dorsi* (LD) muscle RNA from a 22-week-old pig. They found 70 genes that were more highly expressed in the *psoas* and 45 genes that were more highly expressed in the LD, thus identifying, candidate genes influencing muscle phenotypes.

Subsequently, da Costa et al. (2004) used this same array to examine the effects of dietary restriction on skeletal muscle gene expression. Twenty genes were more highly expressed in both the LD and *psoas* muscles of pigs fed a low protein and energy diet. Also, thirteen genes were more highly expressed in the *psoas* of pigs fed the restricted diet and 5 were more highly expressed in the LD. The differentially expressed genes affected metabolism, energy, translation and growth. The findings also identified novel genes that have growth modulatory

properties and could play pivotal roles in growth suppression and muscle phenotype determination, which all affect skeletal muscle development. Porcine microarray research has a long way to go to reach the level of research in humans, mice and rats. However, it is likely that in a few years there will be a similar flood of research reports when accessibility to these technologies increases through an increase in the number of pig ESTs and the development of pig microarrays.

Comparative Mapping

Comparative gene mapping utilizes information from species such as human and mouse that have complete genome sequences available to improve the resolution of genome maps for species such as the pig that are not fully sequenced. These maps then aid in the identification of candidate genes for economically important traits such as growth, health, and product quality. In addition, gene expression profiling studies reveal genes involved in the expression of important trait phenotypes. Thus, in order to fully utilize the available information for identifying genes controlling economically important traits, it is important to integrate gene expression data with genome map information.

Development of the porcine-human comparative map has continued to make great advancements over the past decade. A comprehensive study of human-pig conservation using chromosomal painting was reported by Goureau et al. (1996) who used a bidirectional approach in which both human and pig probes were hybridized to metaphase spreads of the opposite species. This

study identified 37 conserved regions between humans and pigs. Following this, a somatic cell hybrid panel was developed (INRA SCHP; Yerle et al., 1996) that allowed for regional localizations of genes on pig chromosomes. Higher resolution maps can be achieved with the use of radiation hybrid (RH) panels. RH panels are constructed by fusing irradiated DNA from a species of interest such as the pig with a rodent cell line to form a panel of stable hybrid cell lines that each contains a different complement of the genome of interest. The most widely used pig RH panel is the INRA-University of Minnesota (IMpRH) 7,000 rad panel (Yerle et al., 1998; Hawken et al., 1999). The first generation porcine whole-genome RH map developed with this panel contained a total of 903 markers (Hawken et al., 1999). More recently, this group has developed a 12,000 rad RH panel that allows for more accurate resolution of gene order to further improve the pig-human comparative map (Yerle et al., 2002).

Many ESTs from cDNA libraries derived from various tissues have been mapped using the INRA SCHP, IMpRH and other panels. These include 67 ESTs from female reproductive tissues (Shi et al., 2001; Tuggle et al., 2003), 182 EST clusters from porcine back fat libraries (Mikawa et al., 2004), and 214 ESTs from a porcine small intestine cDNA library (Cirera et al., 2003). Davoli et al. (2002) reported a first genomic transcript map for pig skeletal muscle that included 125 ESTs derived from their pig *biceps femoris* cDNA library. In efforts to identify positional candidate genes in QTL regions, 20 ESTs were mapped to pig chromosomes 9 and 3 (Middleton et al., 2003) and 28 ESTs were mapped to pig chromosome 10 (Aldenhoven et al., 2003), where QTL for economically

important reproduction and carcass traits have been reported (Hirooka et al., 2001; Malek et al., 2001a,b, Rohrer and Keele 1998a,b; Rohrer et al., 1999; Rohrer 2000; Wada et al., 2000;). Rink et al. (2002) reported the most comprehensive pig EST comparative mapping effort so far by assigning 1,058 EST markers to the IMpRH. Thus, mapping of ESTs to the pig genome map improves the porcine-human comparative map and facilitates the identification of candidate genes for economically important traits.

Summary

Skeletal muscle development is controlled by a complicated biological mechanism. A great deal is known about the structural changes, regulatory genes and growth factors contributing to fetal myogenesis and postnatal hypertrophy. However, relatively little is known about the complexity of gene expression patterns associated with these developmental stages. With the advent of microarray technology, the opportunity for examining these patterns is available.

Numerous studies have used microarray technology to examine gene expression patterns in skeletal muscle of humans, mice and rats. To date, only a few reports have used these technologies to examine gene expression patterns in pig skeletal muscle. However, this is expected to increase in the near future as the availability of porcine EST sequences increases, and cDNA and oligonucleotide microarrays become more accessible. In addition, the integration of gene expression and genetic mapping information will lead to connecting

phenotypic expression to genomic positions, thereby accelerating the discovery of candidate genes.

We hypothesize that growth and development of skeletal muscle tissue is associated with distinct gene expression patterns that are unique to specific developmental stages. This study was designed to identify differentially expressed genes in pig skeletal muscle between pigs at a fetal age corresponding to the initiation of secondary fiber formation and postnatal pigs undergoing rapid muscle hypertrophy. In addition, the study included locating some of these genes on the pig genome map. The specific objectives were to:

- Identify differentially expressed genes in hind limb skeletal muscles of pigs at 60 days of gestation and 7 weeks of age; and
- 2. Determine the map locations for differentially expressed genes.

Literature Cited

Aldenhoven J, Chen Y, Backofen B and Moran C. Improving the comparative map of porcine chromosome 10 with respect to human chromosomes 1, 9 and 10. Cytogenet Genome Res 102: 121-127, 2003.

Allen RE and Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. *J Cell Physiol* 138: 311-315,1989.

Bai Q, McGillivray C, da Costa N, Dornan S, Evans G, Stear MJ and Chang KC. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. *BMC Genomics* 4: 8, 2003.

Barrow RE, Dasu MR, Ferrando AA, Spies M, Thomas SJ, Perez-Polo JR and Herndon DN. Gene expression patterns in skeletal muscle of thermally injured children treated with oxandrolone. *Ann Surg* 237: 422-428, 2003.

Basso D, Millino C, Greco E, Romualdi C, Fogar P, Valerio A, Bellin M, Zambon CF, Navaglia F, Dussini N, Avogaro A, Pedrazzoli S, Lanfranchi G and Plebani M. Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. *Gut* 53: 1159-1166, 2004.

Beermann DH, Cassens RG and Hausman GJ. A second look at fiber type differentiation in porcine skeletal muscle. *J Anim Sci* 46:125-132, 1978.

Campanaro S, Romualdi C, Fanin M, Celegato B, Pacchioni B, Trevisan S, Laveder P, De Pitta C, Pegoraro E, Hayashi YK, Valle G, Angelini C and Lanfranchi G. Gene expression profiling in dysferlinopathies using a dedicated muscle microarray. *Hum Mol Genet* 11: 3283-3298, 2002.

Campbell WG, Gordon SE, Carlson CJ, Pattison JS, Hamilton MT and Booth FW. Differential global gene expression in red and white skeletal muscle. *Am J Physiol Cell Physiol* 280: C763-C768, 2001.

Carson JA, Nettleton D and Reecy JM. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. *FASEB J* 16: 207-209, 2002.

Cirera S, Jorgensen CB, Sawera M, Raudsepp T, Chowdhary BP and Fredholm M. Comparative mapping in the pig: localization of 214 expressed sequence tags. *Mamm Genome* 14: 405-426, 2003.

Cronin EM, Thurmond FA, Bassel-Duby R, Williams RS, Wright WE, Nelson KD and Garner HR. Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells. *J Biomed Mater Res* 69A: 373-381, 2004.

da Costa N, McGillivray C, Bai Q, Wood JD, Evans G and Chang KC. Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles. *J Nutr* 134: 2191-2199, 2004.

Darr KC and Schultz E. Exercise-induced satellite cell activation in growing and mature skeletal muscle. *J Appl Physiol* 63: 1816-1821, 1987.

Davoli R, Fontanesi L, Zambonelli P, Bigi D, Gellin J, Yerle M, Milc J, Braglia S, Cenci V, Cagnazzo M and Russo V. Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. *Anim Genet* 33; 3-18, 2002

Davoli R, Zambonelli P, Bigi D, Fontanesi L and Russo V. Analysis of expressed sequence tags of porcine skeletal muscle. *Gene* 233: 181-188, 1999.

Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B and Birchmeier C. The role of SF/HGF and c-Met in the development of skeletal muscle. *Development* 126: 1621-1629, 1999.

Epstein JA, Shapiro DN, Cheng J, Lam PY and Maas RL. Pax3 modulates expression of the c-Met receptor during limb muscle development. *Proc Natl Acad Sci USA* 93: 4213-4218, 1996.

Florini JR and Magri KA. Effects of growth factors on myogenic differentiation. *Am J Physiol* 256: C701-C711, 1989.

Grounds MD. Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. *Ann N Y Acad Sci* 854: 78-91, 1998.

Grounds MD and Yablonka-Reuveni Z. Molecular and cell biology of skeletal muscle regeneration. *Mol Cell Biol Hum Dis Ser* 3: 210-256, 1993.

Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Frelat G and Gellin J. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. *Genomics* 36: 252-262, 1996.

Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie CW, Schook LB, and Alexander LJ. A first-generation porcine wholegenome radiation hybrid map. *Mamm Genome* 10: 824-830, 1999.

Hirooka H, de Koning DJ, Harlizius B, van Arendonk JA, Rattink AP, Groenen MA, Brascamp EW and Bovenhuis H. A whole-genome scan for quantitative trait loci affecting teat number in pigs. *J Anim Sci* 79: 2320–2326, 2001.

Hittel DS, Kraus WE and Hoffman EP. Skeletal muscle dictates the fibrinolytic state after exercise training in overweight men with characteristics of metabolic syndrome. *J Physiol* 548: 401-410, 2003.

Jacobson C, Duggan D and Fischbach G. Neuregulin induces the expression of transcription factors and myosin heavy chains typical of muscle spindles in cultured human muscle. *Proc Natl Acad Sci USA* 101: 12218-12223, 2004.

Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I and Ezaki O. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. *J Biol Chem* 279: 41114-41123, 2004.

Kappler R, Bauer R, Calzada-Wack J, Rosemann M, Hemmerlein B and Hahn H. Profiling the molecular difference between Patched- and p53-dependent rhabdomyosarcoma. *Oncogene* 23: 8785-8795, 2004.

Kuninger D, Kuzmickas R, Peng B, Pintar JE and Rotwein P. Gene discovery by microarray: identification of novel genes induced during growth factor-mediated muscle cell survival and differentiation. *Genomics* 84: 876-889, 2004.

Liang P and Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. *Science* 257: 967-971, 1992.

Linnane AW, Kopsidas G, Zhang C, Yarovaya N, Kovalenko S, Papakostopoulos P, Eastwood H, Graves S and Richardson M. Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscle. *Free Radic Res* 36: 445-453, 2002.

Malek M, Dekkers JC, Lee HK, Baas TJ and Rothschild MF. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. *Mamm Genome* 12: 630–636, 2001a.

Malek M, Dekkers JC, Lee HK, Baas T., Prusa K, Huff-Lonergan E, and Rothschild MF. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. *Mamm Genome* 12: 637–645, 2001b.

- Malek RL, Sajadi H, Abraham J, Grundy MA and Gerhard GS. The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. *Comp Biochem Physiol C Toxicol Pharmacol* 138: 363-373, 2004.
- Middleton R, Aldenhoven J, Chen Y, Backofen B and Moran C. Improving the comparative map of porcine chromosome 9 with respect to human chromosomes 1, 7 and 11. Cytogenet Genome Res 102: 128-132, 2003.
- Mikawa A, Suzuki H, Suzuki K, Toki D, Uenishi H, Awata T and Hamasima N. Characterization of 298 ESTs from porcine back fat tissue and their assignment to the SSRH radiation hybrid map. *Mamm Genome* 15: 315-322, 2004.
- **Moody DE, Zou Z, McIntyre L.** Cross-species hybridisation of pig RNA to human nylon microarrays. *BMC Genomics* 3: 27, 2002.
- **Moran JL, Li Y, Hill AA, Mounts WM and Miller CP.** Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. *Physiol Genomics* 10:103-111, 2002.
- **Mu J, Barton ER and Birnbaum MJ.** Selective suppression of AMP-activated protein kinase in skeletal muscle: update on 'lazy mice'. *Biochem Soc Trans* 31: 236-241, 2003.
- Muntoni F, Fisher I, Morgan JE and Abraham D. Steroids in Duchenne muscular dystrophy: from clinical trials to genomic research. *Neuromuscul Disord* 12: S162-S165, 2002.
- Nikawa T, Ishidoh K, Hirasaka K, Ishihara I, Ikemoto M, Kano M, Kominami E, Nonaka I, Ogawa T, Adams GR, Baldwin KM, Yasui N, Kishi K and Takeda S. Skeletal muscle gene expression in space-flown rats. *FASEB J* 18: 522-524, 2004.
- Noguchi S, Tsukahara T, Fujita M, Kurokawa R, Tachikawa M, Toda T, Tsujimoto A, Arahata K and Nishino I. cDNA microarray analysis of individual Duchenne muscular dystrophy patients. *Hum Mol Genet* 12: 595-600, 2003.
- **Novakofski J and McCusker RH.** Physiology and principles of muscle growth. In: *Growth of the Pig*, edited by Hollis FR. Wallingford, UK: Wallingford CAB International, 1993.
- Pattison JS, Folk LC, Madsen RW, Childs TE and Booth FW. Transcriptional profiling identifies extensive downregulation of extracellular matrix gene expression in sarcopenic rat soleus muscle. *Physiol Genomics* 15: 34-43, 2003.

Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W and Andrade FH. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. *Hum Mol Genet* 11: 263-272, 2002.

Porter JD, Guo W, Merriam AP, Khanna S, Cheng G, Zhou X, Andrade FH, Richmonds C and Kaminski HJ. Persistent over-expression of specific CC class chemokines correlates with macrophage and T-cell recruitment in mdx skeletal muscle. *Neuromuscul Disord* 13: 223-235, 2003a.

Porter JD, Merriam AP, Leahy P, Gong B and Khanna S. Dissection of temporal gene expression signatures of affected and spared muscle groups in dystrophin-deficient (mdx) mice. *Hum Mol Genet* 12: 1813-1821, 2003b.

Reverter A, Byrne KA, Brucet HL, Wang YH, Dalrymple BP and Lehnert SA. A mixture model-based cluster analysis of DNA microarray gene expression data on Brahman and Brahman composite steers fed high-, medium-, and low-quality diets. *J Anim Sci* 81: 1900-1910, 2003.

Rink A, Santschi EM, Eyer KM, Roelofs B, Hess M, Godfrey M, Karajusuf EK, Yerle M, Milan D and Beattie CW. A first-generation EST RH comparative map of the porcine and human genome. *Mamm Genome* 13: 578-587, 2002.

Rohrer GA and Keele JW. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. *J Anim Sci* 76: 2247–2254, 1998a.

Rohrer GA and Keele JW. Identification of quantitative trait loci affecting carcass composition in swine: II. Muscling and wholesale product yield traits. *J Anim Sci* 76: 2255, 1998b

Rohrer GA, Ford JJ, Wise TH, Vallet JL. and Christenson RK. Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. *J Anim Sci* 77: 1385–1391, 1999.

Rohrer GA. Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White Composite resource population. *J Anim Sci* 78: 2547-2553, 2000.

Rome S, Clement K, Rabasa-Lhoret R, Loizon E, Poitou C, Barsh GS, Riou JP, Laville M and Vidal H. Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. *Biol Chem* 278: 18063-18068, 2003.

Rosenblatt JD, Yong D and Parry DJ. Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. *Muscle Nerve* 17: 608-613, 1994.

Roth SM, Ferrell RE, Peters DG, Metter EJ, Hurley BF and Rogers MA. Influence of age, sex, and strength training on human muscle gene expression determined by microarray. *Physiol Genomics* 10: 181-190, 2002.

Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH and Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. *Cell* 75: 1351-1359, 1993.

Sabourin LA and Rudnicki MA. The molecular regulation of myogenesis. *Clin. Genetics* 57: 16-25, 2000.

Schultz E. Satellite cell behavior during skeletal muscle growth and regeneration. *Med Sci Sports Exerc* 21: S181-S186, 1989.

Schultz E. Satellite cell proliferative compartments in growing skeletal muscles. *Dev Biol* 175: 84-94, 1996.

Shi XW, Fitzsimmons CJ, Genet C, Prather R, Whitworth K, Green JA and Tuggle CK. Radiation hybrid comparative mapping between human chromosome 17 and porcine chromosome 12 demonstrates conservation of gene order. *Anim Genet* 32: 205-209, 2001.

Sreekumar R, Halvatsiotis P, Schimke JC and Nair KS. Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. *Diabetes* 51: 1913-1920, 2002a.

Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R and Nair KS. Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. *Am J Physiol Endocrinol Metab* 283: E38-E43, 2002b.

Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R and Nair KS. Impact of high-fat diet and antioxidant supplement on mitochondrial functions and gene transcripts in rat muscle. *Am J Physiol Endocrinol Metab* 282: E1055-E1061, 2002c.

Summan M, McKinstry M, Warren GL, Hulderman T, Mishra D, Brumbaugh K, Luster MI and Simeonova PP. Inflammatory mediators and skeletal muscle injury: a DNA microarray analysis. *J Interferon Cytokine Res* 23: 237-245, 2003.

Swatland HJ and Cassens RG. Prenatal development, histochemistry and innervation of porcine muscle. *J Anim Sci* 36: 343-354, 1973.

Taylor WE, Bhasin S, Lalani R, Datta A and Gonzalez-Cadavid NF. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. *J Gravit Physiol* 9: 61-70, 2002.

Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS and Beggs AH. Expression profiling and identification of novel genes involved in myogenic differentiation. *FASEB J* 18: 403-405, 2004.

Tuggle CK, Green JA, Fitzsimmons C, Woods R, Prather RS, Malchenko S, Soares BM, Kucaba T, Crouch K, Smith C, Tack D, Robinson N, O'Leary B, Scheetz T, Casavant T, Pomp D, Edeal BJ, Zhang Y, Rothschild MF, Garwood K and Beavis W. EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human. *Mamm Genome* 14: 565-579, 2003.

Viguerie N, Clement K, Barbe P, Courtine M, Benis A, Larrouy D, Hanczar B, Pelloux V, Poitou C, Khalfallah Y, Barsh GS, Thalamas C, Zucker JD and Langin D. In vivo epinephrine-mediated regulation of gene expression in human skeletal muscle. *J Clin Endocrinol Metab* 89: 2000-2014, 2004.

Wada Y, Akita T, Awata T, Furukawa T, Sugai N, Ishii K, Ito Y, Kobayashi E, Mikawa S, Yasue H, Sugai N, Inage Y, Kusumoto H, Matsumoto T, Miyake M, Murase A, Shimanuki S, Sugiyama T, Uchida Y and Yanai S. Quantitative trait loci (QTL) analysis in a Meishan × Gottingen cross population. *Anim Gen* 31: 376–384, 2000.

Welle S, Brooks A and Thornton CA. Senescence-related changes in gene expression in muscle: similarities and differences between mice and men. *Physiol Genomics* 5: 67-73, 2001.

Welle S, Brooks Al, Delehanty JM, Needler N and Thornton CA. Gene expression profile of aging in human muscle. *Physiol Genomics* 14:149-159, 2003.

Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B and Thornton CA. Skeletal muscle gene expression profiles in 20-29 year old and 65-71 year old women. *Exp Gerontol* 39:369-377, 2004.

Wigmore PM and Stickland NC. Muscle development in large and small pig fetuses. *Anat* 137: 235-245, 1983.

Winokur ST, Chen YW, Masny PS, Martin JH, Ehmsen JT, Tapscott SJ, van der Maarel SM, Hayashi Y and Flanigan KM. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. *Hum Mol Genet* 12: 2895-2907, 2003.

Wu H, Gallardo T, Olson EN, Williams RS and Shohet RV. Transcriptional analysis of mouse skeletal myofiber diversity and adaptation to endurance exercise. *J Muscle Res Cell Motil* 24: 587-592, 2003.

- **Xiao XQ, Grove KL and Smith MS.** Metabolic adaptations in skeletal muscle during lactation: complementary deoxyribonucleic acid microarray and real-time polymerase chain reaction analysis of gene expression. *Endocrinology* 145: 5344-5354, 2004.
- **Yablonka-Reuveni Z.** Development and postnatal regulation of adult myoblasts. *Microsc Res Tech* 30: 366-380, 1995.
- Yao J, Coussens PM, Saama P, Suchyta S and Ernst CW. Generation of expressed sequence tags from a normalized porcine skeletal muscle cDNA library. *Anim Biotechnol* 3: 211-222, 2002.
- Yang X, Pratley RE, Tokraks S, Bogardus C and Permana PA. Microarray profiling of skeletal muscle tissues from equally obese, non-diabetic insulinsensitive and insulin-resistant Pima Indians. *Diabetologia* 45: 1584-1593, 2002.
- Yerle M, Echard G, Robic A, Mairal A, Dubut-Fontana C, Riquet J, Pinton P, Milan D, Lahbib-Mansais Y and Gellin J. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. *Cytogenet Cell Genet* 73: 194-202, 1996.
- Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D and Gellin J. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82: 182-188, 1998.
- Yerle M, Pinton P, Delcros C, Arnal N, Milan D and Robic A. Generation and characterization of a 12,000-rad radiation hybrid panel for fine mapping in pig. Cytogenet Genome Res 97:v219-228, 2002.
- Zhang FL, Huang GL, Ye CZ, Zhang KZ, Lin ZZ, Chen XC and You J. Gene expression pattern of senescence associated genes in rat muscle. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34: 236-239, 2002.
- Zhao SH, Nettleton D, Liu W, Fitzsimmons C, Ernst CW, Raney NE and Tuggle CK. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. *J Anim Sci* 81: 2179-2188, 2003.
- **Zhou X, Dimachkie MM, Xiong M, Tan FK and Arnett FC.** cDNA microarrays reveal distinct gene expression clusters in idiopathic inflammatory myopathies. *Med Sci Monit* 10: BR191-BR197, 2004.
- Zimmerman UJ, Wang P, Zhang X, Bogdanovich S and Forster R. Antioxidative response of carbonic anhydrase III in skeletal muscle. *IUBMB Life* 56: 343-347, 2004.

CHAPTER 2

Differential Gene Expression in Fetal and Postnatal Pig Skeletal Muscle Abstract

Fetal myogenesis and postnatal skeletal muscle hypertrophy in growing pigs are critical yet poorly understood processes. Global gene expression analyses can be used to increase understanding of these processes by identifying key genes and pathways controlling skeletal muscle development. For this study, three techniques including differential display reverse transcription PCR (DDRT-PCR), a pig skeletal muscle cDNA microarray and a pig 70-mer oligonucleotide microarray were applied to identify differentially expressed genes in hind limb skeletal muscle tissue of pigs at 60 days of gestation and 7 weeks of age. The cDNA and oligonucleotide microarray experiments revealed 35 and 163 genes, respectively, that were differentially expressed between the 60 day fetal and 7 week postnatal samples. The DDRT-PCR experiment also included skeletal muscle tissue from pigs at 105 d of gestation and revealed 16 putatively differentially expressed genes. The genes TTN, MTCO3 and MTND4 were identified by all three techniques to be more highly expressed at 7 weeks of age. Three additional genes TNNC1, TNNC2 and GAPD were identified by both of the microarray platforms to be more highly expressed at 7 weeks of age. Two genes were revealed to be differentially expressed by both DDRT-PCR and the oligonucleotide microarray; COL1A2 was more highly expressed at 60 days of gestation and MYH4 was more highly expressed at 7 weeks of age. Relative real-time RT-PCR was used to validate differential expression of six genes

observed to be significantly differentially expressed by DDRT-PCR, cDNA microarray analysis and/or oligonucleotide microarray analysis. These genes were CNN3, FN1, TTN, TCAP, TPT1 and TNNC1, and significant differential expression was confirmed for all of them except TNNC1. Two additional genes not identified by DDRT-PCR or microarray analysis, TTID and PXN, were also determined to be differentially expressed. Thus, these results provide new information regarding developmental patterns of gene expression in pig skeletal muscle.

Introduction

Although, the physical development of porcine fetal skeletal muscle has been well characterized (http://www.aps.uoguelph.ca/~swatland/ch6_0.htm), the molecular mechanisms controlling this process have not been fully elucidated. In pigs, primary fiber or myotube formation begins at approximately 40 days of gestation and primary fibers determine the future location and size of the muscle tissue. Secondary fiber formation begins at 50 to 60 days of gestation when multinucleated myoblasts align and fuse to form secondary fibers at the surface of existing primary fibers. The formation of primary and secondary fibers is essential for muscle growth because the number of muscle fibers is determined during fetal development (Swatland and Cassens, 1973). Postnatal hypertrophy then increases the length and diameter of these fibers. Thus, the number and size of the fibers determines the amount of muscle an animal has at market weight (for review see Novakofski and McCusker, 1993).

Numerous gene products, including growth factors, binding proteins, receptors, extracellular matrix components, enzymes and transcription factors participate in the coordinated regulation of the myogenic program. Yet relatively little is known about complex gene expression patterns in skeletal muscle and, to date, only a small number of genes have been examined. Muscle specification and differentiation appear to be controlled by a family of basic helix-loop-helix myogenic regulatory factors (MRFs; MyoD, Myf-5, myogenin and Myf-6/MRF4) that transactivate many muscle-specific promoters (for review see Sabourin and Rudnicki, 2000). In addition, a variety of hormones and growth factors are capable of regulating myoblast proliferation and differentiation (for review see Hawke and Garry, 2001). The stimulatory action of insulin-like growth factors-I and -II (IGF) on proliferation and differentiation, mitogenic effects of fibroblast growth factor (FGF), and inhibitory action of transforming growth factor-beta (TGF-β) on muscle cells are well documented (for review see Florini et al., 1991; Florini et al., 1996). Also, hepatocyte growth factor (HGF) has been shown to activate myogenic satellite cells and simulate satellite cell proliferation (Miller et al., 2000), and platelet-derived growth factor (PDGF) stimulates satellite cell proliferation (for review see Yablonka-Reuveni, 1995), whereas myostatin, a member of the TGF-β family, inhibits myoblast proliferation (Thomas et al., 2000).

In order to gain a more complete understanding of the mechanisms controlling myogenesis, a thorough knowledge of the gene products that direct muscle development during different stages of growth is needed. In porcine

skeletal muscle, developmental expression of a few select genes, such as myostatin (Ji et al., 1998) and the IGFs (Gerrard et al., 1998), have been examined. However, we understand little about how complex patterns of gene expression ultimately affect muscle development and growth. Global gene expression analyses can be used to identify key genes involved in this process. Several techniques have been developed for simultaneously evaluating expression patterns of numerous genes, including differential display reverse transcription PCR (DDRT-PCR), cDNA microarrays and oligonucleotide microarrays. All of these techniques allow large-scale gene expression analyses for transcriptional profiling of complex processes such as skeletal muscle development, and each technique offers various benefits and limitations. We have applied all three techniques to examine gene expression differences in pig fetal and postnatal skeletal muscle tissue.

Numerous recent studies involving applications of microarray technologies to evaluate gene expression patterns in skeletal muscle have been reported including several developmental studies evaluating muscle cell differentiation *in vitro* (Kuninger et al., 2004; Moran et al., 2002; Tomczak et al., 2004). To date, few reports have considered normal developmental patterns of fetal and postnatal skeletal muscle or used agricultural species in such analyses. Using a cDNA nylon macroarray, Zhao et al. (2003) identified 28 genes that were differentially expressed between pig skeletal muscle samples at 75 days of gestation and 1 week of age postnatal. Bai et al. (2003) constructed a pig skeletal muscle cDNA microarray and used it in an initial study to examine

differential expression of genes between the psoas (a red muscle) and the longissimus dorsi (a white muscle) of a 22-week-old pig. Among their results, they identified 22 sarcomeric/structural genes that were more highly expressed in the longissimus dorsi. Subsequently, this group used their cDNA microarray to examine nutritional effects on skeletal muscle gene expression (da Costa et al... 2004). Similarly, Reverter et al. (2003) used a bovine cDNA microarray to evaluate nutritional effects on skeletal muscle gene expression in cattle. Our experimental strategy is unique from these previous studies because we have used various techniques to examine characteristics of normal growth and development of pig skeletal muscle tissue during specific developmental stages. Although Moody et al. (2002) reported successful cross-species hybridization of pig skeletal muscle cDNA to human nylon microarrays, the availability of large numbers of porcine ESTs has now made it feasible to develop pig-specific microarray resources including oligonucleotide microarrays. Therefore, our experiment utilized DDRT-PCR, a pig skeletal muscle cDNA microarray and a pig 70-mer oligonucleotide microarray to examine expression patterns of genes in hind limb skeletal muscle tissue of pigs at 60 days of gestation and 7 weeks of age. Our results provide new insights regarding gene expression changes during fetal and postnatal skeletal muscle development that can be used to enhance pig production efficiency, as well as for comparative developmental biology using the pig as a model for other mammalian species.

Materials and Methods

Tissue samples and RNA isolation. Skeletal muscle tissue samples were obtained from the hind limbs of pig fetuses at 60 days of gestation, fetuses at 105 days of gestation and postnatal pigs at 7 weeks of age. To obtain fetal samples, Yorkshire X Landrace crossbred gilts bred to the same boar (n = 3 per gestational stage) were slaughtered in a federally inspected abattoir and fetuses were removed for tissue collection. Three additional gilts were allowed to carry their litters to term (114 days) and one pig from each litter was euthanized at 7 weeks of age for tissue collection. Samples were immediately flash frozen in liquid nitrogen and stored at -80°C. Total RNA from 1.0 g of tissue was extracted using TRIzol reagent (Invitrogen Corp., Carlsbad, CA) according to the manufacturer's instructions. For fetal samples, tissues from several pigs within each litter were pooled to provide a sufficient sample size, whereas postnatal samples were obtained from individual animals. RNA concentration and quality were determined with an RNA 6000 Pico LabChip® kit using an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Palo Alto, CA) and RNA quality was also assessed by agarose gel electrophoresis.

Northern blot analyses of myogenin and myogenic factor 6. Northern blot analyses were performed to evaluate mRNA abundance of myogenin (MYOG) and myogenic factor 6 (MYF6). Total RNA (30 µg) from each of the 60 days of gestation, 105 d of gestation and 7 weeks of age samples was electrophoresed in 1.2% agarose formaldehyde gels, transferred to nylon membranes (Schleicher and Schuell, Inc., Keene, NH) and UV cross-linked. Probes were generated by

[α-³²P]dCTP labeling of cDNAs specific for rat MYOG (gift of W. Wright, The University of Texas Southwestern Medical Center, Dallas TX) or rat MYF6 (gift of S. Konieczny, Purdue University, West Lafayette, IN) using the Multiprime DNA Labeling System (Amersham Pharmacia Biotech, Piscataway, NJ). An 18S rRNA probe was used to adjust for equality of RNA loading. Membranes were prehybridized at 65°C for 2 h with 10 ml of hybridization solution (6X SSC, 5X Denhardt's solution, 0.5% SDS, 0.1 mg/ml sheared salmon sperm DNA). Fresh hybridization solution and denatured probe were added and incubated at 65°C for 18 h. Blots were rinsed and exposed to Kodak X-Omat AR film at -80°C. Signal intensities from autoradiographs were determined by scanning laser densitometry and relative intensities of RNA bands were analyzed by analysis of covariance using a model containing the effect of age along with the 18S rRNA values as covariables.

Differential display reverse transcription-PCR. DDRT-PCR experiments were performed as previously described by our laboratory (Wesolowski et al., 2004) using modifications of published procedures (Liang and Pardee, 1992). A total of eight oligonucleotide primer pairs (3 anchor primers each paired with 1-4 arbitrary primers) were used corresponding to screening of ~5% of all mRNA species present. Following amplification and electrophoresis of the nine RNA samples as described (Wesolowski et al., 2004), fragments that amplified in all three samples of at least one developmental age and were faint or undetectable in the remaining age(s) were excised from the gels, reamplified, cloned and sequenced. Clone sequence identities were determined using the basic local

alignment search tool (BLAST) software and the nonredundant database of GenBank.

cDNA microarray. A normalized porcine skeletal muscle (PoSM) cDNA library was constructed at the Michigan State University Center for Animal Functional Genomics (CAFG) from hind limb skeletal muscle tissue collected at 45 days of gestation, 90 days of gestation, birth, 7 weeks of age and 1 year of age (Yao et al., 2002). A cDNA microarray was constructed in the MSU CAFG using 768 randomly selected clones from the PoSM library. All clones were spotted in triplicate and arrayed in 48 8X8 patches using a Flexys® G3 Robotic Workstation (Genomic Solutions, Inc., Ann Arbor, MI). Quality controls included on the array were 336 positive hybridization controls (bacteriophage Lambda Q gene), 384 blank spots and 48 negatives (10% DMSO). The cDNA microarray screening included only the 60 day gestation and 7 week postnatal samples. Each of the 60 day samples was randomly paired with a 7 week sample. Four cDNA microarray slides were screened. The 60 day gestation samples were labeled with Cy5 and the 7 week postnatal samples were labeled with Cy3 on three of the slides and, for the fourth slide, the dyes were swapped so that the 60 day sample was labeled with Cy3 and the 7 week sample was labeled with Cy5. After analysis, clones that were identified to be differentially expressed were sequenced to determine their identities.

Oligonucleotide microarray. Oligonucleotide microarrays used for this study consisted of 13,297 70-mer oligos (Pig Array-Ready Oligo Set v. 1.0 and Pig Oligo Extension Set v. 1.0, Qiagen, Inc., Valencia, CA) each spotted once on

a single slide. Slides were printed at the University of Minnesota Advanced Genetic Analysis Center and were distributed through the U.S. Pig Genome Coordination Program. Controls included 76 Arabidopsis thaliana gene spots, 17 beta tubulin spots, 17 glyceraldehyde-3-phosphate dehydrogenase spots, 85 heat shock protein gene spots, 69 ribosomal protein gene spots, 112 randomly generated negative control spots and 470 blanks. Like the cDNA microarray, the oligonucleotide microarray was screened with only the 60 day gestation and 7 week postnatal samples. Six oligonucleotide microarray slides were screened. All samples were labeled with both Cy3 and Cy5, and each 60 day gestation sample was randomly paired with two 7 week postnatal samples.

cDNA synthesis, hybridization and scanning. For each sample, 8 μg of total RNA was reverse transcribed with an oligo dt₁8 primer using the Superscript™ Indirect cDNA Labeling System (Invitrogen) according to the manufacturer's instructions. After first-strand synthesis and purification, the cDNAs incorporated amino-modified dUTPs and were labeled with *N*-hydroxysuccinate (NHS) ester Cy3 or Cy5 dyes (Amersham Biosciences, Piscataway, NJ). The labeled cDNAs were purified, combined and concentrated to 10 μl using a microcon spin column (Millipore, Bedford, MA). The concentrated probe was combined with 100 μl of Slide Hyb#3 solution (Ambion, Inc. Austin, TX) and denatured at 70°C for 5 min. Microarray hybridizations took place in sealed hybridization chambers in a GeneTAC™ Hybridization Station (Genomic Solutions) for 18 hours using step-down temperatures ranging from 65°C to 42°C. Following hybridization, the slides were washed twice with

medium stringency buffer and once with high stringency buffer (Genomic Solutions). The slides were rinsed in 2XSSC and deionized water and were dried using centrifugation at 1000xg for 2 min. Fluorescent images were detected by scanning on a GeneTAC™ LS IV Biochip Analyzer (Genomic Solutions). Fluorescence intensity data were collected and background fluorescence was subtracted using the GeneTAC™ Integrator and Analyzer software (Genomic Solutions). Total intensity values for each dye channel were stored as comma-separated values data files and exported into Microsoft Excel spreadsheets for subsequent analysis.

Normalization and statistical analysis of microarray data. The fluorescence intensity data obtained from both microarray platforms was log₂ transformed and LOESS normalized for dye intensities (Yang et al., 2002). For the oligonucleotide microarray, the data for one patch were deleted from the datasets due to a printing error on the slides. This resulted in the loss of oligonucleotides for 292 genes. Statistical analysis included a two-stage mixed model (Wolfinger et al., 2001) using the PROC MIXED procedure of SAS (SAS Inst. Inc., Cary, NC). The first stage used a global normalization with a fixed effect of dye and random effects of array, animal, patch within array and dye*patch(array). The second stage gene specific analysis included fixed effects of age, dye and age*dye and random effects of array and animal within age. False discovery rate (FDR) was calculated as an adjustment for multiple comparison testing (Benjamini et al., 1995) using the SAS procedure PROC

mulitest (SAS Inst. Inc.). In addition, q values for FDR testing were calculated as described by Storey and Tibshirani (2003).

Relative real-time reverse transcription PCR. Relative real-time RT-PCR was used to validate microarray results and examine specific expression patterns of additional related genes. Assays were developed using the nine RNA samples to validate differential expression of six genes observed to be significantly differentially expressed by DDRT-PCR, cDNA microarray analysis and/or oligonucleotide microarray analysis. These genes were calponin 3 (CNN3), fibronectin 1 (FN1), titin (TTN), titin-cap (TCAP), translationally controlled tumor protein (TPT1) and slow troponin C (TNNC1). Assays were also developed for two additional genes that are functionally related to one or more of these genes, titin immunoglobulin domain protein (TTID; also referred to as myotilin) and paxillin (PXN). Primers were designed using Primer Express software v 2.0 (Applied Biosystems, Foster City, CA) and are shown in Table 1. All assays were performed using an ABI Prism 7000 Sequence Detection System (Applied Biosystems) in the MSU CAFG.

To identify an appropriate control gene for each assay, amplification efficiencies (Livak and Schmittgen, 2001) were determined by performing a SYBR green reaction (as described below) using a serial dilution (4 dilutions) from one of the nine cDNA samples. The cycles to threshold (Ct) were averaged for each dilution for the control and target gene. The averages were subtracted to obtain the delta Ct, after which the log of input of each dilution was plotted against the delta Ct to determine the slope. Efficiencies were considered

acceptable when slopes were < |0.1|. Following the amplification efficiency tests, it was determined that hypoxanthine phosphoribosyltransferase (HPRT) was an appropriate normalizing gene for CNN3, FN1, PAX, TCAP and TTID. HPRT was not suitable for TTN, TPT1 and TNNC1 so the 18S ribosomal RNA gene was used as a control for these genes. The nine samples were assayed in duplicate using SYBR Green PCR Master Mix (Applied Biosystems). Each reaction contained: 1X SYBR Green mix, 300nM of each primer pair, 50ng cDNA (except TTID 200ng) and water for a final volume of 25 μ l. Fold changes were calculated using the $2^{-\Delta\Delta Ct}$ method as described by Livak and Schmittgen (2001). The Δ Ct was computed as explained above and the $\Delta\Delta$ Ct was determined using the average of the 60 d samples as the calibrator. Significance was determined by analyzing Ct values using the PROC MiXED procedure of SAS with a model containing the fixed effect of age, a random effect of pig nested within age and HPRT or 18S Ct values as covariables.

Results

mRNA abundance of myogenin and myogenic factor 6. Results of northern blot analyses for myogenin (MYOG) and myogenic factor 6 (MYF6) are shown in Fig. 1. Hybridization of northern blots with MYOG and MYF6 probes revealed single transcripts of 1.8-kb and 1.6-kb, respectively (data not shown). Abundance of MYOG mRNA was highest at 60 days of gestation and decreased significantly by 105 days of gestation. Abundance of MYF6 mRNA exhibited a pattern opposite that of MYOG such that MYF6 expression was similar at 60 and 105 days of gestation, but increased significantly by 7 weeks of age.

Identification of differentially expressed genes by DDRT-PCR. DDRT-PCR was used to evaluate differences in mRNA transcript abundance in pig skeletal muscle at 60 days of gestation, 105 days of gestation and 7 weeks of age postnatal. Nineteen putatively differentially expressed fragments were excised from the DDRT-PCR gels, reamplified and cloned. Sequencing of these fragments revealed three clones corresponding to TTN and two clones corresponding to cytochrome c oxidase III (MTCO3). Thus, 16 unique genes were identified (Table 2). To minimize the identification of false positives, three samples per age were compared. Only bands that displayed consistent patterns within an age group and differential expression patterns between at least one of the other groups were selected.

analysis. A total of 38 clones were found to be differentially expressed between skeletal muscle samples at 60 days of gestation and 7 weeks of age (fold change ≥ 1.5 and P ≤ 0.06; Table 3). In total, 76 clones were identified to be significantly different at P ≤ 0.06. For this microarray, we would expect approximately 46 significant differences to occur by chance. Thus, it is likely that some of the observed differences are true differences. In addition to statistical significance, we have also considered only clones with a fold change difference ≥ 1.5. These 38 clones corresponded to 35 genes because multiple clones were significant for two genes (two clones for CDC-like kinase 1 and three clones for cytochrome b). Thirteen genes were more highly expressed at 60 days of gestation and 22 were more highly expressed at 7 wks of age. Approximately 40% of these genes have

unknown identities and approximately 11% are mitochondrial genes. The remainder fall into various functional categories including approximately 14% involved in muscle contraction and 14% that encode enzymes. Differentially expressed genes involved in muscle contraction were more highly expressed at 7 weeks of age and included alpha actin, titin, tropomyosin 4, troponin C slow and troponin C fast.

Identification of differentially expressed genes by oligonucleotide microarray analysis. Mixed model analysis of the oligonucleotide microarrays revealed a total of 193 oligonucleotides with significantly different signal intensities between the 60 day fetal and 7 week postnatal samples (fold change ≥ 1.5 and P ≤ 0.05: Table 4). Sixty-seven of these were significantly different at P ≤ 0.01. In total, 1135 oligonucleotides were identified to be significantly different at P < 0.05. For this microarray, we would expect approximately 650 significant differences to occur by chance. Thus, it is likely that some of the observed differences are true differences. In addition to statistical significance, we have also considered only oligonucleotides with a fold change difference > 1.5. The FDR was calculated, but there were no genes that had P < 0.1, although 5 genes were found at P = 0.12. The q values were also calculated as recommended by Storey and Tibshirani (2003) and 5 genes were identified at q = 0.12 with only one of these exhibiting a fold change ≥ 1.5. Due to the small sample sizes examined in this study, these adjustments may be too strict for this dataset.

Of the 193 significantly different oligonucleotides, 109 were observed to be more highly expressed at 7 weeks of age, while the remaining 84 were more

highly expressed at 60 days of gestation. The 193 oligonucleotides corresponded to 163 unique genes (89 more highly expressed at 7 weeks of age and 74 more highly expressed at 60 days of gestation). Two genes, glyceraldehyde-3phosphate dehydrogenase (GAPD) and ribosomal protein S18 (RPS18) that were spotted in multiple locations on the microarray were found to be significantly different. Fourteen spots containing an oligonucleotide specific for GAPD were more highly expressed at 7 weeks of age (range of fold changes 1.71-3.02, P≤ 0.04). Similarly, 11 spots corresponding to an oligonucleotide specific for RPS18 were more highly expressed at 60 days of gestation (range of fold changes 1.56-1.97, $P \le 0.03$). Seven genes observed to be more highly expressed in the 7 week samples were found to have two significant oligonucleotides corresponding to each gene present on the microarray. One of these was a second oligonucleotide for GAPD and the others included MTCO3, MYOZ1, PDLIM7, PYGM, RPS4X and TTN. While the presence of multiple oligonucleotides for the same gene was unexpected, the fact that two independent oligonucleotides for the same gene yielded significant results adds confidence that these genes were truly differentially expressed. Approximately 42% of the differentially expressed genes have unknown identities and five genes more highly expressed in the 7 week samples are mitochondrial genes. The remainder fall into various functional categories including approximately 9% involved in muscle contraction and 19% that encode enzymes. Most differentially expressed genes involved in muscle contraction were more highly expressed at 7 weeks of age, although

myosin heavy polypeptide 3 (MYH3) and myosin light polypeptide 4 (MYL4) were more highly expressed in the 60 day fetal samples.

Confirmation of differential expression. Six genes were selected from the DDRT-PCR and microarray experiments based on their functional roles in skeletal muscle structure and contraction for validation using relative real-time RT-PCR. Two additional genes that were functionally related to the differentially expressed genes were also selected for evaluation. Although the microarray experiments did not include the samples obtained from pigs at 105 days of gestation, these samples were included in the relative real-time RT PCR analyses in order to reveal additional information regarding the developmental expression patterns of the selected genes.

Assays were developed for four genes involved in muscle contraction (Fig. 2). Titin (TTN) was observed to be differentially expressed on both microarray platforms and also several TTN clones were obtained in the DDRT-PCR experiment. Slow troponin C (TNNC1) was observed to be differentially expressed on both microarray platforms and titin-cap (TCAP) was observed to be differentially expressed on the oligonucleotide microarray. Titin immunoglobulin domain protein (TTID) was also evaluated. Statistical analyses of the microarray data did not reveal TTID to be significantly differentially expressed at the cutoff thresholds of a fold change \geq 1.5 and P \leq 0.05. However, on the oligonucleotide microarray, TTID exhibited a 1.27-fold higher expression in the 7 week postnatal samples at P = 0.06. In addition, TTID is functionally related to TTN and TCAP in that they are all proteins of the skeletal muscle Z-disc so we chose to further

evaluate TTID. Relative real-time RT-PCR analyses confirmed the microarray and DDRT-PCR results for TTN and TCAP and also revealed that TTID expression was significantly increased in the 7 week samples. Evaluation of the 105 day fetal samples indicated that TTID expression was intermediate between the 60 day fetal and 7 week postnatal samples, whereas TTN expression at 105 days was similar to the 60 day samples and TCAP expression at 105 days was similar to the 7 week samples. Thus, even though the products of these genes are functionally related, inclusion of the 105 day gestation samples revealed subtle differences in the expression patterns for these genes. Expression of TNNC1 appeared to be higher in the 7 week postnatal samples (105 day vs. 7 week P = 0.06). However, large sample-to-sample variation in TNNC1 mRNA abundance for the 7 week samples limits this interpretation.

Assays were developed for three genes involved in cytoskeletal structure (Fig. 3). Calponin 3 (CNN3) and fibronectin 1 (FN1) were observed by DDRT-PCR to be more highly expressed in the 60 day fetal samples and their expression patterns were confirmed by relative real-time RT-PCR. Paxillin (PXN) was also evaluated because of its functional relationship to FN1. Unlike FN1, PXN mRNA abundance was not found to be different between the 60 day fetal and 7 week postnatal samples, but PXN expression in the 105 day fetal samples was significantly higher than the 60 day and 7 week samples.

A final gene that was selected for validation was translationally controlled tumor protein 1 (TPT1). Abundance of TPT1 mRNA was significantly higher in the 7 week postnatal samples confirming the cDNA microarray results.

Expression of TPT1 in the 105 day samples was found to be intermediate between the 60 day fetal and 7 week postnatal samples.

Discussion

We have used three different approaches to examine transcriptional profiles in a set of samples obtained from hind limb skeletal muscle tissue of pigs at 60 days of gestation, 105 days of gestation and 7 weeks of age postnatal. The most comprehensive technique that we used was screening of a 13,000 member 70-mer pig oligonucleotide microarray. In addition, we used a relatively small cDNA microarray that contained 768 cDNAs derived from a pig skeletal muscle specific cDNA library (Yao et al., 2002) and we conducted a DDRT-PCR experiment with a limited number of primer combinations. While comparisons between these platforms are limited by the small size of the cDNA microarray and DDRT-PCR experiments, we were able to identify some of the same genes using two or more of the techniques.

All of the techniques were able to reveal genes with relatively large differences in mRNA abundance, but they were less robust for identifying genes with more subtle differences in mRNA abundance. Three genes were revealed by all three techniques to be more highly expressed at 7 weeks of age. Two of these were the mitochondrial genes MTCO3 and MTND4, indicating differences in energy metabolism between the 60 day fetal and 7 week postnatal samples. The sarcomeric protein TTN was also discovered to have higher mRNA abundance at 7 weeks of age by all three techniques. Three additional genes were revealed by both of the microarray platforms (TNNC1, TNNC2 and GAPD)

and two genes were revealed by both DDRT-PCR and the oligonucleotide microarray (COL1A2 and MYH4).

Only a few reports in the literature have considered comparisons of various microarray platforms and most of these have involved comparisons of cDNA or long oligonucleotide microarrays with Affymetrix GeneChip arrays. Wang et al. (2003) compared 70-mer oligonucleotides and cDNAs for the same genes printed on the same glass slide and they reported a correlation coefficient of 0.80 with approximately 8% of the genes examined showing discordant results. Park et al. (2004) systematically compared an Affymetrix array, a custom cDNA array and custom oligonucleotide arrays. They concluded that in general Affymetrix and cDNA arrays agreed fairly well, but that the long oligonucleotide arrays were less concordant. Also, they noted that highly expressed genes gave fairly similar results on all of the platforms, but lowly expressed genes were much more variable. Our study using both a 70-mer oligonucleotide microarray and a cDNA microarray was not designed as a systematic comparison of the two platforms as were the Wang et al. (2003) and Park et al. (2004) studies, but our results appear to agree with these studies in that we were able to identify differences in some highly expressed genes using both platforms.

While several reported studies have used DDRT-PCR to identify differentially expressed genes in skeletal muscle samples, to our knowledge no previous studies have been reported that examined the same samples with both DDRT-PCR and microarray analyses. Other laboratories have used DDRT-PCR to successfully identify differentially expressed genes involved in skeletal muscle

development (Cho et al., 2000; Janzen et al., 2000; Levin et al., 2001, McDaneld et al., 2004) and we have used DDRT-PCR to identify differentially expressed genes in developing pig fetuses (Wesoloski et al., 2004). The disadvantage of DDRT-PCR vs. microarray approaches is clearly that it is a much more time consuming technique to perform. However, DDRT-PCR does have some advantages. Gene discovery with DDRT-PCR does not require prior knowledge of gene or EST sequences as is needed for construction of microarrays (Stein and Liang, 2002). In addition, DDRT-PCR allows direct comparisons to be made between more than two samples at a time and it may be more sensitive for detection of relatively low abundance transcripts. Even with a limited number of primer combinations, we were able to identify 16 putatively differentially expressed genes, five of which were also revealed by one or both of the microarray platforms.

Zhao et al. (2003) used a cDNA nylon macroarray containing 327 ESTs to examine differential gene expression in pig fetal and postnatal skeletal muscle. Twenty-eight genes were identified in this study to be differentially expressed between 75 day fetal and 1 week postnatal skeletal muscle samples. The present study extends these observations to include evaluation of higher density microarrays and additional developmental ages of pigs. The Zhao et al. (2003) study observed differential expression for several ribosomal protein genes and we also observed differences in many ribosomal protein genes pointing toward the key role of protein synthesis mechanisms in muscle development. Zhao et al. (2003) also observed higher expression of GAPD in the 1 week postnatal

samples than in the 75 day fetal samples, which agrees with our results from both microarray platforms indicating that GAPD mRNA abundance was greater in the 7 week postnatal samples than in the 60 day fetal samples. Identification of an appropriate housekeeping gene for use as a control in gene expression analyses such as real time RT-PCR is critical and GAPD is frequently used for this purpose. We have previously observed that GAPD is not a suitable control for evaluating developing skeletal muscle tissue (unpublished data), and our results as well as those of Zhao et al. (2003) support this observation.

We initially evaluated our samples by examining mRNA abundance of two myogenic regulatory factor (MRF) genes that we predicted to be differentially expressed in developing pig skeletal muscle. The MRFs are members of the basic helix-loop-helix family of transcription factors and their expression is specific to skeletal muscle (for review see Sabourin and Rudnicki, 2000). In our study, relative abundance of MYOG mRNA was highest in pig skeletal muscle at 60 days of gestation, whereas abundance of MYF6 mRNA was highest at 7 weeks of age. Our results agree with reports of developmental expression patterns for these genes in mice and rats (Bober et al., 1991; Hinterberger et al., 1991) providing evidence that expression of these genes is developmentally regulated.

We selected six genes from the DDRT-PCR and microarray analyses and two additional genes for further evaluation using relative real time RT-PCR. Of the four genes that had been identified by microarray analyses (TTN and TNNC1 identified by both platforms, TCAP identified only on the oligo array and TPT1

identified only on the cDNA array), three were validated using relative real-time RT-PCR. The results indicated that the magnitude of the fold changes observed with the real time RT-PCR assays was much greater than had been observed with the microarrays, pointing to the greater sensitivity of real time RT-PCR for detecting differences in mRNA abundance. This appears to be a common observation when genes identified by microarray analyses are confirmed by real time RT-PCR (Park et al., 2004). The only gene whose expression pattern was not confirmed was TNNC1. The real time RT-PCR results for this gene indicated a tendency toward higher expression in the 7 week postnatal samples, but large sample-to-sample variation among the 7 week samples limited the interpretation of the results. Northern blot analysis of human fetal and adult TNNC1 revealed a weak signal in the fetal tissue and abundant signal in the adult tissue (Gahlmann et al., 1988) which agrees with the microarray results for pig TNNC1 in the present study. Two genes that were observed to be differentially expressed only by DDRT-PCR (CNN3 and FN1) were confirmed by real time RT-PCR analyses and two additional genes (TTID and PXN) selected for their functional relationship to the other genes were also confirmed to be differentially expressed.

Clearly sarcomeric proteins are essential for muscle function and the Z-disc is an important contractile component (for review see Faulkner et al., 2001). Several genes whose products are a part of the Z-disc structure were observed to be more highly expressed in the 7 week postnatal samples: ACTA1, CAPZA2, FLNC, PDLIM3, TTN, TCAP and TTID. These proteins are all linked together through a complex network of interactions. TCAP interacts with TTN (Gregorio et

al., 1998), CAPZA2 is an F-actin Ca²⁺ independent capping protein and PDLIM3 interacts with α-actinin 2 (Klaavuniemi et al., 2004). TTID is a thin filament associated protein that interacts with α-actin (Salmikangas et al., 2003) and its expression has been reported to increase throughout skeletal muscle development in mice (Mologni et al., 2001), which agrees with our results for developing pig skeletal muscle. Several contractile protein genes were also identified to be differentially expressed including MYH4, which exhibited higher mRNA abundance in the 7 week postnatal samples in both the DDRT-PCR experiment and the oligonucleotide microarray. In contrast, MYH3 and MYL4 were more highly expressed in the 60 day gestation samples, which is supported by the literature indicating these are embryonic genes (Ontell et al., 1993).

FHL1 from the four and half LIM family is reported to be expressed in skeletal muscle and to have elevated mRNA expression in postnatal growth (Morgan and Madgwick, 1995), which is in agreement with our oligonucleotide microarray results for FHL1. PYGM is a muscle glycogen phosphorylase that was found to be more highly expressed in the 7 week postnatal samples on the oligonucleotide array. This gene also appeared to be more highly expressed in the 7 week samples on the cDNA microarray (P = 0.08), however, the fluorescence intensity of the 60 day gestation samples was below background levels, which likely affected the analysis. This expression pattern agrees with results reported for humans in which fetal PYGM mRNA is not seen until 80-100 days of gestation (Omenn and Cheung, 1974; Miranda et al., 1985). PXN is a cytoskeletal protein involved in actin membrane attachment sites, cell adhesion,

focal adhesion and regulating the response to fibronectin (Hagel et al., 2002), and our results provide information regarding the expression patterns of PXN and FN1 in developing pig skeletal muscle.

Despite its name, TPT1 has many roles in different tissue types. It is regulated by growth signals, developmental factors and stress conditions, and it is involved in cell growth, apoptosis and microtubule stabilization (Bommer et al., 2004). Hu et al. (2003) used northern blot analysis to show that TPT1 is expressed mainly in heart and skeletal muscle. In addition, Bryne et al. (2005) found TPT1 to be more highly expressed in skeletal muscle of diet restricted Brahman steers. Our results demonstrating increased mRNA abundance during pig skeletal muscle development provide additional information regarding expression of this gene.

Microarray technologies have been integrated into many scientific disciplines and the increasing availability of genomics resources for various species will continue to increase the effectiveness of these approaches for deciphering complex gene expression patterns and regulatory mechanisms. This study reports the application of three approaches for identifying differentially expressed genes in pig fetal and postnatal skeletal muscle. In total, over 200 genes were identified and expression patterns for eight genes were evaluated by relative real time RT-PCR. Further elucidation of the roles of these genes, including those genes not previously known to be expressed in skeletal muscle and the genes of unknown function is of future interest. These results provide new information regarding developmental patterns of gene expression in skeletal

muscle and can be used to increase our understanding of normal growth processes and the consequences of molecular disorders in the pig and other mammalian species.

Acknowledgements

We thank P. Coussens, S. Sipkovsky, S. Suchyta, X. Ren and J. Yao in the Michigan State University Center for Functional Animal Genomics (CAFG) for technical assistance. We are grateful to R. Tempelman, R. Bates and P. Saama for help with statistical analysis. We also thank M. Rothschild, U.S. Swine Genome Coordinator, for distribution of the DDRT-PCR primers and the oligonucleotide microarrays. This work was supported by USDA NRI Award 03-35206-13922.

Literature Cited

Bai Q, McGillivray C, da Costa N, Dornan S, Evans G, Stear MJ and Chang KC. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. *BMC Genomics* 4: 8, 2003.

Benjamini Y and Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Stat Soc Ser B Methodological* 57: 289-300. 1995.

Bober E, Lyons GE, Braun T, Cossu G, Buckingham M and Arnold HH. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. *J Cell Biol* 113: 1255-1265, 1991.

Bommer UA and Thiele BJ. The translationally controlled tumour protein (TCTP). *Int J Biochem Cell Biol* 36: 379-385, 2004.

Byrne KA, Wang YH, Lehnert SA, Harper GS, McWilliam SM, Bruce HL and Reverter AJ. Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction *Anim Sci* 83:1-12, 2005.

Cho WJ, Kim EJ, Lee SJ, Kim HD, Shin HJ and Lim WK. Involvement of SPARC in in vitro differentiation of skeletal myoblasts. *Biochem Biophys Res Commun* 271: 630-634, 2000.

da Costa N, McGillivray C, Bai Q, Wood JD, Evans G and Chang KC. Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles. *J Nutr* 134: 2191-2199, 2004.

Faulkner G, Lanfranchi G and Valle G. Telethonin and other new proteins of the Z-disc of skeletal muscle. *IUBMB Life* 51:275-282, 2001.

Florini JR, Ewton DZ and Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. *Endocr Rev* 17: 481-517, 1996.

Florini JR, Ewton DZ and Magri KA. Hormones, growth factors, and myogenic differentiation. *Annu Rev Physiol* 53: 201-216, 1991.

Gahlmann R, Wade R, Gunning P and Kedes L. Differential expression of slow and fast skeletal muscle troponin C. Slow skeletal muscle troponin C is expressed in human fibroblasts. *J Mol Biol* 201:379-391, 1988.

Gerrard DE, Okamura CS, Ranalletta MA and Grant AL. Developmental expression and location of IGF-I and IGF-II mRNA and protein in skeletal muscle. *J Anim Sci* 76: 1004-1011, 1998.

- Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H and Labeit S. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. *J Cell Biol* 143: 1013-1027, 1998.
- Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A and Thomas SM. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. *Mol Cell Biol* 22: 901-915, 2002.
- **Hawke TJ and Garry DJ.** Myogenic satellite cells: physiology to molecular biology. *J Appl Physiol* 91: 534-551, 2001.
- Hinterberger TJ, Sassoon DA, Rhodes SJ and Konieczny SF. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. *Dev Biol* 147: 144-156, 1991.
- Hu QD, Lu H, Huo K, Ying K, Li J, Xie Y, Mao Y and Li YY. A human homolog of the yeast gene encoding tRNA 2'-phosphotransferase: cloning, characterization and complementation analysis. *Cell Mol Life Sci* 60: 1725-1732, 2003.
- **Janzen MA, Kuhlers DL, Jungst SB and Louis CF.** ARPP-16 mRNA is upregulated in the longissimus muscle of pigs possessing an elevated growth rate. *J Anim Sci* 78: 1475-1484, 2000.
- Ji S, Losinski RL, Cornelius SG, Frank GR, Willis GM, Gerrard DE, Depreux FF and Spurlock ME. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. *Am J Physiol* 275: R1265-R1273, 1998.
- **Klaavuniemi T, Kelloniemi A and Ylanne J.** The ZASP-like motif in actininassociated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line. *J Biol Chem* 279: 26402-26410, 2004.
- Kuninger D, Kuzmickas R, Peng B, Pintar JE and Rotwein P. Gene discovery by microarray: identification of novel genes induced during growth factor-mediated muscle cell survival and differentiation. *Genomics* 84: 876-889, 2004.
- Levin JM, El Andalousi RA, Dainat J, Reyne Y and Bacou F. SFRP2 expression in rabbit myogenic progenitor cells and in adult skeletal muscles. *Muscle Res Cell Motil* 22: 361-369, 2001.
- **Liang P and Pardee AB.** Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. *Science* 257: 967-971, 1992.

Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25: 402-408, 2001.

McDaneld TG, Hancock DL and Moody DE. Altered mRNA abundance of ASB15 and four other genes in skeletal muscle following administration of beta-adrenergic receptor agonists. *Physiol Genomics* 16: 275-283, 2004.

Miller KJ, Thaloor D, Matteson S and Pavlath GK. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. *Am J Physiol Cell Physiol* 278: C174-C181, 2000.

Miranda AF, Mongini T and DiMauro S. Hereditary metabolic myopathies. *Adv Exp Med Biol* 182: 25-42, 1985.

Mologni L, Salmikangas P, Fougerousse F, Beckmann JS and Carpen O. Developmental expression of myotilin, a gene mutated in limb-girdle muscular dystrophy type 1A. *Mech Dev* 103: 121-125, 2001.

Moody DE, Zou Z and McIntyre L. Cross-species hybridisation of pig RNA to human nylon microarrays. *BMC Genomics* 3: 27, 2002.

Moran JL, Li Y, Hill AA, Mounts WM and Miller CP. Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. *Physiol Genomics* 10: 103-111, 2002.

Morgan MJ, Madgwick AJ, Charleston B, Pell JM and Loughna PT. The developmental regulation of a novel muscle LIM-protein. *Biochem Biophys Res Commun* 212: 840-846, 1995.

Novakofski J and McCusker RH. Physiology and principles of muscle growth. In: *Growth of the Pig*, edited by Hollis FR. Wallingford, UK: Wallingford CAB International, 1993.

Omenn GS and Cheung SC. Phosphoglycerate mutase isozyme marker for tissue differentiation in man. *Am J Hum Genet* 26: 393-399, 1974.

Ontell M, Ontell MP, Sopper MM, Mallonga R, Lyons G and Buckingham M. Contractile protein gene expression in primary myotubes of embryonic mouse hindlimb muscles. *Development* 17: 1435-1444, 1993.

Park PJ, Cao YA, Lee SY, Kim JW, Chang MS, Hart R, Choi S. Current issues for DNA microarrays: platform comparison, double linear amplification, and universal RNA reference. *Biotechnol* 112: 225-245, 2004.

Reverter A, Byrne KA, Brucet HL, Wang YH, Dalrymple BP and Lehnert SA. A mixture model-based cluster analysis of DNA microarray gene expression data on Brahman and Brahman composite steers fed high-, medium-, and low-quality diets. *J Anim Sci* 81: 1900-1910, 2003.

Sabourin LA and Rudnicki MA. The molecular regulation of myogenesis. *Clin. Genetics* 57: 16-25, 2000.

Salmikangas P, van der Ven PF, Lalowski M, Taivainen A, Zhao F, Suila H, Schroder R, Lappalainen P, Furst DO and Carpen O. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. *Hum Mol Genet* 12: 189-203, 2003.

Stein J and Liang P. Differential display technology: a general guide. *Cell Mol Life Sci* 59: 1235-1240, 2002.

Storey JD and Tibshirani R. Statistical significance for genomewide studies. *Proc Natl Acad Sci USA* 100: 9440-9445, 2003.

Swatland HJ and Cassens RG. Prenatal development, histochemistry and innervation of porcine muscle. *J Anim Sci* 36: 343-354, 1973.

Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J and Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. *J Biol Chem* 275: 40235-40243, 2000.

Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS and Beggs AH. Expression profiling and identification of novel genes involved in myogenic differentiation. *FASEB J* 18: 403-405, 2004.

Wang HY, Malek RL, Kwitek AE, Greene AS, Luu TV, Behbahani B, Frank B, Quackenbush J and Lee NH. Assessing unmodified 70-mer oligonucleotide probe performance on glass-slide microarrays. *Genome Biol* 4:R5, 2003.

Wesolowski SR, Raney NE and Ernst CW. Developmental changes in the fetal pig transcriptome. *Physiol Genomics* 16: 268-274, 2004.

Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C and Paules RS. Assessing gene significance from cDNA microarray expression data via mixed models. *J Comput Biol* 8: 625-637, 2001.

Wu H, Gallardo T, Olson EN, Williams RS and Shohet RV. Transcriptional analysis of mouse skeletal myofiber diversity and adaptation to endurance exercise. *J Muscle Res Cell Motil* 24: 587-592, 2003.

Yablonka-Reuveni Z. Development and postnatal regulation of adult myoblasts. *Microsc Res Tech* 30: 366-380, 1995.

Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J and Speed TP.

Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. *Nucleic Acids Res* 30: e15, 2002.

Yao J, Coussens PM, Saama P, Suchyta S and Ernst CW. Generation of expressed sequence tags from a normalized porcine skeletal muscle cDNA library. *Anim Biotechnol* 3: 211-222, 2002.

Zhao SH, Nettleton D, Liu W, Fitzsimmons C, Ernst CW, Raney NE and Tuggle CK. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. *J Anim Sci* 81: 2179-2188, 2003.

Table 1. Real-time RT-PCR primer sequences¹

Gene symbol	Gene name	Primer sequence
18S	18S ribosomal RNA ²	Forward: 5'-CGGCTACCACATCCAAGGAA-3'
		Reverse: 5'-GCTGGAATTACCGCGGCT-3'
CNN3	calponin 3, acidic	Forward: 5'-ATGGTATGAAGCCACATGACATATTT-3'
		Reverse: 5'-CCTGGGTCATGTTCCCATTC-3'
FN1	fibronectin 1	Forward: 5'-GGCAGTTGATAAGAGGAATTTGGT-3'
		Reverse: 5'-CTAAACAGTTGTCTTTCCGCAGTAGTAA-3'
HPRT	hypoxanthine	Forward: 5'-CTGGCAAAACAATGCAAACCT-3'
	phosphoribosyltransferase	Reverse: 5'-AAGCTTGCAACCTTGACCATCT-3'
PXN	paxillin	Forward: 5'-ACACCCAGCCTCTGCTATGAG-3'
		Reverse: 5'-GGAAACAGATAGGGCTGGTGTT-3'
NE	titin	Forward: 5'-AAGGACTCTTTCATGGAGGACATG-3'
		Reverse: 5'-TCGTCTCAGTCAGTCCAAATGTCT-3'
TCAP	titin-cap	Forward: 5'-CCCAGCGCATTCCAGATC-3'
		Reverse: 5'-GGCCCCGAACAGATTTCAG-3'
	titin immunoglobulin domain	Forward: 5'-CATTAAGCTAAGGAACACTGAGATCATC-3'
	protein (myotilin)	Reverse: 5'-TGGCACTGCTTTCTAAATACTGTTCT-3'
TNNC1	troponin C, slow	Forward: 5'-ATCCTTCATGCACCGAACCA-3'
		Reverse: 5'-TGATTGACGAGGTGGATGAAGAC-3'
TPT1	tumor protein,	Forward: 5'-CCACCATCAGCGTCAAACAT-3'
	translationally controlled 1	Reverse: 5'-CCTACCTCAGCGAGGAGATGA-3'
10-11-01	Taning Daise Possing	Delinear many designed using Delinear Courses and action (Amelical Discourse Footer

cycles 95°C for 15 sec. and 60°C for 1 min. ²18S primers were graciously provided by Dr. Susan Ewart of the The Molecular Respiratory 'Primers were designed using Primer Express v 2.0 software (Applied Biosystems, Foster City, CA) and amplification conditions were 50°C for 2 min., 95°C for 10 min. and for 40

and Equine Genetics Laboratory at Michigan State University.

Table 2. Differentially expressed genes observed by differential display reverse transcription PCR (DDRT-PCR)¹.

Clone ²	Insert size (bp)	GenBank ID	TIGR TC report	Gene name (gene symbol) ³	DDRT- PCR gel ⁴
41M2-1	494	CF106688	TC181503	annexin A2 (ANXA2)	1>2>3
51M41	405	CB826594	TC163159	calponin 3, àcidic (CNN3) ^{5,6}	1>2>3
54M77	400	CB826601	singleton	cardiomyopathy associated 3 (CMYA3)	1>2=3
51M44E	486	CB826597	TC180810	collagen, type I, alpha 2 (COL1A2) ^{6,7}	1=2>3
53M64D	295	CB826602	TC181259	cytochrome c oxidase III (MTCO3) ^{7,8}	1<2<3
41M6-1	544	CB826595	TC162457	fibronectin 1 (FN1) ⁵	1=2>3
54M71-2	377	CB826603	TC163178	heat shock 70kDa protein 5 (HSPA5)	1<2=3
51M44B	417	CB826598	TC182174	janus kinase 1 (JAK1)	1=2>3
53M63G	425	CB826599	singleton	KIAA0373 gene product9	1=2<3
41M7	459	CB826592	TC165147	myosin, heavy polypeptide 4, skeletal muscle (MYH4) ^{6,7}	1=2<3
54M71-1	383	CB826593	TC189479	myosin, heavy polypeptide 8, skeletal muscle, perinatal (MYH8)	1<2>3
53M64B	164	CB826600	TC181077	NADH dehydrogenase 4 (MTND4) ⁷	1<2<3
52M55	569	CB826591	singleton	nebulin (NEB) ⁶	1<2<3
54M71-3	338	CB826596	TC185696	ras homolog gene family, member E (ARH3)	1=2<3
41M8-1	420	CX244545	TC182705	S100 calcium binding protein A11,	1=2<3
11M7A-1	307	CB826590	singleton	calgizzarin (S100A11) titin (TTN) ^{5,6,7,8}	1<2<3

Primers used for DDRT-PCR were obtained from the U.S. Swine Genome Coordinator, and primer

sequences are available at http://www.genome.iastate.edu/resources/ddprimer.html.

²Primers used to obtain each clone are indicated by the first two digits of the clone name (1st digit anchor primer; 2nd digit arbitrary primer).

Predicted identities were determined by comparison of clone sequences to entries in the GenBank

database.

⁴Relative pattern of mRNA abundance observed on DDRT-PCR gels. 1=60 d of gestation; 2=105 d of gestation; 3=7 wks of age.

Expression pattern confirmed by relative real-time RT-PCR analysis.

Expression pattern confirmed by northern or dot blot analysis (data not shown).

⁷Gene found to be significantly differentially expressed on cDNA microarray and/or oligonucleotide microarray.

⁸Multiple fragments identified as same gene.

⁹Gene name not approved by the HUGO Gene Nomenclature Committee.

Table 3. Differentially expressed genes observed on the cDNA microarray¹

GenBank ID	TIGR TC	Gene symbol	Gene Name	Fold change	P-value
	35	nes more hiahly	Genes more highly expressed at 7wks of age		
Calcium binding					
BM190036	TC181355	TPT1 ²	tumor protein, translationally controlled 1	1.61	0.054
Cell proliferation					
BM190535 BM190623	TC163308 TC163308	CLK1 CLK1	CDC-like kinase 1 CDC-like kinase 1	2.34	0.042 0.059
Enzymes					
BM190413 BM190100 BM190228 BM190306	TC163277 TC162668 TC183161 TC185631	ALDOA GAPD³ PPT2 RPE	fructose 1,6 diphosphate aldolase glyceraldehyde-3-phosphate dehydrogenase palmitoyl-protein thioesterase 2 ribulose-5-phosphate-3-epimerase	1.70 3.43 1.65	0.058 0.055 0.049 0.047
Extracellular matrix					
BM190576	TC181877	COL12A1	collagen, type XII, alpha 1	1.80	0.026
Mitochondrion					
BM190103 BM190124 BM190070 BM190061 BM190298 BM190105	TC181361 TC181361 TC181361 TC181259 TC182398	MTCYB MTCYB MTCYB MTCO33 MTCO33 MTCO33	cytochrome b cytochrome b cytochrome b cytochrome c oxidase subunit 3 MLRQ subunit of NADH: ubiquinone oxidoreductase NADH dehydrogenase subunit 4L	2.47 2.55 2.09 2.83	0.038 0.042 0.043 0.053 0.052

P-value 0.053 0.037 0.035 0.053 0.046 0.048 0.057 0.050 0.054 0.060 0.054 change Fold 1.49 4.09 2.38 4.44 2.85 1.86 3.35 1.60 1.7 2.72 2.18 2.67 solute carrier family 38, member 2 Genes more highly expressed at 60 d of gestation skeletal alpha actin gene ribosomal protein L7a tropomyosin 4 troponin C, slow troponin C2, fast **Gene Name** TPM4 TNNC1^{2.3} TNNC2³ **SLC38A2** symbol Gene ACTA1 TTN^{2.3} **RPL7A** TC161973 TC163842 TC181436 TC183088 TC163161 TC164066 TC165141 **FIGR TC** TC181344 TC167023 TC181362 TC183061 TC178050 Myofibrillar contractile proteins report Amino acid transport Ribosome Structure Table 3. cont. **GenBank ID** BM190246 BM190114 BM190123 BM190045 BM190276 BM190265 BM190277 BM190088 BM190109 Unknown BM189988 BM190591 BM190337 57

نيو
Sont.
_
က
흦
Tabl
\vdash

TC164022 NANS N-acetylneuraminic acid synthase (sialic acid synthase) stion regulation TC186996 HIRIP3 HIRA interacting protein 3 TC187893 TC197893 TC197893 TC193222 BM190468 TC166415 TC168425 TC166425	GenBank ID TIGR 1	ဥ	Gene symbol	Gene Name	Fold change	P-value
TC164022 NANS N-acetylneuraminic acid synthase (sialic acid synthase) synthase) TC186996 HIRIP3 HIRA interacting protein 3 ansduction TC188844 TC197893 TC197893 TC197893 TC197893 TC197893 TC197893 TC197894 TC197895 TC197895 TC166111 TC188352 BM190468 TC166425						
### TC186996 HIRIP3 HIRA interacting protein 3 TC167127 LEPREL2 leprecan -like 2 protein TC197893 TC197893 TC193222 BM190206 TC188352 BM190468 TC166425 TC166425				N-acetylneuraminic acid synthase (sialic acid	2.09	0.033
TC186996 HIRIP3 HIRA interacting protein 3 ansduction TC167127 LEPREL2 leprecan -like 2 protein TC197893 TC197893 TC193222 BM190206 TC166111 TC188352 BM190468 TC166425	ranscription regulation					
ansduction TC167127 LEPREL2 leprecan -like 2 protein TC188844 TC197893 TC193222 BM190206 TC166111 TC188352 BM190468 TC166425				HIRA interacting protein 3	1.74	0.045
TC167127 LEPREL2 leprecan -like 2 protein TC188844 TC197893 TC193222 BM190206 TC166111 TC188352 BM190468 TC166425	ignal Transduction					
TC188844 TC197893 TC193222 BM190206 TC166111 TC188352 BM190468 TC166425			LEPREL2	leprecan -like 2 protein	1.89	0.050
TC188844 TC197893 TC193222 BM190206 TC166111 TC188352 BM190468 TC166425						
TC197893 TC193222 BM190206 TC166111 TC188352 BM190468 TC166425	nknown					
TC197893 TC193222 BM190206 TC166111 TC188352 BM190468 TC166425		38844			2.49	0.042
TC193222 BM190206 TC166111 TC188352 BM190468 TC166425		97893			1.63	0.035
BM190206 TC166111 TC188352 BM190468 TC166425		33222			1.60	0.039
TC166111 TC188352 BM190468 TC166425		90206			1.43	0.052
TC188352 BM190468 TC166425		36111			1.46	0.060
BM190468 TC166425		38352			1.74	0.044
TC166425		90468			1.82	0.037
		36425			1.50	0.030
10.162067	BM190666 TC16	32067			4.04	0.043

Genes listed exhibited fold changes ≥ 1.5 ($P \leq 0.06$). Genes are categorized by function and grouped by age at which expression was highest.

Relative real-time RT-PCR was performed for validation of microarray results.

Gene also found to be significantly differentially expressed on the oligonucleotide array.

Table 4. Differentially expressed genes observed on the oligonucleotide microarray

TIGR TC	Gene symbol	TIGR TC Gene symbol Gene name	Fold Change	P- value
Calcium binding		Genes more highly expressed at 7 weeks of age		
NP494962	CASQ1	calsequestrin 1 (fast-twitch, skeletal muscle)	2.54	0.011
Cell growth and/or maintenance	or maintenance			
TC182018 TC181858 TC181857 TC181327	FHL1 PDLIM7 PDLIM7 UBC	four and a half LIM domains 1 PDZ and LIM domain 7 (enigma) PDZ and LIM domain 7 (enigma) ubiquitin C	2.28 4.75 3.92 2.52	0.015 0.036 0.012 0.001
Cytoskeleton				
TC164139 TC166176 TC166176 TC166052	CAPZA2 MYOZ1 MYOZ1 PDLIM3	capping protein (actin filament) muscle Z-line, alpha 2 myozenin 1 myozenin 1 PDZ and LIM domain 3	1.60 3.72 2.53 1.80	0.046 0.003 0.003 0.018
DNA repair				
TC163452	RAD23A	RAD23 homolog A	1.61	0.006
Enzymes				
TC182601 TC163277 TC194373 TC164323	ARL2 ALDOA ALOX12 ATPIF1	ADP-ribosylation factor-like 2 aldolase A, fructose-bisphosphate arachidonate 12-lipoxygenase ATPase inhibitory factor 1	1.54 11.18 1.66 1.55	0.004 0.001 0.005 0.005

TIGR TC	Gene symbol	Gene name	Fold Change	P- value
TC191298	FARP1	FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1	1.61	0.023
	0		0	
CF359258	GAPD	glyceraldehyde-3-phosphate dehydrogenase	3.02	0.00
CF359258	GAPD	glyceraldehyde-3-phosphate dehydrogenase	2.47	900.0
CF359258	GAPD ³	glyceraldehyde-3-phosphate dehydrogenase	2.25	0.014
CF359258	GAPD ³	glyceraldehyde-3-phosphate dehydrogenase	2.08	0.040
CF359258	GAPD³	glyceraldehyde-3-phosphate dehydrogenase	2.07	0.010
CF359258	GAPD ³	glyceraldehyde-3-phosphate dehydrogenase	2.03	0.00
CF359258	GAPD ³	glyceraldehyde-3-phosphate dehydrogenase	1.99	0.013
CF359258	$GAPD^3$	e-3-phosphate	1.97	0.031
CF359258	GAPD³	glyceraldehyde-3-phosphate dehydrogenase	1.97	0.030
CF359258	GAPD ³	glyceraldehyde-3-phosphate dehydrogenase	1.93	0.016
CF359258	$GAPD^3$	glyceraldehyde-3-phosphate dehydrogenase	1.91	0.019
CF359258	GAPD ³	glyceraldehyde-3-phosphate dehydrogenase	1.77	0.012
CF359258	GAPD³	glyceraldehyde-3-phosphate dehydrogenase	1.77	0.014
CF359258	GAPD³	glyceraldehyde-3-phosphate dehydrogenase	1.71	0.023
NP275743	GAPD³	glyceraldehyde-3-phosphate dehydrogenase	2.31	0.031
TC163151	LDHA	lactate dehydrogenase A	3.03	0.042
TC182611	NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42kDa	1.64	600.0
TC162798	P17.3	neuronal protein 17.3	1.81	0.023
TC164637	PGM1	phosphoglucomutase 1	1.69	0.002
TC181879	PGK1	phosphoglycerate kinase 1	2.45	0.021
TC185107	PGAM2	phosphoglycerate mutase 2 (muscle)	5.57	0.002
TC185184	PYGM	phosphorylase, glycogen; muscle (McArdle syndrome, glycogen storage disease type V	3.37	0.016
TC185184	PYGM	phosphorylase, glycogen; muscle (McArdle syndrome, glycogen storage disease time V	2.10	0.008
TC198557	PITRM1	pitrilysin metalloproteinase 1	1.56	0.039
TC170654	LYK54	protein kinase LYK5	1.54	0.012
BP159064	PTPN6	protein tyrosine phosphatase, non-receptor type 6	1.74	900.0
TC162821	PKM2	pyruvate kinase, muscle	1.94	0.021
TC163975	HSPC051 ⁴	ubiquinol-cytochrome c reductase complex (7.2 kD)	1.99	0.010
- CACCACOT	70000		•	

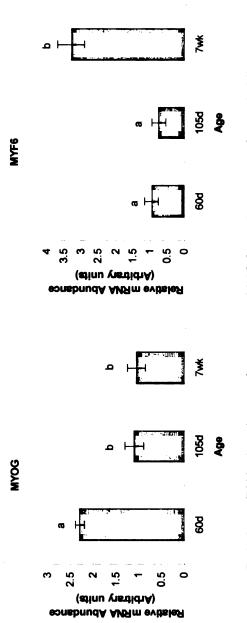
TIGR TC Gene symbol Gene name report² Bi344086 UQCRC2 ubiquinol-cytochrome c reductase core protein II Extracellular matrix NP276599 COL10A1 collagen, type X, alpha 1(Schmid metaphyseal chondrodysplasia) Immune response TC164126 C10A complement component 1, q subcomponent, alpha polypeptide TC181534 HLA-A major histocompatibility complex, class I, A MITC033 MITC033 cytochrome c oxidase III TC181259 MITC033 cytochrome c oxidase III TC181559 MITC033 cytochrome c oxidase III TC181559 MITC033 cytochrome c oxidase III TC181550 MITC043 MADH dehydrogense 3 <	lable 4. cont.				
Bi344086 UQCRC2 ubiquinol-cytochn Extracellular matrix COL10A1 collagen, type X, Immune response COL10A1 complement com TC184126 C1QA complement com TC181259 MTC03³ cytochrome c oxid TC181259 MTC03³ cytochrome c oxid TC181259 MTND2 Cytochrome c oxid TC181259 MTND2 NADH dehydroge TC181259 MTND3 NADH dehydroge TC181259 MTND4 NADH dehydroge TC181775 MTND4 NADH dehydroge TC181775 MTND4 NADH dehydroge TC181775 MYBPC2 myosin binding pi TC182003 HUMMLC2B4 myosin light chair TC164383 TTN3.5 titin TC163841 TTN3.5 titin TC163841 TCAP5 titin TC163093 TNNC13.5 troponin C, slow TC163161 TNNT1 troponin C2, fast AW657610 TNNT1 troponin C1, slot <th>TIGR TC</th> <th>Gene symbol</th> <th>Gene name</th> <th>Fold Change</th> <th>P- value</th>	TIGR TC	Gene symbol	Gene name	Fold Change	P- value
Extracellular matrix NP276599 COL10A1 collagen, type X, Immune response C1G4126 C1QA complement component componen	BI344086	UQCRC2	ubiquinol-cytochrome c reductase core protein II	1.57	0.004
Immune response	Extracellular m	natrix			
TC164126	NP276599	COL10A1		1.78	0.003
TC164126 C1QA TC181534 HLA-A Mitochondrion TC181259 MTCO3³ TC181259 MTCO3³ TC181259 MTCO3³ TC181259 MTND2 TC181259 MTND2 TC181259 MTND2 TC181259 MTND2 TC181259 MTND2 TC181251 MTND4³ MYND2 TC18127 MYBPC2 TC165117 FLNC TC165117 FLNC TC165147 MYH4 TC165147 MYH4 TC165147 MYH4 TC163842 TTN³.5 TC163842 TTN³.5 TC163841 TTN³.5 TC163841 TTN³.5 TC163841 TNNC1³.5 TC163093 TNNC1³.5 TC163088 TNNC1³.5 TC163161 TNNT1	Immune respon	nse			
Mitochondrion TC181259 MTCO3³ cytochrome c oxidase III TC181259 MTND2 NADH dehydrogenase 2 TC181775 MTND3 NADH dehydrogenase 3 TC181077 MTND4³ NADH dehydrogenase 4 MYND4 NADH dehydrogenase 4 MTND4³ NADH dehydrogenase 4 NADH dehydrogenase 4 NADH dehydrogenase 4 MYDH dehydrogenase 4 MADH dehydrogenase 4 MYDH dehydrogenase 4 MADH dehydrogenase 4 MYBDH dehydrogenase 4 MADH dehydrogenase 4 TC182003 MYH deh	TC164126 TC181534	C1QA HLA-A	complement component 1, q subcomponent, alpha polypeptide major histocompatibility complex, class I, A	1.52 3.02	0.037 0.021
TC181259 MTCO3³ cytochrome c oxidase III TC181259 MTD2 NADH dehydrogenase 2 TC181775 MTND2 NADH dehydrogenase 3 TC181775 MTND4³ NADH dehydrogenase 3 TC181077 MTND4³ NADH dehydrogenase 3 Myofibrillar contractile proteins CRYAB crystallin, alpha B filamin C, gamma (actin bin myosin binding protein C, famyosin binding protein C, famyosin binding protein C, famyosin, light chain 2 TC18327 MYBPC2 myosin light chain 2 TC165147 MYH4 myosin, light polypeptide 1, titin TC163842 TTN³5 tittin TC163841 TTN³5 tittin TC163842 TTN³5 tittin TC163841 TNNC1³5 troponin C, slow TC163841 TNNC1³5 troponin C, fast TC163161 TNNT1 troponin T1, skeletal, slow	Mitochondrion	_			
MTCO3 cytochrome c oxidase III MTND2 NADH dehydrogenase 2 MTND3 NADH dehydrogenase 3 MTND4 NADH dehydrogenase 3 MTND4 NADH dehydrogenase 3 NADH dehydrogenas	TC181259	MTCO33	cytochrome c oxidase III	3.52	0.006
MTND3 MTND4 MTND4 MTND4 MTND4 NADH dehydrogenase 3 NADH dehydrogenase 3 NADH dehydrogenase 4 Rilamin C, gamma (actin bin myosin binding protein C, famyosin binding protein C, famyosin light chain 2 MYH4 MYH4 MYL1 TTN³-5 TTN³-5 titin TCAP ⁵ titin TCAP ⁵ titin TNNC1³-5 titin TNNC1³-5 titin TNNC1³-5 titin TNNC1³-5 titin TNNC1³-5 titin TNNC1³-5 titin TNNC2³ TNNC1³-5 TNNC2³ TNNC2³ TNNT1 TNNC2³ TNNT1 TNDC1³-5 TNNC2³ TNNT1 TNDC1³-5 TNNT1 TNDC1³-5 TNNC2³ TNNT1 TNDC1³-5 TNNT1 TNDC1³-5 TNNT1 TNNT1 TNDC1³-5 TNDC1³-5 TNNT1 TNDC1³-5 TNNT1 TNDC1³-5 TNNT1 TNDC1³-5 TNDC1³	TC181259	MTCO3	cytochrome c oxidase III	2.72	0.016
MTND43 NADH dehydrogenase 4 CRYAB CRYAB FLNC MYBPC2 MYBPC2 MYNH4 Myosin binding protein C, famina (actin bin myosin binding protein C, famyosin light chain 2 MYH4 MYL1 TTN3.5 TTN3.5 titin TTN3.5 titin TCAP ⁵ titin TCAP ⁵ titin TCAP ⁵ titin TNNC1 ^{3.5} titin TNNC1 ^{3.5} troponin C, slow TNNC2 ³ troponin C2, fast TNNT1 troponin T1, skeletal, slow	TC181775	MTND3	NADH denyarogenase 3	2.55	0.002
CRYAB CRYAB FLNC MYBPC2 MYBPC2 MYH4 MYH4 MYL1 TTN³5 TTN³5 TTN³5 TNNC1³5 TNNC2³ TNCDONIN T1, skeletal, slow	TC181077	MTND43	NADH dehydrogenase 4	2.43	0.031
CRYAB CRYAB FLNC MYBPC2 MYBPC2 Myosin binding protein C, famosin light chain 2 MYH4 MYCA1 MYCSin, heavy polypeptide 1, titin TTN ^{3.5} TTN ^{3.5} TTN ^{3.5} TTN ^{3.5} titin TCAP ⁵ titin TCAP ⁵ titin TCAP ⁵ troponin C, slow TNNC1 ^{3.5} troponin C, fast TNNC2 ³ troponin C2, fast TNNT1 TNNTTNNT	Myofibrillar co	ntractile proteins			
FLNC MYBPC2 MYSPC2 Myosin binding protein C, fa HUMMLC2B4 Myosin light chain 2 MYH4 Myosin, heavy polypeptide MYL1 TTN ^{3.5} TTN ^{3.5} titin TCAP ⁵ titin TCAP ⁵ titin TCAP ⁵ titin TNNC1 ^{3.5} troponin C, slow TNNC2 ³ troponin C2, fast TNNT1 troponin T1, skeletal, slow	TC183327	CRYAB		1.76	0.004
MYBPC2 myosin binding protein C, fa HUMMLC2B ⁴ myosin light chain 2 MYH4 myosin, heavy polypeptide 1, TTN ^{3.5} titin TTN ^{3.5} titin titin TCAP ⁵ titin troponin C, slow TNNC1 ^{3.5} troponin C, slow TNNC2 ³ troponin C2, fast TNNT1 troponin T1, skeletal, slow	TC165117	FLNC	filamin C, gamma (actin binding protein 280)	3.31	0.003
HUMMLC2B' myosin light chain 2 MYH4 myosin, heavy polypeptide 1, TTN ^{3.5} titin TTN ^{3.5} titin TCAP ⁵ titin-cap (telethonin) TNNC1 ^{3.5} troponin C, slow TNNC2 ³ troponin C2, fast TNNT1 troponin T1, skeletal, slow	TC180257	MYBPC2	myosin binding protein C, fast type	3.35	0.024
MYH4 myosin, heavy polypeptide MYL1 titin TTN³.5 titin TTN³.5 titin TCAP⁵ titin TNNC1³.5 titin troponin C, slow TNNC2³ troponin C2, fast TNNT1 troponin T1, skeletal, slow	TC182003	HUMMLC2B7	myosin light chain 2	2.80	0.026
MYL1 myosin, light polypeptide 1, TTN ^{3.5} titin TTN ^{3.5} titin TCAP ⁵ titin-cap (telethonin) TNNC1 ^{3.5} troponin C, slow TNNC2 ³ troponin C2, fast troponin T1, skeletal, slow	TC165147	MYH4	myosin, heavy polypeptide 4, skeletal muscle	86.98	0.020
TTN ^{3.5} titin TCAP ⁵ titin-cap (telethor TNNC1 ^{3.5} troponin C, slow TNNC2 ³ troponin C2, fast	TC164383	MYL1 TTN ^{3,5}	isin, light polypeptide 1,	9.89 8.80 8.80 8.80 8.80 8.80 8.80 8.80	0.00 500 600
TCAP ⁵ titin-cap (telethor TNNC1 ^{3.5} troponin C, slow TNNC2 ³ troponin C2, fast troponin T1, skel	TC163841	TTN ^{3,5}	titin	3.34	0.024
TNNC1 ^{3,5} troponin C, slow TNNC2 ³ troponin C2, fast TNNT1 troponin T1, skel	TC168093	TCAP	titin-cap (telethonin)	7.88	0.005
TNNC2³ troponin C2, fast TNNT1 troponin T1, skel	TC183088	TNNC13.5	troponin C, slow	1.66	0.026
TNNT1 troponin T1, skel	TC163161	TNNC23		4.83	0.001
	AW657610	TNN1	troponin T1, skeletal, slow	2.30	0.050

•	Table 4. cont.				
-	TIGR TC	Gene symbol	Gene name	Fold Change	P- value
-	TC198053	TNNT3	troponin T3, skeletal, fast	3.01	0.007
	Ribosome structure	ıcture			
	TC181000	RPL10A	ribosomal protein L10a	1.55	0.037
	TC181500	RPL6	ribosomal protein L6	1.54	0.012
	TC162859	RPS4X	ribosomal protein S4, X-linked	2.42	9000
	TC162859	RPS4X	ribosomal protein S4, X-linked	2.01	900.0
	TC181569 TC181617	RPS7 RPLP1	ribosomal protein S7 ribosomal protein, large, P1	2.23 2.05	0.017 0.014
	Signal transduction	ction			
	BP439453	B2M	beta-2-microalobulin	2.02	0.029
	TC166317	F2RL1	coagulation factor II (thrombin) receptor-like 1	1.76	0.010
	TC163759	EDG2	endothelial differentiation, lysophosphatidic acid G-protein-coupled recentor 2	1.80	0.026
	Translation				
	TC130780	EEF1A2	eukaryotic translation elongation factor 1 alpha 2	9.38	0.001
	TC162959	HSPB1	heat shock 27kDa protein 1	3.65	0.004
	Transporter				
	TC163709	ATP5J2	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit f, isoform 2	1.92	0.012
	TC183143	ATP2A1	ATPase, Ca++ transporting, cardiac muscle, fast twitch 1	5.49	0.001
	TC194111 TC182256	STK23	serine/threonine kinase 23 solute carrier family 25 / mitochondrial carrier: adenine purcleotide	2.56 1.79	0.016 0.016
	10.182230	3LC23A4	solute carrier rathing 23 (mitochoridra) carrier, agenine increoude translocator)	B -:-	2
	TC163102 TC181180	SURF2	surfeit 2	1.52	0.020
				9	5

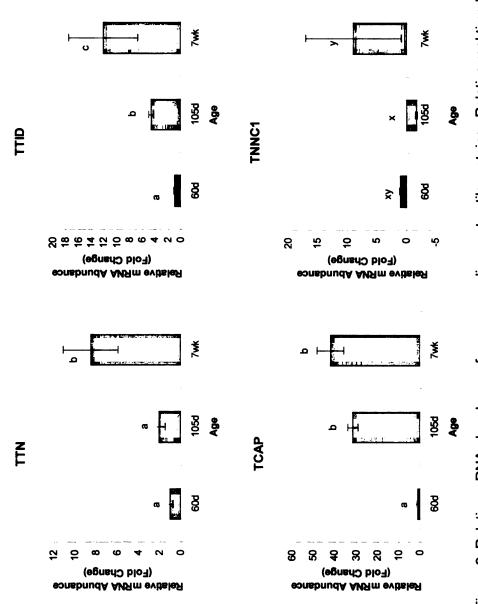
Table 4. cont.				
TIGR TC	Gene symbol	Gene name	Fold Change	P- value
Unknown function	tion			
TC171259	FAM16AX	family with sequence similarity 16, member A, X-linked	1.52	0.017
BM658731			1.55	0.003
TC162710			1.71	0.013
TC162719			1.65	0.020
TC163805			2.03	0.001
TC165785			1.69	0.002
TC166001			2.14	0.013
TC166330			1.52	0.036
TC168215			1.53	0.034
TC169791			1.59	0.002
TC171081			2.19	0.028
TC176101			2.04	0.001
TC178030			1.67	0.005
TC180903			1.95	0.000
TC181362			1.77	0.040
TC181891			1.63	0.040
TC182018			2.34	0.023
TC183447			1.53	0.020
TC184525			2.61	0.016
TC184896			1.61	0.023
TC185430			1.59	0.028
TC186477			1.61	0.001
TC189021			1.68	0.021
TC196973			1.68	0.000
TC197564			1.78	0.002
TC198089			2.14	0.001

Table 4. cont.				
TIGR TC report	Gene symbol	Gene name	Fold Change	P- value
		Genes more highly expressed at 60 d of gestation		
Apoptosis				
TC180964	HSPA1B	heat shock protein 70.2 gene, promoter	1.51	0.009
Cell growth and	Cell growth and/or maintenance			
CK455405	FTH1	ferritin, heavy polypeptide 1	1.72	0.038
Cytoskeleton				
TC165807 TC183282	BIN3 HIP1	bridging integrator 3 huntingtin interacting protein 1	1.57 1.51	0.033 0.012
Enzymes				
TC185809 TC168198 TC194827	AKR1CL2 A4GALT ALS2CR7	aldo-keto reductase family 1, member C-like 2 alpha 1,4-galactosyltransferase amyotrophic lateral sclerosis 2 (juvenile) chromosome region,	1.78 1.80 1.51	0.001 0.003
TC163055	CTSC	candidate / cathepsin C	1.55	0.017
TC181654	GBGT1	globoside alpha-1,3-N-acetylgalactosaminyltransferase 1	1.88	0.022
TC185008 TC165037	KATNB1 POI DIP2	katanin p80 (WD repeat containing) subunit B 1 polymerase (DNA-directed), delta interacting protein 2	1.53 1.52	0.012 0.001
TC183190	PPP1R14B	protein phosphatase 1, regulatory (inhibitor) subunit 14B	2.34	0.007
TC178701 TC166639 TC184039	RECQL4 B3GNTL1 URKL1	RecQ protein-like 4 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-ike 1 uridine kinase-like 1	1.80 1.78 2.41	0.004 0.036 0.019
Extracellular matrix	atrix			
TC180812	COL1A1	collagen, type I, alpha 1	1.51	0.022

Table 4. cont.				
TIGR TC report	Gene symbol	Gene name	Fold Change	P- value
TC180810	COL1A2	collagen, type I, alpha 2	1.63	0.016
Immune response	980			
TC181541 NP275341	TRB@ TRDD3	T cell receptor beta locus T cell receptor delta diversity 3	1.55 1.56	0.005 0.033
Myofibrillar cor	Myofibrillar contractile proteins			
TC167400 TC168323	MYH3 MYL4	myosin, heavy polypeptide 3, skeletal muscle, embryonic myosin, light polypeptide 4, alkali; atrial, embryonic	3.64 1.53	0.003 0.011
Ribosome structure	cture			
TC165797	MTA1	metastasis associated 1	1.69	0.038
TC166729	NOLA2	nucleolar protein family A, member 2 (H/ACA small nucleolar RNPs)	1.60	0.016
TC181715	RPS18	ribosomal protein S18	1.56	0.030
TC181715	RPS18	ribosomal protein S18	1.60	0.000
TC181715	RPS18		1.72	0.001
TC181715	RPS18	ribosomal protein S18	1.78	0.005
TC181715	RPS18	ribosomal protein S18	1.80	000
TC181715	RPS18	_	1.80	0.001
TC181715	RPS18	ribosomal protein S18	1.85	0.002
TC181715	RPS18	ribosomal protein S18	1.88	0.021
TC181715	RPS18	ribosomal protein S18	1.92	0.010
TC181715	RPS18	ribosomal protein S18	1.97	0.001
TC180909	RPS5	ribosomal protein S5	1.69	900.0
Signal transduction	ction			
TC166317	APOB	apolipoprotein B (including Ag(x) antigen)	1.53	0.017


TIGR TC Gene symbol Gene name Fold Change P- value report* AVP arginine vascopressin (neurophysin II, antidiuretic hormone, diabetes 2.08 0.004 TC169896 AVP arginine vascopressin (neurophysin II, antidiuretic hormone, diabetes 2.08 0.004 TC169826 EPO erythropoletin 0.026 0.005 TC169827 DI3 inhibitor of DNA binding 3.3 dominant negative helix-loop-helix protein 1.71 0.002 TC16982 DI3 inhibitor of DNA binding 3.3 dominant negative helix-loop-helix protein 1.72 0.001 TC16983 TIF1 transcriptional intermediary factor 1. hormocome factor 1.	Table 4. cont.			:	
The composition of the composi	TIGR TC		Gene name	Fold Change	P- value
erythropoietin erythropoietin erythropoietin Calcitonin receptor-stimulating peptide inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 1.72 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 1.72 insulin promoter factor 1, homeodomain transcription factor 1 1.59 transcriptional intermediary factor 1 1.50 hypothetical protein FLJ10420 hypothetical protein FLJ10420 hypothetical protein FLJ22955 hypothetical protein HSPC268 KIAA0157 SC0424* putative MAPK activating protein PMz0,PM21 1.90 similar to RIKEN cDNA 1110002C08 gene 1.55 similar to RIKEN cDNA 1110002C08 gene 1.74 1.74 1.70 2.00	TC166966	AVP	arginine vasopressin (neurophysin II, antidiuretic hormone, diabetes	2.08	0.004
calcitonin receptor-stimulating peptide calcitonin receptor-stimulating peptide inhibitor of DNA binding 3, dominant negative helix-loop-helix protein insulin promoter factor 1, homeodomain transcription factor transcriptional intermediary factor 1 transcriptional intermediary factor 1 transcriptional intermediary factor 1 transcriptional intermediary factor 1 transcriptional factor 1, homeodomain transcription factor transcriptional intermediary factor 1 transcriptional	TC191992	ЕРО	insplaces, redionypopinysear) erythropoietin	1.71	0.026
CRSP Calcitonin receptor-stimulating peptide 2.27 ID3 Inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 1.72 IP51 Insulin promoter factor 1, homeodomain transcription factor 1.59 IT61 Itanscriptional intermediary factor 1 1.59 IT61 Itanscriptional intermediary factor 1 1.59 IT62 Itanscriptional intermediary factor 1 1.59 IT63 Itanscriptional intermediary factor 1 1.59 IT64 Itanscriptional intermediary factor 1 1.59 IT65 Itanscriptional intermediary factor 1 1.59 IT67 Itanscriptional intermediary factor 1 1.59 IT68 Itanscriptional intermediary factor 1 1.50 IT68 Itanscriptional intermediary factor 1 1.50 IT69 Itanscriptional intermediary factor 1 1.50 IT60 Itanscriptional intermediary factor 1 1.50 IT60 Itanscriptional intermediary factor 1 1.50 IT61 Itanscriptional intermediary factor 1 1.50 IT61 Itanscriptional intermediary factor 1 1.50 IT62 Itanscriptional intermediary factor 1 1.50 IT62 Itanscriptional intermediary factor 1 1.50 IT63 Itanscriptional intermediary factor 1 1.50 IT64 Itanscriptional intermediary factor 1 1.50 IT65 Itanscriptional intermediary factor 1 1.50 IT66 Itanscriptional intermediary factor 1 1.50 IT67 Itanscriptional intermediary factor 1 1.50 IT67 Itanscriptional intermediary factor 1 1.50 IT68 Itanscriptional intermediary factor 1 1.50 IT69 Itanscriptional intermediary factor 1 1.50 IT69 Itanscriptional intermediary factor 1 1.50 IT60 Itanscriptional inter	Transcription	ıal regulation			
ID3 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 1.72 IPF1 transcriptional intermediary factor 1 1.59 1.59 1.59 1.59 1.50 1.71 1.59 1.71 1.59 1.71 1.50 1.71 1.71 1.71 1.71 1.71 1.71 1.72 1.73 1.74 1.73 1.74 1.73 1.74 1.73 1.74 1.75 1.74 1.74 1.75	TC184976	CRSP	Calcitonin receptor-stimulating peptide	2.27	0.002
C14orf32 Chromosome 14 open reading frame 32 1.50 ELJ10420	TC162852 NP275174 TC167760	103 1PF1 TIF1	inhibitor of DNA binding 3, dominant negative helix-loop-helix protein insulin promoter factor 1, homeodomain transcription factor transcriptional intermediary factor 1	1.72 1.51 1.59	0.019 0.021 0.040
C14orf32 chromosome 14 open reading frame 32) FLJ10420 hypothetical protein FLJ10420 FLJ12814 hypothetical protein FLJ1281 FLJ2295 hypothetical protein FLJ22955 KIAA0157 KIAA0157 DKFZp566C0424 putative MAPK activating protein PM20,PM21 MGC9564 similar to RIKEN cDNA 1110002C08 gene 1.54 1.74 1.70 2.00					
C14orf32 chromosome 14 open reading frame 32) 1.50 FLJ10420 hypothetical protein FLJ10420 1.71 FLJ12814 hypothetical protein FLJ12815 FLJ22955 hypothetical protein HSPC268 1.50 KIAA0157 KIAA0157 KIAA0157 DKFZp566C04244 putative MAPK activating protein PM20,PM21 1.55 DKFZp566C4244 similar to RIKEN cDNA 1110002C08 gene 1.55 1.54 1.74 1.70 2.00	Unknown fun	ıction			
	TC186341 TC182961 TC163512 TC164687 BM658515 TC165883 TC165833 BF709307 TC162585 TC163691 TC163691 TC163691 TC16520 TC165903	C14orf32 FLJ10420 FLJ12681 ⁴ FLJ22955 HSPC268 ⁴ KIAA0157 DKFZp566C0424 ⁴ MGC9564	chromosome 14 open reading frame 32) hypothetical protein FLJ10420 hypothetical protein FLJ22955 hypothetical protein FLJ22955 hypothetical protein HSPC268 KIAA0157 putative MAPK activating protein PM20, PM21 similar to RIKEN cDNA 1110002C08 gene	1.50 1.73 1.55 1.55 1.55 1.55 1.64 1.70 2.08	0.007 0.030 0.049 0.049 0.023 0.027 0.029 0.029 0.029 0.023

TIGR TC	Gene symbol Gene	Gene name	Fold Change	P- value
report ²			•	
TC166287			1.68	900.0
TC167679			2.59	0.001
TC170235			1.53	0.016
TC170998			1.68	0.014
TC171040			2.85	0.035
TC181653			1.57	0.037
TC182331			1.50	0.017
TC182517			2.22	0.002
TC182890			1.55	9000
TC183320			1.51	0.049
TC183468			1.53	0.016
TC183805			1.51	0.021
TC183842			2.00	0.001
TC184338			1.88	0.038
TC184875			1.57	0.011
TC184949			2.06	0.002
TC185603			1.51	0.014
TC186667			1.77	0.008
TC186782			1.60	0.038
TC186890			1.80	0.025
TC188584			1.64	0.001
TC190478			1.63	0.031
TC191072			1.60	0.014
TC191161			1.54	0.007
TC199217			1.51	0.015


1 ı <u>y</u> expression highest.

²The TIGR Tentative Consensus sequence numbers from which oligonucleotides were designed. ³Gene also found to be significantly differentially expressed on the cDNA microarray.

⁴Gene symbol and name not approved by HUGO Gene Nomenclature Committee. ⁵Relative real-time RT-PCR was performed for validation of microarray results.

d of gestation, 105 d of gestation or 7 wks of age postnatal (n≕3 per age). Total cellular RNA was used in northern blot analyses and Figure 1. Relative mRNA abundance of myogenin (MYOG) and myogenic factor 6 (MYF6) in hind limb skeletal muscle of pigs at 60 results of densitometric analyses of northern blots probed with a MYOG or MYF6 cDNA are presented. The data were obtained by scanning laser desitometry and are expressed in density units ± S.E. Bars with different superscripts are significantly different (MYOG, P < 0.02; MYF6 P < 0.001).

RNA obtained from pigs at 60 d of gestation, 105 d of gestation and 7 wks of age postnatal (n=3 per age). Fold changes relative to HPRT (TCAP and TTID) or 18S rRNA (TTN and TNNC1) and the 60 d samples were calculated by the 2 had method and significance Figure 2. Relative mRNA abundance of genes encoding contractile proteins. Relative real time RT-PCR was performed using total was determined by mixed model analysis (see Materials and Methods). Bars with different superscripts are significantly different (a,b,c $P \le 0.05$; x,y P=0.06).

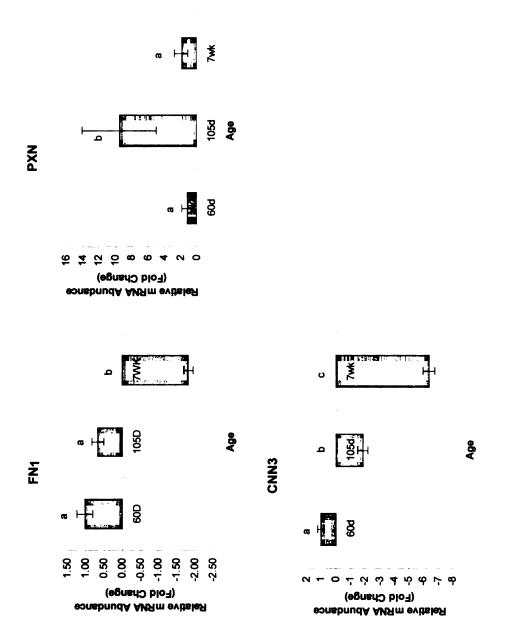


Figure 3. Relative mRNA abundance of genes encoding cytoskeletal proteins. Relative real time RT-PCR was performed using total RNA obtained from pigs at 60 d of gestation, 105 d of gestation and 7 wks of age postnatal (n=3 per age). Fold changes relative to HPRT and the 60 d samples were calculated by the 2⁴△△○○○○ method and significance was determined by mixed model analysis (see Materials and Methods). Bars with different superscripts are significantly different ($P \le 0.05$)

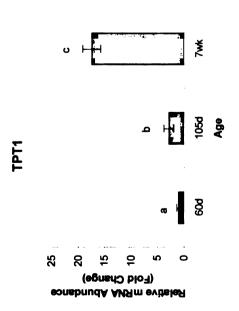


Figure 4. Relative mRNA abundance of TPT1. Relative real time RT-PCR was performed using total RNA obtained from pigs at 60 d of gestation, 105 d of gestation and 7 wks of age postnatal (n=3 per age). Fold changes relative to 18S rRNA and the 60 d samples were calculated by the 2-^^c method and significance was determined by mixed model analysis (see Materials and Methods). Bars with different superscripts are significantly different ($P \le 0.004$).

CHAPTER 3

Mapping of Porcine Skeletal Muscle ESTs

Summary

Radiation hybrid (RH) mapping of 24 expressed sequence tags (ESTs) derived from porcine skeletal muscle is reported. These ESTs were observed to be differentially expressed in skeletal muscle tissue from pigs at 60 days of gestation or 7 weeks of age postnatal using either a cDNA microarray or differential display reverse transcription PCR. The IMpRH panel was used for mapping and the ESTs were assigned to 13 different pig chromosomes.

Nineteen of these assignments were at LOD score ≥ 5.79 (15 > 8.6). Twenty-two of the ESTs correspond to genes of known identity and all of these mapped to the expected porcine-human comparative map locations. The mapping of ESTs in this study contributes to characterization of the pig skeletal muscle transcriptome and further improves the porcine-human comparative map.

Keywords: skeletal muscle, ESTs, radiation hybrid mapping, pig

Introduction

Development of high resolution genome maps for species such as the pig is facilitated by comparative gene mapping, which utilizes information from species such as human and mouse that have complete genome sequences available. These maps then aid in the identification of candidate genes for economically important traits. In addition, current applications of global gene

expression profiling techniques such as differential display reverse transcription PCR (DDRT-PCR) and DNA microarrays are also revealing genes involved in the expression of important trait phenotypes. Thus in order to fully utilize the available information for identifying genes controlling economically important traits, it is important to integrate gene expression data with genome map information. A first step toward achieving this goal is to map genes identified by expression profiling studies. For the present study, we used a pig-rodent radiation hybrid (RH) panel (Yerle et al. 1998; Hawken et al. 1999) to map expressed sequence tags (ESTs) that were observed to be differentially expressed in skeletal muscle from pigs at 60 days of gestation and 7 weeks of age postnatal (Rilington et al., in preparation).

Materials and Methods

A total of 24 oligonucleotide primer pairs for use in the PCR were designed from sequences of cDNA clones derived from either a porcine skeletal muscle cDNA library (18 ESTs; Yao et al. 2002) or a porcine skeletal muscle differential display experiment (6 ESTs; Rilington et al., in preparation) using the OLIGO 5.1 primer analysis software (Molecular Biology Insight Inc., Cascade, CO). The PCR was performed using 25 ng genomic DNA in 10 μL reactions containing 1 X PCR buffer (Promega, Madison, WI), 1.5 or 2.0 mM MgCl₂, 150 μM of each dNTP, 0.25 or 0.5 μM of each primer and 0.2 units of *Taq* DNA polymerase (Promega, Madison, WI). The PCR profiles included an initial denaturation of 3 min at 94°C followed by 30 cycles of 94°C for 1 min, 53°- 63°C for 1 min, 72°C for 1 min and a final extension of 72°C for 10 min. The PCR

products were visualized on 1% agarose gels with 0.4 µg/ml of ethidium bromide. The GenBank accession numbers of the clones, primer sequences, PCR conditions and observed PCR product sizes are shown in Table 1.

The ESTs were mapped using the INRA-University of Minnesota 7,000-rad porcine RH (IMpRH) panel (Yerle et al. 1998; Hawken et al. 1999) using the same PCR profile except that 12.5 ng of hybrid DNA was used. The IMpRH panel was screened twice for each EST and products were visualized on 1- 3% agarose gels. Each of the 118 hybrids was scored as positive, negative or ambiguous, and two-point analysis of RH data was performed using the IMpRH server mapping tool as outlined by Milan et al. (2000; http://imprh.toulouse.inra.fr/).

Results and Discussion

A total of 24 ESTs were mapped for this study (Table 2). These included four ESTs on SSC5, three ESTs each on SSC2 and SSC15, two ESTs each on SSC1, SSC3, SSC9 and SSC14, and one EST each on SSC4, SSC11, SSC12, SSC13, SSC17 and SSCX. Twenty-two of the ESTs had significant similarities to genes of known identity and all of these mapped to their expected porcine-human comparative map locations

(http://www.toulouse.inra.fr/lgc/pig/compare/compare.htm). Eleven of the 24

ESTs had previously been mapped through candidate gene or EST studies in ours or other laboratories using physical or genetic mapping techniques, including seven previous RH map assignments. The results of the present study help to confirm these previous assignments, as well as add 13 new assignments.

Nineteen of the 24 map assignments were with LOD scores ≥ 5.79 (15 > 8.6). However, the remaining five assignments were with LOD scores < 4.5, and thus must be considered as tentative. Four of these five assignments were consistent with expected comparative map locations and two of these had previously been mapped in other laboratories. Thus, there is evidence that these assignments are likely to be correct. An EST of unknown identity (PigESTB) was tentatively assigned to SSC9 (LOD = 4.35). Further study will be needed both to determine the identity of this EST and to confirm its map position.

We report here the mapping of 24 ESTs to 13 pig chromosomes. Davoli et al. (2002) reported a first genomic transcript map for pig skeletal muscle that included 125 markers. While three of the ESTs mapped in the present study were included on the Davoli et al. map, the other 21 ESTs represent new contributions to the pig skeletal muscle transcript map. The ESTs mapped in the present study were observed to be differentially expressed in pig skeletal muscle tissue at 60 days of gestation or seven weeks of age postnatal. Thus, placing these ESTs on the pig genome map not only helps to improve the porcine-human comparative map, but also contributes to the characterization of the pig skeletal muscle transcriptome. Integration of genome map information with gene expression profiling data is an important step toward identifying the genes controlling economically important trait phenotypes.

Acknowledgements

We thank the INRA-Toulouse and the University of Minnesota for distribution of the IMpRH panel DNA. This work was supported by USDA NRI Awards 99-35205-8150 and 03-35206-13922.

Literature Cited

- Archibald AL, Haley CS, Brown JF, Couperwhite S, McQueen HA, Nicholson D, Coppieters W, Van de Weghe A, Stratil A, Wintero AK, et al. (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). *Mammalian Genome* **6**, 157-75.
- Bertani G.R., Larsen N.J., Marklund S., Hu Z.L., Rothschild M.F. Rapid communication: mapping of the titin (TTN) gene to pig chromosome 15 (1999) *Journal of Animal Science* 77, 2857-8
- Cirera S., Jorgensen C.B., Sawera M., Raudsepp T., Chowdhary B.P., Fredholm M. (2003) Comparative mapping in the pig: localization of 214 expressed sequence tags *Mammalian Genome* **14.** 405-26
- Davoli R., Bigi D., Fontanesi L., Zambonelli P., Yerle M., Zijlstra C., Bosma A.A., Robic A, Russo V. (2000) Mapping of 14 expressed sequence tags (ESTs) from porcine skeletal muscle by somatic cell hybrid analysis. *Animal Genetics* **6**, 400-3
- Davoli R., Fontanesi L., Zambonelli P., Bigi D., Gellin J., Yerle M., Milc J., Braglia S., Cenci V., Cagnazzo M., Russo V. (2002) Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. *Animal Genetics* **33**, 3-18
- Farber C.R., Raney N.E., Rilington V.D., Venta P.J., Ernst C.W. Comparative mapping of genes flanking the human chromosome 12 evolutionary breakpoint in the pig (2003) *Cytogenetic and Genome Research* **102**, 139-44
- Fontanesi L., Davoli R., Nanni Costa L., Scotti E., Russo V. (2003) Study of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigs *Cytogenetic and Genome Research*. **102**, 145-51
- Hawken R.J., J. Murtaugh, G.H. Flickinger, M. Yerle, A. Robic, D. Milan, J. Gellin, C.W. Beattie, L.B. Schook and L.J. Alexander. (1999) A first-generation porcine whole-genome radiation hybrid map. *Mammalian Genome* **10**, 824-830.
- Johansson M., Ellegren H., Marklund L., Coppieters W., Andersson L. (1994) Linkage maps of porcine chromosomes 3, 6, and 9 based on 31 polymorphic markers *Mammalian Genome* **5.** 785-90

- Karnuah A.B., Uenishi H., Kiuchi S., Kojima M., Onishi A., Yasue H., Mitsuhashi T. (2001) Assignment of 64 genes expressed in 28-day-old pig embryo to radiation hybrid *Mammalian Genome* **12**, 518-23
- Kapke P., Wang L., Helm J., Rothschild M.F. (1996) Integration of the PiGMaP and USDA maps for porcine chromosome 14. *Animal Genetics* 27, 187-90.
- Lahbib-Mansais Y., Leroux S., Milan D., Yerle M., Robic A., Jiang Z., Andre C., Gellin J. (2000) Comparative mapping between humans and pigs: localization of 58 anchorage markers (TOASTs) by use of porcine somatic cell and radiation hybrid panels. *Mammalian Genome* **11**, 1098-106
- Looft C., Milan D., Jeon J.T., Paul S., Reinsch N., Rogel-Gaillard C., Rey V., Amarger V., Robic A., Kalm E., Chardon P., Andersson L. (2000) A high-density linkage map of the RN region in pigs *Genetics Selection Evolution* 3, 321-9
- Milan D., Hawken R., Cabau C., Leroux S., Genet C., Lahbib Y., Tosser G., Robic A., Hatey F., Alexander L., Beattie C., Schook L., Yerle M., Gellin J. (2000) IMpRH server: an RH mapping server available on the Web. *Bioinformatics* **6**, 558-9
- Robic A, Riquet J, Yerle M, Milan D, Lahbib-Mansais Y, Dubut-Fontana C, Gellin J. (1996) Porcine linkage and cytogenetic maps integrated by regional mapping of 100 microsatellites on somatic cell hybrid panel. *Mammalian Genome* **7**, 438-45
- Robic A., Seroude V., Jeon J.T., Yerle M., Wasungu L., Andersson L., Gellin J., Milan D. (1999) A radiation hybrid map of the RN region in pigs demonstrates conserved gene order compared with the human and mouse genomes.

 Mammalian Genome 10, 565-8
- Tosser-Klopp G., Mulsant P., Yerle M. (1998) Regional localisations of VIM, HSD3b, ACTA1 and PGM1 in pigs. *Animal Genetics* **29**, 23-6.
- Wintero A.K., Jorgensen C.B., Robic A., Yerle M., Fredholm M. (1998) Improvement of the porcine transcription map: localization of 33 genes, of which 24 are orthologous. *Mammalian Genome* **9**, 366-72.
- Yao J., Coussens P.M., Saama P., Suchyta S., Ernst C.W. (2002) Generation of expressed sequence tags from a normalized porcine skeletal muscle cDNA library. *Animal Biotechnology* **13**, 211-222.

- Yerle M., Echard G., Robic A., Mairal A., Dubut-Fontana C., Riquet J., Pinton P., Milan D., Lahbib-Mansais Y., Gellin J. (1996) A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. *Cytogenetics and Cell Genetics* **73**, 194-202.
- Yerle M., Pinton P., Robic A., Alfonso A., Palvadeau Y., Delcros C., Hawken R., Alexander L., Beattie C., Schook L., Milan D., Gellin J. (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. *Cytogenetics and Cell Genetics* **82**, 182-8
- Zambonelli P., Davoli R., Russo V., Musilova P., Stratil A., Rubes J., Cepica S. (2000) Assignment of the troponin C2 fast gene (TNNC2) to porcine chromosome bands 17q2.1-->q2.2 by in situ hybridization. *Cytogenetics and Cell Genetics* **89**, 162-3

Observed PCR product size 2200 1100 250 200 300 200 200 250 200 902 (**p**b) 8 200 8 50 150 450 400 Temperature (°C) Annealing 20 55 29 59 55 59 62 62 57 59 57 62 57 စ္တ 8 57 57 able 1. Primer sequences and PCR amplification conditions for porcine skeletal muscle ESTs R-AGAGGAGAAAGCCAGGCAACT F-GCAACTGGATAGAGGAGGTG R-TTCTAGGCAATTACCAAAGTC R-CAGAGGCAGTGAAGAAGATG F-TGTCGGTTTGGGCAGCAG R-AGCGCAAGTACTCCGTGTGG F-GAAGGAGTTACCACCAAGGA R-CAAGGATAGGCAGGCGAGA1 R-AGGGCTGGTGTTCTGGGTCA R-ATGTCAATGGTGGTGTGGAA R-GTCCCTGCCAGCCTCCAAAC F-AATCGGAAAGCCTTGGAGAG F-ACCCTGCCCACGCCTCCTTC F-TGGGTACAAGTGGAGACATC R-CGGCTGGAGTGGGAGAAGG R-AAGGTGCATATATCGTTAGA F-CCTGCTCTCCAAAGTGGTTC R-CCTCTTCCCGCTGCTCCTTC F-GATACCCCAAAACAGATTCG R-TCCCTGCACCCCCACCATCT F-GAGGAATGATGTGCTATGTA R-TAATGCTATCCAGTAACAGA F-AAGCGCTGGTTGATCTCATA F-ACCTGATAAACCTGCTGTAA F-TTTAATGAGGACACGGAAAC R-AGCGGGTACTACTTCAC R-CCCTCCTGCCCTTAAATCCT F-TGACTGGAATCCCTACACCT F-GCTCCTCTTCCTCTCCACC F-ACACCAAGGGCGACTACCA F-CCCCCACATCCTTCTCACTT =-AGTGTAATGGAATCAAATGT R-GCATGTATTTATTTAGTTC R-TCTCACCGCTTGCTCTAC Primers 5' **→** 3' **EST symbol** Gene/ HSPC1112 LEPREL2 SLC38A2 **COL1A2 HIRIP3 ANAX2** ACTA1 **PYGM** ARHE **CNN3** NANS PTK9 067 χŠ R FN MB Ras homolog gene family, member Solute carrier family 38, member 2 Phosphorylase, glycogen; muscle N-acetylneuraminic acid synthase O-linked N-acetylglucosamine (McArdle syndrome, glycogen Hyothetical protein HSPC111 Skeletal muscle alpha-actin HIRA interacting protein 3 Protein tyrosine kinase 9 EST identity Collagen type 1 alpha 2 storage disease type V) (sialic acid synthase) Leprecan-like 2 Acidic calponin Fibronectin 1 Annexin A2 ransferase Myoglobin Paxillin Accession BM190400 BM190195 BM190116 CB826594 BM190666 BM190067 BM190440 BM190028 BM190280 BM190472 BM190045 BM190337 CF106688 CB826595 CB826596 CB826597 CB826590 number

	1	ċ	
		ļ	į
		۰	
	•	•	
	4	q	י
,	4	٩	2
	ŀ		

Accession number	Gene/ EST identity	Gene/ EST symbol	Primers $5' \rightarrow 3'^1$	Annealing Temperature (°C)	Observed PCR product size (bp)
BM190108	Titin immunoglobulin domain protein (myotilin)	TTID	F-AAATGTGCAAGAGTCAAAGG R-AGATGTAAATAAGAAGATG	53	800
BM190107	Titin-cap (telethonin)	TCAP	F-CGCTGTCTTTGCTCCCTTCC R-TTCGTCGCTCCCTGTCTCGT	59	250
BM190123	Troponin C, fast	TNNC2	F-GCCATCGTTGTTCTTGTCTC R-AAGGGGAAGAGTGAGGAGGA	63	350
BM190114	Troponin C, slow	TNNC1	F-GCCATCATTGTTCTTGTCAC R-CAAAGGAAAGTCTGAGGAGG	59	450
BM190036	Tumor protein, translationally controlled 1	TPT1	F-AATGCCTCCGCTCCAAAGAA R-ACGGGCTGTGTCTGGAGGTG	59	009
BM190265	Unknown	PigESTA ³	F-AGGGCTTGGGATGGCTATTT R-AGTTCCCTGGTGGTTTAGTG	63	350
BM190601	Unknown	PigESTB ³	F-TCTCCCTTCCCTTGGCTCTG R-CTTCTCGGCGTGGTCATCTG	29	200

¹Amplification conditions included 1.5 mM MgCl₂ and 0.5 µM each primer except ANAX2 2.0 mM MgCl₂, and TNNC2, PYGM and PigESTA primer concentrations 0.5 µM forward and 0.25 µM reverse.

²Symbol not approved by the HUGO Gene Nomenclature Committee.

³EST does not significantly match any gene of known identity in the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/).

Table 2. Ra	Table 2. Radiation hybrid	_	ults for porc	mapping results for porcine skeletal muscle ESTs	iuscle ESTs	
Gene	RH assignment	Closest linked marker	LOD	Human map location	Human genome	Previous assignments ²
ACTA1	4	SWR346	8.67	1942.1	Chr1:225,873,730- 225,876,576	Tosser-Klopp et al. (1998) (S) Archibald (1995) (L) Kapke et al. (1996) (L)
ANXA2³	-	S0122	3.19	15q21-q22	Chr15:58,426,826-	Karnuah et al. (2001) (R)
ARHE	15	SW2072	6.62	2q23.3	36,477,463 Chr2:151,150,216- 151 169 672	Wintero et al. (1990) (5)
067	×	SW949	3.33	Xq13.1	ChrX:70,536,001-	
 CNN3	4	26008	22.41	1p22-p21	70,370,033 Chr1:95,074,555- 95 104 684	
COL1A2	O	SWR915	8.81	7q22.1	93, 104,004 Chr7:93,668,523- 93,705,195	Kamuah et al. (2001) (R) Cirera et al. (2003) (S. & R)
FN1 ³	15	SW2083	13.55	2q34	Chr2:216,051,092-	Jonansson et al. (1994) (L) Robic et al. (1999) (R)
HIRIP3	ო	SW1443	8.7	16p12.1	216,060,578 Chr16:29,911,817-	Loon et al. (2000) (L)
HSPC111	2	S0226	3.44	5q35.3	29,914,888 Chr5:175,743,554- 175 748 959	
LEPREL2	S	SW963	16.26	12p13	Chr12:6,808,111-	
MB	2	AC02	5.79	22q13.1	Chr22:34,327,311-	Lahbib-Mansais et al. (2000)
NANS	-	SSC11E11	8.64	9p24.1-p23	34,337,876 Chr9:97,898,567- 97,924,942	(S 8 5)
PTK9	2	SWR1974	20.48	12q12	Chr12:42,473,792-	
PXN	4	SW295	10.8	12q24.23	42,460,445 Chr12:119,110,976- 119.166.229	Farber et al. (2003) (R)

Table 2. cont	ont.					
Gene	RH	Closest	GOT	Human map	Human genome	Previous
symbol	assignment	linked marker	score	location	position	assignments ²
PYGM	2	SW256	17.2	11912-913.2	Chr11:64,270,703-	Davoli et al. (2000) (S)
					64,283,946	Fontanesi et al. (2003) (L)
SLC38A2	2	SW1200	4.48	12q	Chr12:45,038,238-	Cirera et al. (2003) (S & R)
					45,052,822	
TCAP	12	SW943	25.02	17q12	Chr17:35,075,127-	
					35,076,332	
TNNC1	13	SSC24F05	9.12	3p21.1	Chr3:52,460,157-	
					52,463,097	
TNNC2	17	SW2431	9.9	20q13.12	Chr20:43,885,264-	Zambonelli et al. (2000) (C)
					43,889,358	
OITT	2	SW1879	9.17	5q31	Chr5:137,231,463-	Davoli et al. (2002) (S)
				•	137,251,430	•
NLL	15	SW1263	7.03	2q31.2	Chr2:179,216,226-	Davoli et al (2002) (S)
					179,497,655	Lahbib-Mansais et al. (2000)
						(S & R)
						Bertani et al. (1999) (L & S)
TPT1	±	SSC6E09	19.17	13q	Chr13: 44,810,794- 44,813,204	
PigESTA	က	SW251	8.85	-		
PigESTB	6	SSC8B04	4.35	!	•	

'Numbers indicate position of gene in bp from p-terminus on indicated human chromosome based on the May 2004 assembly using the University of California Santa Cruz Genome Browser (http://genome.ucsu.edu).

²Method of mapping Somatic cell hybrid panel (S), Linkage (L), Radiation hybrid panel (R), Cytogenetic (C). ³Regionally assigned using a somatic cell hybrid panel (Robic et al. 1996; Yerle et al. 1996). ANXA2, SSC1q11-q17; FN1, SSC15q23-q26. Risk of error less than 0.1%.

CHAPTER 4

Summary and Recommendations for Future Research

Enhancing pork quality and production efficiency are major concerns for pig producers. The advent of new technologies such as large scale gene expression microarrays and high resolution gene maps can lead quickly to candidate genes for economically important phenotypic traits allowing for a faster turn around to gene tests that could improve pork quality. The market weight of an animal is directly linked to the amount of muscle fibers and the size of the fibers that the animal has. The fiber number is determined before the birth of the animal and the size is due to postnatal hypertrophy. A great deal is known about the structural changes, regulatory genes and growth factors involved in skeletal muscle development. However, relatively little is known on the cascade of events controlling fetal myogenesis and postnatal hypertrophy.

Skeletal muscle is the most abundant tissue in an animal's body and it is regulated by complex biological mechanisms. Thus, to begin to understand gene expression patterns during the growth process requires a technology that simultaneous determines expression of the numerous genes involved.

Microarray technology allows researchers to screen large biological systems in one experiment. Not only is understanding the gene expression of a system important, but beginning to integrate these large amounts of data into other areas of the biological system is also important. Searching for candidate genes controlling important traits can be a long process. However, taking the data acquired from microarrays and mapping the identified genes allows for an easier

search. Linking gene expression data and genetic maps connects the phenotypic expression to economically important traits.

This study was designed to identify differentially expressed genes in developing pig skeletal muscle and locate them on the pig genome map. The specific objectives were: 1) Identify differentially expressed genes in hind limb skeletal muscles of pigs at 60 days of gestation and 7 weeks of age; and 2) Determine the map locations for differentially expressed genes.

To achieve Objective 1, a combination of differential display reverse transcription PCR, cDNA microarray analysis and 70-mer oligonucleotide microarray analysis were used. A total of 214 genes were found to be differentially expressed in developing pig hind limb skeletal muscle using these techniques. Three genes were identified with all three techniques and five other genes were common to two of the techniques. Results of this study provide a unique set of differentially expressed genes involved in skeletal muscle development. Some of these genes have previously been functionally characterized in skeletal muscle of other species. However, many of the genes have not been evaluated in skeletal muscle. For example, translationally controlled tumor protein 1 (TPT1) has been reported to be expressed in skeletal muscle, but there is no report on its role or importance in muscle development. Thus, we were able to provide information about the expression pattern of TPT1 in developing skeletal muscle.

Relative real-time RT-PCR confirmed that titin (TTN), titin-cap (TCAP) and TPT1 were more highly expressed in pig skeletal muscle at 7 weeks of age. Titin

immunoglobulin domain protein (TTID) was also more highly expressed in the 7 week samples, in agreement with information in the literature indicating that expression of TTID increases throughout mouse development. Troponin C1 (TNNC1) was observed to be differentially expressed on both microarray platforms. This result was not confirmed by relative real time RT-PCR, but the large animal-to-animal variation may have affected the statistical analysis. Thus, the expression pattern of TNNC1 is still inconclusive and it should be repeated with a different set of animals. Abundance of fibronectin 1 (FN1) and calponin 3 (CNN3) mRNA was confirmed to be highest at 60 days of gestation. Evaluation of paxillin (PXN) indicating expression to be higher at 105 days of gestation than at 60 days of gestation or 7 weeks of age provides additional information about expression of cytoskeletal genes in developing skeletal muscle.

To achieve Objective 2, 24 genes were selected from the DDRT-PCR and cDNA microarray experiments conducted for Objective 1 and they were localized on a pig radiation hybrid (RH) map. These genes were assigned to 13 different pig chromosomes and those of known identity (22 of the 24) mapped to the expected porcine-human comparative map locations. Not only does mapping of these genes help to improve the porcine-human comparative map, but since they were observed to be differentially expressed in hind limb skeletal muscle of pigs at 60 days of gestation and 7 weeks of age, they represent new contributions to the pig skeletal muscle transcript map.

In summary, this project represents a first step toward characterizing the transcriptional profile of developing pig skeletal muscle. Thus, there are several

considerations for future research efforts. During fetal myogenesis, there are distinct structural changes in skeletal muscle, and postnatally muscle hypertrophy rapidly increases. Therefore, for future microarray studies it would be prudent to include more developmental ages in the evaluation. The addition of more ages at critical times of fiber formation and hypertrophy would give a clearer understanding of the skeletal muscle development process. It is also recommended that these studies include more animals at each age in order to improve the power of the statistical analyses.

Both the cDNA microarray and 70-mer oligonucleotide microarray platforms appear to work well for evaluating transcriptional profiles of developing skeletal muscle. The cDNA microarray used for this study contained only 768 clones so it was only a small representation of the pig genome and what genes could possibly be expressed in skeletal muscle. Therefore, it is recommended to expand this array to include more clones in order to improve the comprehensiveness of gene expression profiles. Although the currently available pig oligonucleotide microarray contains over 13,000 oligonucleotides, the expressed sequence tag (EST) collection that was available when these oligonucleotides were designed contained very few ESTs derived from skeletal muscle. Thus, as the number of skeletal muscle ESTs increases, future oligonucleotide sets will contain a better representation of genes expressed in muscle and future studies will benefit from this improved resource. In addition to improved microarray resources, future studies to profile gene expression patterns

in skeletal muscle will benefit from application of the latest approaches for microarray screening and data analysis.

Transcriptional profiling of pig skeletal muscle tissue will provide a wealth of information, but it is important that genes identified by microarray analyses be further studied at both the mRNA and protein levels in order to fully characterize their functions. In addition, the map positions of these genes should be determined and integrated into quantitative trait loci (QTL) studies for muscle growth traits. This will not only allow all of the available information to be used to improve pig production, but the resulting comparative map information will provide basic fundamental knowledge about mammalian skeletal muscle development.

,		

