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ABSTRACT

DEVELOPMENTAL LEARNING WITH APPLICATIONS TO ATTENTION,

TASK TRANSFER AND USER PRESENCE DETECTION

By

Xiao Huang

How to build an intelligent machine has fascinated researchers for more than half

a century. TO tackle this problem, scientists have taken one of the four approaches:

knowledge-based, learning-based, behavior-based and evolution-based. However, au-

tonomous mental development (AMD) of robots did not receive sufficient attention.

Motivated by animal and human autonomous mental development from infancy

to adulthood, a developmental paradigm for robots has recently been proposed. With

this paradigm, a robot develops its mental Skills through real-time, online interactions

with the environment. We call such a robot a developmental robot.

My work focuses on motivational system and sensorimotor learning. The ma-

jor contributions of this work include: (1) Proposed and implemented the Devel-

opmental, Observation driven, Self-Aware, Self-Effecting, Markov Decision Process

(DOSASE MDP) model, which integrates multimodal sensing, action-imposed learn-

ing, reinforcement learning, and communicative learning. (2) Integrated novelty and

reinforcement learning into a robotic valuesystem (motivational system) for the first

time. As an important part Of AMD, a value system signals the occurrence of salient



sensory inputs, modulates the mapping from sensory inputs to action outputs, and

evaluates candidate actions. (3) Proposed and implemented the Locally Balanced

Incremental Hierarchical Discriminant Regression (IHDR) algorithm as the engine of

cognitive mapping for learning in non-stationary environments.

Based upon the above architecture and basic techniques, we have designed and

implemented a prototype robot that learns the following cognitive behaviors: (1)

Visual attention via novelty and rewards. We treat visual attention as a behavior

guided by the value system. NO salient feature is predefined but instead novelty

based on experience, which is applicable to any task. (2) Covert perceptual capability

development for vision-based navigation. An agent develops its covert capability via

reinforcement learning through interactions with trainers. (3) Cross-task learning in

developmental settings. A developmental robot learns multiple tasks incrementally

and uses acquired knowledge to speed up learning new tasks. (4) Audio/Visual User

presence detection. The developmental learning paradigm has been applied to a

developmental agent, which detects human activities in an office using multimodal

context information.

The work reported in this thesis serves as a starting point Of the on-going research

on developmental learning.
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Chapter 1

Introduction

1.1 Introduction tO autonomous mental develop-

ment

“Can machines think?” The fundamental question in artificial intelligence (AI) raised

by Alan Turing [103] has attracted researchers for about half a century. In order tO

tackle this mysterious problem, four basic approaches have been proposed: knowledge-

based, learning-based, behavior-based, and evolution-based.

1 . 1 . 1 Traditional approaches

In his well-known paper in 1950 [103], Turing wrote: “one might have a complete

1

system of logical inference ‘built in’.’ “The store would be largely occupied with

definitions and propositions. The propositions would have various kinds of status,

e.g., well-established facts, conjectures, mathematically proven theorems, statements

1



given by an authority, expressions having the logical form of proposition but not

belief-value.” This approach is later called the knowledge-based approach in the field

of AI: It is the responsibility of the human programmer to program knowledge into the

machine. Knowledge-based systems emerged in the 1970’s. MYCIN [15], a typical ex-

ample, is an interactive program that diagnoses certain infectious diseases, prescribes

antimicrobial therapy, and can explain its reasoning in detail. These systems are

proved to be very successful in areas such as medical diagnosis and aviation control.

In this paradigm a domain engineer finds out the rules to solve the problem and then

designs data structures and algorithms. What a computer needs to do is to run the

program.

By contrast, the learning—based approach allows machines to learn. Among the

earliest learn-based systems, Samuel’s checker player [81] was SO successful that it

was able to compete in some very strong human tournaments. In this framework,

a human engineer proposes a learning model, the parameters Of the model can be

Obtained by training the system. The basic difference between the knowledge—based

approach and the learning-based approach is: With the former it is humans who

supply the knowledge for the task at hand. With the latter humans use input data to

indirectly supply a part of knowledge required for the task. How extensive the learned

part is depends on the actual application task. However, the learning-based approach

is still task specific — the learning algorithm is designed for a specific given task. A

great deal of human engineering effort is put into analyzing and understanding the

given task. Then a procedure is defined by the human designer. He specifies:

2



1. which features should be used;

2. which task representation model should be used so that the given task is reduced

to determining a manageable number of parameters for the model;

3. what input training data are required to train the system;

4. what computational tool should be used which determines how the input train—

ing data are used to determine the parameters of the task representation model.

Rodney Brooks proposed the behavior-based approach in the 19808 [13], trying to

overcome some constraints Of the knowledge-based approach. A major emphasis Of the

behavior-based approach is to avoid explicitly modeling the world in which a robot

Operates. Instead, programming for the robot concentrates on modeling Of robot

behaviors. A behavior-based system starts with designing a set Of basic behaviors

instead Of building a complete model of the world, which may not even exist in the

first place. The system interacts with the world by manipulating and organizing

these basic behaviors. In his well-known article Intelligence Without Reasons [11]

presented during his Computer and Thoughts Award speech at the International

Joint Conference on Artificial Intelligence, 1991, Brooks summarized a number of key

aspects characterizing this style of work.

Situatedness: The robots are situated in the world -— they do not deal with abstract

descriptions, but with here and now of the world directly through their sensors

and effectors.

Embodiment: The robots have bodies and experience the world directly.

3



Intelligence: Robots are Observed to be intelligent — but the source of intelligence

is not limited to just the computational engine. It also comes from the situation

in the environment to which the robot is part of.

Emergence: The intelligence of the system emerges from the system’s interactions

with the world and sometimes from indirect interactions between its components

— it is sometimes hard to point to one event or place within the system and to

explain why an external action was manifested.

Unfortunately, behavior-based approaches also have fundamental limitations. It

seems clear now that humans are unable to adequately describe and decompose com-

plex behaviors, not mention their interactions. Using this paradigm, the behaviors

are designed manually in advance. As a result, for complicated systems such as

COG, a human-shaped robot at MIT [12], the design of behaviors becomes a serious

bottleneck.

Evolutional approaches are motivated by the evolutional process in biological sys-

tems. In the 19505, several researchers independently studied Simulation systems with

an idea Of solving engineering problems using evolution as a search tool. The idea in

these studies was to evolve a population of candidate solutions to a given problem,

using operators inspired by natural genetic variation and natural selection. John Hol-

land [40] invented “genetic algorithms” which are potentially the most “knowledge-

free” way for developing intelligent machines. A strategy does not need to be as

complete as an algorithm, since the detail of actions in a strategy does not need to be

specified. In principle, it is possible to use an evolutionary strategy to search for an

4



intelligent machine “species” from scratch. However, both the cost and time required

for such an evolutionary process are daunting. Therefore, researchers have been using

evolutional ideas in a task-specific way.

From the above survey, we know that the traditional AI approaches generally

follow such a manual development paradigm,

1. Given a task, the human engineer analyzes it and translates it into representa-

tions and rules that a computer program may work on.

2. The human engineer writes a program that transforms the input information

into representation and follows the rules to control the machine.

3. The human engineer runs the program on the machine.

In this paradigm it is the human designer not the robot who understands the task.

Even though some machine learning techniques might be used, the built-in represen-

tation and parameters defined by the human designer is task-specific. This manual

development paradigm has met tremendous difficulties for tasks that require complex

cognitive and behavioral capabilities, such as autonomous navigation, target finding,

and human-robot interaction through gesture in unknown environments.

1.1.2 A new direction in Al — autonomous mental develop-

ment (AMD)

Is it true that human brain has built-in representation for the tasks that humans gen-

erally do? Psychologist Piaget proposed assimilation—accommodation as a model of

5



cognitive development [74]. Assimilation involves the incorporation of new events into

preexisting cognitive structures. Accommodation means existing structures change

to accommodate to new information. By repeatedly accommodating to and assim-

ilating novel environmental elements, the cognitive development takes place, which

means, the cognitive system changes its internal structure and gradually evolves with

maturation and experience.

A classical experiment supporting this perspective was performed by Richard Held

and Alan Hein [37] with kittens raised from birth in total darkness. The kittens

(Shown in Fig. 1.1) were placed in pair in an apparatus called “kitten carousel” when

they were old enough to walk. The first kitten in the pair was harnessed to pull the

carousel so that it could learn how what it sees changes due tO its own actions. The

other was carried in the gondola. It saw passively and what it saw is determined by

the first kitten’s action. The kittens did this for three hours every day and lived in

darkness in the rest Of the day. After 42 days these kittens were lowered onto the

surface of a visual cliff. It was Observed that the passive kittens did not develop the

cliff avoidance behavior but the active ones did. This experiment demonstrated that

passive movements are not sufficient for normal mental development.

Recent studies Of brain plasticity in neuroscience have Shown that a human brain

is not as task-specific as commonly believed. For example, Mriganka Sur and his

coworkers rewired the visual input to an animal’s (ferret) auditory cortex early in

life. The target tissue in the auditory cortex, which is supposed to take auditory

representation, was found to take on visual representation instead [92].

Based on evidences in psychology and neuroscience, the new mental developmental
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Figure 1.1: Kitten carousel.

paradigm for robots [29] is proposed.

Procedure 1 The new AMD paradigm is as follows:

1. Designing a robot body: According to the general ecological conditions in

which the robot will work (8.9., oncland or underwater), human designers deter-

mine the sensors, the effectors and the computational resources that the robot

needs, and then the human designs a sensor-rich robot body. The computational

resources include computer components such as the CPU, memory, disk, and

the controllers of the sensors and eflectors, etc.

2. Designing a developmental program: The human designer designs the de-

velopmental program for the robot. Since he does not know what specific tasks

the machine will learn, the developmental program does not require any informa-

tion about the tasks. However, the developmental pmgram may take advantage

of the sensors, effectors and the computational resources that have been previ-
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ously chosen.

3. Birth: The human operator turns on the robot whose computer starts to run

the developmental program.

4. Developing the mind autonomously: Humans mentally “raise” the de-

velopmental robot by interacting with it. The robot develops its mental skills

through real-time, online interactions with its environment, including humans

(e.g., let them attend special lessons). Human operators teach robots through

verbal, gestural or written commands very much like the way parents teach their

children. New skills and concepts are teamed by the robots daily. The software

(brain) can be downloaded from robots of diflerent mental ages to be run by mil-

lions of other computers, e.g., desktop computers. The human operator turns

on the robot whose computer starts to run the developmental program.

This AMD paradigm does not start with any specific task and, in fact, the tasks are

unknown at the time of machine construction (or programming). The hallmark of

the AMD paradigm is that the human engineer does not need to understand or even

anticipate the tasks to be learned by the machine. Consequently, the task-specific

representation must be generated autonomously by the robot itself, instead Of be—

ing designed by the human programmer. Of course, the teachers who will instruct

the machine to perform the tasks must understand the tasks, but the human engi-

neer who programs the machine would not be required to. A robot built through

the autonomous mental development paradigm is called a developmental robot. The

developmental phase of this paradigm is Shown in Fig. 1.2.
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Figure 1.2: The AMD paradigm for machine agents.

1.1.3 Eight requirements of AMD

Practical robotic AMD requires that the following eight technically challenging con-

ditions are all dealt with:

1. Environmental Openness: Due to the task-nonspecificity, AMD must deal with

unknown and uncontrolled environments, including various human environ-

ments.

2. High-dimensional sensors: The dimension of a sensor is the number of sealer

values per unit time. AMD must deal directly with continuous raw Signals

from high-dimensional sensors, e.g., vision, audition and taction. For example,

learning from a video camera is more difficult than learning from a laser range

finder, because the former typically contains more data per unit time and the

photo-electric information is affected by more factors than the range (distance).

3. Completeness in using sensory information. Due to the environmental openness

and task nonspecificity, it is not desirable for a developmental program to dis-
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card, at the program design stage, sensory information that may be useful for

future, unknown tasks. Of course, its task-Specific representation, autonomously

derived after birth, does discard information that is not useful for a particular

task.

. Online processing: At each time instant, what the machine will sense next

depends on what the machine does now. Off-line processing is unable to accom-

plish AMD.

. Real-time speed: The sensory/memory refreshing rate must be high enough

so that each physical event (e.g., motion and speech) can be temporally sam-

pled and processed in real-time (e.g., about 15Hz for vision). Time consuming

iterations must be avoided.

. Incremental processing: This requires incremental processing. Thus, batch pro-

cessing is not practical for AMD. Each new observation must be used to update

the current complex representation and the raw sensory data must be discarded

after it is used for updating.

. Perform while learning: Conventional machines perform after they are built.

An AMD machine must perform while it “builds” itself mentally.

. Scale up to muddy tasks: For large perceptual and cognitive tasks, an AMD

machine must be able to scale its capabilities up to handle multimodal con-

texts, large long-term memory and generalization, and capabilities Of increasing

maturity, all without catastrophic memory loss.
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Table 1.1: Approaches to Artificial Intelligence

Approach Species World System Task-

architecture knowledge behavior specific

Knowledge—based Programming Manual Manual Yes

modeling modeling

Learning-based Programming Modeling with Modeling with Yes

parameters parameters

Behavior-based Programming Do without Manual Yes

representation modeling

Evolutionary Genetic Modeling with Modeling with Yes

search parameters parameters

Developmental Partly Avoid Avoid No

programming modeling modeling       
 

1.1.4 Comparison of approaches

What are the major differences between the new developmental approach and the

existing approaches to making an intelligent machine? Table 1.1 outlines the major

differences in terms of four categories: species architecture, world knowledge, system

behaviors and task- specificity.

From Table 1.1, we can see that the developmental approach stands on middle

ground between two extremes: at one extreme, the agent is totally hand-programmed

by human beings (the knowledge-based approach) and at the other extreme, the agent

is constructed using the genetic search (the evolutionary approach)‘. The former

extreme requires a large amount of human domain knowledge and, thus, is the most

domain specific and ad hoc in nature. The latter extreme requires the least amount of

human knowledge but requires a tremendous amount of computation time for evolving

a sophisticated agent. The developmental approach liberates humans from explicit

 

1It is worth noting that in principle, the evolutionary approach does not necessarily require a

task-specific representation. However, due to the complexity considerations, the current genetic al-

gorithms have been used with a human designed, task-specific chromosomes representation and only

a particular part of the evolving system is searched for genetically (e.g., Animate [122] , AutonoMouse

[26] and the work by Steels [91]).
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design of (a) any task-specific representation and knowledge and (b) system behavior

representation, behavior modules and their interactions. However, the developmental

program supplied at “birth” must be designed by human beings. The developmental

approach is the first approach that is not task-specific.

The task-nonspecific nature of the developmental approach implies a fundamental

departure from the traditional ways of developing a machine. It allows a more sys-

tematic and more tractable way of approaching artificial intelligence than all other

existing approaches. This does not mean that the approach is easy. The design Of

developmental program is definitely very challenging, both conceptually and tech-

nically. However, Since a developmental program can be written without requiring

explicit knowledge about the actual tasks in the applications, all the task-related ad

hoc messy things —— things that are called muddy — are completely excluded from

consideration at the time of programming. In fact, the designer of the developmen-

tal program does not need to understand or know the endless muddy tasks that the

machine will end up learning. The design problem becomes systematic, easier to un-

derstand and relatively tractable. The miracle of learning various interesting tasks

occurs after the programming, not before. This fundamental change in the way we

approach artificial intelligence will produce a new kind of machine — developmental

machine — that can demonstrate capabilities that no traditional machines have.

However, we must be aware of that all of these capabilities cannot be realized

overnight. Scaling up capabilities require a significant amount of developmental ex-

perience, which in turn requires time. Furthermore, the developmental programs need

repeated modifications and improvements before a high level of mental capabilities
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can be developed and demonstrated. And since this thesis is a starting-point Of devel-

opmental learning, we still adopt the successful components of traditional approaches,

which will be shown in the following chapters.

1.2 Survey on animal learning

Since the developmental learning paradigm is derived from psychology, neuroscience

and cognitive science. It is important to know the progress in these fields, especially

in animal learning. Let us first examine the two different definitions of learning:

Definition 1.2.1 Learning is an adaptive change in behavior resulting from experi-

ence.

Compare it with the following definition [24] (page13):

Learning is an enduring change in the mechanisms Of behavior involving

specific stimuli and/or responses that results from prior experience with

similar stimuli and responses.

The latter definition defines learning in terms of a change in the mechanisms Of

behavior rather than a change in behavior itself. The main reason is that a change

in behavior is determined by many factors in addition to learning. For example,

whether you eat food or not depends on how hungry you are and how much you like

the food. You start to eat food when you are hungry. After you have had enough,

you stop eating. The second definition does not include this action change, from

eating to not eating, as learning, but the first definition does. In other words, the
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second definition does not include what is called non-associative learning explained

below. In this thesis, I adopt Definition 1.2.1. Learning takes place all the time

during development, whether you are eating, working, entertaining or sleeping. Every

stimulus has a potential to change the behavior.

1.2.1 Nonassociative learning

Habituation and sensitization are examples Of nonassociative learning. In habituation

learning, a subject learns about the properties of a Single stimulus — such as a loud

noise from a toy gun or a view Of a new toy. A number of autonomic changes are

triggered in the human body. Heart beats faster and breathing becomes more rapid.

If the same stimulus is repeated in a short interval or it sustains for a long period

Of time, these responses will abate. This is habituation, a type of learning that men

experience routinely in one way or another.

With habituation an animal learns about the properties of a benign stimulus, the

result of which is reduced response. With sensitization an animal learns about the

properties of a harmful or threatening stimulus. A person startled by a gunshot is

likely to jump at any loud noise heard minutes thereafter.

How are sensitization and habituation related? A mouse will be startled when

it is exposed to a loud noise for the first time. As the same loud noise is repeated,

the mouse will habituate to it and no longer respond. The startle response to the

noise can be quickly restored by delivering a single electric shock to the feet of the

mouse. Habitation and sensitization effects reflect how the agent ends up sorting
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out what to ignore and what to respond to. Groves and Thompson’s dual-process

theory [36] of sensitization and habituation assumes that different types of underlying

neural processes are responsible for the increases and decreases in responsiveness

to stimulation. The Solomon’s opponent-process theory [87] [86] assumes that an

important function of mechanisms that control emotional behaviors is to minimize

deviations from emotional neutrality or stability, a level called homostasis.

The neural basis of learning has been a very active subject of study in neural

science. The weakening and strengthening Of synaptic connections between sensory

neurons and motor neurons (through interneurons) are found to be involved in ha-

bituation and sensitization learning in the limb withdrawal reflex of the cat and the

withdrawal of the gills and siphons of the marine snail called Aplysia’. Enhancement

of synaptic connections is sufficient for short-term habituation and sensitization where

the same stimuli are repeated for a Short period Of time. In long term non-associative

learning, the stimuli repeat for days or weeks and the change of behavior also lasts

much longer. This long term change in behavior requires the synthesis of new proteins

and the growth of new synaptic connections along the passway from sensory neurons

to motor neurons.

In nonassociative learning, the subject learns about the properties of a single

stimulus by being exposed to it repeatedly. In associative learning discussed below,

a subject learns the relationship between two stimuli (classical conditioning) or the

relationship of a stimulus to the subject’s behavior (instrumental or operant condi-

tioning) .

 

2For a more detailed explanation of the study, the reader is referred to [90] (pages 36 - 45).
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Figure 1.3: An illustration Of classical conditioning.

1.2.2 Classical conditioning

Systematic studies Of classical conditioning began with the great work Of the Russian

physiologist Ivan P. Pavlov. According to Pavlov, what animals and humans learn is

not the association of ideas, as suggested by Aristotle, but the association Of stimuli.

Classical conditioning involves the association or pairing of two stimuli, an un-

conditioned stimulus (US), such as food or a shock to the leg, and a conditioned

stimulus (CS), such as a tone or a light. The unconditioned stimulus always produces

a response, called unconditioned response (UR), such as salivation or leg withdrawal.

It is called an unconditioned response because it is a hardwired (inborn) response

to the unconditioned stimulus. Suppose that a tone (CS) is repeatedly followed by

the presentation of food (US) which always elicits a salivation response (UR) from a

horse. Then, the tone (CS) alone starts to elicit salivation (CR) even without food

(UR), as shown in Fig. 1.3. Although classical conditioning is classified into appeti-

tive conditioning (US is appetitive) and defensive conditioning (US is aversive), the
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US can be neutral, as long as the US is reliably linked with the UR, either hardwired

or learned. The essence of classical conditioning is a means by which animals learn

to predict relationships between two events in the environment — CS predicting US.

After the training session, if the tone is repeatedly presented without food, i.e., CS

is no longer followed by US, the tone is no longer able to evoke salivation. This process

is called extinction. The available evidence in animal studies indicates that extinction

is not simply forgetting. During the extinction, the animal learns something new: The

conditioned stimulus no longer predicts that the unconditioned stimulus will occur;

it instead predicts that the unconditioned stimulus will not occur.

In our developmental robot, the inconsistency with the past experience (surprising-

ness) will raise the value of the current event, which enhances the memory process.

The animal is paying attention to the delivery Of unconditional stimulus (US) fol-

lowing the conditional stimulus (CS). If the conditional stimulus does not occur, the

inconsistency with the experience is detected and the value system sends an increased

value to enhance the memory process for the current event.

Another important phenomenon about classical conditioning is called blocking,

demonstrated in a three-phase experiment conducted by L. J. Kamin in 1968 [56]. In

phase 1, stimulus light (CS A) is paired with an aversive unconditional stimulus, a

strong electric shock, until the rats totally suppressed their lever pressing behavior

(UR) whenever a light (CS A) was presented. Next, in phase 2, a new stimulus tone

(CS B) was presented together with stimulus light (CS A) and paired with the electric

shock (US). Finally, in phase 3, stimulus tone (CS B) was presented alone in a test

trial to see if it would also suppress lever pressing (CR). Interestingly, less conditional
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response (surpressing) was observed than the control rats’ group (that skipped the

phase 1). In this example, CS B is blocked (partially) by CS A.

The idea that the surprisingness of an unconditioned stimulus determines its ef-

fectiveness in producing new learning was developed into a model by Robert Rescorla

and Alan Wagner [80]. An event is surprising if it is different from what is expected. If

the CS perfectly predicts US, the rate of learning becomes zero. This is also consistent

to our discussion of the value system that is dependent on the surprisingness.

1.2.3 Instrumental conditioning

Instrumental conditioning (also called operant conditioning or trial-and-error learn-

ing) is another major form of associative learning, systematically studied by B. F.

Skinner and others. With this type Of learning, the trainer is able to tune the behavior

Of the animal towards the direction that the trainer wants.

Instrumental conditioning can be conducted in the following way. A hungry rat

is placed in a chamber which has a lever protruding from the wall. A press on the

lever will release a food pellet into a cup. If pressing the lever is not something that

the rat already does occasionally, it may never “discover” on its own what it has to

do to Obtain the food. We can use a sequence of training steps called shaping that

has been used by animal trainers for centuries. At first, food is given if the rat does

anything remotely related to the desired response. For example, at first, the rat is

given a food pellet each time it gets up on its hind legs anywhere in the chamber.

Once the rearing response has been established, the rat iS given food only if it rears
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over the lever. Once it is over the lever, the rat is given food only if the rat actually

depresses the lever. With this training, whenever the rat is hungry and finds himself

in the chamber, it is likely to press the lever to get food.

Classical conditioning learning forms a predicate relationship between two stimu-

lus (CS and US). Instrumental learning can be considered as a formation Of a predicate

relationship between a stimulus and the animal’s response. Unlike classical condition-

ing, where the conditional response is evoked by a specific conditional stimulus, the

response in the instrumental conditioning is emitted without a recognizable stimulus

(but the animal still uses some environmental cues, such as the view of the lever

to evoke the behavior). In both types of learning, timing is critical. The reinforcer

(food) should closely follow the operant response (pressing lever). If the time delay

is tOO long, only weak conditioning is established.

The neural mechanisms of classical conditioning and of instrumental conditioning

are very similar. If the chain of events predicts a reward, the response is emitted.

If a punishment is predicted, the corresponding response is suppressed. In classical

conditioning, the chain of events is CS-US-UR (e.g., tone, food, salivation). With

instrumental conditioning, the chain of events is E-R-UR, where E is environmental

cues (in the chamber or the view of a lever) and R is the shaped response (pressing

lever) and UR is the food reward. In both cases, if UR is a punishment, the animal will

evoke avoidance behaviors. In classical conditioning, CS will suppress the animal’s

ongoing activity or elicit the learned avoidance behavior (e.g., leg withdrawal). In

instrumental conditioning, the animal would decrease the response rate or suppress

the response that leads to the punishment.

19



To summarize what is necessary (but may not be sufficient) for nonassociative

and associative learning, the following gives a list:

1. Biased sensors that define appetitive and aversive stimuli.

2. A value generation system. It decreases the output value when there is no

unexpected inconsistency with the experience (lack of surprise or novelty). It

increases the output value quickly when novelty is high or aversive stimuli are

sensed.

3. An event prediction mechanism that is able to predict the chain of events (de-

fined as sensorimotor signals) in time.

4. A response selection mechanism. If appetitive or avoidance of aversive stimulus

is predicted, emit the corresponding response. If aversive stimulus is predicted

or omission Of appetitive stimulus is predicted, suppress the response.

1.2.4 Cognitive learning

The above types of animal learning does not cover a more complex learning, which is

called cognitive learning in psychology. The word “cognition” comes from the Latin

meaning “knowledge or thinking.”

Cognitive learning covers more complex behaviors of human and animal learning.

The subject is closely related to the mechanisms of organizing memory and forgetting.

Timing learning refers to the ability of learning to estimate the duration of time.

Although all the above types of learning require a proper duration of time for each
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event, animals are able to estimate and distinguish the length of an event and respond

accordingly. For example, pigeons (or rats) can be trained to peek a red key if a light

is turned on for a short period of time (e.g., 2 seconds) and to peek a green key if the

light is on for a long period of time (e.g., 10 seconds). During the learning, peeks on

the correct key are reinforced (e.g., with food) (see, e.g., [107] [19]).

In serial pattern learning, animals learn the order of events. A panel consists of

five squares. Five distinct stimuli (e.g., dots, circles, and the like) were presented at

the same time in the panel, each stimulus in one square. Let us call the stimuli A, B,

C, D, E. The task for monkeys is to press the squares in the panel in the prescribed

order: A, B, C, D, E. Training started with a presentation of stimulus A alone. After

the monkeys learned to press A, B was added. After they learned the AB sequence,

C was added, and so forth. After the monkeys learned the entire sequence, they were

tested on subsets of two and three stimuli (AB, BC, CD, DE, ABC, BCD, DCE) and

reached above-chance accuracy (see, e.g., [22]).

Perceptual concept learning is the capability Of learning a concept. For example,

although chairs have different colors, shapes and heights, we can all agree on what

is a chair and what is not. The “chair” is an example of a perceptual concept.

Pigeons have been trained to respond to the presence or absence of fish in underwater

photographs [39], to the presence of the letter A as opposed to other letters of the

alphabet in various fonts [66] and even to discriminate pictures of Monet from those

of Picasso [108].

Language learning is probably the most complex cognitive Skill learned by humans

and animals. In fact, many have assumed that the linguistic skill is so complex and
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Specialized that it is uniquely human. Some assume that the ability of using language

depends on certain innate processes that have evolved only in humans (see, e.g.,

Chomsky 1972 [18]). Some animals are intelligent enough to learn language when

they are properly trained. Since they cannot speak a human language, the American

Sign Language has been taught to Chimpanzees [33], gorillas [72], dolphins [38], sea

lions [34] and African grey parrots [73]. In Allen and Beatrice Gardner’s study [33],

their chimpanzee, named Washoe, learned to Sign well over 100 words.

AS we can see above, the models Of animal learning have been studied based on

specific types. A model that was designed to explain a type of learning is not appli-

cable tO other types of learning. One Of the major goals of this volume is to present

a unified developmental model that is capable of developing an architecture that can

perform all major types of animal and human learning, including nonassociative learn-

ing, classical conditioning, instrumental conditioning and the major forms of complex

cognitive learning.

1.3 New machine learning types

In AMD, the environment can affect the robot brain through three channels. The first

channel is its sensors. The second channel is its effectors. Affecting an effector can

be done by imposing a force on it, either by stopping or by changing its motion. The

third way of affecting the brain of an animal is to directly change the internal state

of the brain. For example, a neural surgeon can open the human skull to perform

brain surgery. For machines, we can feed data directly into the program. These ways
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of accessing the brain directly change the internal state of the brain. In summary,

there are three channels through which the environment can affect an agent: sensors,

effectors, and internal state. The sensors are divided into two classes, biased and

unbiased. If the machine has a predefined preference pattern to the signals from a

sensor at the birth time, this sensor is a biased sensor. Otherwise, it is an unbiased

sensor. We have a total of four entities, u, b, i, and e, representing unbiased sensors,

biased sensors, internal state, and effectors, respectively.

In order to fully understand the meaning Of developmental learning, we investigate

learning types from three entities, b, i, and e, representing biased sensors, internal

state, and effectors, respectively. Depending on whether the action e in {b,i,e}

is imposed or not, the learning can be classified into efi’ector-imposed learning and

effector-autonomous learning. Effector-imposed learning is such that the effector ac-

tion is supplied by the trainer. For example, when an adult teaches a child to hold a

pen properly, the adult can place the pen into the child’s hand and manipulate the

hand to hold it properly. This is effector-imposed learning. Otherwise, the learning

is effector-autonomous learning.

Depending on whether the biased sensor b in (b, i, e} is used or not, the learning

can be classified into reinforcement learning and communicative learning. Reinforce-

ment learning is such that a biased sensor is used to reinforce or punish certain

responses from the machine agent. Communicative learning is such that biased sen-

sors are not used and only unbiased sensors are. This requires the learner to correctly

interpret the signal from unbiased sensors, an instruction for an action, an encourage-

ment, or an explanation, etc. Learning by a human adult is conducted mostly in the
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communicative learning mode, not in the reinforcement learning mode. For example,

a student goes to a university everyday to earn his Ph.D. degree. The future of her

Ph.D. degree does not give him any immediate physical pleasure. On the contrary,

his studies at the university may often cause physical displeasure, such as fatigue.

1.3.1 Classification of learning types

Thus, any type of learning can be represented by a 3-tuple (i,b, e), which contains

three components i, b, and e, each of which can be either represented by 0 or au-

tonomous 1. i = 1 means that the internal state is imposable and i = 0 state-

autonomous. b = 1 indicates reinforcement and b = 0 communicative. e = 1 denotes

effector imposed and e = 0 effector free. Thus, depending on what attribute each

component takes (0 or 1) there are a total of 8 different 3-tuples, representing a total

of 8 different learning types. For example, (i, b, e) = (1,1,0) means state-imposable,

reinforcement effector-autonomous learning. This is the typical mode of reinforce-

ment learning in the machine learning community. If we consider ibe as three binary

bits of the type index number of learning, we have 8 types of learning defined below:

We can also name each type. For example, Type 0 is state—autonomous, communica-

tive, effector autonomous learning. Type 7 is state-imposable, reinforcement, effector

imposed learning.

All traditional learning methods correspond to Types 4 to 7, which is because

the representation is designed after the task is given and so are the constraints of

internal representation. Autonomous development uses Types 0 to 3. However, the
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Table 1.2: Eight types of learning
 

 

 

Type (binary) Internal state Biased sensor Effector

0 (000) Autonomous Not used Autonomous

1 (001) Autonomous Not used Imposed

2 (010) Autonomous Used Autonomous

3 (011) Autonomous Used Imposed

4 (100) Imposable Not used Autonomous

5 (101) Imposable Not used Imposed

6 (110) Imposable Used Autonomous

7 (111) Imposable Used Imposed    
 

state-autonomous nature is not sufficient to characterize the power Of autonomous

development, Since just realizing state-autonomous is not difficult and not of much

importance without the real power for dealing with muddy tasks.

1.3.2 Comparison with traditional definitions

The above definitions of learning types are different from traditional definitions for

machine learning. A term supervised learning, often used in the machine learning and

pattern recognition research communities, means that human teachers supervise the

learner during the learning process. From the most strict definition Of unsupervised

learning, all Of the above learning modes are supervised by humans to some degree.

It is difficult to identify any type of learning that is completely unsupervised. For a

better understanding of the eight new learning modes, the new explicit definitions in

Table 1.2 are required beyond the coarse classification of supervised, unsupervised,

and reinforcement learning that the scientific field is familiar with.

According to the above refined new definition, the traditional supervised learning

falls into Type 5, while the traditional reinforcement learning belongs to Type 6.
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Thus, the traditional learning methods belong to state-imposable learning, Types 4

to 6, because humans must define the feature space after the tasks are given (thus

state-imposable). If system states are used, the meanings of the internal states are

manually assigned by the programmer after the tasks are given.

Human (and animal) learning does not allow the teacher to exercise direct access

to the brain (the natural counterpart of the learning program). Thus, all the modes

Of human and other animal learning belong to Types 0 to 3. During the early stages

of human child development, Types 2 and 3 are often used and are effective. For

instance, a mother rewards a good behaving toddler with candy. Types 2 and 3 are

less effective for human adults. For example, offering candies or Slapping on the face

does not necessarily succeed in making a 30-year Old do what the teacher wants. Type

1 is Often used for older children whose capability of communicative learning is still

limited or if the learner is a novice on the subject being taught. For example, a ballet

or athletic teacher may often held the limbs of a novice student in order to teach the

student to master a technique. Type 0 learning is dominant in human learning. It

occurs probably as early as the fetus stage. The majority of a human’s time, either

an infant, a child, an adolescent or an adult, is spent in the Type 0 learning mode.

Reinforcement through biased sensors is relatively rare, compared to the time when

no significant signals are received from the biased sensors.

We realize that the learning types applied to autonomous development are Types

0 to 3. How are these types being used in the actual development process? This is

the major issue of this dissertation.
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1.4 Thesis outline

The organization Of this thesis is stated follows.

Chapter 2 proposes the Developmental, Observation driven, Self-Aware, Self-

Effecting, Markov Decision Process (DOSASE MDP) model, which integrates multi-

modal sensing, action—imposed learning, reinforcement learning, and communicative

learning.

Chapter 3 is mainly concerned with building the cognitive mapping engine using

the Locally Balanced Incremental Hierarchical Discriminant Regression (LBIHDR)

technique.

Chapter 4 presents our model for the value system of a developmental robot.

Novelty and reinforcement learning are integrated into a value system for the first

time. AS an indispensable part Of AMD, a value system Signals the occurrence of

salient sensory inputs, modulates the mapping from sensory inputs to action outputs,

and evaluates candidate actions. The value system is applied to guide a robot’s visual

attention behavior.

Chapter 5 presents a robot system that develops convert perceptual capability

for vision-based autonomous navigation behavior through online interactions with

human trainers using reinforcement learning. This work is quite new comparing to

the dominant supervised learning techniques used in this domain.

Chapter 6 provides the developmental agent with this cross-task learning capabil-

ity. That is, an agent can learn multiple tasks and use acquired knowledge to learn

new tasks.
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Chapter 7 presents a user presence detection system. Context information from

multi-sensory inputs is integrated to infer a user’s activities in an office. We design

a layered architecture to model human activities with different granularities. The

prototype system verifies the effectiveness of the developmental learning paradigm.

Chapter 8 concludes with a summary of the contributions of this thesis. Some

thoughts on future directions will be discussed.
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Chapter 2

DOSASE MDP Model

In this chapter, we propose the Developmental, Observation driven, Self-Aware, Self-

Effecting, Markov Decision Process (DOSASE MDP) model, which integrates multi-

modal sensing, action—imposed learning, reinforcement learning. and communicative

learning. Two major components of the architecture: cognitive mapping engine and

value system will be discussed in Chapter 3 and Chapter 4, respectively. At the end

of this chapter, we will briefly present the hardware architecture of the validation

platform, the SAIL robot.

2.1 Introduction

Many different architectures have been proposed in the intelligent robot community.

Robot perception and perception-based behavior generation have been proved to be

very difficult, especially in unknown or partially unknown environments. Some work

on robot learning was motivated by human learning and development: from sim-
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ple to complex. BAIRN (a Scottish word for “child”) is a symbolic self-modifying

information processing system used as an implementation for a theory of cognitive

development[106]. Drescher[27] utilized the schema, a symbolic tripartite structure

in the form of a “context-action—result,” to model the ideas of child sensory-motor

learning in Piaget’s constructivist theory of cognitive development. Soar[59] and

ACT-R[4] are two well-known symbolic systems with an aim to model cognitive pro-

cesses, although cognitive development was not the goal Of these efforts. The model

of Albus[2] takes sensors as input and produces control signals to effectors as out-

put, thus, allowing a finer numeric representation of sensory features when a specific

task is given. The Finite State Machine (FSM) or its probability based variant, the

Markov Decision Process (MDP), are two general frameworks that have been used for

conducting autonomous learning with a given goal in a symbolic world (e.g., Shen[85])

or reinforcement learning (e.g., Kaelbling et al.[54]). The explanation-based neural

network, called “lifelong learning,” was used by Thrun[99].

Designing a program and its representation in a task-specific way using a tra-

ditional approach is typically complex, ad hoc, and labor intensive. The resulting

system tends to be brittle especially in unknown and uncontrolled environments.

Recently an important direction Of research aims at reducing or avoiding the human

imposed limitations (e.g., features, models) of the world for better environment adap-

tation in learning. Cresceptron[113] is a system that allows a human teacher to inter-

actively segment natural objects from complex images through which it incrementally

grows a network that performs both recognition and segmentation. SHOSLIF[45],

SARCOS[105], Cog[14], and Kismet[9] are motivated by simulating infant skills via
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learning through interactions with the environment.

The efforts discussed above were motivated by human learning and cognitive devel-

opment to various degrees. However, these proposed architectures are fundamentally

different from human learning and have not reached autonomous mental development

(AMD)[119]. The SAIL robot[lll] and the Darwin V robot[3] are two prototypes Of

developmental robot. Darwin V was designed to provide a concrete example of how

the computational weights of neural circuits are determined in a controlled environ-

ment by the behavioral and environmental interactions of an autonomous device.

The SAIL developmental robot was designed for developing perceptual and behav-

ioral Skills through interactions in uncontrolled, complex human environments. There

has been a lack Of systematic theory for developmental mental architecture.

This chapter introduces a theory of mental architecture appropriated to au-

tonomous development. Section 2.2 formulates the developmental agent model. The

Developmental, Observation driven, Self-Aware, Self-Effecting, Markov Decision Pro-

cess (DOSASE MDP) model is introduced in Section 2.3. Sections 2.4 and 2.5 present

the architecture and the major components of the SAIL robot, respectively. A detailed

description of SAIL is given in Section 2.6. Conclusions are drawn in Section 2.7.

2.2 An agent model

TO be precise in our further discussion, we need mathematical notations.

Definition 2.2.1 Contest: A contest c(t) of an agent is a stochastic process. It

consists of two parts c(t) = (:i:(t), a(t)), where :r(t) denotes the sensory vector at time
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t, which collects all signals sensed by the agent at time t, a(t) is the effector vector

consisting of all the signals sent to the efi‘ectors of the agent at time t.

Definition 2.2.2 Length of Context: The context related to the agent from the pre-

vious time t1 up to a later time t2 is a realization of a stochastic process [c(r)|t1 g

r 3 t2}. The length of the context is L = t2 - ti-

Definition 2.2.3 Given an agent at time t1, suppose that the agent produces difl'erent

action contexts a1 and a2, from two difierent contexts Cl: {c(t) | t; S t 3 t2} and

C2 = {c(t) I t1 S t 3 t3}, respectively. If a1 and a2 are considered different by a

social group (human or robot), conditioned on Cl and Cg, then we say that the agent

discriminates two contexts C1 and C2 in the society. Otherwise, we say that the agent

does not discriminate Cl and 02 in the society.

Definition 2.2.4 The last context at time t is the recent part of history, l(t) =

{(r(t),a(t))[r z t — k, ...,t —— 1,t}.

The last context consists of a short segment of recent experience of temporal

length k + 1. Currently in our work, k does not change with t and a different k is

designed for different sensors and levels.

Definition 2.2.1 (Environment) The internal environment of an agent is the

brain (or “the central nervous system”) of the agent. The external environment con-

sists of all the remaining parts of the world, including the agent’s own body (excluding

the brain).
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Having defined the external and internal environments, we define the sensors and

effectors associated with these concepts.

Definition 2.2.2 (Internal sensors and effectors) An external sensor 5,, is a

sensor that senses the external environment. An internal sensor 5',- is a sensor that

senses the internal environment. An external effector E,3 is an eflector that acts on the

external environment. An internal eflector E,- is an effector that acts on the internal

environment.

Definition 2.2.5 A state s(t) is the internal representation of the context in an

agent’s internal information environment.

2.3 Observation-driven Markov Decision Pro-

CCSSCS

According to the above definitions, an agent views the world as a general random

process. The state gives a more compact representation than a simple concatenation

Of last contexts. Due to sensory uncertainty and partial Observation, the state is also

a random vector. The state at time instance t depends on both the context I (t) and

the last state s(t — 1). Therefore, we can recursively generate the state with:

s(t) = f(s(t-1),l(t))- (2.1)

where the function f generates states using feature derivation, temporal chucking, and

vector quantization. The recursive estimation process can be modeled by a Markov
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decision process (MDP), where the state transition follows a conditional distribution,

P(s(t) = s|s(t — 1) = s’, l(t) =1) (2.2)

and the representation s(t) here is a high-dimensional vector. The most probable

state at time t is given by,

5*(t) = arg max P(s(t) = s|s(t — 1) = s’, l(t) = l), (2.3)
363

where S is the set Of all possible states, which is infinite. In a practical imple-

mentation, we approximate the set S by a finite number Of prototype states. These

prototype states are incrementally merged cluster centers of many experienced state

vectors. In practice, the maximization in Eq. (2.3) is too computationally expensive.

We use an IHDR tree tO approximate it, taking advantage of the numerical vector

representation of s(t) and l (t)

2.3.1 Observation-driven MDP

An agent has a number of sensors and effectors. Fig. 2.2 illustrates a multi-sensor

multi-effector model of an agent. The agent A(t) operates at equally spaced discrete

time instances t = 0, 1, We assume that an image is produced at each time

instance by the sensor, independent of the sensing modality, visual, auditory, touch,

etc. Without losing the generality, we assume that the agent has two external sensors

and two external effectors. Each external sensor 56,-, i = 1, 2, senses a random multi-
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Figure 2.1: Observation-driven Markov decision process with dynamically generated states,

context-driven state representation, and value-based action generation. Note: the state is

not symbolic. It is a vector in a high dimensional space.

dimensional sensory frame xe(t) = (x,1(t),x,2(t)) at each time instance t and the

sensed Signal is fed into the agent. Each external effector E“, i = 1,2, receives from

the agent an effector frame ae(t) = (ael(t), a62(t)) at each time instance t.

Let x, E X and p, E ”P be the Observations and outcome covariates (i.e., ran-

dom vectors) at time t, respectively. Note that we change a variable Of a vector

to its subscript (e.g., change x(t) to x,) when it is more convenient to consider the

variable as a discrete index number. Let H, be the random vector of the history:

H, = {x,,x,_1,...,x0,p,_,,...,p0}. At time t, the agent A(t) needs to estimate the

distribution of P(p, | H, = h).

If t is large, H, is too large to be practical and it contains much information that

is not very related to the outcome H,.

Definition 2.3.1 A mental architecture is called a k-th order Observation-driven
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Figure 2.2: The architecture of a multi—sensor multi-effector agent: Observation-driven

Markov decision process. Each square in the temporal streams denotes a smallest admissible

mask. This architecture takes the entire image frame without applying any mask. The block

marked with L is a set of context states (prototypes), which are clusters of all observed

context vectors l(t).

Markov Decision Process {MDP)/21] if the H, to contain only the last k observations:

1t = {I'll xt—la ..., $t—k3Pt-1, Milli—k}

as shown in Fig. 2.2. The random observations in 1, across time t = 0, l, ...,t are the

source from which the agent automatically generates states in the form of clusters l 6

L, where [3 consists of all possible observations of the last contexts L = {H, | 0 S t}.

We define the state s(t) in Eq. 2.1, which means the state is also kth order MDP.

The predicted consequence p, consists of predicted action a, and the predicted value
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vi, Pi = (anvil-

A major difference between a regular MDP[54, 93] (or HMM[79]) and an

Observation-driven MDP are that the states 3, with a regular MDP are hand-designed

by a human programmer but the states with an observation-driven MDP can be auto-

matically generated (developed). With a regular MDP, the programmer must provide

initial estimates for the prior probability distribution P(so), the state transitional

probability P(s, | x,,s,_,) and the state observation probability P(x, [ 3,). It in

turn, requires that the human programmer establishes a correspondence between the

meanings of the physical events being modeled and the states. Due to the fact that

physical events are not known at the time of programing for the developmental robots,

the regular MDP is not suited for the developmental program. In contrast, the obser-

vation driven MDP requires no prior probability and all the probability distribution

P(p, | l, = l) can be estimated incrementally on-the-fiy.

Another important difference between the states in the traditional MDP and the

observation driven MDP is their very different nature of the representation. The states

in the former correspond to some Objects or events in the world by human hand-design.

The entire set of states is a monolithic representation of the modeled part of the world.

That results in the high brittleness of the agent in dealing with unexpected events.

In contrast, the states in the latter are clusters of Observational vectors. They are

not monolithic in the sense that an Object in the world can correspond to many state

clusters. Further, each cluster may correspond to an observation of several objects

in the world. Therefore, there is no strict one-to—one correspondence between a state
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in the Observation-driven MDP and an object Of the world. It is the behavior of the

agent (e.g., the same picking apple behavior from different views of the apples) that

shows the discrimination and generalization power of the agent.

In practice, we implement the regressor R using the Incremental Hierarchical

Discriminant Regression (IHDR)[116, 115]. Given any Observed (last) context l(t),

the system generates the current state s(t) using Eq. 2.1; the regressor R produces

multiple consequences (primed context) p1(t), ..., pk(t) with a high probability:

{a(t), --..pi(t)} = R(S(t))- (2.4)

Thus, the regressor R is a mapping from the space of the last context [I to the power

set of P:

R: c ..., 2”. (2.5)

R is developed incrementally through the real-time experience. For any t > 0 (after

the birth), it is a total function since it is defined for all elements in C, but it does not

do well for most elements in [I that it has not experienced. It is not an onto function

since its range covers only a very small part of 27’.

Therefore, we need a value system that selects desirable contexts from multiple

primed ones. The value system V(t) takes a set of (e.g., k) contexts from the regressor

R and selects a single context:

V(R(S(t))) = V({pi(t),p2(t)i ~--:Pk(t)}l = a(t) (2-6)
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where 1 S i S k and k varies according to experience. The value function selects

the best consequence p,(t) that has the best value v,(t) in p,(t) = (a,(t),v,~(t)). For

example, V({p,(t),p2(t), ...,pk(t)}) = p,(t) if i = argmax{v1(t),v2(t),...,vk(t)}.

The real-time Q-learning algorithm[110] can be used to estimate the value Of each

consequence p,(t), i = 1,2,...,k, and the agent selects the one (action) with the

highest value.

Therefore, the value system V is a mapping from the power set of P to the space

Of P:

V : 2” H 19. (2.7)

2.3.2 Observation-driven SASE MDP

Defined in Weng[112] a Self-Aware and Self-Effecting agent not only has external

sensors 5,, and external effectors E, that sense and act upon the external environment

(including the robot body), but also has internal sensors S,- and internal effectors E,-

that sense and act upon the internal representation of the brain (not including its

body)

In neuroscience, there is no concept Of internal sensors and effectors. The brain

does not need a receptor to sense the Signals in the brain, Since the brain signals

are already in the desirable form. The concept of internal sensors and effectors is

introduced to facilitate computational understanding of the SASE agent.

Definition 2.3.2 (Awareness) If an agent A senses the states (presence, absence,

diflerent forms) of object b through its sensors, we say that the agent A senses the
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object b. If the agent is able to recall the association between the sensed various states

of b and their resulting effects in a task domain D sensed by the agent, we say that

the agent is aware of object b in the task domain D.

By definition, an agent must use its sensors, the entry point of its sensory architecture

(the input of T), to sense an object. For example, if the state of an object is fed into

the architecture, e. g., through the middle of the regressor R, the motor mapping M or

the value system V, the agent does not sense the object by the definition because the

agent cannot use such information properly as it does with its sensors. In the above

definition for awareness, we consider a task domain D because any awareness has a

scope. A person who is aware of the boiling temperature of water in a domain (e.g.,

in a normal environment) may not necessarily be aware of the boiling temperature of

water in another domain (e.g., lower in a low pressure environment).

In the definition, we require that awareness must associate with various states of b

and the corresponding resulting effects. For example, if a human did not aware of the

correspondence between various states of gravity (presence, absence, strong gravity)

and the resulting effects (e.g., to a falling object), he would not aware of the Object.

With the above definition in hand, we are able to deal with the issue of self-

awareness and self-effecting.

Theorem 2.3.1 (Necessary conditions of awareness) Suppose an agent is

aware of its mental activities in a domain. Then the following points must be

true: (1) It senses such activities using its sensors. (2) It feeds the sensed signal

into its perceptual entry point just like that for external sensors. (3) It recalls the
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association between the different status of the activities and the resulting effects to

the environment.

Proof: Point (1) is true because, according to Definition 7 for the awareness of an

object, the agent must sense the object using its sensors. Point (2) is true because the

status of the Object must be sensed and fed into the entry point for sensors for proper

perception and effect recall. Point (3) is true because the definition of awareness

requires the recall of such an association. El

Based on the previous theorem, let us examine the issue of self-awareness. If an

agent runs a Q-learning algorithm (or any algorithm for that matter) but it does not

sense the algorithm using its sensors which are linked to its entry point for sensors,

the agent is not aware of its own algorithm. For the same reason, humans do not

sense the way their primary cortex works and, therefore, normally they are not aware

Of their own earlier visual processing. This early processing is subconscious, in the

sense that it does not require a conscious decision. However, the voluntary part of

the mental decision process does require a conscious, willful decision. Therefore, in

the architecture design, the parts that require voluntary decisions must be sensed by

the agent, and the sensed signals must enter through the entry point of the sensors.

Definition 2.3.3 The DOSASE architecture is based on the Observation-driven

MDP mental architecture, but additionally, the internal voluntary decision is sensed

by the internal sensors S,- and the sensed signals are fed into the entry point of sen-

sors, i.e., the entry point of the attention selector T. In order to recall the effects

of the voluntary actions, not only is the expected reward value estimated by the value
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system, but also the primed context, which includes not only the primed action, but

also the primed sensation.
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Figure 2.3: The DOSASE MDP architecture for developmental learning.

The architecture illustrated in Fig. 2.3 is the DOSASE MDP architecture. TWO

voluntary internal actions are modeled by E“ for attention selection, and by En for

action release. Both internal actions are sensed by the internal (virtual) sensors 5,,

and 5,2, respectively. The external action (not released) is sensed by the virtual

internal sensor 8.3. Note that when the action is released, it is sensed as external

action from Eel and E82. The primed sensation (which predicts the sensation of 8,1

and 5,2) is used by the value system in selecting the best action according to, e.g.,
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cognitive mapping realizes the reality mapping and the upper one realizes the priming

mapping. GK: gate keeper. an internal effector to actively control the update of the last

context.

the novelty (surprise) or the nature of the reward (e.g., sweet or bitter).

The regressor R maps each state s(t) to a set of multiple primed contexts, from

which the value system selects a single primed context p E P. In other words, the

composite function of R followed by V gives a mapping: V o R : L H P. With a

SASE agent, both external context (sensed by 3,) and internal context (sensed by

3,) are available in l.

2.4 System architecture

A detailed block diagram of the architecture of a developmental learning system is

shown in Fig. 2.4. Each internal and external action output feeds back, through a

delay unit, into the next sensory input. This is required by the SASE agent model:

the agent must sense and perceive what it does, internally and externally. The input

to a sensorimotor system, indicated by the two left-most arrows in Fig. 2.4, is its
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target for perception and cognition.

A sensory mapping[125] is needed wherever an attention selection effector (local

analysis) or dimension reduction is needed. As shown in Fig. 2.4, a sensory mapping is

used to enable attention selection from the current sensory input vector and another

sensory mapping enables the attention selection Of the current input, the previous

context, or both. As mentioned earlier, each sensorimotor system has two cognitive

mappings, the reality mapping R and the priming mapping F. A near future context

from R is useful for carrying out Skilled procedures. A far future context from F is

needed to predict the future consequence (e.g., 10 frames or more into the future).

The source of input to the priming mapping has two alternatives: the same input

as the reality mapping (as shown in the figure) or the primed context output from the

reality mapping. The former allows more accurate control of the timing in the primed

context while the latter may enable more efficient “abstraction” of the context in the

priming mapping, Since the primed context from the reality mapping has already

taken the output action into account (e.g., the discriminant analysis by the IHDR

tree in section 4.4).

The priming mapping, implemented by a cognitive mapping engine, IHDR needs

a prototype updating queue whose function is to predict far future context using the

Q-learning algorithm[93] in a recursive way. The reality mapping does not need such

a queue because it only predicts the next near future.

The motor mapping of a sensorimotor system generates concise representation for

stereotyped actions, in addition to the function of action release.
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2.5 Major components

The architecture in Fig. 2.4 divides the information processing into three major map-

pings: the sensory, cognitive and motor mappings. The sensory mapping takes sen-

sory inputs. It may be followed by another sensory mapping to increase the extent

of the coverage of space and time. The sensory mappings are followed by a cognitive

mapping.

The basic difference between the sensory mapping and the cognitive mappings is

that the sensory mapping does not use the information of motor output for its feature

space development, but the cognitive mapping does.

The motor mapping has two functions: (1) generating a higher motor representa-

tion in Space and time for motor output space and (2) receiving signals from cognitive

mappings in terms of a higher motor representation and recovering the detailed con-

trol signal for every motor that it handles.

In this section, we first discuss these three major mappings, followed by an intro-

duction Of innate value system, and finally an algorithm is given to summarize the

sensorimotor architecture.

2.5. 1 Sensory mapping

The sensory mapping provides representation for all possible receptive fields in space

and time and allows attention selection. In the past the role of representation has

been well recognized but the purpose of attention selection has not been adequately

studied.
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Fig. 2.5 shows the hierarchical spatiotemporal organization of sensory mapping.

The major functions of the sensory mapping include:

1. Grouping different sources of sensory input (e.g., different pixels in an image or

visual and auditory inputs) in space and time. The term “sensory” should be

understood as including both raw sensory inputs and processed internal signals.

2. For the grouped set of input, maintaining a complete representation for a hier-

archy Of all possible (sampled) receptive fields, for the purpose of attention. By

sampled receptive fields, we mean a large but finite number Of receptive fields

at different positions and Sizes in Space and time.

3. Automatically deriving features in the combined space as new representation.

It cannot assume a predetermined representation and therefore, it does not use

a symbolic representation.

4. Reducing the dimensionality of the new representation, while minimizing the

loss Of necessary information.

5. Execution of attention selection as an attention effector, controlled by a signal

from other parts of the brain (top down control).

In [125], a simplified sensory mapping, Staggered Hierarchical Mapping (SHM), is

implemented. SHM uses the Incremental Principal Component Analysis (CCIPCA)

method to automatically develop orientation sensitive and other needed filters. In

addition, the internal representation generated by SHM for receptive fields at different
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Figure 2.5: The spatiotemporal organization of areas in the sensory mapping. The ellipses

represent receptive fields covering both space and time. Areas are organized in a hierarchical

way, and the output of an earlier (low order) neural area is used as input to the later (higher

order) neural area. Along the pathway of information processing, a neuron in a later area.

has a larger receptive field than one in an early area. In order to make the correct signal

available at the right time for the right input line, we use a time shifting technique. Acting

as a time delay unit, the shifter moves each signal to the next line at each time instant.

locations and Sizes is nearly complete in the sense that it does not lose important

information.

2.5.2 Complementary Candid Incremental Principal Compo-

nent Analysis

Complementary Candid Incremental Principal Component Analysis (CCIPCA) is a

stochastic approximation algorithm to estimate eigenvalue and eigenvector iteratively.

It is the major tool to implement the sensory mapping.

PCA is a. well-known technique in data compression and feature extraction. It

gives a linear transform that converts a set of d-dimensional data into a lower-

dimensional space by minimizing the error in the least mean square (LMS) sense.
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Therefore, PCA is used to generate new representations from sensory inputs.

A well-known approach to PCA is to solve an eigensystem problem. Given A as the

sample covariance matrix of the data set, one can find its eigenvectors and eigenvalues,

sort the eigenvalues in descending order, and construct a k x d matrix T with the

rows being the eigenvectors corresponding to the largest k eigenvalues. The matrix T

is the sought transform [31]. This is the basic idea behind most techniques for PCA,

such as the QR method [35]. However, since this approach requires an estimate of

the covariance matrix, the data set usually needs to be completely available at the

computation time. This is not appropriate for a developmental robot because of two

reasons. First, a developmental robot is an online agent, which senses and responds

to the environment continuously. It should not wait until all data is accumulated

before doing the processing. Second, when the dimension of the data is high, both the

computation and storage complexity grow dramatically. For example, in the eigenface

method [57] [104], one of the promising face recognition methods that involves PCA,

a moderate grey level image is of 88 rows and 64 columns, which results in a 5632-

dimensional vector. Since the sample covariance matrix of a data set of d—dimensional

random vectors contains d(d + 1)/2 independent numbers, this amounts to 15,862,528

numbers!

[120] proposes an algorithm, called complementary candid incremental PCA

(CCIPCA), to incrementally compute the principal components of sequentially ar-

rived samples without estimating the covariance matrix. CCIPCA has been shown

empirically to be a very efficient estimation algorithm compared with SGA and GHA

for high-dimensional data [127].
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2.5.3 The cognitive mapping: IHDR tree

The R and F mappings in Fig. 2.4 are implemented by two Incremental Hierarchical

Discriminant Regression (IHDR) trees [47].

Learning a function f : X I—+ y in real time for high-dimensional data remains a

nontrivial problem, particularly when the complexity of the function to be estimated

are unknown. By surveying the literature of regression in statistical learning, one can

identify two classes of methods: global model fitting methods and local model fitting

methods.

Local model fitting methods (e.g., IHDR) use temporal-spatially localized (thus

computationally efficient) models, in the meanwhile, increase the complexity auto-

matically (i.e., the number and organization of local models) to account for the non-

linearity and the complexity of the problem. They are more suited for incremental

real-time learning, especially in the situation where there is limited knowledge about

the scene and the robot, itself, needs to develop the representation of the scene in a

generative and data driven fashion.

IHDR generates local models to sample the high-dimensional space X x y sparsely

based on the presence of data points in a vector quantization (VQ)[58] manner. IHDR

enjoys two nice properties: First, IHDR derives automatically discriminating feature

subspaces in a coarse-to—fine manner from input space X. Discriminating features

are automatically derived discriminating features at the internal nodes of the tree.

The features are most discriminative in the sense that they maximize the trace (or

the determinant) of between-class scatter. In this way input components that are
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Figure 2.6: Regions in the input space marked 1'.j where i is the index of the parent region

while j is the index of child region. The leaves of the tree represent the finest partition of

the space. The decision boundary of the region is of quadratic form.

irrelevant to the mapping’s output are disregarded to achieve better discrimination

and generalization. Second, IHDR organizes its local models in a hierarchical way,

as shown in Fig. 2.6. IHDR’s tree structure recursively excludes many far-away local

models from consideration (e.g., an input face does not search among nonfaces),

thus, the time to retrieve and update the tree for each newly arrived data point x

is O(log(n)), where n is the size of the tree or the number of local models. This

extremely low time complexity is essential for real-time learning with a very large

memory.

2.5.4 Motor mapping

A major goal of motor mapping is to generate a concise representation for stereo-

typical motor trajectories so that skilled actions that involve many motors can be

represented by high-level motor primitives in a lower-dimensional space. As shown in

Fig. 2.7, the architecture of the motor mapping is very similar to the spatiotemporal
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Figure 2.7: The motor mapping as a reverse application of the sensory mapping, but with

signal reconstruction.

sensory mapping but it works backwards. Motor mapping receives lower—dimensional

“feature” space signals (motor primitives) to synthesize higher-dimensional raw motor

signals. Motor mapping has many similarities with those of sensory mapping.

Instead of having attention selection in sensory mapping, motor mapping has a

gating system. The gating system plays two roles. one is the role of gating with which

the motor mapping evaluates whether the intended action has sufficient action thrust

to pass the gate threshold. The other is the role of subsumption [13] in subsuming

the lower-level action by the integrated action, as shown in Fig. 2.8.

The primed action from the cognitive mapping includes the desired control sig-

nal for each effector as well as for action thrust. The action thrust indicates how

consistently the action is issued. The higher the action thrust, the more consistent

the action generator is. Therefore, enough thrust must be generated to pass the gate
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Figure 2.8: An illustration of a simple motor mapping for a single effector. The left is a

gating mechanism and the right is a subsumption mechanism.

before an action can be issued to the effector.

Subsumption is needed where inconsistent actions for a single effector are issued

from multiple sources, and each source has a different priority. One typical use is that

the action derived from a higher level (more sensory integration) has a higher priority

over the action derived from a lower level (less sensory integration). The subsumption

belongs to innate internal behaviors. When the robot becomes more mature, the

selection of behaviors from low levels can be overridden by learned (voluntary) internal

behaviors.

If a single motor is considered, motor mapping includes only a gating system for

each of the single motor just like the subsumption mechanism for integration from

other sensorimotor systems as shown in Fig. 2.8. Through developmental experience,

the motors that are highly correlated enable the growth of a new part of motor

mapping, denoted as an attached (top right) block to the basic motor mapping in

Fig. 2.4. The new part of the motor mapping plays the corresponding role of the gating

system, but it is for correlated multi-motor actions. In addition, it performs not only

the gating function, but also the reconstruction of higher-dimensional raw motor
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signals from a lower-dimensional “feature” representation (higher motor primitives).

In [128], an action gating system is implemented on the SAIL robot to decide

whether an action is actually triggered.

2.5.5 Innate value system

Given the last context I (t), the IHDR tree finds the best matched context P' which

is associated with a set of primed contexts {p1, ..., pk). How does the controller select

the best primed context? A Q value with each primed context is needed. This is

represented by a list Q = {q1, q2, ..., qk}, in parallel with the primed contexts. Thus,

each primed context consists of three components, (rm-(t), up,- (t), q,), i = 1...k.

Definition 2.5.1 The innate value system chooses the action that has the best value

The value system receives a list of primed contexts at each time instant t and oc-

casional environment reward signal r(t), which is from the biased sensors of the robot

(e.g., the aversive sensors such as a “bad button” or appetitive sensors such as a “good

button”). Each element in the Q vector starts from an initial value, e.g., a zero value.

The updating rule that we summarize here is adapted from Q-learning [109].To keep

the temporal order of the latest retrieved primed contexts for real-time local propa-

gation, a primed context update queue (see Fig. 2.4) is needed. The future primed

context prototype (including reward) propagates back to the previous prototypes re-

cursively for each time frame in the context update queue. Other prototypes (not in

the queue) are not affected and thus are not updated.
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2.5.6 Sensorimotor algorithm

We first define a sensorimotor system.

Definition 2.5.1 A sensorimotor system is a system that maps a group of sensory

inputs to a group of effector outputs. In addition, it may take some inputs from some

sensorimotor systems and send outputs to other sensorimotor systems.

In neuroscience, a sensorimotor system typically refers to a low-level sensorimotor

system, such as a reflexive touch subsystem. However, the sensorimotor system, as

defined here, is not limited by this convention. It can model both complex and simple

sensorimotor subsystems. The author holds a view that all human higher level brain

activities, such as language and thinking, are sensorimotor activities. My work focuses

on the development of value systems and sensorimotor systems for robots.

The following is a summary of a sensorimotor system with an innate value system:

1. Initialize the mental cycle count to 0.

2. Grab the current input from the sensory mapping to form the last context

l(t) = (x(t),a(t))-

3. Go through the sensory mapping to reduce the dimensionality of l(t) while

applying the internal actions to the attention selection effector of the sensory

mapping.

4. Retrieve the reality (cognitive) mapping B using l(t) to find the best matched

prototype l’ in the matched leaf node of the cognitive mapping. Its output part

is a list of primed near contexts (Ar(t), X,.(t)).
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10.

11.

12.

13.

14.

The innate value system selects the near primed context p,(t) from the lists

(A,(t),X.(t)).

Retrieve the priming (cognitive) mapping F from I (t) to produce the primed

far contexts (Af(t), Xf(t)).

The innate value system selects the far primed context pf(t) from the lists

(AIULXIUD-

Feed the actions in p,(t) and pf(t) through the motor mapping. The current

internal action determines whether primed near context or primed far context

receives attention in the motor mapping. The attended primed context is p(t).

. Update both the reality and priming mappings using the primed context p(t). If

there is an imposed action from the environment (supervised learning), replace

the corresponding part of ap(t) in p(t) = (ap(t), rp(t)).

Spatially update the primed context lists (A,(t), Xr(t)) and (Af(t), Xf(t)) using

the Incremental Vector Quantization technique.

Temporally update primed contexts in the prototype update queue for the prim-

ing mapping F.

Push the current primed context p(t) into the prototype update queue from the

tail and pop out the oldest primed context.

The motor mapping produces internal and external actions.

If the mental cycle time has not been used up, sleep for the remaining time so

that the exact time actually spent by this cycle is equal to the fixed pre-specified

mental cycle.
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15. Increase mental cycle count by 1 and go to Step 2.

The SAIL robot has successfully tested these major components of the proposed

architecture. Other experiments on SAIL include: (1) vision-guided navigation[117],

(2) grounded speech learning[118], (3) communicative learning[128], (4) novelty

and reinforcement learning in the value system[41], and (5) sensory mapping

development[125].

2.6 The SAIL robot

All the experiments presented in the following chapters have been validated on our

SAIL robot (Fig. 2.9). SAIL is a human-size mobile robot house-made at Michigan

State University. Its hardware components are shown in Fig. 2.10 and 2.11.1.

The drive-base is adapted from a wheel-chair, which enables SAIL to operate both

indoor and outdoor. It. has two driving wheels in the middle and three supporting

wheels, two front ones and a rear one. This drive-base does not have steering wheel.

Its turning is achieved by the differential speed of two driving wheels.

Other two major effectors are the robot arm and the pan-tilt units. The six-

joint SCORBOT—ER III robot arm was developed by Eshed Robotec (Fig. 2.12). Its

controller can control eight motors totally. In addition to the six joint motors, we

used one of two spare channels to control the rotary table which serves as the “neck”

of the SAIL robot. The two Pan-Tilt Units (PTU) are located in the “head” of the

 

lFigures 2.10 and 2.11 are obtained from W.S. Hwang’s PhD dissertation [50] with the permission

of the author.

56



 
Figure 2.9: The SAIL robot at Michigan State University.

SAIL robot. They are produced by Directed Perception, Inc. Mounted on these PTUS

are two CCD cameras as the “eyes” of SAIL. By controlling each of these PTUS, the

“eyes” may have pan and tilt motion to cover larger vision field.

The SAIL robot has four pressure sensors on its torso. They can sense push

actions and force. 28 touch sensors are distributed on its arm, neck, head, and

bumper, which allow human to teach its behaviors by direct touch. These 32 inputs

are multiplexed into an eight-channel A/D converter (ADR 2000) using hardwired

analog multiplexers.
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Figure 2.10: The SAIL robot system diagram: left side view.
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Figure 2.11: The SAIL robot system diagram: right side view.
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Figure 2.12: The SAIL robot: the Eshed robot arm.

The Eshed controller, the PTU controllers and the ADR 2000 A/D converter are

connected to an AccelePort 8e multiport serial adapter from Digi International Inc.,

which enables the serial communication with the host computer.

The “eyes” of the SAIL robot are Panasonic GP-KSISZ industrial Color 1/2 inch

CCDs with auto gain control and auto white balance. Two Matrox Meteor II video

cards are used for real-time image capturing and digitization.

The “ear” of the SAIL robot is a WMS-PRO wireless microphone system. The

wireless microphone operates within a range of 250 feet. It is connected to a sound

card (Creative Sound Blaster 16) on the host computer.

Currently, the host computer is a Xeon 2.2GHz dual-processor workstation with

1GB RAM. This allows a real-time memory recall and update as well as real-time ef-

fector controls. The monitor is a ViewSonic ViewPanel VPA138 14—inch LCD display,
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which is flat, light and easy to carry.

The power of the SAIL robot is provided either by heavy-duty batteries or by line

power. An automatic power system APS 750 from TRIPP LITE power protection is

used to switch between these two sources.

2.7 Summary

This chapter introduces the Developmental, Observation driven, Self-Aware, Self-

Effecting, Markov Decision Process (DOSASE MDP) model for developmental learn-

ing. The system architecture is presented. There are three major components, e.g.,

sensory, cognitive, value system, and motor mappings. In the next two chapters, we

will focus on cognitive mapping and value system.
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Chapter 3

Locally Balanced Incremental

Hierarchical Regression

In this chapter, we propose the Locally Balanced Incremental Hierarchical Discrimi-

nant Regression (LBIHDR) algorithm as the engine of cognitive mapping for learning

in non-stationary environments.

3. 1 Introduction

Decision trees (class labels as outputs) and regression trees (numerical vectors as

outputs) organize the data in a hierarchy so that retrieval time can be logarithmic,

which is essential for the AMD paradigm.

Traditionally, classification and regression trees use a univariate split at each in-

ternal node, such as in CART [10], C50 [77] and many others. This means that the

partition of input space by each node uses a hyper-plane that is orthogonal to an
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axis in the input space X. 0C1 [67] and SHOSLIF tree [96] are two methods for

constructing oblique trees. 0C1 uses iterative search to find a split. SHOSLIF uses

the principal component analysis (PCA) and the linear discriminant analysis (LDA)

to directly compute splits. The Hierarchical Discriminating Regression (HDR) algo-

rithm [47] casts both classification problems and regression problems into a unified

regression problem. Virtual labels in the output space provide virtual labels for mem-

bership information in forming clusters in the input space.

If training samples are images and video data, the problem becomes harder. These

applications give rise to high dimensional data with strong correlation among input

components. CART, C5.0, 0C1 and other published tree classifiers are not designed

for highly correlated high dimensional data. The problem becomes even harder if the

learning must be incremental.

The incremental regression problem is as follows: An unknown function y = f(:13)

generates a stream of input—output pairs arrives as ($1,341), ($2,312), ..., where :5,- is the

input to the system and y,- is the output from the system. The goal is to approximate

function f incrementally by a regressor f,, where f,- is based on previous approximator

f,_1 and the new samples (x,, y,), 2' = 1,2, Fig. 3.1 shows the procedure. In AMD,

the regression technique has to satisfies all of eight requirements of AMD.

Generally, the incremental hierarchical discriminant regression (IHDR) by Hwang

and Weng [49] grows the regression tree incrementally with the eight requirements

as the designed goal. However, IHDR face several challenging problems. First, some

data sets have high-dimensional data in input space while there are only few labels in

output space. Some financial and marketing data only have two labels. For instance,
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Figure 3.1: Y-clusters in space y and the corresponding X-clusters in space X. Each

sample is indicated by a number which denotes the order of arrival. The first and the

second order statistic are updated for each cluster. The first statistic gives the position of

the cluster, while the second statistics gives the size, shape and orientation of each cluster.

usually there are two kinds of customers in the market: satisfied or not. In this

case, the dimensionality of discriminant subspace of IHDR is only one, which is not

enough to partition a high-dimensional input space. Second, in real-time learning the

statistics, a segment of sensory stream is not stationary, but is typically very biased.

Consider vision-based navigation. If the robot learns by trying first in a straight

corridor, almost all incoming sampr are associated with the control signal (“Go

straight”). A node must spawn children if the number of stored prototypes in it hits

a certain limitation. Otherwise, the retrieval time increases linearly. This situation of

biased statistics is true with human mental developmental [29]. The above problems

are very challenging and have not been addressed by the existing literature. We

proposed a novel node self-organization and spawning strategy which generates more

discriminant subspace by forming multiple clusters for one class and balancing the
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number of samples in each cluster. The requirements for real-time and incremental

learning are satisfied too.

3.2 Locally balanced incremental hierarchical dis-

criminant regression

3.2.1 Incremental hierarchical discriminant regression

Many problems like content—based retrieval, vision-based navigation and intelligent

data engineering can be formulated as a complicated function which maps high-

dimensional input and the current state to low-dimensional output signals. We use a

decision tree to approximate this function. In order to build such a tree, two types of

clusters are incrementally updated at each node of the IHDR algorithm — y-clusters

and x—clusters [47]. The y-clusters are clusters in the output space y and x—clusters

are those in the input space X. There are a maximum of q clusters of each type at

each node. The idea is that each node models a region of the input space using q

Gaussians.

For each new sample (any), 3; finds the nearest y-cluster in Euclidean distance

and updates the center of the y-cluster. This y-cluster indicates which corresponding

x-cluster the input (3:, 3;) belongs to. Then, the a: part of (22,31) is used to update the

statistics of the x-cluster (the mean vector and the covariance matrix). Each node
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keeps up to q x-clusters. The centers of these q x-clusters are denoted by

C ={C1,C2,...,Cq|C1' E X,i = 1,2, ...,q}. (3.1)

In online-learning, the robot updates the tree’s statistics incrementally for each

new training example. The average of n input examples x1, x2, ...,xn can be recur-

sively computed from the current input data 23,, and the previous average i("‘1) by

equation (3.2):

— I
i,(n+l) = n #("lim + +p(n)

n .2
n+1 n+1$+1 (3)

where ”(71) is a parameter. If p(n) > O, the new input gets more weight than old

inputs. We called this implementation the amnesic average. The covariance matrix

can be updated incrementally by using the amnesic average too.

Finn-+1) : n—l;p(n)1a;(rn) + 1+:(n)($n+1 _ 5(n+1))($n+1 _ T(n+l))T (33)

If the node is mature enough (the number of samples hits a certain limitation), it

will spawn children, which means the region of space is modeled by a finer Gaussian

mixture. Thus, a coarse to fine approximation of probability distribution of the

training samples is realized. A more detailed description of the algorithm can be

found in [49].
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3.2.2 Locally balanced tree and time smoothing

However, IHDR faces several challenging problems. First, many applications in intel-

ligent data engineering only have two labels in output space, for example, whether a

customer switches from one company to another one. As shown in Fig. 3.2, supposed

there are two classes specified by “+” and “-”. The input dimensionality is three. m1

and m2 are two vectors describing the centers of the two classes. The discriminant

vector D1 is determined by Eq. 3.4.

01 = S;1(m1 — mg) (3.4)

According to the IHDR algorithm described above, the dimensionality of within-class

scatter matrix Sw is one because q = 2 and Sw is (q -— 1) x (q — 1). The discriminant

vector is along the direction of 7m — m2. Obviously, D1 is not enough to partition

these two classes.

The second challenging problem is caused by the nonstationary statistics of a

segment of sensory stream. Given vision-based navigation as an example, if the robot

learns by trying first in a straight corridor, almost all incoming samples are associated

with the control signal (“Go straight”). In order to make sure that the learning is

conducted in real-time, a node must spawn children if the number of stored prototypes

in it hits a certain limitation. Nonstationary statistics causes the following problems:

(a) A segment of output contains only few values, which is similar to the first case.

In some extreme cases, only one value for y. (b) The performance of a tree cannot

degrade after spawning children from a node. It is challenging for new children to
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Figure 3.2: A one-dimensional discriminant subspace is formed for two classes.

maintain the performance realized earlier by the experienced parent. (c) Due to a lack

of sample statistics for finer prototypes, each leaf node contains a moderate number

(up to N) of micro-prototypes in the form of (say), where (53,37) is the average of

a few similar samples. Spawning children requires distribution of micro-prototypes

which could slow down the system response without a carefully designed spawning

strategy. In order to tackle these problems, we proposed a new node self-organization

and spawning strategy.

Suppose there are two classes in a task, say c1 (“+”), 02 ( “-"), as shown in Fig. 3.3.

The number of micro—prototypes of each class is N,, i = 1,2. The number of clusters

in a node is q. If q > 2 (say q = 3), we try to allocate some micro-prototypes of CI to
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those clusters, which are not in use. Each class in the old tree could be mapped to

multiple clusters in the balanced tree. For the ith class, the algorithm will generate

q,’ clusters in the new node.

I Ni

(12' = (17V: (35)

where N, = total number of micro-prototypes in this leaf node. In Eq. 3.5, the q;

could be float. Eq. 3.6 converts it to an integer.

q; = [Z qgi — 221‘;- (3.6)

where i = 1, 2, ..., Ny, Ny is the number of classes of training samples. ‘q‘; is defined

by Eq. 3.7, which guarantees that at least one cluster is generated for each old class.

I

Eli = max{1, Qi} (3-7)

Fig. 3.3 shows the balanced node. Originally, there were 2 clusters. Now, there

are 3 clusters. Two clusters are formed for c1. A two-dimensional subspace passes

the head tips of the three center vectors: m1, m2 and m3. The scatter vectors are

defined by the following equation:

where 2' = 1, 2, 3, fit is the mean of all center vectors. Let S be the set that contains
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Figure 3.3: Locally balanced node. Two clusters are generated for class 1. a more

discriminant subspace is formed.

these scatter vectors: S = {silt = 1, 2, 3}. The discriminant subspace spanned by S,

denoted by span(S), consists of all the possible linear combinations from vectors in S.

By applying Gram-Schmidt Orthogonalization (GSO), we can get two orthogonalized

discriminant vectors DI and D2. Obviously, more discriminating features are derived

from the new node. We should note that the algorithm only balances the micro-

prototypes in each node, while the entire tree may not be strictly balanced. So this

is a local balancing method.

After the node is balanced, the statistics of the new structure must be generated.

However, in real-time navigation, the updating frequency is around 10Hz. If the robot

calculates the statistical information in one time slot, it will get stuck in the road,
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which is not allowed. In order to smooth the updating time for each new sample,

the algorithm keeps two sets of statistics. The old statistic is used to build the tree.

At the same time, the new balanced statistic is updated incrementally after the old

statistic is half-mature (the number of micro-prototypes in the node hits half of the

limitation). When the new statistics is mature, the old one is thrown away and

micro-prototypes are redistributed and updated based on the new structure. This

smoothing strategy works very well for real-time navigation. When the number of

micro—prototypes hits the limitation N, a node should spawn children based on the

new statistics. The performance cannot degrade after spawning. This can be resolved

by redistributing micro-prototypes.

3.2.3 Algorithm

Procedure 2 Update-tree: Given the root of the tree and sample (:r, y), update the

tree using (1:, y).

1. From the root of the tree, update the node by calling Update-node.

2. For every active cluster received, check if it points to a child node. If it does,

explore the child node by calling Update-node.

3. Do the above steps until all leaf nodes are reached.

4. Each leaf node keeps micro-prototypes (23,-, 3],) that belong to it. If y is not given,

the output is 3],- if :5,- is the nearest neighbor among these micro-prototypes.

5. If y is given, do the following: If ”1' — 113,-“ is less than certain threshold, (any)
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updates (33,-, 37,-) only. Otherwise, (it, y) is a new sample to keep in the leaf.

6. If the leaf node is half-mature, call Balance-node.

7. If the number of micro-prototypes hits the limitation required for estimating

statistics in the new children, the leaf node spawns q children and is frozen.

The micro-prototypes are redistributed through multiple steps.

Procedure 3 Update-node: Given a node N and (Lay), update the node N using

(2:, y) incrementally.

1. Find the top matched :r-cluster in the following way. If y is given, do (a) and

(b); otherwise do (b).

(a) Update the mean of the y-cluster nearest y in Euclidean distance. In-

crementally update the mean and the covariance matrix of the :t-cluster

corresponding to the y-cluster.

(b) Find the nearest III-cluster according to the probability-based distances. Up-

date the z-cluster if it has not been updated in (a). Mark this central

z-cluster as active.

2. Return the chosen as-cluster as active cluster.

Procedure 4 Balance-node: When the total number of micro-prototypes in this leaf

is equal to half of the limitation, then balance the micro-prototypes of each cluster.

Ny is the number of classes in the old node.

1. For each y, ifq g Ny, do y-space clustering.
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2. Otherwise, (q > Ny), sort X-clusters according to the number of micro-

prototypes (increasing).

3. Calculate the number of clusters for each old class by using Eq. ( 3. 6) and Eq.

( 3. 7).

4. Conduct K-mean algorithm [28/ to generate new clusters. Reallocate micro-

pmtotypes to each new cluster.

5. Calculate new statistics for the balanced node.

3.3 The experimental results

In order to show the effectiveness of the new algorithm, we applied our method to

two kinds of problem: financial data engineering and vision-based navigation. First,

we tried synthetic data.

3.3.1 Experiments using synthetic data

The motivation of using synthetic data for testing is to investigate the behavior of

balancing a tree. This experiment used a data set that has two clusters. The number

of dimension is two. Each cluster are modeled by a Gaussian distribution. The centers

of the clusters are at (—2,-2) and (2,0), respectively. q is set to 3. The covariance matrix

are:

10 62
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One cluster has 20 micro-prototypes; another cluster has 40. Fig. 3.4 shows the

initial distribution of these two clusters. Fig. 3.5 shows the balanced distribution,

  
Figure 3.4: Initial distribution, two clusters.

now we have 3 clusters. Obviously, the micro-prototypes are balanced in the new

-2- 1 0

  
Figure 3.5: The balanced distribution, 3 clusters.

node. The center of each cluster is specified by a star.
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3.3.2 Experiments using marketing data

Two kinds of marketing data were used to test the algorithm (Tab. 3.1). The first

data set is about the ranking of decision making. Totally there are 12404 samples.

Two thirds of all samples were used for training. The remaining samples were used

to for testing. The input dimensionality is 12 and there are 16 rankings of decision

making. The second data set is the ranking of customer satisfaction. Only two types

of labels are provided: satisfied or not.

Table 3.1: Financial data sets
 

 

 

Data Training Testing Input Classes

set samples samples dimensions

Datal 9306 3098 12 16

Data2 1768 590 18 2       
 

We compared the error rate of the proposed LBIHDR algorithm with HDR, IHDR

and other methods. As we can see from Tab. 3.2, if the number of classes is larger

(data set 1), then the LBIHDR has the same performance as that of IHDR. However,

data set 2 shows that the new algorithm improves the recognition rate. In this

experiment, q = 6 and N; = 100. The the dimensionality of discriminant space is five

while that of the original IHDR is only one. More discriminant subspace is formed

and the error rate reduces from 12.92% to 8.22%.

3.3.3 Experiments using navigation image data

We applied the Locally Balanced IHDR algorithm to vision-based indoor navigation

on our SAIL robot, as shown in Fig. 3.6. The robot is trained online on second floor
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Table 3.2: Error rates of IHDR and HDR.

 
Figure 3.6: SAIL robot navigating through the corner of the corridor.

in the Engineering building of our University. In the training phase, at each time

interval. the robot accepts a pair of stereo images and a control signal, incrementally

updates its context which contains past sensory inputs and actions, and then updates

the statistics of the decision tree. In the testing phase, a pair of input images is

used to retrieve the best match. The associated control signal of the match is the

output. This is a very challenging problem, which approximates the mapping from

high dimensional input space into a low dimensional output space by using a decision

tree and all the computations have to be performed in real time (about 10Hz). Some

of the example input images are shown in Fig 3.7.
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Figure 3.7: A subset of images which are inputs to guide the robot turn.

The robot is trained around the corridor. In each trip there are about 5000

thousand pairs of images and corresponding control signals. In table 3.3, a total

of 5443 color stereo images with the corresponding heading directions were used for

training (one trip). The resolution of each image is 30 by 40. The input dimensionality

of the IHDR algorithm is 30 x 40 x 3 x 2 = 7200, where 3 is the length of context.

We used the other 5764 (another trip) stereo images to test the performance of the

trained system. There are three kinds of output control signals: “Go Straight”,

“Left”, “Right”. We performed both resubstitution and disjoint tests with different

rejection measurements. The parameters are defined as follows: q = 2, the limitation

of the number of samples in each node is 200. In table 3.3, R stands for resubstitution

test, D stands for disjoint test. The performance is very good for such a large high

dimensional data set. The rejection measure determines whether a coming sample is

used to update the tree or not. If the distance between the coming sample and the
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retrieved micro-prototype is less than certain measure, the sample would be rejected.

For example, if the rejection measure is 0, then all samples will be saved in the tree.

In this case, the tree is about 130Mb. If the rejection measure is 2000, the tree is

only 45Mb and the retrieval speed is faster.

Table 3.3: Resubstitution and disjoint tests for two trips with different rejection

measurements.

 

Rejection Training Correct Correction

 

 

measure set number rate

0 (R) 5443 5443 100%

2000 (R) 5443 5389 99.01%
 

0 (D) 5764 5434 94.28%

2000 (D) 5764 5412 93.88%

 

     
 

The performance is improved significantly compared with the existing IHDR [49].

As shown in Tab. 3.4, in the resubstitution test, the recognition rate of LBIHDR

can reach 100%. In the disjoint test, the recognition rates of LBIHDR is 94% while

IHDR can only reach 87%. The retrieval time is also less because the new algorithm

balances the distribution of samples in each node. The result testifies that LBIHDR

works very well for nonstationary data like visual images in navigation. The tree

Table 3.4: Comparison of IHDR and LBIHDR.

 

 

 

    

Method Resubstitution Disjoint Testing

test Test time (mm)

IHDR 92.72% 87.35% 28.6

LBIHDR 100% 94.28% 15.7 
 

structure of the navigation experiment is shown in Tab. 3.5. The left part is the

number of nodes in each layer; the left part is the number of samples in each layer.
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Because the number of samples is balanced in each internal node, the tree will not

grow too deep (only four level) that helps build up more reliable statistics in each

node.

Table 3.5: The tree structure of the navigation experiment.

 

 

 

 

 

Layer No. of nodes No. of samples

1 1 0

2 8 335

3 48 2527

4 64 2702    
 

In order to guarantee that IHDR can be implemented in real time, we applied

the time smoothing algorithm. Fig. 3.8 records the updating time for each sample

in different steps. Here only shows the time profile of 715 samples. The first row

shows the total learning time of each sample. The second row shows the updating

time except doing local batch and redistribution. Time records of calculating new

statistics and redistribution are shown in third and fourth rows respectively. When

the node is half mature (i.e, the node already has 100 micro-prototypes), the new

statistics are computed through multiple steps; when the node is mature (i.e, the node

has 200 micro—prototypes), micro-prototypes are redistributed. At these moments,

the learning time reaches peaks. However, with the time smoothing algorithm, the

updating rate still could reach about 3—4Hz, which is extreme important for online

learning.

79



 f: l l .l

 

 

 

 

 

 

     

g .

E .2 .

_’ 0 1 1 i n 1 L J.

0 50 100 200 300 400 500 600 700 800
a . I I I T T I I

.E

a E
El-

: 0 My A4 .r-L.~...JWLP

0 50 100 200 300 400 500 600 700 800
g . r 1 v v v

.9 g
g t-

0 0 J L 1 L 1 L L h 1

8 0 50 100 200 300 400 500 600 700 800
'5 , r r w r r r T

3

g E
.‘L’ l-

g 0 _____1 IL 41 4 w .L. _ _L___flL____..-

m 0 1 200 300 400 500 600 700 800

Step

Figure 3.8: The timing recording for learning a set of 715 images.

3.4 Conclusions

In order to solve the major problems due to the nonstationary nature of input-output

experience and fewer labels in output space with high-dimensional input space, a

new node self-organization and spawning strategy is proposed. Partition of the input

space is carried out without relying on a sufficient number of output clusters. Multiple

clusters could be generated for one class. The number of samples in each cluster is

balanced. Thus, more discriminant subspace can be formed. The performance of

the tree is stable before and after children spawn. The distribution of computational

load over time during spawning avoids a significant slow down of the system response

time. The experiments with marketing data and the real-time, incremental learning

of vision-based navigation showed that the new locally balanced IHDR technique

performed well in the different applications.
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Chapter 4

The Value System of A

Developmental Robot

In this chapter, we propose a value system based on novelty and reinforcement learn-

ing will be proposed. The working of the value system is demonstrated by an exper-

iment that producing visual attention controls.

4.1 Introduction

Developmental agents face a continuously changing stream of input data. If it sits

there and does nothing, how can it develop mentally? Then we have to ask why a

developmental robot should do anything in the first place: “Something has to start

the process in the first place. Something has to motivate infants to look, to reach, to

mouth, to seek out information about their worlds” [98]. This issue also arises in the

case of a developmental robot. what drives agents to explore their environment and
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learn about it? How to model the motivation? Psychologists addressed this issue by

introducing the concept of intrinsic motivational forces such as “drives.” Piaget [74]

suggested that the need to adapt to the environment drives infants’ behaviors. The

essence of these proposals is that this internal driving force builds biases into the

agent. These biases make the agent prefer one behavior over another. That is, they

encode what is value for an agent.

4.1.1 The value system of a developmental robot

An indispensable part of a developmental program is its value system, which signals

the occurrence of salient sensory inputs, modulates the mapping from sensory inputs

to action outputs, and evaluates candidate actions. It provides motivation that drives

mental development. Since a developmental robot is not task specific, without a value

system, it simply does nothing. This is very different from a traditional robot which

is designed to perform a specific task only — the task-specific representation and rules

have already been programmed into the robot.

The value system of the central nervous system of a robot at its “birth” time is its

innate value system. It further develops continuously throughout its “life” experience.

A value system at a particular mental age after birth is called a developed value

system.
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4.1.2 Innate value system

The innate value system of a developmental robot is designed by the programmer. It

includes the following two aspects:

1. innate spatial bias.

2. innate temporal bias.

The term “spatial” here means different sensory elements are located at different

locations of the robot body. The term “temporal” means that the spatial bias changes

with time. A pain signal from a pain sensor is assigned a low value and the signal

from a sweet taste is assigned a high value. This is the innate spatial bias. If a pain

sensor continuously sends signals to the brain for a long period of time, a newborn

does not feel the pain as strong as it is sensed for the first time. This is the temporal

bias.

4.1.3 The requirements of value systems

The challenges of designing and implementing the value system for a developmental

robot include: (1) It must be applicable to all the possible unknown tasks. For

example, it is not possible to predefine salient features, because salient features for

one task (e.g. motion in intruder detection) may not be so for another task (e.g.

driving). (2) It must be applicable to different maturation stages. For instance,

playing with toys is interesting for youngsters but not for adults. (3) It must provide

guidance for behaviors all the time, in every fraction of a second since the robot’s

actions are updated at this high temporal frequency. Reinforcers (e.g. sweet tastes
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and pain senses) are not sufficient for a value system. A developmental robot mostly

lives during a time where a search for such reinforcers is not a goal (e.g. while a child

plays). (4) The value system must work with a real-time system that incrementally

grows and updates representation and memory through interactions with an open,

complex real physical world. Without this, the value system is unable to deal with

increasingly complex tasks in unpredictable environments.

4.2 Background

4.3 Neurobiological background for value systems

Neuroscience studies have shown that a value system has the basic function of the

multiple diffuse ascending systems of the vertebrate brain [83]. The detailed mech-

anisms of the value system and its development are mostly unknown although some

characterizations of this system are available.

An adaptive organism must be able to predict future events such as the presence

of mates, food, and danger. Predictions give an animal time to prepare behavioral

reactions and can help improve the choices an animal makes in the future. Some

theories of reward-dependent learning suggest that learning is driven by the upre-

dictability of the reward and sensory input. Motivational values arise either through

innate mechanisms or, more often, through learning. In this way, rewards help to es-

tablish values system for behavior and serve as key references for behavioral decision.

Schultz [82] described the basic reward process in the brain.
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Experiments on monkeys’ brains show information about rewards seem to be pro—

cessed in different forms by neurons in different brain structures, ranging from the

detection and perception of rewards, through the expectation of imminent rewards, to

the use of information about predicted rewards for the control of goal-directed behav-

ior. Here are a few descriptions of how the brain processes reward. “Only a limited

number of brain structures seem to be implicated in the detection and perception

of rewards and reward-predicting stimuli. The midbrain dopamine neurons report

the occurrence of reward relative to its prediction and emit a global reinforcement

signal to all neurons in the striatum and many neurons in the prefrontal cortex. The

dopamine reward response might be the result of reward-detection activity in several

basal ganglia structures, the amygdala and the orbitofrontal cortex. Some neurons

in the dorsal and ventral striatum, orbitofrontal cortex, amygdala and lateral hy-

pothalamus discriminate well between different rewards, which might contribute to

the perception of rewards, be involved in identifying particular objects and/or provide

an assessment of their motivational value.”

More researchers focused their research on dopamine neurons and their relation to

reward prediction and the value system. Montague and his colleagues [64] developed

a theoretical framework that shows how dopamine systems could distribute to their

targets a signal that represents information about future expectations. In particular,

they show how activity in the cerebral cortex can make predictions about future

receipt of reward and how fluctuations in the activity levels of neurons in diffuse

dopamine systems above and below baseline levels would represent errors in these

predictions that are delivered to cortical and subcortical targets.
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4.4 Computational model of value systems

Based on abundant results in neuroscience, psychology and animal learning, scientists

try to build the value system into autonomous agents.

4.4.1 Modeling operant conditioning

In the last three decades, a number of computational models of operant conditioning

were produced. This method provides a way of programming agents by reward and

punishment without needing to specify how the task is to be achieved. Typically, in

reinforcement learning [54], statistical techniques and dynamic programming methods

are used to estimate the utility of actions. A standard model is shown in Fig. 4.1.

An agent is connected to its environment via perception and action. In each step

 

Figure 4.1: The standard reinforcement-learning model. (Adapted from [54]).

of interaction the agent receives input, 2', some indication of the current state of the

environment, 3; the agent then chooses an action, a, to generate as output. The action

changes the state, and the value of this state transition is communicated to the agent

through a reinforcement signal, 1'. The agent’s behavior, B, should choose actions
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that tend to increase the long—run sum of values of the reinforcement signal. The basic

idea is to learn what to do—how to map situations to actions—so as to maximize a

numerical reward signal through a trial-and—error procedure. More elaborate models

are TD(/\) and Q—learning [95] [110]. We should note that all of these models only

consider the interaction between an agent and the external world while the internal

sensors and effectors which sense and act on the internal world (the brain) are not

discussed.

4.4.2 Modeling value systems

Although reinforcement learning is a breakthrough in machine learning, it is not

enough for modeling all the behaviors of animals. Researchers try to apply value

systems to model more complex adaptive behaviors of robots like chaining, forging,

etc. Touretzky [102] extended reinforcement learning to model some functions of

operant learning, such as chaining. Mataric’s [62] work shows forging behaviors of

mobile robots. Forging behavior is constructed from routines like wandering, homing,

aggregation and dispersion. However, the above two cases use symbolic methods,

which means the human trainers define the representation for the robots. That is not

applicable to developmental robots.

A developmental perspective to neural model of learning

Ogmen’s work [68] proposed a developmental perspective to the neural network model

of learning. The choices that the network makes regarding what objects to approach

are not based on minimization of a fixed, predetermined, global cost function. Instead,
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the choices are based on three interacting sets of criteria: reinforcement, novelty, and

habit. The model combines such design principles as adaptive resonance, opponent

processing, and lateral inhibition. In this framework the interplay between reinforce-

ment, novelty, and habit is dynamic; which of these factors is more important is

heavily dependent on the environment context in which the network (or robot) finds

itself. Even the stimulus criteria that maximize reinforcement can change dynami-

cally with the context. However, only a simple simulation experiment is reported in

the paper. The work is not directly applicable to complex high-dimensional sensory

signals with distributed representation.

Modeling dopamine neurons

Much evidence, reviewed by. Schultz [82], suggests that dopamine (DA) cells in the

primate midbrain play an important role in reward and action learning. As a kind

of neurotransmitters, dopamine affects brain processes that control movement, emo-

tional response, and ability to experience pleasure and pain. Electrophysiological

studies in both instrumental and classical conditioning tasks support a theory that

DA cells signal a global prediction error for summed future reward in appetitive con-

ditional tasks, which is very similar to a temporal difference (TD) learning model. In

this model of primate dopamine neurons, their phasic activity reports a prediction

error for future reward. Dayan [55] addresses two important sets of anomalies: gener-

alization and novelty. Generalization responses are treated as the natural consequence

of partial information; novelty responses are treated by the suggestion that dopamine

cells multiplex information about reward bonuses, including exploration bonuses and
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shaping bonuses. They interpret this additional role for dopamine in terms of the

mechanistic attentional and psychomotor effects of dopamine, which guides explo-

ration. However, they did not provide a source of information nor a computational

model to measure novelty. Another point we need to note is that dopamine neurons

are a part of the value system in the brain, more comprehensive models are necessary

to model the complex functionality of value systems.

4.5 The value system of an AMD robot

Studies in animal learning testify that different reinforcers (e.g. sweet tastes and pain

senses) carry different values in the animals value system. However, computational

studies of reinforcement often model rewards into a single value, delivered from a

separate reward channel [94] [89]. This single-value modeling facilitates understanding

and simplifies computation. However, primed sensation (what is predicted by the

robot) has been neglected. The value of an action under a state is determined by

the rich nature of the primed sensation, not just a global value. In the value system

presented here, the value is not only derived from separate reward channels but also

from primed sensation.

The framework also addresses a fundamental limitation of reinforcer based value

system. Reinforcers are typically sparse in time: they are delivered at infrequent spots

along the time axis. Novelty from primed sensation is however dense in time, defined

at every sensory refresh cycle. Thus, the framework enables continuous exploration of

a developmental robot, not just exploring a task-specific setting. We should note that
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the so defined just models an innate value system, which should develop through a

robot’s life experience. Different primed actions and primed sensations are associated

with different Q—values. These Q-values determine the probability for each action to

be taken. The novelty and reinforcers jointly determine the Q-value, which changes

with experience. In this way, the value system is learned through a developmental

robot’s interactions with the world.

To demonstrate the working of the value system, we chose a challenging behavior

domain: visual attention through neck pan actions. Although the degree of freedom

of motor actions is only one, the difficulties lie in the highly complex, uncontrolled

visual environment. Our approach is fundamentally different from traditional task-

specific approaches in that we cast visual attention selection as a behavior guided

by a value system, which is applicable to any task. For example, our value system

does not define saliency of features, but instead novelty based on experience. A novel

stimulus for one robot at one time is not novel if it is sensed repeatedly for long

by the same robot. The visual attention selection in a general visual environment

corresponds to a very challenging problem that cannot be systematically addressed

without the general task-nonspecific approach described here.

4.6 System architecture

The basic architecture implemented for the SAIL robot is shown in Fig. 4.2. The

sensory input is represented by a high dimensional vector at each time instant so

that each component corresponds to a pixel. It is the cognitive mapping module that
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Figure 4.2: The system architecture of SAIL experiments.

derives the most discriminating features from input streams and maps each input

vector to the corresponding effector control signal. The cognitive mapping is realized

by Incremental Hierarchical Discriminant Regression (IHDR) [114], simulating the

high dimensional mapping of a cortical area. A more detailed explanation is beyond

scope. Basically, given each input vector, the IHDR tree provides an output consisting

of three components: the primed sensation, the primed action and the corresponding

Q-values. Primed actions are the possible actions in each state. The probability to

take each primed action is based on its Q-value. The primed sensation predicts what

will be the actual sensation if the corresponding primed action is taken.

Novelty is measured by the difference between primed sensation and actual sen-

sation. In the value system, novelty is integrated with reinforcement learning so that

humans can issue rewards to modulate a developmental robot’s behavior. In order

to let the robot explore more states, Boltzmann Softmax exploration is implemented.

In the traditional Q-learning algorithms, we have to update all states. However, it

is not practical for online learning. We add a prototype updating queue module to

the architecture, which keeps the most recently visited states (pointed by dash lines).
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Only states in that queue are updated at each time instant. Thus, state updating

is local and only along the trajectory of visited states. In the following sections, we

describe each component of the architecture in details.

4.6.1 Incremental hierarchical discriminant regression

Mathematically, the cognitive mapping is formulated as a mapping M: S x X H

X’ x A x Q, where S is the state space, X is the current sensory space, X’ is the

space of primed sensation, A is the primed action space, and Q is the space of value.

They are all numeric vector spaces. At every time step, It! accepts the current

sensory input x(t) and combines it with the current state s(t) and then maps to the

primed sensation .r’ (t) and the corresponding action output a(t +1) and its value. The

cognitive mapping is realized by the Incremental Hierarchical Discriminant Regression

(IHDR) tree [51] [114]. More details of IHDR can be found in chapter 4.

It is worth noting that in this chapter IHDR is integrated with reinforcement

learning. A prototype in IHDR is also a state in reinforcement learning algorithm.

In order to avoid confusion, we only use state in the following sections. Thus, given

an input vector 1:, the tree finds the best matched state 3. If they are close, a: is

used to update 3. Otherwise it is considered as a new state. Each state 3 (Fig. 4.3)

is associated with a list of primed contexts: {c’1,c’2, ..., c2}. Each primed context, 62,

consists of a primed sensation 2:2, a primed action a,- and a corresponding Q-value. The

primed sensation is what the robot predicts to sense after taking the corresponding

primed action. The Q-value is the expected value of the corresponding action. Given
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the list of primed contexts, it is the value system that determines which primed action

should be taken based on its Q-value. Besides primed contexts, a state consists of

four kinds of information: age, learning rate, temperature, and standard deviation

of the primed sensation. The age of a state is used to determine the learning rate

and temperature of Boltzmann Softmax exploration when the state is visited. The

standard deviation is used to calculate novelty. More details can be found in the next

section.

Primed contexts c’

 

 

 

State Primed Primed Q
action 0 sensation 0 °

. Primed Primed Q

action 1 sensation 1 1

Primed Primed Q

action 2 sensation 2 2     

Figure 4.3: State and its primed contexts. Each state is associated with a list of primed

contexts. Each primed context consists of a primed action, a primed sensation and a primed

Q-value.

4.6.2 The value system

The value system reported here integrates novelty and reinforcement learning.

Novelty

As we know, rewards are as important as value but they are sparse in time. In

contrast, novelty of signals is dense in time. It is defined for every time instant.

In order to motivate a developmental robot at any time, it is essential to integrate

novelty with rewards. As shown in Fig. 4.3, every state retrieved from the IHDR tree

is associated with a list of primed contexts (c’), which include: primed sensations
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X' = (23;,1, x;,2, ...,1‘;m), primed actions A = (ap1,ap2, ..., am) and corresponding Q-

values Q = (qp1,qp2, ..., qpn). Novelty can be measured by the agreement between what

is predicted by the robot and what the robot actually senses. If the robot can predict

what will happen, the novelty is low. If the ith action is chosen, we can define novelty

as the normalized distance between the ith primed sensation x;- = (x’1,x’2...r;n) at

time t and the actual sensation x(t + 1) at the next time:

 

n(t) =  
$2": (mg-(t) — a(t + 1))2 (4,,

3:1
030)

where m is the dimension of sensory input. Each component is divided by the expected

deviation 0,, which is the time-discounted average of the squared difference (173 —:rJ-)2,

as shown in Eq. (4.2):

1+u0)_t-l-uU)
02a) _—— 2. to(t—1)+t 1 (If — 553')? (4-2)J

where p(t) is the amnesic parameter to give more weight to the new samples. With an

appropriate a, a(t) would represent the short-term variation of the sensation. When

a state is generated for the first time, the initial value of 0,2 is copied from its nearest

neighbor in the same leaf node. The amnesic parameter is formulated by Eq. (4.3):

#(t) = c(t - n1)/(n2 - n1) if n1 < t _<_ n2 (4-3)

c + (t — n2) /m otherwise
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where n1 and n; are two switch points, c and m are two constant numbers which

determine the shape of a. After the above calculations, 33(t) would be set as rj (t + 1),

which is the new primed sensation.

Integration of Novelty and Rewards

However, novelty is only a low level measure. The system’s preference to a sensory

input is typically not just a simple function of n(t). Besides novelty, human trainers

and the environment can shape the robot’s behaviors through its biased sensors. A

biased sensor for a developmental robot is the one whose signal has an innate prefer-

ence pattern at the birth time. For example, a biased sensor value b = 1 if the human

teacher presses its “good” button (biased sensory) and b = -—-1 if the human teacher

presses its “bad” button (another biased sensor). Furthermore, studies in animal

learning show that different reinforcers have different effects. Punishment typically

produces a change in behavior much more rapidly than other forms of reinforcers [25].

We integrate novelty and immediate rewards so that the robot can take different fac-

tors into account. The combined reward is defined as a weighted sum of physical

reinforcers and the novelty:

r(t) = wbrb(t) + wgrg(t) + wnn(t) (4.4)

where w, > wg > wn are three normalized weights of punishment, reward and novelty,

respectively, satisfying w, + wg + w, = 1.
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Q-Learning Algorithm and Boltzmann Softmax Exploration

There are two major problems. First, the reward r is not always consistent. Humans

may make mistakes in giving rewards, and thus, the relationship between an action

and the actual reward is not always certain. The second is the delayed reward prob-

lem. The reward due to an action is typically delayed since the effect of an action is

not known until some time after the action is complete. These two problems are dealt

with by the following Q-learning algorithm. Q—learning is one of the most popular

reinforcement learning algorithms [110]. The basic idea is as follows. At each state 3,

keep a Q—value for every possible primed context c’, which includes primed sensation

23p, possible action ap: Q(s, c’), which indicates the value of context c’ at current state

3. The action with the largest value will be selected as output and then a reward

r(t + 1) will be received. A modified Q-learning updating expression is as follows:

Q(s(t), c’(t)) +— (1 — a)Q(s(t), a(t)) + a(r(t + 1) + 7Q(s(t + 1), a(t + 1)) (45)

where a and 7 are two positive numbers between 0 and 1. a = (1 + p(n))/t is a time

varying learning rate based on amnesic average parameter (u(n)). The parameter 7

is for value discount in time. With this algorithm, Q-values are updated according

to the immediate reward r(t + 1) and the next Q-value, thus, a delayed reward can

be back—propagated in time during learning.

An important difference between this design and traditional Q-learning algorithm

is that we use changing learning rates based on amnesic average for each state in-

stead a global constant learning rate for the robot. The idea is derived from human
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development. In different mature stages, the learning rules of human are different.

A single value is not enough to model the case. For example, the first time we meet

an unknown person, we would remember him right away (high learning rate). Later,

when we meet him in different dresses, we would gradually update his image in our

brains with lower learning rate. The formulation of a guarantees that it has a large

value at the beginning and converges to a constant smaller value through the robot’s

experience. Fig. 4.4 (a) shows an example of learning rate based on amnesic average.
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Figure 4.4: (a) Learning rate based on amnesic average (the parameters are shown in

the title); (b) Temperature of Boltzmann Softmax exploration based on Gaussian density

model.

We applied the Boltzmann Softmax exploration [95] to Q-learning algorithm. At

each state (s), the robot has a list of action A(s) = (ap1,ap2,...,a,m) to choose from.

The probability for action a to be chosen at s is:

$1192 M

P(S,a)=e T “Ede/1(3):? T ) (4-6)
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where r is a positive parameter called temperature. With a high temperature, all

actions in A(s) have almost the same probability to be chosen. When 1' —+ 0, the

Boltzmann Softmax exploration more likely chooses action a that has a high Q-value.

The question is how to determine 1'. In [42], only a constant value is set to 7.

However, it meets problem when the value system is applied to the real world. As

we know, when we sense a novel stimulus at the first time, we would pay attention

to it for a while. In this case, a small 7 is preferred because the Q-value of action

“stare” would be high and the robot should choose this action. If r is too large, the

probability of each action is almost equal, which is not the case in attention. After

staring at the novel stimulus for a while, the robot would feel tired and pay attention

to other stimuli. Now a larger 1' is preferred. After a period of exploration T should

drop again, which means the state is fully explored, the robot can take the action with

the highest Q-value. If we choose a large constant r, then the robot would explore

even though it visits a state for the first time. If we choose a small 7", the robot

would face the local minimal problem and cannot explore enough states. Fortunately

a Gaussian density model (Eq. (4.7)) for local temperature solves this problem.

r(t) = Wexpi—édfibti + c. (4.7)

where Cl is a constant to control the maximal value of temperature, C; controls the

minimal value, t is the age of the state. The plot of the model can be found in Fig. 4.4

(b). Let’s talk a little about the convergence of the algorithm if the learning rate is

changing. We use a(t) to denote the learning rate at time t. The conditions required
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to assure convergence with probability one is:

Z a(t) = 00 (4.8)

t=l

and

Z02(t) < 00 (4.9)

The first condition guarantees that the learning rates are large enough to even-

tually overcome any initial conditions or random fluctuations. The second condition

guarantees that eventually the learning rates become small enough to assure conver-

gence. In our case, the learning rate changes from 0.5 to 1. The second condition is

not met, indicating that the estimates cannot completely converge but continue to

vary in response to the most recently received rewards. But this property is actually

desirable in a nonstationary environment! For a developmental robot that has to

explore in unknown environments, the problems it faces are effectively nonstationary.

Thus, a developmental robot will not be limited to learn a specific task, but to learn

multiple tasks through its experience in the world.

Prototype Updating Queue

In the batch learning mode of a Q-learning algorithm, the back-up is applied to all

states. For real-time development, this global iteration method is not applicable, due

to the excessive time required. We must use a local method that only involves a small

number of computations. That is why we designed the prototype updating queue in

Fig. 4.2, which stores the addresses of formerly visited states. Thus, not only is
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the Q-value back-propagated, so is the primed sensation. This back-up is performed

iteratively from the tail of the queue back to the head of the queue. After the entire

queue is updated, the current state’s address is pushed into the queue and the oldest

state at the head is pushed out of the queue. Because we can limit the length of the

queue, real-time updating becomes possible.

Algorithm of Innate Value System

The algorithm of the innate value system works in the following way:

1. Grab the new sensory input r(t).

2. Query the IHDR tree and get a state s(t) and related list of primed contexts.

3. If r(t) is significantly different from s(t), it is considered as a new state and

the IHDR tree is updated by saving x(t). Otherwise, x(t) updates s(t) through

incremental averaging.

4. Update the age of the state, calculate the temperature of the state with

Eq. (4.7).

5. Using the Boltzmann Softmax Exploration in Eq. (4.6) to chose an action based

on the Q-value of every primed action. Execute the action.

6. Calculate novelty with Eq. (4.1) and integrate with immediate reward r(t + 1)

with Eq. (4.4).

7. Update the learning rate of current state based on amnesic average. Update

the primed sensation using the actual sensation.
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8. Update the Q-value of states in PUQ. G0 to step 1.

4.7 Simulation results

In order to test the value system, a simulation environment is developed. The simula—

tor GUI is shown in Fig. 4.5. The big window shows the viewing environment, while

tlrlrm

 

Figure 4.5: The GUI simulator. The arrow indicates the position and the viewing angle of

the robot.

the small window shows the image the robot observes currently. There are several

buttons that control the position and viewing angle of the robot. The “Good” and

“Bad” buttons are used to issue rewards. In every state, the baby robot has three

possible actions: stay at the current viewing angle (action 0), turn neck left 30 degree

(action 1) and turn neck right 30 degree (action 2). The representation of a state

consists of visual images and absolute viewing angle. The dimension of input image

is 100 x 100. We assume that the robot cannot look backward and the number of ab-
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solute viewing angle is 7. The parameters are defined as follows: 7 = 0.5 in Eq. (4.5);

c = 2, n1 = 1, n2 = 3, m = 2 in Eq. (4.3). The value of CI in Eq. (4.7) is 5; c2 = 0.1;

u=20ando=2.

4.7. 1 Habituation effect

In the first experiment we allowed the robot to explore on its own by looking around.

The total number of state is equal to the number of view angle (7). The initial Q-value

of each action is 0. Fig. 4.6 shows how the Q—value of each action changes based on

novelty in one state (the absolute view angle of the state is 0 and the input image of

the state is shown in the small window of the Fig. 4.5). In the beginning, the primed

sensation is set as a long vector in which every element is zero. After taking an action,

the current sensation is very different from the initial sensation. That is, the novelty

value is high. We can see from Fig. 4.6 that in the first several steps, the Q—values of

each action increase. However, after the primed sensation is updated, it would be the

same as the actual sensation if the robot takes the action again. Then the novelty

becomes zero and the Q-value decreases. After a long period training (300 steps), the

robot can predict the actual sensation of next step whatever action it takes. So the

Q-value of each action converges to the same value (0). This means each action has

the same probability to be chosen. The right part of Fig. 4.6 shows the number of

each action in different time frames (60 steps in each time frame). After 300 steps, the

Q-value of each action is nearly equal, so the numbers of each action are close. The

experiment shows that because of the habituation effect, the robot loses the interest
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of any action after exploration and chooses an action randomly. Because a state is

not visited at every time instant, there are flat periods in the Q—value plot, which

means that the robot is not at the state and the Q-value does not change.
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Figure 4.6: Habituation effect. On the left part, the lst, 2nd and 3rd plots correspond

to the Q-value of action 0, action 1, and action 2, respectively. On the right part, the

frequency of actions in different time frames.

4.7.2 Integration of novelty and positive reward

After the above experiment, we began to issue rewards. For example, when the robot

turns left, a human teacher can give it a positive reward (1). For action 2, negative

rewards (-1) are issued. Then the actual reward the robot receives is an integration

of novelty and an immediate reward. The Q-value of action 0 converges to 0. That of

action 2 turns to be negative after a punishment was issued at step 348. The Q—value

of action 1 is always positive because we kept issuing positive rewards. As we can see

on the left part of Fig. 4.7, after training, the Q-value of action 1 is much larger than

that of other actions. As shown in Fig. 4.7 (right), gradually, action 1 was chosen the
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Figure 4.7: Integration of novelty and immediate reward.

4.7.3 Increase novelty with a moving object

In order to show novelty preference, a moving toy was added to the simulation envi-

ronment after the first experiment. The testing images are shown in Fig. 4.8. Now

the total number of state is 12, which is 5 more than that of the first two experi-

ments. Every time the robot is in the state with the absolute viewing angle 0, one of

these images is generated randomly. Thus, the primed sensation of action 0 could be

different from the actual sensation. As shown on the left part of Fig. 4.9, the Q-value

of action 0 is positive because of high novelty. In contrast, the Q—values of action 1

and action 2 are close to zero. After training, the robot found that staying in the

current state is the most interesting. So action 0 was chosen the most often.
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Figure 4.9: Increase novelty with a moving object.
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4.7.4 Suppress novelty with punishment

After the third experiment, we issued positive rewards to action 2 (turn right), and

negative rewards to action 0. Thus, even though the novelty is high when the robot

stares at a moving object, the immediate rewards suppress the novelty. Gradually,

the Q-value of action 2 increased. As shown in Fig. 4.10, after training, the robot

chose action 2 most of time. However, action 0 and action 1 were still chosen at few

times because of Boltzmann Softmax exploration.
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Figure 4.10: Suppress novelty with immediate rewards.

4.8 Experiments with SAIL robot

The value system is also tested on our SAIL robot (short for Self-organizing Au-

tonomous Incremental Learner) through vision-guided neck action selection. SAIL,

shown in Fig.2.9, is a human-size robot custom-made at Michigan State University.

It has two “eyes”, which are controlled by fast pan-tilt heads. In real-time testing, at
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each step SAIL has 3 action choices: turn its neck left, turn its neck right and stay.

Totally, there are 7 absolute positions of its neck. Center is position 0, and from left

to right is position -3 to 3. Because there is a lot of noise in real-time testing (people

come in and come out of the view), we restricted the number of states by applying a

Gaussian mask to image input after subtracting the image mean. The total number

of states in the real—time experiment is about 50. The dimension of the input image

is 30 x 40 x 3 x 2, where 3 arises from RGB colors and 2 for 2 eyes. The resolution

of the image is 30 x 40. Toys used as moving objects are shown in Fig. 4.11. The

input representation consists of visual images and the absolute position of the robot’s

neck. The two components are normalized so that each has similar weight in the

representation. Biased touch sensors are used to issue punishment and reward . We

used the same parameters as we did in the simulation.

 

Figure 4.11: Toys used as moving objects (Adopted from [126] ).

4.8.1 Novelty and multiple reinforcers for different actions

In order to show the effect of novelty, we allowed the robot to explore by itself for

about 5 minutes (200 steps), then kept moving toys at neck position -1. At each

position there could be multiple states because the input images at certain neck

positions could change. Fig. 4.12 shows the information of one state at position -1.
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The image part of the state is the fourth image of the first row shown in Fig. 4.11,

which is the background of the experiment. The first three plots are the Q-value of

each action (stay, left, right), the fourth plot is the reward of corresponding action,

the fifth plot is novelty value and the last one is the learning rate of the state. After

exploration (200 steps later), we moved toys in front of the robot, which increases the

novelty and Q-value of action 0 (stay). After training, the robot would prefer toys

and keep looking at it from step 230 to step 270. A subset of the image sequence is
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Figure 4.12: The Q—value, reward, novelty and learning rate of each action of one state at

position -1 when multiple reinforcers are issued.

shown in Fig. 4.11. If the actual sensations in the second row and the corresponding

primed sensation in the third row are very different, the novelty would be high. The

novelty value is shown in the fifth plot. The novelty of action 0, 1, 2 is specified by

‘.’, ‘*’, ‘+’, respectively.
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After step 300, the trainers began to issued different reinforcers to different actions.

Punishments were issued to action 0 at step 297 and step 298 (the fourth plot) and

to action 2 at step 315. Rewards were issued to action 1 at step 322 and step 329.

The Q-values of action 0 and action 2 became negative while that of action 1 became

positive, which means that the visual attention ability of the robot is developed

through the interactions with the environment. Even though the novelty of action 0

could be high, the robot preferred action 1 because of its experience. The learning

rate in the fifth row shows that at the beginning the robot immediately remembered

the new stimuli and then gradually updated the stimuli.

4.8.2 Boltzmann softmax exploration

As we mentioned in section 3, Boltzmann Softmax exploration is applied so that the

robot can experience more states. In Fig. 4.13, only information from step 1 to step

60 of the above state is shown. The first plot is the probability of each action based on

its Q-value. The total probability is 1. The probabilities of action 0, l, 2 are plotted

at the top, middle and bottom, respectively. The star denotes the random value

generated by a uniform distribution. If the random value is in one range, say, the

middle range, then action 1 would be taken. Because the robot is not always in the

state, the plot is sparse. The second plot shows the temperature based on Gaussian

density model of Eq. (4.7). At the beginning, the T is small and the novelty of the

state is high (the initial Q-values of another actions are zero), so the probability of

action ‘stay’ is the largest one (almost 100%). The robot would stare at the stimulus
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for while. Then, the temperature increases. The probabilities of each action became

similar and the robot began to choose another actions and explore more states. After

about 10 times, the temperature dropped to a small value (0.1) again, the action with

larger Q-value would have more chance to be taken. Thus, we solved the problem in

[42].
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Figure 4.13: Boltzmann Softmax Exploration: The total probability is l in the first plot.

The probabilities of action 0, 1, 2 are plotted at the top, middle and bottom, respectively.

The star denotes the random value received at that time. The second plot shows the

temperature.

4.9 Conclusions

In this chapter, a model for value system development of a robot is proposed. Novelty

and reinforcement learning are integrated into the value system. Novelty is derived

from the high dimensional primed sensation, thus value is not just a scalar number.

Instead, it presents the rich information of the world. Furthermore, the primed sensa-
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tion based value system can guide the developmental robot all the time since novelty

from primed sensation is defined at every sensory refresh cycle while reinforcers are

sparse in time. Since no salient features are predefined, the value system is applicable,

in principle, to any task and provides guidance to the robot all the time. The working

of the value system is shown through vision-based neck action selection. Our SAIL

robot learns to pay attention to salient visual stimuli. More important is that the

robot’s responses to certain visual stimuli would change after interacting with human

trainers. That is, the robot develops its value system through its experience in the

real world.

111



Chapter 5

Covert Perceptual Capability

Development for Vision Based

Navigation

In this chapter, we propose a model to develop robots’ covert perceptual capability

using reinforcement learning. Covert capabilities such as attention cannot be devel-

oped using supervised learning methods. In contrast, reinforcement learning helps

robots deveIOp these capabilities via internal but non-enforceable probes. We treat

covert perceptual behavior as action selected by a motivational system based on re-

inforcement learning. We apply this model to vision-based navigation. The goal is

to enable a robot to learn the type of road boundary. Instead of deal with simple

problem in controlled environments with limited states and low input dimension, We

test the model on images captured in non-stationary environments for navigation. In
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order to handle the problem of huge state space in the active vision domain, Incre-

mental Hierarchical Discriminant Regression is used to generate states on the fly. Its

coarse-to-fine tree structure guarantees real-time retrieval for high-dimensional input.

K Nearest-Neighbor strategy is adopted to further reduce training time complexity.

5. 1 Introduction

Supervised (action-imposed) learning is an effective learning mode to help a robot

develop intelligent capabilities. However, in psychology and neuroscience [74] [30],

there are a lot of cognitive capabilities can not be developed using this learning mode.

For example, visual attention and thinking are two internal behaviors, which cannot

be imposed from outside but develop through interactions with the environments. If

the behavior of a robot is not visible from the outside, we call it covert behavior.

In this chapter, we apply the developmental learning paradigm to covert percep-

tual capability development for a robot. The goal is to teach a robot to learn the type

of road boundaries for vision-based navigation. Instead of giving the the correct type

explicitly, human teacher issues rewards and punishments according to the robot’s

guess. In this sense, the robot develops this covert capability via internal but non-

enforceable probes. No action (boundary type) is imposed. After this learning stage

is mature, the robot can learn the correct heading direction for navigation in the same

mode. This paradigm is important and indispensable. First, action-imposed learning

is not enough to model sophisticated robotic cognitive development. Second, if the

robot learns wrong actions it cannot make a correction with this learning mode. On
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the contrary, reinforcement learning is a good model to learn intelligent capabilities

when imposed action is not acceptable. Moreover, it gives the robot the ability to

recover from error.

There are quite a few studies, which apply reinforcement learning to vision and at-

tention problems. Ballard and Whitehead’s study [121] is one of the earliest attempt

to use reinforcement learning as a model of active perception. Balkenius and Hulth [5]

model attention as selection for action. They train a robot to pick out the correct

focus of attention based on reinforcement learning. Experimental results are report

on a simple simulator. Bandera [6] used reinforcement learning to solve gaze control

problem. However, their application is in an artificial environment. Its performance

in the real world is unknown. Minut and Mahadevan [63] proposed a reinforcement

learning model of selective visual attention. The goal is to use a fixed pan-tilt—zoom

camera to find an object in a cluttered lab environment. That is, the environment

is stationary. In summary we can find out that most former studies, which apply

reinforcement learning to model covert perceptual behaviors, test on controlled en-

vironments. The input dimension of state vector is low and the number of state is

very limited. In order to reach the goal of real-time active vision development in

non-stationary environments (outdoor navigation), we propose IHDR (Incremental

Hierarchical Discriminant Regression) to generate continuous state‘space on the fly

for high dimensional visual input. And its coarse-to-fine structure is able to speed

up the state retrieval procedure. Furthermore, we implement K Nearest Neighbor

algorithm for Q-learning so that at each time instant multiple similar states can be

updated, which dramatically reduces the number of rewards human teachers have
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to issue. This implementation shares the same idea with [52]. Instead of using

weighted—nearest neighbor, we use top-K nearest neighbor directly. We also propose

a multi-layer reinforcement learning architecture [97]. The first level learning mod-

ules handle covert perceptual capability development while the second level learning

module deal with navigation behaviors.

In what follows, we first describe the covert capability development problem in

outdoor navigation. The detailed architecture of the developmental paradigm is pre-

sented in Section 3. The experimental results are reported in Section 4. Finally, we

draw our conclusions and discuss about the future work.

5.2 Problem Description

Our goal is to enable a robot to develop its covert perceptual capability for vision-

based outdoor navigation. A good example is shown in Fig. 5.1 (a). Suppose the

robot has two eyes (left image and right image). Instead of using the entire image

as input to each first-level learning module, we divide two input images into 6 sub-

windows (specified by rectangles). Suppose the size of the original image is 160 x 120.

The dimension of the state vector is 19200, which is almost intractable. With six

windows, the dimension of state vector is reduced to 80 X 40 = 3200. In this way,

we reduce the dimension can control the state space. And it turns out these six

windows can cover most of road boundaries. Our goal is to teach the robot to learn

the type of road boundary. Let’s look at the top window on the right (Fig. 5.1

(b)). There is a road edge, which intersects with the window at two points (p1, pg).
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For each intersecting point, we define five boundary types (ranges). Given p1 as an

examplethere 5 possible ranges (R1, R2, 123,124, R5) and p1 fits in R1. Suppose the

image of the window is r(t) (a long vector and each element corresponding to a pixel).

The robot needs to learning the mapping from x(t) to correct road boundary type

a = {R1,R2,R3,R4,R5}. Since each window has two intersecting points, we can

generate a vector A = (01,02, ...,a12). This vector can be the input for the second

level module for heading direction learning.

 

P2

(b)

Figure 5.1: (a) A pair of images in vision based outdoor navigation with 6 attention

windows; (b) Sub-image of one window and the type of road boundary (pl’s type is R1).

A major part of the developmental learning paradigm is Hierarchical Discriminant

Regression [51]. Using HDR tree, the robot learns the type of road boundary in each

window (A = (a1, a2, ..., a12)). The overall system operation architecture for robotic

cognitive development is shown in Fig. 5.2. There are HDR trees at two levels. At the

first level, 6 HDR trees learns the mapping from visual input to road boundary type.

The second-level HDR tree maps road boundary type of all 6 windows to the correct
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Figure 5.2: The system operation architecture for robotic cognitive development. The
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while the second-level learning module generates the mapping from road boundary type

vector to heading direction for navigation.
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heading direction. It is worth noting that in this study we only conduct experiments

for the first-level learning modules. How the robot learns each mapping is discussed

in next section.

5.3 System Architecture of Robotic Cognitive De-

velopment
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Figure 5.3: The system architecture of each learning module for robotic cognitive develop—

ment.

The basic architecture for robotic cognitive development is shown in Fig. 5.3. The

sensory input x(t) is represented by a high dimensional vector. At the first level

the input is visual image while at the second level the input is road boundary type

vector. In this chapter we only discuss the first-level learning modules. x(t) is fed

into the cognitive mapping module. The cognitive mapping is realized by Incremental

Hierarchical Discriminant Regression (IHDR) [51]. IHDR clusters x(t) into current

state s(t) and then maps the current state to the corresponding action output. Thus,

IHDR generates state for high-dimensional visual input on the fly, which is a very
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difficult problem. That’s why most of studies only deal with low-dimensional state

space. In contrast, IHDR makes it possible to handle high-dimensional state space. In

the testing phase, given a state s(t), the IHDR finds the best matched 3’ associated

with a list of primed contexts (c’ = (x’, a’, q)), which include: primed sensations

X’ = (:r’l,$’2, ...,xg), primed actions A’ = (a’1,a’2, ...,a;) and corresponding Q-values

Q = (q1,q2, ...,qn), where n is the number of different actions. In other words, the

function of IHDR is g: S 1—> X’ x A’ x Q. Primed actions are the possible actions in

each state. The probability to take each primed action is based on its Q-value.

The motivational system of the developmental learning paradigm works as an

action selection function 1) : 2’4' 1—+ A (2", denotes all the possible subsets of A’),

which chooses an action from a list of primed actions. At the beginning the robot

can choose random actions. Human teachers issue reward and punishment based on

its actions. Through this reinforcement learning procedure the robot develops the

capability to learn road type without imposed actions. In order to let the robot

fully explore the action space, Boltzmann Softmax exploration is implemented. To

reach the requirement of real-time updating in developmental learning, we add a

prototype updating queue module to the architecture, which keeps the most recently

visited states (pointed by dash lines). Only states in that queue are updated at

each time instant. However, in non-stationary environments (for instance, outdoor

navigation), the state space is huge. If we use the standard Q-learning algorithm, the

training time is tremendous. In order to reduce the time of training, we adopt top-k

nearest neighbor strategy. For each state, its top K—nearest neighbors are saved in

the prototype updating queue (Fig. 5.3). If a reward is issued, the system not only
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updates the current state-action pair but also updates the K-NN state-pairs, which

dramatically reduces time complexity of the training procedure. Please refer to last

chapter to check the description of IHDR, Q-learning and Boltzmann exploration.

The major difference is that we implement a new prototype updating queue.

5.3.1 K Nearest Neighbor Prototype Updating Queue

Even though, IHDR makes learning in non-stationary environments possible, the time

to train the system is still not acceptable. The major reason is: as the robot explores

in new environments, the state space would continue grow. In order to reduce the

training time, we adopt the K-nearest neighbor strategy [31]. Suppose the state space

is S and the current state is s(t). Let’s define D is the distance between s(t) and the

kth -nearest neighbor of s(t). The volume of the set of all states whose distance from

s(t) is less than D is defined as follows:

20"7r”/2

A(k, S, S(t)) = m. (5.1)

Using K-NN updating rule, the updated space goes from one point s(t) to A, which

is a tremendous improvement.

We can also look into the training complexity issue. Suppose for each state we

need to issue m rewards to get a reliable training result (Q converges.) and the

number of states is N, the time complexity of training is mN. If t0p K updating is

applied and we assume each state has the same possibility to be chosen as a match,

the time complexity is N + Sm—Qfl, where the first N means that each state has to
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m—l N

be visited at least once while K is the number of training needed using top-K

updating. The ratio of time complexity using top-1 and top-K is:

mN mk
—N+m;<lN=——k+m—1 (5.2)

Even though the assumption of the equal probability of each state to be chosen as top

match is too strong, we still can see the potential improvement of top-K updating.

5.3.2 Algorithm of Covert Capability Development

The algorithm of the developmental learning paradigm works in the following way:

1. Grab the new sensory input x(t) and feed into IHDR tree. The IHDR tree

generates a state s(t) for x(t).

2. Query the IHDR tree and get a matched state 3’ and related list of primed

contexts.

3. If s(t) is significantly different from s’, it is considered as a new state and the

IHDR tree is updated by saving s(t). Otherwise, use s(t) to update 3’ through

incremental averaging.

4. Using the Boltzmann Softmax Exploration in Eq. 4.6 to chose an action based

on the Q-value of every primed action. Execute the action.

5. Receive a reward

6. Update the Q-value of states in PUQ using K-NN updating rule. Go to step 1.
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Figure 5.4: Input sample pairs for navigation test.

5.4 Experimental Results

We train the robot to learn edge boundary type for vision-based navigation. A se-

quence of image pairs is shown in Fig. 5.4. The dimension of each image is 160 X 120.

The dimension of sub—image in each window is 80 x 40 = 3200. We compare the

performance of original PUQ (top 1) and that of KNN PUQ.

5.4.1 Experiments Using Top-1 Prototype Updating Queue

Here we just show how we teach the robot to learn the road boundary type for one

image (state). Totally there are 5 possible actions (a = {12,-Ii = 0...4}). R1 is the

correct action. The Q-value plot of each action is shown in Fig. 5.5. Only information

from step 1 to step 30 is shown. As you can see, after training the Q-value of a1 is

the largest (positive) while the Q-values of other actions converge to negative values.

From Fig 5.5, we can find out that it takes about 17 visits to converge.

In Fig. 5.6, only information from step 1 to step 40 is shown. The probability
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of each action based on its Q-value. The total probability is 1. The probabilities of

action 0, 1, 2, 3 and 4 are plotted from top to bottom, respectively. As we can see, at

the beginning, each action has similar probability (0.2) to be chosen. After training

(issue reward and punishment), action 1 is chosen for most of the time. After step

18, the probability of action 1 is larger than 0.99. That is, for this attention point it

takes about 18 visits to converge.

5.4.2 Experiment Using KNN Prototype Updating Queue

In this experiment, we trained 50 consecutive images repeatedly for 20 times. Top 5

nearest-neighbors updating are used.

Q value of each action

We should notice that using top-K updating mechanism, the number of updating

(n,,) is different from the number of visiting (11,). 71,, means the number of times

that state 3 is retrieved as a top 1 match while 71,, means the number of times that

state 3 is retrieved as one of the top K match. The Q—value of each action versus

the number of updating is shown in Fig. 5.7. The correct action should be action 1.

After training the Q-value of action 1 is the largest (positive). “+” means that the

state is chosen as top 1 match. Because of the trainer’s mistake , at the beginning,

action 0 got several positive rewards (Q value increases) while action 1 got a couple

of negative rewards (Q value decreases). However, after 30 times updating, action 1

has the largest value and the system automatically chooses it as output. The plot

also verifies that KNN-based reinforcement learning can tolerate human mistakes.
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Q value of each action (Without top K updating)
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Figure 5.5: The Q-value of each action in one state using top-1 PUQ.
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Figure 5.6: Boltzmann Softmax Exploration: The total probability is 1 in the first plot.

The probabilities of action 0, 1, 2, 3, 4 are plotted from top to bottom, respectively.
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Figure 5.7: The Q-value of each action.

Boltzmann exploration

We use Boltzmann exploration to choose the action for each state. How an action is

chosen is based on temperature 0. In this chapter, 0 is defined as a revised Sigmoid

function:

1

‘ 1 + e‘("v“c2))’
9 = C1(1
 (5.3)

where 11,, is the number of visit of a state. c1 and c2 are two constants. In our

experiment, c1 = 10 and c2 = 3. The plot is shown in Fig. 5.8. At the beginning, 0 is

about 10 and each action has similar probability to be chosen. If 11,, > 8, 0 converges

to 0. Greedy strategy is applied in this case. We use Boltzmann exploration to

choose the action for each state. In Fig. 5.9, only information from step 1 to step 15

is shown. The first plot is the probability of each action based on its Q-value. The

total probability is 1. The probabilities of action 0, 1, 2, 3 and 4 are plotted from top

125



Temperature in Boltzmann softmax based on sigmoid function. c1=10.c2=1

 

1.2’

0.8 r

t
h
e
t
a

0.6 r

0.4 ~

0.2 *

    
00 5 10 1 5 20 25 30 35 40

Step

Figure 5.8: Temperature of Boltzmann exploration.

to bottom, respectively. The ‘+’ denotes the random value generated by a uniform

distribution. If the random value is in one range, say, the bottom range, then action 0

would be taken. As we can see, at the beginning, each action has similar probability

(about 0.2) to be chosen. After training, action 1 is chosen for most of the time. The

action sequence is show in the second plot. When 71,, > 4, the system only chose

action 1. That is, for each attention point it takes about 5 visits to converge. This

again shows the advantage of KNN-based reinforcement learning.

Retrieval Time

The retrieval time of each image is shown in Fig. 5.10. The average training time of

each step is 0.01863 and the highest training time is 0.128. Even though we have 12

trees for 6 windows, the system can still work in real time. This shows how efficient

IHDR is for robot mental development.
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Figure 5.10: Retrieval time of each image for one tree.
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5.5 Conclusions and Future Work

In this chapter, Q learning is used to model robotic covert perceptual capability

development in navigation. It is applicable to any cognitive capability development

when enforceable probes are not acceptable. IHDR is implemented so that learning

in real-time becomes possible. And we adopt K Nearest Neighbor strategy, which

dramatically reduces training time complexity in non-stationary environments. The

experimental results show the effectiveness of the model, which enables a robot to

learn road boundary type through interactions with teachers. We will extend the

model to develop the robot’s vision-based navigation capability in the future.
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Chapter 6

Cross-Task Learning

Cross-task learning is essential for an artificial agent to explore in the real world. With

this capability, an agent can learn multiple tasks and use acquired knowledge to learn

new tasks. In this paper, the DOSASE MDP model, enables an agent to find the

relatedness between different tasks and to develop cross-task learning capability by

interacting with the environment. One challenge of this work is that no task is defined

in advance. The trainer shapes the behavior of the agent to learn different tasks

interactively and continuously through interactions. The development is conducted

in real-time using high-dimensional input, which is another challenging issue. We

tested the architecture on an artificial agent for vision-based navigation. The results

show that DOSASE is an effective model for autonomous mental development (AMD)

and dramatically reduces both time and space complexities for cross-task learning.
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6. 1 Introduction

Cross-task learning capability is very important for an artificial agent to explore in

the real world. By cross-task, we mean that the same system must learn multiple

tasks incrementally in the same mode, dealing with task specific contexts correctly.

With this capability, the agent can learn different tasks and transfer learned knowl-

edge to new tasks. Scientists in psychology proposed a lot of models to simulate

human cognition in cross-task learning. Lovett [60] used an architecture called ACT-

R to model how people organize knowledge and produce intelligent behaviors.They

claimed that after separately fitting performance on a preliminary task, the model

can make zero-parameter cross-task prediction of performance in on a second task.

Computer scientists are also interested in building multiple-task learning models for

artificial agents. Thrun [100] proposed the task-clustering algorithm, which learns

the relationship between different tasks. When facing new a task, the algorithm

first finds the most related task, then exploits information from this task. Pratt [75]

and Caruana [17] investigated the similar problem: how to use information from one

neural network to help a second network learn a related task. The limitations of

these methods consist of: 1) human programmers know the task knowledge at the

beginning. 2) in order to build up the relationship between different tasks, real-time

learning is impossible. For a typical developmental agent, these limitations are not

acceptable. A developmental agent has to run in real time and face different tasks,

which are unknown to the agent before training.

In this paper, we applied the DOSASE MDP model to conducting cross-task learn-
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ing. The advantages of the model include: 1) no task is defined at the beginning.

By interacting with the trainer, the agent incrementally learns different tasks. 2) the

agent can learn task-relatedness online in real-time. 3) the agent transfers learned

knowledge to new tasks and dramatically reduces both time and space complexi-

ties. The model has been successfully tested on an artificial agent for vision-based

navigation.

In the following section, we will first formulate what is cross-task learning. The

detailed DOSASE MDP model is introduced in section 3. Experimental results are

shown in section 4 and then we conclude with a summary and discussion about future

works.

6.2 Problem Description

To be precise in our further discussion, we need mathematical notations.

Definition 6.2.1 Given an agent at time t1, suppose that the agent produces different

action contexts a1 and a2, from two different contexts CI = {c(t) I t1 3 t 3 t2} and

C2 = {c(t) I t1 _<_ t g t3}, respectively. If a1 and a2 are considered different by a

social group (human or robot), conditioned on Cl and Cg, then we say that the agent

discriminates two contexts Cl and C2 in the society. Otherwise, we say that the agent

does not discriminate C1 and C2 in the society.

For example, given a voice command “G0 to the elevator,” the speech signals

of the command are different from different people. However, humans consider the

131



commands are the same. In this case, the agent should not discriminate the above

commands from different people.

Definition 6.2.2 Cross-task Learning: 1). There are N tasks: I‘ = {T,-|i = 1, 2, ...N}

2). For each task, the learning goal is to generate the mapping from context to action:

M : C —-) A, where A is the action space, C is the context space, which could consists

of different sensory input: vision, audition, touch etc. 3). Given the first N tasks,

the agent uses acquired knowledge to speed up learning the N+1 th task.

A typical setting is shown in Fig. 6.1. There are two tasks: T1 and T2. For

example, in autonomous navigation problem, T1 is “go around” and T2 is “go to the

elevator.” The contexts of each task are C1 and C2, respectively.

Definition 6.2.3 Shared context: The overlapped trajectory between these two tasks

is called shared context Cshare = C1 0C2. Non-overlapped trajectory is called non-

shaned context Cnthare = C1 U C2 -— Cshare-

Give the above figure as an example, C1 = {C11,C12,C13,C14,C15} and C2 =

{C21, C22, C23, C24, C25}. In the task space, the shared context is Csham = {C12, C14}

and the non-shared context is Cnondghare = {C11, C13, C15, C21, C23, C25}.

Definition 6.2.4 Merge point and break point: The point, where the contexts of two

or more tasks begin to overlap, is call “merge point” (M1, M2). The point, where the

contexts of two or more tasks begin to diverge is “break point” (Bl, 82).
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Figure 6.1: Typical setting of cross-task learning.
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6.3 Architecture of DOSASE MDP

We apply the Developmental, Observation driven, Self—Aware, Self-Effecting, Markov

Decision Process (DOSASE MDP) model to conduct cross-task learning. The detailed

architecture of this model for cross-task learning is shown in Fig. 6.2. There are two

level—building element (LBE) components. The first LBE online learns the association

between task label and verbal commands. The second LBE learn the specific tasks
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(for example, different vision-based navigation tasks). A developmental agent is self-

aware and self-effecting, which means the agent can sense both internal and external

inputs and generate both internal and external actions. A typical internal action is

thinking.

Definition 6.3.1 Internal action and external action: Action consists of two compo-

nent. That is a(t) = (a,(t),ae(t)), where a,(t) and ae(t) are the internal action and

external action, respectively. a,(t) changes the internal state while ae(t) changes the

external state.

The input goes through a channel selector, which only pay attention to part of

context. For example, the first LBE pays attention to auditory input while the second

one pays attention to visual input. The input through the channel selector is fed into

an observation-driven state transition function. After generating the current state,

the cognitive mapping engine finds the best match and outputs the associated action.

It is worth noting that in the experiment only the second LBE is used for vision based

navigation. The experimental result of voice command learning is not presented.

6.3.1 Observation-driven state transition function

After going through channel selector, the sensory input is fed into the observation-

driven state transition component. Let’s first define last context: l(t) = f(a(t —

1),x(t)), which consists of last action a(t — 1) and current input x(t). l(t) is pushed

into a context queue as shown in Fig. 6.3 and is combined with last state information

to generate the current state.
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6.3.2 Online learning of one task through cognitive mapping

Many problems like content-based retrieval, vision-based navigation can be formu-

lated as a complicated function which maps high dimensional input and the current

state to low-dimensional output signals. We use a decision tree to approximate this

function, which is implemented by Locally Balanced Incremental Hierarchical Dis-

criminating Regression (LBIHDR) [43] [46].

A detailed explanation is beyond scope. Basically, given a state 3, the IHDR finds

the best matched 3’ associated with action. The mapping is done through a coarse-

to-fine tree structure. In the testing phase, given 3, we use K-nearest neighbor rule

to find the best match in the leaf node.

I - I

s = arg 1131511 II 3, — 3 II (6.1)

Using IHDR, the relatedness of different task is measured by the similarity between

the states generated for different tasks. If some of the states generated by two or more

tasks are the same, then we say these tasks are related. That’s why our architecture

is better than the task-clustering method [100], which has to define different tasks in
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advance to measure the relatedness. Using the DOSASE MDP model, we don’t need

to know the task in advance but generating states for different tasks incrementally.

IHDR intrinsically has incremental online learning capability to adapt to new inputs,

which is a requirement for autonomous mental development. And because of its

efficiency, it can learn high dimensional input, which outperforms the typical neural

network algorithm [17].

6.3.3 One-task learning algorithm by a developmental agent

The algorithm to learn one task by a developmental agent is as follows:

Procedure 5 One task learning. Learn the association between context and ac-

tion.

1: Collect the current context c(t).

2: Go through channel selector to get sensory input x(t) = 0,,(t). (For vision-based

navigation task.)

3: Push x(t) to the context queue and generate last context I (t)

4: Use observation-driven state transition function (Eq.(1)) to generate the current

state s(t).

5: Find the best match 3’ of s(t). If they are similar, use amnesic average to update

3’.

6: If imposed action is given, take this action. Otherwise, choose the action (a)

associated with s’ .

7: Go back to step 1.
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6.3.4 Multiple task learning through DOSASE

How can this architecture learn multiples tasks? We know that the agent can learn

one task with the model. Using the same architecture multiple tasks can be learned

if the C.- and A,- are provided. Now, the problem is how to speed up learning if the

agent acquires useful knowledge from former tasks? Given the tasks in Fig.6.1 as an

example, if T1(“go around”) has been learned, how the agent learns T2 (“go to the
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elevator”)? Let’s take a look at the state space generated for each task.

A part of the state generated by these two tasks is shown in Fig. 6.4. The context

of T1 is C1 = {c1,c2,c3}. The state generated for T1 is $1 = {31,32,53}, where

s,- = {SJ-1,3,2, ...,s,,,,}. j = {1,2,3} while n, denotes the number of state generated

for jth context. Now, the agent face T2. The context is C, = {cm 65, cc}. The state
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generated for T2 is $2 = {sa,sa,sc}, where sm = {sm1,sm2, ...,smnm}. m = {a, b, c}

while rim denotes the number of state generated for mth context. The shared context

of T1 and T2 is c2 (Cb). The advantage of cross-task learning is that if the agent learns

Csharc for T1, then there is no need to experience it again for T2.

Lemma 6.3.1 If the number of states generated for non-shared context of T1 and T2

is NNshare and the number of states generated for shared context is Nshare: the ratio

of the space complexity saved for multiple task learning is: Nahum/(NNahum + Nshare)

Now let’s think about the complexity in the training time space.

Lemma 6.3.2 If the N + 1th task shares context with the former N tasks: Cshare =

N

(U C.) flat/+1, the saved time for training the N + 1th task is Lahore.

i=1

6.3.5 Attention mechanism for the break point set

Suppose the agent has been trained with C1 and Cshare, in the testing phase, the

agent would go through the same context trajectory. However, there is a problem if

the agent experience 3b", (the last state of context Cb) again. Since for different tasks

the external actions ac associated with 8m, are different. For T1, the external action

should make the state move from 32", to 331 while for T2, the external action should

make the state move from 81m, (equal to 32%) to 3C1. What should the agent do at

the “break point?”

An attention mechanism is necessary to solve the problem. Remember that the

agent learn the task label through the first LBE. If the agent get into the state 32".,

(e.g. 317%), there are two external actions ael, 0.62. Each external action is associated
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with a task label. Using the task label information, the agent knows what action

should be taken to reach next state. Fig. 6.5 shows how the task label information

helps discriminate state transition. Adding task label as another dimension, the break

point is split into two points. By checking current task label, the agent knows which

action to. The internal action generated by the attention mechanism is defined as:

1 if T,- = 1

a,- = (6.2)

0 otherwise

The output external action is a = ac ® a,, where ® is component-wise multiplication.

Only after checking the task label information, can an action be issued.

6.3.6 Cross-tasking learning algorithm

The algorithm is as follows:
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Procedure 6 Cross-task learning.

1: Collect the current context c(t). x(t) = c(t).

2: Push x(t) to the context queue and generate last context I (t)

3: Use observation-driven state transition function to generate the current state s(t).

4: Find the best match 3' of s(t). If they are similar, use amnesic average to update

3’. Check the task label. If these two states have different task labels, generate a

new action for s’.

5: If imposed action is given, take this action. Otherwise, check task label, then use

Eq. 6.2 to pay attention to task label and take the corresponding action.

6: Go back step 1.

6.4 Experimental Results

In order to test the cross-task learning capability of the DOSASE MDP model , a

simulation environment is developed. The simulation map is shown in Fig. 6.6. The

artificial agent (rectangle with an arrow) can navigate through the white area. There

is an elevator on the bottom right (white rectangle). In every state, the agent has

three possible actions: go straight, turn left and turn right. Some of the example

input images are shown in Fig 6.7. The second and the third images on the third row

are the images near the elevator. The dimension of input image is 25 x 25.
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Figure 6.6: Simulation interface.

6.4.1 Trajectory and transferred knowledge

Only two tasks are considered: T1 “go around” and T2 “go the elevator.” The contexts

of these tasks are C1 and C2. The non-shared context is C’. The trajectories of two

tasks are shown in Fig. 6.8. In the training stage, C1 (solid line) is trained and then

C’ (dot line from point ‘A’ to point ‘B’) is trained. C’ includes context near the

elevator. In the testing phase, the agent successfully finished these two navigation

tasks. For task 2. its trajectory is different from that of task 1 around the “elevator"

since this part is the non-shared. While another part of its trajectory is overlapped

with that of task 1 because another part is not trained for task 2 but transferred from

the knowledge of task 1.

Fig. 6.9 shows the task label of each sample when testing on task 2. The task

label in the testing phase is switching between 2 and 1. Tab. 6.1 shows that there
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are totally 5380 samples. 2442 of them are retrieved with task label 2 while 2938 of

them are retrieved with task label 1, which means that for this test about 54.61%

knowledge is transferred from task 1 to task 2.

Table 6.1: Trasfered knowledge when testing on task 2.

 

 

      

Task 1 2 All Transferred

knowledge

No. of samples 2938 2442 5380 54.61%
 

6.4.2 Complexity reduced in terms of space and time

The structures of IHDR trees for different tasks are shown in Fig. 6.10. The first

two plots correspond to the IHDR tree architecture if taskl and task 2 are trained

separately. The plots shows the number of states in different layers. The depth of

both trees is 6. In the forth layer, the tree saves most of the states. The third plot
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shows the IHDR tree structure if the agent learns C1 first and then learns C’. As

you can see, the depth of tree is still 6, which means that the system learns two tasks

but the space complexity does not increase too much comparing with learning only

one task.

Table. 6.2 shows how cross-task learning reduces the complexity in terms of both

space and time complexities. If we train 2 tasks separately, the size of the IHDR

trees are 22.6M and 27.5M, respectively. If we train task 1 (C1), and then train the

non-shared context (C’) of C1 and C2, the size of the tree is 36.6M. The percentage

of saved space isW= 26.95%. The training time of task 1 and 2 is 147.423

and 143.758, respectively. If cross-task learning is conducted, the training time is

205.833. The percentage of saved time is about 29.31%. The experimental result

shows that the model is effective in principle and cross-task learning really reduces a
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Figure 6.10: HDR tree structure. The first two plots show the number of states in

different layers for task 1 and task 2, respectively. The third plot shows the tree

structure if cross-task learning is conducted.

lot in terms of time and space complexities.

Table 6.2: Complexity reduced in terms of space and time.

 

Task 1 2 All Complexity

reduced

Tree size 22.6M 27.5M 36.6M 26.95%

Training time 147.423 143.753 205.83 29.31%

 

 

       

The training time of each step for task 1 is shown in Fig. 6.11. The average

training time of each step is 0.0433 and the highest training time is 0.143. Obviously,

the system can work well in real time, which is a necessary condition to conduct

autonomous mental development for an artificial agent.
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Figure 6.11: Tfaining time of each step for task 1.

6.5 Conclusions

In this chapter, we apply the DOSASE MDP model to conducting cross—task learning

for autonomous mental development. No prior knowledge is needed for each task. The

model helps an agent to find the relatedness between different tasks by comparing the

similarity of states generating for each task. The agent doesn’t need to know all the

tasks in advance. The learned knowledge in shared context can be transferred to new

task, which speeds up the training procedure. The model is tested in a simulation

environment for vision-based navigation. Two tasks have been incrementally learned

in real time. There are big gains in terms of time and space complexities. The

experimental result shows the effectiveness of the AMD paradigm. For the future

work, we will test the model on a robot in the real world. This is a challenging

problem since in the real world the number of state could be huge, which makes

learning diflicult. Also we would like to expand the model for learning using multi-
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modal inputs to see how a robot develops its visual and auditory capabilities at the

same time.
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Chapter 7

Adaptive Multimodal

Context-Aware User Presence

Detection

Context-aware system has drawn increasing attention recently. The goal is to ob-

serve users’ status and provide proper assistance. In this chapter, we present a user

presence detection system. Both visual and acoustic contexts are integrated to infer

a user’s activities in an office. Since human behaviors are organized in a hierarchical

manner, we implement Layered Hidden Markov Models (LHMM) to model human

activities with different granularities. A more challenging issue is to make the system

adapt to different users and different environments. Instead of building in all the

world knowledge in advance (which is intractable), the system’s adaptive capability

enables it to learn user-centered knowledge (which is tractable). IHDR (Incremental
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Hierarchical Discriminant Regression) algorithm is used to automatically generate

models for acoustic signals related to a user. IHDR can learn new signals online

and its coarse-to—fine tree structure guarantees learning in real-time. A new type of

feature is developed to further improve acoustic signal classification. The prototype

system has been successfully tested in open domains.

7.1 Introduction

Context-aware system [65] has drawn increasing attention from researchers and engi-

neers. Context is defined as “the physical and social situation in which computational

devices are embedded.” Context-awareness is the key component of the next genera-

tion human-computer interaction technique, which tends to measure the information

about “where,” “what,” “when,” and “who.” A few prototype context-aware systems

have been implemented in last decade. Shafer, Brumitt & Cadiz [84] create an “Ea-

syLiving” home environment which is similar to the intelligent office environment [69].

In [71] [101], driver’s behaviors are modeled so that the intelligent assistance systems

can improve the safety of driving. Wearable computing [88] is another hot area, where

intelligent devices embedded in clothes, watches or glasses.

The goal of context-aware computing is to provide users with services, which are

appropriate to their particular situational information. The system detects whether

users are in certain environments (room, office, car, etc) and what’s their status (in,

out, online, offline, awake, sleeping, etc). However, current presence detection systems

rely on keyboard and mouse activities, which do not reflect actual user activities.

150



For example, one current presence system may set the presence status to offline

after 15 minutes of keyboard inactivity. If the user is left the office immediately

after working on the computer, his presence status is still shown as “active.” Our

work aims at computing the presence reliably in real-time. In order to build such

a system, we integrate visual-acoustic contextual information and other aspects of a

user’s information such as past states.

A significant portion of previous work related to context-aware computing focuses

on recognizing human activities based on a single modality input in a specific envi-

ronment. Aggarwal and Cai [1] write a review of human motion analysis. There are

two popular probabilistic approaches in visual activity recognition: Hidden Markov

Model (HMM) and Bayesian Belief Network (BBN). One of the earlier attempts to

apply HMMs to activity recognition is found in [123]. Since then, a lot of extensions of

HMMs have been tried to model different human activities. Variable-length HMM [32]

is applied to exercise behavior recognition. Brand & Oliver use Coupled-HMM [8]

to detect interactions between multiple people. Entropic-HMM [7] is introduced to

detect and recognize activities in video. Bobick and Ivanov [53] apply a stochastic

context-free parsing to recognize activities sequence generated by low-level HMMs.

Bayesian Belief Network is another popular approach. Buxton & Gong [16] adopt

BBN for visual surveillance. Madbhushi & Aggarwal [61] use BBN to recognize ac-

tions including sitting down, standing up, hugging, etc.

One limitation of the above studies is that there have been few studies on human

activity recognition using multimodal context information. In [20], audio and visual

contexts are combined to classify simple activities such as crossing road and passing
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through door. Oliver [70] proposes a Layered HMM architecture integrates informa-

tion from multimodal inputs to recognize six activities in an office. In order to push

the limit of context-aware computing, we need further study of multi-modal context

awareness systems.

A more challenging issue is the adaptation capability of context-aware systems.

These systems should be able to work in different environments and adapt to different

users. Most current user presence detection systems are limited to a constrained

setting. A reliable system for a user in one environment is not useful for other users

in different settings. For example, if we can detect the phone ring signal in an office,

it would be helpful to infer whether a user is going to have a phone conversation.

But each room has different telephones and each user has different cell phones. It

is impossible to build a system to detect all kinds of phone ring using pre—trained

classifier. A useful system must adapt to its user and learn user-centered signal on

the fly in real—time.

In this paper, we propose a real-time audio/video user presence detection system

to monitor the behaviors of a single human in an office. The system has the following

features: 1) A multimodal context-aware system is built. We integrated both audio

and visual information. A layered architecture is implemented to model human ac-

tivities with different granularities. 2) IHDR (Incremental Hierarchical Discriminant

Regression) is implemented to learn new acoustic signal online and adapt to new

settings, which is the major difference between this work and [70]. This novel com-

ponent is crucial for adaptation to unknown environments as a consumer product.

Instead of building in world knowledge in advance (which is intractable), the system’s
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adaptive capability enables it to learn user-centered knowledge (which is tractable).

And IHDR is organized in tree structure. The coarse-to—fine structure guarantees

learning in real-time. 3) A new type of feature for acoustic signal is developed to

further improve the performance.

In what follows, we first describe the system and challenges we have to face in

Section 7.2. System architecture is discussed in Section 7.3. Then we present the

experimental results and summarize our work.

7.2 System Overview and Challenges

A typical setting of a context-aware user presence detection system is shown in

Fig. 7.1. A table and a chair are in an office. On the table, there are a telephone, a
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Figure 7.1: Typical setting of a user presence detection system.

personal computer, a video camera and a microphone. The sensors we use to collect

context information are: 1) USB camera: a Logitech QuickCam camera sampled at

15 fps. is used to detect human motions. The resolution is 640 x 480. 2) Microphone:

153



a built in microphone, associated with the camera.

The goal of this system is to detect human activities in an office. The overview

of the user presence detection system is shown in Fig. 7.2. Two kinds of sensory

Auditory

input . .
Mel-FFT Audition

5 analysis —‘-> pattern
classifier

Behavior

. classifier

\Ilsual System

Input Motion Egg?" ouput

detector classi er

Figure 7.2: Overview of the user presence detection system.

inputs are used: auditory and visual. Audition pattern classifer discriminates four

kinds of auditory patterns: “Phone ring,” “Conversation,” “Uncertain noise,” and

“Silence.” A motion detector captures motion information by computing the difference

between two consecutive images. A sequence of motion activities is classified into four

motion patterns: “Rest,” “Moving near door,” “Moving in the office,” and “Out.”

The outputs from the above two components are combined together to infer human

activities in the office. There are totally four kinds of activities: “Conversation,”

“Other activity,” “Rest,” and “Nobody around.”

One technical difficulty is to fuse different context inputs. In this system, the

sampling rate of acoustic signal is 50Hz while the sampling rate of visual signal is

15Hz. A “Moving in the office” pattern can be detected in 0.1 second while to

detect “Nobody around” the system has to wait for 2 seconds to confirm the status.

Psychological studies show that human behaviors are hierarchical [124]. In order to

model human activities with different granularities, we implement Layered-Hidden
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Markov Model (LHMM). Low-level HMMs are used for motion pattern classification

while high-level HMMS are used for human activity classification.

Adaptation to user and environment is a more challenging issue. As we mentioned

in Section 1, if the system can detect the user’s sound or detect his phone ring signal

(telephone in office or cell phone), it would be easy to infer whether he is in the office

and what is his status (face-face conversation, phone conversation, silent, etc). Since

each user has unique voice and there are thousands of different phone ring tones in

this world, it is impossible to has a system to recognize all these acoustic signals. If

the system could adapt to each user and the related environment, we have a tractable

solution. We propose the IHDR (Incremental Hierarchical Discriminant Regression)

algorithm for acoustic signal classification and learning. HMM has been used for

speech recognition because it has dynamic modeling capability for sequential signals.

However, one limitation of HMM is that it is only a computational model in the

sense that HMM is not designed to be generated automatically from observations.

Engineers have to manually design the system for given settings in advance, which

affects its adaptive capability in unknown environments. For example, if a new type

of sensory input is added to the system, the designer has to create new HMMs and

specify parameters for each HMM, which is inconvenient especially for unprofessional

users. In contrast, IHDR organizes the learned patterns in tree structure. New

patterns are added as new leaf nodes. One tree is enough to model all acoustic

signals related to a user. Its coarseto—fine tree structure enables efficient learning in

real-time. We also develop Mel-FFT feature to further improve the performance of

acoustic signal classification. Details of each component is discussed in next section.
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7.3 System Architecture

The detailed architecture of the user presence detection system is shown in Fig. 7.3.

Mel analysis [23] is applied to raw auditory signals to extract Mel-FFT features, which

are fed into an IHDR tree to classify four kinds of auditory patterns. Sequences of mo-

tion activities are classified by low-level HMMs into four motion patterns. High—level

HMMs integrate outputs from the above two components to infer human activities.

Mel-FFT I Prototype

features

  

   
Auditory

pattern

 

 
6:53 (3 ”9m?"
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Motion

Hi h—ievelHMM

ozone 9
Low-level HMM

   

   

Figure 7.3: A detailed architecture of the user presence detection system.

7.3.1 Acoustic signal classification using IHDR

Feature Extraction

With the audition component, we try to discriminate the following four signals: con-

versation, phone ring, silence (background noise) and uncertain noise (radio, music,

flapping, clapping, etc). In most speech processing systems, Mel—frequency Cepstral

Coeflicients (MFCCs) [23] is the dominating feature because MFCC captures the
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properties of human speech signals. The procedure to calculate the MFCC feature is

shown in Fig. 7.4.

    

Signal
  

FFT .' > Log ——> Band filters v > IDFT -—> MFCC

            

V V

FFT feature Mel-FFT

Figure 7.4: The procedure to extract FFT, Mel-FFT and MFCC features.

First, we apply FFT (Fast Fourier Transform) to get features in the frequency

domain. Usually, we calculate the logarithmic energy of FFT coefficients. Critical

band filters are applied to derive the appropriate frequency components for computing

the MFCC. This implementation is described in Eq. 7.1,

Fie

W) = Z logis<k)iH.<k-,2—V’-§> (7.1)
k=Fis

where log|S(k)| is the kth log energy of the Fourier coefficient, N’ is the length of the

ith triangular band. H,- is a triangular filter:

1 — |:1:|, a: g 1

112(33): . (7.2)

0, :1:>1

The variable :1: is defined in Eq. 7.3:



where 17,-, and Re are the starting frequency and the ending frequency of the ith

triangular band, respectively; 17,-, _<_ k S Fig. After we get a sequence of Y(z'), we can

apply IDFT (Inverse Discrete Fourier Transform) to this sequence, and then we can

get the MFCC feature using Eq. 7.4:

N'-1

1 2 : ~ ' 1r 1 ’m

k=0

where m stands for the index of the MFCC feature.

In Eq. 7.1, Y(z') denotes the sum of the weighted log|S(k)| within the ith critical

band filter. Y(i) is sometimes called the weighted log energy in the ith critical band.

In this paper, we call Y(i),i = 1, 2, ..N’ the Mel-FFT feature. It is worth noting that

the system doesn’t need to understand the meaning of conversational signals but to

classify different sounds. In section 7.4, we compare FFT feature, Mel-FFT feature

and MFCC feature. It turns out that Mel-FFT is the best choice for this application.

Incremental Hierarchical Discriminant Regression

After extracting the features of acoustic signals, how do we classify them? Classifi-

cation and regression problems can be formulated as a complicated function which

maps high-dimensional input and the current state to low-dimensional output signals.

Decision tree [10] has been a popular method for function approximation. We use the

IHDR for acoutic signal classification.

Each leaf node generates quite a few primitive prototypes (block in Fig. 7.3),

which represent different patterns (model generator). In testing phase, if a prototype
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is reached (shadowed block), the label associated with it would be the output (com-

putational model). A more detailed description of the algorithm can be found in [48].

The advantages of IHDR include: 1) IHDR maps the high dimension data into low

dimensional subspace. LDA is conducted in the discriminating subspace, which saves

a lot of computational power. 2) IHDR organizes the learning knowledge coarse to

fine, which speeds up the retrieval procedure. The time complexity is NlogN, where

N is the number of prototypes in the tree. 3) IHDR intrinsically has incremental

online learning capability to adapt to new signals since the sufficient statistics are

updated incrementally. This is why we use IHDR instead of traditional HMM to

classify auditory patterns. For practical applications, the system has to work in dif-

ferent offices. Each office has different people and different telephones. In order to

make HMMS adapt to new settings, a bank of new HMMs has to be created manually.

In contrast, one IHDR is enough to handle all types of auditory signals related to a

user. And also important is that the adaptation can be incrementally conducted in

real-time.

7.3.2 HMMs for motion pattern classification

In order to recognize human motion activities, we have to find the moving body

and its location. We implement a motion detector to find the bounding box of a

moving body with two consecutive images. First, we calculate the difference between

these two images. Then a low—pass filter is used to remove noise in the difference

image. The bounding box of the moving body is determined by the histogram of the
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image [76]. Now we know the size and the location of the bounding box, which is the

observation of motion activities. After getting a sequential motion sub—patterns, we

use discrete Hidden Markov Model (HMM) to classify human motion behaviors. An

HMM is denoted by A = (A, B, 7r), where A is state transition probability matrix,

B is the observation symbol probability matrix, 7r is the initial state distribution.

Specification of an HMM involves the choice of the number of states N, the number

of observations M. With training data, we can calculate A by using Baum-Welch

algorithm [78]. Given a model A and a sequence of observation O={01, 02, ..., OT},

the likelihood of the sequence is

P(OIA) = Ziar(i),1 S 2' S N, (75)

where at(i) is defined as

at“) = [Z at_1(i)aij]bj(0t), (7-6)

where (1,5 is the element of A and 1),-(0;) is the probability for state j in the model

A of observing 0;. The meaning of at(i) is the probability of the partial observation

sequence, 01, 02...o¢, and state i at time t, given the model A.

Let K be the number of motion/activity patterns, we usually need to generate

a bank of K HMMs (A,c (1 S k _<_ K)) The likelihood of the observation sequence

in each model is L), = P(OIAk). Suppose the maximal likelihood is Lmax and the
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minimal likelihood is Lmini the normalized likelihood is

 

I L — L '

L, = ’° mm . (7.7)

Lmax " Lmin

HMMs choose the pattern It: with the largest normalized likelihood as output.

I} = arg max{L)c} (7.8)

k

7.3.3 Integration component

The system is able to recognize four types human activities: “Conversation,” “Other

activity,” “Rest,” and “Nobody around.” Integration of the above two low-level com-

ponents to infer human activities is difficult since different modalities have different

updating frequency and they can be either related or unrelated. High-level HMMs

are necessary for reasoning human activities based on information of low-level compo-

nents. Usually the reasoning is conducted with a larger time granularity (for example,

2 seconds), while in motion pattern classification and auditory pattern classification,

the granularity is less than 1 second. The outputs from low-level component are

symbols, which can be fed into the integration HMMs. Since the vision component

outputs 4 types of different patterns (so does the audition component), the combi-

nation of these two components gives 16 types of observations. For example, if the

motion observation Oman-0,, is “Moving in office” and the acoustic observation Gamma-C

is “Conversation,” let’s define Omotion = 2 and Gamma = 2. The pattern of integra-
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tion observation is 0mgegraam = Omaha" x 2 + Oacousuc = 2 x 4 + 2 = 10. Baum-Welch

algorithm [78] is used to train sequences of combination observations.

7.4 Experimental results

We conducted experiments for each of these three components.

7.4.1 Experimental results of the auditory component

We trained the system with 9 kinds of male conversation signals, 3 kinds of female

conversation signals, 16 kinds of phone ring signals, background noise and uncer—

tain noise (radio, music, flapping, clapping) using IHDR. Some signals are shown in

Fig. 7.5.

Comparison of different feature vectors

First, we compared three kinds of features: FFT, Mel-FFT, and MFCC. The auditory

data are digitized at 11025Hz by a normal sound blaster card. The number of Mel-

FFT feature vectors is about 12000. Half is used for training, another half is used for

testing. The number of training samples is about 6000 for each feature, the number of

testing samples is 5174. We can find out in Tab. 7.1 that Mel-FFT is better than FFT

and MFCC. The recognition rate is about 90%. The dimensions of FFT, Mel-FFT,

and MFCC feature vector are 512, 21, 13, respectively. The corresponding time to

train each feature vector using IHDR, is 115ms, 8.6ms and 7.3ms, respectively. In

order to build a real-time online learning system, FFT is not acceptable since the
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Figure 7.5: Different acoutsic signals: from top to down are background noise, conversation,

phone ring and other noise (clapping). x-axis denotes the number of raw signal points, y-axis

denotes the normalized energy.
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system has to incrementally learn about 50 frames per second. Considering training

time and recognition rate, we choose Mel-FFT as the feature of acoustic signals.

Table 7.1: Comparision of different features for acoustic signals.

 

 

 

 

 

Features Dim Training Correct Total Rate

Time

FFT 512 115ms 4314 5174 83.38%

MelFFT 21 8.6ms 4641 5174 89.70%

MFCC 13 7.3ms 4448 5174 85.92%     
 

 

Online learning

As we mentioned earlier. we use IHDR rather than HMM for acoustic signals classi-

fication. The reason is that one IHDR tree can adapt to new signals, new users and

new environments. In contrast, using HMM the designer has to create new models

for new signals. In order to verify the adaptive capability of IHDR, we tested the

online learning component. We divided the dataset into 3 sets: Set A consists of

conversation signal and 8 types of phone ring signals; Set B consists of conversation

signal and 7 types of phone rings signals; Set C consists of one type of phone ring

signal, which is in A but not in B. We first trained set B offline then tested on set A.

The confusion matrix is shown in Tab. 7.2, the recognition rate of phone ring signal

is only 81.5%.

Table 7.2: Confusion matrix of offline training. (C=Conversation, P=Phone)

 

 

 

Data C P Total Rate

C 4064 254 4318 94.12%

P 275 1212 1487 81.50%       

164



In the next experiment, using the offline generated IHDR tree, we trained the

system with set C and then tested on set A again. The result of online learning

is shown in Tab. 7.3. As we can see, the recognition rate of phone ring signals is

improved from 81.50% to 89.64%, which proves the adaptive capability of IHDR.

Table 7.3: Confusion matrix after online training. (C=Conversation, P=Phone)

 

Data C P Total Rate

C 4071 247 4318 94.28%

P 154 1333 1487 89.64%

 

 

       

Then we tested on all four kinds of acoustic signals. The confusion matrix is

shown in Tab. 7.4. Conversation and uncertain noise signals are confusing sometimes

Table 7.4: Recognition rate of each auditory set. (C=Conversation; UN=Uncertain

Noise; P=Phone; S=Silence)

 

 

 

 

 

Data C UN P S Total Rate

C 2275 188 6 4 2470 92.11%

UN 216 2104 0 0 2320 90.69%

P 8 14 1768 5 1795 98.50%

S 0 0 0 1141 1141 100%         

(188 conversation vectors are recognized as uncertain noise) because the uncertain

noise covers a very large feature space. The overall recognition rate is 94.33%. Com-

paring to [44], the performance gains about 0.5%. We need to notice that the test is

source-dependent. In other words, the testing set and the training set come from the

same source. If we test the system with signals of a telephone we never trained, the

performance would drop. That’s why IHDR is important for this application since it

can incrementally learn new auditory patterns.
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Figure 7.6: The first row shows the video sequence, which is classified as “Moving near the

door”; the second row shows the bounding box of the moving object.

7.4.2 Experimental results of the motion component

Fig. 7.6 shows a motion sequence, which is classified as “Moving near the door”. The

first row is the video sequence while the second row shows the bounding box of the

moving object.

With the size and the position of the moving body, we can feed the motion sub-

pattern sequence (observations) into HMMs. In this experiment, the parameters of

the low-level HMMs are: N, = 6, M24 and K=4. Different observations are: “Motion

in door area,” “Motion in room but not door,” “Static & last motion in door area,”

and “Static & last motion in room but not door.” The normalized likelihood of each

motion pattern is shown in the first four plots of Fig. 7.7. The x-axis is time line

about 400 seconds. The granularity of HMMs is 1 second. If L], = 1, then pattern It

is reported. The ground truth of activity sequences is shown in the fifth plot, which

goes as follows: the user firstly moved in the room (pattern 1), rested for a while (2),

moved around the door (3) and then went out (4). The motion behaviors are clearly

recognized. A mistake occurs around step 320, the system classified pattern (3) as
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pattern (1) when the user moved near the boundary of the door and the remain parts

of the room.
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Figure 7.7: Likelihood of motion patterns over time.

7.4.3 Experimental results of the high-level reasoning

The specifications of the high level HMMs are: N, = 4, M=16 and K=4. Normalized

likelihood of each human activity is shown in the first four plots of Fig. 7.8. The

ground truth of activity sequences is in the fifth plot, which goes like this: the user

moved around in the rest (activity 1), rested (2), moved around again (1), talked for

a while (3), moved to the door (1) and went out (4). The x-axis is time line about

800 time frames. “Nobody” and “Rest” are perfectly classified, while “Conversation”

and “Other activity” are messed up a little because sometimes you can move and

talk at the same time. 40 minutes of office activity are recorded (about 10 minutes

for each activity). A half of the data is used for training; another half is used for
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testing. The recognition rate of human activities is shown in Tab. 7.5. About 4% of

“Conversation” is incorrectly recognized as “Other activity”, which is consistent with

the results in Fig. 7.8.
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Figure 7.8: Likelihood of human activities over time.

Table 7.5: Recognition rate of human activities (N=Nobody; OA=Other activity;

R=Rest; C=Conversation).

Data N O R C

1 0 0 0

0 0 5.

R 0 0 1 0

0 4.5 0 95.

 

7.5 Summary and Discussion

In this chapter, we proposed a multimodal context-aware system to detect user pres-

ence in an office. Two levels of HMMs with different granularities handle motion
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pattern classification and integration of low-level outputs, respectively. A more ex-

citing feature of the system is its adaptive capability. IHDR, as a model generator,

generates representations for different auditory patterns and can easily adapt to user-

centered signals. For example, IHDR can learn its owner’s sound and the phone ring

signal in his/her office in real-time. The initial results of the prototype system are

promising. However, to build a highly adaptive system for consumers needs further

study. Here are some future works: 1) Detect motion activities of multiple persons.

Right now, only one user can be detected. With multi-person detection, we can find

out the interactions between different people. 2) Dynamic CPU usage adaptation. In

the current system, the audio and visual components use up most of the computa—

tional power. We are going to implement an attention mechanism, which can turn

off a component when it is not useful. Thus, the user can run the system in the

background while allocating computational power to other applications.
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Chapter 8

Conclusions and Future Work

8.1 Contributions

Studies in human cognitive development have shown that interactions between a

higher animal and its environment is essential for perception development and knowl-

edge acquisition. This thesis reports some recent research on developmental robots,

the robots that learn autonomously through real-time interactions with the environ-

ment. The feasibility of the developmental robots is demonstrated under eight chal-

lenging requirements for autonomous mental development (AMD) as we discussed in

Section 1.1.3.

At this early stage of research in developmental robots, we are facing an array

of challenging technical issues. We have developed two major techniques based on a

developmental architecture, which was implemented on a real robot, SAIL, an early

developmental robot prototype. A summary of the contributions is given below.
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. Propose the Developmental, Observation driven, Self-Aware, Self-Effecting,

Markov Decision Process (DOSASE MDP) model, which integrates multimodal

sensing, action-imposed learning, reinforcement learning, and communicative

learning.

. Build the cognitive mapping engine using the Locally Balanced Incremental Hi-

erarchical Discriminant Regression (LBIHDR) technique, which has better gen-

eralization capability under non-stationary environments, especially for vision-

based navigation.

. Novelty and reinforcement learning are integrated into a robotic value system

for the first time. As an important part of AMD, a value system signals the oc-

currence of salient sensory inputs, modulates the mapping from sensory inputs

to action outputs, and evaluates candidate actions. The value system is applied

to guide a robot’s visual attention behavior. With this value system, develop-

mental robots has better autonomy with novelty (dense input) and reinforcer

(sparse input).

. Present a robotic system that develops covert perceptual capability for vision-

based autonomous navigation via reinforcement learning. The agent learns

different road boundaries through online interactions with human trainers. All

these cannot be achieved by traditional supervised learning techniques since

these kind of behavior cannot be imposed.

. Provide the developmental agent with cross-task learning capability. That is, an
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agent can learn multiple tasks and use acquired knowledge to speed up learning

new tasks. With capability, a developmental robot can save time and save space

for multiple tasks. This is very important for developmental learning at current

stage since resource is limited.

6. Applies the above techniques to a practical application funded by industry.

Context information from multi-sensory inputs is integrated to infer a user’s

activities in an office. This is the first open-domain audio/visual learning system

for user presence detection. The prototype system verifies the effectiveness of

the developmental learning paradigm. Currently, we are seeking the possibility

for turning the system into products.

8.2 Future directions

Autonomous mental development by a robot is an interdisciplinary research area.

While more and more researchers are beginning to realize the importance and po—

tential power, it is still at its early stage. This thesis represents initial steps in this

direction. In addition to the above contributions, this work has raised many new

questions and left out many interesting but unresolved problems as well.

Attention-based navigation. Vision-based navigation is a hard problem. How

to use attention mechanisms to generalize learned knowledge could be a solution.

Further studies are needed to fully explore the capability of DOSASE MDP model

for navigation task learning. For instance, communicative learning could be a good

choice to guide a robot’s attention behavior.
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A sophisticated value system. In this thesis, we propose a value system

integrating novelty and reinforcement learning for the first time. We only test the

value system for the visual attention behavior. The problem is how to scale up the

value system for complex behaviors? While it is clear that the behavior of the value

system should be developed through experiences, it is not clear how such a system

can learn from an unstructured and highly inconsistent environment. Should this

value system be a centralized universal control coordinator or a distributed system?

How does a developmental robot conduct thinking under the guidance of its value

system?

Applications in human machine interactions. While enjoying the improved

quality of life brought by the more and more sophisticated machines, we are facing

many new problems, such as the machines’ flexibility, ease of usage, and efficient

cooperation with human users. The related broad research areas can be grouped

under human machine interactions (HMI). Machines conducting perceptual learning

and behavior learning autonomously in real-time would resolve some of the above

problems of HMI. It is about time to identify some HMI related applications, such

as intelligent rooms and intelligent vehicles, and apply the principles and techniques

of autonomous mental development. The prototype user presence detection system

provides a good test-bed.
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