
>
1
9
.
»

.
r
.

u
;

.
p
m
.

a
V

$
3
3
.
.
»

.
.
.
Y

.
.
.
.

.
.
.
.

\
c

.
.
.
?

.
-

.
A

‘
$
1
9
.
9
1
.
.

r
m
.

h
..

.
(
a
r

fi
e
r
u
m
D
fi
i
s
i
m
:

;
v

A

E
l
i é
g
a
i
fi
a
g
g
y
g

2
w

1
.
1
a
}
.

p
.

1
.
0
6
.

.;
.
.
.
u
u
u

K
a
u
a
i
.
.
.

k
.
.
.

..
..
.{
te
i‘
yi
a
;
:
5
.

a.
»

.
.
.
.
N
m

,1
».
..

.
.
w
v
d
a
T
#
n
fl
fi
fl
fi

“
9
1
.
4
7
.
8
0
.

.
(
h
.
-

:
1

1
1
.
5
3
4
m
e

.
x
!

.
.
.
.
.
.

h
.
.
s
n
w
.
m
m
.
fl
u
t

l
-
f
fi
j
i
.

.
.
.

A

3
.
.
i
d
h
fl
m
fl

w
i
n
-
.
.
.
?
?
?
-

3
9
I
:
5
5

.
I

.
.
.
:
r
:

.
¢

,
“
w
w
m
m
m
m
u
.

.
«
m
e
n

w.
L
$

:
v
.
n
c

,
r
.

A .
1
.

e
w
fi
m
u
.

.
r
u

.

. x

r
5
3
2
1

.
5

.
1
.

O

‘3?"

v;
S?

«fighf ‘

07

9332:

[oZéIJ/A/E'?

This is to certify that the

thesis entitled

A CLASSIFICATION SCHEME FOR SANDBOXES

presented by

ARUN PRABAKARAN

has been accepted towards fulfillment

of the requirements for the

Master of degree in Computer Science and

Science Engineerirg

dong Em
Major P7essor’fSTgnature

— 3 37/0;

I /

Date

MSU is an Affirmative ActiorVEquaI Opportunity Institution

LIBRARIES

MICHIGAN STATE UNIVERSITY

EAST LANSING, MICH 48824-1048

PLACE IN RETURN Box to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

2/05 c:/CIRC/DateDue.Indd-p.15

A CLASSIFICATION SCHEME FOR SANDBOXES

By

Arun Prabakaran

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science and Engineering

2005

ABSTRACT

A Classification Scheme for Sandboxes

By

Arun Prabakaran

In recent time there has been a marked increase in security flaws due to the increase in

the use of untrusted applications. In some instances trusted application that have been

compromised through common vulnerabilities such as buffer overflow attacks also result

in a breach of security. On of the more prominent themes of security software today is the

idea of containing applications through building isolated execution environments or

sandboxes for them to operate in, thus limiting the damage they can do to the system.

Several such independent tools have been developed. We have in this thesis presented a

means to classify these tools, based on a basic set of primitives that we have identified to

be central to the idea of sandboxing. We also present two broad categories within which

implementations of sandboxes could fit. The classification scheme is visually represented

assisting future designers of sandboxes in translating security objectives and policies into

a sandbox design. The classification can help translate the design into an implementation.

In order to demonstrate the effectiveness of the classification scheme we present a

comparative analysis of the five prominent sandboxes that have been proposed or

implemented.

Acknowledgement

I would like to thank my advisor Dr. Richard J. Enbody for his guidance and

support throughout the duration of my thesis. The discussions in his research group

formed the basis for my interest in security. His comments for the numerous

presentations that I made with the research group were valuable in shaping the direction

of my thesis. I would like to express my sincere gratitude to him for the time and effort

that he spent in critically analyzing my thesis during the several iterations of review.

I would like to thank my guidance committee members Dr. Sandeep S. Kulkami,

and Dr. Anthony Wojcik for their time in reviewing my thesis. I would also like to thank

my research group mates Krerk Pirompsompa, and Sohrab Soltani for their comments

during the numerous discussions we had during the weekly research group meetings.

I would also like to thank all my other friends at MSU who helped make this

thesis a possibility.

iii

TABLE OF CONTENTS

List of Tables ... viii

List of Figures ..x

Chapters

1. Introduction ... 1

1.1 Introduction to Sandboxes .. 2

1.2 Visualization of results ... 4

1.3 Organization of thesis ... 4

2. Primitives for classification ... 6

2.1 Introduction ... 6

2.2 Access Control (Acc_ctrl): ... 7

2. 3 Dynamic Policy Enforcement (Dyn_rst): .. 9

2.4 Sandbox Number (Sbox_no): ... 12

2.5 Operation Mode (0p_mode): .. 14

2.6 Inter-sandbox communication (Isbx_com): .. 16

2.7 Sandbox Time to Live (Sbox_ttl): ... 19

2.8 Sandbox Scope (Sbox_scope): .. 21

2.9 Scalability (Scl): .. 22

2.10 Interoperability (Int__0p): .. 23

2.11 Native security services utilization (Nsss): ... 24

2.12 Duplicating Containment Environment (Dcenv): ... 24

2.15 Conclusion .. 25

. Sandbox Design Categories .. 26

3.1 Sandbox design categories - Introduction ... 26

3.1.1 Component based design ... 26

3.1.2 Layered (Incremental) design .. 28

3.2 Significance of the categorization ... 29

3.3 Relationship to theprimitives........................ 30

3.4 An illustration with Windows NT... 30

3.4.1 Introduction to Windows NT ... 31

3.4.1.1 User Level Subsystems .. 31

iv

3.4.1.2 Kernel Level Subsystem .. 31

3.4.1.3 Hardware Components ... 33

3.4.2 Potential Security Flaws in Windows NT.. 33

3.4.3 Category 1 — Component based design .. 35

3.4.3.1 A sandbox Controller ... 36

3.4.3.2 Subsystem based sandboxing components... 36

3.4.3.3 Kernel level security components .. 36

3.4.3.4 Hardware Protection .. 37

3.4.4 Category 2 — Layered design ... 37

3.4.4.1 Logon/Authentication layer (LAL) .. 37

3.4.4.2 Virtual Machine Handler (VMH)... 38

3.4.4.3 System Call Interception Layer (SCIL) ... 38

3.4.4.4 Kernel Components Monitor (KCM) ... 38

3.4.4.5 Hardware Components Layer (HCL) .. 38

3.6Conclusion.. 41

4. Classification of sandboxes - An illustration with JVM .. 42

4.1 Java Virtual Machine (JVM) .. 42

4.1.1 Access Control (Acc__cntrl): .. 43

4.1.2 Dynamic Policy enforcement (Dyn_rst): ... 44

4.1.3 Sandbox Number (Sbox_no): ... 45

4.1.4 Operation Mode (0p_mode): ... 46

4.1.5 Inter-sandbox communication (Isbx_com): ... 47

4.1.6 Sandbox Time to Live (Sbox_ttl): .. 48

4.1.7 Sandbox Scope (Sbox_scope): ... 48

4.1.8 Sandbox design category ... 49

4.2 Comparative Analysis of JVM Versions .. 49

4.2.1 Why JVM? ... 52

4.2.2 Access Control (Acc__ctrl): .. 53

4.2.3 Dynamic Policy Enforcement (Dyn_rst) ... 54

4.2.4 Sandbox number (Sbox_no) .. 55

4.2.5 Operation Mode (0p_m0de) .. 56

4.2.6 Inter Sandbox Communication (Isbx_com) ... 57

4.2.7 Sandbox Time to Live (Sbox_ttl) ... 58

4.2.8 Sandbox Scope (Sbox_scope) .. 58

4.2.9 Scalability (Sci) .. 58

4.2.10 Interoperability (Int_op)... 59

4.2.11 Native security services utilization (Nsss) ... 59

4.3 Observations ... 61

4.4 Conclusion .. 61

5. Analysis of the Sandbox Classification scheme ... 63

5.1 Interpretation of visualization ... 63

5.2 Policy to Sandbox design - The translation .. 65

5.3 Representation of classification results ... 66

5.4 Primitive based comparison .. 69

5.4.1 Sandbox Number (Sbox_no): .. 69

5.4.2 Dynamic Policy Enforcement (Dyn_rst): .. 70

5.4.3 Access Control (Acc_ctrl) .. 71

5.4.4 Operation Mode (0p_m0de) .. 72

5.4.5 Inter-sandbox communication (Isbx_com) .. 73

5.4.6 Sandbox Time to Live (Sbox_ttl) ... 74

5.4.7 Sandbox Scope (Sbox_scope) .. 75

5.4.8 Sc/In/NS ... 75

5.5 Primitive Subset Comparison ... 76

5.6 Conclusion .. 79

6. Classification of Sandboxes .. 81

6.1 Chakravyuha ... 81

6.1.1 Summary of results .. 83

6.1.2 Access Control (Acc_ctrl) .. 83

6.1.3 Dynamic Policy Enforcement (Dyn_rst) ... 84

6.1.4 Sandbox Numbers (Sbox_no) .. 85

6.1.5 Operation Mode (0p_m0de) .. 85

6.1.6 Inter-sandbox communication (Isbx_com) .. 86

6.1.7 Sandbox Time to Live (Sbox_rtl) ... 86

6.1.8 Sandbox Scope (Sbox_scope) .. 87

6.1.9 Design Category... 87

6.2 User-level resource constrained Sandboxing .. 88

6.2.1 Summary of results .. 88

6.2.2 Access Control (Acc_ctrl) .. 90

6.2.3 Dynamic translation of policies (Dyn_rst) ... 91

6.2.4 Sandbox Number (Sbox_no) .. 91

6.2.5 Operation Mode (0p_m0de) .. 92

6.2.6 Inter-sandbox Communication (Isbx_com).. 92

6.2.7 Sandbox Time to live (Sbox_ttl) .. 92

6.2.8 Sandbox Scope (Sbox_scope) .. 93

6.2.9 Design Category... 93

6.3 Janus - A secure environment for untrusted helper applications 94

6.3.1 Summary of results .. 94

6.3.2 Access Control (Acc_ctrl) .. 95

6.3.3 Dynamic translation of policies (Dyn_rst) ... 95

6.3.4 Sandbox Numbers (Sbox_no) .. 97

6.3.5 Operation mode (0p_m0de) .. 97

6.3.6 Inter sandbox communication (Isbx_com) ... 98

6.3.7 Sandbox time to live (Sbox_ttl).. 98

6.3.8 Sandbox Scope (Sbox_scope) .. 99

6.3.9 Design Category... 100

vi

6.4 A Flexible containment mechanism (FCM) ... 101

6.4.1 Summary of Results ... 101

6.5 Conclusion .. 103

7. Conclusion and Future Work .. 105

7.1 Conclusion .. 105

7.2 Future Work .. 106

Bibliography ... 107

vii

LIST OF TABLES

Table 2.1: Summary of values for Acc_cntrl .. 9

Table 2.2 : Summary of values for Dyn_rst.. 11

Table 2.3: Summary of Dyn_rst combinations ... 11

Table 2.4: Summary of Sbox_no values ... 14

Table 2.5: Summary of Op_mode values_ .. 15

Table 2.5 : Summary of values for Isbx_com ... 19

Table 2.6: Summary of values for Sb0x_ttl .. 21

Table 2.7: Summary of value for Sbox_scope .. 22

Table 2.8 : Summary of values for Scl .. 23

Table 2.9 : Summary of the values for Int__0p. ... 23

Table 2.10: Summary of values for Nsss. ... 24

Table 2.11: Summary of values for Dcenv. .. 24

Table 3.1: Sandbox components for Windows NT... 35

Table 4.1: Summary of values for JVM.. 48

Table 4.2: Metrics for evaluating JVM performance.. 51

Table 4.3: Summary of values for JVMl and JVM2 .. 60

Table 4.4: Summary of scores for JVMl and JVM2 .. 60

Table 5.1: Policy to Sandbox design — the translation .. 66

viii

Table 5.2: The number of points of differences for primitives ... 67

Table 5.3: Abbreviations for sandboxes used ... 68

Table 5.4: Summary of scores for the sandboxes ... 68

Table 5.4: Cumulative scores for different sets of primitives ... 68

Table 5.6 Primitive-wise score for cumulative score - 2 .. 69

Table 6.1: Chakravyuha summary .. 87

Table 6.2: ULS summary .. 93

Table 6.3: Janus Summary .. 100

Table 6.4 : FCM summary .. 102

Table 6.5: Summary of all sandboxes. .. 103

Table 6.6: Summary of scores for all sandboxes .. 103

ix

Figure 1.1:

Figure 1.2:

Figure 2.1 :

Figure 2.2:

Figure 2.3:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5 :

Figure 3.6:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 5.1:

LIST OF FIGURES

Occlusion Diagram ... 5

Average case sandbox .. 5

Access control matrix .. 7

Isbx_c0m through secure stream (S/ipc, S/pipes, and S/mques) 17

Isbx_com through S/mbox .. 18

Category 1 -A component based sandbox .. 28

Category 2 — A Layered sandbox design.. 29

Windows NT block diagram .. 32

Security Flaw in Windows NT ... 34

Windows NT after including sandbox components 39

Windows NT with the layered design. ... 40

Sb0x_n0 for JVM.. 46

Category description for JVM .. 50

JVMl visualization ... 51

Summary of differences for Acc_cntrl for JVM .. 54

Dyn_rst Summary for JVM .. 55

Visualization: JVMl vs. JVM2 H...................................... 60

Occlusion Diagram ... 64

Figure 5.2: All sandboxes without occlusion .. 65

Figure 5.3: Sb0x_no .. 69

Figure 5.4: Dyn_rst ... 70

Figure 5.5:Acc_cntrl ... 71

Figure 5.6: Op_mode .. 72

Figure 5.7: Isbx_com ... 73

Figure 5.8: Sb0x_trl ... 74

Figure 5.9: Sbox_sc0pe ... 75

Figure 5.10: Sc/In/Ns .. 76

Figure 5.11: Primitive set 1 ... 77

Figure 5.12: Primitive set 2 ... 77

Figure 5.13: Primitive set - Cumulative .. 78

Figure 5.14: Cumulative scores .. 79

Figure 5.15: Visualization of sandboxes - Average .. 80

Figure 6.1: Chakravyuha system... 82

Figure 6.2: Chakravyuha visualization ... 83

Figure 6.3: Chakravyuha — Layered design category ... 89

Figure 6.4: ULS visualization ... 90

Figure 6.5: Janus block diagram ... 96

xi

Figure 6.6: Janus - visualization ... 97

Figure 6.6: Janus Components .. 99

Figure 6.7: FCM - visualization .. 101

xii

1. Introduction

In an increasingly connected world, mobile code plays an important role in

networked systems providing as many services as possible. As more and more services

go online, our dependence on third-party code increases. The introduction of large

amounts of, potentially untrusted, third-party code also has the undesirable potential of

compromising system security.

Some of the most common security flaws are based on buffer overflows. A

resulting escalation of privileges results in compromising the system. An attack could

compromise any aspect of the system such as memory utilization, processor or CPU

utilization, access to secure information, or interference with the successful execution of

other processes. The list of malicious processes has only grown, with varied software

such as viruses boot sector viruses, executable infectors, multipartite viruses and Trojan

horses, among others.

Several solutions have been put forward, including but not limited to, access

control lists, intrusion detection systems, authentication protocols, proof carrying code,

certificates, virtual machines, and network security tools. All these systems have

individual strengths, and weaknesses. A conceptually simple approach to solve security

problems caused by malicious third party code is to contain them, within a limited

execution environment. The approach has been called sandboxing, a term we will define

shortly, and came into popular usage with systems such as the Java Virtual Machine. As

we will shortly see, several other sandboxes were also developed, mostly independent of

each other.

However, there is no cohesive method to compare different sandboxes, and to see

how one can build on existing implementations. The concept of Sandboxing has been

defined differently in different contexts with different objectives.

In this thesis, we present core set of primitives that will define a sandbox. We

provide an analysis of the different values that the primitives can take, and have imposed

an ordering on the different possible combinations or values of the primitives.

In order to analyze the different implementations of the sandbox, we also present

two possible design paradigms for designing sandboxes. While the paradigms could also

be considered a part of the primitives, they deserve special mention as they relate to the

implementation issues for a sandbox. Identifying these implementation paradigms can

influence design choices.

In order to validate our classification we will compare two closely related

sandboxes, JVMl and JVM2, and we will present an analysis of how our classification

system differentiates them. We will also use a criteria, based on the number of points of

difference between sandboxes for each primitives, to present a visual representation of

the difference between the sandboxes.

1.1 Introduction to Sandboxes

A sandbox, as a security idea originated from the Java execution environment

[41] , which defined a sandbox as “a set of rules that are created when creating an

applet that ensures that the applet executes within a limited environment, when the applet

is sent as a part ofthe web browser”.

The origins of sandbox as a containment idea can be traced to the study of fault

tolerant systems, wherein sandboxes were defined as “an execution domain, involving the

code and the data segment, isolating the faults within this segment” [53]. While these

systems categorize security flaws as faults, it is a generalization that encompasses more

than just security, thus deflecting much needed focus on security problems. While the

generalization is useful in applying innovations in the field of fault tolerance, in a generic

sense to security principles, it does not address the immediate concerns of providing safe

execution domains.

Some of the important features that a sandbox will have to address in its design

parameters, will include, the impact of compromise (vulnerability), threat perception or

avoidance mechanism, and a system clean up facility for post detection phases. The

impact of compromise will include the identification of the effects of compromising the

application. For instance, compromising system applications can result in more damage

than compromising user level processes. Threat perception or avoidance includes a

system lookout for aberrant behavior, resulting in avoiding possible attacks. Such an

objective can be achieved by restricting resources allocated to the malicious process. A

system cleanup will take counter measures to clean the system after any break ins have

been detected. Typically a cleanup will perform reporting operations. Based on the

issues discussed above we arrive at our definition of a sandbox; “We define the sandbox

as an isolated execution environment, for one or more trusted or untrusted applications,

with specific restrictions placed on resource usage and communication outside the

execution environment”.

1.2 Visualization of results

In this thesis we will present a visualization scheme to readily identify properties

of a sandbox, which we believe is useful in comparing sandboxes. Here we briefly

introduce the visualization scheme to indicate where we are headed. In figure 1, every

vertex corresponds to a primitive, which will be defined in chapter 2, and a particular

sandbox occupies a certain block within the polygon defined by the primitives. In figure

1, we show an “average” representation of a sandbox, based on our classification of five

major sandboxes. The solid block represents the extent of each feature that is present in

the sandbox in relation to the total possible points of difference with other sandboxes.

Figure 2 show the different sandboxes that we have compared. The occlusion of polygons

will help illustrate the different capabilities a sandbox has compared to others. We will

present more about the interpretation of such diagrams in Chapter 4.

1.3 Organization of thesis

The organization of this thesis is as follows. In Chapter 1, we will provide a brief

introduction to the idea of sandboxes, including a definition that we will use. In chapter 2

we will present our primitives, along with a brief description, and the various values that

the primitives take. In chapter 3 we will present the design paradigms for sandboxes, and

explain the same with respect to an imaginary sandbox. In chapter 4 we will present an

analysis of the classification scheme with respect to WI and JVM2. We will also

present the visual representation of the different sandboxes in chapter 6.

Acc_ctrl (1 6)

lsbx_com (16)

 EJVM1 ECV E ULS El JAN I FCM

Figure 1.1: Occlusion Diagram

Average

Acc_ctrl (16)

Sbox_scope

Sc/ln/NS (8)

lsbx_com (1 6)

Figure 1.2: Average case sandbox

2. Primitives for classification

2.1 Introduction

The fundamental purpose of this chapter is to present the important primitives that

we have identified for a sandbox. A variety of sandboxes have come up in recent

times. Some of them are described in [16, 23, 34, 37, 41, 42]. Based on our

examination of the various sandboxes we have formulated a set of primitives. While

not all sandboxes will implement these primitives, it will be a good exercise for the

designer of a sandbox to consider these alternatives before an implementation. Our

expectation is that the identification of primitives will help reduce the number of

alternative security measures that need to be evaluated. Identification of primitives

will also help in easier translation of policy into action, as the set of primitives will

help in clearly outlining the possible security scenarios the sandbox will be able to

handle. Above all, the listing of a core set of primitives will help enhance our

understanding of what is expected out of a sandbox.

In the sections below we have listed different primitives, and have presented

alternative security solutions available or proposed in the literature. We also provide a

brief justification for the inclusion of the primitives in our set. Along with each

primitive, we have imposed a numerical value to indicate its relative importance with

respect to other primitives. Assigning numeric values and the resulting ordering will

help us during the visualization of the primitives. The method adopted to give the

relative importance to the different sandboxes is a simple test of which parameter is

likely to provide more security with respect to the other features. We have listed all

combinations that appear in our classification scheme, in addition to prominent

features. Since the values we impose are relative, they are not continuous.

2.2 Access Control (Acc_ctrl):

Acc_cntrl deals with the protection of the current state of the sandbox. Some of

the most important features of access control include safeguarding confidential

information and critical processes, provision of a flexible access control mechanism,

and enforcing appropriate safety control, including password quality [17]. Most

operating systems have been using the access control model. A sandbox will try and

enforce some access control measures, by directly translating the security policy into

an implementation. A popular implementation model is the access control matrix,

which is a simple representation of user permissions for the different files. Such a

technique is particularly useful in UNIX based operating systems where entities are

treated as files. One example of an access control matrix is shown in figure 2.1.

Process] Files _> File 1 File 2

Process 1 Read, write, open Read

Process 2 Append read

Figure 2.1 : Access control matrix

Acc_cntrl can also be represented through Boolean expression evaluation. Such

ideas have been explored further in [19]. Such methods when used in a sandbox are

particularly useful in complex systems that require dynamic policy implementations.

An access restriction facility can also be incorporated with the sandbox. One more

technique that can be used is access control through the use of a process history,

which could be particularly useful for unrecognized code. So, even if a malicious

process gains access to critical system resources, based on the typical usage patterns

embedded in the controlling process, we can limit the damages to the system. We will

also differentiate between thread-level Sandboxing and process level Sandboxing.

Some operating systems use capabilities instead of access control. However

capabilities can be considered to be a part of an access control matrix [45].

Capabilities are access control matrix tied to an object based system. Thus whether or

not an object can access a resource depends on whether the object has appropriate

capabilities. One could classify capabilities separately under our Acc___cntrl primitive.

The reason for combining capability with Acc__cntrl is that a capability is still a means

for restricting access to a process, and from a sandbox standpoint, it is necessary.

Some of the entities involved in the Acc_cntrl are given in Table 2.1. Clearly

some of the combinations are not in use, for example UA/UTthread. The numerical

values are (imposed) based on the relative strengths of the different primitive values.

For example, TApp represents a trusted application and therefore is given a value of 4

over UTApp which represents an untrusted application. Similarly, we have imposed

a hierarchy between applications, threads, and processes. Constrained access (CA) is

given a higher score (4) compared to unconstrained access (UA), which is given 0.

The relative values imposed of other features can be observed from the table.

Table 2.1: Summary of values for Acc_cntrl

Acc_cntrl Nume Description

Values / rical

combinations values

TApp 4 Trusted Application

UTApp 2 Untrusted Application

Tthread 4 Trusted Thread

UTthread 2 Untrusted Thread

Uproc 4 Trusted Process

UTer 2 Untrusted Process

UA 0 Unconstrained Access

CA 4 Constrained Access

UA/TApp 4 Unconstrained Access for trusted Applications

CA/TApp 8 Constrained Access for trusted Applications

UA/UTApp 2 Unconstrained Access for untrusted Applications

CA/UTApp 6 Constrained Access for untrusted Applications

UA/ Tthread 4 Unconstrained Access for trusted Thread

CA/Tthread 8 Constrained Access for trusted Thread

UA/UTthread 2 Unconstrained Access for untrusted Thread

CA/UTthread 6 Constrained Access for untrusted Thread

UA/Ujroc 4 Unconstrained Access for untrusted Process

CA/UTproc 6 Constrained Access for untrusted Process

PBA/ Tthread 10 Different policies for trusted and untrusted threads

PBA/ UTthread are used

PBA/ Uproc 12 Different policies for trusted and untrusted

PBA/ Ulproc processes are used

PBA 16 Policy Based Access

2. 3 Dynamic Policy Enforcement (Dyn_rst):

Policy enforcement can be dynamic or static. What we mean by dynamic

enforcement is that the administrator can change the policy on the run with root

access to the sandbox control components. Static enforcement, means that the

configuration cannot be changed at runtime; every time a policy is changed the

sandbox components need to be reconfigured. Dynamic configuration has both

advantages and disadvantages. The advantage is that policy changes can be

incorporated dynamically and according to sandbox needs. However, the

disadvantage is that a faulty change to the policy can be dangerous, and can

potentially compromise system security. Safety can be ensured by a combination of

static and dynamic security specifications. For instance, it may be possible to specify

a core set of policy details which cannot be compromised. Also, a major objective for

management of policy with a static system is that new, and possibly malicious code

should not be able to break the system. One example where malicious code uses

scripts is that, under the guise of updating the system sandbox components actually

re-configure to unsafe states. A breach in the sandbox may trigger a domino effect

and result in the entire system in an unsafe state.

The disadvantage of a static policy enforcement mechanism is that it will be a

tedious process to regularly update the sandbox on a constant basis, and consequently

keeping up with current developments, perhaps, a new virus or worm, or any buffer

overrun attack techniques cannot be accounted for on a continuous basis. This

inflexibility may in turn render the system useless from a security standpoint for that

period of time.

The advantage with a dynamic policy enforcement mechanism is that, it offsets

the exact problems that the other systems with a static enforcement face, that is the

ability to constantly update a given sandbox mechanism with the latest developments.

We advocate such a technique for any implementation since the security landscape is

constantly changing.

10

Other issues with respect to policy enforcement include when the necessary

changes made to the system actually take effect. It could be either immediately or

after a specified time period. Issues such as, what parameters are chosen to decide on

the time period are also necessary. Table 2.3 summarizes the fundamental values

Dyn_rst takes.

Table 2.2 : Summary of values for Dyn_rst

Dyn_rst values Numeric Description

Values

S 2 Static Policy specification

D 4 Dynamic Policy specification

H 4 High security indicating higher constraints

M 3 Moderate security indicating potential flaws

L 0 No security measures available

TApp 4 Trusted Application

UTApp 1 Untrusted Application

Tthread 4 Trusted Thread

UTthread 2 Untrusted Thread

Uproc 4 Trusted Process

UTproc 2 Untrusted Process

Typically, our classification scheme uses a combination of one or more of the

values of table 2.2. Table 2.3 describes some of the most common combinations. A

Combination represents the simultaneous use of more than one value presented in

Table 2.3: Summary of Dyn_rst combinations

Combinations Numeric Description

Values

SM/ TApp 9 Static policy specification for TApp

DM/TApp 11 Dynamicpolicy specification for TApp

SM/UTApp 6 Staticpolicy specification for UTApp

DM/UTApp 8 Dynamic policy specification for UTApp

SUTApp, DIJTApp 14 Other possible combinations using the

nomenclature presented above

ll

Table 2.2. While all combinations of the parameters presented in the table are used in

our comparisons, other combinations are also possible.

2.4 Sandbox Number (Sbox_no):

The number of sandboxes is also an important issue when it comes to designing a

sandbox. Several scenarios arise. We could have a sandboxing mechanism which

does not allow the possibility of duplicating containment environments. Another issue

that crops up, as a consequence of considering the number of sandboxes is sharing of

privileges. For example, when a process uses a fork () to spawn another process,

several issues need to be considered. These include, whether or not the forked process

executes within the sandbox, or whether we create a new sandbox for the forked

process. In case of the creation of a new sandbox, privileges and methods used to

assign or allocate the privileges for the new sandbox need to be considered. One

technique is the principle of attenuation of privileges; wherein the new sandbox will

get no more privileges than the parent sandbox that spawns it. The advantage of using

such a rule is that a malicious process cannot spawn a container with higher

privileges. The implicit assumption here is that malicious processes will not have

higher privileges to begin with.

One reason why we need to consider the number of processes executing

within a specific container is that, in many scenarios, the container, apart from being

a security environment, is also a method for guaranteeing the processes a certain

amount of execution space, which includes, such things as processing power, memory

and network bandwidth. Thus, infiltration of a sandbox by malicious processes is

enough to sabotage the execution of all processes in that sandbox.

12

One of the practical considerations of a possible implementation of a sandbox

include the inheritance of file descriptors from parent to child to retain control in a

tree like structure. We can also allow for system calls for the child processes to

further enhance restrictions, or to request the parent sandbox for more relaxations of

security criteria. However, we can allow the parent to retain full control over the

sandbox containing it’s child processes. Also, as a general principle, sandboxes cease

to exist as soon that the process that was contained in them stops executing. The same

is true for sandboxes that contain the child processes, as against the original or root or

parent sandboxes.

In our classification of different sandboxes, and in our comparative study

presented in chapter 5, we take into consideration the number of sandboxes that can

execute in the environment. We also consider, in our classification scheme, the total

number of processes that can execute inside of a sandbox at any one time.

There are only three values assigned to Sbox_no. These are specifically, Static

Policy Based (S/PB), Dynamic/Policy Based (D/PB), and Static/Fixed Integer based

(S/Int). A D/PB based sandbox will exhibit the highest level of security, since

individual processes can be sandboxed separately. S/PB follows D/PB, because once

the static Sbox_no limit is reached, there will be no way to sandbox newer processes.

S/Int is assigned the lowest value (2) since policy is not taken into account, unlike

S/PB where a robust policy can set a realistic limit on Sbox_no. Table 2.4 summarizes

the values for Sbox_no.

13

Table 2.4: Summary of Sbox_no values

Sbox_no Numeric Description

Values

S/PB 3 Static/Policy based

D/PB 4 Dynamic/Policy based

S/Int 2 Static/Fixed integer

2.5 Operation Mode (0p_m0de):

The two values for Op_mode which a sandbox can take are the kernel level (KL)

and the user level (UL). Other values are a combination of those two modes. While

specifying Op_mode we also take account of the entity that is being sandboxed. We have

identified two entities: user applications (App) and the sandbox component itself

(SboxC). Both SboxC and App are provided a common numerical value of 2.

A sandbox in KL Op_mode has the advantage of being able to sandbox important

components of the operating system, such as the object manager, cache manager, the

device drivers, the network drivers and the system executables such as the memory

manager. Such a sandbox would be particularly useful in an environment that uses a lot

of third party, untrusted code at the kernel level. Sandboxing the kernel level application

will be useful in open source environments where, untrusted code could be patched with

the kernel.

However, the power of such a sandbox also comes with certain disadvantages.

The sandbox must be robust. If it is flawed, then we are adding faulty or potentially

malicious code into the operating system ourselves, which needs to be guarded against,

and care taken to ensure the safety of the sandbox that may be installed at the kernel

level. In order to ensure a safe kernel, the “keep it simple” principle must be followed

wherein we adopt a design philosophy of using only the bare minimum features needed to

14

contain the process from doing excessive damage to the system. The other functions can

be delegated to the user level. Another disadvantage of executing the process at the

kernel level will be the need for constant context switching for several monitoring

activities of the sandbox.

Another value of Op_mode is the user level (UL). The primary disadvantage of a

UL based sandbox will be it’s inability to police insecure processes at the kernel level. A

flaw in a critical kernel component will easily break security measures provided by a

sandbox operating in the UL Op_mode. A simple buffer attack providing escalation of

privileges to the root level to a malicious process is enough to sabotage the execution of a

sandbox operating in UL Op_mode. However, that does not render the UL sandbox

entirely ineffectual. Some of the most important uses of a user level sandbox will be in

the form of a container for independent subsystems within such as an executing

environment for a programming language or a virtual machine.

A typical setup will be for a system to have a single master sandbox at the KL and

then several of the same type in the UL. Such a setup will provide fine grained controlled

over the various UL-App and also provide assurance for the safety of the kernel level

process.

Table 2.5: Summary of Op_mode values

Op_mode Numeric Description

Values

SboxC 2 Sandbox Components

App 2 Application

KL 2 Kernel Level

UL 0 User Level

15

A summary of the values that the Op_mode primitive can take is given in the table below.

The primitives can be a combination of the different values given in the table 2.5

2.6 Inter-sandbox communication (Isbx_com):

Isbx_com addresses the inter sandbox communication mechanisms. Processes do

not function in isolation. There are different methods in which the processes can

communicate [21]. Some of the most important inter process communication (IPC)

techniques include the use of shared memory, pipes, messages queues, and remote

procedure calls (RPC). However, a process placed within a sandbox will have

communication restrictions placed on it. Without communication, one could have a

perfectly secure, but dysfunctional sandbox. The issue of how to allow processes

contained within a sandbox to communicate and yet ensure security is fundamental to the

design of any sandbox. Isbx_com addresses this concern.

One way for communication to take place between sandboxes is to encapsulate

the communication stream in the form of a‘ secure communication path. For example, to

communicate between processes A and process B, we need to have two points of contact

with a safe stream. The process handling the safe stream can then in turn be encapsulated

within a simple containment environment, such as the sandbox itself. A simple

illustration is shown in Figure 2.2.

16

Communicatio

n Sandbox/

(Secure communication

stream)

Figure 2.2: Isbx_com through secure stream (Slipc, S/pipes, and S/mques)

The actual implementation of the communication stream could take several forms,

including pipes (S/pipes), message queues (S/mques), or secure remote procedure calls

(S/ipc). In addition to the regular implementations, they will pass through a sandbox, as

shown in Figure 2.2, to ensure safety. The communication sandbox itself will be defined

by communication protocols that may be built into the sandbox or specified by means of

a policy. An important advantage that the secure communication stream based model

offers is that we are not actually altering the communication mechanism provided by the

system of the platform. We are merely using the existing platform in order to create a

more secure communication environment.

A problem arises when more than two process need to communicate, such as in

group communication scenarios. While we do not go into the specifics of the scenario, a

broad generalization could be a communication system where all processes connect to a

common mailbox (S/mbox) and then use a routing technique (not unlike network routing

techniques) to connect to other processes. The S/mbox method for Isbx_com apart from

17

providing scalability to a large process group will also provide a central point of

communication. On the other hand, there are disadvantages to having a central point of

communication, including a single point of breakdown. However, such a Isbx_com

mechanism will be definitely useful in a sandbox with a high probability of multiple

cooperating processes. A simple illustration outlining our idea is given in Figure 2.3.

Routing and inter—

process

Communication

Center

(Secure communication Sandbox)

Figure 2.3: Isbx_com through S/mbox

Another important technique for Isbx_com will be tunneling the communication

through a KL (defined under Op_mode) sandbox. The advantages of such a process will

include added security in the form of assurance from the compromised KL-SboxC. To

illustrate the difference between a UL (defined under Op_mode) secured Isbx_com and a

KL secured Isbx_com, we consider a buffer overflow attack leading to escalation of

privileges by a malicious process. In such a scenario, secure Isbx_com can be sabotaged

18

by the malicious process with root privileges. However, the KL communication sandbox

can protect the system against such attacks.

Policy based communication (P/comm) is another possible value for Isbx_com.

P/comm represents the communication protocol that is based on policy. In many cases

P/comm will be associated with one or more of S/ipc, S/pipes, and S/mques. MISC

represents middleware-induced security. Several popular sandboxes use MISC (as seen in

Chapter 4, JVM uses MISC).

For relative ordering that we have imposed on the. values for Isbx_com, S/ipc,

S/pipes, and S/mques get the highest value (8). MISC relegates the Isbx_com to an entity

outside the sandbox, and hence is assigned a lower value (6). S/mbox provides a central

point of failure and therefore is assigned a value of 6. Table 2.5 shows the important

values for Isbx_com.

Table 2.5 : Summary of values for Isbx_com

Isbx_com Numerical Description

Values

MISC 6 Middleware induced security communication

Sflrc 8 Secure sandbox based Interprocess communication

S/pipes 8 Secure sandbox based pipes

S/mques 8 Secure sandbox based message queues

S/mbox 6 Secure sandbox based mailbox

P/comm. 8 Policy based communication (Isbx_com)

2.7 Sandbox Time to Live (Sbox_ttl):

Sbox_ttl, the time that a sandbox exists, is important because unused or redundant

sandboxes pose additional management overhead for the controlling components,

particularly in the component-based approach which we will discuss in chapter 4. A

sandbox can live for just as long as the process that it contains exists or it can exist for a

19

specified time period; for example a fixed number of clock cycles. The length of the

lifetime of the sandbox can also be a deciding factor in the complexity of implementation

of the sandbox. For example, we can also have an implementation of a sandbox where

extensive modifications to the file systems and the various related KL components are

needed to support the additional lifetime of the sandbox. KL sandboxing will be a useful

idea for important processes that need safe containers to execute, such as virtual memory

managers, which are guaranteed to execute at least for a significant portion of the system

lifetime. Some disadvantages of such a scheme are that the additional changes to kernel

code will have to be well audited. Modifications to KL components could lead to an

escalation of costs, either in the way of KL implementation, or through performance

overhead due to the cost of additional context switching.

We have defined four values for Sbox_ttl, taking into account all the factors from

the above discussion. Sbox_ttl with a thread lifetime (Thr_lt) is a sandbox that is specific

to a thread, and is destroyed when the thread stops executing. Sbox_ttl with an application

lifetime (App_lt) is a sandbox that is destroyed as soon as the application ceases to exist.

Sbox_ttl with a process lifetime (Prcs_lt) is a sandbox that is specific to a process and is

destroyed as soon as the process stops executing. The longest Sbox_ttl occurs when the

sandbox exists for the duration of the execution environment (Sys_upt), which usually is

the operating system.

We impose the relative ordering as follows. Thr_lt is given the lowest score 4,

since providing independent threads with sandboxes will introduce additional overhead.

App_lt is given a score 6 higher than Thr_lt, because we expect the number of

applications to be lesser than the number of threads, thus reducing the overhead. Prcs__lt

20

is provided a score 7, higher than App_lt because, when Sbox_ttl is Prcs_lt, the sandbox

ceases to exist as soon as the process (that was sandboxed) terminates, presenting a lower

possibility for a malicious process to misuse a ghost sandbox (one that exists even after

the process that it contained has stopped executing). Sys_upt is provided a higher score

of 8, contrary to a lower score that we will expect based on our experience with Thr_lt,

App_lt, and Prcs_lt. The reason for the high score is that sandboxes with a Sys_upt (like

Chakravyuha, described in Chapter 6) will coexist with a lower Sbox_no. The

combination of a lower Sbox_no and Sys_upt provides manageable overhead, keeping the

sandbox design simple. Sbox_ttl is summarized by the Table 2.6.

Table 2.6: Summary of values for Sbox_ttl

Sbox_ttl Numerical Description

Values

Thr_lt 4 Thread Lifetime

App_lt 6 Application Lifetime

Prcs_lt 7 Process Lifetime

Sys_upt 8 System (execution environment) Uptime

2.8 Sandbox Scope (Sbox_scope):

Sbox_scope refers to the span of the sandbox, i.e., what entities (processes,

applications, threads, or the entire operating environment) can be contained by the

sandbox.

There are four different values that have been assigned to Sbox_scope.

Sbox_scope takes the value global (G) when all entities in the operating environment can

be contained by the sandbox. Sbox_scope takes the value local (L) when one or more

entities (processes, applications, and threads) can be ruled out of being contained by the

sandbox.

21

The two values G and L are assigned with a time frame during which the

Sbox_scope can be global or local. Persistent (Prst) value for sandboxes is assigned when

the sandbox has the ability to contain all entities (processes, applications, and threads) all

the time. Otherwise we assign Transient (Tmst) for Sbox_scope.

We impose a numerical ordering on these values. When Sbox_scope takes the

values G, more processes can be contained, and hence more security 8, while we assign a

slightly lower value 6 to L. The duration for which Sbox_com is G or L is of lower

significance, and therefore we assign a maximum value of 4 to Prst, and a value of 2 to

Tmst.

Sbox_scope is different from Sbox_ttl. By Prst and Trnst, we refer only to the

duration of value G or L for Sbox_scope. On the contrary, by Sbox_ttl, we mean the

lifetime of the sandbox. Table 2.7 summarizes Sbox_scope values.

Table 2.7: Summary of value for Sbox_scope

Sbox_scope Values Numerical Values Description

G 8 Global/applied across all entities

L 6 Local/applied to specific entities

Prst 4 G or L value is persistent

Tmst 2 G or L value is transient

2.9 Scalability (Sol):

Since we also intend the classification effort to form a design manual for

designers for future sandboxes, we evaluate sandboxes on their scalability (Sci). Sci refers

to the ability of the sandbox to balance security with an increasing number of entities

(processes, applications, and threads).

22

One instance where Scl is important is as follows. Some sandboxes need a healthy

ratio of used/available heap space to function efficiently. Heap space could be a serious

limitation for newer sandboxes to be created, when the number of processes increases.

Shortage of heap space could in turn result in a forcible change of sandbox behavior

leading to an insecure state.

From a security standpoint scalability is not a core issue, since it comes into

picture only for a subset of the sandboxes and only under special cases. Scl can take the

value Y (when the sandbox is scalable) and N (when the sandbox is not scalable). Table

2.8 summarizes the values for Scl.

Table 2.8 : Summary of values for Scl

Scl Numerical Description

Values

Y 2 Yes

N 0 No

2.10 Interoperability (Int_op):

The interoperability (Int_op) of the sandbox includes the interoperability with

other sandboxes of the same type installed in different installations applicable specifically

to Chakravyuha, described in chapter 6. Int_op is also important in the case where we

will limit the values that Int_op can take an yes (Y) or no (N). Table 2.9 summarizes the

value for Int_op.

Table 2.9 : Summary of the values for Int_op.

Int_op Numerical Description

Values

Y 2 Yes

N 0 No

23

2.11 Native security services utilization (Nsss):

A sandbox could be utilizing the security services that are already present in the system.

Native security services can include such components as Stackguard [44], and

authentication components. We will restrict the values permissible for Nsss to be either a

a yes or a no. The values for Nsss are summarized in table 2.10.

Table 2.10: Summary of values for Nsss.

Nsss Numerical Description

Values

Y 2 Yes

N 0 No

2.12 Duplicating Containment Environment (Dcenv):

Dcenv refers to an issue that we need to address in the case of a process that is

contained within a sandbox that could spawn (fork) another process. In this case, two

possibilities arise; either the new process exists within the same container or in a new

container. Dcenv is kept relatively simple by following a static policy implementation. If

the sandbox allows a high degree of Dyn_rst, then Dcenv could form a protection

mechanism against compromising the core of the sandbox. While more complicated

methods for duplicating containers can be formed, we will restrict our value to either yes,

(Y) or no (N). However we do not apply Dcenv to the existing sandboxes that have been

considered for classification in this thesis. The feature is provided for extensibility of the

classification scheme. Table 2.11 summarizes the values for Dcenv.

Table 2.11: Summary of values for Dcenv.

Dcenv Numerical Description

Values

Y 2 Yes

N 0 No

24

2.15 Conclusion

In this chapter we introduced the idea of our primitives for Sandboxing. The

primitives themselves are borrowed from different aspects of security. What is unique

here is that we have identified the most (as we will see in the next chapter) appropriate

primitives to classify the different sandboxes. The primitives will also serve as a means to

serve as a design manual for designers of newer sandboxes. The classification scheme

itself is an effort in that direction. The classification scheme assumes special significance

in design scenarios, where we want to relate design, policy, and the level of security that

can be attained with minimal redundancy. Elimination of redundancy is particularly

useful because, several security features with overlapping responsibilities are often a

source of redundancy resulting in lower system performance. In chapter 5 we will see

how the various primitives interact and the effect of policy. While the study of policy

itself is outside the purview of our work, we report some preliminary work in that

direction, aimed at providing designers a link between sandbox design and policy. Policy

is particularly important since it forms the core of a sandbox in many cases, as we will

see in Chapter 4. In chapter 5 we will also discuss if any of the primitives are necessary,

and if any are dispensable. It will give us a better perspective, since we do not need that

information for the classification process itself, but will greatly enhance our interpretation

of the classification scheme.

25

3. Sandbox Design Categories

In this chapter we try to answer the following questions. What are the ways in

which the primitives presented in Chapter 2 can be implemented? Is it possible to

identify categories from among the different designs of sandboxes with respect to

implementation? If so, how many different categories? What are the pros and cons of

each model?

The organization of this chapter is as follows. We introduce the sandbox design

categories, and we present the two categories with a brief description of each. We

then discuss the importance of the categorization process, and specify its relationship

to the primitives. Finally, we illustrate how categorization works with respect to a

specific example.

3.1 Sandbox design categories - Introduction

Based on our analysis of different implementations of sandboxes we have

identified two categories of design; component based, and layered (also called

incremental). In this section we will describe both the categories.

3.1.1 Component based design

As defined by D’Souza et a1. [2], component based software architecture “is an

approach to software development in which all artifacts - from executable code to

interface specifications, architectures, and business models; and scaling from

complete applications and systems down to small parts — can be built by assembling,

adapting, and wiring together existing components into a variety ofconfigurations

26

Using the above definition we can infer that a component (we use component in

the context of a sandbox) can be defined using the following characteristics [1]:

Components are either de-coupled or loosely coupled, and development and testing of

each of these components can be done independently. Component both provide well

specified interfaces and services. Components can be modified dynamically based on

the policies since they are designed independent of each other.

One of the advantages of a component-based design is that it provides a way to

map abstract policy statements to components and their interfaces. The design

provides a way to protect components from malicious attacks launched on other

components.

Some of the disadvantages of a component—based design include a complicated

inter-component Acc_cntrl (Primitive defined in Chapter 2) and tough design

decisions in terms of division of responsibilities between components.

Practical examples in the component-based category include the Trusted

Computing Base [3], where the ideas have been proposed in the following ways.

(TCPA based systems, though not numerous, could become pivotal if the related

initiatives [48], are carried out to completion.) Some clarifications are needed

however. A trusted computing base need not be provided to enforce process

containment. The different components need not involve the use of a specific API as

is the case with trusted computing base-type systems.

A component-based design with six components is shown in Figure 3.1. One

drawback with this design shown here is the central point of control, at component 4.

27

Components 1,2 and 3 operate in the user level while components 5 and 6 are kernel

components. Component 4 could be either user or kernel level.

\\ +

-
—
-
—
—
-
-
-
-

\

Kernel level User level

Figure 3.1: Category 1 -A component based sandbox

3.1.2 Layered (Incremental) design

Unlike a component-based design, in a layered design, we rely on an incremental

approach. One layer provides services to another layer while using services from

another layer. The concept is illustrated in Figure 3.2. The incremental approach can

be compared to the different layers of a network protocol model such as TCP/IP or

081. The same design considerations that hold for the need for layers in a network

protocol hold for a layered sandbox design.

The advantages with layered design include the ability to add new services at

every layer, without having to modify the interface between the layers, since the

28

interfaces are standardized. The relationship between different layers is thus greatly

simplified, since we only have to be concerned with the interface between two

adjacent layers.

A major disadvantage of the layered design is that it is more rigid, and the

absence of any one layer can cause the sandbox to be dysfunctional.

fi‘ Assurance provided to layer N+!

Layer N

Assurance from layer N -1
6

Figure 3.2: Category 2 — A Layered sandbox design

3.2 Significance of the categorization

The primitives identified in the previous Chapter 2 are not useful in isolation

when designing sandboxes. While they help in identifying important functionalities of

a sandbox, to be an effective security tool they do not help us understand the

implementation aspects of sandboxes. The performance of a sandbox is ultimately

dependant on the implementation. Hence we have given importance to the different

categories of sandboxes.

Most sandboxes, with the exception of JVM, appear to have taken an action-

reaction approach wherein the idea of containment was applied as an afterthought to

29

mitigate specific security problems. We have identified categories to provide this

insight into sandbox design, at the time of policy specification itself. The categories

were a result of an iterative analysis of the sandboxes.

3.3 Relationship to the primitives

The primitives identified in Chapter 2 can be applied universally, and can be used

to design sandboxes in either category. We do not identify any primitive specific to a

category. However, it is possible to associate a certain primitive more with a

category. We can illustrate this difference with respect to Sbox_ttl. In the component

based category, we can have different components having different Sbox_ttl values,

since the components (with the exception of critical components) are independent of

each other. In the case of a layered approach we find that all layers have to share the

same Sbox_ttl. Application of different values could result a certain layer being

unavailable while other layers continue to be active.

While classifying the sandboxes in Chapter 5 we will specify which category the

sandboxes come under. We will illustrate the two layers with a specific example in

Section 3.4.

3.4 An illustration with Windows NT

We present a case study of the two categories with respect to Windows NT. We

have chosen Windows NT because it falls right in the middle of the categories and

will help our understanding of categories (The same reason is applied while choosing

a sandbox for illustrating our classification scheme in Chapter 4.). We make use of

the ambiguity, with respect to categorization, in Windows NT, to use one system

30

(Operating System) and explain how the two categories fit in, thus providing an easy

way distinguish between them.

We provide a brief introduction to Windows NT in Section 3.4.1 and present the

component based (sandbox implementation) category in Section 3.4.2. In Section

3.4.3 we present the layered approach. Figure 3.3 shows the a block diagram of

Windows NT.

3.4.1 Introduction to Windows NT

Windows NT is divided into three parts; User level Subsystems, Kernel Level

Subsystems and the Hardware layer. A block diagram of Windows NT is shown in

Figure 3.3.

3.4.1.1 User Level Subsystems

The use of different subsystems implies that Windows NT has at least as many

points of failure as there are subsystems. The user level subsystems in Windows NT

correspond to an OS/2 Application platform, a Win32 application platform, a POSD(

application platform, each acting as an independent virtual machine for its processes.

The different Virtual Machines are responsible for the secure execution of the

processes executing within them.

3.4.1.2 Kernel Level Subsystem

The main part of the Kernel is the executive services platform. The executive

platform can be further divided into major components such as Object Manager,

Process Manager, a Local Procedure call Facility, and a Virtual Memory manager. A

key component that could be subject to serious security flaws is the I/O manager. The

U0 manager contains subcomponents such as the cache manager, the file system

31

Logon OS/2 App Win 32 App POSIX App

OS/2 POSIX

Authentication > Win32

I/O Manager 1. Virtual Memory Manager

2. Object Manager

3. Local Procedure call facility

4. Process Manager

Drivers

Cache Manager

File systems ,

Network Drivers MICI'O kernel

Device Drivers

Hardware Abstraction Layer

J /\ /\

ii 1 r E

Hardware

Figure 3.3: Windows NT block diagram

32

handler, the network drivers and device drivers. An implication of additional complexity

for the I/O manager is that it becomes difficult to monitor additional code that is

integrated into the Kernel level-operating mode. Such a scenario whereby a compromised

component, either maliciously or by oversight, is introduced in the kernel level

compromises any security mechanism that is built into Windows NT at the user level. An

authentication system in isolation will be unable to provide the necessary security, due to

the presence of other entry points, including but not limited to network connections.

Compromised Kernel component can result in escalation of privileges for malicious user

level programs. Escalation of privileges is one of the main sources of buffer overflow

attacks as explained in [50].

3.4.1.3 Hardware Components

In Windows NT, the hardware abstraction layer provides the interface to the

hardware with which the operating system interacts with.

3.4.2 Potential Security Flaws in Windows NT

Before discussing the two categories, we will evaluate possible security

flaws in Windows NT. Buffer overflow [4] is a recurrent theme in most security attacks

[9]. For example, in the 08/2 Subsystem, we can have an OS/2 application that could be

compromised. The compromised OS/2 application can then hijack a core component in

the Win32 subsystem. We note that the POSD(subsystem also has access privileges, as

described in [49], with the Win32 subsystem. Thus it is possible for the compromised

OS/2 Application to take over and launch further attacks against any user level process.

Further, the compromised Win32 subsystem can be used as a point of attack to sabotage

33

Point of Attack

Logon I I 03/2 App I Win 32 App I Iposrx App I

A

Authentication

I/O Manager 5. Virtual Memory Manager

6. Object Manager

7. Local Procedure call facility

8. Process Manager

Drivers

Cache Manager

File systems _

Network Drivers Micro kernel

Device Drivers

I Hardware Abstraction Layer I

j\ A A

If 1 'l T

ii V ii

I Hardware I

Compromised Subcomponents

Direction of attack

Figure 3.4: Security Flaw in Windows NT

34

or hijack communication with the kernel level applications. Even though the Windows

NT executive services itself is not compromised during the process, communication with

the executive will be compromised through the hijacked process or subcomponent

(Win32 in our example). Figure 3.3 illustrates the scenario where one component is

compromised.

Let us consider another scenario in which the user loads a new device and the device

driver from a trusted third party vendor. The device driver code may contain some

genuine leaks/holes that could be exploited. It is then possible that the executive is

compromised leaving the Operating system in a compromised state. While a driver can be

contained, it is necessary to be prepared for the scenario in which such containment is

necessary.

3.4.3 Category 1 - Component based design

We have identified six major components for the (hypothetical) sandbox for

Windows NT. The six components are listed in Table 3.1. The relative interaction

between the components was shown in Figure 3.1. We now describe the individual

components.

Table 3.1: Sandbox components for Windows NT

Component# Description

A Sandbox Controller

OS/2 Sandboxing component

Win32 Sandboxing Component

POSIX Sandboxing Component

Windows Executive Services Sandboxing Component

Hardware Protection (TCPA/Secured Memory Access)

O
N
U
I
b
w
w
r
—

35

3.4.3.1 A sandbox Controller

The sandbox controller coordinates the functionalities of the other sandbox

components. The sandbox controller is a central point of control. One key disadvantage

for any centrally controlled security mechanism is that the failure of the key component

can lead to the failure of the dependant components, or the failure of the sandbox as a

whole. However, we can insure the system against such failures by carefully selecting the

policy. The same can be done for any component; However, the importance of doing so

is magnified in a controller because; compromising individual components can result

only in compromising the subsystems to which they correspond. Doing so to the

controller could jeopardize the entire system.

3.4.3.2 Subsystem based sandboxing components

There are several subcomponents defined in the sandbox. These include the

08/2, Win32 and the POSIX sandbox components. The advantage of such a sandbox is

that compromising an application in the 08/2 system will not affect the Win32 and the

POSIX systems, and is a way to insulate independent components (POSIX, 08/2) from

each other. Subsystem based sandboxing components also help in preventing the

hijacking of the components, through malicious system call interceptors.

3.4.3.3 Kernel level security components

The kernel level security components include a sandboxing mechanism for the

executive services such as device drivers, cache memory interface software, object

manager security interfaces, and local procedure safety issues. A major functionality for

the kernel level components is for checking against return address protection for kernel

procedure calls, which in turn help in protecting against buffer overflow at the kernel

36

level, thereby preventing an escalation of privileges for the malicious program. In a

component-design a kernel component is usually different due to the complexity of

managing the various kernel features. Further, extra caution has to be taken before

patching in such a component because, compromising the kernel component is another

way of compromising the whole operating system.

3.4.3.4 Hardware Protection

We do not rule out the possibility of a hardware based protection mechanism.

Future security mechanisms could be based directly on hardware protection mechanisms.

Trusted Computing Platform alliances are an effort towards hardware protection. Given

the amount of industry effort [10] for hardware protection we cannot rule out significant

levels of sandboxing at the hardware level, justifying the inclusion of hardware protection

as a component.

Figure 3.5 shows the block diagram of Windows NT after including the sandbox

components.

3.4.4 Category 2 - Layered design

Similar to our discussion of the component based model we present the layered

design. We have identified 5 layers, and have very briefly discussed them below.

3.4.4.1 LogonlAuthentication layer (LAL)

The Logon/Authentication layer will form the topmost layer of the Sandboxing

security stack. User authentication modules in operating systems will fall in the LAL.

37

3.4.4.2 Virtual Machine Handler (VMH)

The Virtual Machine Handler layer, which will also operate in the user level, is

more useful for the containment of processes within the individual subsystems such as

the 08/2, Win32 application, and POSIX applications.

3.4.4.3 System Call Interception Layer (SCIL)

The System Call Interception Layer is important for the interception of system

calls, between all the individual subsystems, and the different executive or kernel level

services. The information gathered in SCIL could be passed on to the higher layers.

3.4.4.4 Kernel Components Monitor (KCM)

The different kernel services such as object manager, the process manager, the

local procedure call facility, and the virtual memory manager are monitored by the KCM

layer.

3.4.4.5 Hardware Components Layer (HCL)

The Hardware Components Layer, at the lowest end of the stack, will form the

basis for any hardware action that may be taken to promote sandboxing. At this point,

such a layer will serve only the purpose of scalability. The sandbox itself is shown in the

Figure 3.6.

38

Logon OS/2 App Win 32 App POSIX App

Authentication

I/O Manager 9. Virtual Memory Manager

10. Object Manager

11. Local Procedure call facility

12. Process Manager

Drivers

Cache Manager

File systems
.

Network Drivers MlCI'O kernel

Device Drivers

 Hardware Abstraction Layer

/\

jll'

l
I: Hardware

 L

 —
I

"
I
I

K
:
:
'
.
>

(
)
2

Figure 3.5 : Windows NT after including sandbox components

39

LAL

SCIL

KCM

HCL

Figure 3.6: Windows NT with the layered design.

40

3.6 Conclusion

In this chapter, we presented two sandboxing architectures and analyzed the

differences with the help of an example. While the architecture itself could be categorized

as a primitive, we chose to give it a different dimension because architecture is not

defined by a policy in case of system, which requires a dynamic translation of policy

requirements, which is increasingly the case. In Chapter 4 we have mentioned what

category the sandbox falls with respect to the architecture. However, we have not used

the architecture in the visual representations in Chapter 5. The reason is that the visual

representation is a tool to enable designers to define behavioral aspects of a sandbox as

against implementation aspects. Implementation aspects will be difficult to predict

without taking the underlying system into account.

41

4. Classification of sandboxes - An illustration with JVM

In this chapter we present the analysis of JVM with respect to our primitives. The

illustration will be typical and apply to other sandboxes as well. We first present a brief

description of the JVM sandbox, including its features, and the classification. Subsequent

to the actual classification, we will also present how we are able to provide fine-grained

distinction between two closely related sandboxes within our classification system. For

demonstrating fine-grained classification we will choose two sandboxes that are closely

related within the JVM family. We will give reasons for their choice, outline similarities,

and then describe how our classification system is able to present a clear difference

between the two.

4.1 Java Virtual Machine (JVM)

The JVM is the one of the most popular sandboxes in use and a pioneer of the

concept of sandboxes for security. The virtual machine provides a sandbox for the

applications to execute. The actual implementation of the JVM is discussed in [24]. The

JVM security architecture protects the system from third party code in the form of a

sandbox. The JVM provides its own instruction set and a built in compiler. The JVM

security [41] is based on the following important components:

0 The class loader architecture

0 The class file verifier

0 Language based security

0 The security manager and the Java API

The class loader architecture prevents malicious code from interfering with

trusted applications by forming a protective layer around the trusted applications and

42

places code into separate sandboxes. The idea of a class loader is directly tied to the

programming language concepts of namespaces.

The class file verifier provides consistency checking between the different

modules of the class loader. The verifier is a multi-pass entity, with different passes

performing structural checks on the class file, semantic checks on the file data, bytecode

verification and verification of symbolic references.

Language based security features include type safe reference casting, structure

memory access, automatic garbage collection, array bounds checking, and checking

references for NULL. The security manager and the Java API help maintain the integrity

of the external entities (processes, applications).

In the following sections we discuss the JVM with respect to our sandbox

primitives. However, we have kept the discussion at a more abstract level. We will,

however, demonstrate a more fine-grained differentiation between the different versions

of JVM in chapter 5. Specifically we will choose JVM1 and JVM2 to demonstrate the

effectiveness of our idea.

4.1.1 Access Control (Acc_cntrl):

We have assigned Acc_cntrl for JVM, the value of Policy Based Access (PBA).

Restrictions in JVM have to be provided by the system administrator during

implementation. Policy can be changed statically. The policy applies uniformly to all

applets that execute within the JVM. Therefore we do not differentiate between TApp

and UTApp. PBA also has the highest score, 16, despite the static nature of PBA in JVM.

One argument against the high score will be the static nature of JVM. We address the

issue in Dyn_rst.

43

The JVM is accessible to programs or applets compiled into the bytecode for

JVM, and provides a very simple form of access control for the sandbox. However, there

is no protection offered to individual applets from other applets within JVM. Due to the

increase in the presence of mobile code, interesting access control mechanism for JVM

based systems have been proposed [29]. However, these are not exactly a part of the

system. Thus the operating system and execution environment is protected from

malicious JAVA applets; genuine applets within the sandbox are not protected from

malicious applets.

4.1.2 Dynamic Policy enforcement (Dyn_rst):

Dyn_rst is on the higher side for JVM. As discussed in Section 4.1.1, the system

administrator can change the policy, upon which the changes come into immediate effect.

Compared to the best case scenario (a score of 16) for Dyn_rst, which is a fully dynamic

translation of policy, we have assigned a score of 12 for JVMJThe code for Dyn_rst for

JVM is DH/TApp - DH/UTApp. This means that Dyn_rst for JVM takes the same value

for both trusted and untrusted applications. Specifically, in the case of JVM the

applications are Java applets.

Dyn_rst is also dependant on the Acc_cntrl methods for JVM. However,

Acc_cntrl works only in generic terms, that is, to protect the execution environment

(operating system) from malicious processes, and not necessarily a genuine applet from a

non-genuine one. We discuss the policy enforcement only with respect to the JVM versus

non-JVM processes. Intra JVM process protection is outside of the purview of policy that

drives Dyn_rst. Changes to policy cannot be made dynamically.

Some of the important policy measures that are the highlight of the JVM security

policy include the following. JVM prevents applets from untrusted entities from reading

or writing to the disk, a protection mechanism that is applicable to operating system

services as well. JVM also prevents any malicious process from establishing network

connections with any host other than the host from which the applet was downloaded.

JVM prevents the applets from creating new applets (unless explicitly allowed by policy).

JVM also prevents a new applet from downloading a dynamic library that calls a native

method.

The latter two features have interesting security applications. First, malicious

programs that rely on rapid self-replication to consume system resources are ruled out in

JVM. Second, the provision of a strong type checking mechanism helps protect against

buffer overruns. While Java’s memory management system is rendered unpredictable

because of the provision of the systems own garbage collection routines, the possibility of

one the most serious security problems, namely the buffer overrun is ruled out. The only

possibility for a buffer overrun now remains through the invocation of a native method,

and providing dynamic argument passing capability.

4.1.3 Sandbox Number (Sbox_no):

The Sbox_no can be justifiably counted at one that is the JVM itself. The JVM is

one big sandbox, as described earlier, between JAVA applets versus the rest of the

system, as described in Figure 4.1. However, we also observe that every process of a

specific type (i.e. Java applets), is handled within the sandbox. Therefore policy is

enforced for all process. As a result we assign the value D, since for JAVA applets the

45

policy is dynamically applied. The value for the JVM results in D/PB. This also implies

that JVM gets a score of 4 for Sbox_no as discussed in Chapter 2.

User level

JVM

. -

it?“ ’

//l ’\ /°/

WKernel level

Java Applets Other System processes

Figure 4.1: Sbox_no for JVM

4.1.4 Operation Mode (Op_mode):

The value of Op_mode is fixed at the user level (UL) for both the sandbox

components (SboxC), and applications (App) contained within the sandbox. Thus the

value of Op_mode is provided the code SboxC/UL - App/UL for JVM. The relative score

for JVM is 2, and is on the lower side because of the lower variation in Op_mode,

thereby limiting the scope of the applications that could be protected.

Here we provide a brief discussion of JVM related features that were taken into

consideration while imposing our ordering. The operation mode of the JVM as a sandbox

is the user level since the scope of the JVM is defined as processes that execute in the

user level. The processes include untrusted third party applets, and genuine kernel code.

Tasks that require the execution of applications in the kernel level are performed through

46

the invocation of native methods. Thus kernel level execution is decoupled from

processes operating in the sandbox. One implication of such a decoupling of actions is

that a malicious process cannot deny other processes in the system any less resource than

what they already have. The fundamental security features in SboxC/UL — App/UL

Op_mode include the programming language based security, which is provided through

strong type checking [30], and the presence of a garbage collector.

4.1.5 Inter-sandbox communication (Isbx_com):

The value of Isbx_com for JVM is MISC/TApp — MISC/UTApp. This is largely

because the middleware present in the JVM enables communication between the applets

and other processes that execute outside the JVM, as well as between applets on different

computers. The score for MISC/TApp — MISC/UTApp is on the higher side (14), because

in conjunction with a score of 12 for Dyn_rst, Isbx_com will not compromise security

directly (excluding the possibility of a faulty middleware over which the sandbox has no

control).

Here we provide a brief discussion of Isbx_com with respect to JVM. Isbx_com is

a redundant feature for the JVM. There is only one sandbox, and all processes, usually

JAVA applets can communicate between them. Communication between the processes in

the sandbox and those outside is through well-established policy measures as defined in

the JVM specification [29]. Thus the safety other applications executing in the JVM

execution environment is the responsibility of the overall system policy (operating

system security policies for example) and the leeway that the policy allows for the JVM

itself, and not for the individual processes. The individual processes could have the same

scope as that of the JVM. Provision of any restrictions on the processes within the JVM is

47

entirely arbitrary. Related JVM security features include, the class loader architecture

[31], the class file verifier [32], the security manager and JAVA API [33].

4.1.6 Sandbox Time to Live (Sbox_ttl):

For the JVM the Sbox_ttl value is Prcs_lt. This implies that the sandbox applies to

the applications throughout their lifetime. As a result we also provide a higher score

of 7 (on a scale of 8), for Sbox_ttl for JVM. The reason why we haven’t assigned 8 is

because we make a distinction between Prcs_lt and Sys_upt, wherein the latter is

considered a better measure of security.

4.1.7 Sandbox Scope (Sbox_scope):

The Sbox_scope value for JVM is G/TApp - G/UTApp. The scope of JVM is global

(G), and is true for both trusted and untrusted applications, since applets have no

choice but to execute inside the sandbox. The value assigned to JVM Sbox_scope is

16, and is the highest. The values for JVM are summarized in Table 4.1.

Table 4.1: Summary of values for JVM

Features Available Values

Available

Acc_ctrl PBA l6

Dyn_rst DH/ TApp- 12

DH/UTApp

Sbox_no D/PB 4

Op_Mode SboxC/UL —

App/UL

Isbx_com MISC/TApp - l4

MISC/UTApp

Sbox_ttl Prcs_lt 7

Sbox_scope G/TApp - l6

G/UTApp

Scl Y

Int_op Y 8

Nsss Y
48

4.1.8 Sandbox design category

The JVM is a single entity, with the policy enforced in the form of different

sandbox components. Thus there is no possibility of a layered approach possible with the

limited functional separation of components. Thus categorizing the JVM as a component-

based architecture will be appropriate. The idea is further reinforced from our discussion

in Section 4.1 about the basic building blocks of JVM.

Component based architecture in turn provides JVM with the advantages and

disadvantages that come with component based sandboxes. Most notable advantages of

the sandbox, is the provision of enough safety components as may be necessary to protect

the rest of the execution environment (operating system) from malicious third party code.

A prominent disadvantage of such a sandbox is the inability to protect genuine Java

applets from malicious code that operate within a single execution environment (JVM in

our case). The figure 4.2 illustrates the JVM designed in the form of a component-based

architecture.

4.2 Comparative Analysis ofJVM Versions

We will use the JVM-1 and JVM-2 to demonstrate how abstract, and

seemingly unrelated, security ideas can be linked together to make a comprehensive

comparison between two different implementations of a sandbox. As we will see in this

section, there are significant differences between the implementation and specification of

the two versions, even though backward compatibility has been maintained for all

programs. In this section we will very briefly describe the JVM, describe specific

performance characteristics in JVM, and investigate features of the JVM with respect to

our primitives based on the implementation.

49

JVM

User level

Kernel

Figure 4.2: Category description for JVM

As discussed in Section 4.1, the fundamental components of the JVM have

remained the same. These included the class loader architecture, the class file verifier,

language based safety features, and the Java API, are structurally identical. However,

functionally they have undergone a great deal of changes, as may be illustrated by the

application of our classification scheme. Some of the important characteristics of a JVM

used to evaluate its performance, and the units required to measure it are given in table

4.2. The metrics are adopted from [39].

50

JVM1

Acc_ctr| (16)

Sbox_scope (16)

IA

Sbox_ttl (a) ’OpJnode (4)

Sc/ln/NS (8)

Isbx_com(16)

Figure 4.3: JVM1 visualization

Table 4.2: Metrics for evaluating JVM performance

measurement

active

active

of active threads

Minimum number active threads

Maximum number active threads

Free in JVM

Minimum amount of

Maximum amount

amount

amount

Maximum Total amount

51

4.2.1 Why JVM?

The reason for choosing JVM for the comparative analysis is to illustrate how

fine-grained differences can be observed using our classification scheme. JVM1 and

JVM2 illustrate perhaps the closest implementations of a sandbox idea, yet different

enough for each one of them to be a separate sandbox by it’s own right. The latter

observation however, is only a technicality as JVM2 performs better than JVM1 on many

aspects. Also, as we will see later in this chapter, both versions of JVM retain the same

fundamental architecture, and will also fall within the same category, while we clearly

are able to establish the differences between them on the basis of the primitives that we

have defined.

Previous related studies with respect to JVM performance is given here. One

detailed study mentioned in [40], performed comparative studies on the performance of a

typical application (JXTA was chosen for this purpose), on two different versions of the

JVM (1.3 and 1.4). JVM 1.4, with a few additions [42], became JVM 2. The important

parameters studied in this chapter include differences in component design and

constraints, such as case of use, data portability, independence of platform source code,

JVM friendly class design, Parameter based benchmark configuration such as startup

time for JXTA applications (which will be applicable to other network based programs),

and round trip time for JXTA applications. We will base our study on the performance

results mentioned in [40]. Below, we will enlist the different parameters and find out the

differences between the two versions. A summary of the differences is also provided in

table 5.

52

4.2.2 Access Control (Acc_ctrl):

For JVM1 the value of Acc_cntrl is UA/TApp—CA/UTApp. While trusted

applications are provided unconstrained access (UA), untrusted applications are provided

with constrained access (CA). Due to the selective basis for access control, we have

provided JVM1 with a value of 16, which is also the highest value rated to Acc_cntrl.

JVM2 provides PBA, and is also provided a score of 16. The reason both values are

provided the same value for Acc_cntrl is that they offer no difference in the final security

provided to processes outside the JVM, even though the manner in which they provide

this security varies slightly. We only discuss quantitative implications of the changes

with respect to our classification scheme.

Acc_cntrl has evolved through the different versions of the JVM. We use results

reported in [43] as the basis for our study of differences in access control and related

primitives in the different versions of the JVM. Figure 4.4 clearly illustrates the various

stages of evolution. JVM treats, access control for resources differently for applets and

Applications that are collections of applets. The analogy holds true for threads, and

process, which are collections of threads

In JVM1, the treatment for the applets for Acc_cntrl is different from that for

Applications. In JVM1 constrained access is given to trusted applets (CA-TApp), and

unconstrained access is provided to trusted applications (UA-UTAppl). As a further

advancement, within JVM1, unconstrained access was provided to trusted applications,

while constrained access was given to untrusted applications.

In contrast in JVM2, both applets and applications are provided with policy-based

support implying that that all options are provided on a run time basis. Further the

53

Acc_cntrl

 \ /

UA [UTAppl

l

‘
—
—

JVM 1 UA/TApp—CA/UTApp UA/TApp — CA/UTAppl

JVM-2 Y I

"
U

t
o

>

.
-
-
-
_
-
-
-
-
-
-
-
-
-
1

8
8
>

\

Application process

access control

Applet resource

access control

Figure 4.4: Summary of differences for Acc_cntrl for JVM

success of the security mechanism here is intrinsically tied the presence of a dynamic

policy translation existence. Thus JVM2 provides runtime access controls in significant

measure to the system for both applets and processes.

4.2.3 Dynamic Policy Enforcement (Dyn_rst)

JVM1 provides comparatively lower measure of Dyn_rst with both applets

and applications. Most of the policy is statically bound with the application. Policy is

described as based on whether the application is trusted or not, or whether the source of

the application is trusted or not.

JVM2 provides a higher degree of Dyn_rst and we have given a higher score

of 14 because JVM2 offers a greater degree of security compared to JVM1. Based on

54

data provided in [43], we are able to illustrate Dyn_rst primitive with respect to both the

JVM versions is given in Figure 4.4.

. JVM 2(bad JVM2

Dynamic policy)

, JVM1

Static

Policy I

S 't ‘*
ecurr y Moderate High

Figure 4.5: Dyn_rst Summary for JVM

4.2.4 Sandbox number (Sbox_no)

Both JVM1 and JVM2 are similar with respect to Sbox_no. We have

assigned the value S/PB to JVM1 and D.PB to JVM2. The similarity is that both allow a

policy based numbering for Sbox_no. Even when there is only one installation of JVM

(both versions), we can identify different sandboxes if policy is applied to differently to

different applets, and it is possible to do so. However, the two versions vary in how the

translation of policy. While JVM1 allows changes, the system administrator can do them

only statically. JVM2 allows dynamic changes to the policy that is applied to different

parts of JVM. We have not differentiated between the two versions of JVM while

55

imposing a numerical ordering. Both JVM1 and JVM2 have been assigned the highest

score of 4.

We describe some of the important parameters that affect the value for

Sbox_no for JVM. Sbox_no for the JVM is dependant on parameters such as minimum

and maximum number of thread groups, minimum and maximum number of threads,

minimum and maximum amount of heap space, as well as the total heap space allowed.

Table 4.2 summarizes all the parameters and gives an idea of metrics used to measure

them.

4.2.5 Operation Mode (0p_m0de)

For Op_mode JVM1 is assigned the value SboxC/KL — App/UL, while

JVM2 is assigned value SboxC/UL — App/UL. Applets execute in the user level in both

versions of JVM. However sandbox components (described in Section 4.1) differ in their

Op_mode value. We recollect here that Op_mode is a collection for Operating modes for

two aspects of a sandbox. The sandbox itself, and the processes or applications that it

sandboxes. We assign a higher score (4) for JVM2 since none of the sandbox components

operate in the kernel mode. We assign a score of 2 for JVM1 due to the fact that

compromising the sandbox will result in compromising the kernel.

We will briefly discuss the differences between JVM1 and JVM2. In

JVM1 most of the class loaders operated in the user level, with very little part of JVM1

operating in the kernel mode, this changed in JVM2. Bytecode verification became a

more complicated process, and more functionality such as verification of symbolic

references and linking to dynamic libraries were shifted to the kernel. Bytecode

verification had a definite effect on securing the JVM components [42]. However, an

56

indirect effect of changing Bytecode verification was that user level process, applets or

Java applications, could be provided more freedom, with enhanced security. Thus while

in JVM1 operation mode for sandbox components is kernel level (SboxC-KL), the

applications themselves are sandboxed at the user level thus making the scope of the

sandbox user level (App-UL).

4.2.6 Inter Sandbox Communication (Isbx_com)

Both JVM1 and JVM2 have identical values for Isbx_com. We have

assigned MISC/TApp -— MISC/UTApp for JVM1 and JVM2. Thus both trusted

applications (TApp) as well as untrusted applications (UTApp) have to use a middleware

induced communication (MISC) mechanism to communicate with other processes,

including those that are inside as well as outside the sandbox (i.e. JVM). We have given

both JVM1 and JVM2 high scores, but sought to make a slight distinction between them

due to reasons mentioned below. JVM2 is provided the score of 16 while JVM1 is

provided a score of 14.

One difference between JVM1 and JVM2 is in terms of newer additions

to JVM2 in other primitives that impact Isbx_com. For example in Sbox_no we saw that

JVM2 has a value of D/PB, increasing the possibility of simultaneous presence of

multiple sandboxes. Intersandbox communication (Isbx_com) is taken into account when

we have multiple sandboxes. Interprocess communication through middleware such as

CORBA, and through RMI enables the introduction of security abstraction for

communication. Using Middleware is yet another advantage of JVM, as well as a

similarity in both JVM1 and JVM2. Thus JVM1 and JVM2 both have Middleware

induced secure communication (MISC). The reason why inter process communication is

57

likened to inter sandbox communication (Isbx_com) is because the case of JVM, secure

Interprocess communication is a guarantee due to its existing middleware.

4.2.7 Sandbox Time to Live (Sbox_ttl)

We have assigned a Sbox_ttl value of Prcs_lt, representing the process

lifetime. The sandbox is in place as long as the applet executes. There is no way for a

process to execute outside the JVM and is the case with both versions of the JVM. Both

versions of JVM receive a high score for Sbox_ttl. We have assigned a score of 8 for

JVM2, while we assigned a score of 7 to JVM1. The reason for the slightly lower score

for JVM1 is because we seek to relate Dyn_rst and Acc_cntrl with Sbox_ttl and the

relative weaknesses of JVM1 compared to JVM2 with respect to these primitives.

4.2.8 Sandbox Scope (Sbox_scope)

For Sbox_scope we have assigned a value of G/TApp - G/UTApp for

JVM1 and UTApp - G/UTApp. The global nature of Sbox_scope in JVM1 is a reason for

the original release of JVM1 being highly restrictive, even on genuine applets and

applications. The global nature changed with release 1.3.1, however, we will restrict

ourselves with the broad, and widely applicable cases for release 1. One difference,

therefore, between JVM1 and JVM2 is that in the case of trusted applications (TApp) the

scope was local in JVM2. We have assigned a value of 16 (the highest possible for

Sbox_scope) for both JVM1 and JVM2, since the GITApp for JVM1 is only more

restrictive and hence more secure.

4.2.9 Scalability (Scl)

JVM scales to larger systems due to the components based architecture.

Scl is particularly enabled because the most important part of the complexity is the

58

spawning of several independent sandboxes. The large number of components will in

turn increase the complexity of the Intersandbox communication (Isbx_com). However,

as seen earlier in the chapter that has been left to a completely different middleware

component.

4.2.10 Interoperability (Int_op)

A system installed with JVM provides for interoperability with other

systems installed with JVM. Also backward compatibility between JVM1 and JVM2

exist. Thus there is no fundamental difference between the two sandboxes with respect to

Int_0p.

4.2.11 Native security services utilization (Nsss)

JVM1 and JVM2 both make use of native security services. There is no

differentiation between the two with respect to Nsss. Again; the reason for no

differentiation between the two services is that the class loader and verifier mechanisms

have remained almost the same between the two systems. Nsss enables the JVM to load

local, and platform dependant security features, even as the applications and applets

themselves are platform independent. Table 4.3 summarizes the comparative analysis of

the JVM1 and JVM2.

Using the scoring scheme developed in chapter 2, a summary of the scores

between to two sandboxes is shown below. As mentioned previously the scoring

mechanism (summarized in Table 4.4) is to be used as a guide for implementing the

visualization process, and represents a relative ordering that we have imposed on the

various values that we identified for the primitives. Figure 4.6 represents the visualization

of JVM1 and JVM2.

59

Table 4.3: Summary of values for JVM1 and JVM2

Primitive

UA/T PBA

rst SM/ DH/ T

no S/PB D/PB

SboxC/KL — SboxC/UL —

com — MISCfUT MISC/T —— MISC/UT

GIT L/T — G/UT

ttl Pros It

Y Y

Y Y

Y

Table 4.4: Summary of scores for JVM1 and JVM2

UVM1

Acc_ctrl D n_rst Sbox_no 0 _mode Isbx_com Sbox_trI ScllnlNS Sbox_sco

16 12I 4 2 14 7 8 16

 VM2 16 14] 4 4| 16I 8 8| 16

Acc_ctrl (16)

Isbx_com (16)

+JVM1 +JVM2

Figure 4.6: Visualization: JVM1 vs. JVM2

60

4.3 Observations

From Table 4.5, and the discussion leading to it, we clearly are able to

observe differences between the JVM1 and JVM2. We observed that the

two JVM versions have very similar implementation techniques, with minor differences.

However, from a sandbox perspective, the two JVM versions are different, and using our

parameters and classification scheme, we are able to establish the differences between the

two. The differences even, in cases where they are subtle are clearly seen. For example in

all the three cases, i.e., Dyn_rst, Op_mode, Sbox_ttl, and Isbx_com we see that the

sandboxes though identical to each other are differentiated. The implications are different

for different primitives. Dyn_rst enables JVM2 to be placed in a higher security category,

when backed with appropriate policy, compared to JVM1. We are able to observe that

JVM2 is likely to stay longer as a constraining entity compared to JVM1.

We are able also able to see the similarities between the two sandboxes as

well. The similar shape of the two sandboxes supports the hypothesis. For instance, for

the primitive Acc_cntrl we see that both the sandboxes have the same value. Similarly for

Sbox_scope we see that the maximum value is used for both the sandboxes. We also

observe that the two sandboxes are identical with respect to Sbox_no.

4.4 Conclusion

In this chapter we demonstrated the application of our scheme by illustrating

how we are able to classify with respect to the JVM. We also presented a visualization of

the JVM using the technique that we have adopted. In order to illustrate fine-grained

differences between two closely related sandboxes we chose the two different versions of

JVM and applied our technique to them. Again, we illustrated the clear-cut differences

61

between the two versions through the visualization process. We are able to observe that

JVM2 completely eclipses the JVM1 in all respects. We are able to infer the same since

the latter is contained within the former.

In chapter 5 we will present the remaining sandboxes and the differences

between them. We will include JVM1 for the sake of completion while discussing the

other sandboxes. In chapter 6 we will provide a comprehensive comparison based on the

values between the individual features.

62

5. Analysis of the Sandbox Classification scheme

In this chapter we will analyze the sandbox classification scheme with respect

to individual primitives. In Section 5.1 we present an interpretation of the visualization

followed by a brief discussion of policy to design translation in Section 5.2. We then

present a discussion on the representation of the classification results, including the basis

for imposing the scoring of different value for a particular sandbox, and on the relative

importance of primitives in Section 5.3. In Section 5.4 we present an analysis of how the

five different sandboxes that we have analyzes compare with respect to the different

primitives. In Section 5.5 we take two random subsets of sandboxes and see how well we

are able to observe a pattern for observing common functionalities in sandboxes, even

while the primitives establish a difference between them. A detailed description of how

the values for the sandboxes were provided is provided in Chapter 6.

5.1 Interpretation of visualization

Figures 5.1 and 5.2 depict the summary of the classification scheme. In this

section we describe the interpretation of the diagrams representing the sandboxes. An

ideal sandbox can be visualized as one that occupies the polygon completely. However,

such a sandbox will pose excessive constraints on the functionality, and will result in a

significant overhead in the form of different security features that may not be needed

rendering the sandbox secure but nonfunctional. Thus in practice we observe sandboxes

that will only occupy a portion of the sandbox, and the shape of the sandbox will in turn

be influenced by the policy and the security objectives that the sandbox has been built to

achieve. While policy is important in deciding the shape of the sandbox, it is not the only

factor. Other issues, including implementation issues, such as the architecture (or design

63

category as described in Chapter 3) chosen will also influence decision making at the

sandbox design level.

Acc_ctrl (16)

Sbox_scope (16) Dyn_rst (16)

Sc/ln/NS (8) Sbox_no (4)

Sbox_ttl (a) 0p mode (4)

Isbx_com (16)

IJVM1 BCV ULS DJAN I FCM

Figure 5.1: Occlusion Diagram

In figure 5.1 we have presented a representation with occlusion. The primary use of

figure 5.1 is to identify how a sandbox can overshadow another sandbox with respect to a

particular feature. Occlusion represents superior characteristics for the occluding sandbox

with respect to a particular (occluded) sandbox. The idea of occlusion is consistent with

our interpretation of the diagrams as well, wherein the sandbox occupies area directly

proportional to the level of security offered. However, a sandbox that occupies smaller

area need not necessarily be redundant, as it could also be a result of a reduced security

requirement (or objectives) outlined by the policy.

Acc_ctrl (1 6)

Sbox_scope (16) j Dyn_rst (16)

 Sennnv8(8)

Sbox_ttl (a)

Isbx_com (1 6)

+JVM1 +CV -.=— ULS —x—JAN +FCM

Figure 5.2: All sandboxes without occlusion

5.2 Policy to Sandbox design - The translation

In order to illustrate how our results can be used in the sandbox design, we

need to look at the methods that could be adopted to translate policy to implementation.

While policy itself is outside the purview of our work. Security policy must take into

account the role of trust. The types of Acc_cntrl that we have defined as a primitive is an

effort in this direction, wherein the designer can translate the policy perspectives on trust

directly into implementation or design specification.

Confidentiality policies such as the Bell-Lapadula model can be useful in

specifying system security policies. The primitives are defined in a way that a direct

translation will be possible between the different systems easily.

65

Integrity policies can be specified in the form of several models that have

been put forward in literature. Models such as the Biba Integrity model, Lipners Integrity

Matrix model, and the Clark-Wilson Integrity model will be useful in any attempt at

defining integrity policies. A good discussion of policies is presented in [52].

In this section we have attempted to summarize the primitives with respect

to policy objectives. Table 5.1 provides a correlation between policies and the primitives.

Table 5.1: Policy to Sandbox design — the translation

Policy Primitives

Confidentiality Policies Acc_cntrl, Dyn_rst, Sbox_no, Sbox_scope

Integrity Policies Op_mode, Isbx_com, Sbox_ttl

The above categorization is only a broad attempt at giving sandbox

designers a direction on potential policy models. Security policy by itself is an important

and a vast area, and a complete discussion of the different models is beyond the scope of

this thesis.

5.3 Representation of classification results

While in Chapter 4 we have seen how the sandbox could differentiate fine-

grained differences, we will, in this section, present an analysis on the basis for the scores

that we impose on the different values that a primitive can take. We will assign specific

numbers to the primitives and we will also be identifying the important primitives, from a

classification standpoint, based on the number of points that two extreme values can

differ. For example, a binary feature like Scl can only have one point of difference (or 2

values), while Acc_cntrl can have as many as 32 values (or 16 points). We will normalize

the difference at each step to have a balanced comparison. We define normalization as

66

the provision of equal weight to the different primitives during the visualization process.

The table 5.2 illustrates, the primitives and the number of points of Difference (NPOD).

Table 5.2: The number of points of differences for primitives

Primitives NPOD

Acc_ctrl 16

Dyn_rst 16

Sbox_no 4

Op_Mode 4

Isbx_com 16

Sbox_ttl 8

Sbox_scom: 16

Scl 1

Int_op 1

Nsss 1

Based on the values in table 5.2 we can now represent visually the

differences between the sandboxes. The differences between the sandboxes can be per-

primitive; security based, flexibility based, or a combination of flexibility and security.

Per primitive sandbox classification compares how the different sandboxes fare compared

to the individual primitives. We will have this comparison for the most important

sandbox primitives, those with NPOD greater than or at least four. For others, with

NPOD less than 4 we have attempted to combine similar primitives, without any loss of

information.

The table 5.3, gives a description of the numbers allocated to the different sandboxes on a

single one point numbering system. Features are ranked in the order (which we impose)

of importance from a security standpoint, and are assigned integer values. Then all

possible combinations of the primitives, such as that listed for Acc_cntrl, in chapter 2 are

numbered. The values are then assigned to the primitives for each sandbox,

corresponding to its value specified in chapter 5. Table 5.3 provides a key for the

67

abbreviations. While we have provided appropriate references to these sandboxes when

they are described during classification, they are outlined for convenience in Table 1.

Table 5.3: Abbreviations for sandboxes used

Abbreviation Expansion

FCM Flexible Containment Mechanism

JAN Janus

JVM Java Virtual Machine

ULS User Level Sandbox

CV Chakravyuha

Table 5.4: Summary of scores for the sandboxes

rst no mode com ttl

1

1

1

1

The table 5.4 below has a cumulative score for the different sandboxes.

The two cumulative scores represent different groupings of primitives. The grouping is

done in order to demonstrate the importance of specific groups of primitives, as we will

observe later in this chapter. We have selected the groups randomly.

Table 5.4: Cumulative scores for different sets of primitives

-1 -2

68

Table 5.5: Primitive-wise score for cumulative score - l

Table 5.6 Primitive-wise score for cumulative score — 2

5.4 Primitive based comparison

5.4.1 Sandbox Number (Sbox_no):

Sbox_no

 V I“ Sbo noJVM1 CV ULS JAN FCM X_

Figure 5.3: Sbox_no

We clearly see that of the different sandboxes ULS offers a more rigid

Sbox_no. A really low value will indicate a more rigid Sbox_no, with really low values

69

(say less than 2) reflecting a static nature of Sbox_no. While sandboxes here do not have

a theoretical upper limit, the performance will likely decrease when the value of Sbox_no

increases. Another reason for a high score on Sbox_no is when a single sandbox places

restrictions on Interprocess communication. JVM is such an example, where in the

strictest sense we only have a single sandbox. However, the restrictions (recall from the

PB value assigned for JVM) in place ensure the safety of processes executing inside the

sandbox, and those executing outside. The permission for external access to services can

be selectively obtained for different processes.

5.4.2 Dynamic Policy Enforcement (Dyn_rst):

Figure 5.4 corresponds to the primitive Dyn_rst, for all the five

Dyn_rst

 JVM1 Dyn_rst

CV ULS
JAN FCM

Figure 5.4: Dyn_rst

sandboxes that we compare. Dyn_rst offers more variation within its class. Clearly we

see that Janus offers a lower degree of Dyn_rst. As discussed while introducing the

primitives in Chapter 2, lower degree Dyn_rst is both an advantage as well as a

disadvantage. On the positive side, it offers lower scope for damage in case of a flawed

70

policy. ULS offers the highest level of Dyn_rst, but cannot be interpreted in isolation, as

a significantly strong security measure. We can do that only with the help of the objective

for designing the sandbox. A major reason is that ULS, owing to its user level

implementation can only constrain user level sandboxes. JVM, CV, and FCM have their

values in varying degrees between ULS and JAN. A comprehensive discussion of these

features is provided in the section describing the actual classification of the respective

sandboxes.

5.4.3 Access Control (Acc_ctrl)

Acc_ctrl

 JVM1 Acc_ctrlcv ULS JAN FCM

Figure 5.5:Acc_cntrl

Figure 5.5 corresponds to the primitive Acc_cntrl. Provision of

access control is an important security measure. From a security standpoint the higher the

value of Acc_cntrl the better. However, excessive access control can be detrimental to

system performance. Almost all implementations of the sandboxes discussed here,

discuss in their implementation the overhead in operating the sandbox. Here we see that

FCM has the least amount of static Acc_cntrl. However, in practice the value is likely to

71

go up if the set theoretic approach [26] to access control as specified in the

implementation is followed. JVM we see offers absolute access control, since JVM does

not allow the execution of both trusted and untrusted applets outside the virtual machine.

ULS is an interesting case, since while it provides more access control than FCM, when

looked at in conjunction with the Op_mode primitive, we will find that FCM is the more

restrictive of the two sandboxes. The additional restriction in case of FCM is because

FCM offers the capability to sandbox kernel Apps, compared ULS which itself is a user

level application. But as we have mentioned earlier, we reiterate that Acc_cntrl alone is

not an indication of a higher performance or security of FCM itself. The issue of higher

security ability needs to be looked at from the requirements perspective. A sandbox

which only needs to constrain helper applications at the user level can perform well, with

respect to either ULS or JAN, but not so when kernel applications come into the picture.

5.4.4 Operation Mode (Op_mode)

Op_Mode

 JVM1 Op_Mode

CV ULS
JAN FCM

Figure 5.6: Op_mode

Figure 5.6 corresponds to Op_mode. The range of values, or the NPOD,

for Op_mode is low and is reflected in the almost identical values for all the sandboxes

72

except CV. As defined in Chapter 2, the operation mode can be either kernel or user

level. Here again, differences arise with respect to whether it is possible to switch

between the two in one implementation of the sandbox, or necessary to reinstall the

sandbox for a different version. ULS for instance does not have the option of executing in

kernel level, while FCM can be configured at start time to either execute in one mode.

5.4.5 Inter-sandbox communication (Isbx_com)

Isbx_com

 JVM1 Isbx_com

CV ULS
JAN FCM

I Isbx_com
Figure 5.7: Isbx_com

Figure 5.7 corresponds to Isbx_com. Again; we are able to observe a good

variance among the values assigned to the different sandboxes. A lower score indicates

among other things, a more rigid means of communication, or even constrained

communication. A low score could also be the result of insecure communication between

sandboxes. However, we have avoided incorporating the idea while assigning values to

limit the scoring to the extent of provision of communication. We observe that ULS

provides the least amount of Interprocess communication mechanisms between processes

contained within the sandbox and those outside. One reason is that while executing

73

system calls, it will be impossible to exert influence over the actual executing of the

system call by the sandbox. The maximum that a sandbox in such a case, can do is to

limit the types of system calls that can be executed by the sandbox. JVM offers the

highest level of communication between processes within the sandbox and those outside

the sandbox. CV, JAN and FCM provide varying degrees of Isbx_com in between.

5.4.6 Sandbox Time to Live (Sbox_ttl)

Sbox_ttl

 CV L ‘ Sbox_ttl

U S JAN FCM

Figure 5.8: Sbox_ttl

The following figure corresponds to Sbox_ttl. FCM clearly, has the lowest

Sbox_ttl of the different sandboxes. The positive implication is that the sandbox when not

in action will represent lesser overhead. Thus, during execution of either trusted, or safe

code, the sandbox could be switched off. However, such a system presents inherent risks

along with the flexibility offered. On the other hand we have CV, which exists for as long

as the system uptime (Sys_upt). The additional lifetime provides more security, though

with additional overhead. JVM is closer to CV, and can be considered a more persistent

74

entity, but the difference is attributed to the fact that JVM is loaded only when necessary.

ULS, JAN and FCM take up values in varying degrees in between.

5.4.7 Sandbox Scope (Sbox_scope)

Sbox_scope

 JVM1 CV ULS JAN FCM Sbox_scope

I Sbox_scope
Figure 5.9: Sbox_scope

Figure 5.9 corresponds to Sbox_scope. We observe that JAN, FCM, and JVM

offer a high value for Sbox_scope, with JVM offering the highest among these. The

implication is that JVM is able to constrain more processes and in more ways than other

sandboxes. An applet cannot execute outside the JVM. In the case of JAN and FCM the

scope is slightly less restrictive in nature. ULS offers the least Sbox_scope which is a

direct consequence ULS being executed in the user level. As a result, it will not be able to

extend its scope to kernel level applications

5.4.8 Sc/In/NS

Figure 5.10 corresponds to a combination of three Boolean primitives, with only one

NPOD. Thus we have combined Nsss, Int_op, and Scl into one graph. These three

75

primitives have been clubbed together as they are not as essential to the definition of a

sandbox as the other primitives. However, scalability, interoperability and using native

security services are good features to have. Clearly, CV offers the lowest level of

Sc/In/Ns. JVM performs the best in terms of both being scalable, and as well as being

interoperable. ULS, JAN and FCM are almost close to each other with respect to

Sc/In/Ns.

Sc/In/NS

O
A
N
C
O
#
U
I
O
)
\
I
Q

 JVM1 Sc/ln/NS

CV ULS
JAN FCM

Figure 5.10: Sc/InflVs

5.5 Primitive Subset Comparison

In order to illustrate the difference between the most important primitives we differentiate

them into two different groups, and try to observe how the presence or absence of one

can affect the overall differentiation among the primitives. We pick the two groups

randomly.

76

JVM1 CV ULS JAN FCM

+Acc_ctrl +Dyn_rst -:— Isbx_com —)<— Sbox_scope

Figure 5.11: Primitive set 1

#
O
I
O
D
V
G
C
O

O
)

CV ULS JAN FCM

—+—Op_mode -I- Sbox_ttl — —Sc/ln/NS —X-Sbox_no

Figure 5.12: Primitive set 2

77

While in both figure 5.11 and figure 5.12 we observe outliers, and no distinct pattern, and

thus very little difference in terms of overall behavior of the sandboxes, combining all the

eight parameters including the combination of primitives we get the following graph in

figure 5.13. Here we are able to clearly observe the pattern the correct order of primitives

gives us. The values have been standardized since the metric used here is NPOD.

0

S 69 <2+/ O

o° S
(90

/+

9°°
 |:o—JVM1 +cv —~—u1.s —x—JAN +FCM|

Figure 5.13: Primitive set - Cumulative

We also present the cumulative scores of the two sets of primitives in order to

present a comprehensive view of the two sets that we have chosen. We have grouped

values of a similar type.

78

JVM1 CV ULS JAN FCM

III] Cumulative score 1 I Cumulative score 2 ITotal I

Figure 5.14: Cumulative scores

Figure 5.14 gives the cumulative comparison between the two sets of primitives,

and a combined value for the different sandboxes. Assuming that a sandbox can be

represented by a Polygon, whose vertices are represented by the different primitives, we

will be able to find out a difference between the sandboxes when they are represented as

a polygon with the different vertices representing the different primitives. Here again,

including or excluding certain primitives will indicate the behavior of the sandboxes with

respect to the different combinations of primitives. We will be able to observe them in the

figures given in the next chapter along with the individual sandboxes.

5.6 Conclusion

In this chapter, we presented additional information about the visualization of the

polygonal representation of sandboxes. We also discussed the translation of policy to

79

sandbox design. A comprehensive primitive-by—primitive comparison between the

different sandboxes that we have selected for analysis was done. In the next chapter we

will present the remaining four sandboxes, namely, FCM, JAN, ULS and CV in more

detail. Figure 5.15 provides a sandbox visualization, where the values for the primitives is

arrived at by using an average of the scores that were imposed on the five sandboxes that

we consider.

Average

Acc_ctrl (1 6)

Sbox_scope (16)

I A A Sbox_no (4)

“éfil
Sc/ln/NS (a)

Sbox_ttl (8) Op_mode (4)

Isbx_com (16)

Figure 5.15: Visualization of sandboxes — Average

80

6. Classification of Sandboxes

In this chapter we provide a detailed analysis of the remaining four (JVM was

discussed in chapter 4) sandboxes using techniques that have been presented in the

previous chapters. We follow an approach like that in chapter 4. We first describe the

fundamental idea behind the sandbox in question, and provide pointers to the actual

implementation. We then present an overall diagram representing the sandbox, using our

visualization process, along with a summary of the values for the individual primitives.

We will also describe the numerical values imposed on each of the primitives. We also

provide a brief commentary on the design category of the sandbox. Finally, we present a

summary of the values identified for the different sandboxes. We have presented

Chakravyuha, ULS, Janus, and FCM in that order in Sections 6.1 though 6.5

6.1 Chakravyuha

A sandbox Operating system for environment for controlled execution of alien

code from IBM [34], Chakravyuha (CV) addresses the same problems addressed by other

systems such as the JVM. At the core of the CV is a Resource Control List (RCL), which

is a set of permissions and resource access privileges, which can be specified

dynamically. The untrusted code and the RCL are verified by a trusted third part, before

delivering them to a client. The client also gets the option of implementing either all or a

subset of the RCL, based on a negotiated protocol for privileges. Figure 6.1 (adopted

directly from the paper on Chakravyuha [34]) describes CV. We will explain the

functionalities of the CV with respect to the primitives that we have identified.

81

Code

RCL

/

Certification \

Agency

Server

Code Flags Verifier

RCL

RCL Enforcer RCL Manager

RCL

RCL Enforcer

Figure 6.1: Chakravyuha system

82

6.1.1 Summary of results

In figure 2, we have provided the sandbox based on our visualization scheme.

One important feature that stands out is the lack of CV’s ability to scale or be

interoperable with other systems, or utilize native security services effectively. On all

other parameters the behavior of the sandbox is on expected lines, based on the average

that was represented in Chapter 1 and Section 5.6. In Sections 1.2 through 1.8. In Section

1.9 we discuss the sandbox design category (described in Chapter 3).

CV

Acc_ctrl (16)

Sbox_scope (1 6) Dyn_rst (16)

Sc/ln/NS (8)

 Sbox_m (m‘‘ Op_mode (4)

Isbx_com (16)

ICV
Figure 6.2: Chakravyuha visualization

6.1.2 Access Control (Acc_ctrl)

We have provided the value of PBA/ Uproc — PBA/ UTproc for Acc_cntrl. The

RCL enables the policy based Acc_cntrl, and is uniform for both Uproc and UTproc. We

have imposed a numerical score of 12, which is a relatively high score for Acc_cntrl. The

fact that Uproc and UTproc are not differentiated serves to reduce the value of Acc_cntrl.

83

The CV has Acc_cntrl at its core, in the form of the Resource Control lists. The

resource control lists perform the trust and authentication necessary for the code before

delivery to client services. The RCL uses a public key cryptography [35] based system

for enforcing the verification of code, resembling a system such as one that uses proof

carrying code [36]. The RCL is combined with the code and a digital signature, which in

turn is verified with the certificate issued by the certifying authority. A client can then

verify the two in order to determine access to system resources. The access control

modules can thus be classified into the client stub and the server stub, with the two

components together providing the necessary verification.

6.1.3 Dynamic Policy Enforcement (Dyn_rst)

We have assigned a value of DH/ Uproc -DH/ UTproc for Dyn_rst for CV. CV

provides a higher dynamic Dyn_rst. As a result we have assigned a higher value of 14 for

Dyn_rst for CV.

The policy can be translated dynamically through the RCL. Modifications to the

RCL are the means to enforce policy changes in the system. One problem the system

encounters is that the policy cannot be enforced once a third party client has accessed the

code/RCL combination. To overcome the problem of enforcing policy while a third party

client has already accessed the code/RCL combination, CV has used a method to split the

RCL into different parts, such as capabilities for specifying physical resources, and

capabilities for logical resources such as files and network ports. The access itself is

controlled by methods that operate on the various part of the RCL. The RCL can be

changed in parts, thus allowing for dynamic change in policy representations.

84

6.1.4 Sandbox Numbers (Sbox_no)

We have provided a value of D/PB for Sbox_no for CV. D/PB is a common value

found among most sandboxes. Since D/PB is also the highest value that can be assigned

for Dyn_rst.

The number of sandboxes is not limited here. The definition of a sandbox is

dependant on the changes presented to the RCL. Therefore, the number of sandboxes is

not confined to any specified number. In CV the sandbox itself is a logical entity in the

form of RCL, and only restrictions are placed on the execution of the processes, while

there are no guarantees to the processes and applications. However CV allows the

flexibility to fix a static minimum and a static maximum number of sandboxes to be

hardwired during development or installation time.

6.1.5 Operation Mode (0p_m0de)

We have assigned a value of SboxC/KL - App/UL for CV. A numerical score of

4, which is the highest possible value for Op_mode, has been provided. Op_mode for CV

can be categorized into two parts. Firstpart (App) represents the RCL that is changed

dynamically, and accompanies the code in the form of a signature. The second part is the

sandbox components (SboxC) like the code verifier which check the signature provided

with the code and the certificate from the CA. The RCL operates in the user mode, to

provide flexibility to the user, while the sandbox components function in the kernel

mode, and behave more like OS components. Thus the operating mode of the RCL based

sandbox itself is only a user level, while several components that enable the execution of

the sandbox work in both user and kernel level. A typical example of a process in the

kernel level is the component for modifying the system call interface.

85

6.1.6 Inter-sandbox communication (Isbx_com)

We have assigned a value of MISC/ UTproc for Isbx_com. We have assigned a

relatively high numerical score of 12.The sandbox here is a logical restriction on access

to resources. While the sandbox description does not discuss the topic of interactions

between processes contained in different sandboxes, CV developers have provided the

flexibility to place additional restrictions on the process being contained. Even then, the

idea will be only whether or not a process can communicate with another process, and

there is no restriction placed on the communication channel itself. Isbx_com will be an

area for research for CV, in order to be able to function as a full-fledged security

infrastructure and is particularly necessary, in the light of the fact that the system has

suggested sweeping changes to Operating System development process. The high

numerical score is due to the MISC value for UTproc. However, we also reduce some

points since CV does not have any mandatory Isbx_com requirements for Tproc.

6.1.7 Sandbox Time to Live (Sbox_ttl)

Sbox_ttl has been assigned a value of Sys_upt referring the fact that CV continues

to exist throughout the duration the operating system executes. The score imposed (8) is

also the highest for Sbox_ttl. The restrictions placed here live for the lifetime of the code.

Since changes are being made to the fundamental behavior of the operating system and

the protocols for communication between trusted and untrusted system components the

RCL and the signature stays in place. However, the sandbox can cease to exist if the RCL

itself does not have any entity in it.

86

6.1.8 Sandbox Scope (Sbox_scope)

The value for Sbox_scope is U Tproc - G/ UTproc. The scope of the CV is global

because all untrusted code must have the RCL and the signature verified against the

certificates. For Tproc the scope is local, and we have therefore assigned a numerical

score of 12 which accounts for the G value for UTproc and the reduction (of 4 from

maximum value of 16) accounts for the L value for Tproc. A summary of the features of

the CV is given in table 6.1.

Table 6.1: Chakravyuha summary

Features Available Value

Available

Acc_ctrl PBA/ Uproc — PBA/ 12

UTproc

Dyn_rst DH/ Uproc -DH/ 14

UTproc

Sbox_no D/PB 4

Op_Mode SboxC/KL — 4

App/UL

Isbx_com MISC/ UTproc 12

Sbox_ttl Sys_upt 8

Sbox_scope U Tproc - G/ 12

UTproc

Scl N

Int_op N 1

Nsss N

6.1.9 Design Category

CV will be a clear case of layered design category. There are well-defined units

and services provided by the different units built on top of other services. There is also a

linear relationship between the different units. At the most fundamental level is the

certification agency that will be responsible for the certification of various programs and

87

their signatures. On top of the certification agency, the code production system works to

ensure that the certificates and the digital signatures are compatible. The server, which is

seen as the provider of services which need to be secure uses the services of the code

production system. The client in turn uses the services of the server. At the top of the

layer, we find that the client also interacts with the database maintaining the RCL which

forms the core of the CV security mechanism.

However, within the individual layers, the implementation has been on a

component based approach. We refrain from classifying the whole process as a

component based approach because any one layer does not provide the services sufficient

to contain any or all part of a specific functionality. It is only with the cooperation of all

the layers, and the service provided thereof, that a sandbox could be visualized.

6.2 User-level resource constrained Sandboxing

In this section, we describe analyze a user level Sandboxing mechanism put

forward in [37]. All our discussion about the sandbox will be based on the description

presented in [37]. The system is directed towards Sandboxing in shrink-wrapped

Operating systems, where access to propriety code is denied. The sandbox instead builds

on other operating system components such as a CPU/process monitoring tool to monitor

applications in the system.

6.2.1 Summary of results

From figure 6.4, we are able to interpret the meaning of the sandbox compared to

the ideal sandbox. Clearly we see that ULS is one of the smallest in terms of area

covered. The small size implies that there must be a limiting factor(s) for ULS. One

prominent limitation is that the sandbox is constrained to execute only in the user level.

88

Certification Agency

Code RCL

Certificate(Code) A I I ‘— Certificate(RCL)

Code Production

System

Code

RCL

Code/Certificate > t

RCL/Certificate I

Server

Code/Certificate > f

RCUCertificate I

Client System

RCUenforcer/manger)

Verifier I

Code

I .

Subsystem/Database

RCL

RCL -enforcer

Figure 6.3: Chakravyuha - Layered design category

89

ULS

Acc_ctrl (16)

Sbox_scope (16) Dyn_rst (16)

Sc/In/NS (8)

Sbox_no (4)

Sbox_ttl (8) Op_mode (4)

Isbx_com (16)

Figure 6.4: ULS visualization

The user level constraint in turn has a cascading effect on the other primitives.

But ULS can translate policy during runtime; we see a higher value for Dyn_rst. We will

present a feature-by-feature discussion in this section. Finally we will present the

tabulation of the individual values with the final score.

6.2.2 Access Control (Acc_ctrl)

We have assigned a value of PBA/ Tthread — PBA/ UTthread for Acc_cntrl.

Acc_cntrl is defined at the thread level, which results in greater overhead, even while

additional security is provided. Therefore we impose a reduced value of 10 for Acc_cntrl

for ULS. The sandbox uses an access control mechanism such as explicit restriction of

physical resources in direct contrast to the approach taken in CV. Acc_cntrl has been'

divided into quantitative and qualitative restriction on the use of resources. The former

90

represents restrictions such as limited access to specified portions of the files system [37],

or restricting the use of some files. The latter represents the restrictions placed on

accessing certain amounts of different components in the operating system. Another

example will be restricting the process to consume not more than a certain specified

percentage of the CPU.

6.2.3 Dynamic translation of policies (Dyn_rst)

We have provided a value of DH/ Tthread -DH/ UTthread for Dyn_rst since both

trusted and untrusted threads are treated in the same manner in the case of Dyn_rst. Due

to the dynamic nature we have assigned the highest score of 16 for ULS. While ULS

design does not mention any specific aspect of the Dyn_rst that will be necessary to

translate the policies in real-time, the design poses no hindrance for the use of such a

mechanism. For example, a simple scripting tool can accomplish the task of changing the

values that represent the quantitative restrictions, while updating a file to make changes

to the qualitative restrictions can also be accomplished in a similar manner.

6.2.4 Sandbox Number (Sbox_no)

We have assigned a value of S/PB for ULS. ULS is more at a primitive level, and

does not discuss the aspects of multiple sandboxes. However, based on the design, the

ULS does allow for multiple policies to exist for different applications. Since we view the

sandbox here as a logical entity, they certainly can be viewed as multiple sandboxes. Due

to the ambiguous nature of Sbox_no specification in ULS we have provided a value of 3,

which is lower than the that for all other sandboxes.

91

6.2.5 Operation Mode (0p_m0de)

We have provided a value of SboxC/UL — App/UL for Op_mode. Clearly, one of

the stated goals of ULS is to provide security against external threats, while minimizing

dependency on the Operating system for the installation Of such security specific

components. The Op_mode of ULS is directly in relation to the design Objectives for

ULS, which is to minimize or completely eliminate the need for integrating sandbox code

with the Operating system kernel. ULS Operates in the user level throughout the lifetime

of the system. Based on the discussion in Section 2.5, we have assigned a value of 2 for

ULS.

6.2.6 Inter-sandbox Communication (Isbx_com)

We have assigned the value of S/mbox / UTthread for Isbx_com for ULS. A

secure mailbox type communication can be visualized for untrusted threads. Since the

possibility of different or multiple independent sandboxes is not available with ULS, the

issue of inter sandbox communication is not discussed extensively. ULS, based on its

specification is definitely extensible to independent implementations that support

different values of Isbx_com discussed in Chapter 2. We have provided a score of 7 for

Isbx_com which is also the lowest among all the sandboxes that we have considered.

6.2.7 Sandbox Time to live (Sbox_ttl)

Sbox_ttl is assigned the value Prcs_lt/App_lt. That is the sandbox lives until the

process or the application lives. However, a direct consequence of the presence of the

dynamic translation of policies is that the sandbox can cease to exist due to a user action.

The abrupt termination of ULS as a consequence of high Dyn_rst presents a vulnerability

to the systems, wherein, a malicious process that gains access to the critical files

92

maintaining the user policy can sabotage the entire sandbox mechanism, by changing the

policy. Therefore we have assigned a value of 6 for Sbox_ttl for ULS.

6.2.8 Sandbox Scope (Sbox_scope)

We have provided the value Of U Tthread - Ll UTthread for Sbox_scope for ULS.

We consider Sbox_scope to be limited to local measures. While global access is still

possible, very rarely can they be implemented for reasons of complexity and reducing

complexity at the implementation level is one of the design goals of ULS. The primitives

for ULS is summarized in table 6.2.

Table 6.2: ULS summary

Features Available Values

Available

Acc_ctrl PBA/ Tthread - 10

PBA/ UTthread

Dyn_rst DH/ Tthread -DH/ 16

UTthread

Sbox_no S/PB 3

Op_Mode SboxC/UL — 2

App/UL

Isbx_com S/mbox / UTthread 7

Sbox_ttl Prcs_lt/App_lt 8

Sbox_scope U Tthread - U 9

UTthread

Scl N

Int_op N

5

Nsss Y

6.2.9 Design Category

The architecture for ULS can be classified into a layered architecture. The

primary reason for doing so is that the sandbox is not an isolated entity, but depends to a

large extent on the services provided by the operating system and related components

93

such as the system (operating system) monitors. We can visualize the sandbox as riding

on a basic set of services, whiCh are not a part of the sandbox itself. The Basic service

provided by the kernel is used by the system call interceptors, which in turn are used by

utilities like the system monitors, whose services are used two layers of the sandbox. The

first layer is responsible for the specification of the policy while the second is responsible

for the enforcement of the policy.

6.3 Janus — A secure environment for untrusted helper applications

Named after the roman god of the entrances and the exits, Janus (JAN), presents a

secure environment for untrusted helper applications. Janus is presented in [39], and we

base our discussion on the sandbox presented here. Janus works like a sandbox, usually

of helper applications (such as the applets that are loaded for a browser to perform certain

actions). The original implementation was based out of Solaris operating system. Janus is

developed around a threat model based on web-based applications. The threat model here

is that the applications themselves are trusted, but use untrusted components, which are

the helper applications referred to earlier. Janus is based on the idea that “an application

can do no harm if its access to the underlying operating system is restricted

appropriately” [39]. We will discuss the Janus sandbox based on our primitives and

provide a brief discussion on the architecture classification of the sandbox also.

6.3.1 Summary of results

As shown in figure 6.5 we see that Janus outperforms the best sandboxes in

different categories such as Acc_cntrl, and Sbox_scope. Janus shows behavior resembling

the average case scenario for all other primitives. Janus also offers significant scope for

Scl, Int_op and Nsss. As presented in Figure 4, Janus has a layered architecture for

94

sandbox design. In later sections we will provide a primitive-by-primitive analysis of

Janus. We have finally presented a tabulation of the different primitives and the final

scores associated with each.

6.3.2 Access Control (Acc_ctrl)

We have assigned the value of UN TApp - PBA/ UTApp for Acc_cntrl for Janus.

Janus presents an Acc_cntrl module. Acc_cntrl in Janus works exactly like ULS, but in a

different Operating environment. The fundamental idea is the same. There is a component

(specifically a file) that will describe the policy with respect to how untrusted

applications can access the underlying resources. Restrictions in Janus are more rigid,

however, in that the sandbox entirely deals with web based helper applications which

represent the high threat level concentration. We have assigned a score of 14, which is

relatively high for Acc_cntrl for Janus because UTApp is provided with PBA. Since UA

is provided for TApp, we reduce (2 points) from the maximum value of 16 that is

possible for Acc_cntrl.

6.3.3 Dynamic translation of policies (Dyn_rst)

We have provided the value of SU TApp-SH/UTApp for Dyn_rst. For Dyn_rst,

since the policy is specified in a separate module, changes can be made dynamically and

Janus will use the most updated version of the policy at all points of time. Therefore, we

have provided a value of 7, which is the lowest among the sandboxes that we have

compared.

95

Sandbox

poficy

Enforcement

f

Sandbox

Policy

Specification

 . ./

System utility

(CPU i '

monitors)

¥

System call

interception

l/

 +

Operating

System

Kernel ,

components I/

Figure 6.5: Janus block diagram

96

Sbox scope (16) Dyn_rst (16)

Sc/ln/NS (8)

 Sbox_ttl (8) Op mode (4)

Isbx_com (16)

Figure 6.6: Janus - visualization

6.3.4 Sandbox Numbers (Sbox_no)

The Sbox_no in this case is dynamic and therefore we assign the value of D/PB.

The modularized representation of the sandbox policy enables Janus to restrict different

classes of processes in different ways. Thus several sandboxes can simultaneously exist.

Multiple sandboxes is also enabled by the fact that the overhead resulting due to the

different number of sandboxes is reduced significantly because of the modular

representation, wherein unused components can be taken away from a sandbox for the

different uses. We have assigned a score of 4, which is the highest for Sbox_no, for Janus.

6.3.5 Operation mode (0p_m0de)

We have assigned the value of SboxC/UL — App/UL for Op_mode for Janus.

Janus operates in the user level, even though some of it’s components make use of system

97

call interceptions. These are unobtrusive interceptions, and become obtrusive only when

necessary, i.e., when the system security, as represented in the policy, might be violated.

We have assigned a score of 2 for Op_mode for Janus, which is also the many other

sandboxes (JVM, CV, FCM).

6.3.6 Inter sandbox communication (Isbx_com)

We have assigned a value of P/Comm. [UTApp for Isbx_com for Janus. Isbx_com

is an issue that is not addressed in the development of Janus. The Sandboxing system

here is seen more as a means Of isolating individual suspects on a case-by-case basis,

rather than in a generic manner and has the advantage that the overhead of providing

separate communication channels to processes contained within the sandbox is done

away with. The disadvantage is that once the sandbox is breached, either because Of a

policy flaw or an unknown exploit, the sandbox is considered breached. We have

assigned a score of 10 for Isbx_com since policy based communication is provided only

for untrusted applications (UTApp), while nothing is mentioned for TApp.

6.3.7 Sandbox time to live (Sbox_ttl)

We have assigned the value of Prst/UTApp for Sbox_ttl. The sandbox time to live

here is the system lifetime. While options have been provided to disable the sandbox,

anytime the user wants, when applied to a process, it (the sandbox) stays on for the

system lifetime. Changes in policy, in a dynamic fashion, can result in there being a zero

policy system, which effectively is equivalent to disabling the sandbox; however, the

system is still (theoretically) in place as a functioning sandbox. We associate Sbox_ttl as

persistent (Prst) rather than Sys_lt, since the former encompasses the latter. Since there is

98

a possibility of disabling the sandbox we have assigned a lower score of 5 (compared to

the highest value of 8).

6.3.8 Sandbox Scope (Sbox_scope)

We have assigned a value Of UTApp - G/UTApp for Sbox_scope for Janus.

Sbox_scope for Janus is for all user level processes, which clearly indicates a global (G)

value. However at the same time kernel level processes cannot be sandboxed. Therefore

 Network

connection

monitor

System call trace

utility

Janus

Engine

Application

based module

(e.g.: for
Policy module

browsers)

Figure 6.6: Janus Components

we have assigned a high score of 14, but reduced 2 points from the maximum possible

score of 16. A summary of the primitives for Janus is given in table 6.3.

99

6.3.9 Design Category

Based on our observations with respect to the primitives, Janus, clearly falls under the

component based architecture. The architecture is illustrated in figure 6.6. Major

components include, a system call trace facility, a path tracing utility, a network

component utility, and utilities based on different applications. The Janus engine is at

the core driving the independent components.

Table 6.3: Janus Summary

Features Available Values

Available

Acc_ctrl UA/ TApp — PBA/ 14

UTApp

Dyn_rst SU TApp- 7

SI-I/UTApp

Sbox_no D/PB 4

Op_Mode SboxC/UL - 2

App/UL

Isbx_com P/Comm. [UTApp 10

Sbox_ttl Prst/UTApp 5

Sbox_scope L/TApp - GfUTApp 14

Scl Y

Int_op N

6

Nsss Y

100

6.4 A Flexible containment mechanism (FCM)

6.4.1 Summary of Results

The FCM is based on an open source implementation defined in [26]. As the

name suggests, the method allows for flexible specification of policies. The FCM is

almost identical to Janus both in design and implementation. Thus we will provide a

longer summary of results, and avoid topic wise discussion for the primitives. Figure 7

shows the sandbox when represented using our visualization process.

FCM

Acc_ctrl (1 6)

Isbx_com (16)

Figure 6.7: FCM - visualization

101

FCM [51], represents a sandbox designed to allow a high degree of Dyn_rst.

FCM provides a system call driven sandbox mechanism, wherein the sandbox

architecture in reality contains an API. A process creates a sandbox by invoking and later

applying to itself a custom designed system call. The process then is provided with

system calls to actually configure the sandbox. Custom designed system calls

differentiates FCM from other sandboxes. The API also provides applications using FCM

with the ability to sandbox child processes independently.

Table 6.4 : FCM summary

Features Available Values

Available

Acc_ctrl PBA/ TApp — PBA/

UTApp

Dyn_rst SL/ TApp-DH/UTApp 10

Sbox_no D/PB 4

Op_Mode SboxC/KL — App/UL 2

Isbx_com P/Comm. [UTApp 10

Sbox_ttl App_lt/UTApp 4

Sbox_scope UTApp - GfUTApp 14

Scl Y

Int_op Y 7

Nsss N

In the design of FCM, parent processes retains significant control over

sandboxes of its children. The parent has the rights to decide on how many processes can

execute within the child sandbox. However, the sandboxes cannot restrict other process.

They only restrict themselves.

FCM also enables descendants to inherit it’s own sandbox. FCM is designed

as a transient entity. The implementation of FCM is more in tune with a component-

based approach, rather than a layered approach. This is clearly seen from the individual

102

components that the system has including separate systems for Isbx_com, and Acc_cntrl.

Table 5 summarizes the results for FCM.

Table 6.5: Summary Of all sandboxes.

Features JVM CV ULS JAN FCM

Available

Acc_ctrl PBA PBA/ Uproc - PBA/ Tthread — UA/ TApp — PBA/ TApp -

PBA/ UTproc PBA/ UTthread PBA/ UTApp PBA/ UTApp

Dyn_rst DH/ TApp- DH/ Uproc - DH/ Tthread - SU TApp- SU TApp-

DH/UTApp DI-I/ UTproc DH/ UTthread SH/UTApp DH/UTApp

Sbox_no D/PB D/PB S/PB D/PB D/PB

Op_Mode SboxC/UL — SboxC/KL - SboxC/UL — SboxC/UL - SboxC/KL —

App/UL App/UL App/UL App/UL App/UL

Isbx_com MISC/TApp — MISC/ UTproc S/mbox / PICOmm. P/Comm.

MISC/UTApp UTthread /UTApp IUTApp

Sbox_ttl Prcs_lt Sys_upt Prcs_lt/App_lt Prst/UTApp App_lt/UTApp

Sbox_scope GITApp - U Uproc - GI U Tthread - U UTApp - UTApp -

G/UTApp UTproc UTthread G/UTApp G/UTApp

Scl Y N N Y Y

Int_op Y N N N Y

Nsss Y N Y Y N

Table 6.6: Summary of scores for all sandboxes

AN

14

6.5 Conclusion

In this chapter, we applied our classification scheme to different sandboxes and

Observed the differences between the sandboxes in terms of the primitives that we have

defined. Table 6.5, and Table 6.6 give the summary of the values and scores assigned to

103

the individual primitives Clear differences can be observed in the sandboxes, and a

relationship between the Objectives and policies of the designers could be seen through

the above table. Such tabulation will help in obtaining 3 birds eye view of the

requirements for a new sandbox, enabling easier translation between policies and

sandbox design for future designers of sandboxes. The study in this chapter also

reinforces our classification scheme with respect to popular sandboxes, from a security

perspective.

104

7. Conclusion and Future Work

7.1 Conclusion

In this thesis, we have discussed why sandboxes are an effective security design

mechanism. We found that while there are several independent implementations of

sandboxes, there is no way to assess which one to employ for a given security scenario. It

will be prudent to take all security measures into consideration during the sandbox design

process itself. Thus having an idea of how the implementation of the sandbox will look

like at the design stage or perhaps even earlier will be useful. In order to do that we need

to visualize the relative effectiveness of a sandbox with respect to other sandboxes while

designing the security policy.

We developed a step—by-step classification and visualization process. Firstly we

identified important primitives that define a sandbox from a security standpoint. We then

identified common implementation paradigms with respect to sandboxes, and provided a

brief discussion about the same. Subsequently we classified existing sandboxes and used

a scoring scheme to differentiate between them based on the different security

parameters. We specifically illustrated an example with respect to JVM; as to how even

sandboxes that are close to each other can indeed be differentiated using the classification

scheme.

The classification scheme could be used on two fronts. It could be used as a tool

to effectively study and analyze existing sandboxes, as we have done in this thesis.

Altemately, the results of this study could be used by the designer of a new sandbox to

get a prior view of how their design fares compares to other implementations. What is

105

important here is that the designer gets to compare his design with other implementations,

before implementation.

7.2 Future Work

We have discussed a new scheme and provided a retrospective analysis on

existing sandboxes. Using this framework to develop a new sandbox will be a possible

future work. With the added insight into sandbox design, it will be exciting to take on

some of the common security flaws or problems such as buffer overruns. We have the

power of making decisions and visualizations before implementation. Another area of

future work is the development of automated tools to help the scoring process.

Automation could be in the form of a rigorous systems test, with specific benchmarks for

the different primitives. Incorporating formal specification and verification within the

classification framework is another area of future work.

106

[ll

[2]

l3]

[4]

[5]

[6]

l7]

[3]

I9]

[10]

[ll]

[12]

[13]

Bibliography

M. Jung and E. Biersack. A Component-Based Architecture for Software

Communication Systems. Proceedings ofIEEE ECBS, Edinburgh, Scotland. April

2000.

D’Souza, D. Francis, Wills, and A. Cameron. Objects, components and

components and frameworks with UML approach. Addison-Wesley, 1998.

Trent Jaeger, Jochen Liedtke, Vsevolod Panteleenko, Yoonho Park, and Nayeem

Islam. Security Architecture for Component-based Operating Systems

8th ACM SIGOPS European Workshop, 1998.

Sendmail utility exploits. Http: / /packetstorm. linuxsecurity. com

/unix-exploits/sendmail-exploits/

Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan Walpole, and

Peat A. StackGuard: Automatic Adaptive Detection and Prevention of Buffer—

Overflow Attacks. Proceedings ofthe 7th USENIX Security Conference, 1998.

V. Barghavan. Dynamic addressing in Wireless LANs. Proceedings of the IEEE

international communications conference, 1995.

Mark E. Russinovich, and David A. Solomon. Microsoft Windows Internals, third

edition, Microsoft Press, December 2000.

David A. Solomon and Mark E. Russinovich, Inside Microsoft® Windows®

2000, third edition, Microsoft Press, October 2000.

James C. Foster. Buffer Overflow attacks Detect, Exploit, and Prevent. Syngress. 2004.

Topics in Computer Security http://www.computerworld.com/

securitytopics/security/story/O,10801,8986l,00.html?SKC

=security—8986l

Wenke Lee, and Salvatore J. Stolfo. Data Mining Approaches for Intrusion

Detection. Proceedings ofthe 7th USENIX Security Symposium, 1998.

M. Jones and J. Regehr. CPU reservations and time constraints: Implementation

experience on windows NT. In the Proceedings 0f 3rd USENIX Windows NT

Symposium, July 1999.

Eric Bloedom, Alan D. Christiansen, William Hill, Clement Skorupka, Lisa M.

Talbot, and Jonathan Tivel. Data Mining for Network Intrusion Detection: How to

Get Started. The MITRE Corporation, 2001.

107

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth, M. Walker, and Sheila

A. Haghighat. A Domain and Type Enforcement UNIX Prototype. In Proceedings

ofthe 5th USENIX Security Symposium, pages 127—140, June 1995.

Niels Provos. Improving Host Security with System Call Policies. In Proceedings

ofthe 12th USENIX Security Symposium, August 2003.

David S. Peterson, Matt Bishop, and Raju Pandey. A Flexible Containment

Mechanism for Executing Untrusted Code. In Proceedings of the 11th USENIX

Security Symposium, pages 207-225, August 2002.

David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access control

(RBAC):Features and motivations. In Proceedings of 11th Annual Computer

Security ApplicationConference, pages 241- 48, 1995.

Ravi S. Sandhu, Lattice-Based Access Control Models, Computer, v.26 n.11, p.9-

19, November 1993.

RS. Sandhu, E.J.Coyne, H.L.Feinstein and C.E.Youman. “Role Based Access

Control Models” IEEE Computer, vol 29, Num 2, p38-47, February 1996.

http://www.linux.org

Yasushi Saito and Brian Bershad. A Transactional Memory Service in an

Extensible Operating System. USENIX Annual Technical Conference (NO 98),

1998 .

http://www.techtutorials.info/1indistro.html

Tim Lindholm, and Frank Yellin. JavaTM Virtual Machine Specification, The.

Addison Wesley Professional, 1996.

Asit Dan, Ajay Mohindra, Rajiv Ramaswami and Dinkar Sitaram. ChakraVyuha

(CV): A Sandbox Operating System Environment for Controlled Execution of

Alien Code. RC20742, IBM TJ. Watson Research Center, 1997.

F. Chang, A. Itzkovitz, and V. Karamcheti. User-level Resource-Constrained

Sandboxing, 4th USENIX Windows Systems Symposium, 2000.

D. Peterson, M. Bishop, and R. Pandey, "A Flexible Containment Mechanism for

Executing Untrusted Code," Proceedings of the 11th USENIX UNIX Security

Symposium pp. 207-225, Aug. 2002.

108

[27]

[28]

[29]

I30]

[31]

[33]

[34]

[35]

[36]

I37]

[38]

[39]

[40]

Dirk Balfanz, and Daniel R. Simon. WindowBox: A Simple Security Model for

the Connected Desktop. Microsoft Research, Http: / /research.

microsoft.com/crypto.

http://www.msdn.microsoft.com/netframework/

technologyinfo/overview/

Raju Pandey, and Brant Hashii. Providing fine-grained access control for Java

programs via binary editing. Parallel and Distributed Computing Laboratory,

Computer Science Department, University of California, Davis, CA.

Corrnac Flanagan, Greg Nelson, K. Rustan, M. Leino, Mark Lillibridge,

James B. Saxe, Raymie Stata. Extended Static Checking for Java. Proceedings of

the Programming Language Design and Implementation (PLDI), Germany, 2002.

Li Gong, Gary Ellison, and Mary Dageforde. Inside JavaTM 2 Platform Security:

Architecture, API Design, and Implementation. Addison Wesley Professional,

second edition, 2003. '

http://java.sun.com/j25e/l.4.2/ docs/api/java/lang/

SecurityManager.html

Asit Dan, Ajay Mohindra, Rajiv Ramaswami and Dinkar Sitaram. ChakraVyuha

(CV): A Sandbox Operating System Environment for Controlled Execution of

Alien Code. RC20742, IBM T.J. Watson Research Center, 1997

Michael Burrows, Martin Abadi, Roger Needham, and William Stallings. A Logic

of Authentication. Practical Cryptography for Data Intemetworks, IEEE

Computer Society Press, 1996.

Andrew W. Appel. Foundational Proof-Carrying Code. 16th Annual IEEE

Symposium on Logic in Computer Science, June 2001.

Fangzhe Chang, Ayal Itzkovitz, and Vijay Karamcheti. User-level Resource-

constrained Sandboxing. In the proceedings of the USENIX Windows systems

symposium, 2000.

Ian Goldberg David Wagner, Randi Thomas and Eric A Brewer. A Secure

environment for Untrusted Helper Applications. Proceedings of the 9th USEND(

Security Symposium, 2000.

Oracle® Application Server 10g Performance Guide 10g (9.0.4) Part No.

B10379-01

http://bosna.usask.ca/pub/JXTABenchSuite_Report.pdf

109

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Bill Venners. Inside the Java Virtual Machine. Published by Computing McGraw-

Hill, 1998.

Venners, Bill. Inside the Java 2 Virtual Machine. Published by McGraw Hill,

2000.

http://www-106.ibm.com/developerworks/java/library/j—

javaevol/javaevol.html

http://www.cse.ogi.edu/DISC/projects/immunix/

StackGuard/

Li Gong. A Secure Identity-Based Capability System. IEEE Symposium on

Security and Privacy, 1989.

Richard Y. Kain, and Carl E. Landwehr. On Access Checking in Capability-

Based Systems. IEEE Symposium on Security and Privacy, 1987.

Samir Djilali, Thomas H’erault, Oleg Lodygensky, Tangui Morlier, Gilles Fedak

and Franck Cappello. RPC-V: Toward Fault-Tolerant RPC for Internet

Connected Desktop Volatile Nodes INRIA, LRI, Universit’e de Paris Sud, Orsay,

France, 2000.

http://www.microsoft.com/resources/ngscb/

Mark E. Russinovich, David A. Solomon. Microsoft Windows Internals, Fourth

Edition: Microsoft Windows Server(TM) 2003, Windows XP, and Windows

2000. Microsoft Press, 2004.

Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, and Jonathan Walpole.

StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow

Attacks. In the Proceedings of the 7th USENIX Security Conference, 1998.

D. Peterson, M. Bishop, and R. Pandey. A Flexible Containment Mechanism for

Executing Untrusted Code. Proceedings of the 11th USENIX UNIX Security

Symposium pp. 207-225, 2002.

Matt Bishop Computer Security: Art and Science Addison-Wesley Pub Co, 2002.

S. Ghosh, A. Gupta. An Exercise in Fault-containment: Self-Stabilizing Leader

Election. Information Processing Letters Vol. 59, No.5, pp. 281-288, 1996.

110

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

il11111111111111le111111

