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ABSTRACT

IDENTIFICATION AND MAPPING OF DIFFERENTIALLY EXPRESSED
GENES IN FETAL AND POSTNATAL PIG SKELETAL MUSCLE

BY
Valencia Danielle Rilington

Fetal myogenesis and postnatal skeletal muscle hypertrophy in growing
pigs are critical yet poorly understood processes. Global gene expression
analyses can identify key genes and pathways controlling these processes. In
addition, integration of gene expression data with genome map information will
facilitate identification of genes controlling economically important trait
phenotypes. This study was designed to identify differentially expressed genes
in developing pig skeletal muscle and locate them on the pig genome map. The
specific objectives were: 1) Identify differentially expressed genes in hind limb
skeletal muscle of pigs at 60 days of gestation and 7 weeks of age; and 2)
Determine the map locations for differentially expressed genes. A combination of
differential display RT-PCR, cDNA microarray analysis and oligonucleotide
microarray analysis were used to identify differentially expressed genes. In total,
over 200 differentially expressed genes were revealed and expression patterns
for eight genes were evaluated by relative real time RT-PCR, confirming
differential expression for seven of them. Twenty-four genes were mapped to 13
different pig chromosomes using the INRA-University of Minnesota (IMpRH)
7,000 rad radiation hybrid panel. This study represents a first step toward
characterizing the transcriptional profile of developing pig skeletal muscle and it

improves the porcine-human comparative map.
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CHAPTER 1

Literature Review

Introduction

Skeletal muscle is the most abundant tissue in animals and, as meat, it is
an economically important food source. The amount of muscle an animal has at
market weight is predetermined by the size and number of muscle fibers
(reviewed by Novakofski and McCusker, 1993) and fiber number is determined
during fetal development (Swatland and Cassens, 1973). Fetal myogenesis is
thus an extremely important research topic and many reports discuss the
structural changes, contractile proteins and regulatory factors involved in the
process of skeletal muscle development. Still, relatively little is known about the
complex gene expression patterns associated with this process. Postnatal
growth expands the prenatally developed fibers by increasing the diameter and
length of the skeletal muscle. Researchers have discovered a number of
important genes involved in this process including several growth factors and
transcription factors. However, the complete transcriptional profile of developing
skeletal muscle is unknown.

Gene expression profiles must be integrated with genome maps to fully
understand complex biological mechanisms such as skeletal muscle
development. Mapping of differentially expressed genes facilitates integration of
genetic variants that affect phenotypic expression of economically important

traits. Specifically for pigs, this will lead to maps that will be more informative for



study of biological mechanisms controlling economically important traits such as
muscle growth and meat quality. Such integrated maps will also facilitate
research using the pig as an animal model for human studies.
Skeletal Muscle Development

Fetal myogenesis

Fetal myogenesis is a complicated process involving coordinated

regulation of proliferation and differentiation of myogenic cells. At around day 18
to 20 of gestation in pigs, mesenchymal cells differentiate into committed
myogenic precursor cells. These mononucleated proliferating cells migrate from
the somites into the growing limb buds to eventually become myoblasts
(reviewed by Novakofski and McCusker, 1993). The migrating cells can not
become myoblasts until the transcription factor, paired box gene 3 (PAX3) is
expressed (Epstein et al., 1996). PAX3 activiates the transcription of c-met,
which then interacts with scatter factor (or hepatocyte growth factor, HGF;
Dietrich et al., 1999). In order for myogenic precursor cells to become
myoblasts, myogenic regulatory factors (MRFs) need to be expressed. PAX3
induces expression of the MRFs, myogenic factor 3 (MYOD1) and myogenic
factor 5 (MYF5), which are helix-loop-helix transcription factors. MYOD1 and
MYF5 are required at the determination step to commit proliferating precursor
cells to the myogenic lineage (Rudnicki et al., 1993). The myoblasts then
proliferate, further differentiate into myocytes and mature into myofibers through
the action of the MRFs, myogenin (MYOG) and myogenic factor 6 (MYF6;

reviewed by Sabourin and Rudnicki, 2000). Myoblast proliferation and



differentiation is also regulated by growth factors. Insulin-like growth factor-|
(IGF-1) and IGF- |l stimulate myoblast proliferation and differentiation, while
fibroblast growth factor (FGF) stimulates myoblast proliferation. Transforming
growth factor — B (TGF-B) inhibits FGF and decreases both proliferation and
differentiation (reviewed by Florini and Magri, 1989).

Myoblasts proliferate and begin to align with other myoblasts and fuse.
The fusing myoblasts form primary myotubes (reviewed by Novakofski and
McCusker, 1993). In pigs, production of myotubes or primary fibers begins at
approximately 40 days of gestation and primary fibers determine the future size
and location of the muscle tissue. At around 50 to 60 days of gestation,
secondary fibers form by adhering to the primary fibers (Wigmore and Stickland,
1983). By 70 days of gestation, primary fiber formation has slowed down
compared to secondary fiber formation, and by 90 days of gestation secondary
fiber formation has also slowed (Beermann et al., 1978) so that at birth
(approximately 114 days), the number of muscle fibers in the animal is set.

Postnatal hypertrophy

After birth, muscle growth occurs through hypertrophy by which the
muscle increases in size and length. Muscle size is affected by growth factors
and exercise, and myogenic satellite cells mediate the postnatal growth of
muscle (Schultz, 1989, 1996). Muscle fiber hypertrophy is associated with an
increase in DNA content. Because the differentiated myonuclei do not have the
ability to synthesize DNA, satellite cells contribute new nuclei by fusing with the

growing muscle. Thus, the roles of satellite cells include muscle regeneration,



muscle hypertrophy and postnatal muscle growth (Darr and Schultz, 1987,
Grounds, 1998; Grounds and Yablonka-Reuveni,1993; Rosenblatt et al., 1994).
The IGFs, FGF, TGF-B and platelet-derived growth factor (PDGF) have all been
shown to affect satellite cell proliferation and differentiation. PDGF stimulates
satellite cell proliferation (for review see Yablonka-Reuveni, 1995) and FGF
stimulates proliferation and depresses differentiation, whereas IGF-| stimulates
both proliferation and differentiation, and TGF-B depresses proliferation and
inhibits differentiation (Allen and Boxhorn, 1989).
Gene Expression Profiling of Skeletal Muscle Tissue

Several techniques have been developed for evaluating mRNA
abundance in tissues or cells. Techniques such as northern blot analysis and
real-time reverse transcription PCR (RT-PCR) are effective, but they are limited
to examination of only one or a few genes at a time. Thus, screening of
hundreds or thousands of genes using these techniques would be time and cost
prohibitive. More global approaches are needed to simultaneously examine
expression patterns of large numbers of genes. One technique for doing this is
differential display RT-PCR (DDRT-PCR; Liang and Pardee, 1992). However,
large-scale DDRT-PCR analyses can also be time consuming and expensive.
The mapping of the human genome spurred a new generation of gene
expression techniques and DNA microarray technologies have emerged as

popular methods for identifying differentially expressed genes.



DNA Microarrays

Types of microarrays include different platforms to which the probes are
adhered including nylon membranes, glass slides and silicon chips. The probes
can either be spotted cDNAs, PCR amplification products, short (25-30mer)
oligonucleotides or longer (50-70mer) oligonucleotides. Each of these platform
and probe types has been used successfully in many research areas.
Microarrays produced by Affymetrix, a short oligonucleotide chip company, have
not commonly been used by investigators involved in livestock animal research
because chips specific for these species have not been available, although
Affymetrix is currently in the process of introducing these products. Other
platforms have been very popular for livestock animal research and, as cDNA
library and expressed sequence tag (EST) database resources have been
developed, both cDNA and long oligonucleotide microarrays have been
produced.

Microarrays are heavily integrated into research in many different aspects
of the scientific community. Thousands of studies using microarray technologies
have been reported. Therefore, the discussion of microarray experiments in this
literature review will focus on studies involving gene expression profiling of
skeletal muscle. Microarrays have been used to examine skeletal muscle gene
expression in humans, mice, rats, zebrafish, cattle and pigs. This research has
covered a broad range of subject matter including diseases, exercise and
nutritional effects on gene expression. For example, skeletal muscle gene

expression profiles have been reported for cancer studies (Basso et al., 2004,



Kappler et al., 2004), Duchenne muscular dystrophy (DMD) studies (Companaro
et al., 2002; Muntoni et al., 2002; Noguchi et al., Porter et. al., 2002; Porter et al.,
2003a; Porter et al., 2003b; 2003; Winokur et al., 2003; ), and studies of
hormonal effects (Rome et al., 2003; Sreekumar et al., 2002a, Viguerie et al.,
2004; Yang et al., 2002), dietary effects (Linnane et al., 2002, Reverter et al.,
2003; Sreekumar et al., 2002b,c) and exercise effects (Carson et al., 2002; Hittel
et al., 2003; Mu et al., 2003; Wu et al., 2003).

Additional gene expression profiling studies in humans, mice and rats
have identified differentially expressed transcripts between quadriceps (white
muscle) and soleus (red muscle) in mice (Campbell et al., 2001), the effect of
neuregulin, a heparin sulfate proteoglycan on primary human myotubes
(Jacobson et al., 2004), the effects of forkhead type transcription factor 1 on
skeletal mass (Kamei et al., 2004), and metabolic adaptations in skeletal muscle
during lactation (Xiao et al., 2004). Other experiments identified candidate genes
involved in skeletal muscle injury in mice (Summan et al., 2003), examined the
anti-oxidative response of carbonic anhydrase Ill in skeletal muscle (Zimmerman
et al., 2004), and determined effects of reducing temperatures in adult zebrafish
(Malek et al., 2004). Zhou et al. (2004) identified distinct gene expression
clusters in idiopathic inflammatory myopathies in muscle biopsies.
Transcriptional differences were also examined in muscle wasting due to
spaceflight (Nikawa et al., 2004, Taylor et al., 2002) and in burn victims receiving
anabolic steroid treatment (Barrow et al., 2003). Finally, in a unique application

of microarray analysis, Cronin et al. (2004) used an oligonucleotide microarray to



demonstrate that protein-coated poly(L-lactic acid) fibers were a suitable
substrate for growing human skeletal muscle cells because expression profiles
did not differ from cells grown on standard tissue culture plates.

As discussed above, myoblast differentiation is a critical step in early fetal
skeletal muscle development. Tomczak et al. (2004) used expression profiling to
examine gene expression during a 12-day time course of differentiating C2C12
myoblasts. The differentiating C2C12 cells progressed through a predictable
pattern of myogenic events as the myoblasts ceased proliferating and began
differentiating. Tomczak et al. (2004) found that MYF5 expression decreased
gradually while MYOD1 transcripts peaked at the onset of differentiation, and
MYOG and MYF6 were induced later in the time course. These results were
expected because MYF5 and MYOD1 are required at the determination step to
commit proliferating myoblasts, whereas MYOG and MYF6 are required for
myoblast differentiation. Several transcripts involved in cell-cycle regulation, cell
signaling, ion transport, and nucleic acid and protein metabolism exhibited high
expression levels in the proliferating myoblasts and decreased over the rest of
the time course. Another group of transcripts including genes involved in muscle
contraction, muscle development, metabolism, cell signaling, ion transport and
transcription were observed to be undectable or lowly expressed during
proliferation but to increase progressively throughout the rest of time course.
The use of microarrays to examine proliferating and differentiating myoblasts in
this study identified both genes known to be involved in muscle development and

also previously unknown genes. Moran et al. (2002) also performed a study with



proliferating and differentiating myoblasts that covered a shorter time course.
Their results were similar to Tomczak et al. (2004) in that differentially expressed
genes fell into functional categories including muscle contraction, cell adhesion,
extracellular matrix, cellular metabolism, mitochondrial transport, DNA
replication, cell cycle control, mRNA transcription and immune regulation.

The role of growth factors in muscle development was also discussed
above. IGF action is critical both for maintaining viability during the transition
from proliferating to differentiating myoblasts and for facilitating differentiation.
PDGF can sustain cell survival but inhibits differentiation. Kuninger et al. (2004)
used microarrays to identify genes induced by IGF-I and PDGF in myoblasts.
This study identified 28 muscle-specific genes whose expression was uniquely
stimulated by IGF-I including MYOG, several enzymes such as a calcium-
dependent ATPase and creatine kinase, numerous transcripts for components of
the contractile apparatus such as a-actin, several troponins, myosin heavy and
light chains, and tropomyosin, and two sarcoglycans, among others. In contrast,
no muscle-specific transcripts were identified among the 41 known genes that
were differentially induced by PDGF. Thus, this study begins to define a
transcriptional profile of genes induced by IGF-I and PDGF in skeletal muscle.

Transcriptional changes in skeletal muscle associated with aging have
been examined in humans, mice and rats. Roth et al. (2002), in a study to
determine the influence of age, sex, and strength training (ST) on gene
expression patterns in skeletal muscle, identified 50 genes affected by age that

represented structural, metabolic, and regulatory gene classes. Welle et al.



(2001) examined gene expression differences in young vs. old skeletal muscle of
both mice and men. They identified 17 differentially expressed genes that were
similar in mice and men and 32 that were dissimilar. Six were classified as
overexpressed in both mice and men, 19 as overexpressed in mice but notin
men, 11 as underexpressed in both mice and men, and 13 as underexpressed in
mice but not in men. This study demonstrated not only gene expression
differences associated with aging, but also species differences in skeletal muscle
gene expression patterns.

In 2003, Welle et al. reported a more thorough study that examined gene
expression profiles between younger (21-27 yr old) and older men (67-75 yr old).
A total of 718 genes were differentially expressed and older muscle was
observed to express several hundred more genes than younger muscle. Genes
that encode proteins involved in energy metabolism and mitochondrial protein
synthesis were expressed at lower levels in older muscle. Genes encoding
metallothioneins, high-mobility-group proteins, heterogeneous nuclear
ribonucleoproteins and other RNA binding/processing proteins, and components
of the ubiquitin-proteasome proteolytic pathway were expressed at higher levels
in older muscle. Subsequently this research gfoup conducted a similar study in
young and old women (Welle et al., 2004) and the results agreed with those of
the men’s study. Approximately 1,000 genes were differentially expressed with
more genes expressed in older muscle. In addition, over 100 genes involved in

energy metabolism were expressed at lower levels in older muscle and over 40



genes encoding proteins that bind to pre-mRNAs or mMRNAs were expressed at
higher levels in older muscle.

Zhang et al. (2002) observed gene expression patterns in skeletal muscle
of young (3 months) vs. old (30 months) rats. The study found 127 differentially
expressed genes, among which some genes down-regulated in older muscle
were involved in energy metabolism and signal transduction, while some up-
regulated genes were related to protein degradation and cell apoptosis. A similar
study by Pattison et al. (2003) examined rats of the same ages and identified 682
differentially expressed genes, of which 347 were decreased in older muscle
relative to younger muscle with a major category being genes that encode
extracellular matrix and cell adhesion proteins. Of the 335 genes increased in
older muscle, many were involved in immune response, proteolysis, or
stress/antioxidant response. These studies examining aging in skeletal muscle
provide insight into genes that may be involved in skeletal muscle development.

To date, only a few studies have been reported involving microarray
analysis of pig skeletal muscle. However, the availability of resources for
conducting such studies is rapidly increasing. Complementary DNA libraries for
pig skeletal muscle have been constructed from adult biceps femoris (Davoli et
al., 1999) and from an ontogeny of samples from five developmental time points
(Yao et al., 2002). These projects have increased the number of ESTs available
from pig skeletal muscle. Before pig microarrays became available, Moody et al.
(2002) reported successful cross species hybridization using human nylon

microarrays with porcine skeletal muscle samples. Zhao et al. (2003) produced a
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cDNA nylon macroarray that contained 327 pig ESTs and reported 28 genes that
were differentially expressed in pig hind limb skeletal muscle at 75 days of
gestation and 1 week of age. Specifically, genes including elongation factor 1
alpha, vimentin, splicing factor arignine/serine rich 12, GABA-A, tubulin, protein
phosphatase 2C alpha, several genes encoding ribosomal proteins and several
genes of unknown function were more highly expressed at 75 days of gestation,
a timepoint when secondary fibers are rapidly forming. Also, glyceraldehyde-3-
phosphate dehydrogenase and a gene of unknown function were more highly
expressed at 1 week of age when muscle is undergoing rapid hypertrophy. This
study gives insight into genes involved in skeletal muscle development.

Bai et al. (2003) reported development of a microarray that included 5,500
clones from two developmentally distinct pig skeletal muscle cDNA libraries and
they performed an initial screen of the array with psoas and longissimus dorsi
(LD) muscle RNA from a 22-week-old pig. They found 70 genes that were more
highly expressed in the psoas and 45 genes that were more highly expressed in
the LD, thus identifying, candidate genes influencing muscle phenotypes.
Subsequently, da Costa et al. (2004) used this same array to examine the effects
of dietary restriction on skeletal muscle gene expression. Twenty genes were
more highly expressed in both the LD and psoas muscles of pigs fed a low
protein and energy diet. Also, thirteen genes were more highly expressed in the
psoas of pigs fed the restricted diet and 5 were more highly expressed in the LD.
The differentially expressed genes affected metabolism, energy, translation and

growth. The findings also identified novel genes that have growth modulatory
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properties and could play pivotal roles in growth suppression and muscle
phenotype determination, which all affect skeletal muscle development. Porcine
microarray research has a long way to go to reach the level of research in
humans, mice and rats. However, it is likely that in a few years there will be a
similar flood of research reports when accessibility to these technologies
increases through an increase in the number of pig ESTs and the development of
pig microarrays.

Comparative Mapping

‘ Comparative gene mapping utilizes information from species such as
human and mouse that have complete genome sequences available to improve
the resolution of genome maps for species such as the pig that are not fully
sequenced. These maps then aid in the identification of candidate genes for
economically important traits such as growth, health, and product quality. In
addition, gene expression profiling studies reveal genes involved in the
expression of important trait phenotypes. Thus, in order to fully utilize the
available information for identifying genes controlling economically important
traits, it is important to integrate gene expression data with genome map
information.

Development of the porcine-human comparative map has continued to
make great advancements over the past decade. A comprehensive study of
human-pig conservation using chromosomal painting was reported by Goureau
et al. (1996) who used a bidirectional approach in which both human and pig

probes were hybridized to metaphase spreads of the opposite species. This
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study identified 37 conserved regions between humans and pigs. Following this,
a somatic cell hybrid panel was developed (INRA SCHP; Yerle et al., 1996) that
allowed for regional localizations of genes on pig chromosomes. Higher
resolution maps can be achieved with the use of radiation hybrid (RH) panels.
RH panels are constructed by fusing irradiated DNA from a species of interest
such as the pig with a rodent cell line to form a panel of stable hybrid cell lines
that each contains a different complement of the genome of interest. The most
widely used pig RH panel is the INRA-University of Minnesota (IMpRH) 7,000 rad
panel (Yerle et al., 1998; Hawken et al., 1999). The first generation porcine
whole-genome RH map developed with this panel contained a total of 903
markers (Hawken et al., 1999). More recently, this group has developed a
12,000 rad RH panel that allows for more accurate resolution of gene order to
further improve the pig-human comparative map (Yerle et al., 2002).

Many ESTs from cDNA libraries derived from various tissues have been
mapped using the INRA SCHP, IMpRH and other panels. These include 67
ESTs from female reproductive tissues (Shi et al., 2001; Tuggle et al., 2003), 182
EST clusters from porcine back fat libraries (Mikawa et al., 2004), and 214 ESTs
from a porcine small intestine cDNA library (Cirera et al., 2003). Davoli et al.
(2002) reported a first genomic transcript map for pig skeletal muscle that
included 125 ESTs derived from their pig biceps femoris cDNA library. In efforts
to identify positional candidate genes in QTL regions, 20 ESTs were mapped to
pig chromosomes 9 and 3 (Middleton et al., 2003) and 28 ESTs were mapped to

pig chromosome 10 (Aldenhoven et al., 2003), where QTL for economically
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important reproduction and carcass traits have been reported (Hirooka et al.,
2001; Malek et al., 2001a,b, Rohrer and Keele 1998a,b; Rohrer et al., 1999;
Rohrer 2000; Wada et al., 2000;). Rink et al. (2002) reported the most
comprehensive pig EST comparative mapping effort so far by assigning 1,058
EST markers to the IMpRH. Thus, mapping of ESTs to the pig genome map
improves the porcine-human comparative map and facilitates the identification of
candidate genes for economically important traits.

Summary

Skeletal muscle development is controlled by a complicated biological
mechanism. A great deal is known about the structural changes, regulatory
genes and growth factors contributing to fetal myogenesis and postnatal
hypertrophy. However, relatively little is known about the complexity of gene
expression patterns associated with these developmental stages. With the
advent of microarray technology, the opportunity for examining these patterns is
available.

Numerous studies have used microarray technology to examine gene
expression patterns in skeletal muscle of humans, mice and rats. To date, only a
few reports have used these technologies to examine gene expression patterns
in pig skeletal muscle. However, this is expected to increase in the near future
as the availability of porcine EST sequences increases, and cDNA and
oligonucleotide microarrays become more accessible. In addition, the integration

of gene expression and genetic mapping information will lead to connecting
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phenotypic expression to genomic positions, thereby accelerating the discovery
of candidate genes.

We hypothesize that growth and development of skeletal muscle tissue is
associated with distinct gene expression patterns that are unique to specific
developmental stages. This study was designed to identify differentially
expressed genes in pig skeletal muscle between pigs at a fetal age
corresponding to the initiation of secondary fiber formation and postnatal pigs
undergoing rapid muscle hypertrophy. In addition, the study included locating
some of these genes on the pig genome map. The specific objectives were to:

1. Identify differentially expressed genes in hind limb skeletal muscles of

pigs at 60 days of gestation and 7 weeks of age; and

2. Determine the map locations for differentially expressed genes.
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CHAPTER 2

Differential Gene Expression in Fetal and Postnatal Pig Skeletal Muscle

Abstract
Fetal myogenesis and postnatal skeletal muscle hypertrophy in growing

pigs are critical yet poorly understood processes. Global gene expression
analyses can be used to increase understanding of these processes by
identifying key genes and pathways controlling skeletal muscle development.
For this study, three techniques including differential display reverse transcription
PCR (DDRT-PCR), a pig skeletal muscle cDNA microarray and a pig 70-mer
oligonucleotide microarray were applied to identify differentially expressed genes
in hind limb skeletal muscle tissue of pigs at 60 days of gestation and 7 weeks of
age. The cDNA and oligonucleotide microarray experiments revealed 35 and
163 genes, respectively, that were differentially expressed between the 60 day
fetal and 7 week postnatal samples. The DDRT-PCR experiment also included
skeletal muscle tissue from pigs at 105 d of gestation and revealed 16 putatively
differentially expressed genes. The genes TTN, MTCO3 and MTND4 were
identified by all three techniques to be more highly expressed at 7 weeks of age.
Three additional genes TNNC1, TNNC2 and GAPD were identified by both of the
microarray platforms to be more highly expressed at 7 weeks of age. Two genes
were revealed to be differentially expressed by both DDRT-PCR and the
oligonucleotide microarray; COL1A2 was more highly expressed at 60 days of
gestation and MYH4 was more highly expressed at 7 weeks of age. Relative

real-time RT-PCR was used to validate differential expression of six genes
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observed to be significantly differentially expressed by DDRT-PCR, cDNA
microarray analysis and/or oligonucleotide microarray analysis. These genes
were CNN3, FN1, TTN, TCAP, TPT1 and TNNC1, and significant differential
expression was confirmed for all of them except TNNC1. Two additional genes
not identified by DDRT-PCR or microarray analysis, TTID and PXN, were also
determined to be differentially expressed. Thus, these results provide new
information regarding developmental patterns of gene expression in pig skeletal
muscle.
Introduction

Although, the physical development of porcine fetal skeletal muscle has
been well characterized (http://www.aps.uoguelph.ca/~swatland/ch6_0.htm), the
molecular mechanisms controlling this process have not been fully elucidated. In
pigs, primary fiber or myotube formation begins at approximately 40 days of
gestation and primary fibers determine the future location and size of the muscle
tissue. Secondary fiber formation begins at 50 to 60 days of gestation when
multinucleated myoblasts align and fuse to form secondary fibers at the surface
of existing primary fibers. The formation of primary and secondary fibers is
essential for muscle growth because the number of muscle fibers is determined
during fetal development (Swatland and Cassens, 1973). Postnatal hypertrophy
then increases the length and diameter of these fibers. Thus, the number and
size of the fibers determines the amount of muscle an animal has at market

weight (for review see Novakofski and McCusker, 1993).
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Numerous gene products, including growth factors, binding proteins,
receptors, extracellular matrix components, enzymes and transcription factors
participate in the coordinated regulation of the myogenic program. Yet relatively
little is known about complex gene expression patterns in skeletal muscle and, to
date, only a small number of genes have been examined. Muscle specification
and differentiation appear to be controlled by a family of basic helix-loop-helix
myogenic regulatory factors (MRFs; MyoD, Myf-5, myogenin and Myf-6/MRF4)
that transactivate many muscle-specific promoters (for review see Sabourin and
Rudnicki, 2000). In addition, a variety of hormones and growth factors are
capable of regulating myoblast proliferation and differentiation (for review see
Hawke and Garry, 2001). The stimulatory action of insulin-like growth factors-|
and Il (IGF) on proliferation and differentiation, mitogenic effects of fibroblast
growth factor (FGF), and inhibitory action of transforming growth factor-beta
(TGF-B) on muscle cells are well documented (for review see Florini et al., 1991;
Florini et al., 1996). Also, hepatocyte growth factor (HGF) has been shown to
activate myogenic satellite cells and simulate satellite cell proliferation (Miller et
al., 2000), and platelet-derived growth factor (PDGF) stimulates satellite cell
proliferation (for review see Yablonka-Reuveni, 1995), whereas myostatin, a
member of the TGF-B family, inhibits myoblast proliferation (Thomas et al.,
2000).

In order to gain a more complete understanding of the mechanisms
controlling myogenesis, a thorough knowledge of the gene products that direct

muscle development during different stages of growth is needed. In porcine
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skeletal muscle, developmental expression of a few select genes, such as
myostatin (Ji et al., 1998) and the IGFs (Gerrard et al., 1998), have been
examined. However, we understand little about how complex patterns of gene
expression ultimately affect muscle development and growth. Global gene
expression analyses can be used to identify key genes involved in this process.
Several techniques have been developed for simultaneously evaluating
expression patterns of numerous genes, including differential display reverse
transcription PCR (DDRT-PCR), cDNA microarrays and oligonucleotide
microarrays. All of these techniques allow large-scale gene expression analyses
for transcriptional profiling of complex processes such as skeletal muscle
development, and each technique offers various benefits and limitations. We
have applied all three techniques to examine gene expression differences in pig
fetal and postnatal skeletal muscle tissue.

Numerous recent studies involving applications of microarray technologies
to evaluate gene expression patterns in skeletal muscle have been reported
including several developmental studies evaluating muscle cell differentiation in
vitro (Kuninger et al., 2004; Moran et al., 2002; Tomczak et al., 2004). To date,
few reports have considered normal developmental patterns of fetal and
postnatal skeletal muscle or used agricultural species in such analyses. Using a
cDNA nylon macroarray, Zhao et al. (2003) identified 28 genes that were
differentially expressed between pig skeletal muscle samples at 75 days of
gestation and 1 week of age postnatal. Bai et al. (2003) constructed a pig

skeletal muscle cDNA microarray and used it in an initial study to examine
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differential expression of genes between the psoas (a red muscle) and the
longissimus dorsi (a white muscle) of a 22-week-old pig. Among their results,
they identified 22 sarcomeric/structural genes that were more highly expressed in
the longissimus dorsi. Subsequently, this group used their cDNA microarray to
examine nutritional effects on skeletal muscle gene expression (da Costa et al.,
2004). Similarly, Reverter et al. (2003) used a bovine cDNA microarray to
evaluate nutritional effects on skeletal muscle gene expression in cattle. Our
experimental strategy is unique from these previous studies because we have
used various techniques to examine characteristics of normal growth and
development of pig skeletal muscle tissue during specific developmental stages.
Although Moody et al. (2002) reported successful cross-species hybridization of
pig skeletal muscle cDNA to human nylon microarrays, the ava.ilability of large
numbers of porcine ESTs has now made it feasible to develop pig-specific
microarray resources including oligonucleotide microarrays. Therefore, our
experiment utilized DDRT-PCR, a pig skeletal muscle cDNA microarray and a pig
70-mer oligonucleotide microarray to examine expression patterns of genes in
hind limb skeletal muscle tissue of pigs at 60 days of gestation and 7 weeks of
age. Our results provide new insights regarding gene expression changes during
fetal and postnatal skeletal muscle development that can be used to enhance pig
production efficiency, as well as for comparative developmental biology using the

pig as a model for other mammalian species.

28



Materials and Methods

Tissue samples and RNA isolation. Skeletal muscle tissue samples were
obtained from the hind limbs of pig fetuses at 60 days of gestation, fetuses at 105
days of gestation and postnatal pigs at 7 weeks of age. To obtain fetal samples,
Yorkshire X Landrace crossbred gilts bred to the same boar (n = 3 per
gestational stage) were slaughtered in a federally inspected abattoir and fetuses
were removed for tissue collection. Three additional gilts were allowed to carry
their litters to term (114 days) and one pig from each litter was euthanized at 7
weeks of age for tissue collection. Samples were immediately flash frozen in
liquid nitrogen and stored at -80°C. Total RNA from 1.0 g of tissue was extracted
using TRIzol reagent (Invitrogen Corp., Carlsbad, CA) according to the
manufacturer’s instructions. For fetal samples, tissues from several pigs within
each litter were pooled to provide a sufficient sample size, whereas postnatal
samples were obtained from individual animals. RNA concentration and quality
were determined with an RNA 6000 Pico LabChip® kit using an Agilent 2100
Bioanalyzer (Agilent Technologies, Inc., Palo Aito, CA) and RNA quality was also
assessed by agarose gel electrophoresis.

Northemn blot analyses of myogenin and myogenic factor 6. Northem blot
analyses were performed to evaluate mRNA abundance of myogenin (MYOG)
and myogenic factor 6 (MYF6). Total RNA (30 pg) from each of the 60 days of
gestation, 105 d of gestation and 7 weeks of age samples was electrophoresed
in 1.2% agarose formaldehyde gels, transferred to nylon membranes (Schleicher

and Schuell, Inc., Keene, NH) and UV cross-linked. Probes were generated by
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[a-3?P)dCTP labeling of cDNAs specific for rat MYOG (gift of W. Wright, The
University of Texas Southwestern Medical Center, Dallas TX) or rat MYF6 (gift of
S. Konieczny, Purdue University, West Lafayette, IN) using the Multiprime DNA
Labeling System (Amersham Pharmacia Biotech, Piscataway, NJ). An 18S
rRNA probe was used to adjust for equality of RNA loading. Membranes were
prehybridized at 65°C for 2 h with 10 ml of hybridization solution (6X SSC, 5§X
Denhardt’s solution, 0.5% SDS, 0.1 mg/ml sheared salmon sperm DNA). Fresh
hybridization solution and denatured probe were added and incubated at 65°C
for 18 h. Blots were rinsed and exposed to Kodak X-Omat AR film at -80°C.
Signal intensities from autoradiographs were determined by scanning laser
densitometry and relative intensities of RNA bands were analyzed by analysis of
covariance using a model containing the effect of age along with the 18S rRNA
values as covariables.

Differential display reverse transcription-PCR. DDRT-PCR experiments
were performed as previously described by our laboratory (Wesolowski et al.,
2004) using modifications of published procedures (Liang and Pardee, 1992). A
total of eight oligonucleotide primer pairs (3 anchor primers each paired with 1-4
arbitrary primers) were used corresponding to screening of ~5% of all mMRNA
species present. Following amplification and electrophoresis of the nine RNA
samples as described (Wesolowski et al., 2004), fragments that amplified in all
three samples of at least one developmental age and were faint or undetectable
in the remaining age(s) were excised from the gels, reamplified, cloned and

sequenced. Clone sequence identities were determined using the basic local
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alignment search tool (BLAST) software and the nonredundant database of
GenBank.

cDNA microarray. A normalized porcine skeletal muscle (PoSM) cDNA
library was constructed at the Michigan State University Center for Animal
Functional Genomics (CAFG) from hind limb skeletal muscle tissue collected at
45 days of gestation, 90 days of gestation, birth, 7 weeks of age and 1 year of
age (Yao et al., 2002). A cDNA microarray was constructed in the MSU CAFG
using 768 randomly selected clones from the PoSM library. All clones were
spotted in triplicate and arrayed in 48 8X8 patches using a Flexys® G3 Robotic
Workstation (Genomic Solutions, Inc., Ann Arbor, Ml). Quality controls included
on the array were 336 positive hybridization controls (bacteriophage Lambda Q
gene), 384 blank spots and 48 negatives (10% DMSO). The cDNA microarray
screening included only the 60 day gestation and 7 week postnatal samples.
Each of the 60 day samples was randomly paired with a 7 week sample. Four
cDNA microarray slides were screened. The 60 day gestation samples were
labeled with Cy5 and the 7 week postnatal samples were labeled with Cy3 on
three of the slides and, for the fourth slide, the dyes were swapped so that the 60
day sample was labeled with Cy3 and the 7 week sample was labeled with Cy5.
After analysis, clones that were identified to be differentially expressed were
sequenced to determine their identities.

Oligonucleotide microarray. Oligonucleotide microarrays used for this
study consisted of 13,297 70-mer oligos (Pig Array-Ready Oligo Set v. 1.0 and

Pig Oligo Extension Set v. 1.0, Qiagen, Inc., Valencia, CA) each spotted once on
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a single slide. Slides were printed at the University of Minnesota Advanced
Genetic Analysis Center and were distributed through the U.S. Pig Genome
Coordination Program. Controls included 76 Arabidopsis thaliana gene spots, 17
beta tubulin spots, 17 glyceraldehyde-3-phosphate dehydrogenase spots, 85
heat shock protein gene spots, 69 ribosomal protein gene spots, 112 randomly
generated negative control spots and 470 blanks. Like the cDNA microarray, the
oligonucleotide microarray was screened with only the 60 day gestation and 7
week postnatal samples. Six oligonucleotide microarray slides were screened.
All samples were labeled with both Cy3 and Cy5, and each 60 day gestation
sample was randomly paired with two 7 week postnatal samples.

cDNA synthesis, hybridization and scanning. For each sample, 8 ug of
total RNA was reverse transcribed with an oligo dtg primer using the
Superscript™ Indirect cDNA Labeling System (Invitrogen) according to the
manufacturer’s instructions. After first-strand synthesis and purification, the
cDNAs incorporated amino-modified dUTPs and were labeled with N-
hydroxysuccinate (NHS) ester Cy3 or Cy5 dyes (Amersham Biosciences,
Piscataway, NJ). The labeled cDNAs were purified, combined and concentrated
to 10 pl using a microcon spin column (Millipore, Bedford, MA). The
concentrated probe was combined with 100 pl of Slide Hyb#3 solution (Ambion,
Inc. Austin, TX) and denatured at 70°C for § min. Microarray hybridizations took
place in sealed hybridization chambers in a GeneTAC™ Hybridization Station
(Genomic Solutions) for 18 hours using step-down temperatures ranging from

65°C to 42°C. Following hybridization, the slides were washed twice with
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medium stringency buffer and once with high stringency buffer (Genomic
Solutions). The slides were rinsed in 2XSSC and deionized water and were
dried using centrifugation at 1000xg for 2 min. Fluorescent images were
detected by scanning on a GeneTAC™ LS IV Biochip Analyzer (Genomic
Solutions). Fluorescence intensity data were collected and background
fluorescence was subtracted using the GeneTAC™ Integrator and Analyzer
software (Genomic Solutions). Total intensity values for each dye channel were
stored as comma-separated values data files and exported into Microsoft Excel
spreadsheets for subsequent analysis.

Normalization and statistical analysis of microarray data. The
fluorescence intensity data obtained from both microarray platforms was log
transformed and LOESS normalized for dye intensities (Yang et al., 2002). For
the oligonucleotide microarray, the data for one patch were deleted from the
datasets due to a printing error on the slides. This resulted in the loss of
oligonucleotides for 292 genes. Statistical analysis included a two-stage mixed
model (Wolfinger et al., 2001) using the PROC MIXED procedure of SAS (SAS
Inst. Inc., Cary, NC). The first stage used a global normalization with a fixed
effect of dye and random effects of array, animal, patch within array and
dye*patch(array). The second stage gene specific analysis included fixed effects
of age, dye and age*dye and random effects of array and animal within age.
False discovery rate (FDR) was calculated as an adjustment for multiple

comparison testing (Benjamini et al., 1995) using the SAS procedure PROC
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mulitest (SAS Inst. Inc.). In addition, q values for FDR testing were calculated as
described by Storey and Tibshirani (2003).

Relative real-time reverse transcription PCR. Relative real-time RT-PCR
was used to validate microarray results and examine specific expression patterns
of additional related genes. Assays were developed using the nine RNA
samples to validate differential expression of six genes observed to be
significantly differentially expressed by DDRT-PCR, cDNA microarray analysis
and/or oligonucleotide microarray analysis. These genes were calponin 3
(CNNB3), fibronectin 1 (FN1), titin (TTN), titin-cap (TCAP), translationally
controlled tumor protein (TPT1) and slow troponin C (TNNC1). Assays were also
developed for two additional genes that are functionally related to one or more of
these genes, titin immunoglobulin domain protein (TTID; also referred to as
myotilin) and paxillin (PXN). Primers were designed using Primer Express
software v 2.0 (Applied Biosystems, Foster City, CA) and are shown in Table 1.
All assays were performed using an ABI Prism 7000 Sequence Detection System
(Applied Biosystems) in the MSU CAFG.

To identify an appropriate control gene for each assay, amplification
efficiencies (Livak and Schmittgen, 2001) were determined by performing a
SYBR green reaction (as described below) using a serial dilution (4 dilutions)
from one of the nine cDNA samples. The cycles to threshold (Ct) were averaged
for each dilution for the control and target gene. The averages were subtracted
to obtain the delta Ct, after which the log of input of each dilution was plotted

against the delta Ct to determine the slope. Efficiencies were considered



acceptable when slopes were < |0.1]|. Following the amplification efficiency tests,
it was determined that hypoxanthine phosphoribosyitransferase (HPRT) was an
appropriate normalizing gene for CNN3, FN1, PAX, TCAP and TTID. HPRT was
not suitable for TTN, TPT1 and TNNC1 so the 18S ribosomal RNA gene was
used as a control for these genes. The nine samples were assayed in duplicate
using SYBR Green PCR Master Mix (Applied Biosystems). Each reaction
contained: 1X SYBR Green mix, 300nM of each primer pair, 50ng cDNA (except
TTID 200ng) and water for a final volume of 25 ul. Fold changes were calculated
using the 222 method as described by Livak and Schmittgen (2001). The ACt
was computed as explained above and the AACt was determined using the
average of the 60 d samples as the calibrator. Significance was determined by
analyzing Ct values using the PROC MiIXED procedure of SAS with a model
containing the fixed effect of age, a random effect of pig nested within age and
HPRT or 18S Ct values as covariables.
Resulits

mRNA abundance of myogenin and myogenic factor 6. Results of
northern blot analyses for myogenin (MYOG) and myogenic factor 6 (MYF6) are
shown in Fig. 1. Hybridization of northern blots with MYOG and MYF6 probes
revealed single transcripts of 1.8-kb and 1.6-kb, respectively (data not shown).
Abundance of MYOG mRNA was highest at 60 days of gestation and decreased
significantly by 105 days of gestation. Abundance of MYF6 mRNA exhibited a
pattern opposite that of MYOG such that MYF6 expression was similar at 60 and

105 days of gestation, but increased significantly by 7 weeks of age.
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Identification of differentially expressed genes by DDRT-PCR. DDRT-
PCR was used to evaluate differences in mRNA transcript abundance in pig
skeletal muscle at 60 days of gestation, 105 days of gestation and 7 weeks of
age postnatal. Nineteen putatively differentially expressed fragments were
excised from the DDRT-PCR gels, reamplified and cloned. Sequencing of these
fragments revealed three clones corresponding to TTN and two clones
corresponding to cytochrome ¢ oxidase Il (MTCO3). Thus, 16 unique genes
were identified (Table 2). To minimize the identification of false positives, three
samples per age were compared. Only bands that displayed consistent patterns
within an age group and differential expression patterns between at least one of
the other groups were selected.

Identification of differentially expressed genes by cDNA microarray
analysis. A total of 38 clones were found to be differentially expressed between
skeletal muscle samples at 60 days of gestation and 7 weeks of age (fold change
2 1.5 and P s 0.06; Table 3). In total, 76 clones were identified to be significantly
different at P < 0.06. For this microarray, we would expect approximately 46
significant differences to occur by chance. Thus, it is likely that some of the
observed differences are true differences. In addition to statistical significance,
we have also considered only clones with a fold change difference > 1.5. These
38 clones corresponded to 35 genes because multiple clones were significant for
two genes (two clones for CDC-like kinase 1 and three clones for cytochrome b).
Thirteen genes were more highly expressed at 60 days of gestation-and 22 were

more highly expressed at 7 wks of age. Approximately 40% of these genes have
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unknown identities and approximately 11% are mitochondrial genes. The
remainder fall into various functional categories including approximately 14%
involved in muscle contraction and 14% that encode enzymes. Differentially
expressed genes involved in muscle contraction were more highly expressed at 7
weeks of age and included alpha actin, titin, tropomyosin 4, troponin C slow and
troponin C fast.

Identification of differentially expressed genes by oligonucleotide
microarray analysis. Mixed model analysis of the oligonucleotide microarrays
revealed a total of 193 oligonucleotides with significantly different signal
intensities between the 60 day fetal and 7 week postnatal samples (fold change 2
1.5 and P 5 0.05; Table 4). Sixty-seven of these were significantly different at P
< 0.01. In total, 1135 oligonucleotides were identified to be significantly different
at P <0.05. For this microarray, we would expect approximately 650 significant
differences to occur by chance. Thus, it is likely that some of the observed
differences are true differences. In addition to statistical significance, we have
also considered only oligonucleotides with a fold change difference > 1.5. The
FDR was calculated, but there were no genes that had P < 0.1, although 5 genes
were found at P = 0.12. The q values were also calculated as recommended by
Storey and Tibshirani (2003) and 5§ genes were identified at q = 0.12 with only
one of these exhibiting a fold change 2 1.5. Due to the small sample sizes
examined in this study, these adjustments may be too strict for this dataset.

Of the 193 significantly different oligonucleotides, 109 were observed to

be more highly expressed at 7 weeks of age, while the remaining 84 were more
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highly expressed at 60 days of gestation. The 193 oligonucleotides corresponded
to 163 unique genes (89 more highly expressed at 7 weeks of age and 74 more
highly expressed at 60 days of gestation). Two genes, egceraIdehYde-S-
phosphate dehydrogenase (GAPD) and ribosomal protein S18 (RPS18) that
were spotted in multiple locations on the microarray were found to be significantly
different. Fourteen spots containing an oligonucleotide specific for GAPD were
more highly expressed at 7 weeks of age (range of fold changes 1.71-3.02, P <
0.04). Similarly, 11 spots corresponding to an oligonucleotide specific for RPS18
were more highly expressed at 60 days of gestation (range of fold changes 1.56-
1.97, P £0.03). Seven genes observed to be more highly expressed in the 7
week samples were found to have two significant oligonucleotides corresponding
to each gene present on the microarray. One of these was a second
oligonucleotide for GAPD and the others included MTCO3, MYOZ1, PDLIM?7,
PYGM, RPS4X and TTN. While the presence of multiple oligonucleotides for the
same gene was unexpected, the fact that two independent oligonucleotides for
the same gene yielded significant results adds confidence that these genes were
truly differentially expressed. Approximately 42% of the differentially expressed
genes have unknown identities and five genes more highly expressed in the 7
week samples are mitochondrial genes. The remainder fall into various
functional categories including approximately 9% involved in muscle contraction
and 19% that encode enzymes. Most differentially expressed genes involved in

muscle contraction were more highly expressed at 7 weeks of age, although
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myosin heavy polypeptide 3 (MYH3) and myosin light polypeptide 4 (MYL4) were
more highly expressed in the 60 day fetal samples. |

Confirmation of differential expression. Six genes were selected from the
DDRT-PCR and microarray experiments based on their functional roles in
skeletal muscle structure and contraction for validation using relative real-time
RT-PCR. Two additional genes that were functionally related to the differentially
expressed genes were also selected for evaluation. Although the microarray
experiments did not include the samples obtained from pigs at 105 days of
gestation, these samples were included in the relative real-time RT PCR
analyses in order to reveal additional information regarding the developmental
expression patterns of the selected genes.

Assays were developed for four genes involved in muscle contraction (Fig.
2). Titin (TTN) was observed to be differentially expressed on both microarray
platforms and also several TTN clones were obtained in the DDRT-PCR
experiment. Slow troponin C (TNNC1) was observed to be differentially
expressed on both microarray platforms and titin-cap (TCAP) was observed to be
differentially expressed on the oligonucleotide microarray. Titin immunoglobulin
domain protein (TTID) was also evaluated. Statistical analyses of the microarray
data did not reveal TTID to be significantly differentially expressed at the cutoff
thresholds of a fold change 2 1.5 and P < 0.05. However, on the oligonucleotide
microarray, TTID exhibited a 1.27-fold higher expression in the 7 week postnatal
samples at P = 0.06. In addition, TTID is functionally related to TTN and TCAP in

that they are all proteins of the skeletal muscle Z-disc so we chose to further
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evaluate TTID. Relative real-time RT-PCR analyses confirmed the microarray
and DDRT-PCR results for TTN and TCAP and also revealed that TTID
expression was significantly increased in the 7 week samples. Evaluation of the
105 day fetal samples indicated that TTID expression was intermediate between
the 60 day fetal and 7 week postnatal samples, whereas TTN expression at 105
days was similar to the 60 day samples and TCAP expression at 105 days was
similar to the 7 week samples. Thus, even though the products of these genes
are functionally related, inclusion of the 105 day gestation samples revealed
subtle differences in the expression patterns for these genes. Expression of
TNNC1 appeared to be higher in the 7 week postnatal samples (105 day vs. 7
week P = 0.06). However, large sample-to-sample variation in TNNC1 mRNA
abundance for the 7 week samples limits this interpretation.

Assays were developed for three genes involved in cytoskeletal structure
(Fig. 3). Calponin 3 (CNN3) and fibronectin 1 (FN1) were observed by DDRT-
PCR to be more highly expressed in the 60 day fetal samples and their
expression patterns were confirmed by relative real-time RT-PCR. Paxillin (PXN)
was also evaluated because of its functional relationship to FN1. Unlike FN1,
PXN mRNA abundance was not found to be different between the 60 day fetal
and 7 week postnatal samples, but PXN expression in the 105 day fetal samples
was significantly higher than the 60 day and 7 week samples.

A final gene that was selected for validation was translationally controlled
tumor protein 1 (TPT1). Abundance of TPT1 mRNA was significantly higher in

the 7 week postnatal samples confirming the cDNA microarray results.
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Expression of TPT1 in the 105 day samples was found to be intermediate
between the 60 day fetal and 7 week postnatal samples.
Discussion

We have used three different approaches to examine transcriptional
profiles in a set of samples obtained from hind limb skeletal muscle tissue of pigs
at 60 days of gestation, 105 days of gestation and 7 weeks of age postnatal. The
most comprehensive technique that we used was screening of a 13,000 member
70-mer pig oligonucleotide microarray. In addition, we used a relatively small
cDNA microarray that contained 768 cDNAs derived from a pig skeletal muscle
specific cDNA library (Yao et al., 2002) and we conducted a DDRT-PCR
experiment with a limited number of primer combinations. While comparisons
between these platforms are limited by the small size of the cDNA microarray
and DDRT-PCR experiments, we were able to identify some of the same genes
using two or more of the techniques.

All of the techniques were able to reveal genes with relatively large
differences in mMRNA abundance, but they were less robust for identifying genes
with more subtle differences in mMRNA abundance. Three genes were revealed
by all three techniques to be more highly expressed at 7 weeks of age. Two of
these were the mitochondrial genes MTCO3 and MTND4, indicating differences
in energy metabolism between the 60 day fetal and 7 week postnatal samples.
The sarcomeric protein TTN was also discovered to have higher mMRNA
abundance at 7 weeks of age by all three techniques. Three additional genes

were revealed by both of the microarray platforms (TNNC1, TNNC2 and GAPD)
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and two genes were revealed by both DDRT-PCR and the oligonucleotide
microarray (COL1A2 and MYH4).

Only a few reports in the literature have considered comparisons of
various microarray platforms and most of these have involved comparisons of
cDNA or long oligonucleotide microarrays with Affymetrix GeneChip arrays.
Wang et al. (2003) compared 70-mer oligonucleotides and cDNAs for the same
genes printed on the same glass slide and they reported a correlation coefficient
of 0.80 with approximately 8% of the genes examined showing discordant
results. Park et al. (2004) systematically compared an Affymetrix array, a custom
cDNA array and custom oligonucleotide arrays. They concluded that in general
Affymetrix and cDNA arrays agreed fairly well, but that the long oligonucleotide
arrays were less concordant. Also, they noted that highly expressed genes gave
fairly similar results on all of the platforms, but lowly expressed genes were much
more variable. Our study using both a 70-mer oligonucleotide microarray and a
cDNA microarray was not designed as a systematic comparison of the two
platforms as were the Wang et al. (2003) and Park et al. (2004) studies, but our
results appear to agree with these studies in that we were able to identify
differences in some highly expressed genes using both platforms.

While several reported studies have used DDRT-PCR to identify
differentially expressed genes in skeletal muscle samples, to our knowledge no
previous studies have been reported that examined the same samples with both
DDRT-PCR and microarray analyses. Other laboratories have used DDRT-PCR

to successfully identify differentially expressed genes involved in skeletal muscle
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development (Cho et al., 2000; Janzen et al., 2000; Levin et al., 2001, McDaneld
et al., 2004) and we have used DDRT-PCR to identify differentially expressed
genes in developing pig fetuses (Wesoloski et al., 2004). The disadvantage of
DDRT-PCR vs. microarray approaches is clearly that it is a much more time
consuming technique to perform. However, DDRT-PCR does have some
advantages. Gene discovery with DDRT-PCR does not require prior knowledge
of gene or EST sequences as is needed for construction of microarrays (Stein
and Liang, 2002). In addition, DDRT-PCR allows direct comparisons to be made
between more than two samples at a time and it may be more sensitive for
detection of relatively low abundance transcripts. Even with a limited number of
primer combinations, we were able to identify 16 putatively differentially
expressed genes, five of which were also revealed by one or both of the
microarray platforms.

Zhao et al. (2003) used a cDNA nylon macroarray containing 327 ESTs to
examine differential gene expression in pig fetal and postnatal skeletal muscle.
Twenty-eight genes were identified in this study to be differentially expressed
between 75 day fetal and 1 week postnatal skeletal muscle samples. The
present study extends these observations to include evaluation of higher density
microarrays and additional developmental ages of pigs. The Zhao et al. (2003)
study observed differential expression for several ribosomal protein genes and
we also observed differences in many ribosomal protein genes pointing toward
the key role of protein synthesis mechanisms in muscle development. Zhao et

al. (2003) also observed higher expression of GAPD in the 1 week postnatal
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samples than in the 75 day fetal samples, which agrees with our results from
both microarray platforms indicating that GAPD mRNA abundance was greater in
the 7 week postnatal samples than in the 60 day fetal samples. Identification of
an appropriate housekeeping gene for use as a control in gene expression
analyses such as real time RT-PCR is critical and GAPD is frequently used for
this purpose. We have previously observed that GAPD is not a suitable control
for evaluating developing skeletal muscle tissue (unpublished data), and our
results as well as those of Zhao et al. (2003) support this observation.

We initially evaluated our samples by examining mRNA abundance of two
myogenic regulatory factor (MRF) genes that we predicted to be differentially
expressed in developing pig skeletal muscle. The MRFs are members of the
basic helix-loop-helix family of transcription factors and their expression is
specific to skeletal muscle (for review see Sabourin and Rudnicki, 2000). In our
study, relative abundance of MYOG mRNA was highest in pig skeletal muscle at
60 days of gestation, whereas abundance of MYF6 mRNA was highest at 7
weeks of age. Our results agree with reports of developmental expression
patterns for these genes in mice and rats (Bober et al., 1991; Hinterberger et al.,
1991) providing evidence that expression of these genes is developmentally
regulated.

We selected six genes from the DDRT-PCR and microarray analyses and
two additional genes for further evaluation using relative real time RT-PCR. Of
the four genes that had been identified by microarray analyses (TTN and TNNC1

identified by both platforms, TCAP identified only on the oligo array and TPT1



identified only on the cDNA array), three were validated using relative real-time
RT-PCR. The results indicated that the magnitude of the fold changes observed
with the real time RT-PCR assays was much greater than had been observed
with the microarrays, pointing to the greater sensitivity of real time RT-PCR for
detecting differences in mMRNA abundance. This appears to be a common
observation when genes identified by microarray analyses are confirmed by real
time RT-PCR (Park et al., 2004). The only gene whose expression pattern was
not confirmed was TNNC1. The real time RT-PCR results for this gene indicated
a tendency toward higher expression in the 7 week postnatal samples, but large
sample-to-sample variation among the 7 week samples limited the interpretation
of the results. Northemn blot analysis of human fetal and adult TNNC1 revealed a
weak signal in the fetal tissue and abundant signal in the adult tissue (Gahimann
et al., 1988) which agrees with the microarray results for pig TNNC1 in the
present study. Two genes that were observed to be differentially expressed only
by DDRT-PCR (CNN3 and FN1) were confirmed by real time RT-PCR analyses
and two additional genes (TTID and PXN) selected for their functional
relationship to the other genes were also confirmed to be differentially expressed.
Clearly sarcomeric proteins are essential for muscle function and the Z-
disc is an important contractile component (for review see Faulkner et al., 2001).
Several genes whose products are a part of the Z-disc structure were observed
to be more highly expressed in the 7 week postnatal samples: ACTA1, CAPZA2,
FLNC, PDLIM3, TTN, TCAP and TTID. These proteins are all linked together

through a complex network of interactions. TCAP interacts with TTN (Gregorio et
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al., 1998), CAPZA2 is an F-actin Ca®* independent capping protein and PDLIM3
interacts with a-actinin 2 (Klaavuniemi et al., 2004). TTID is a thin filament
associated protein that interacts with a-actin (Salmikangas et al., 2003) and its
expression has been reported to increase throughout skeletal muscle
development in mice (Mologni et al., 2001), which agrees with our results for
developing pig skeletal muscle. Several contractile protein genes were also
identified to be differentially expressed including MYH4, which exhibited higher
mRNA abundance in the 7 week postnatal samples in both the DDRT-PCR
experiment and the oligonucleotide microarray. In contrast, MYH3 and MYL4
were more highly expressed in the 60 day gestation samples, which is supported
by the literature indicating these are embryonic genes (Ontell et al., 1993).

FHL1 from the four and half LIM family is reported to be expressed in
skeletal muscle and to have elevated mRNA expression in postnatal growth
(Morgan and Madgwick, 1995), which is in agreement with our oligonucleotide
microarray results for FHL1. PYGM is a muscle glycogen phosphorylase that
was found to be more highly expressed in the 7 week postnatal samples on the
oligonucleotide array. This gene also appeared to be more highly expressed in
the 7 week samples on the cDNA microarray (P = 0.08), however, the
fluorescence intensity of the 60 day gestation samples was below background
levels, which likely affected the analysis. This expression pattern agrees with
results reported for humans in which fetal PYGM mRNA is not seen until 80-100
days of gestation (Omenn and Cheung, 1974; Miranda et al., 1985). PXN is a

cytoskeletal protein involved in actin membrane attachment sites, cell adhesion,

46



focal adhesion and regulating the response to fibronectin (Hagel et al., 2002),
and our results provide information regarding the expression patterns of PXN and
FN1 in developing pig skeletal muscle.

Despite its name, TPT1 has many roles in different tissue types. Itis
regulated by growth signals, developmental factors and stress conditions, and it
is involved in cell growth, apoptosis and microtubule stabilization (Bommer et al.,
2004). Hu et al. (2003) used northern blot analysis to show that TPT1 is
expressed mainly in heart and skeletal muscle. In addition, Bryne et al. (2005)
found TPT1 to be more highly expressed in skeletal muscle of diet restricted
Brahman steers. Our results demonstrating increased mRNA abundance during
pig skeletal muscle development provide additional information regarding
expression of this gene.

Microarray technologies have been integrated into many scientific
disciplines and the increasing availability of genomics resources for various
species will continue to increase the effectiveness of these approaches for
deciphering complex gene expression patterns and regulatory mechanisms. This
study reports the application of three approaches for identifying differentially
expressed genes in pig fetal and postnatal skeletal muscle. In total, over 200
genes were identified and expression patterns for eight genes were evaluated by
relative real time RT-PCR. Further elucidation of the roles of these genes,
including those genes not previously known to be expressed in skeletal muscle
and the genes of unknown function is of future interest. These results provide

new information regarding developmental patterns of gene expression in skeletal
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muscle and can be used to increase our understanding of normal growth
processes and the consequences of molecular disorders in the pig and other
mammalian species.
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Table 2. Differentially expressed genes observed by differential display reverse

transcription PCR (DDRT-PCR)'.

Inset GenBank TIGRTC DDRT-
Clone’  size(bp) ID report Gene name (gene symbol)®*  PCR gel*
41M2-1 494 CF106688 TC181503 annexin A2 (ANXA2) 1>2>3
51M41 405 CB826594 TC163159 calponin 3, acidic (CNN3)>® 1>2>3
54M77 400 CB826601 singleton cardiomyopathy associated 3 1>2=3
(CMYA3)
51M44E 486 CB826597 TC180810 collagen, tg;)e I, alpha 2 1=2>3
(COL1A2)™
53M64D 295 CB826602 TC181259 cytochrome c oxidase Il 1<2<3
(MTCO3)"®
41M6-1 544 CB826595 TC162457 fibronectin 1 (FN1)° 1=2>3
54M71-2 377 CB826603 TC163178 heat shock 70kDa protein 5 1<2=3
(HSPAS)
51M448B 417 CB826598 TC182174  janus kinase 1 (JAK1) 1=2>3
53M63G 425 CB826599 singleton KIAA0373 gene product’ 1=2<3
41M7 459 CB826592 TC165147 myosin, heavy polypeptide 4, 1=2<3
skeletal muscle (MYH4)6'7
54M71-1 383 CB826593 TC189479 myosin, heavy polypeptide 8, 1<2>3
skeletal muscle, perinatal (MYH8)
53M64B 164 CB826600 TC181077 NADH dehydrogenase 4 1<2<3
(MTND4)’
52M55 569 CB826591 singleton nebulin (NEB)® 1<2<3
54M71-3 338 CB826596 TC185696 ras homolog gene family, member 1=2<3
E (ARH3)
41M8-1 420 CX244545 TC182705 S100 calcium binding protein A11, 1=2<3
calgizzarir} gg 00A11)

11M7A-1 307 CB826590 singleton titin (TTN) 1<2<3

"Primers used for DDRT-PCR were obtained from the U.S. Swine Genome Coordinator, and primer
sequences are available at http://www.genome.iastate.edu/resources/ddprimer.html.
2Primers used to obtain each clone are indicated by the first two digits of the clone name (1st digit anchor
grimer; 2nd digit arbitrary primer).

Predicted identities were determined by comparison of clone sequences to entries in the GenBank
database.
“Relative pattern of MRNA abundance observed on DDRT-PCR gels. 1=60 d of gestation; 2=105 d of
gestation; 3=7 wks of age.

Expression pattern confirmed by relative real-time RT-PCR analysis.
6Expression pattern confirmed by northemn or dot blot analysis (data not shown).
"Gene found to be significantly differentially expressed on cDNA microarray and/or oligonucleotide
microarray.
SMultiple fragments identified as same gene.
%Gene name not approved by the HUGO Gene Nomenclature Committee.
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CHAPTER 3
Mapping of Porcine Skeletal Muscle ESTs

Summary

Radiation hybrid (RH) mapping of 24 expressed sequence tags (ESTs)
derived from porcine skeletal muscle is reported. These ESTs were observed to
be differentially expressed in skeletal muscle tissue from pigs at 60 days of
gestation or 7 weeks of age postnatal using either a cDNA microarray or
differential display reverse transcription PCR. The IMpRH panel was used for
mapping and the ESTs were assigned to 13 different pig chromosomes.
Nineteen of these assignments were at LOD score 2 5.79 (15 > 8.6). Twenty-two
of the ESTs correspond to genes of known identity and all of these mapped to
the expected porcine-human comparative map locations. The mapping of ESTs
in this study contributes to characterization of the pig skeletal muscle

transcriptome and further improves the porcine-human comparative map.

Keywords: skeletal muscle, ESTs, radiation hybrid mapping, pig

Introduction

Development of high resolution genome maps for species such as the pig
is facilitated by comparative gene mapping, which utilizes information from
species such as human and mouse that have complete genome sequences
available. These maps then aid in the identification of candidate genes for

economically important traits. In addition, current applications of global gene
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expression profiling techniques such as differential display reverse transcription
PCR (DDRT-PCR) and DNA microarrays are also revealing genes involved in the
expression of important trait phenotypes. Thus in order to fully utilize the
available information for identifying genes controlling economically important
traits, it is important to integrate gene expression data with genome map
information. A first step toward achieving this goal is to map genes identified by
expression profiling studies. For the present study, we used a pig-rodent
radiation hybrid (RH) panel (Yerle et al. 1998; Hawken et al. 1999) to map
expressed sequence tags (ESTs) that were observed to be differentially
expressed in skeletal muscle from pigs at 60 days of gestation and 7 weeks of
age postnatal (Rilington et al., in preparation).
Materials and Methods

A total of 24 oligonucleotide primer pairs for use in the PCR were
designed from sequences of cDNA clones derived from either a porcine skeletal
muscle cDNA library (18 ESTs; Yao et al. 2002) or a porcine skeletal muscle
differential display experiment (6 ESTs; Rilington et al., in preparation) using the
OLIGO 5.1 primer analysis software (Molecular Biology Insight Inc., Cascade,
CO). The PCR was performed using 25 ng genomic DNA in 10 pL reactions
containing 1 X PCR buffer (Promega, Madison, WI), 1.5 or 2.0 mM MgCl,, 150
MM of each dNTP, 0.25 or 0.5 pM of each primer and 0.2 units of Tag DNA
polymerase (Promega, Madison, WI). The PCR profiles included an initial
denaturation of 3 min at 94°C followed by 30 cycles of 94°C for 1 min, 53°- 63°C

for 1 min, 72°C for 1 min and a final extension of 72°C for 10 min. The PCR
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products were visualized on 1% agarose gels with 0.4 ng/ml of ethidium bromide.
The GenBank accession numbers of the clones, primer sequences, PCR
conditions and observed PCR product sizes are shown in Table 1.

The ESTs were mapped using the INRA-University of Minnesota 7,000-
rad porcine RH (IMpRH) panel (Yerle et al. 1998; Hawken et al. 1999) using the
same PCR profile except that 12.5 ng of hybrid DNA was used. The IMpRH
panel was screened twice for each EST and products were visualized on 1- 3%
agarose gels. Each of the 118 hybrids was scored as positive, negative or
ambiguous, and two-point analysis of RH data was performed using the IMpRH
server mapping tool as outlined by Milan et al. (2000;
http://imprh.toulouse.inra.fr/).

Results and Discussion

A total of 24 ESTs were mapped for this study (Table 2). These included
four ESTs on SSCS5, three ESTs each on SSC2 and SSC15, two ESTs each on
SSC1, SSC3, SSC9 and SSC14, and one EST each on SSC4, SSC11, SSC12,
SSC13, SSC17 and SSCX. Twenty-two of the ESTs had significant similarities
to genes of known identity and all of these mapped to their expected porcine-
human comparative map locations
(http:/mwww.toulouse.inra.fr/igc/pig/compare/compare.htm). Eleven of the 24
ESTs had previously been mapped through candidate gene or EST studies in
ours or other laboratories using physical or genetic mapping techniques,
including seven previous RH map assignments. The results of the present study

help to confirm these previous assignments, as well as add 13 new assignments.
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Nineteen of the 24 map assignments were with LOD scores 2 5.79 (15 > 8.6).
However, the remaining five assignments were with LOD scores < 4.5, and thus
must be considered as tentative. Four of these five assignments were consistent
with expected comparative map locations and two of these had previously been
mapped in other laboratories. Thus, there is evidence that these assignments
are likely to be correct. An EST of unknown identity (PigESTB) was tentatively
assigned to SSC9 (LOD = 4.35). Further study will be needed both to determine
the identity of this EST and to confirm its map position.

We report here the mapping of 24 ESTs to 13 pig chromosomes. Davoli
et al. (2002) reported a first genomic transcript map for pig skeletal muscle that
included 125 markers. While three of the ESTs mapped in the present study
were included on the Davoli et al. map, the other 21 ESTs represent new
contributions to the pig skeletal muscle transcript map. The ESTs mapped in the
present study were observed to be differentially expressed in pig skeletal muscle
tissue at 60 days of gestation or seven weeks of age postnatal. Thus, placing
these ESTs on the pig genome map not only helps to improve the porcine-human
comparative map, but also contributes to the characterization of the pig skeletal
muscle transcriptome. Integration of genome map information with gene
expression profiling data is an important step toward identifying the genes

controlling economically important trait phenotypes.
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CHAPTER 4
Summary and Recommendations for Future Research

Enhancing pork quality and production efficiency are major concerns for
pig producers. The advent of new technologies such as large scale gene
expression microarrays and high resolution gene maps can lead quickly to
candidate genes for economically important phenotypic traits allowing for a faster
turn around to gene tests that could improve pork quality. The market weight of
an animal is directly linked to the amount of muscle fibers and the size of the
fibers that the animal has. The fiber number is determined before the birth of the
animal and the size is due to postnatal hypertrophy. A great deal is known about
the structural changes, regulatory genes and growth factors involved in skeletal
muscle development. However, relatively little is known on the cascade of
events controlling fetal myogenesis and postnatal hypertrophy.

Skeletal muscle is the most abundant tissue in an animal’s body and it is
regulated by complex biological mechanisms. Thus, to begin to understand gene
expression patterns during the growth process requires a technology that
simultaneous determines expression of the numerous genes involved.
Microarray technology allows researchers to screen large biological systems in
one experiment. Not only is understanding the gene expression of a system
important, but beginning to integrate these large amounts of data into other areas
of the biological system is also important. Searching for candidate genes
controlling important traits can be a long process. However, taking the data

acquired from microarrays and mapping the identified genes allows for an easier



search. Linking gene expression data and genetic maps connects the
phenotypic expression to economically important traits.

This study was designed to identify differentially expressed genes in
developing pig skeletal muscle and locate them on the pig genome map. The
specific objectives were: 1) Identify differentially expressed genes in hind limb
skeletal muscles of pigs at 60 days of gestation and 7 weeks of age; and 2)
Determine the map locations for differentially expressed genes.

To achieve Objective 1, a combination of differential display reverse
transcription PCR, cDNA microarray analysis and 70-mer oligonucleotide
microarray analysis were used. A total of 214 genes were found to be
differentially expressed in developing pig hind limb skeletal muscle using these
techniques. Three genes were identified with all three techniques and five other
genes were common to two of the techniques. Results of this study provide a
unique set of differentially expressed genes involved in skeletal muscle
development. Some of these genes have previously been functionally
characterized in skeletal muscle of other species. However, many of the genes
have not been evaluated in skeletal muscle. For example, transiationally
controlled tumor protein 1 (TPT1) has been reported to be expressed in skeletal
muscle, but there is no report on its role or importance in muscle development.
Thus, we were able to provide information about the expression pattern of TPT1
in developing skeletal muscle.

Relative real-time RT-PCR confirmed that titin (TTN), titin-cap (TCAP) and

TPT1 were more highly expressed in pig skeletal muscle at 7 weeks of age. Titin
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immunoglobulin domain protein (TTID) was also more highly expressed in the 7
week samples, in agreement with information in the literature indicating that
expression of TTID increases throughout mouse development. Troponin C1
(TNNC1) was observed to be differentially expressed on both microarray
platforms. This result was not confirmed by relative real time RT-PCR, but the
large animal-to-animal variation may have affected the statistical analysis. Thus,
the expression pattern of TNNC1 is still inconclusive and it should be repeated
with a different set of animals. Abundance of fibronectin 1 (FN1) and calponin 3
(CNN3) mRNA was confirmed to be highest at 60 days of gestation. Evaluation
of paxillin (PXN) indicating expression to be higher at 105 days of gestation than
at 60 days of gestation or 7 weeks of age provides additional information about
expression of cytoskeletal genes in developing skeletal muscle.

To achieve Objective 2, 24 genes were selected from the DDRT-PCR and
cDNA microarray experiments conducted for Objective 1 and they were localized
on a pig radiation hybrid (RH) map. These genes were assigned to 13 different
pig chromosomes and those of known identity (22 of the 24) mapped to the
expected porcine-human comparative map locations. Not only does mapping of
these genes help to improve the porcine-human comparative map, but since they
were observed to be differentially expressed in hind limb skeletal muscle of pigs
at 60 days of gestation and 7 weeks of age, they represent new contributions to
the pig skeletal muscle transcript map.

In summary, this project represents a first step toward characterizing the

transcriptional profile of developing pig skeletal muscle. Thus, there are several
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considerations for future research efforts. During fetal myogenesis, there are
distinct structural changes in skeletal muscle, and postnatally muscle
hypertrophy rapidly increases. Therefore, for future microarray studies it would
be prudent to include more developmental ages in the evaluation. The addition
of more ages at critical times of fiber formation and hypertrophy would give a
clearer understanding of the skeletal muscle development process. It is also
recommended that these studies include more animals at each age in order to
improve the power of the statistical analyses.

Both the cDNA microarray and 70-mer oligonucleotide microarray
platforms appear to work well for evaluating transcriptional profiles of developing
skeletal muscle. The cDNA microarray used for this study contained only 768
clones so it was only a small representation of the pig genome and what genes
could possibly be expressed in skeletal muscle. Therefore, it is recommended to
expand this array to include more clones in order to improve the
comprehensiveness of gene expression profiles. Although the currently available
pig oligonucleotide microarray contains over 13,000 oligonucleotides, the
expressed sequence tag (EST) collection that was available when these
oligonucleotides were designed contained very few ESTs derived from skeletal
muscle. Thus, as the number of skeletal muscle ESTs increases, future
oligonucleotide sets will contain a better representation of genes expressed in
muscle and future studies will benefit from this improved resource. In addition to

improved microarray resources, future studies to profile gene expression patterns
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in skeletal muscle will benefit from application of the latest approaches for
microarray screening and data analysis.

Transcriptional profiling of pig skeletal muscle tissue will provide a wealth
of information, but it is important that genes identified by microarray analyses be
further studied at both the mMRNA and protein levels in order to fully characterize
their functions. In addition, the map positions of these genes should be
determined and integrated into quantitative trait loci (QTL) studies for muscle
growth traits. This will not only allow all of the available information to be used to
improve pig production, but the resulting comparative map information will
provide basic fundamental knowledge about mammalian skeletal muscle

development.
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