. Ln €th 5 . .w 3...... . «E ....;.1fl.u . . m. v.11... 2. x . . . 7v .4... A .. . . «a .. «e. . Es...” 6. t. m ‘31..“1h1. 2.. v 3..-... .5». . $31!... . an .33 a .rfififi r.‘ .2 Lu .«1 Lflimxkuu. has, 34M1 5n! nmm...§.mwn.é .. . {fiflfimdfiw 913...}... _ 2 iii. . 3...! .ri h...) ’5‘, 1’5 vim” ’ P v. a. . 5... 1. . . ... .na . . 55%... a??? . . . if .5555», . , _ «5...... .... . 3.....1. .... 0 .2... .. . .7. 2.33:...” 93h 4300/5/9 This is to certify that the thesis entitled VALIDATION OF THE Y-STR SYSTEMS BY RELIAGENE, Y- PLEXTM 5 AND Y-PLEXTM 6, ON THE ABI PRISM ® 3100 presented by HEATHER D. WOOD has been accepted towards fulfillment of the requirements for the MS. degree in Forensic Science ..--"""§‘\_ __.______._-. M 7f—‘l' 12 / C/\——-——— \M§jor Professor’s Signature fiC/Ql'?¥/C>S” Date MSU is an Affirmative ActiorVEquaI Opportunity Institution . __ __ f. LIBRARIES MICHIGAN STATE UNIVERSITY EAST LANSING, MICH 48824-1048 on-----.-.-n-n--a---~-o-.-o--.-.---.--a-o-n-o-o-o----a-¢---.-n-o--o-a-.--.-o--.----c-u-.-.-.—.--.-o--u--n- PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 czfilRC/Dateouejnddp. 15 VALIDATION OF THE Y-STR SYSTEMS BY RELIAGENE, Y-PLEXTM 5 AND Y- PLEXTM 6, ON THE ABI PRISM® 3100 By Heather D. Wood A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF FORENSIC SCIENCE CRIMINAL JUSTICE 2005 ABSTRACT VALIDATION OF THE Y-STR SYSTEMS BY RELIAGENE, Y-PLEXTM 5 AND Y- PLEXTM 6, ON THE ABI PRISM® 3100 By Heather D. Wood Y-STR analysis can be useful when autosomal DNA typing fails. Particularly mmmmfltmmblemscanafisevvithamm analysis, whenthere isa high female DNA! low male DNA ratio, when no sperm cells are present (e.g. azoospcrmic semen, blood, saliva, fingernail scrapings), or when there is more than one male assailant. There are several Y-STR amplification systems that have been generated, some of which are commercially available. The Reliagene Y-STR systems Y-PLEX'” 5 and Y-PLEXTM 6 enable simultaneous amplification of eleven loci on the Y- chromosome. The overall goal of this project was to validate these Y-STR systems for analysis on an ABI Prism® 3100 genetic analyzer at the Michigan State Police Forensics Science Division. This was accomplished by conducting studies to determine the minimum sensitivity of each Y-PLEXTM system, the precision ofallele sizing using both an ABI Prism® 310 and 3100 genetic analyzer, and the concordance between the two instruments. Finally, an interethnic study was conducted by analyzing approximately 100 samples from three ethnic groups, Caucasian, Afi'ican American and Hispanic. The minimum sensitivity for the Y-PLEXNS and Y- PLEXTM6 systems were 0.3125ng and 1.25ng respectively. In the interethnic study an increase in the haplotype diversity and the number of unique haplotypes was observed when comparing the haplotypes containing the 11 loci of ir-PLEX1M 5 and 6 compared to the haplotypes containing either the Y-PLEXTM 5 or 6 loci alone ACKNOWLEDGMENTS I would like to acknowledge my committee members, Dr. David Foran, Dr. Jay Siege], Dr. Nibedita Mahanti, and Dr. Chris Smith. I would like to especially thank Dr. Siegel for giving me this opportunity and Dr. Foran for being so patient with me. In addition I would like to thank the Michigan State Police personnel at the Forensic Science Division in Lansing, M1 for allowing me the opportunity to perform my thesis research intheir lab. iii TABLE OF CONTENTS LIST OF TABLES .......... v LIST OF FIGURES ............................................................................... vi INTRODUCTION ................................................................................. 1 MATERIALS AND METHODS ................................................................. 8 RESULTS .......................................................................................... 14 DISCUSSION ....................................................................................... 18 APPENDD( ........................................................................................... 27 BIBLIOGRAPHY .................................................................................. 70 iv LIST OF FIGURES Figurel ........................................................................................ 62 Figure2 ........................................................................................ 62 Figure3 ........................................................................................ 63 Figure4 ........................................................................................ 63 FigureS ........................................................................................ 64 Figure6 ........................................................................................ 64 Figure? ........................................................................................ 65 Figure8 ........................................................................................ 65 Figure 10 ....................................................................................... 66 Figure 11 ....................................................................................... 67 Figure 12 ....................................................................................... 68 Figure 13 ....................................................................................... 68 Figure 14 ....................................................................................... 69 Introduction: Establishing the identification of a perpetrator is crucial to solving a crime. During the commission of a crime evidence may be transferred from victim to perpetrator and vice versa. Evidence may also be transferred from the victim and perpetrator to the crime scene thus placing them at that scene. Physical evidence transferred during the commission of a crime such as a sexual assault, homicide, or burglary can be very valuable in solving the case. The powerful DNA typing technology used by forensic scientists today makes it possible to potentially identify the perpetrator. The standard method of nuclear DNA typing utilizes the polymerase chain reaction (PCR) to amplify a series of short tandem repeats (STRS). A STR region consists of a specific sequence of between 2 and 6 DNA nucleotides that are tandemly repeated (Ayub et al., 2000). STR regions can consist of simple tandem repeats such as (AGAT)n or compound tandem repeats such as (T CT G/T CTA)n and are distributed throughout the human genome. At any given STR location or locus (plural loci) STRs may vary in size based on the number of repeats, thus generating different alleles. A high degree of discrimination among individuals (except identical twins) can be accomplished when multiple STR loci are examined. The forensic community routinely uses multiplex PCR systems to amplify up to 15 different autosomal (non-sex chromosomes) loci in a single tube reaction. Most forensic labs have adopted the use of the 13 core tetrameric STR loci that were selected by the Federal Bureau of Investigations to constitute the core of the United States national database CODIS (Combined DNA Index System). STR Typing STR amplification systems exist for autosomal and Y chromosome (male specific sex chromosome) typing. Autosomal chromosomes are inherited as homologous pairs (one fi'om each parent) therefore, for each STR locus an individual has two alleles. For example at the STR locus D31358 an individual could have one chromosome that has 12 tandem repeats while the other chromosome has 18, resulting in the genotype 12/18. The fi'equency of this combination can be calculated for the population or ethnic group under consideration. The product rule can then be applied when calculating the autosomal profile frequency because the STR loci used in forensics are inherited independently of one another. The autosomal genotypic fi'equencies for each allele are multiplied to obtain a statistic that states the likelihood that another person would share the same profile. For example, within a given population or ethnic group, if the genotype 12/18 for the autosomal STR locus D31358 occurs at a frequency of 8.2% and the genotype 19/24 for the autosomal STR locus FGA occurs at a frequency of 1.7% then the two fiequencies would be multiplied together to determine the profile fiequency for D31358 and FGA which would mm in 0.14% of this population or group. As can be seen, the level of discrimination increases as one increases the number of STR loci examined. When using the 13 CODIS loci the random match probability can reach one in a trillion or higher, thus resulting in a high level of discrimination. Y-STR Typing Although autosomal typing systems have proven to be very successful in forensic casework, there are cases when autosomal DNA typing fails. Particularly true in sexual assaults, problems can arise with autosomal analysis when there is a high female DNA/ low male DNA ratio, when no sperm cells are present for differential extraction (e. g. azoospermic semen, blood, saliva, fingernail scrapings), or when there is more than one maleassailant. Whentheseparationofmaleandfemalecellsisnotpossible,theend result is a profile containing up to fotn' or more alleles per locus, making interpretation very difficult ifnot impossible. In these cases, Y chromosome STR analysis can aid in successfully obtaining a male specific profile or profiles. Furthermore, Y chromosome testingismucheasierthanautosomal S'I'Rprofileanalysiswhenanalyzingmixturesas there is only one allele per locus per male. Y-STR analysis does lmve limitations compared to autosomal STR analysis. Bwausethe Ychromosomeispasseddownfrom fathertosonwithoutrecombinationthe males inthat particularpaternal lineage will have the same haplotype (Y-STR profile), making exclusion of males fiom the same paternal lineage impossible. Also, the product ndecannotbeappliedwhencalctdafingthehaplotypefiequencybeeausetheY clnornosomeisinheritedintact. lnstead,thecountingmethodisusedtoestimateY-STR haplotype fi'equency. This involves counting how many times a haplotype occurs in a set ofsunplestdren from aspecific populationorethnic group. Obviouslythe largerthe sample size the more reliable is this fi'equency estimate. The Y chromosome TheYchromosomeis60megabases(Mb)insize,approximatelyone—thirdthe size of the X We (Skaletsky et al., 2003). It is the smallest chromosome in the humangenome,afactthatcanbeatuibutedtogenelossresultingfiomtheY chromosome’s indility to repair itself via homologous recombination as autosomal and thefernaleXchromosomescanMarshallGraves,2004). Onlythepseudoautosomal regions (PARS), located at the terminal tips ofthe Y chromosome, participate in recombination with the X chromosome during male meiosis. The PARs account for 5% oftheYchmmosomeandtheremaimng95%istermedthemn-mcombiningY(NRY)or as male specific Y (MSY) (Skaletsky et al., 2003). TheYchmmosomewasoncethoughtofasadegenaategeneticwastelandthat onlyservedthepuposeofmalesexdetermimtion. But,thatwayofthinkinghasbeen drastically changed based on DNA sequence dataof the MSY. Skaletsky etal., (2003) buihedanSYuacombirflionofhetaochmmfinmdthreeclassesofemhmmafic sequences:X-transposed,X-degenerate,andampliconic. 'l‘heheterochronnticregionis cow oftwo highly repetitive seqtmce families (DYZl and DYZZ), 3.4 Mb ofX- hamposedsequencesrepflcatedfiomflieXchrunosomeleasdemflfionyeusam 8.4MbofX-degareratesapremesthdmerunmntsofmdentaNosomesfiomwhich themodandeYclnmnosomevolvedanddrerunairfinglOleofanSYis Wofdreunpliconicmgimcontaining8mspecificgenesma02003; Skaletskyetal.,2003). Interestingly,these8genesuepreaemintwocopiesfacingeach othaanirmrhngesmdmedbyZ—UOKblengthspacerseqmncesmaozom; Rozenetal.,2003). Ithasbeenshowntlntwhenthere'namutuioninonecopyofa mapdEcganitiscareaedorrephcedbydreothacopybygeneconversion (Marshall Graves, 2004; Rozenet al., 2003). YMMarkers TheYchromosomehmborsmanymarkersflratcanbeusedforidemitypupoaes MmeYsinglemlwfidepdymphismsW-SNPS),andY- STRs. Sex identification is readily achieved by amplifying either the sex-determining gene of the Y (SRY), or the amelogenin gene. The SRY gene is responsible for testicular determination (Quintana-Marci and Fellows, 2001). The amelogenin gene encodes proteins found in tooth enamel, and is located on both the X and Y chromosomes in slightly different lengths due to a 6 base pair deletion within intron 1 on the X chromosome, making it an ideal sex discriminatory tool (Nakatani et al., 1991). Y-STRs and Y-SNPs can be used for several human identity applications such as male specific DNA amplification in rape cases, paternity testing involving male children, missing person cases, human migration and evolution studies, and historical and genealogical research (Butler, 2003). Because of Y-SNPs low generational mutation rate of 2.0 X 10 '8 (2.0 mutations out of 100,000,000 father/son pairs analyzed) (Jobling, 2001), they are most useful in studies with long historical time lines. Y-SNPs have also been investigated for forensic use because of their male specificity, the ability to analyze highly degraded DNA (40 to 50 base pair fragments), and the potential for automation (Jobling, 2001; Sanchez et al., 2003; Vallone and Butler, 2004). It has also been suggested that Y-SNPs can be used to determine the ethnic background of a perpetrator (Jobling, 2001), however, Vallone and Butler (2004), determined that when looking at 50 different Y-SNPs, the ethnicity of US. male DNA samples cannot be inferred most times. Y-SNP analysis will most likely not overtake the use of Y-STRs in forensics, but they may be used to support Y-STR data. Y-S‘I'Rs are more applicable to forensic science because they have a greater discriminatory power per locus than Y-SNPs due to higher mutation rates and an increased number of alleles per marker. Kayser and Sajantila (2001) estimated that Y- STRs used in forensics have an average generational mutation rate of 2.8 X 10 ‘3 (2.8 mutations per 1000 father/son pairs analyzed) when they investigated 4,999 male germline transmissions fiom confirmed father/son pairs. Although, over 200 Y-STRs have been identified, only a small subset is used extensively in forensic analysis (Butler, 2003). In 1997 the Ernopean forensic community decided on a core set of Y-STR loci termed the “minimal haplotype” that includes DYSl9, DYS385 a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393 (Roewer et al., 2001). The European “extended haplotype” includes the minimal haplotype loci plus YCAII a/b (Roewer et al., 2001). In early 2003 the US Scientific Working Group on DNA Analysis Methods (SWGDAM) selected a core set of loci that includes the minimal haplotype plus DYS438 and DYS439, which is referred to as the US. haplotype (Butler, 2003). Of the minimal haplotype loci, only DYS393 and DYSl9 occur on the short arm of the Y chromosome, the remaining loci are located on the long arm (Butler, 2003). The minimal haplotype has been used extensively used for population studies (Bosch et al, 2002 and Schoske et al., 2004) and thousands of minimal haplotype profiles are located in the Y- STR haplotype reference database fi'om several difl‘erent regions including Europe and the United States (Roewer et al., 2001). Y-STR Amplification Systems There are several Y-STR amplification systems that have been generated, some of which are commercially available. Commercial kits containing the US. haplotype include Reliagene systems (Y-PLEX1M 5 and Y—PLEXTM 6, Y-PLEXm 12) and PowerPlex® Y by Promega. Y-PLEXTM 5 enables simultaneous amplification of five loci on the Y- chromosome including DYS389I, DYS389II, DYS439, DYS438, and DYS392. Y-PLEX'“ 6 enables simultaneous amplification of six loci including DY8393, DYSl9, DYSB89II, DYS390, DYS391, and DYS385. Therefore, Y-PLEXTM 5 and 6 together contain the US. haplotype with DYS389II overlapping between the two systems. Y-PLEXT” 12 is a compilation of the Y-STRs in Y-PLEX‘“ 5 and 6 plus the amelogenin marker. PowerPlex® Y enables simultaneous amplification of the US. haplotype Y-STRs plus DYS437. These commercially available kits enable the forensic community to easily perform Y-STR typing. Other non-commercially available Y-STR amplification kits include multiplex systems containing the US. and European extended haplotype plus other polymorphic Y- STR loci (Butler et al., 2002; Schoske et al., 2004), multiplex systems containing the US. haplotype plus other polymorphic loci (Bosch et al., 2002), and multiplex systems that contain other polymorphic Y-STR loci (Hanson and Ballantyne, 2004). The overall goal of designing a Y-STR multiplex is to generate a set of markers that can be amplified in one multiplex reaction and has high discriminating power. The investigation of other polymorphic Y-STR loci to be included in forensic evaluation is beneficial because by increasing the number of polymorphic Y-STR loci the power of discrimination increases, however, in all cases these must be validated. The overall goal of this project was to validate the Reliagene Y-STR systems, Y- PLEX'“ 5 and Y-PLEX'"6 for analysis on an ABI Prism® 3100 genetic analyzer at the Michigan State Police Forensics Science Division. This was accomplished by conducting studies to determine the minimum sensitivity of each Y-PLEXTM system, the precision of allele sizing using both an ABI Prism® 310 and 3100 genetic analyzer, and the concordance between the two instruments. Finally, an interethnic study was conducted by analyzing approximately 100 samples fiom three ethnic groups, Caucasian, Afiican American, and Hispanic. The results were evaluated using single locus and haplotype statistics. The data produced were compared to the validation studies of Y--PLEXTM 5 and 6 published by Reliagene. Materials and Methods: DNA Samples A single source semen sample of 4 mL was donated for the sensitivity study. The samplewasdilutedwith lOmLofsterilewater,and5 plofthedilutedsemenwas deposited onto three separate 1 cm2 cotton swatches. The swatches were allowed to dry at room temperature prior to DNA extraction. Forty previously extracted DNA samples fiom the Scientific Working Group on DNA Analysis Methods (SWGDAM) were utilized for the concordance study. One hundred fifty three Hispanic, 109 Caucasian, and 101 Afiican American DNA samples for the interethnic study came from anonymous un- related male human blood samples that were previously extracted by personnel floor the Michigan State Police Forensic Science Division. DNA Extraction The three semen stains were each cut into 8 small pieces, approximately 0.125 cm2 in size, and all 8 pieces were placed into 1 Spin-Ease (Gibco BRL) extraction tube either labeled A, B, or C. One hundred and fifty pl TNE (10 mM Tris, 0.1 M NaCl,1 mM EDTA), 50 pl of 20% Sarkosyl, 40 pl of 0.39 M dithiothreitol (DTI'), 150 ul of sterile H20, and 10 pl proteinase K (20mg/ml) were added to each tube and the samples were mixed and incubated in a 37° C oven overnight. Each sample was placed into a spin basket, placed back into the corresponding tube, and centrifuged for 5 minutes at 14,000 X g. The spin baskets were removed and 500 pl of phenol/chloroform/isoamyl alcohol (25:24:1) was added, which was then vortexed and centrifuged for 5 minutes at 14,000 X g. The aqueous layer was transferred to a Centricon®100 concentrator (Millipore). The DNA was washed 3 times with 1 ml ofT'E" (10 mM Tris, 0.1 mM EDTA) and each sample was centrifirged for 15 minutes at 500 X g for each wash. The filtrate was discarded and the retentate, containing the DNA, was collected by inverting the column with the attached retentate vial and centrifuging for 3 minutes at 1000 X g. A total of 50 pl was collected for each sample. DNA samples for the concordance study and interethnic study were previously extracted. DNA Quantification Yield gel and slot blot: The Michigan State Police Forensic Science Division yield gel protocol was followed to assess the quality and quantity of the DNA extracted fiom the semen stains. A 1:10 dilution was prepared for each of the 3 extracted semen DNA samples. Four pl of each DNA sample, neat and diluted 1:10, was combined with 2 hr of loading solution (30% glycerol, 0.1% bromophenol blue, in TE“) and added into a microtiter plate. Three pl of the DNA size standard Lambda HindIII/EcoRI, 6 pl DNA quantification standards including: 500, 250, 125, 63, 31, and 15ng of DNA, and the DNA extracted fiom semen, were loaded onto a 1% agarose gel. Electrophoresis was set at 175 volts for approximately 10 minutes. The gel was photographed and the DNA samples were evaluated for quality and quantity by comparing them to the band intensities of the DNA quantification standards. Based on the yield gel estimates, 1:2, 1:5, and 1:10 dilutions of samples A, B, and C were quantified by slot blot hybridization using a Quantiblot" kit (Applied Biosystems) following manufacturer’s recommendations. Enhanced Chemiluminescent reagent (ECL"‘) (Amersham Biosciences) was used in conjunction with X-ray film to detect the labeled human DNA bound to the membrane. The quantity of DNA was estimatedbyvisuallycomparingthebandintensityofthe DNAtestsampletotheband intensity of the DNA standards (10, 5, 2.5, 1.25, 0.625, 0.3125, and 0.15625 ng) and the DNA calibrators provided in the kit. PicoGreeanssay: The concordance and the interethnic studies’ DNA samples were quantified using a PicoGreen® double stranded DNA quantification assay (Molecular Probes) and a MRX RevelationTM microtiter plate fluorometer (Dynex). A master mix of 200 pl 1134 and 1 pl PicoGreen® dye was prepared for each DNA sample. Two hundred microliters of the master mix was added to 5 pl of each DNA sample. The DNA standards of 50, 25, 12.5, 6.25, 3.125, 1.5625, 0.78125, 0.3906, 0.1953 ng and the samples of unknown concentration were added to a 96—well microtiter plate. MRX RevelationTM software was utilized to extrapolate the concentration of the unknown DNA samples by comparing their fluorescence intensity to a graph of the known DNA concentrations (X-axis) versus fluorescent intensity (Y -axis). DNA Amplification The DNA from semen samples was diluted to concentrations of 5, 2.5, 1.25, 0.625, 0.3125, 0.1563, and 0.078 ng/pl. Y-PlexWS and Y-Plexm6 Y-STR amplification systems were used. Each 25 pl reaction contained 5 pl of 5X primer mix, 0.5 pl AmpliTaq GoldT"(5u/pl), 14.5 pl sterile water, and 5 pl of DNA. Positive (male DNA) and negative (female DNA) controls were set up with each set of samples. All experiments used the same PCR conditions except those of the concordance and interethnic study where the components of the PCR reaction were reduced by half (total 10 volmne of 12.5 pl). Thermocycler conditions for the Y-PLEXT" 5 system were: initial denaturation of the DNA template at 95°C for 10 minutes; 32 cycles of 94°C for 30 seconds, 56°C for 1 minute, 70°C for 45 seconds; with a fiml extension of 60°C for 60 minutes and the samples were held at 4°C until they were removed. Thermocycler conditions for the Y-PLEX‘“ 6 system were: initial denaturation 95°C for 10 minutes; 30 cycles of 94°C for 30 seconds, 59°C for 1 minute, 70°C for 1 minute; with a final extension of 60°C for 60 minutes and the samples were held at 4°C until they were removed. Analysis on ABI Prism® 310 Genetic Analyzer An ABI Prism® 310 genetic analyzer was utilized for the sensitivity, concordance, and precision of allele sizing studies. The minimum Relative Fluorescence Units (RFUs) was set at 75. A matrix file was produced using the recommended matrix standards fiom Applied Biosystems including 5-FAM, HEX, ROX, and TAMRA. A master mix was prepared containing 24.5 pl of formarnide and 0.5 pl of the recommended internal lane standard, GeneScan® - 500 [ROX] (Applied Biosystems). One pl of amplified product was added to a tube containing 25 p1 of mastermix. An allelic ladder containing all alleles for each locus was run 8 times with each set of samples. The samples were denatured on a heat block at 95°C for 3 minutes and then placed into an ice bath for an additional 3 minutes. The collection parameters for the 310 Genetic Analyzer were as follows: buffer, 1X Genetic Analyzer Buffer; polymer, Performance Optimized Polymer 4 (POP-4); virtual filter set, A; injection time, 5 seconds; injection voltage, 15.0 kV; run voltage, 15.0 kV; run time, 30 minutes; run temperature, 60°C. Genotyper® ll software was used to run the Y—Typer macros, Y-Typer-S 310 and Y—Typer-6 310, for analysis of the electropherograms. Analysis on ABI Prism® 3100 Genetic Analyzer An ABI Prism® 3100 genetic analyzer was utilized for the concordance, precision of allele sizing, and interethnic studies. The minimum Relative Fluorescence Units (RFUs) was set at 75. The Promega matrix standards FL, JOE, CXR, TMR and internal lane standard ILS600 (Promega) were used on the ABI Prism® 3100 for the Y- PLEXT" 5 and 6 systems because the recommended Y-PLEXT"I 5 and 6 matrix standards fi'om Applied Biosystems were not made for the ABI Prism® 3100. Afier evaluating the absorbance and emission spectra of the Promega matrix standards it was determined that it should be sufficient for the Y-PLEXT" systems (Table 1). A master mix was prepared containing 24.5 p] of formarnide and 0.5 pl Promega internal lane standard, ILS 600. One pl of amplified product was added to a tube containing 25 pl of master mix. An allelic ladder containing all alleles for each locus was run 8 times with each plate of samples. The samples were denatured on a heat block at 95°C for 3 minutes and then placed into an ice bath for an additional 3 minutes. The collection parameters for the 3100 Genetic Analyzer were as follows: buffer, 1X Genetic Analyzer Buffer; polymer, Performance Optimized Polymer 4 (POP-4); virtual filter set, F; injection time, 5 seconds; injection voltage, 15.0 kV; run voltage, 15.0 kV; run time, 30 minutes; run temperature, 60°C. Genotyper® software was used to run the Y-Typer macros for analysis of the electropherograms. An allelic size difference was noted between the ABI Prism® 310 and 3100, which caused a problem with analysis ofthe data fi'om an ABI Prism® 3100 with Y-PLEXTM 6 samples using the Y-Typer—6 310, but not Y-PLEXm 5 12 using Y-Typer-S 310. The Y-Typer-S macro had a larger base pair tolerance window for the first allele of each locus. To rectify the problem, the Y-Typer—6 310 macro was re- written to have a larger base pair tolerance window and saved as Y6-2. Statistical analysis Allele andHaploope Frequencies: The counting method was used to determine how many times each allele for each locus occurred in each ethnic groups and to determine the number of times a Y-PLEXm 5, Y-PLEXm 6, or Y-PLEXTM 5 + Y- PLEX1M 6 haplotype occurred in each ethnic group. Allele and haplotype fi'equencies were calculated by the equation (# of times allele or haplotype observed)/ (total # of complete haplotypes). Haplotype autism Diversity, Random Match Probability andDiscrlndmrtory Capacity: The haplotype diversity, random match probability (RMP), percentage of rmique haplotypes, and discriminatory capacity were calculated for Y-PLEXT“ 5, Y- PLEXT'“ 6, and Y-PLEX‘“ 5 and 6 haplotypes for all three ethnic groups. STR diversity was calculated for all loci in all three ethnic groups. Haplotype and STR diversity were calculated to determine the probability that two haplotypes or alleles chosen at random would be different, using (n/(n-1)) x( 1- sum of(p2) where n = sample size and p = haplotype fi'equency or allele fiequency. RMP, or the probability that two haplotypes chosen at random would be the same, was calculated as 1 —- haplotype diversity. l3 The percentage of unique haplotypes was calculated by [# of lmique haplotypes/ total # of haplotypes] x 100. Discriminatory capacity, or the ability of each Y-STR system to discriminate between two unrelated individuals, was determined using [# of difi‘erent haplotypes observed/ total # population samples] x 100. Results: 1. Sensitivity Study Tables 2 and 3 contain the results of the minimum sensitivity study of Y- PLEXTMS and Y-PLEXTM6 that was determined by amplification of a DNA sample fiom the semen donor with a total of three trials per DNA concentration. For the Y-PLEXTMS system the profiles obtained by using 0.08 and 0.17 ng of DNA exhibited allele dropout at locus DYS439 in two out of three trials. When 0.3125 ng and higher quantities were used, the alleles at all five loci were amplified in the three trials (Table 2). For the Y- PLEXm6 system the profiles obtained by using 0.03 and 0.17ng of DNA exhibited allele dropout at all loci. Allele dropout was observed in loci DYSB93, DYSl9, DYS389II and DYS385a—b with 0.3125 ng of DNA, and DYS393, DYSl9, and DYS389II with 0.625 ng of DNA. When 1.25 ng and higher quantities of DNA were used, the alleles at all six loci were amplified in the three trials (Table 3). Based on the quantities tested, minimum sensitivity for the Y-PLEXTMS and Y-PLEXTM6 systems were 0.3125ng and 1.25ng respectively. 14 II. Precision of Allele Sizing Study Allele sizes determined fiom sequencing studies (Sinha et al., 2003a and b) and the observed size range, mean size, and standard deviation values for each allele in the allelic ladders fiom this study, are summarized in Table 4. The observed range and standard deviation ofthe allele fi'agment sizes were higher on the ABI Prism® 3100 than for the ABI Prism® 310. The standard deviation values ranged from 0.0208 — 0.1471 base pairs and 0.0217 — 0.08141 base pairs for these instruments respectively. The allele sizes were estimated 1.60 —4.05 base pairs smaller using the ILS 600 size standard on the ABI Prism® 3100 than when using Genescan® 500 [ROX] size standard on the ABI Prism® 310. III Concordance Study Y-Typer 5 310 made the same Y-PLEXTM 5 allele calls for the 40 SWGDAM samples run on either the ABI Prism® 310 or 3100. The Y6-2 macro recognized the Y- PLEXTM6 allelic ladder and made the same allele calls as the Y-Typer 6 310 macro when analyzing the 40 Y-PLEXTM 6 amplified SWGDAM samples rim on either an ABI Prism® 310 or 3100. This indicated Y6-2 could be used to analyze Y-PLEXTM 6 data fiom an ABI Prism® 3100 in further studies. Further, no ‘pull-up’ was observed, indicating the Promega matrix standards were suitable for the Y-PLEXTM systems. IV Interethnic Study Allele frequency values were consistent with data published by Reliagene (Sinha et al., 2003a and b; 2004) and are graphically illustrated in Figures 1 through 1 1. All of the loci exhibited a unimodal distribution of allele fiequencies with the exception of loci DYSB92, DYS438, DYS390, and DYS385a—b. DY8392 (Figure 2) and DYS385a—b 15 (Figure 6) appear bimodal in the three ethnic groups. DYS438 (Figure 1) appears unimodal in the African American samples and bimodal in the Caucasian and Hispanic samples. 'DYss90 appears unimodal in Caucasian and Hispanic samples and bimodal in Afiican American samples. Table 5 summarizes the STR (locus) diversity values for the three ethnic groups; they ranged fiom 0.3018—0.7006 in Caucasians, 0.4634—0.8416 in Afiican Americans, and 0.4348—0.7986 in Hispanics. The ranking of the loci based on STR diversity values was different among the three ethnic groups. DYS439 was the most diverse locus in the Caucasian samples whereas DYS385a—b was the most diverse locus in the Hispanic and Afiican American samples. DYS393 was the least diverse locus in the Caucasian and Hispanic samples whereas DYS389I was the least diverse locus in the Afiican American samples. Table 6 summarizes the percentages of samples resulting in full profiles, no profiles, or containing alleles not present in the allelic ladder (off ladder alleles). The percentage of interethnic samples resulting in full profiles was greater for Y-PLEXTM 5, 84—94%, than Y-PLEXTM 6, 80—88%. Ofi'ladder alleles were observed for loci DY8390, DYS391, DYS385a-b for up to 13% the three ethnic groups, and for DYS392 in 5% of the Hispanic samples only. The ofi‘ ladder alleles were not investigated further because according to the Michigan State Police Forensic Science Division, the raw data have been misplaced. Reliagene reported off ladder alleles for loci DYSB93, DYSl9, DYS389II, DY8390, DYSB91, DYS385a-b, and DYS439 (Sinha et al., 2003a and b). Tables 7a—c summarize the fiequencies of the most common Y-PLEXTM 5 and 6 combined haplotypes in the three ethnic groups. The haplotype frequencies in the Sinha l6 et al. (2004) dataset and the web based Reliagene U.S. haplotype database are also included. The most common haplotypes in the Caucasian and Afiican American samples intheinterethnic study didnotoccurasfiequentlyinthelargerdatasetsofSinhaetal. (2004) and Reliagene, occurring at 0.03409 in the interethnic study and 0.0129 in the Reliagene database for the Caucasian samples and 0.0256 to 0.0093 respectively, for Afiican American samples. This was not seen for the Hispanic samples; the haplotype fiequency was 0.01709 in the interethnic study, 0.0282 in Sinha et al. (2004), and 0.0155 in the Reliagene database. However, the increase in sample size between Hispanic databases, differed by only 117 and 454 samples compared to 88 and 1243 for the Caucasiangloupand78and 1605 intheAfiicanAmerican group. Tables 8 a-c, 9 H and 10 a—c contain haplotypes and frequencies forthethree ethnic groups for Y-PLBXT” 5, Y-PLEXTM 6, and Y-PLEXTM 5 and 6. The Y-PLEXTMS haplotype fiequencies ranged fiom 0.1121 to 0.0093 in the Caucasian samples, 0.1000 to 0.0200 in the Afiican American samples and 0.0859 to 0.0078 in the Hispanic samples. This is compared to the Y-PLEXTM6 and Y-PLEx'ms + 6 haplotype fiequency ranges. The Y-PLEXTM6 ranges were fiom 0.0215 to 0.0108 for the Caucasian samples, 0.0455 to 0.0114 for the Afiican American samples, and 0.0296 to 0.0074 for the Hispanic samples and the Y-PLEXms + 6 ranges were fiom 0.0341 to 0.0114 for the Caucasian samples, 0.0256 to 0.0128 for the Afiican American samples, and 0.0171 to 0.0085 for me Hispanic samples. As expected, the Y-PLEXTMS + 6 haplotypes do not occur as fiequently as the Y-PLEXNS or Y-PLEXTM6 haplotypes, therefore the number of lmique haplotpr observed is greater. Figures 12 through 14 graphically illustrate the number 17 of unique haplotypes observed in each ethnic group for Y-PLEXTMS, Y-PLEXTM6, and Y-PLEXTMS + 6. Tables 11 and 12 summarize the comparison of haplotype diversity, discriminatory capacity, and the percentage of unique haplotypes observed in the interethnic study and Sinha et al. (2004). These values increased as the number of loci analyzed increased from those in Y-PLEXTMS to Y-PLEXT” 6 to Y-PLEXTMS + 6 in both studies. The haplotype diversity values increased fiom an average of 0.9829 with the Y-PLEXTM 5 loci to 0.9956 with the Y-PLEXTM6 loci and to 0.9993 with both Y- 1>Ll~3xTM 5 and 6 loci combined in the interethnic study. The haplotype diversity values reported by Sinha et al. (2004) also increased with the addition of loci but the values were slightly lower than what was observed in the interethnic study. Discriminatory capacity values increased fiom an average of 54.1% with Y-PLEXTMS to 81.8% with Y-PLEXTM6 and 94.3% with the Y-PLEXTMS +6 in the interethnic study. The number ofdifferent lmplotypes was not reported in Sinha et al. (2004) therefore the discriminatory capacity wasnotcalculated. Theaverage percentage ofrmiquelurplotypesobservcdincachctlmic group increased fiom 37.9% with Y-PLEXWS to 71.4 % with Y-PLEXTM6 to 89.77 % with Y-PLEXNS +6intheinterethnic study. ThiswasalsoseenintheSinhaetal. (2004) but the average percentages were lower. Discussion: The Reliagene Y--PLEXTM 5 and 6 systems were validated for analysis on an ABI Prism®3100inthisstudy. ThesesystemsweregeneratedtobeusedonanABlPrism® 310andABlPrism®377buthavenotbeentestedonanABlPrism® 3100(Sinhaetal., 2003a and b). Reliagene was contacted and they verified this. Two issues had to be dealt 18 with prior to proceeding with the validation study. First, the matrix standards consisting of DNA fragments labeled with the dyes needed for the Y-PLEXTM systems, S-FAM, HEX, TAMRA, and ROX, were not available for the ABI Prism® 3100. Secondly, becausethelLS6003izestandardwasusedontheABIPrism®3100theallelefiagment sizesweleestimatedfiom1.60to4basepairssmallerthanontheABlPrism®310using theGenwcan®500 [ROX] size standard (Table 4). Thiscreated a problem with analysis withtheY-Typer6310macro. ABlPrism®3103and31003difi‘erinthemethodofcreatingamathematical matrix which is created to account for spectral overlap of different fluorescent dyes. Therefore,thematlixstandardsarenotsynthesizedthesameway. ForanABIPrism® 310eachmatrixstandardsampleisnmindividually;foranABlPrism®3100thematrix standard samples are run combined. This necessitates the DNA fiagments with the attacheddyestobeofdifl‘eringlengthstoallowfortheirseparation. Forexample,with theABIPlism®3100matrixstandardsby Promega(JOE, FL,TMR,andCXR), JOE is attachedtoal60bpfiagment,FLisattachedtoa250bpfragment,TMRisattachedtoa 300bpfiagrnentandCXRisattachedtoa350bpfi'agment. TheMichiganStatePolice Forensic Science Division routinely used these matrix standards, therefore they were considered as an alternative to the Y-PLEXTM matrix standards. the red dyes, ROX and CXR,andtheyellowdyes,TAMRAandTMR,arefllesamedyeswithdifl‘erentnames. Thebluedyes, 5-FAMandFL,andthegleendyes,HEXandJOEhavevery similar absorbmweandemissionspecuadifi‘eringbtho7nmCI‘ablel). Onceevaluatingthe Wmdanissionspecuaofeachdyeitwasdetermmedmatthermegamauix standmdswouldbesufficiemfortheY-PLEXmsystemsontheABIPrism3100. When 19 evaluating the electropherograms no ‘pull up’ was observed due to the Promega matrix standards. The size difference observed for the allele fi'agments on the ABI Prism® 310 and 3100isatuihnedmmefactthmdifi'emntmtemallanesmndardswereusedoneach instrument. ThisissupportedbyShewaleetal.(2004)inwhichtheyvalidatedtheY- max“ 12 system (a kitcomaimngthcv-PLExmsaodolociinone reaction) on both anABI Prism®310and3100. TheyusedGenescan®500 [ROX]sizestandardonboth instruments and no difference in allele fragment sizes was observed. The ILS600 size standardwasalreadyvalidatedforanABIPrism®3100attheMichiganStatePolice Forensic Science Division therefore it wm used forthe Y-PLEX 5 and 6 systems. The provided Y-Typermacros, Y-Typer 5 310 and Y-Typer6 310, were successfully used to analyzeY-PLEXNSdatafiomtheABIPrism®310and3100,andY-PLEXm6data fiomtheABl Prism®310. However,theY-Typer6310macrowouldnotrecognizethe alleles ofthe Y-PLEX‘" 6 allelic ladder on the ABI Prism® 3100. The Y-Typer macros aredesignedtorecognizethefirstalleleofeachlocusoftheallelicladder+or-a puticularbasepairrange. Themaclocallsthesubsequentallelesofthatlocusbasedon thesizeofthefirstallele. TheY-Typer5310macroluldalargeenoughbasepair whulowforthefirstalleleofeachlocusthatwasabletorecognizethefirstallelesofeach locus in the Y--PLEXTM 5 allelic ladders fiom the ABI Prism® 310 and 3100 even thoufir theallelcsweresizedlmto4bpsmallerontheABlPrism®3100 However,thiswasnot thecasewiththeY-Typer6310maclo. Therefore,theY—Typer6310macrowasre- writtentohavealargerbasepairwindowsothefirstalleleofeachlocuswouldbe recognized. AccordingtopersomlelatMichiganStatePoliceFmensicScialceDivision 20 the original macros, which were still in the developmental stage, have been misplaced. Thus the exact size ofthe base pair window cannot be determined. However, the current available Y-TyperS310andY-Typer6310macroshaveabasepairwindow+or—7 basepairs. The results obtained fiom the sensitivity study were compared to Reliagene’s published data (Sinlm et al., 2003a and b). These results showed a minimum sensitivity of 0.3125 ng of male DNA for Y-PLEXT” 5 with RFU values ranging from 358—1200 ard a minimum sensitivity of 1.25 ng of male DNA for Y-PLEXTM 6 with RFU values ranging fiom 337—1927 (Tables2and3), while Reliagenereportedaminimlun sensitivity of0.1 ngofmale DNA for Y-PLExmswitth-‘Uvaluesrangingfrom400— 600 and aminimum sensitivity of0.2 ngofmale DNA for Y-PLEXm6 withRFU values ranging fiom 300—800(Sirdraetal., 2003aandb). Thedifferences observed between the twosensifivitystudieswuldbeexplainedbythedifiaminqmfityofdnmfing temphe. ReliageneexuactedDNAfimnbloodandbuccalcellswabswhereasdried semenoncottonswatcheswasusedinthisstudy. However,therewasnocleaevidence ofDNAdegradmioninflresanenDNAsmnplesuheydidnotprodmesmearsonflle yieldgelandthefirstallelestodropoutwerenotthelargest. Thesensitivitystudy MhuevmconductedmerelymdaernfimwhmmonsofDNAwouldbe opfimalfmmemwbsequemexpaimentsdmefmednreadtswuemumveuigmedny fin-ther. Whfleconducfingtheinterethmcsurdy,sampleswereexcludediftheydidnm hveafirllprofileoriftheyeomainedallelesnotpresentintheallelicladder(offladder alleles)(Table6). Thesesmrplescmrldnotbeinvestigfledfindrerbecmrseaccold'mgto 21 the DNA personnel at the Michigan State Police Forensic Science Division, the raw data hadbeenmisplaced. OveralLthepercentageofinterethnic samples thatresultedinfull profiles was greater for Y-PLEXT“ 5 than Y-PLEX‘" 6, largely due to the number of Y- am“ 6 samples containing orrladder alleles. ln Y-PLEXTM 5 only the locus DYS439 lmdofl‘ladderaflelegoccurringin5%ofthellispanicsmnples. Incontrast,maverage of8.7%oftlmsamplesfiomallthreeethnicgroupsresultedinofi'ladderallelesforthe Y-PLEXTM 6 loci, including loci DYS390, DYS391, and/or DYS385. Reliagene reported ofi'hddu' alleles for loci DYS393, DYSl9, DYS38911, DYS390, DYS391, DYS38Sa-b, and DYS439 (Sinha at al., 2003a and b). An average «7.3% and 7% ofthe Y—PLEXT" 5d6smnplesrespectivelydidnotlnveafidlprofilewhichcouldbeMMedm incorrectestimateofDNAconcerm'ationorlowqualityDNA. ThereadtsofdieimerethnicsmdywereemnpmedmtheresrdtsofSinhaetal. (2004)apubflcafimmtheeflablishruaofdnfirstU.S.lmkuypedmahaeM aelllociorY—PLEXWSand6crablss7,ll,12). Theinterethnicstudy’smost mmmonhaplotypesinthedueeetlnficgrmrpsocamedlessfiequemlyhrthehpr MofShlmadW)luldreReliagmU.S.haplotypedatabase(Table7). Sinhaetal.(2004)estdrlishedflleRe1hgeueU.S.lnplotypedmdlmeusig517 ”sunflsmmmlqmrdZflmspanicmples. Since thendusdmalmgownb1243mml605Afiianms-qh, d454fl’qmicsmnples. Anavelageof72.l%ofthelnplotypesinSinhaetal.(2004) menniquthaefmethedeaeaseinflrehaaethicsmdy’smostcmmype Mikhpthmwismmmmgflndifi‘erenminsample sizeandincreasedmriqumflable 12) Itwasalsoobscrvedtlllthetlleeeflc 22 groupsdidnotsharethemostcommonhaplotypeintheinterethnicstudy. Infactthe mostcormnonhaplotypeintheHispanicsmnpleswasnotobxrvedintheAfiican AmericanorCaucasiansamples. WhensearchingtheReliageneU.S.haplotypedmalmse thismypeocctlredinCaucmimmplesatalowfiequencyofODOManditdidnot occurintheAfiicanAmericansamples. Kayseretal.(2003)ccncludedtheY—STR Wfiflammmmmflispanicsamplesbasedon ananalysisofmolecularvarimrceqrplomh(AMOVA). Theirfindingissqrportedbythe datapresentedhere. lnboththemterethnicstudyandsmhaaal.(2004)aninaeaseinthehapknype divusityaddlepacemageofmithaplotypawasobservedwhencompmingthe haplotypesconmmmgaelllocioiY-PLExmsmd6comp-edtothehsplotypes endogeithertle-PLEXNSor6locialoneGableslland12). Thisisexpected wmidefingflnpowerofdisahrfimlimofalmkflypehaeuseswifitheadrfifimon- S'I'Rhci. WandybyH-IsonmdBallmlyne(2004),damnsumesanincreasethe powerofdiscrimimion. T‘lrymmlyzedSOCareashmlesndSlAfihA-aie. sqks‘finmdlmofdiehqrhtypesweremique. Thisstmlydenmnstratesthat whenwmbiningasdofhigflypolymplicY—STRstbdisa-in‘nycmciyc-bc thmmmnecoddexpeaifalnglnrmkmlnbawasuseimpeat haplotypeswotddoculbecmrseflreYchomsr-mispasseddrmnfiomm» genermioncompletelyintact. With the exception of DYS392, DYS438, DYS390, and DYS3850-b all loci WWWofdkleqdnswmaboobsavedmsmhaetal.(2004). Suchdisuibuionisexpectedforuiaosmellitealleleswhhregmampems. According» 23 the step mutation model, mutations in these microsatellite regions are generally one repeat larger (step up) or smaller (step down) (Kimura et al., 1978; Walsh, 2001). Bimodal distribution for loci DYS392, DYS438, DYS390, and DYS385a-b was observed in the interethnic study and Sinha et al. (2004). Of these four loci only DYS392 and DYS438 have been tested for an alternative mutational mechanism. Gusmao et al. (2003) conductedastudy inordertodetermine ifthesetwolocideviated fiomthe stepwise mutation model, and concluded that the bimodal allele frequency distributions of these locicanbeexplainedbyhistoricalanddemoglaphiccausesand notanothermutational mechanism. The ranking of the STR diversity values of the Y-ST'R loci difi‘ered among the three ethnic groups (Table 5), as was observed by Schoske et al. (2003). DYS439 was the most diverse locus in the Caucasian samples whereas DYS385a-b was the most diverse locusintheHispanicandAfiicanAmelicansamplss DYS393 wastheleast diveuelocmintheCaucasimamlHispanicsampleswhereasDYS389I wasthe least diverse locusintheAfiicanAmericansamples. Boschetal. (2002)andSchoskeetal. (2N4)£olmdDYS393tobetheleastdiverselocus,DYS439tobethesecondmost diverse locus, and DYS385a-b to be the most diverse locus in Caucasian, African AmwwmdnflraimPeninadapopldafiomwhenlookingatthe “minimal”haplotype loci. T‘heSTRdiversityvalueisbasedonhowpolymorphicthe ST‘Rlocusis,tlurs,it'ndepemlemonthemunberofpotential alleles foraparticular locus,thecopynlunberofthelocus(e.g. DYS385a—bisatwoccpy kurs)-Ilthedlelic dhribuiou. Oftheloci WindleU.S.lnplotype,DYS385a-bisthemost polymorphicbecauseithastuocopiesaaltherearell possiblealleles(Boschetal., 24 2002; Schoske et al, 2004). Because the two copies do not necessarily have the same number of repeats per allele, it has the information of two loci. Surprising, DYS385a-b was not the most polymorphic locus in the Caucasian samples of the interethnic study. Thiscouldbeexplainedbythesmallsamplesizeandtheoriginofthesamples. In previous STR diversity studies the sample sizes were larger and the samples were from all over the U.S. rather than fiom one state. When comparing the allelic distribution of each locusinFigures 1 through 11 tothe STRdiversityvaluesinTable 5, onecansee that the loci containing several possible alleles with an even distribution of frequencies have higher STR diversity values, for example DYS439 (Figure 3). Conversely, a locus that has few alleles with a high frequency of occurrence has a lower STR diversity value, for example DYS393 (Figure 7). Since the time of this study in 2002, two more inclusive Y-ST'R systems have become available to the forensic community, Y-PLEXTM 12 by Reliagene and Powerplex® Y by Promega. Both systems have benefits over the separate Y-PLEXTM 5 and 6 systems. They both include the U.S. haplotype, enabling amplification of all loci usingjustonePCRreactionasapposedtotwo,andweregeneratedtorlmonanABI Prism® 3100 enabling high throughput analysis. In addition to the U.S. haplotype, the Y-PLEXTM 12 system contains a sex-typing marker, amelogenin. This is beneficial as a control for PCR inhibition and to determine the sex of the sample donor(s). A lack of a male profile could be due to either PCR inhibition or not enough male DNA present in the sample. lfthere is no male profile or amelogenin peaks in a female/male mixture then this would lead to the conclusion that there are PCR inhibitors, however, if there is no male profile but there are amelogenin peaks this indicates the sample is most all 25 female. Powerplex® Y does not contain the amelogenin marker however it does contain an additional Y-ST'R locus DYS43 7. Both Reliagene and Promega have established U.S. haplotype databases for their respective Y-STR systems that are available to the forensic community in order to estimate a haplotype fiequency (Sinha et al., 2004 and Krenke et al., 2005). It would be beneficial to one day have an integrated standardized U.S. haplotype database, because with a larger database a haplotype fiequency would be more reliable. The Reliagene Y-PLEXTM 5 and 6 systems have been validated for forensic casework (Sinha et al., 2003a and b), validated for analysis on an ABI Prism® 3100 in this study, and utilized for the establishment of the first U.S. haplotype database with the SWGDAM recommended loci (Sinha et al., 2004). It should be noted that the dataset fiomthecurrent interethnic studywasmuch smallerthanthedatasetreported inSinhaet al., 2004 and the current Reliagene database, and it was meant only for the validation of the Y-PLEXTM systems for analysis on an ABI Prism® 3100. Also, Michigan State Police Forensic Science Division was involved in the validation of the Y-PLEXTM systems in collaboration with Reliagene, therefore, this interethnic dataset will be added to the Reliagene database in the future. 26- asses ems“; accuses 2: ace eoeooe .easaeemm come? 3 SE.“ .5: .535 .XOM one «woes—m .3 Hm .mOa g .MXU ”88 came madman x59: 05 .«e mos—S, commune Ea Seascape 06 mo meanness“. < mmm mew 33 Eoomoaoeaxofimom Salem Xmas?» omm o3 0:3 58883.“ ‘5 mmoEoE own mmm :0on Eoomoaosceozomxonro Xmm Xmumé amm wmm :08» 5888:: xxofioger.H”N68208:musicaofieoé m9. mmoEoi Sm Se 32:: usages Reconnaissance SEE came; mam com 323» ofifiaeofi Eamofiaborxxofimo KER mmofioi Be as ea oeeaeeeaaxeesiem xom xmma; So 5m e2 oEEaeofireAJQofino MXU a 060.5 ASE eommmam A55 vengeance .200 08m: zen 9mm will _ 933—. 27 Table 2 Trial 1 Trail 2 Trial 3 Sailple Allele Allele call RFU RFU RFU AverageRFU 5 pgnrale DNA DYS3891 12 4634 4189 4669 4497 DYS3891] 28 3261 3576 4033 3623 DYS439 1 1 6215 5162 6628 6002 DYS438 10 6560 5847 6892 6433 DYS392 1 1 6839 7206 6738 6928 2.5 ng male DNA DYS3891 12 2356 3891 3749 3332 DYS3891] 28 1418 2919 3128 2488 DYS439 l l 1497 3065 2763 2442 DYS438 10 3929 5666 471 1 4769 DYS392 1 l 4064 6758 6216 5679 125 ngmale DNA DYS3891 12 2155 2375 2265 2265 DYS3891] 28 1581 1967 1897 1815 DYS439 I 1 1493 1269 1 141 1301 DYS438 10 2361 2406 3354 2707 DYS392 1 1 3987 3734 3962 3894 0.625 ngrnale DNA DYS3891 12 1322 1862 1692 1625 DYS3891] 28 908 1645 1357 1303 DYS439 11 992 660 880 844 DYS438 10 1309 1576 1788 1558 DYS392 1 1 2592 3122 2580 2765 0.3125 rig male DNA DYS3891 12 849 714 937 833 DYS3891] 28 655 514 788 652 DYS439 1 1 430 321 324 358 DYS438 10 813 959 754 842 DYS392 1 l 937 1271 1495 1234 0.17 ngmale DNA DYS3891 12 313 372 477 387 DYS3891] 28 199 260 391 283 DYS439 11 <75 <75 , 155 155 DYS438 10 365 464 496 442 DYS392 l 1 661 621 1088 790 0.08 ng male DNA DYS3891 12 576 <75 465 521 DYS3891] 28 433 <75 346 390 DYS439 11 158 <75 <75 158 DYS438 10 296 <75 241 269 DYS392 11 286 <75 229 258 Y-PLEXWS results ofthe three trials ofthe minirnlln sensitivity study for 0.08 to 5 ng ofDNA on an ABI Prism®310. 28 Table 3 Trial 1 Trail 2 Trial 3 Sample Allele Allele call RFU RFU RFU AverageRFU 5 ng male DNA DY8393 13 1114 905 1227 1082 DYSI9 14 2332 549 1023 1301 DYS3891] 28 3173 1279 1749 2067 DY8390 23 3775 2446 3432 3218 DYS391 10 6666 4947 6280 5964 DYS385 13 1,609 2523 2634 2255 DYS385 15 1,285 2432 2184 1967 2.54anale DNA DYS393 13 632 598 636 622 DYSI9 14 1279 525 506 770 DYS3891] 28 1450 823 927 1067 DYS390 23 2059 2003 1813 1958 DYS391 10 3762 4019 4169 3983 DYS385 13 1051 1603 1444 1366 DYS385 15 1062 1240 1425 1242 1.25 nLrnsle DNA DYSB93 13 340 338 333 337 DYSI9 14 649 208 287 381 DYS3891] 28 775 261 376 471 DYS390 23 1239 959 878 1025 DYS391 10 1884 1592 2304 1927 DYS385 13 497 740 654 630 DYS385 15 546 688 675 636 0.62541g male DNA DYSB93 13 180 202 <75 191 DYSI9 14 243 <75 <75 243 DYS3891] 28 261 154 <75 208 DY8390 23 607 439 549 532 DYS391 10 946 951 865 921 DYS385 13 277 471 386 378 DYS385 15 245 436 374 352 0.3125 ng male DNA DYS393 l3 <75 <75 <75 DYSI9 l4 <75 <75 <75 DYS3891] 28 <75 <75 <75 DYS390 23 245 299 253 266 DYS391 10 381 615 552 516 DY8385 l3 <75 192 246 219 DYS385 15 <75 245 155 200 0.17 rig male DNA DYS393 l3 <75 <75 <75 <75 DYSI9 l4 <75 <75 <75 <75 DYS3891] 28 <75 <75 <75 <75 DYS390 23 <75 <75 <75 <75 DYS391 10 290 <75 <75 290 29 Table 3 (continued) DYS385 l3 <75 <75 <75 <75 DYS385 15 <75 <75 <75 <75 0.08 anale DNA DYS393 13 <75 <75 <75 <75 DYSI9 14 <75 <75 <75 <75 DYS38911 28 <75 <75 <75 <75 DYS390 23 <75 <75 <75 <75 DYS391 10 <75 <75 <75 <75 DYS385 13 <75 <75 <75 <75 DYS385 15 <75 <75 <75 <75 Y- PLEXW6 results ofthe three trials ofthe minimum sensitivity study for 0.08 to 5 ng of DNA on an ABI Prism® 310. 30 IE Table 4 Size on 310 (bases; n=11) Size on 3100 (bases; 11:12) Locus Allele Se uence Size (bases) Observed range Mean SD. M Mean __S_D_._ DYS3891 11 244 243.73 - 243.81 243.76 0.0217 240.58 - 240.79 240.67 _0_0108_ 12 248 247.76 - 247.85 247.80 0.0223 244.61 - 244.85 244.75 0.0645 13 252 251.73 - 251.86 251.81 0.0510 248.76 — 248.95 248.84 00—61 14 256 255.78 - 255.85 255.81 0.0221 252.75 — 253.04 252.93 111% 15 260 259.83 - 259.94 259.88 0.0298 256.82 - 257.12 256.96 0.0794 DYS389II 27 360 362.40 — 362.65 362.55 0.0624 358.37 — 358.67 358.55 0.0981 28 364 366.46 - 366.60 366.51 0.0484 362.45 - 362.77 362.61 0.0789 29 368 370.31 - 370.56 370.42 0.0699 366.36 - 366.87 366.63 0.1471 30 372 374.25 - 374.48 374.38 0.0813 370.46 — 370.78 370.63 0.0937 31 376 378.20 - 378.41 378.33 0.0573 374.40 - 374.75 374.70 0.1086 32 380 382.14 - 382.31 382.24 0.0490 378.61 - 379.07 378.81 0.1298 33 384 386.02 — 386.15 386.10 0.0475 382.58 - 383.03 382.83 0.1417 DYS439 10 241 238.77 - 238.89 238.81 0.0370 235.73 - 235.93 235.82 0.0704 11 245 242.77 — 242.86 242.81 0.0232 239.68 - 240.02 239.82 0.0976 12 249 246.81 - 246.90 246.85 0.0228 243.75 — 244.02 243.93 0.0696 13 253 250.77 — 250.89 250.80 0.0370 247.86 - 248.11 247.97 0.0741 14 257 254.83 - 254.90 254.86 0.0239 251.92 — 252.18 252.05 0.0890 DYS438 8 131 130.99 - 131.14 131.05 0.0541 128.29 — 128.95 128.85 0.1739 9 136 136.18 - 136.32 136.24 0.0575 134.00 - 134.17 134.08 0.0457 10 141 141.55 — 141.67 141.60 0.0549 139.01 — 139.23 139.14 0.0534 11 146 147.14 - 147.19 147.17 0.0130 144.16 — 144.33 144.24 0.0522 12 151 152.67 — 152.80 152.77 0.0486 149.25 - 149.41 149.33 0.0501 13 156 158.21 158.20 0.0271 154.35 — 154.45 154.42 0.0476 DYS392 10 247 247.05 — 247.14 247.09 0.0234 243.97 - 244.14 244.09 0.0741 11 250 250.05 — 250.20 250.11 0.0552 246.89 - 247.12 247.01 0.0653 12 253 253.07 — 253.19 253.16 ‘ 0.0393 249.92 -250.24 250.13 ‘00983 13 256 256.14 - 256.21 256.17 0.0221 253.06 - 253.38 253.21 0.1114 14 259 259.17 - 259.28 259.22 0.0444 256.12 — 256.44 256.27 0.0852 15 262 262.18 — 262.32 262.70 0.0435 259.43 - 259.5 259.46 0.0295 DYS393 11 112 112.8 - 112.90 112.81 0.0443 110.06 — 110.18 110.13 0.0337 12 116 116.71 — 116.84 116.76 0.0445 114.30 — 114.35 114.32 0.0208 13 120 120.66 - 120.81 120.74 0.0452 118.46 - 118.55 118.49 0.0269 14 124 124.72 — 124.85 124.79 0.0441 122.56 — 122.67 122.62 0.0281 15 128 128.77 - 128.88 128.82 0.0549 126.71 - 126.78 126.73 0.0239 16 132 132.78 - 132.95 132.88 0.0513 130.76 — 130.85 130.80 0.0331 17 136 136.90 — 137.02 136.99 0.0437 134.81 - 134.93 134.87 0.0284 ZS [IE4 (confirmed)! I W819 I 12 I 181 I 18183-18197 1181871005931 17786-17800 [177.94 0.0452 If f 13 l 185 I 18573-18589 1185821005591 18185-18196 l181.92 00304 F l 14 l 189 I 18959-18981 189.73 006021 18588-18601 18592 0.0376 15 l 193 19355-19373 193.64 0.0508 18986-19001 189.92 0.0365 fi 16 197 197.38— 197.53 197.48 0.0354 19389-19401 193.94 00336 17 201 201.35 -201.47 201.39 0.0506 197.87- 197.97 197.91 0.0354 DYS3891] 27 294 29365-29380 293.72 0.0449 29057-29071 290.64 0.0475 28 298 29776-29793 297.83 0.0712 29461-29475 294.67 0.0469 29 302 30201-30214 302.07 0.0549 29863-29879 298.72 0.0457 30 306 306.09 - 306.27 305.98 0.0646 302.64 - 302.79 302.71 00535 31 310 31016-31041 31031 0.0613 30662-30684 306.72 0.0691 32 314 314.36 - 314.60 314.49 0.0789 310.68 - 310.89 310.77 0.0701 33 318 31844-31867 318.59 00603 314.66- 314.85 314.77 0.0654 DYS390 20 178 17943-17964 179.56 0.0613 17545-17557 175.51 0.0369 21 182 183.4- 183.58 183.50 0.0585 17939-17955 179.48 0.0516 22 186 187.39- 187.52 187.43 00486 183.38— 183.51 183.45 0.0356 23 190 191.24- 191.45 191.34 0.0555 187.35 - 187.49 187.43 0.0389 24 194 195.08 - 195.25 195.17 0.0433 191.35 - 191.49 191.41 0.0382 25 198 19900-19914 199.06 0.0602 19534-19546 195.40 0.0371 DYS391 9 245 245.70-24579 245.76 0.0472 242.78 -242.86 242.82 0.0253 10 249 249.68 - 349.88 249.77 0.0602 246.81 - 246.95 246.88 0.0448 11 253 253.82 - 253.91 253.84 0.0433 250.92 — 251.06 251.00 0.0433 12 257 25782-25791 257.87 00537 2550025515 255.06 0.047: DYS385 8 345 34536-34548 345.41 0.0376 342.35 -342.53 342.45 0.0679 10 352 352.94 - 353.15 353.05 0.0560 350.17 - 350.34 350.27 0.0508 11 356 356.71 - 356.88 356.77 0.0501 353.98 - 354.15 354.09 0.0623 12 359 360.43 - 360.58 360.52 0.0556 357.88 - 358.05 357.95 0.0555 13 363 364.13 - 364.29 364.21 0.0480 361.64 - 361.86 361.75 0.0659 14 367 367.85 - 368.01 367.95 0.0516 365.51 - 365.75 365.62 0.0727 15 370 371.47 - 371.77 371.69 0.0814 369.33 - 369.52 369.45 0.0530 16 374 37534-37547 375.42 0.0487 373.11 -373.41 373.28 0.0933 17 378 379.07 - 379.22 379.14 00598 377.11 — 377.29 377.18 0.0596 18 382 382.75 - 382.90 382.85 0.0462 380.90 - 381.74 381.06 0.0740 19 385 386.48 - 386.67 386.56 0.0573 384.78 - 385.09 384.95 0.0875 The precision of migration of alleles in the allelic ladders of Y—PLEXT‘VS and Y—PLEX“ 6 on an ABI Prism® 310 and an ABI Prism® 3100, Y—PLEX 5 loci include: DYS3891, DYS38911, DYS439, DYS438, and DYS392. Y-PLEX 6 loci include: DYS393. DYS 19. DYS38911. DYS390, DYS391, and DYS385. DYS389II is the overlapping locus between Y-PLEX 5 and 6, which are different sizes because they have different primer sets in each system. Table 5 Caucasian Afi'ican American Hispanic Locus STR diversity Rank STR diversitx Rank STR diversity Rank DYS439 0.7006 1 0.61 17 5 0.6551 5 DYS389II 0.6878 2 0.7646 2 0.7024 2 DYS390 0.6870 3 0.6831 4 0.6510 6 DYS385a/b 0.6273 4 0.8418 1 0.7986 1 DYS438 0.6265 5 0.5857 6 0.6869 3 DYS392 0.5618 6 0.5164 7 0.6683 4 DYS391 0.5446 7 0.4935 9 0.5520 8 DYSI9 0.4734 8 0.7249 3 0.6405 7 DYS3891 0.4576 9 0.4638 10 0.5193 9 DYS393 0.3018 10 0.4943 8 0.4348 10 STR diversity and ranking for the Y-PLEXTM 5 and 6 loci tested in the three ethnic groups: Caucasian, African American, and Hispanic. Table 6 African Caucasian American Hispanic Y-PLEXS N=109 N= 110 N= 153 °/o with fiill profile 98 91 84 % excluded due to off ladder allele 0 0 5 % excluded due to no profile 2 9 ll Y-PLEX6 N=109 N= 110 N=153 % with full profile 85 80 88 % excluded due to off ladder allele 13 7 6 % excluded due to no profile 2 13 6 PamdisuibutionofdleCaucasian, African Amer-imandHispanic samplesthatwere mlyzed using Y-PLEXTM 5 and 6 containing: a full profile, off ladder alleles, or no profile. N = the number of samples tested. 33 damm>0 n5 .nmvm>fl .amvm>n .Summ>n_ .nénwmmN'D ._amm>a .8mm>n flan m>fl .a—m>fl .manm>n:o 898 05 E 53.59.. .03 .3336 3.8.9... .3. 869...; 2.. a... sea. 38 .5 .6 2.5m a 536 0.5523... 05 a .8525: was .5055... 5834. 38930 £98..» 353 09.5 06 3 mambo—nu: g8 .85 05 mo 8.2.0.62.— 25033 «c 83888 < 3.15 was... $8.15 a £3.15 .88... 3338 855.3. 9.815 ”as... @215 .859. .8 A... “15 .3288 8.. 88 :3 .6 9.5m 5 .15 .82.... $15... $15 a as... 65523... 6.85... 86.85... 53.5... 8.325 .2.......v..e.-n..a.v~.°m.m..m. 1 has 65583... 2.. a. 632...... 6.8%... 8558 .82 on 2...: Avnfaflnos... $8.15 .88... 5.215 .28... 68.630 Ewan»... 9:15 .98... A515 .38... E 615 .83... 38 4... 8 8.5m .2 .15 a 515 .88... 8.15 ”RS... .88 655235 656%.: 68.88... 86...... £823 2.5.2.26.-. 1.33312 1 .3... 65583... o... a. 252...... 56.3.5. 82...... 8888 .82 .K 2.3 @215 .88... $8.15 .28... 6.215 ans... 8358 852.3. 8815 .38... @315 58.32 .8 €31.15 $88... 38 :3 .6 2.5m E .15 a $15 .38... .315 .848... .38 65568.... 656%.: 68.85... :85... 3330 2.24126.-.1.1.8.8412 1 5.5.... 6.2.23... 2.. a. 252...... 8.886 8558 .82 an 033. 34 Table 8a # of DY83891 DYS3 8911 DYS439 DYS438 DYS392 occurrences Frequency 13 29 11 12 13 12 0.1121 13 29 12 12 13 11 0.1028 13 30 10 1 l 1 l 5 0.0467 12 28 l l 10 1 1 5 0.0467 14 30 12 12 13 4 0.0374 13 30 13 12 13 4 0.0374 13 28 12 12 13 4 0.0374 12 29 12 10 l l 3 0.0280 13 29 13 12 13 3 0.0280 12 28 12 10 l l 3 0.0280 13 30 12 12 13 3 0.0280 13 30 l l 12 13 3 0.0280 13 29 12 13 13 2 0.0187 13 28 13 12 13 2 0.0187 13 30 12 10 1 1 2 0.0187 13 30 1 l l l 1 1 2 0.0187 12 27 l l 10 l 1 2 0.0187 13 29 12 9 l l 2 0.0187 13 30 13 1 l 13 1 0.0093 14 29 1 1 12 13 1 0.0093 13 29 10 10 1 1 1 0.0093 12 29 l l 10 1 l 1 0.0093 13 29 12 12 14 1 0.0093 13 28 l 1 12 13 1 0.0093 13 31 12 10 1 1 1 0.0093 14 31 l l 10 12 1 0.0093 13 30 10 1 l l 1 1 0.0093 12 29 10 10 1 1 1 0.0093 12 30 13 10 1 l 1 0.0093 12 28 13 9 ll 1 0.0093 13 29 1 l 1 l 11 1 0.0093 13 31 10 l 1 l 1 1 0.0093 13 29 12 10 1 1 1 0.0093 12 28 13 12 13 1 0.0093 13 29 12 12 12 1 0.0093 14 30 12 13 13 1 0.0093 13 29 12 10 12 1 0.0093 13 30 12 12 14 1 0.0093 13 28 12 12 14 1 0.0093 35 Table 88 (continued) 13 30 l 1 9 l3 1 0.0093 14 31 10 1 1 11 1 0.0093 13 29 ll 12 14 1 0.0093 14 32 10 l l l 1 1 0.0093 14 30 13 12 13 1 0.0093 14 30 l 1 12 13 1 0.0093 13 29 14 12 13 1 0.0093 12 31 l 1 10 1 1 1 0.0093 13 29 12 12 13 1 0.0093 13 29 l 1 10 12 1 0.0093 13 30 12 1 l l 1 1 0.0093 13 30 13 1 1 1 l 1 0.0093 15 31 12 10 1 l 1 0.0093 13 31 13 10 l 1 1 0.0093 Caucasian Y-PLEX 5 haplotype frequencies 36 Table 8b #of DYS3891 DYS3891] DYS439 DYS438 DYS392 occurrences Frequency 13 30 12 11 ll 10 0.1000 13 29 12 12 13 8 0.0800 13 31 12 11 11 7 0.0700 13 31 11 ll 11 6 0.0600 13 29 13 12 13 4 0.0400 13 30 13 11 ll 4 0.0400 13 30 ll 11 11 3 0.0300 14 31 12 11 11 3 0.0300 13 29 12 12 14 3 0.0300 12 28 11 11 ll 2 0.0200 14 30 12 12 13 2 0.0200 13 32 11 ll 11 2 0.0200 12 28 ll 10 11 2 0.0200 13 30 12 12 13 2 0.0200 13 29 13 12 13 2 0.0200 13 29 11 10 ll 2 0.0200 13 29 11 10 ll 2 0.0200 12 29 12 ll 11 2 0.0200 13 29 11 12 13 2 0.0200 12 29 13 ll 11 1 0.0100 14 32 13 ll 11 1 0.0100 11 28 12 11 11 1 0.0100 12 29 ll 9 11 1 0.0100 14 32 12 11 ll 1 0.0100 13 30 12 10 11 1 0.0100 13 29 ll 11 11 1 0.0100 13 21 14 11 10 1 0.0100 13 29 12 11 12 1 0.0100 13 33 12 11 11 1 0.0100 13 29 12 12 13 1 0.0100 13 29 12 11 13 1 0.0100 14 31 11 11 11 1 0.0100 12 30 11 10 12 1 0.0100 12 28 12 10 10 1 0.0100 13 30 ll 8 11 1 0.0100 15 32 12 12 11 1 0.0100 12 29 11 11 12 1 0.0100 14 31 11 12 13 1 0.0100 13 31 13 10 ll 1 0.0100 37 Table 8b (continued) 13 29 12 13 13 1 0.0100 12 28 ll 12 13 1 0.0100 14 3O 12 11 14 1 0.0100 14 31 10 10 14 1 0.0100 12 28 13 8 11 1 0.0100 13 28 12 12 13 1 0.0100 13 31 13 11 11 1 0.0100 13 31 12 12 11 1 0.0100 12 31 ll 10 11 1 0.0100 13 30 10 11 11 1 0.0100 13 29 12 9 ll 1 0.0100 African American Y-PLEXTM 5 haplotype frequencies 38 Table 80 # of DYS3891 DYS3891] DYS439 DYS438 DYS392 occurrences Frequency 13 29 ll 12 13 11 0.0859 13 29 12 12 13 7 0.0547 14 30 12 12 13 5 0.0391 13 30 12 12 13 4 0.0313 14 30 10 10 11 3 0.0234 13 31 12 10 11 3 0.0234 13 30 12 11 ll 3 0.0234 13 30 12 10 11 3 0.0234 13 29 11 11 14 2 0.0156 14 31 l3 12 13 2 0.0156 13 29 10 12 13 2 0.0156 12 27 12 10 11 2 0.0156 12 12 28 11 13 2 0.0156 14 29 12 10 11 2 0.0156 13 30 ll 11 11 2 0.0156 13 29 13 10 11 2 0.0156 13 29 12 9 11 2 0.0156 13 31 11 12 14 2 0.0156 13 30 13 12 13 2 0.0156 12 28 11 10 11 2 0.0156 12 29 11 10 11 2 0.0156 12 28 11 9 11 2 0.0156 13 29 13 12 13 2 0.0156 13 29 12 10 14 2 0.0156 14 31 12 10 11 2 0.0156 13 30 ll 11 15 2 0.0156 13 29 11 11 12 1 0.0078 12 29 12 10 11 1 0.0078 13 29 12 ll 13 1 0.0078 14 31 10 10 11 1 0.0078 13 29 12 12 14 1 0.0078 13 28 12 12 14 1 0.0078 13 30 12 9 11 1 0.0078 12 29 12 11 14 1 0.0078 12 28 11 12 14 1 0.0078 13 30 13 11 15 1 0.0078 14 31 12 12 13 1 0.0078 13 30 11 9 11 1 0.0078 13 31 11 11 11 1 0.0078 39 ll‘able 8c (continued) 12 28 1 1 13 13 1 0.0078 12 28 12 12 13 1 0.0078 13 30 l l 10 l 1 1 0.0078 13 31 l l 10 l 1 1 0.0078 13 3O 12 10 14 1 0.0078 13 30 12 10 12 1 0.0078 13 29 12 1 1 14 1 0.0078 13 30 1 l 10 12 1 0.0078 12 29 l 1 12 13 1 0.0078 13 29 10 12 13 1 0.0078 13 29 1 1 13 14 1 0.0078 13 30 10 10 12 1 0.0078 14 30 13 12 13 1 0.0078 13 29 12 12 13 1 0.0078 12 28 13 1 1 1 1 1 0.0078 13 31 13 ll 14 1 0.0078 13 29 11 13 13 1 0.0078 14 29 12 1 1 1 l 1 0.0078 13 29 12 12 13 1 0.0078 13 29 12 12 10 1 0.0078 14 32 1 l 10 1 1 1 0.0078 13 29 12 12 13 1 0.0078 14 32 13 1 1 l4 1 0.0078 14 31 10 1 1 1 1 1 0.0078 13 29 12 12 13 1 0.0078 13 29 12 12 13 1 0.0078 13 29 1 l l2 14 1 0.0078 13 31 13 12 13 1 0.0078 13 30 l l 12 13 1 0.0078 14 30 13 10 l 1 1 0.0078 13 30 13 l 1 l l 1 0.0078 14 31 12 l 1 14 1 0.0078 14 30 12 9 1 1 1 0.0078 14 32 12 10 12 1 0.0078 12 27 12 12 13 1 0.0078 14 30 l l 12 13 1 0.0078 13 29 l l 9 l 1 1 0.0078 13 30 1 l 1 1 13 1 0.0078 13 3 l 12 12 14 1 0.0078 14 32 13 12 13 1 0.0078 Hispanic Y-PLBXW 5 Haplotype Frequencies 40 mo... weed _ N_ : N N 3 3 836 _ 3 N— : VN om 3 m. 856 fl 3 3 o. mN E m— 2 88d g 3 o. S N on S m. 856 ~ 2 m. 2 N eN m. 3 aged ~ 3 m. e N N m. m. 386 g m. .1 o. NN N m— E 886 _ 3 o. NN oN m. 2 «Sad _ 3 Z Z N on I N_ 35.0 g 2 Z Z N on 3 2 856 _ 2 2 2 .N N 2 2 MNmod m 3 Z : «N N E m— mchd m 3 2 3 MN N 3 m. m_No.o N 3 Z S N on 2 m. 336 N 3 o. mN N I 2 m_No.o N 3 m. o. NN N m— m— m_No.o N 2 S : VN eN 3 m. 386 N 3 m. o. NN wN 3 m— MNmod m E Z : «N N 3 m— m_No.o N E S Z N N 3 2 omvod «4 3 I o. «N cm 3 m. mNmod m E o. o— N am 5 m— ocwod w 3 Z S «N N 3 2 28d N E 2 Z mN N 3 2 #05362... 328.558 0 mamm>fl a mumm>0 3mm>Q oomm>n newmm>a 3m>n momm>n a a 2%... 41 was... . m. M. o. MN GM .4. N. «0...... . v. .. o. MN eN m. .4. mos... . m. .. o. .N mN v. M. Mos... . v. .. .. VN GM .4. M. was... . v. N. o. .N N v. v. was... . .. o. .. .N N v. .4. mos... . v. o. o. .N oM m. M. no.0... . v. M. o. NN MN v. M. was... . m. N. o. N N v. M. was... . w. w. o. .N oM M. M. was... . M. .. c. .N GM .4. M. 8...... . e. v. c. MN oM v. M. was... . m. .. .. NN cM v. M. Mos... . w. v. .. MN oN e. v. Mos... . v. .. .. MN OM v. M. Mos... . M. .. .. NN cM v. M. was... . M. N. .. MN N v. M. «0...... . M. N. o. MN MN .4. v. 8...... . v. N. c. MN eN v. M. 8...... . M. .. o. MN oM v. M. Mos... . n. M. e MN oN m. M. Mos... . m. M. o. NN N v. M. Mos... . v. o. .. .N .M m. M. Mos... . v. o. NN MN .4. M. was... . m. .. VN OM o. M. was... . m. v. c. MN eN v. M. 8.0... . h. v. o .N .M v. M. 685.85 a 2...... 42 8.8262... 252%.. w qun.-> 53830 Mos... . v. o. NN MN v. M. Mo.o.o . v. .. o. .N 0M v. N. 3...... . M. v. .. .N .M o. v. Mos... . v. .. .. MN MN v. M. MOE... . w. .. o. N MN M. M. Mos... . N. M .N .M c. M. Mos... . M. N. o. NN MN v. M. 8...... . v. .. o. MN MM 0. M. 8...... . v. .. .. NN MN v. M. Mo.o.o . M. .. .. MN MN w. M. Mos... . c. 0. MN MN M. o. Mo.o.o . w. .. o. .N MN v. M. 8.0... . v. M. o. NN .M M. v. MOS... . h. v. o. MN MM v. N. Mo.o.o . v. .. .. VN oM M. M. Mao... . M. N. .. MN MN M. v. Mos... . v. .. .. MN OM w. M. @8588. «a ”sub 43 2:3 2 2 2 2 2 2 2 2 2:3 2 2 222 2N 2m 2 2 2:3 2 2 2 2 2 2m 2 2 2:3 2 2 2 22 2 2 2 2 2:3 2 2 2 2 2m 2m 2 2 2:3 2 2 2 2 2 on 2 2 2:3 2 2 2 2N on 2 2 2:3 2 2 2 2 2m 3m 2 2 2:3 2 22 22 a 2 2 2 2:3 2 2 22 22 2 2 2 2 2:3 2 2 2 2 2n 2 2 2 2:3 2 2 2 2m 8 2 2 2:3 2 2 2 2 mm 2 2 2 2:3 2 2 2 2N 22m 2 2 2:3 2 2 2 2m 9. 2 2 2:3 2 2 2 2 2m .2 2 2 2:3 2 2 2 2m 8 2 2 2:3 2 2 2 2 2 mm 2 2 2:3 2 2 2 2 a 22m 2 2 2:3 2 2 22 22 MN 2 2 2 223 N 2 2 2 2 2 22m 2 2 223 N 2 2 2 2m 2 2 2 223 N 2 22 2 mm a 2 2 22.23 m 2 2 222 2N 2m 2 2 2223 m 2 22 22 x 22m 2 2 223 2. 2 22 22 «.6. 3m 2 2 28222222 8222288232 .2 22225 a 2225 2225 9225 223226 225 885 £2 22222 v..M.M . M. M. .. NN NM M. M. v..M.M . h. M. .. .N .M M. M. .156 . .. .. MN MM v. M. 336 . h. M. M. .N .M M. M. v..M.M . M. M. .. .N .M M. M. v..M.M . M. M. M. .N .M M. M. v. .M.M . .. M. N .M M. M. 336 . M. n. M. NN .M M. v. ¢..M.M . M. N. .. VN MN v. N. 356 . M. .. .. VN MM v. M. v..M.M . n. M. M. .N MM M. M. 336 . M. h. M. .N MM M. M. 336 . v. .. .. .N .M v. M. 356 . M. v. M. .N MN v. v. v..M.M . w. .. .. MN MM M. M. v..M.M . M. .. .N MM M. v. v..M.M . v. M. NN MM 5. M. 356 . M. M. M. .N NM 6. M. 356 . M. h. M. .N MM 5. M. 386 . M. h. M. .N MM 5. M. 356 . v. M. M. NN MN M. M. «.56 . h. v. M. NN .M h. M. 35... . M. N. M. .N MN v. M. 356 . M. M. .N MM h. v. v..M.M . N. .. .. MN MN V. M. v..M.M . M. M. .N MM h. v. v..M.M . M. M. .N .M M. v. 23822222283 22.2 02.22; 45 8.822.202... 2.2.8.92... M EXmAMS 282.2252 58.2.32 v..M.M . M. v. M. MN MN v. M. 33... . M. .. .. VN MM v. v. v..M.M . M. v. M. .N .M M. M. v..M.M . n. .. NN .M M. M. v..M.M . M. v. .. MN MN M. M. v..M.M . h. M. M .N .M M. M. v..M.M . M. M. M. NN MM M. M. 35... . M. h. M. .N MM M. M. 336 . v. .. .. MN MN w... M. v..M.M . M. v. .. NN MN M. M. v..M.M . M. M. .N .M h. M. v..M.M . v. .. .. VN MN M. M. v..M.M . M. M. .. NN MM M. M. v..M.M . M. .. .. NN .M v. M. v..M.M . M. .. MN MN M. M. 356 . v. M. .N .M M. v. 35... . n. M. M. .N .M M. v. v..M.M . M. .. .. MN MN v. M. 356 . h. M. M. .N MN M. w. 3.9.. . M. h. M. .N MM n. M. v..M.M . v. .. .. VN MN M. M. 35... . M. M. .N MM M. M. 356 . n. M. M. .N MM M. M. v..M.M . M. .. .N .M M. M. v..M.M . M. M. .N MM M. v. 8222222228. 2a 9223 46 22223 2 2 2 2 2 mN 3N 2 2 E2223 2 2 22 2 3N 2 2 223 2 2 2 2 NN 2N 2 2 22223 2 2 2 2 2 Nm 2 2 22223 2 2 22 22 3N 22m 2 2 223 2 2 2 22 2 3N 2 2 223 2 2 2 2 2 2 3N 2 2 283 2 2 2 2 VN :2 2 2 2.23 2 2 2 22 VN 3N 2 2 22223 2 2 2 2 2 2m 2 2 E2223 2 2 2 2 MN 3N 2 2 :83 2 2 2 2 2 2 3N 2 2 2223 N 2 22 2 2 3N 2 2 22223 N 2 2 2 2 3N 2 2 2223 N 2 2 2 2 2m 2 2 22223 N 2 2 2 2 on 2 2 22223 N 2 22 2 4N 3N 2 2 2223 N 2 22 22 2N 2m 2 2 22223 N 2 22 22 2 3N 2 2 NNN23 m 2 22 2 X 2 2 2 22223 N 2 N2 22 «N 3N 2 2 22223 n 2 22 22 NN 3N 2 2 NNN3 N 2 22 2 2 2 ON 2 2 22223 N 2 22 22 MN 2. 2 2 NNN23 N 2 2 a 2 22m 2 2 223 2. 2 22 2 2 2 3N 2 2 23222.22 822228822. .2 22 2326 a 2225 2225 22225 222285 225 82.25 0M 0.2.5.2 47 MMMMM . v. .. .. MN MM 3 M. MMMMM . M. M. M. MN MM M. M. MMMMM . M. M. MN MM M. v. MMMMM . v. .. .. MN MM v. M. VMMMM . v. .. MN . M M. M. MMMMM . w. .. M. .N .M M. M. MMMMM . v. .. .. MN MN M. M. MMMMM . N. .. M «N MN M. M. MMMMM . v. .. .. MN MM v. M. MMMMM . v. .. M. MN .M M. N. «MMMM . . . M. MN . M M. M. MMMMM . M. v. M. MN NM M. M. ~NMMMM . v. . . M. N MN 2.. N. MMMMM . M. M. M. «N NM M. M. MMMMM . . . . . MN MN v. M. MMMMM . M. M. M. .N MM M. M. MMMMM . N. . . NN MN M. M. MMMMM . M. v. M. NN MN M. M. MMMMM . M. M. .. MN MM v. M. VMMMM . M. M. M. NN MN v. M. MMMMM . M. M. M. MN MN M. M. ~NMMMM . v. M. M N .M M. M. MMMMM . M. N. M. N MM M. M. MMMMM . M. N. M. MN MN M. M. MMMMM . M. M. .N MM M. v. ~2VMMM.M . M. M. M. MN .M M. N. MMMMM . M. .. M. MN MN M. M. 302222.228. oM 0322M 48 «MMMM . v. M. .. VN MN v. M. VMMMM . w. . . M. .N MN v. M. wMMMM . v. .. .. MN MN v. N. VMMMM . v. M. M .N .M M. w. MMMMM . M. M. .N MN v. M. VMMMM . M. M. M. .N MM M. M. MMMMM . M. v. M. MN MN M. v. MMMMM . M. v. M. MN MN M. v. MMMMM . M. M. M. .N MN M. M. MMMMM . M. . . M. N MN M. M. VMMMM . v. M. MN MN e. M. MMMMM . v. M. «N MM M. M. MMMMM . M. v. M. .N MM M. M. MMMMM . M. M. M. MN MN M. N. MMMMM . w. . . .. MN MM v. M. MMMMM . M. v. M. .N MN w. M. MMMMM . M. M. M. MN .M M. M. MMMMM . M. . . . . VN MM 1. M. MMMMM . M. w. M. MN NM M. v. «MMMM . M. M. M. NN MM v. N. ~NMMMM . M. M. M. MN MM v. N. VMMMM . M. M. M. .N MM v. M. MMMMM . M. M. M. MN MM M. M. MMMMM . M. .. .. MN MN v. M. VMMMM . N. M. MN MN v. N. MMMMM . M. M. MN .M M. M. VMMMM . M. M .N MM M. M. 302222.228 oM 0.2.2; 49 VMMMM . M. M. M. .N MM M. v. VMMMM . M. M. M. .N MM M. v. VMMMM . M. M. M. MN MM v. N. MMMMM . M. M. M. MN MM M. M. VMMMM . M. M MN MM M. M. VMMMM . M. M. MN MM v. M. VMMMM . M. M. .. .N MM M. M. MMMMM . v. M. M. MN .M v. N. ~2VMMM.M . M. M. M. MN MM M. M. MMMMM . M. N. M. MN MN M. M. MMMMM . M. v. M. MN MN M. v. MMMMM . M. v. M. NN MN M. v. MMMMM . w. .. .. vN MN M. M. MMMMM . M. M. M .N MN M. M. MMMMM . M. M. .N MM M. M. VMMMM . v. .. .. MN MM v. M. VMMMM . M. M. .. .N .M M. M. MMMMM . M. M. M. NN MM v. N. MMMMM . v. .. .. MN MM v. M. VMMMM . M. N. M. NN MN M. e. MMMMM . M. M. M. MN .M M. N. MMMMM . M. .. .. .N .M v. M. vMMMM . M. v. M. «N MM M. M. VMMMM . M. M. M. .N MN M. v. MMMMM . M. .. .. VN MN M. M. MMMMM . M. M. M. MN MN v. M. MMMMM . M. M. M. .N MM Q. N. 232222228 a 02.2.2 50 3288322 222.2%: M BEES o222222222 VMMMM . M. M. N. .N MN v. v. VMMMM . M. v. M .N MN M. M. VMMMM . . . . . MN MN v. N. VMMMM . M. v. M. MN MN V. N. VMMMM . M. N. M. MN MN v. N. €222.88. oM 0323M 51 Table 103 52 DYS385 DYS385 # (,f DYS3891 DYS389H DYS439 DYS438 DYS3 2 DYS393 DYSI9 DYS38911 DYS390 DYS391 a L occurrences Frequency 13 29 11 12 13 13 14 29 24 11 11 14 3 0.0341 12 28 11 10 11 13 14 28 22 10 13 14 3 0.0341 13 29 12 12 13 13 14 29 24 11 11 14 2 0.0227 13 3O 13 12 13 13 14 30 24 10 11 14 2 0.0227 13 29 12 12 13 13 14 29 25 ll 11 14 2 0.0227 13 30 11 11 11 13 17 30 25 10 10 14 2 0.0227 13 28 12 12 13 13 14 28 24 11 11 14 2 0.0227 12 27 11 10 11 13 14 27 23 10 15 2 0.0227 13 29 11 12 13 13 15 29 24 10 11 15 ] 0.0114 14 30 12 12 13 13 14 30 24 11 11 16 1 0.0114 13 3O 13 11 13 12 14 3O 24 11 11 14 1 0.0114 12 29 12 10 11 13 15 29 22 10 14 14 1 0.0114 14 29 11 12 13 13 14 29 24 11 11 14 A 1 0.0114 12 29 12 10 11 14 15 29 22 10 14 15 1 0.0114 A 30 10 11 11 13 17 3O 25 10 10 _14 1 0.0114 13 29 10 10 11 13 13 29 24 9 13 14 1 0.0114 L 29 11 10 11 14 15 29 24 11 13 16 1 0.0114 L 29 12 12 14 13 14 29 25 11 11 14 1 0.0114 i 28 11 12 13 13 14 28 23 10 11 14 1 0.0114 _13\ 29 12 13 13 13 14 29 23 11 11 14 1 0.0114 1; 31 12 10 11 13 13 31 25 10 16 18 1 0.0114 14 31 11 10 12 13 14 31 24 9 14 17 1 0.0114 12 29 10 10 11 13 14 29 23 10 14 15 1 0.0114 i 30 13 10 11 13 16 3O 24 11 15 15 1 0.0114 L 28 11 10 11 13 14 28 22 10 14 14 1 0.0114 L 29 11 12 13 13 14 29 24 11 11 15 1 0.0114 13 31 10 11 11 13 15 31 24 11 10 14 1 0.0114 L 29 12 10 11 13 14 29 22 10 13 15 1 0.0114 13 29 13 9 11 13 15 29 23 9 13 17 1 0.0114 13 29 11 12 13 13 14 29 23 10 12 14 1 0.0114 1&2 28 13 12 13 14 14 28 23 10 12 13 1 0.0114 1\3 29 13 12 13 13 14 29 23 11 11 14 1 0.0114 L 28 12 10 11 13 15 28 22 10 13 14 1 0.0114 13 ‘ 29 11 12 13 13 14 29 23 11 12 13 1 0.0114 FL 30 13 12 13 13 14 3O 22 11 11 13 1 0.0114 13 28 13 12 13 13 14 28 23 11 11 14 1 0,0114 13 28 12 12 13 13 14 28 23 11 11 14 1 0.0114 Table 10:1 (continued) 13 1 29 T 12 1 12 12 13 14 29 24 11 11 11. 1 0.0114 14 1 30 1 12 13 13 13 14 31) 23 11 11 14_. 1 0.111 14 13 30 1 10 11 11 13 16 30 25 10 11 11_ 1 0,0114 13 1 29 1 12 10 12 14 16 29 23 11 14 1_)_ 1 0.0114 13 30 1 12 12 14 13 14 31) 22 11 11 1:: 1 0.0114 13 28 1 12 12 1 14 13 14 28 23 10 11 14_ 1 0.0114 13 30 1 11 1 9 1 13 13 14 30 23 10 14 16_ 1 0.0114 14 30 1 12 1 12 1 13 13 14 30 24 10 11 1::_ 1 0.0114 13 30 1 12 1 10 1 11 13 13 30 24 10 16 11?. 1 0.0114 13 29 1 12 1 13 1 13 13 14 29 24 10 12 1:. 1 0.0114 12 28 1 11 1 10 11 13 14 28 22 1o 13 14_ 1 0.0114 13 30 1 10 1 11 11 13 15 30 24 10 1o 14_ 1 0.0114 13 29 1 11 1 12 14 14 14 29 24 11 10 11“ 1 0.0114 13 29 1 12 1 12 13 14 14 29 24 10 12 14 1 0.0114 30 1 13 12 13 13 14 30 24 11 11 14_ 1 0.0114 29 1 12 12 13 13 14 29 24 10 11 15 1 0.0114 29 1 12 12 13 14 15 29 23 10 11 14_ 1 0.0114 30 1 12 1o 11 12 14 30 23 10 13 15- 1 0.0114 30 1 11 12 13 13 14 30 25 11 11 14- 1 0.0114 29 1 13 12 13 14 15 29 25 11 12 1.11 0.0114 30 1 11 12 1 13 13 15 30 24 11 11 14 1 0.0114 29 1 14 12 1 13 13 14 29 24 11 11 15__ 1 0.0114 30 1 11 12 1 13 13 14 30 24 10 11 14_ 1 0.0114 31 11 10 11 14 15 31 22 10 13 14_. 1 0.0114 13 29 12 12 13 13 14 29 24 11 11 14 1 0.0114 29 11 12 13 13 14 29 24 10 11 14_ 1 0.0114 29 11 10 12 16 15 29 23 10 16 16 1 0.0114 13 29 1 11 12 13 13 14 29 23 11 11 15 1 0.0114 30 1 12 11 1 11 13 16 30 25 10 11 14_ 1 0.0114 13 28 1 12 12 13 13 14 29 24 11 11 14. 1 0.0114 29 1 12 1 12 13 13 14 29 23 10 11 14. 1 0.0114 n 29 1 12 1 12 13 13 14 29 22 11 11 14_ 1 0.0114 n 30 1 13 1 11 11 13 16 30 25 10 11 14. 1 0.0114 n 28 1 12 1 1o 11 13 14 28 22 10 12 16_ 1 0.0114 15 31 1 12 1 10 11 13 16 31 24 9 12 12‘ 1 0.0114 13 29 1 11 1 12 13 13 13 29 24 1o 11 14 1 0.0114 13 29 1 13 1 12 13 13 14 29 23 11 11 14. 1 0.0114 13 31 1 13 1 10 11 14 16 31 24 11 14 1_5__ 1 0.0114 13 30 1 12 1 12 13 12 14 30 24 10 11 14. 1 0.0114 53 Table 1011 (continucd) 12 1 29 1 12 1 10 1 11 1 13 1 14 1 29 1 22 1 10 1 14 1 14 1 1 1 11.0114 13 1 30 1 12 1 12 1 13 1 13 1 14 1 30 1 24 1 10 1 11 1—14 1 1 1 (1.0114 Caucasian Y—PLEXTM 5 and 6 haplotype frequencies 54 1—] SD 2 (D o 5" 1 DYS3891 1:YS389H 1 DYS439 1DYS438 DYS392 DYS393 DYS389H 1 DYS390 DYS391 DYS38511 DYS385 b # of occurrences Frequency L 13 1 29 1 12 1 12 1 13 1 13 1 14 29 24 11 11 14 2 0.0256 L13 1 31 1 11 1 11 1 11 1 13 1 15 31 21 10 16 17 2 0.0256 E3 1 29 1 12 1 12 1 13 1 13 1 14 29 23 11 11 15 1 0.0128 12 1 28 1 11 1 10 1 11 1 13 1 14 28 22 10 14 14 1 0.0128 E4 1 32 1 13 1 11 1 11 1 13 1 15 32 21 10 14 14 1 0.0128 13 1 30 1 12 1 11 1 11 1 14 1 161 30 21 10 18 18 1 0.0128 1 29 1 11 1 10 1 11 1 12 1 141 29 21 10 14 15 1 0,0128 1 32 1 11 1 11 1 11 1 15 1 151 32 21 10 17 17 1 0.0128 1 28 1 12 1 11 1 11 1 13 1 16 28 21 10 15 15 1 0.0128 1 29 1 11 1 9 1 11 1 14 1 15 29 1 22 10 14 15 1 0.0128 1 29 1 12 1 11 1 11 1 14 1 16 29 1 10 16 16 1 0.0128 1 31 1 12 1 11 1 11 1 15 1 15 31 1 10 14 18 1 0.0128 1 29 1 11 1 12 1 13 1 13 1 141 29 1 24 11 11 12 1 0.0128 1 29 1 12 1 12 1 13 1 13 1 14 29 1 24 11 11’ 11 1 0.0128 1 30 1 12 1 11 1 11 1 14 1 16 30 1 21 10 17 18 1 0.0128 1 30 1 13 1 11 1 11 1 14 1 17 30 1 21 10 17 17 1 0.0128 1 32 1 12 1 11 1 11 1 13 1 15 32 21 10 16 18 1 0.0128 1 29 1 12 1 12 1 13 1 13 1 14 29 23 10 11 14 1 0.0128 30 1 12 1 10 1 11 1 13 1 13 30 24 10 13 17 1 0.0128 31 1 12 1 11 1 11 1 13 1 15 31 21 10 1 14 17 1 0.0128 29 1 11 1 11 1 11 1 13 1 14 29 25 11 14 18 1 0.0128 29 1 12 1 12 1 13 1 13 1 14 29 24 10 11 14 1 0.0128 31 1 14 1 11 1 10 1 13 1 15 1 31 21 10 16 18 1 0.0128 31 1 12 1 11 1 11 1 15 1 16 1 31 1 21 10 17 17 1 0.0128 31 1 11 1 11 1 11 1 14 1 15 1 31 1 21 10 16 16 1 0.0128 30 1 12 1 11 1 11 1 14 1 17 1 30 1 21 1o 18 18 1 0.0128 29 1 12 1 11 1 12 1 13 1 14 1 29 1 23 1 11 11 12 1 0.0128 33 1 12 1 11 1 11 1 14 1 17 1 33 1 21 1 1o 18 18 1 0.0128 30 1 12 1 12 1 13 1 13 1 14 1 30 1 24 1 11 11 14 1 0.0128 29 1 12 1 11 1 13 1 13 1 14 1 29 24 1 10 1 12 15 1 0.0128 31 1 11 1 11 1 11 1 13 1 17 1 31 22 10 14 17 1 0.0128 28 1 12 1 10 1 10 1 13 1 15 1 28 22 1o 13 14 1 0.0128 30 1 12 1 11 1 11 1 13 1 17 1 30 21 10 17 18 1 0.0128 30 1 13 1 11 1 11 1 15 1 17 30 1 21 20 17 19 1 0.0128 32 1 11 1 11 1 11 1 15 1 17 32 1 21 10 1 16 19 1 0.0128 30 1 12 1 11 1 11 1 14 1 15 30 1 21 11 1 16 16 1 0.0128 29 1 11 1 11 1 12 1 14 1 14 29 1 21 101 14 16 1 0.0128 55 Table 10b (continued) 14 1 31 13 3O 1 11 1 12 1 13 1 13 1 14 31 24 11 11 14 1 0.0128 1 1 11 1 11 1 11 1 13 16 30 21 10 17 19 1 0.0128 13 1 30 1 11 1 11 1 11 1 13 15 30 21 10 16 17 1 0.0128 13 1 30 1 12 1 12 1 13 1 13 14 30 24 11 11 15 1 0.0128 13 1 29 1 13 1 12 1 13 1 12 14 29 24 11 12 15 1 0.0128 13 1 29 1 13 1 11 1 13 1 13 1 14 29 23 10 11 14 1 0.0128 13 fa 1 12 1 11 1 11 1 14 1 15 31 22 10 17 19 1 0.0128 13 1 31 1 13 1 10 1 11 1 13 1 16 31 24 1o 11 11 1 0.0128 13 1 31 1 11 1 11 w 1 13 1 16 1 31 21 10 15 18 1 0.0128 13 1 29 1 12 1 13 1 13 1 13 1 14 1 29 24 11 11 14 1 0.0128 13 1 31 1 12 1 11 1 11 1 13 1 15 1 31 21 11 16 17 1 0.0128 13 1 31 1 11 1 11 1 11 1 13 1 15 1 31 21 11 13 17 1 0.0128 14 1 32 1 11 1 11 1 11 1 13 1 15 1 32 22 11 15 16 1 0.0128 13 30 1 13 1 11 1 11 1 14 1 16 1 30 21 10 15 15 1 0.0128 13 1 31 1 12 1 11 1 11 1 15 1 15 1 31 21 11 16 , 16 1 0.0128 13 1 29 1 11 1 12 1 13 1 13 14 29 24 11 11 14 1 0.0128 13 1 3o 1 12 1 11 1 11 1 15 16 30 21 10 16 17 1 0.0128 13 1 30 1 12 1 11 1 11 1 13 16 30 21 10 18 18 1 0.0128 12 1 28 1 11 1 12 1 13 1 13 15 28 24 11 11 14 1 0.0128 13 30 1 12 1 11 1 11 1 15 17 30 21 10 17 19 1 0.0128 12 1 29 1 12 1 11 1 11 1 14 15 29 21 10 16 17 1 0.0128 13 1 29 1 12 1 12 1 14 1 13 14 29 25 11 11 13 1 0.0128 14 1 31 1 12 1 11 1 11 1 14 1 15 31 21 10 15 17 1 0.0128 13 1 31 1 12 1 11 1 11 1 14 l 16 1 31 21 10 14 14 1 0.0128 14 1 31 1 10 1 10 1 14 1 13 1 14 1 31 22 11 11 13 1 0.0128 13 1 30 1 12 1 11 1 11 1 13 1 15 1 30 22 11 15 19 1 0.0128 14 1 31 1 12 1 11 1 11 1 13 1 17 1 31 21 10 18 18 1 0.0128 12 1 28 1 13 1 8 1 11 1 13 1 16 1 28 22 11 14 16 1 0.0128 13 1 28 1 12 1 12 1 13 1 13 1 14 1 28 23 11 11 14 1 0.0128 13 3o 1 12 1 11 1 11 1 13 1 16 1 30 21 10 17 18 1 0.0128 13 1 30 1 11 1 11 1 11 1 13 1 15 1 30 22 10 13 15 1 0.0128 13 31 1 13 1 11 1 11 1 13 1 15 1 31 21 9 16 17 1 0.0128 13 1 31 1 12 1 12 1 11 1 13 1 15 1 31 21 1o 16 17 1 0.0128 14 1 30 1 12 1 12 1 13 1 14 1 14 1 30 24 11 11 13 1 0.0128 13 1 32 1 11 1 11 1 11 1 13 1 15 32 21 10 16 18 1 0.0128 13 " 31 1 11 1 11 1 11 1 13 1 15 31 22 11 17 17 1 0.0128 12 1 31 1 11 1 10 1 11 1 13 1 15 31 21 10 14 18 1 0.0128 12 1 28 11 1 10 1 11 1 13 1 16 28 25 11 14 16 1 0.0128 African American Y-PLEXTM 5 and 6 haplotype frequencies 56 Table lOc DYS3891 1 DYS389H 1 DYS439 1 DYS438 DYS392 DYS393 DY819 DYS38911 DYS390 DYS391 DYS385 a DYS385 b #Ol‘occurrences Frequenc 14 1 30 1 10 1 10 11 13 13 30 24 9 13 14 2 0.0171 13 1 29 1 11 1 12 13 13 14 29 23 11 11 14 2 0.0171 14 1 31 1 13 1 12 13 13 14 31 24 11 11 14 2 0.0171 13 1 29 1 11 1 11 1 12 1 15 17 29 21 1o 15 17 1 0.0085 13 29 1 12 1 12 1 13 1 13 14 29 24 11 11 15 1 0.0085 12 29 1 12 1 10 11 1 14 15 29 23 1-1 14 15 1 0.0085 13 1 29 1 12 1 11 13 1 14 13 29 23 11) 14 18 1 0.0085 13 29 1 11 1 11 14 1 13 14 29 24 11) 15 15 1 0.0085 14 31 1 10 1 10 1 11 1 14 13 31 24 9 13 14 1 0.0085 13 29 1 12 1 12 14 1 12 14 29 23 11 11 14 1 0.0085 13 28 1 12 1 12 14 1 13 14 28 24 1;) 11 14 1 0.0085 13 29 1 1o 1 12 13 13 14 29 24 11 13 14 1 0.0085 13 30 1 12 1 9 11 12 14 3o 24 19 1‘3 15 1 0.0085 12 29 1 12 11 14 13 14 29 23 111 13 18 1 0.0085 29 1 11 12 13 13 15 29 24 11 11 16 1 0.0085 12 28 1 11 12 14 14 13 28 24 11) 15 16 1 0.0085 13 30 1 13 11 15 13 13 30 24 11 14 16 1 0.0085 14 31 1 12 12 13 13 14 31 24 11 11 15 1 0.0085 13 31 1 12 1o 11 12 15 31 23 19 13 18 1 0.0085 12 27 1 12 1 10 11 14 15 27 22 11 12 15 1 0.0085 14 30 1 12 1 12 13 13 14 30 24 11 11 14 1 0.0085 13 29 1 12 1 12 1 13 14 14 29 24 1) 12 15 1 0.0085 13 30 1 11 1 9 1 11 12 14 30 22 13 13 15 1 0.0085 13 31 1 11 1 11 1 11 13 15 31 21 11 16 17 1 0.0085 13 30 1 12 1 12 1 13 1 13 14 30 24 11 11 14 1 0.0085 13 30' 1 12 1 11 1 11 15 16 30 21 1o 17 17 1 0.0085 12 28 1 11 1 13 1 13 13 13 28 24 9 15 18 1 0.0085 13 29 1 12 1 12 1 13 13 15 29 24 11 11 14 1 0.0085 13 29 1 11 1 12 1 13 13 14 29 24 111 11 14 1 0.0085 12 28 1 12 1 11 1 13 14 13 28 23 10 14 19 1 0.0085 14 29 1 12 1 10 1 11 13 16 29 23 10 12 13 1 0.0085 13 29 1 12 1 12 1 13 13 15 29 25 11 12 14 1 0.0085 13 30 1 11 1 10 1 11 13 13 30 23 10 15 16 1 0.0085 31 1 11 1 10 1 11 12 14 31 23 10 13 14 1 0.0085 13 30 1 11 1 11 1 11 13 15 30 21 11 16 18 1 0.0085 13 29 1 11 1 12 1 13 13 14 29 25 11 11 14 1 0.0085 57 1'74— able lOc (continued) 1 13 1 30 1 12 1 10 1 14 1 13 14 1 311 1 23 1o. 1 17 17 1 0.0085 L 13 1 30 1 12 1 10 1 12 1 13 13 1 3o 1 25 9 J 18 18 1 0.0085 13 1 30 1 11 1 10 1 12 1 15 16 1 3n 1 23 10 1 15 18 1 0.0085 13 1 3o 1 12 1 1o 1 11 1 12 14 1 311 1 23 10 1 13 15 1 0.0085 13 1 30 1 12 1 11 1 11 1 14 15 1 311 21 10 1 13 16 1 0.0085 12 1729 1 11 1 12 1 13 1 13 1 14 1 29 23 11 11 14 1 0.0085 13 1 3o 1 12 1 11 1 11 1 14 1 15 1 30 21 10 15 16 1 0.0085 13 1 29 1 13 1 10 1 11 1 12 1 14 1 29 23 10 12 19 1 0.0085 13 1 29 1 12 1 9 1 11 1 12 1 14 1 29 25 10 14 19 1 0.0085 14 3o 1 12 1 12 1 13 1 13 1 14 1 30 24 10 11 14 1 0.0085 13 1 30 1 13 1 12 1 13 1 13 1 14 1 30 23 11 11 14 1 0.0085 13 1 29 1 11 1 12 1 13 1 12 1 14 1 29 25 11 11 11 1 0.0085 13 29 1 11 1 12 1 13 1 13 1 14 1 29 23 11 11 14 1 0.0085 13 29 1 1o 1 12 1 13 1 13 1 14 1 29 24 11 13 15 1 0.0085 13 1 29 1 12 1 9 1 11 1 12 1 14 1 29 23 10 14 15 1 010085 13 1 31 1 12 1 1o 1 11 1 13 1 13 I 31 24 1o 15 17 1 0.0085 13 29 1 11 1 13 1 14 1 13 1 14 29 24 11 10 13 1 0.0085 13 1 31 1 11 1 12 1 14 1 13 1 13 31 24 10 14 17 1 0.0085 13 31 1 11 1 12 1 14 1 13 1 13 31 24 10 13 18 1 0.0085 13 29 1 11 1 12 1 13 1 13 14 29 24 11 12 14 1 0.0085 14 1 30 1 12 1 12 1 13 I 13 14 30 24 11 11 14 1 0.0085 12 28 1 11 1 10 1 11 1 13 15 28 23 10 13 14 1 0.0085 13 30 1 10 1 1o 1 12 1 13 13 30 24 9 13 14 1 0.0085 14 1 3o 1 13 1 12 1 13 1 13 1 14 1 30 23 11 11 14 1 0.0085 13 29 1 12 1 10 1 14 1 13 1 14 1 29 24 11 17 17 1 0.0085 13 29 1 12 1 12 1 13 1 12 1 14 1 29 25 10 11 13 1 0.0085 12 28 1 13 1 11 1 11 1 13 1 15 1 28 25 10 11 15 1 0.0085 13 31 1 13 1 11 1 14 1 12 1 13 1 31 23 10 16 19 1 0.0085 13 30 1 11 1 11 1 11 1 14 1 15 1 30 21 10 16 16 1 0.0085 13 29 1 11 1 13 1 13 1 13 1 14 1 29 24 11 11 14 1 0.0085 12 28 1 11 1 10 1 11 1 13 14 1 28 22 10 13 15 1 0.0085 12 29 1 11 1 10 1 11 1 13 15 1 29 22 10 14 16 1 0.0085 14 29 1 12 1 11 1 11 1 13 16 1 29 22 11 12 12 1 0.0085 13 30 1 12 1 10 1 11 1 13 13 1 30 24 1o 16 16 1 0.0085 13 29 1 12 1 12 1 13 1 13 15 29 25 11 12 14 1 0.0085 13 29 1 12 1 12 1 10 1 13 14 29 23 11 11 11 1 0.0085 14 32 1 11 1 10 I 11 1 13 13 32 24 1o 15 16 1 0.0085 13 29 1 11 1 12 1 13 1 12 14 29 24 1o 11 14 1 0.0085 13 30 1 13 1 12 1 13 1 13 14 30 24 1o 11 14 1 0.0085 58 Table lOc (continued) 13 1 29 1 12 12 13 13 14 29 25 11 11 14 1 0.0085 14 1 32 1 13 11 14 13 13 32 23 10 14 17 1 0.0085 13 1 29 1 13 12 13 13 14 29 24 11 11 15 1 0,0085 14 1 31 1 10 11 11 12 15 31 25 10 11 14 1 0.0085 13 1 29 1 12 12 13 1 14 14 29 24 10 12 15 1 0.0085 14 1 30 1 12 1 12 1 13 1 13 14 30 24 11 11 14 1 0.0085 14 1 29 1 12 1 10 1 11 1 13 17 29 24 9 11 12 1 0.0085 13 1 29 1 12 1 12 1 13 1 13 1 14 29 24 10 . 11 14 1 0.0085 13 1 29 1 11 1 12 1 14 1 13 1 13 29 24 1 1 11 14 1 0.0085 13 1 31 1 13 1 12 1 13 1 13 1 15 31 24 10 11 14 1 0.0085 14 1 31 1 12 1 10 1 11 1 13 1 13 31 25 11 14 14 1 0.0085 13 1 30 1 11 1 12 1 13 1 13 1 14 30 24 11 11 14 1 0.0085 14 1 30 1 13 1 10 1 11 1 14 13 30 23 10. 17 17 1 0,0085 13 1 30 1 13 1 11 1 11 1 13 15 3o 20 10 17 19 1 0.0085 13 30 1 12 1 12 1 13 1 13 14 30 24 11 11 14 1 0.0085 13 29 1 12 1 12 1 13 1 13 14 29 24 10 11 15 1 0.0085 14 1 30 1 10 1 1o 11 13 13 30 24 9 13 13 1 0.0085 14 1 31 1 12 1 11 14 13 13 31 25 10 16 16 1 0.0085 13 1 29 1 13 1 10 11 12 14 29 23 10 12 12 1 0.0085 13 1 29 1 11 1 12 13 13 14 29 25 11 11 13 1 0.0085 13 3o 1 11 1 11 15 13 14 30 24 10 15 18 1 0.0085 14 30 1 12 1 9 1 11 12 14 30 23 10 13 17 1 0.0085 13 1 30 1 12 1 10 1 11 1 12 14 30 22 10 13 19 1 0.0085 13 29 1 12 1 12 1 13 1 13 14 29 23 11 11 14 1 0.0085 14 32 1 12 1 10 1 12 1 14 1 15 32 23 10 14 15 1 0.0085 13 30 1 12 1 12 1 13 1 13 1 14 30 24 11 11 15 1 0.0085 13 29 1 11 1 12 1 13 1 13 1 14 29 24 10 11 15 1 0.0085 14 1 31 1 12 1 10 1 11 1 13 1 13 31 23 10 15 18 1 0.0085 13 1 29 1 13 1 12 1 13 1 13 1 14 29 24 11 11 14 1 0.0085 14 30 1 11 1 12 1 13 1 13 14 30 24 11 11 14 1 0.0085 13 1 29 1 11 1 9 1 11 1 12 15 29 23 10 15 19 1 0.0085 13 30 1 11 1 11 1 15 1 13 13 30 24 10 14 17 1 0.0085 13 30 1 11 1 11 1 13 1 13 13 30 24 10 14 14 1 0.0085 13 31 1 12 1 12 1 14 1 13 13 31 24 10 13 18 1 0.0085 12 29 1 11 1 10 1 11 1 13 1 14 29 23 10 14 14 1 0.0085 13 1 29 1 10 1 12 1 13 1 13 1 15 29 24 10 11 13 1 0.0085 14 1 32 1 13 1 12 1 13 1 13 1 14 32 24 10 11 14 1 0.0085 12 28 12 11 1 13 1 13 1 13 28 24 9 14 17 1 0.0085 G Hispanic Y—PLEXTM 5 and 6 haplotype frequenci s 59 .a 3! «Son :1 .o 3.5ch 8:58 3. a to... .3 0.83 8.33 0;: 833:9? 8: 1 <2 seas: E. 53.65 533 .5838 ”R35 as? E c Ba 6 Exam; 5 as: £25 £33: 5:: 38.3. E. 55 $33 836.5% £32 38 5 B. a 38 :1 a 2.5 as 43.. 2.5225 2:6 84538 < 386 680.0 used 2.36 886 336 386 9.86 3cm :3 .0 25m 6 98 m qum-> 5°86 m§d 88.: id 886 38.: :86 336 c Q m Xmam-> 386 33.: m2 m2 386 2436 2.86 535 3ch .=a 8 2:5 6 yawn—Ada 38.: 336 38.: :86 $86 2.86 386 236 c Xmam.> named >366 M2 M2 83.: «$36 ”mood Nvmmd saga :3 3 35m ”gm—49$ :36 33.: 83.: «$36 «as... N— 36 mmmcd 5536 n Xmamir g .m>< Q: .m>< g Q: g D: g e.— 3 I355 1.2.54 Isa-.0 2 05a... .uSaEu—uu on .2. 3:8 on 05 2822: v3.53. 8: 33 maboifl 2.2ch.? “36:: 2: 68.892 x! u 2 A. as 38” :3 a 25 he 8:5; 2.. 5 88 .2. Es 8:58 25%: ”2.3.2.. .9. u <2 252$: .28 .5235 =85< 633230 ”8:03 2:50 .8 w 2a m 55.15% he 82.; 53 3902.3: 83.5 mo 032.8th 98 68 £896 bofiEEtofln— mo 3.32 Son .3 was a 8cm :3 we «aim 9.8 35.» 0%.... 06 ac 53.5588 < £15. 2 wvn fend» m2 mnm $92. :2 in $23 2 3cm .._a .0 33m 6 v5 m qum$ $93 {ago 52 $3.2. $3.0 w» e\oo.vo $6.3 am $00» $33 0 Q n Xm4m$ $03 c <2 <2 9% £38 12 3% o\._ .3 M2 «meow .=a .0 .2qu 6 Xm‘Enr 9%.: 3%; mm. {3.9 $5.3 ww $3» $93 no $1.9. $6.2. e 555% $5.3 c <2 <2 «5. $02 «2 2: {1.3. M2 £25m in 8 35m ”mxmfinzr £56m ..\°_ .vw wfi {1.3 can. _ o co. $92 :5. _ m R: {chum {.de m 55.3» I: .m>< 0Q .m>< Z :3 on 2 :D on 2 I: 00 25mg: gauze—.5. =§¢< 5:28.30 2 03:. 61 lemma lAManNn-dlan Ell-Chunk: Y— mws allele fieqoency moflocus DYS43? ['19ch DYSSO2 WNW Ymmsmmymorha-Dvsm 62 Y-mmsmmwahanm” E924 ; __ v-mwsmmygqhormnmnu Y-mwsmmmormovsam Y- H£X"'6dhle my ”(than DYSSSSa/b 11 12 13 14 15 1G 17 Y-I’Lflxn'6fllmfldhmm Fun-8 v-mmeumflhdhmn 65 Y-ruzxmoaneum’qhduunvssnn FF: I0 v-HEXNGMiuqu-cymiormovssso Fig-ell DYS391 9 10 11 12 A” Y-mmsmmgnhorha-Dvml 67 —A o Y-PLEXS m so 0 g so 9 8‘ 40 ~ 35 ECaucasian ; so IAfrican American g 20 Cll-fispanic C 79 O [.— 0 123456789101112 #ofoocurrences Histogram of total number of Y-PLEX1M 5 haplotypes and the number of times they occurred in each population. Figure 13 Y-PLEX 6 l Caucasian l African Am eriean :1 Hispanic Total number 0! haplotypes it of occurrences Histogram of total number of Y-PLEXTM 6 haplotypes and the number of times they occurred in each population. 68 Figure 14 Y-PLEX 5 and 6 ca 0 D. 2' 2 :1: ICaucasian S I African American 6) . . '2 El HIspanIc 3 C E o .— 1 2 3 # of occurrences Histogram of total number of Y~PLEXTM 5 and 6 combined haplotypes and the number of times they occurred in each population. 69 Bibliography Ayub, Q., Mohyuddin, A., Qamar, R., Mazhar, K., Zerjal, '1‘., Mehdi, S.Q., and Tyler- Smith, C. (2000). “Identification and characterization of novel human Y-chromosomal microsatellites from sequence database information.” Nucleic Acids Research. 28 (2), i- v. Bosch,E., Lee, A.C., Calafell, F., Arroyo, B., Henneman, P., de Knijff P., and Jobling, M.A. (2002). “High resolution Y chromosome typing: 19 STRs amplified in three ' multiplex reactions.” Forensic Science International. 125, 42-51. Butler, J .M. (2001). Forensic DNA Typing. San Diego, CA: Academic Press. Butler, J.M., Schoske, R., Vallone, P.M., Kline, M.C., Redd, A.J., and Hammer, M.F. (2002). “A novel multiplex for simultaneous amplification of 20 Y chromosome STR markers.” Forensic Science International. 129, 10-24. Butler, J .M. (2003). “Recent developments in Y-short tandem repeat and Y-single nucleotide polymorphism analysis.” Forensic Science Review. 15 (2), 91-111. Gusmao, L., Krawczak, M., Sanchez-Diz, P., Alves, C., Lopes, A., Beleza, S., Carracedo, A., and Amorim, A. (2003). “Bimodal allele frequency distribution at Y-STR loci DY8392 and DYS438: no evidence for a deviation from the stepwise mutation model.” International Journal of Legal Medicine. 117 (5), 287-290. Hanson, E.K. and Ballantyne, J. (2004). “A highly discriminating 21 locus Y—STR “megaplex” system designed to augment the minimal haplotype loci for forensic casework.” Journal of Forensic Science. 49 (1), 1-12. Jobling, M.A. (2001). “Y-chromosomal SNP haplotype diversity in forensic analysis.” Forensic Science International. 118, 158-162. Kayser, M., Gaglia, A, Corach, D., Fretwell, N ., Gehrig, C., Graziosi, G., Heidom, F., Herrmann, 8., Herzog, B., Hidding, M., Honda, K., Jobling, M., Karwczak, M., Leim, K., Meuser, 8., Meyer, E., Oesterrreich, W., Pandya, A., Parson, W., Penacino, G., Perez- Lezaun A., Piccinini, A., Prinz, M., Schmitt, C., Schneider, P.M., Szibor, R., Teifel- Greding, J ., Weichhold, G., de Kniff, P., and Roewer, L. (1997). “Evaluation of Y- chromosomal STRs: a multicenter study.” International Journal of Legal Medicine. 110, 125-133. Kayser, M., and Sajantila, A. (2001). “Mutations at Y—STR loci: implications for paternity testing and forensic analysis.” Forensic Science International. 118, 116-121. 70 Kayser, M., Brauer, S., Willuweit, S., Schadlich, H., Batzer, M.A., Zawacki, J ., Prinz, M., Roewer, L., and Stoneking, M. (2002). “Online Y—chromosomal short tandem repeat haplotype reference database (YHRD) for U.S. populations.” Journal of Forensic Science. 47 (3), 513-519. Kayser, M., Brauer, S., Schadlich, H., Prinz, M., Batzer, M.A., Zimmerman, P.A., Boatin, B.A., and Stoneking, M. (2003). “Y chromosome STR haplotypes and the genetic structure of U.S. populations of African, European, and Hispanic ancestry.” Genome Research. 13, 624-634. Kimura, M. and Ohta, T. (1978). “Stepwise mutation model and distribution of allelic frequencies in a finite population.” Proceedings of the National Academy of Sciences, USA. 75, 2868-2872. Krenke, B.E., Viculis, L., Richard, M.L., Prinz, M., Milne, S.C., Ladd, C., Gross, A.M., Gomall, T., Frappier, J .R., Eisenberg, A.J., Barna, C., Aranda, X.G., Adamowicz, M.S., and Budowle, B. (2005). “ Validation of male-specific, 12-locus fluorescent short tandem repeat (STR) multiplex.” Forensic Science International. 148(1), 1-14. Marshall Graves, J.A. (2004). “The degenerate Y chromosome - can conversion save it?” Reproduction, Fertility, and Development. 16, 527-534. Nakahori Y, Takenaka O, and Nakagome Y. (1991). “A human X-Y homologous region encodes “amelogenin”.” Genomics 9, 264—9. Quintana-Murci L., and Fellous, M. (2001). “The human Y chromosome: the biological role of a “functional wasteland”.” Journal of Biomedicine and Biotechnology. 1:1, 18- 24. Rao, BJ. (2003). “ Human Y- chromosome: a hall of mirrors.” Journal of Bioscience. 28, 533-534. Roewer, L., Krawczak, M., Willuweit, 8., Nagy, M., Alves, C., Amorim, A., Anslinger, K., Augustin, C., Betz, A., Bosch, E., Caglia, A., Carracedo, D., Corach, D., Dekairelle, F., Dobosz, T., Dupuy, B.M., Furedi, S., Gehrig, C., Gusmao, L., Henke, J ., Henke, L., Hidding, M., Hohoff, C., Hoste, B., Jobling, M.A., Kargel, H.J., de Kniff, P., Lessig, R., Liebeherr, E., Lorente, M., Martinez-Jarreta, B., Nievas, P., Nowak, M., Parson, W., Pascali, V.L., Penacino, G., Ploski, R., Rolf, B., Sala, A., Schmidt, U., Schmitt, C., Schneider, P.M., Szibor, R., Teifel-Greding, J ., and Kayser, M. (2001). “Online reference database of European Y-chromosomal short tandem repeat (STR) haploytpes.” Forensic Science International. 118, 106-113. 71 Rozen, S., Skaletsky, H., Marszalezk, J .D., Minx, P.J., Cordum, H.S., Waterston, R.H., Wilson, R.K., and Page, D., (2003). “Abundant gene conversion between arms of palindromes in human and ape Y chromosomes.” Nature. 423, 873-876. Schoske, R., Vallone, P.M., Kline, M.C., Redman, J .W., and Butler, J .M. (2003). “High- throughput Y-STR typing of U.S. populations with 27 regions of the Y chromosome using two multiplex PCR assays.” Forensic Science International. 139, 107-121. Shewale, J .G., Nasir, H., Schneider, E., Gross, A.M., Budlowe, B., Sinha, SK. (2004). “Y-chromsome STR system, Y-PLEX 12, for forensic casework: Development and validation. Journal of Forensic Science. 49(6), 1-13. Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P.J., Cordum, H.S., Hillier L., Brown, L.G., Repping, S., Pyntikova, T., Ali, J ., Bieri, T., Chinwalla, A., Delehaunty, A., Delehaunty, K., Du, H., Fewell, G., Fulton, L., Fulton, R., Graves, T., Hou, S-F., Latriell, P., Leonard, S., Mardis, E., Maupin, R., McPherson, J ., Miner, T., Nash, W., Nguyen, C., Ozersky, P., Pepin, K., Rock, 8., Rohling, T., Scott, K., Schultz, B., Strong, C., Tin-Wollam, A., Yang, S-P., Waterston, R.H., Wilson, R.K., Rozen, S., and Page, DC. (2003). “The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes.” Nature. 423, 825-837. Sinha, S.K., Nasir, H., Gross, A.M., Budowle, B., and Shewale, J .G. (2003). “Development and validation of the Y-PLEXTM 5 a Y-chromosome STR genotyping system for forensic casework.” Journal of Forensic Science. 48 (5), 1-16. Sinha, S., Budowle, B., Arcot, S.S., Richey, S.L., Chakraborty, R., Jones, M.D., Wojtkiewicz, P.W., Schoenbauer, D.A., Gross, A.M., Sinha, SK, and Shewale, J .G. (2003). “Development and validation of a multiplexed Y-chromosome STR genotyping system Y-PLEX M 6, for forensic casework.” Journal of Forensic Science. 48 (1), 1-1 1. Sinha, S., Budowle, B., Chakraborty, R., Paunovic, A., Guidry, R.D., Larsen, C., La], A., Shaffer, M., Pineda, G., Sinha, S.K., Schneida, E., Nasir, H., and Shewale, J .G. (2004). “Utility of the Y-STR typing systems Y-PLEX 6 and Y-PLEX 5 in forensic casework and 11 Y-STR haplotype database for three major population groups in the United States.” Journal of Forensic Science. 49 (4), 1-10). Walsh, Bruce. (2001). “Estimating the time to the MRCA for the Y chromosome or mtDNA for a pair of individuals.” Genetics. 158, 897-912. Vallone, P.M., and Butler, J .M. (2004). “Y-SNP typing of U.S. African American and Caucasian samples using allele-specific hybridization and primer extension.” Journal of Forensic Science. 49 (4), 1-10. 72 |lllllllllllill"