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ABSTRACT

NEW ALTERNATIVES FOR ELECTRONIC STRUCTURE

THEORY: THE APPLICATION OF TWO-BODY CLUSTER

EXPANSIONS IN HIGH ACCURACY AB INITIO CALCULATIONS

By

Peng-Dong Fan

In this thesis, the applicability of exponential cluster expansions involving one-

and two-electron operators in high accuracy ab initio calculations is discussed. First,

the extended coupled-cluster method with singles and doubles (ECCSD) is tested

in the most demanding studies of potential energy surfaces involving multiple bond

breaking. The numerical results for a few cases of multiple bond breaking show that

the single-reference ECCSD method is capable of providing a qualitatively correct

description of entire potential energy surfaces, eliminating, in particular, the fail-

ures and the unphysical behavior of all standard coupled-cluster methods in similar

cases. It is also demonstrated that one can obtain entire potential energy surfaces

with millihartree accuracies by combining the ECCSD theory with the noniterative

a posteriori corrections obtained by using the generalized variant of the method of

moments of coupled-cluster equations. This is the first time when the relatively sim-

ple single-reference formalism, employing one— and two-body clusters only, provides

a highly accurate description of the dynamic and significant nondynamic correlation

effects characterizing multiply bonded systems. Second, an evidence is presented that

one may be able to represent the exact or virtually exact ground- and excited-state

wave functions of many-electron systems by exponential cluster expansions employing

general two-body operators. Calculations for small many-electron systems indicate



the existence of finite two-body parameters that produce the numerically exact wave

functions. This finding may have a significant impact on future quantum calcula-

tions for many-electron systems, since normally one needs triply excited, quadruply

excited, and other higher—than—doubly excited Slater determinants, in addition to all

singly and doubly excited determinants, to obtain the exact or virtually exact wave

functions.
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Chapter 1 Introduction

Great advances have been made in ab initio quantum chemistry. Highly accurate

calculations for closed-shell and simple open-shell molecular systems involving a

few atoms are nowadays routine. This, in particular, applies to coupled-cluster

(CC) theory1—5, which has become the de facto standard for high accuracy calcu-

lations for atomic and molecular systems‘3—13. The basic single-reference CC meth-

ods, such as CCSD (CC approach with singles and doubles)”, and the noniterative

CCSD + T(CCSD) = CCSD[T]l5 and CCSD(T)16 approaches that account for the

effect of triexcited clusters by using arguments based on the many-body perturbation

theory (MBPT), in either the spin-orbitall4"16 and spin-freer"-19 or spin-adapted'm—22

forms, are nowadays routinely used in accurate electronic structure calculations. The

idea of adding the a posteriori corrections due to higher-than—doubly excited clusters

to CCSD energies, on which the CCSD[T] and CCSD(T) approaches and their more

recent CCSD(TQf) extension23 are based, is particularly attractive, since it leads to

methods that offer an excellent compromise between high accuracy and relatively

low computer cost, as has been demonstrated over and over in numerous atomic and

molecular applications7—10'12’13.

There are, however, Open problems in CC theory. First and foremost is the per-

vasive failing of the standard single-reference CC methods, such as CCSD, CCSD[T],

CCSD(T), and CCSD(TQf), at larger internuclear separations, when the spin-adapted

restricted Hartree-Fock (RHF) configuration is used as a reference, which limits the



applicability of the standard CC approaches to molecules near their equilibrium ge-

ometries. Second is the large computer effort associated with the need for using

higher-than—doubly excited clusters in calculations involving quasi-degenerate elec-

tronic states and bond breaking when larger many-electron systems are examined.

Undoubtedly, it would be very useful to extend the applicability of the standard

single-reference CC methods to entire molecular potential energy surfaces (PESs)

involving bond breaking, and quasi-degenerate electronic states in general, without

invoking complicated and time-consuming steps associated with the more traditional

multi-reference approaches, in which one has to choose active orbitals and multi-

dimensional reference spaces on an ad hoc molecule—by—molecule basis. Ideally, one

would like to develop a straightforward theory which could provide a virtually exact

description of many-electron wave functions with the exponential, CC-like, expansions

involving one- and two-body operators only, since the molecular electronic Hamilto-

nian does not include higher-than—two-body interactions.

There are several specific challenges in all those areas. First of all, the RHF-based

CCSD method, on which the noniterative CCSD[T], CCSD(T), and CCSD(TQf)

approaches are based, is inadequate for the description of bond breaking and quasi-

degenerate states, since it neglects all higher—than—doubly excited clusters, including

the important triply and quadruply excited T3 and T4 components. Second, the non-

iterative triples and quadruples corrections defining the CCSD[T], CCSD(T), and

CCSD(TQf) methods aggravate the situation even further, since the usual arguments

originating from MBPT, on which these standard noniterative CC approximations

are based, fail due to the divergent behavior of the MBPT series at larger inter-

nuclear separations (or when the strong configurational quasi-degeneracy and large

nondynamic correlation effects set in). In consequence, the ground-state PESs ob-



tained with the CCSD[T], CCSD(T), CCSD(TQf), and other noniterative CC ap-

proaches are completely pathological when the RHF configuration is used as a ref-

erence (cf., e.g., Refs. 9, 11—13, 24—37 and references therein). The iterative ex-

tensions of the CCSD[T], CCSD(T), and CCSD(TQf) methods, including, among

many others, the CCSDT-112135“41 and CCSDTQ-l42 approaches, and the nonitera-

tive CCSDT + Q(CCSDT) = CCSDT[Q]42 and CCSDT(Q;)23 methods, in which the

a posteriori corrections due to T4 cluster components are added to the full CCSDT

43"“ energies, improve the description of PBS in the(CC singles, doubles, and triples)

bond breaking region, but ultimately all of these approaches break down at larger

internuclear distances (see, e.g., Refs. 28, 29, 34). One might try to resolve the fail-

ures of the standard single-reference CC approaches in the bond breaking region and

for quasi-degenerate electronic states in a brute-force manner by including the triply

excited, quadruply excited, pentuply excited, etc. clusters fully and in a completely

iterative fashion, but, unfortunately, the resulting CCSDTQ (CC singles, doubles,

triples, and quadruples)45_48, CCSDTQP (CC singles, doubles, triples, quadruples,

and pentuples)”, etc. approaches are far too expensive for routine molecular appli-

cations. For example, the full CCSDTQ method requires iterative steps that scale

as ngnfi (no (nu) is the number of occupied (unoccupied) orbitals in the molecular

orbital basis). This N10 scaling with the system size (N) restricts the applicability of

the CCSDTQ approach to very small systems, consisting of ~ 2 - 3 light atoms de-

scribed by small basis sets. For comparison, CCSD(T) is an ngnfi (or JV“) procedure

in the iterative CCSD steps and an 723123 (or M) procedure in the noniterative part

related to the calculation of the triples (T) correction. In consequence, it is nowadays

possible to perform the CCSD(T) calculations for systems with 10—20 light atoms

or a few heavier (transition metal) atoms. This indicates that in searching for new



methods that would help to overcome the failures of the standard CC approaches in

the bond breaking region, one should focus on the idea of improving the results of

the low-order CC calculations, such as CCSD, with the noniterative corrections of

the CCSD(T) type, since only such methods have a chance to be applied to larger

molecular systems in the not—too—distant future.

In view of the above discussion, the question: Can one improve the quality of

standard CC wave functions in the bond breaking region at the basic CCSD level of

the single-reference CC theory? seems to be particularly important. In this thesis,

we show that this can be accomplished by exploring the so-called extended coupled-

cluster (ECC) theory. The basic ECCSD results, particularly when multiple bonds are

stretched or broken, are qualitatively much better than the corresponding standard

CCSD results. However, they are not yet fully quantitative. This prompts another

question: Can one improve the quality of the ECCSD results by adding a simple a

posteriori correction to the ECCSD energy which is obtained by using the singly and

doubly excited cluster amplitudes obtained with the ECCSD approach? In this thesis,

'we show that the answer to this question is affirmative if we use the generalized

method of moments of coupled-cluster equations (GMMCC). Eventually, of course,

one would prefer to use only one- and two-body clusters to obtain an exact or virtually

exact description of many-electron systems, since, as we have already mentioned,

the Hamiltonians used in quantum chemistry do not contain higher-than—pairwise

interactions. This prompts the third and the final question of this thesis research:

Can one obtain the exact or virtually exact many-electron wave functions by using

two-body exponential cluster expansions?



Chapter 2 Practical Ways of Improving Standard

Coupled-Cluster Methods Employing Singly and

Doubly Excited Clusters via Extended

Coupled-Cluster Theory

2.1 Extended Coupled-Cluster Theory: General Formalism

The extended coupled-cluster (ECC) theory is based on the asymmetric, doubly con-

nected energy functional50—60,

Elm) =<<I>Ifil<1>>, (2.1)

where |<I>) is the independent particle model reference configuration (e.g., the Hartree-

Fock determinant) and

H = e2t(e'THeT)e’2t = calf-16’s? = (eEtI-I)C = [eEt(HeT)C]C (2.2)

is the doubly transformed Hamiltonian, obtained by transforming the similarity trans-

‘ formed Hamiltonian H used in the standard CC theory,

H = e-THeT = (HeT)C, (2.3)

where H is the Hamiltonian and C stands for the connected part of the corresponding

operator expression, with the exponential operator e'Et. T is the usual cluster opera-

tor, which is a particle-hole excitation operator generating the connected components

of the many-electron ground-state wave function

l‘I’o) = BTW). (2.4)

5



and BI is the auxiliary hole-particle deexcitation operator. In the exact theory, T is

a sum of all many-body components Tn with n = 1,. . . , N,

N

T = Z Tn, (2 5)

n=1

where N is the number of electrons and Tn is defined as

_ i1...ifl a1...an

Tn" Z ta1°"anEi1---in , (2.6)

i1<~-<i,,,al<---<a,,

with

n .

aloooan_ an .

Eiwd" _ H c cm (2.7)

K. = 1

representing the excitation operators and $1123" designating the corresponding

cluster amplitudes. We use a notation in which c” (cp) are the usual creation (anni-

hilation) operators (c? = cl) associated with a given orthonormal spin-orbital basis

set {p}. Letters i1, . . . , in represent the occupied spin-orbitals in |<I>) and a1, . . . ,an

designate the unoccupied spin-orbitals. The auxiliary operator El is defined as

N

2* = Z 231,, (2.8)

n=1

where

:31, = . Z 0511.1".an13311'33fi'n. (2.9)
0 Zn

The operators

E31221?" = II Cancun (2.10)

K. = 1

. a . . . a . . .

and the coefficrents Ui 1. . n are the corresponding deexc1tatlon operators and am-
1 o 0 Zn

plitudes, respectively.

The operators T and 2* (or the corresponding amplitudes till 1211.3" and 02911.1...ia")
78

defining the wave function I‘llo) through Eq. (2.4) and the energy EéECC) through Eq.



(2.1) can be determined in various ways. In the ECC theory of Piecuch and Bartlett“,

which can be applied to both ground and excited states, the T and El operators are

determined by considering the doubly transformed form of the electronic Schrodinger

equation, i.e.,

Eng) = E0|<I>), (2.11)

and its left-hand analog,

(<1)le Eo(<I>|, (2.12)

where (<I>| is the left eigenstate of II corresponding to the right reference eigenstate

|<I>). We obtain Eq. (2.11) by inserting the formula for the CC wave function, Eq.

(2.4), into the Schrbdinger equation,

Hl‘I’o> = Eol‘I’ola (2-13)

and by premultiplying the resulting equation by eve—T, while utilizing the fact that

|\Ilo) = eT|<I>) = eTe‘EIIQ) (23t is a deexcitation operator, so that (El)"|<1>) = 0 for

k > 0). In general, the (<I>| dual state entering Eq. (2.12) depends on the values of

T and El defining R. In the ECC theory of Piecuch and Bartlett, we simply require

that T and El are such that (<I>| = (<I>|. Thus, the final system of equations used to

determine the two different cluster operators T and El consists of Eq. (2.11) and

(<12le = <<I>|Eo. (2.14)

which is the left-hand counterpart of Eq. (2.11). It is worth mentioning that Eq.

(2.14) can also be obtained by considering the bra counterpart of the connected

cluster form of the electronic Schréidinger equation,

me) = E0|<I>), (2.15)



where H is defined by Eq. (2.3), i.e.

(<I>|(1+ ME = E0(<I>|(1+ A), (2.16)

where A is the well-known “lambda” deexcitation operator of the analytic gradient

CC theorym'”, and by identifying the left-hand ground eigenstate of H, (<I>|(l + A),

with (<I>|ezl. An alternative reasoning that leads to Eq. (2.14) is based on considering

the adjoint form of the electronic Schrodinger equation, i.e.

(‘i’olH = Eo<‘i’o|, (2.17)

where the dual state (\Ilol, satisfying the condition (\Ilolqlo) = 1, is the CC bra ground

statemm’“,

(\iIOI = (<1>|(1 + A)e"T. (2.18)

Clearly, in the exact, full C1 or full CC, limit, there exists a deexcitation operator

U, such that (1 + A) = e”, so that one can always give the dual CC state (Ilol a

completely bi-exponential form,

(to) = (slave-T. (2.19)

By inserting Eq. (2.19) into Eq. (2.17) and by multiplying the resulting equation on

the right by eTe‘Sl, we obtain the desired Eq. (2.14).

In the original work by Arponen and Bishopm—59, the operators T and 2" of the

ECC formalism are determined by imposing the stationary conditions on the energy

functional ESECC), Eq. (2.1), with respect to operators T and 2",

6E3ECC)

6T

6EéECC)

62"

  =0, =0. (2%)

The bi-variational character of the ECC theory of Arponen and Bishop is particularly

useful in calculations of molecular properties other than energy, since one can apply

8



the Hellmann-Feynmann theorem in such calculations‘55‘73. The question addressed

in this thesis is how the bi-variational ECC theory of Arponen and Bishop and the

ECC theory of Piecuch and Bartlett, which uses Eqs. (2.11) and (2.14) rather than

Eq. (2.20) to determine T and 2", work when molecular PESs along bond breaking

coordinates are examined.

2.2 Extended Coupled-Cluster Methods with Singles and Dou-

bles

2.2.1 The Piecuch-Bartlett ECCSD Approach

The approximate ECC methods, such as the ECCSD approaches tested in this work

and developed in Refs. 74—77, are obtained as follows: First, as in all standard CC

approximations, we truncate the many-body expansions of T and El, Eqs. (2.5) and

(2.8), respectively, at some excitation level mA < N, so that T is replaced by T“),

mA

T“) = 2T", (2.21)

n=1

and 2" is replaced by

mA

2”” = Z 21,. (2.22)

n=1

Next, we use either the Piecuch-Bartlett approach (Eqs. (2.11) and (2.14)) or the

Arponen-Bishop approach (Eq. (2.20)) to obtain a system of equations for the un-

”in’ Z. a a! o o o a

known cluster amplitudes ta1 (1 and 0-1 . ",
l ’ ' ’ n 21 ,

_ 2.1.0.2.”

”Zn n — 1,...,mA. Once tal"'an

and 0?". ° 1“n are determined, we use the approximate form of the energy functional
1 .02"

(2.1),

35,") = (cplfiwncp), (2.23)



where

HM) ___ ezl ) (e_T(A)HeT(A))e_z(A)

to calculate the ground-state energy.

(2.24)

In the specific case of the ECCSD approach, T is approximated by the sum of

one- and two-body components, T1 and T2, respectively,

where

and

with

and

T g T(ECCSD) = T1 + T2,

i a

= 2228
i,a

__ ab

T2 — Z tajbEij ’

i<ia<b

a__ a,
Ei—ccz

Eab—— cacicbcj'

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

representing the elementary single and double excitation operators, and ti, and tab

designating the corresponding singly and doubly excited cluster amplitudes. A similar

truncation scheme is applied to operator El, i.e.,

where

and

Wm

_ a i

_Zai Ea

i,a

2;: Z abEijab’

(zlECCSW = 2: + 2;, (2.30)

(2.31)

(2.32)



with E3 and E22 designating the one- and two—body elementary deexcitation opera-

tors, Ei = (Bi-l)" and E3) = (E3351, respectively, and a? and 0%? representing the

corresponding deexcitation amplitudes.

In the ECCSD method of Piecuch and Bartlett“, we obtain the equations for the

a

i)
and 03;), defining T1, T2, 21, and 23;, respectively, bycluster amplitudes t5, t3, 0

left- and right-projecting Eqs. (2.11) and (2.14), where T is given by Eq. (2.25) and 2*

is given by Eq. (2.30), on the singly and doubly excited determinants IQ?) = Eglé)

and W???) = EgybICP). We obtain,

(¢3|§<ECCSD>|<I>) = 0, (2.33)

(ogjl’uilmcsmlo) = 0, i < j, a < b, (2.34)

(olfimsmlcg‘) = 0, (2.35)

(<I>|I§lECCSD>|<1>g‘Jb) = 0, 2' < j, a < b, (2.36)

where

#1230050) = 621”); (e—Tl—T2 HeT1+T2) 6—21—23

= e£l+21H(CCSD>e-2l-El (2.37)

is the doubly transformed Hamiltonian of the ECCSD method, with

H(CCSD) = €_T1_T2H€TI+T2 = (HeT1+T2)C (238)

representing the similarly transformed Hamiltonian of the CCSD approximation.

Once Eqs. (2.33)-(2.36) are solved for operators T1, T2, 21 and 2;, the ground-state

energy ESECCSD) is calculated as follows:

ESECCSD) = ((1,, fiscasmlé)

: ((plezl-I-Eg (e—Tl —T2 H8T1+T2)€_EI_E;|¢)

= (alezlwl(e-Tl-T2HeT1+T2)|<I>), (2.39)

11



where we used the fact that e‘zllQ) = IQ).

Since the full ECCSD formalism defined by Eqs. (2.33)—(2.39) is rather complex,

in this thesis, in addition to the full ECCSD method, we consider the systematic

sequence of the linear (LECCSD), bi-linear (BECCSD), and quadratic (QECCSD)

approaches, which represent approximations to full ECCSD. The LECCSD, BECCSD,

and QECCSD methods are obtained by replacing the doubly transformed Hamiltonian

1330080), Eq. (2.37), in Eqs. (2.33)—(2.36) and (2.39) by

RILECCSD) = (1 + 21 + EDI-{(CCSDKI — El — 2;), (2.40)

in the LECCSD case,

13000009 = (1 + 2) + 299000041 _ 21 _ 2;)

+%(21 + 2;)2H(CCSD) + %H(CCSD)(EI + 2;)2’ (2.41)

in the BECCSD case, and

= 1 _

13000009 = [1 + 2; + 1:; + 5(2:) + 21)») 110001»

1

x [1 — )3} — 2; + 5(2)} + 2})2] , (2.42)

in the QECCSD case.

2.2.2 The Arponen-Bishop ECCSD Approach

In the case of the ECCSD method of Arponen and Bishop50—59, we obtain the system

of equations for the singly and doubly excited cluster amplitudes t2 and thjb defining

T1 and T2 and the deexcitation amplitudes 09 and of}? defining El and 2* from the
z z] I 2

stationary condition represented by Eq. (2.20). The resulting equations can be given

in the following form:

BEéECCSD)

80“ = (leezl‘nglL-I‘CCSDHQ) = 0, (2.43)

i

12



aE(ECCSD) b i f _

_0__ = ((1)3. [621+22H(CCSD)|<I>) = 0, i < j, a < b, (2.44)

3029‘]? ‘7

(ECCSD)
6E0 . : <¢|ezl+zg[g(ccsn)’ qu»

3th

I T —= (QIeElHSZ (H(CCSD) E?)C|q)) : 0, (2.45)

(ECCSD)
6E0 .. = (@l 621402; [H(CCSD) EQbHQ)

at” ’ 1.?

ab

1' _

= (0)9952 (H‘CCSDlEng’)C|<I>) = 0, i< j, a < b, (2.46)

where EéECCSD) is the ECCSD energy functional, Eq. (2.39), and H<CCSDl is the

similarity-transformed Hamiltonian defined by Eq. (2.38).

It can be shown that the full ECCSD method, defined by Eqs. (2.43)—(2.46), leads

to computational steps that scale as N10 with the system size. This is a lot more

than the JV'6 steps of the standard CCSD approach. In order to reduce the computer

costs of the full ECCSD calculations, we must truncate the power series expansion

for e21”; in the ECCSD energy functional EéECCSD), Eq. (2.39), at the low power

of (2‘; + 23;). The simplest approximation of this type that one might suggest is the

linearized ECCSD (LECCSD) formalism, in which we replace the energy functional

EéECCSD)’ Eq. (2.39), by the expression linear in El and 2;,

EéLECCSD’ = <<I>|(1+ 21 + 292003200)

= <<I>|H‘CCSD’I<I>) + <0I21H‘CCSD)I<I>> + (0252005210)

: <¢|H(CCSD)|¢) + Z 0.76:1. <¢?|H(CCSD)I¢>

i, a

ab ab ‘ (CCSD)
+ Z a” (<1,le |Q). (2.47)

i < j,a < b

The most expensive steps of the LECCSD method, as defined by Eq. (2.47), scale as

ngnfi (or N6 with the system size), but, unfortunately, the LECCSD method based

13



on the Arponen-Bishop theory does not improve the CCSD results at all, since once

we impose the stationary conditions on the energy functional ESLECCSD) with respect

to operators T1, T2, 2}, and 2;, we obtain the following equations:

aE(Lsccsn) _

3.4 = <<1>§‘IH‘CCSD’I<I>) = o, (2.48)
i

E(LECCSD) __

L3)?»— = (02’IH‘CCSD’I0> = 0. :< 1', a < 0, (2-49)

which are the usual CCSD equations for T1 and T2, and

aEmsccsn) _

JEF— = <<I>l(1 + 21 + SE) (H‘CCSD’ 13,9980) = 0, (2.50)

a

aE(LECCSD) _

05%,, = <<I>|(1 + >31 + 2;) (H‘CCSD’ E3030) = 0,

ab

i < j, a < b, (2.51)

which are the El equations that are completely decoupled from the CCSD system,

Eqs. (2.48) and (2.49), and solved only after the T1 and T2 cluster are determined. In

other words, the LECCSD approximation does not provide for the coupling between

the T and El equations, which is necessary for improving the quality of T1 and T2

clusters in the bond breaking region.

The above analysis indicates that in order to obtain the T1 and T2 clusters, which

are better than those provided by the LECCSD = CCSD approximation, we must

introduce nonlinear terms in 21 and 23; into the LECCSD energy functional that

couple the T and 2" equations. The lowest-order approximation of this type is ob-

tained by truncating the ECCSD energy functional, Eq. (2.39), at terms quadratic

in (2} + 5.3;). We call it the QECCSD approximation. The formula for the QECCSD

energy functional used in the Arponen-Bishop version of the QECCSD theory is

1 _

123000000) = <<I>|l1 + (>31 + 2;) + 5(21 + 292111208210)

14



= <0IH<CCSD>I0> + <¢|ElH‘eeSD’l<I>>

1 _

+0002; + 5(Bl)21H<CCSD>l<I>>

+<<I>Izizlfilccsml0> + §<<I>I(>:;)2H<CCSD>I<I>> (2.52)

or, somewhat more explicitly,

E(QECCSD)_ (q, I H(ccsn)|¢) + Z 0302;” 1:1(ccsn) I‘D)

i, a

+ Z (aijb + Aijaa0?)(<I>ajblH(CCSD)|<P)

i < j

a < b

+ Z Ai/jk'Aa/bcOilajk<¢qbcleCSml¢>

i<j<k

a < b < c

CCSD

+ Z ij/kl'Ab/cd Uijb01.1Cd<¢ijkbcli lH‘ WP) (253)

i<j<k<l

a<b<c<d

where Aij = 1— (ij), Ai/jk = 1— (ij) — (ik), Aa/bc = 1- (ab) — (ac), and

A,j/kl = l— (ik) - (il) - (jk) - (jl) + (ik)(jl) are the suitable index antisymmetrizers

((ij) and (ab) are index interchanges). The stationary conditions of the type of Eqs.

(2.43)—(2.46), written for the QECCSD energy functional EéQECCSD), Eq. (2.52) or

(2.53), are

aEbQECCSD) a '(CCSD) b ab - CCSD)
T= (‘1’: |H |Q)+Zaj(Qz-j|H( |Q)

’ Lb

+ Z Jk<<1>W|H(CCSD>|¢)= (2.54)

j < k, b < c

0E0E(QECCSD)

ab = (Qajb|H(CCSD)Iq)> + 20k<¢§3bC|H(CCSD)|(p>

60Uij k, c

+ Z ag‘l’(<1>abcd|H<CCSD>|<p)= (2.55)

k<Lc<d

15



8 (QECCSD)

=(<I>|[1+(EI+E§)+—%(2{+2;)2](HCCSD)EC‘)C |<I>>

ati

= (¢I(H(CCSD)E?)C|<I>) + 20?. ((D2|(H(CCSD)EZQ)CI(I)>

1311

+ Z (aek+Akajag)(<1>gg|(H<CCSD>E3)C|¢)

j<hb<c

+ Z 4“]°/1cz*4z;/a1"$201651i (‘1’d“HeeeSD’Eelc I‘D)

j<k<l

b<c<d

+ Z Mbcade((1,de |(H(CCSD)Ea)C I‘D)

Ajk/lmAc/de Ojk lm jklm

j<k<l<m

b<c<d<e

= 0, (2.56)

aE(QECCSD) 1 _ b

—°—---—,, = <<I>|[1 + (21 + 2;) + E(>31 + 21.)?) (H<CCSD>Egj )C|q>)

atab

= <<I>|(H‘CCSD’E,‘-‘}’)cld>) + Zag(<1>il(H‘CCSD)E3})C|q>)

k,c

+ Z (agghAklogaquWduH(CCSD)Eab)C (<5)

k < l, c < d

0031) ab

+ Z Ak/lm'Ac/de‘7k0'zm(‘I’iceziml(H( )Ei)0VP)

k < l < m

c<d<e

+ Z Akl/mnAd/ef aklamnf<<pkl€fn I(H(CCSD)Eab)C |<I>)

k<l<m<n

c<d<e<f

= 0. (2.57)

As one can see, the QECCSD equations for the t3, and t3) amplitudes, Eqs. (2.54)

and (2.55), respectively, are strongly and nontrivially coupled with the equations for

ab

U

standard CCSD approach, the T1 and T2 clusters are no longer calculated independent

the a? and az- amplitudes, Eqs. (2.56) and (2.57), respectively, so that unlike in the

of the El and 2; clusters. Similarly strong coupling is present in the QECCSD,

m



BECCSD, and ECCSD methods based on the Piecuch-Bartlett ECC theory described

in Section 2.2.1. As shown below, a strong coupling between T and 2* equations has

a positive effect on improving the quality of the T1 and T2 clusters resulting from the

QECCSD and similar calculations. At the same time, the most expensive steps of

the QECCSD approach based on Eqs. (2.54)—(2.57) scale as n3 (JV6 with the system

size). Similar remarks apply to the QECCSD and BECCSD methods based on the

Piecuch-Bartlett approach discussed in Section 2.2.1.

2.3 Numerical Results for Multiple Bond Breaking

2.3.1 The Piecuch-Bartlett ECCSD Approach

In this section, we discuss the results of the full and approximate ECCSD calculations

for the minimum basis set (MBS) S4 model“;-80 and the STD-3G81 model of N2

employing the ECC theory of Piecuch and Bartlett. All ECCSD, LECCSD, BECCSD,

and QECCSD calculations reported here were performed using the original computer

codes developed in this work, in which the relevant cluster amplitudes t3, t5] , a“ and
i :

9b

3.7

the ECCSD system, Eqs. (2.33)—(2.36), with the downhill simplex method”. This

a are determined by minimizing the sum of the squares of the equations constituting

algorithm is based on an obvious fact that the global minimum being sought is zero.

For smaller values of the parameter a describing the S4 model (a z 2.0 bohr) and in

the vicinity of the equilibrium geometry of N2 (the N—N separation R z 2.0 bohr),

where the standard CCSD approach provides a reasonable description of the ground-

state wave function, the initial guesses for cluster amplitudes ti , t2] , 09, and age were
a ab 2 3.7

obtained by using the CCSD values for ti and t2] and by assuming that the initial
(1 ab

17



ab

3.7

the first-order MBPT estimates of the cluster operator T and the auxiliary operator 2

ab=tzj
values of a? and 02- satisfy the conditions a? =ta and a ab (one can show that

are identicals3'84). For larger values of a and R, where T and 23 significantly differ, we

ab amplitudes, obtained for smallerused the previously converged tail.ajb’a“,and 0i]

values of a and R, to initiate the numerical procedures used to determine T and )3.

We begin the discussion of our ECCSD test calculations with the MBS S4 model,

which consists of four hydrogen atoms arranged in a square configuration, described by

a small basis set consisting of only one s orbital centered on each hydrogen atomn‘w.

The geometry of the S4 model is determined by a single parameter a, which is de-

fined as a distance between the nearest-neighbor hydrogen atoms. The small number

of electrons and the fact that the molecular orbital basis set consists in this case of

only four orbitals that are fully determined by the high spatial symmetry of the S4

model cause that there are only eight spin- and symmetry-adapted configurations

that are relevant to the ground-state full CI problem. In addition to the RHF deter-

minant, which we use as a reference, we only need six doubly excited configurations

and one quadruply excited configuration to describe the exact, full CI, ground state

of the MBS S4 model. There are no single and triple excitations in the full CI ex-

pansion of the ground-state wave function, so that T1 = T3 = O and the CCD, CCSD

and CCSDT approximations become completely equivalent. Similarly, the one- and

three-body components of the deexcitation operator 23" vanish, so that the ECCD

and ECCSD methods give identical results. Because of the presence of only four elec-

trons in the MBS S4 model, there is no difference between the BECCSD = BECCD,

QECCSD = QECCD, and full ECCSD = ECCD approximations in this case. Thus,

we only report the results of the full ECCD calculations, which we compare with the

CCD and exact full CI results.
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Figure 2.1: Potential energy curves for the MBS S4 system. ECCD represents the

Piecuch-Bartlett variant of the ECCD approach (in this case, the ECCD and ECCSD

approaches are equivalent).
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The MBS S4 models with larger values of a create a serious challenge for the

standard single-reference CC methods (even the genuine MRCC approaches may have

a difficulty in describing these models-’8'“). This is related to the fact that larger

a values correspond to a dissociation of the 84 model into four hydrogen atoms.

This process is very difficult to describe by the RHF-based single-reference methods,

particularly in the region of the intermediate a values where the ground-state wave

function of the S4 system undergoes a significant rearrangement of its structure. As

shown in Table 2.1 and Figure 2.1, the CCD = CCSD approximation breaks down at

larger values of a. For a S 2.0 bohr, the unsigned errors in the CCD results, relative

to full CI, do not exceed 2.834 millihartree. However, for 3.5 bohr 5 a g 4.5 bohr,

the unsigned errors in the CCD results increase to 13—14 millihartree and the CCD

potential energy curve corresponding to the dissociation of the S4 model into four

hydrogen atoms goes significantly below the exact, full CI, curve (see Figure 2.1).

For a g 2.0 bohr, the ground-state wave function of the MBS S4 model is dominated

by two configurations: the RHF determinant and the doubly excited determinant

corresponding to the HOMO —+ LUMO biexcitation78-80. For larger values of a,

essentially all electron configurations present in the full CI expansion become very

important, creating a strongly quasi-degenerate situation, and the role of the T4

cluster component becomes significant in the intermediate 2.5 bohr S a S 6.0 bohr

region. This leads to the failure of the CCD approximation observed in Table 2.1 and

Figure 2.1.
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Table 2.1.: Ground-state energies of the MBS S4 model system as functions of the

parameter a.“

 

 

 

a Full CI CCD b ECCD c (CCD)d (ECCD)d

0.5 3.952114 —0.093 0.015 0.032 0.015

1.0 —0.668783 —0.424 0.110 0.236 0.110

1.5 -1.694327 —1.235 0.376 0.862 0.376

2.0 —1.975862 —2.834 0.871 2.188 0.871

2.5 —2.043797 —5.674 1.609 4.447 1.609

3.0 —2.044850 —9.568 2.373 6.895 2.373

3.5 —2.028186 —13.083 2.754 7.698 2.754

4.0 —2.011713 —14.385 2.496 6.218 2.496

4.5 —2.000438 -13.094 1.812 3.896 1.812

5.0 —1.994021 —10.292 1.107 2.054 1.107

6.0 -1.989199 -4.748 0.297 0.431 0.296

7.0 —1.988164 —1.743 0.062 0.076 0.061

 

 

“The full CI total energies are in hartree. The CCD and ECCD energies are in millihartree

relative to the corresponding full CI energy values. The parameter a is in bohr.

”For the MBS 84 model, CCD = CCSD.

cThe ECCD method of Piecuch and Bartlett. For the MBS S4 model,

ECCD = ECCSD = BECCSD = QECCSD.

d(X) (X = CCD, ECCD) is the expectation value of the Hamiltonian with the 6T2 |<I>) wave

function, where T2 is obtained with method X (see Eq. (2.58)).
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The results in Table 2.1 and Figure 2.1 show that the ECCD theory provides

substantial improvements in the poor description of the dissociation of the S4 model

into four hydrogen atoms by the CCD method. The 13-14 millihartree unsigned errors

in the CCD energies in the 3.5 bohr g a g 4.5 bohr region reduce to 2-3 millihartree,

when the ECCD approach is employed. The considerable reduction of errors in the

CCD results is observed at all values of (1, even in the a S 2.0 bohr region, where

the maximum unsigned error in the ECCD results is 0.871 millihartree, as opposed to

2.834 millihartree obtained with the CCD approach (see Table 2.1). Unlike the CCD

potential energy curve shown in Figure 2.1, which is located significantly below the

full CI curve, the ECCD potential energy curve describing the dissociation of the S4

system into four H atoms is located slightly above the full CI curve. Thus, in spite of

its formally nonvariational character, the ECCD approach based on the ECC theory

of Piecuch and Bartlett60 provides a highly accurate and variational description of

the breaking of all four H—H bonds in the S4 system.

The substantial improvement in the description of the S4 model system offered by

the ECCD approach suggests that the T2 clusters resulting from the ECCD calcula-

tions are considerably better than the CCD T2 values. This can be seen by calculating

the expectation values of the Hamiltonian, designated by (X), where X = CCD or

ECCD, with the normalized CCD-like wave functions

5113’”) = N<X>eTéX’|<1>), (X = CCD, ECCD), (2.58)

where Téx) (X = CCD, ECCD) are the T2 cluster components obtained with the

CCD and ECCD methods, respectively, and N(X) = (@Ie‘T5X))teT2(X)|<I>)‘1/2 are the

appropriate normalization factors. Clearly, the (CCD) and (ECCD) values provide

the upper bounds to the exact, full CI, energies. However, as demonstrated in Table

2.1, the (CCD) energies remain poor in the 3.5 bohr S a g 4.5 bohr region, whereas

22



the expectation values of the Hamiltonian calculated with the ECCD wave function

IWSECCD)» Eq. (2.58), are very close to the corresponding full CI energies.

The MBS S4 model is so simple that we can clearly understand the reasons of

the excellent performance of the ECCSD = ECCD theory at larger 0 values. The

MBS S4 system has only four electrons and the T1 and T3 components vanish due to

the high symmetry of the Hamiltonian. Thus, in order to obtain a highly accurate

description of the ground electronic state of the MBS S4 system, we must use a

method which is capable of providing an accurate description of the effects due to

connected quadruply excited (T4) cluster components, whiCh are missing in CCSD.

It turns out that at least some of the T4 effects are brought into the ECC formalism

as products of the low-order many-body components of 23‘ and T. Indeed, as shown,

for example, in Ref. 23, the leading, fifth-order, contribution to the energy due to T4

clusters can be estimated by adding the E5]Q term, defined as

1

E818 = Z<2I<T§)?(V~T§)CI<I>>, (2.59)

to

1

E814 = 5<9I<T§>Z<VNT§2UCI<I>1 (2.60)

where

T121 = 128316155. (2.61)

In the above expression, R83) designates the three-body part of the MBPT reduced re-

solvent and VN represents the two-body part of the Hamiltonian in the normal-ordered

form, HN = H — (<I>|H|<I>). For the MBS S4 model, the Eng energy component, Eq.

(2.60), vanishes, since Ty] = 0. Thus, the entire fifth-order effect due to T, can be

estimated in this case by the E5]Q contribution, Eq. (2.59), which appears in the

ECCD energy as the %(<I>|(E;)2(VNT22)C|<I>) term, since T2 and 232 are similar when
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MBPT converges. This means that the ECCD energy for the MBS S4 model contains

a great deal of information about the leading effects due to T4 and these are sufficient

to provide the excellent results at all values of the parameter (1 observed in Figure

2.1 and Table 2.1.

The MBS S4 model allows us to obtain useful insights into the performance of the

ECC approximations in the calculations for quasi-degenerate electronic states, but

we cannot use it to test all important aspects of the ECC theory. For example, the

MBS S4 system is too simple to analyze the importance of the T1 and 23} components

and it does not allow us to understand the significance of terms that distinguish the

LECCSD, BECCSD, QECCSD, and full ECCSD approximations defined in Section

2.2.1. Moreover, multiple bond breaking in real molecules can be considerably more

complicated than the dissociation of the H4 cluster represented by the S4 system into

four hydrogen atoms. A good example of the very challenging situation, which is

considerably more complex than the situation created by the S4 model, is provided

by the triple bond breaking in N2, where the standard CCSD approach displays a

colossal failure (see Table 2.2 and Figure 2.2). We tested the ECCSD, LECCSD,

BECCSD, and QECCSD methods, based on Eqs. (2.33)—(2.42), using the minimum

basis set STD-3G81 model of N2. In all correlated calculations for N2 discussed below,

the lowest two core orbitals were kept frozen.
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Table 2.2.: Ground—state energies of the N2 molecule, as described by the STD-3G

 
 

 

basis set.“

Rb Full CI CCSD BECCSDc QECCSDc ECCSDc

1.0 -101.791600 0.319 0.298 0.298 0.298

1.5 — 106.720117 1.102 0.885 0.885 0.885

2.0 -107.623240 3.295 1.897 1.897 1.897

2.5 — 107.651880 9.220 3.442 3.442 3.428

3.0 - 107.546614 13.176 3.919 3.908 3.758

3.5 — 107.473442 —38.645 5.280 5.322 4.746

4.0 -107.447822 — 140.376 15.580 15.968 14.122

4.5 —107.441504 — 184.984 26.795 27.769 24.039

5.0 -107.439549 -200.958 34.134 35.732 30.390

5.5 —107.438665 —206.974 38.368 40.491 33.867

6.0 —107.438265 —209.538 40.730 43.227 35.746

7.0 — 107.438054 —21 1.915 42.754 45.595 37.306

8.0 —107.438029 -—213.431 43.405 46.320 37.799

 

 

“The full CI total energies are in hartree. The CC and ECC energies are in millihartree

relative to the corresponding full CI energy values. The lowest two occupied orbitals were

frozen in the correlated calculations.

bThe N—N separation in bohr. The equilibrium value of R is 2.068 bohr.

“The BECCSD, QECCSD, and full ECCSD methods are based on the Piecuch-Bartlett

variant of the ECC theory.
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Figure 2.2: Potential energy curves for the N2 molecule, as described by the STD-3G

basis set. The LECCSD, BECCSD, QECCSD, and ECCSD methods are based on

the Piecuch-Bartlett variant of the ECC theory.
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The results in Table 2.2 and Figure 2.2 clearly demonstrate that the complete

ECCSD formalism of Piecuch and Bartlett“, in which all nonlinear terms in (21 +

23;) and (T1 + T2) are included, and its bilinear and quadratic variants, BECCSD

and QECCSD, respectively, defined by the truncated Hamiltonians H‘BECCSD) and

H‘QECCSD), Eqs. (2.41) and (2.42), respectively, provide remarkable improvements in

the very poor description of the potential energy curve of N2 by the standard CCSD

method. The huge negative errors in the CCSD results at larger N—-N separations,

R 2 4.5 bohr, of about -—200 millihartree, reduce to much smaller positive errors when

the ECC methods are employed (24—38 millihartree in the full ECCSD case, 27—43

millihartree in the BECCSD case, and 28—46 millihartree in the QECCSD case). We

also observe a considerable reduction of errors for smaller values of R, including the

equilibrium, R z 2.0 bohr, region (see Table 2.2). As shown in Table 2.2 and Figure

2.2, the BECCSD, QECCSD, and full ECCSD approaches eliminate the pathological

behavior of the CCSD method at larger N—N distances. As in the MBS S4 case, the

BECCSD, QECCSD, and full ECCSD approaches restore the variational description

of the potential energy curve of N2 at all internuclear separations.

Our results for N2 show that it is not necessary to insist on the bi-variational

determination of the 2" and T operators, exploited in the Arponen-Bishop ECC

formalism, in order to obtain great improvements in the description of multiple bond

breaking by the ECC theory. The fact that the ECC theory of Piecuch and Bartlett

is not rigorously bi—variational seems to be of little significance, since our BECCSD,

QECCSD, and ECCSD results obtained with this theory are of the same quality as

the strictly bi-variational QECCSD results for N2 reported in subsection 2.3.2. The

presence of quadratic terms in 2* in QECCSD), H‘BECCSD), and ITQECCSD), Eqs. (2.37),

(2.41), and (2.42), respectively, and the use of two independent cluster operators T
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and E in the ECC formalism, which are optimized by solving a coupled system of

equations, are more important for improving the results in the bond breaking region

than the particular way of obtaining the t3, tbjb’ of, and 09b amplitudes that defines

3.7

the ECCSD formalism of Piecuch and Bartlett.

The importance of the quadratic terms in (21 + 23;), such as %(E{ + 2;)2 H(CCSD)

and %H(CCSD) (21 + 2;)2, in the ECCSD equations becomes apparent when we com-

pare the BECCSD or QECCSD results with the results of the LECCSD calculations.

These quadratic terms are ignored in the LECCSD method (see Eq. (2.40)) and,

in consequence, the LECCSD potential energy curve for N2 has the same type of

hump for the intermediate values of R as the CCSD curve (see Figure 2.2). It is

interesting to observe, though, a substantial reduction of errors in the CCSD re-

sults at larger N—N separations, when the LECCSD approach is employed. This

corroborates our earlier statements that the use of two independent cluster oper-

ators, T and 2", in the ECC theory is more important for improving the poor

CCSD results at larger R values than the specific procedure used to determine T

and 2". It is also worth noticing that we can safely neglect the higher-order nonlinear

terms, such as $031 + 23;)? ECCSD) (231 + 2;), $031 + 2;)?!(0051’) (2’; + 2;)”, and

1

4

methods (cf. Eqs. (2.42) and (2.37), respectively) and absent in the BECCSD ap-

(21 + 2;)2 H(CCSD) (2‘; + 2;)2, which are present in the QECCSD and full ECCSD

proach (see Eq. (2.41)). The BECCSD results are of the same quality as the QECCSD

and full ECCSD results (see Figure 2.2 and Table 2.2). The BECCSD theory repre-

sents the lowest-order ECC approach among various ECC methods examined in this

work capable of providing the qualitatively correct description of triple bond breaking

in N2.
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Table 2.3.: Ground-state energies of the N2 molecule, as described by the STD-3G

 

 

 

basis set.3

Rb Full CI (CCSD)c (BECCSD)c (QECCSD)c (ECCSD)c

1.0 —101.791600 0.298 0.298 0.298 0.298

1.5 — 106.720117 0.890 0.888 0.888 0.888

2.0 — 107.623240 2.004 1.946 1.946 1.946

2.5 —107.651880 4.316 3.775 3.775 3.775

3.0 — 107.546614 5.288 4.160 4.160 4.161

3.5 — 107.473442 16.755 3.378 3.387 3.388

4.0 -107.447822 80.696 6.922 7.206 7.145

4.5 — 107.441504 95.003 10.603 11.506 11.277

5.0 — 107.439549 91.561 12.391 13.877 13.327

5.5 —107.438665 86.652 13.056 14.931 14.224

6.0 — 107.438265 83.037 13.276 15.356 14.553

7.0 —107.438054 79.607 13.393 15.571 14.724

8.0 -107.438029 78.563 13.451 15.578 14.758

 

 

aThe full CI total energies are in hartree. The remaining energies are in millihartree relative

to the corresponding full CI energy values. The lowest two occupied orbitals were frozen in

the correlated calculations.

bThe N—N separation in bohr. The equilibrium value of R is 2.068 bohr.

c(X) (X = CCSD, BECCSD, QECCSD, ECCSD) is the expectation value of the Hamilto-

nian with the eT1+T2|<I>) wave function, where T1 and T2 are obtained with method X (cf.

Eq. (2.62)).
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Finally, before describing the calculations employing the Arponen-Bishop ECC

theory, let us discuss the quality of the T1 and T2 clusters resulting from various types

of the ECCSD calculations for N2. The remarkable improvements in the description

of triple bond breaking in N2, offered by the BECCSD, QECCSD, and full ECCSD

methods, imply that the T1 and T2 clusters resulting from the bilinear, quadratic,

and full ECCSD calculations are much more accurate than the T1 and T2 operators

obtained with the standard CCSD approach. As in the case of the MBS S4 model,

we examined the quality of the T1 and T2 clusters obtained in the CCSD and various

ECC calculations for N2 by computing the expectation values of the Hamiltonian,

designated by (X), where X = CCSD, BECCSD, QECCSD, and ECCSD, with the

normalized CCSD-like wave functions

103’”) = N“) efo’+Téx’|<l>), (X = CCSD, BECCSD, QECCSD, ECCSD), (2.62)

where 7",“) and 7.)") (X = CCSD, BECCSD, QECCSD, ECCSD) are the T1 and

T2 cluster components obtained with the CCSD, BECCSD, QECCSD, and complete

ECCSD methods, respectively, and N(Xl = (<I>|e(T{X))t+(TéX))teT1X)+T§X) |<I>)"1/2 are the

corresponding normalization factors (see Table 2.3). As demonstrated in Table 2.3,

the expectation values of the Hamiltonian obtained with the CCSD wave function

are extremely poor at larger N—N separations, whereas the expectation values of

the Hamiltonian calculated with the BECCSD, QECCSD, and full ECCSD wave

SBECCSD)), I‘I’SQECCSD)), and I‘IIEECCSD)), respectively, are very close tofunctions, |\II

the corresponding full CI energies at all values of R. The fact that we observe a fairly

substantial (2—3-fold) reduction of unsigned errors, when the standard CCSD energy

EéCCSD) = (®|H(CCSD)|<D), is replaced by the expectation value of theexpression,

Hamiltonian with the CCSD wave function, does not help the CCSD theory too much,

since the (CCSD) energies are characterized by the very large, 79—95 millihartree,
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errors in the R 2 4.0 bohr region. When the BECCSD, QECCSD, and ECCSD

energy expressions, based on Eq. (2.39), are replaced by the expectation values of the

Hamiltonian with the BECCSD, QECCSD, and ECCSD wave functions, the 24—46

millihartree errors in the BECCSD, QECCSD, and ECCSD energies in the R 2 4.5

bohr region reduce to 11—13 millihartree in the BECCSD case, 12—16 millihartree

in the QECCSD case, and 11—15 millihartree in the full ECCSD case (see Table

2.3). The fact that we can improve the description of the potential energy curve of

N2 by simply replacing the BECCSD, QECCSD, and ECCSD energy expressions,

based on Eq. (2.39), by the expectation values of the Hamiltonian calculated with

the BECCSD, QECCSD, and ECCSD wave functions, IqlgBECCSD)), IWSQECCSD», and

I‘IISECCSDU, respectively, is interesting and worth further exploration.

The high quality of the T1 and T2 clusters resulting from the BECCSD, QECCSD,

and full ECCSD calculations and the poor quality of the T1 and T2 clusters obtained

with the standard CCSD approach can also be seen by examining the overlaps of

the normalized CCSD, BECCSD, QECCSD, and ECCSD wave functions, lwgccsm),

IWSBECCSDB, IWéQECCSD)), and IQéECCSD)), respectively, Eq. (2.62), with the nor-

malized full CI wave function IWSWICI)» as functions of the N—N separation R (see

Figure 2.3 (a)). As demonstrated in Figure 2.3 (a), the overlaps between the normal—

ized BECCSD, QECCSD, or ECCSD wave functions and [WSW] CI)) vary between 0.98

and 1.0 in the entire R region. For comparison, the overlap of the normalized CCSD

and full CI wave functions, which is close to 1.0 in the vicinity of the equilibrium

geometry (R z 2.0 bohr), decreases to ~ 0.93 for larger N—N separations.
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The substantial differences between the T1 and T2 cluster components resulting

from the standard CCSD calculations and their analogs obtained in the BECCSD,

QECCSD, and ECCSD calculations at larger N—N distances that lead to the big

differences between the behavior of the CCSD and BECCSD/QECCSD/ECCSD ap-

proaches in the bond breaking region are shown in Figure 2.3 (b). Suppose Y and

Z are two excitation operators, defined by the amplitudes y; and 2,), respectively (if,

9z ab for the cluster operator

2'1

2). The following quantity provides us with an accurate measure of how different or

and t3, for the cluster operator T and 02, = a and 02],) = a

how similar the two operators Y and Z are:

 

d(Y, 2) = \/):(y. — 202. (2.63)
J

When Y = Z, we obtain d(Y, Z) = 0. When the cluster amplitudes y; and ZJ defining

operators Y and Z, respectively, have similar values, d(Y, Z) is close to 0. Otherwise,

the value of d(Y, Z) is significantly greater than 0. As shown in Figure 2.3 (b), the

cluster Operators T resulting from the CCSD and BECCSD/QECCSD/ECCSD calcu-

lations are almost identical when R is small or when R is close to the equilibrium bond

length in N2 (R z 2.0 bohr). This is why the CCSD and BECCSD/QECCSD/ECCSD

wave functions and the corresponding energies (particularly, the expectation values of

the Hamiltonian calculated with the CCSD and BECCSD/QECCSD/ECCSD wave

functions) are virtually identical for the equilibrium and smaller values of R. The sit-

uation drastically changes when the triple bond in N2 is stretched or broken. For R >

3.0 bohr, the differences between the CCSD and BECCSD/QECCSD/ECCSD oper-

ators T increase so much (cf. Figure 2.3 (b)) that the behavior of the CCSD method

and the behavior of the BECCSD/QECCSD/ECCSD approaches for stretched nuclear

geometries are totally different. As we have already discussed, the standard CCSD

method completely fails at larger R values, whereas the BECCSD/QECCSD/ECCSD
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approaches provide very good results. Figure 2.3 (b) illustrates another important

feature of the ECCSD theory, namely, the similarity of the T and 23 operators in the

equilibrium region and the significant difference between the T and )3 operators ob—

tained in the ECCSD calculations in the region of larger N-N distances. As mentioned

earlier, the lowest-order MBPT estimates of the operators 2 and T are identical (cf.

Refs. 60—62, 83, 84). In consequence, in the equilibrium region, where the MBPT

series rapidly converges, we. have 2 z T (see Figure 2.3 (b)). The situation changes,

when the convergence of the MBPT series is slow or when the MBPT series diverges,

 

as is the case when the N—N bond is stretched or broken. For larger N—N separations,

the operators 2 and T become completely different. Figure 2.3 (b) provides us with

a direct evidence that this is indeed what happens at larger R values.

2.3.2 The Arponen-Bishop ECCSD Approach

So far, we have tested the ECCSD methods based on the ECC formalism of Piecuch

and Bartlett. We have demonstrated considerable improvements offered by the ECCSD

approximations when multiple bonds are broken. The question is if similar improve-

ments can be obtained when the alternative formulation of the ECC theory, proposed

by Arponen and Bishop, is exploited. This question is addressed in this subsection.

The usefulness of the bi—variational ECCSD theory of Arponen and Bishop based

on Eqs. (2.39) and (2.43)—(2.46) in improving the results for multiple bond breaking

becomes apparent when we examine the results for the STD-3G model of N2 shown in

Table 2.4 and Figure 2.4. As one can see, the ECCSD method of Arponen and Bishop

employing the ground-state RHF determinant as a reference provides remarkable im-

provements in the very poor description of the potential energy curve of N2 by the

standard CCSD method. The results are as good as those obtained with the ECCSD
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approach of Piecuch and Bartlett. Indeed, the huge negative errors in the CCSD re-

sults at larger N—N separations, which exceed —200 millihartree in the R > 4.5 bohr

region, reduce to much smaller positive errors (on the order of 31—38 millihartree

when R > 4.5 bohr) in the ECCSD/Arponen—Bishop case. As shown in Figure 2.4,

the ECCSD approach of Arponen and Bishop completely eliminates the pathologi-

cal behavior of the standard CCSD method at larger N—N distances, restoring the

variational description of the potential energy curve of N2 at all internuclear separa-

tions. As in the case of the Piecuch-Bartlett theory, the ECCSD approach of Arponen

and Bishop is capable of capturing the most essential nondynamic correlation effects

(which the small STD-3G basis set used in these calculations already describes) in

spite of the use of the single, spin— and symmetry-adapted, RHF determinant as a

reference. The comparison of the CCSD and ECCSD potential energy curves for N2

shown in Table 2.4 and Figure 2.4 confirms once again that the T1 and T2 cluster

components obtained in the ECCSD calculations are of much higher quality in the

bond breaking region than the T1 and T2 clusters resulting from the standard CCSD

calculations.

As shown in Table 2.4 and Figure 2.4, the QECCSD/Arponen-Bishop results for

the STO-3G model of the N2 molecule, obtained by truncating the ECCSD energy

functional at terms quadratic in (2} + 2;) (see Eqs. (2.52)-(2.57)), are much better

than the corresponding CCSD results and almost as good as the results of the full

ECCSD calculations. The huge negative errors in the CCSD results in the R > 4.5

bohr region, which exceed -200 millihartree, reduce to much smaller positive errors

on the order of 35—46 millihartree, when the QECCSD method is employed. As in

the case of the full ECCSD approach, the QECCSD approximation employing the

Arponen-Bishop ECC formalism eliminates the pathological behavior of the CCSD
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method at larger N—N distances, restoring the variational description of the potential

energy curve of N2 at all internuclear separations. The variational and qualitatively

correct behavior of the QECCSD method based on the Arponen-Bishop ECC theory

is independent of the basis set. Indeed, as shown in Table 2.5 and Figure 2.5, the

QECCSD potential energy curve for the double zeta (DZ)85 model of N2 is much

better than the corresponding CCSD curve. The QECCSD potential energy curve

for the N2 molecule obtained with the DZ basis set, shown in Figure 2.5, is located

above the full CI curve. The large negative errors in the CCSD results in the R 2 2Re

region of (—70) — (—121) millihartree (Re = 2.068 bohr is the equilibrium value of R)

are replaced by the considerably smaller positive errors of 40—50 millihartree when the

QECCSD method is employed. As in the case of the STD-3G basis set, the QECCSD

approach based on the Arponen-Bishop ECC theory eliminates the well pronounced

hump on the CCSD potential energy curve, when the DZ basis set is employed.

Thus, the QECCSD approach exploiting the Arponen-BishOp ECC theory pro-

vides a practical method of capturing the large nondynamic correlation effects in N2,

in spite of the single-reference nature of the ECC formalism, in spite of the use of

the RHF determinant in the QECCSD calculations, and, what is probably most re-

markable, in spite of the two-body character of the QECCSD (or ECCSD) theory,

which uses one- and two-body cluster T1, T2, 21, and 22 only. As a matter of fact,

the QECCSD results at larger internuclear separations of N2 are much better than

those obtained with the standard CC methods with singly, doubly, triply, and even

quadruply excited clusters (cf. the QECCSD results in Table 2.5 and Figure 2.5 with

the corresponding CCSD(T), CCSDT, CCSD(TQf), and CCSDT(Qf) results).
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Table 2.4.: The ground-state energies of the N2 molecule obtained for several inter-

nuclear separations R with the STO-3G basis set.“

 

 

 

Rb Full CI CCSD QECCSDc ECCSDc

1.5 -106.720117 1.102 0.886 0.885

2.0 —107.623240 3.295 1.898 1.897

2.5 —107.651880 9.220 3.443 3.427

3.0 — 107.546614 13.176 3.909 3.757

3.5 - 107.473442 —38.645 5.294 4.746

4.0 —107.447822 — 140.376 15.815 14.148

4.5 —107.441504 - 184.984 27.792 24.198

5.0 —107.439549 —200.857 35.335 30.590

5.5 —107.438665 —206.974 39.983 34.158

6.0 —107.438265 -209.538 42.609 36.082

7.0 — 107.438054 -211.915 44.839 37.671

8.0 —107.438029 —213.431 45.508 38.161

 

 

a"The full CI energies are in hartree. The CCSD, QECCSD, and ECCSD energies are in

millihartree relative to the corresponding full CI energy values. The lowest two occupied

orbitals were kept frozen.

bThe N—N separation in bohr. The equilibrium value of R is 2.068 bohr.

cThe QECCSD and full ECCSD methods are based on the Arponen-Bishop ECC theory.
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Figure 2.4: Ground-state potential energy curves of the N2 molecule, as described

by the STD-3G basis sets. The QECCSD and ECCSD methods are based on the

Arponen-Bishop ECC theory.
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Table 2.5.: The ground-state energies of the N2 molecule obtained for several inter-

nuclear separations R with the DZ basis set.“

 

 

 

Method 0.7512. R.” 1.2512. 1.511e 1.7512. 211. 2.25R.

CCSD 3.132 8.289 19.061 33.545 17.714 —69.917 —120.836

CCSD'I‘C 0.580 2.107 6.064 10.158 —22.468 —109.767 -155.656

CCSD(T)“ 0.742 2.156 4.971 4.880 —51.869 —246.405 —387.448

CCSD(TQf)c 0.226 0.323 0.221 —2.279 —14.243 92.981 334.985

CCSDT(Q{)" 0.047 -0.010 —0.715 —4.584 3.612 177.641 426.175

QECCSD" 2.506 6.236 13.609 23.485 31.060 40.085 49.741

 

 

a‘All energies are in millihartree relative to the corresponding full CI energy values, which are

—108.549027, —109.105115, -109.054626, —108.950728, —108.889906, —108.868239, and

—108.862125 hartree at R = 0.75Re, Re, 1.25Re, 1.5Re, 1.75Re, 2R6, and 2.25Re, respec-

tively. The lowest two occupied and the highest two unoccupied orbitals were frozen in

correlated calculations.

bThe equilibrium value of R, R, = 2.068 bohr.

cFrom Ref. 31.

dFrom Ref. 34.

eThe quadratic approximation to the full ECCSD theory of Arponen and BishOp.
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Figure 2.5: Ground-state potential energy curves of the N2 molecule, as described by

the DZ basis sets. QECCSD represents the quadratic version of the ECCSD theory

of Arponen and Bishop.
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2.4 Conclusion

We can summarize this chapter by stating that the ECCSD approach of Piecuch and

Bartlett, and its approximate BECCSD and QECCSD variants—”“76, and the ECCSD

method of Arponen and Bishop and its QECCSD variant77 represent interesting new

alternatives for accurate electronic structure calculations of quasi-degenerate elec-

tronic states and bond breaking. The BECCSD, QECCSD, and full ECCSD methods

remove the pervasive failing of the standard CCSD approach at larger internuclear

separations and provide very good values of the T1 and T2 cluster amplitudes in the

bond breaking region, in spite of using the RHF configuration as a reference and

in spite of the two-body character of all ECCSD approximations. The BECCSD,

QECCSD, and full ECCSD approaches improve the quality of the T1 and T2 cluster

components so much that we can start thinking about using the BECCSD, QECCSD,

or full ECCSD theories to design new single-reference ab initio methods for quantita-

tive, high-accuracy calculations for bond breaking. For example, by having an access

to very good T1 and T2 cluster amplitudes, resulting from the BECCSD, QECCSD,

or ECCSD calculations, which are much better than the T1 and T2 clusters resulting

from the standard CCSD calculations, we should be able to propose simple nonitera-

tive corrections to the BECCSD, QECCSD, or ECCSD energies, which may provide

further improvements in the ECC results in the bond breaking region (see Chapter

3).

Based on a comparison of the ECCSD and QECCSD results for N2 obtained with

the Piecuch-Bartlett and Arponen-Bishop theories, we do not expect the differences

between the ECC methods of Arponen and Bishop‘w—59 and Piecuch and Bartlett60

to be large in the context of bond breaking. It seems to us that the rigorously bi-

variational character of the ECC formalism of Arponen and Bishop is of the secondary
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importance in the calculations of PESs involving bond breaking (cf. Section 2.3).

Our experiences to date indicate that the most important factor that contributes

to significant improvements in the quality of the T1 and T2 cluster components in

the bond breaking region is the flexibility of the ECC theories, which rely on two

independent sets of cluster amplitudes that are optimized by solving coupled systems

of equations. The standard CC theory uses only one set of cluster amplitudes and

this is not sufficient to obtain a correct description of multiple bond breaking by the

standard CCSD method.

On the other hand, costs of the ECCSD calculations employing the ECC theory

of Arponen and Bishop are somewhat smaller than those charactering the ECCSD

approach of Piecuch and Bartlett. This, in particular, applies to the QECCSD approx-

imation, which is simpler when the Arponen-Bishop ECC theory is employed. The

QECCSD method based on Arponen’s and Bishop’s formulation of the ECC theory is

an .N’6 procedure. The relatively low cost of the QECCSD approximation, the single

reference (“black-box”) character of the QECCSD calculations, and the qualitatively

correct description of multiple bond breaking by the QECCSD approach make the

QECCSD method an attractive theory for the design of noniterative corrections to

CC energies. These corrections are discussed next.
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Chapter 3 Noniterative Corrections to Extended

Coupled-Cluster Energies for High Accuracy

Electronic Structure Calculations: Generalized

Method of Moments of Coupled-Cluster Equations

In Chapter 2, we showed that we can provide substantial improvements in the quality

of the calculated potential energy curves and electronic quasi-degeneracies if we switch

from the standard CCSD theory to its extended ECCSD counterpart. The question

arises if we can improve the ECCSD (or QECCSD) results even further and obtain

the quantitative description of bond breaking by adding the a posteriori corrections

to ECCSD energies that would be reminiscent of the popular triples and quadruples

corrections of the CCSD(T) and CCSD(TQf) methods and that would eliminate fail-

ures of these methods at larger internuclear separations. In this chapter, we show

that such corrections to ECCSD energies can be developed if we use the generalized

version of the method of moments of CC equations (the MMCC theory) of Piecuch

and Kowalskill-13’3°_32’74l75. Before describing the generalized MMCC approach, we

discuss the standard MMCC formalism.
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3.1 The Standard Method of Moments of Coupled-Cluster

Equations

The main idea of the standard MMCC theoryl1‘13’30—9’257‘L75 is that of the noniterative

energy correction

53") E E0 — E3“, (3.1)

which, when added to the energy ESA) obtained in some standard approximate CC

calculation A, such as CCSD, recovers the exact, full CI, energy E0. The objective of

the approximate MMCC methods is to approximate corrections 6),"), such that the

resulting MMCC energies, defined as

EgMMCC) = 133") + 63"), (3.2)

are close to the corresponding full CI energies E0. The ground-state MMCC for-

12’13’3‘H38 and genuine multi-reference CCmalism can be extended to excited states

theories32’89'90. In this thesis, we focus on the ground-state problem and merging the

single-reference MMCC formalism with the non-standard CC theories, such as the

ECC method of Arponen and Bishop50—59 (see Refs. 75 and 77).

In the standard formulation of the ground-state MMCC theory, we use the non-

iterative corrections 66’4) to improve the results of the standard CC calculations. By

the standard CC calculation, we mean any single-reference CC calculation in which

the many-body expansion for the cluster operator T, defining the CC ground state

|\Ilo), Eq. (2.4), is truncated at some excitation level mA < N (recall that N is the

number of electrons in a system). The general form of the truncated cluster operator

T”), defining the standard CC approximation A characterized by the excitation level

mA, is given by Eq. (2.20). An example of the standard CC approximation is the
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CCSD method. In this case, mA = 2 and the cluster operator T is approximated by

T z T(CCSD) = Tl + T2, (3.3)

where T1 and T2 are defined by Eqs. (2.25) and (2.26), respectively. Other examples

of the standard CC approximations are the full CCSDT, CCSDTQ, and CCSDTQP

approaches mentioned in the Introduction, in which mA 2 3, 4, and 5, respectively.

The standard CC system of equations for the cluster amplitudes tall 1112.3" defining

the Tn components of T(A) has the following general form:

(@2111 °"ia"|H(A)|<I>) = 0, i1 < < in, a1 < < an, (3.4)
o o o n

where n = 1,...,mA,

H“) = e"T(A)HeTW = (HeTW)C (3.5)

is the similarity-transformed Hamiltonian of the CC theory, and

Id);l ' ‘ '19") = E2911 ° ’ 'ia"|<I>) are the n-tuply excited determinants. In particular, the
n n

standard CCSD equations for the singly and doubly excited cluster amplitudes t3

and 4sz defining operators T1 and T2, respectively, are

(‘I’flH‘CCSD’l‘M = 0, (3-6)

(¢g]b|H<CCSD>|<1>) = 0, 2‘ < j, a < b, (3.7)

where H‘CCSD) is the similarity-transformed Hamiltonian of the CCSD approach de-

fined by Eq. (2.37). Once the system of equations, Eq. (3.4), is solved for T”) (or

Eqs. (3.6) and (3.7) are solved for T1 and T2), the CC energy corresponding to the

standard approximation A is calculated as

E5” = (<1>|H(A)|<I>). (3.8)
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The fundamental formula of the ground-state MMCC formalism introduced in

Refs. 11 and 30 (cf., also, Refs. 12, 30—32, 74, 75), which expresses the energy differ-

ence 6“), Eq. (3.1), in terms of the generalized moments of the single-reference CC

equations of method A, has the following form:

6W=E— E”): ZN: Z (-eonC..(mA)M.(mA)I<I>>/<\II0IT""I«I>>. (3.9)

n=mA+lk=mA+l

Iiere,

Cn—k(mA) = (6TH) )n—k (3-10)

is the (n — k)-body component of the wave operator 8TH) defining the CC method A,

|\Ilo) is the full CI ground state, and

M.(mA)I<I>> = Z Max:112“(mmg“,,an. (3.11)

i] < ' ° ' < ik

0.1 < ' ' ' < ak

The coefficients Maliffk(mA) entering Eq. (3.11) represent the general moments

of the CC equations of method A,

Maizzzé‘Jm/a) = ((pgllxjiikIHMnQ). (3.12)

By comparing Eqs. (3.12) and (3.4), we can state that moments .Mallz .i"k(mA)

entering 63") represent the projections of the CC equations of method A on excited

determinants Willi?) with k > m,4.

Equation (3.9) states that by calculating quantities Cn_k(m,4), Eq. (3.10), and

moments M311'_'.'.ic’fk (mA), Eq. (3.12), with k > mA, we can determine the nonit-

erative energy correction 66A) to the CC energy BSA) that we recovers the full CI

energy E0. The determination of moments Mill'ffjt’z‘JmA) for the low-order CC

methods, such as CCSD, is relatively straightforward (cf. Eqs. (3.15)-(3.18) below).

The Cn_k(mA) terms entering Eq. (3.9) are easy to calculate too. The zero-body
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term, Co(m,4), equals 1; the one-body term, Cl(m,4), equals T1; the two-body term,

1

02(mA), equals T2 +%T12 if mA 2 2; the three-body term, C3(mA), equals TIT; + 6T13

if 172); = 2 and T3 + T1T2 + -1-T,3 if mA 2 3, etc. Thus, the above formula for 63"),

6

Eq. (3.9), is an excellent starting point for developing noniterative CC approaches, in

which the ground-state energies are calculated by adding corrections 68A) to the stan-

dard CC energy EéA). For example, we can develop a hierarchy of approximations, in

which the energy corrections based on Eq. (3.9) are added to the CCSD energies. In

this case, the formula for the correction 66cc”), which must be added to the CCSD

energy ESCCSD) to recover the full CI energy E0, is

N min(n,6)

68‘3“”) 2 E0 — E3003”) = Z Z (wolc.-.(2)M.(2)I<I>>/<%IeT1+T2|<I>>, (3.13)

n=3 k=3

where

Mk(2)I<I>> = Z M23112...(2) I3313,.a). (3.14)

i1 < ' ' ' < ik

0.1 < - ° - < a),

with moments M211 11125,: (2), k = 3 — 6, defined as projections of the CCSD equations

on triply, quadruply, pentuply, and hextuply excited determinants,

1 1 1 1
MWQ): (cpgjk|[HN(T2+TlT2+ —T22++—T2T2+—T1T§+—T?T2)]c|<1>), (3-15)
Mabc 2 2 1 2 6

1 1

M23“(2)=(<1>ab,g;1|(H~(-;-Tg+ 41T2+——T:+1T3T2)]C|q>), (3.16)
3] 2 6 4

kl
Mijbcd’g‘e): g<<1>3,”,§§‘,$,IlH~(T§ +T1T3>JCI<I>> (3.17)

ijklmn __ abcdef

Mam, (2) — 24<¢,,k,mnI(H~13)cl<I>>. (3.18)

The exact MMCC corrections 63"), Eq. (3.9), or 630030), Eq. (3.13), have the

form of the complete many-body expansions involving all n-tuply excited configura-

tions with n = mA + 1, . . . , N, where N is the number of electrons in a system (cf.
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the summations over 17. in Eqs. (3.9) and (3.13)). Thus, in order to develop prac-

tical methods based on the MMCC theory, we must first truncate the many-body

or 6(ccsn)
expansions for corrections (SW at some, preferably low, excitation level m3

satisfying mA < 7113 < N. This leads to the MMCC(mA, m3) schemes, in which we

calculate the energy as followsl1‘13’3°_32'74’75:

EéMMCC)(mAa m3) : E(()A) + 60(mAa m3), (3'19)

where E3” is the energy obtained with the CC method A and

60<mmma)= Z Z (‘I’olCn.(mi)Mk<mA)I<I>>/<oneT“’I<I><I>> (3.20)
n=mA+l k:mA-l-l

is the relevant MMCC correction. Examples of the MMCC(mA, m3) schemes are the

basic MMCC(2,3) and MMCC(2,4) approximations, in which energies are calculated

as followsl“1330—3523
435.

E‘MMCC’e 3): E‘CCSD’ + (‘I’olM3(2)|‘I’>/(‘I’o leT1+T2|<I>> (3.21)

E<MMCC)(2 4): ESCCSD) + (‘I'olfM3(2) + [M4(2) + T1M3(2)l}|‘p)/<‘I’OIBTI+T2I‘D),

(3.22)

where Ewcsm is the CCSD ground-state energy. The MMCC(2,3) approach re-

quires that we only determine the triply excited moments M2532), Eq. (3.15). The

MMCC(2,4) method requires that we determine the triply excited moments Mijk(2),

szkld,(2) Eq. (3.16). The secondEq. (3.15), and the quadruply excited momentsM

issue that has to be addressed before the MMCC(mjc,m3) methods can be used in

practice is the fact that in the exact MMCC theory the wave function lilo) that

enters Eqs. (3.9) and (3.13) is the exact, full CI, ground state. Thus, in order

to propose the computationally tractable approaches based on the MMCC theory,

we must approximate |\Ilo) in some, preferably inexpensive, manner. Various ways
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of approximating lilo) in Eqs. (3.20)—(3.22), leading to the completely renormal-

ized (CR) CC methods"_‘3*3°_35'37’74’75, the quasi-variational and quadratic MMCC

methods-”776'”, the CI-corrected MMCC approachesl1'13’75'86’87'92, and the multiref-r

erence MBPT-corrected MMCC approach93 — all employing the CCSD values of T1

ééCCSD)
and T2 to construct the relevant corrections — have been suggested. For exam-

ple, the CR—CCSD(T) method‘1’13’30’31"3""35'37'74’75'9“_96 is obtained by replacing the

wave function |\Ilo) in the MMCC(2,3) formula, Eq. (3.21), by the MBPT(2)[SDT]-

like expression

|¢§CSD(T’) = (1 + T1 + T2 + T421 + Z3)|<I>), (3.23)

where T1 and T2 are the singly and doubly excited clusters obtained in the CCSD

calculations, T91 is an approximation of the connected triply excited clusters T3,

defined by Eq. (2.61), and

Zsl<1>) = Rés’VNTIId» (3.24)

is the disconnected triples correction, which is responsible for the difference between

the [T] and (T) triples corrections of the standard CCSD[T] and CCSD(T) ap-

proaches. The higher-order CR-CCSD(TQ) methodsl1‘13’30’31’33735174'75 are obtained

in a similar manner, by inserting the MBPT(2)[SDTQ]-like expressions for |\Ilo) into

the MMCC(2,4) formula, Eq. (3.22). For example, the wave function |\Ilo) defin-

ing variant “b” of the CR—CCSD(TQ) approach (the CR-CCSD(TQ),b method) is

defined as follows:

IwECSD‘TQ”) = Wm) + 223231». (3.25)

where |W€CSD(T)) is given by Eq. (3.23).

As shown in Refs. 11—13, 30—35, 37, 74, 75, and 94—96, the CR—CCSD(T) and

CR-CCSD(TQ) approaches eliminate or considerably reduce the failures of the stan-

dard CCSD(T) and CCSD(TQf) methods at larger internuclear separations and for
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diradicals without making the calculations substantially more difficult or expensive.

In particular, the CR—CCSD(T) and CR-CCSD(TQ) methods provide a very good

description of single bond breaking. Unfortunately, performance of these methods for

multiply bonded systems is often much less impressive, partly due to the very poor

quality of the singly and doubly excited cluster amplitudes resulting from the CCSD

calculations, on which the CR—CCSD(T) and CR-CCSD(TQ) methods are based, in

calculations involving multiple bond breaking. The purpose of this work is to ex-

amine an alternative approach, in which the MMCC corrections 63A) or 65,0030) are

constructed using the cluster components obtained in the ECC or ECCSD calcula-

tions. As shown in Chapter 2, the ECCSD method provides much better values of

T1 and T2 clusters than the CCSD approach when multiple bonds are stretched or

broken, so that we may be able to improve the CR-CCSD(T) and CR-CCSD(TQ)

results in cases where the standard CCSD values of T1 and T2 are of very poor quality.

The use of the ECC or ECCSD values of cluster amplitudes in MMCC calculations

requires the generalization of the MMCC theory to non-standard CC methods, which

is described in the next section.

3.2 The Generalized MMCC Formalism

Interestingly, Eqs. (3.9) and (3.13) can be generalized to a situation where the trun-

cated cluster operator T“) is not determined by solving the standard CC equa-

tions, Eq. (3.4). Here is how this works: When the cluster operator T“) is ob-

tained in a non-standard way, we can no longer assume that the generalized moments

Mall'jfffik (mA) with k = 1,. . . , mA vanish; they only vanish in the standard CC case

(cf. Eqs. (3.4) and (3.12)). It has been shown in Refs. 13 and 30 that when mo-
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ments M211°.°.'.z(’1‘k(m,4) with k = 1, . . . mA do not vanish, we have to use the following

expression for the exact, full Cl energy E0 instead of Eq. (3.9):

N

E. = ZZ<WOIC.-.(mA)M.(mA)I<I>>/<\IIoIeT“’I<I>>

n=0 k=0

N n

= Moon.)+ZZ<wo|c._.(mA)M.(mA)I<I>>/<%IeT“’I<I>>. (3.26)
n=l k=1

Here, Mo(mA) designates the zero-body moment, which is calculated in exactly the

same way as the CC energy Eé"), i.e. (cf. Eq. (3.8))

Mum.) = <<I>IFI""I<I>>. (3.27)

Although the formulas for Mo(m,4) and E84) are identical, there is a fundamental

difference between Mo(mA) and Eff). The energy E5,“ is determined using the cluster

amplitudes originating from the standard CC equations, Eq. (3.4), and E84) is the

energy expression used in the CC theory. The zero—body moment Mo(mA) can be

computed with any cluster operator T“), obtained, for example, by performing some

nonstandard calculations, such as the ECC calculations, and Mo(mA) does not have

to represent the energy expression of the nonstandard CC theory used to generate

T(A) (e.g., Mo(m,4) does not represent the energy expression of the ECC formalism).

As in the case of the standard MMCC formalism defined by Eq. (3.9), the

Cn-k(m,4) and Mk(mA)|<I>) quantities entering Eq. (3.26) are defined by Eqs. (3.10)

and (3.11), respectively, although we must consider now all quantities Mk(mA)|<I>)

with k 2 1, not just those with k > mA. In other words, since we no longer assume

that the generalized moments M311 ','.',igk(m,,) with k = 1,. . . , mA vanish, since Eq.

(3.4) is no longer satisfied, we must consider all generalized moments Mill '. ’. 11.3,: (mA),

which a given cluster operator T“) produces. In particular, if we want to use the T1

and T2 clusters to construct the full CI energy E0, which are no longer determined
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by solving the standard CCSD equations, we must use the following formula for the

exact energy E0:

N min(n,6)

E0 = 140(2) +2 2 (10(0,_,.(2) Mk(2)|<I>)/(\Ilo|eT1+T2|<I>), (3.23)

=1 k=l

where Mk(2)|<I>) is defined by Eq. (3.14). As one can see, Eq. (3.28) is very similar

to Eq. (3.13). In particular, we do not have to consider momentsMé‘lzng) with

k > 6, since for Hamiltonians containing up to two-body interactions the generalized

moments Mall‘jji’fka) with k > 6 vanish, independent of the source of T1 and T2

clusters. There is, however, a difference between Eqs. (3.13) and (3.28): in Eq. (3.28)

we consider the singly and doubly excited moments, 1143(2) = ((bgll—Iwcsmkb) and

MZJAQ) = (¢?Jb|H(CCSD)|<I>), respectively, which are no longer zeroed, along with

moments M31, 11115,,(2) with k = 3 — 6 considered in the standard CCSD case; Eq.

(3.13) uses moments M31115), (2) with k = 3 — 6 only, since Mg(2) = Mijb(2) = 0

in the standard CCSD case. The formulas for the M32) and M329) moments,

entering Eq. (3.28), in terms of the T1 and T2 clusters, are identical to the left-hand

sides of the standard CCSD equations. Thus, we obtain (cf. Eqs. (3.6) and (3.7)),

- 1 1
M242) = (¢?|[H~(1 + T, + T2 + 5T1? + T171, + 6T3)]C|<I>), (3.29)

M11 (2) = (611’1|[HN(1 + T1+ T2 +1T‘1 + T1T2 +1T11 +12"1 + 171173 + —1-T“)]C|<I>).
ab 2] 2 1 6 1 2 1 2 1 24 1

(3.30)

Equations (3.26) and (3.28) define the generalized version of the ground-state

MMCC theory, designated as GMMCC. Clearly, the GMMCC theory reduces to

the standard MMCC formalism if cluster components Tfl defining operator T“) are

determined by solving the standard CC equations, Eq. (3.4). In this case, the

M311 '.'.'.ic’{k(m,4) moments with k = 1, . . . , mA vanish and the summations 25:1 22:,

entering Eq. (3.26) reduce to ELM+1 22:,“ +1, giving Eq. (3.9). The obvious ad-

52

 



vantage of Eqs. (3.26) and (3.28) is that they are much more general than Eqs. (3.9)

and (3.13), enabling us to use the non-standard values of T“) clusters. Otherwise,

we use Eqs. (3.26) and (3.28) in exactly the same way as Eqs. (3.9) and (3.13).

Thus, once the cluster components defining the truncated cluster operator T”) are

determined, we calculate the relevant moments Mo(m,4) and M311'_'.'.i§k (mA) and

use these moments to determine the ground-state energy E0.

In analogy to the standard MMCC theory, a few issues have to be addressed be-

fore using the GMMCC formalism in practical calculations. First of all, the exact

GMMCC expressions, Eqs. (3.26) or (3.28), represent the complete many-body ex-

pansions involving all n-tuply excited configurations with n = 1,. ..,N, where N

is the number of electrons in a system (see the summations over n in Eqs. (3.26)

and (3.28)). Thus, in order to develop the computationally tractable GMMCC

methods, we must first truncate the many-body energy expansions, Eqs. (3.26) or

(3.28), at some, preferably low, excitation level m3, where mA < 1713 < N. This

leads to the GMMCC(mA, m3) schemes, which are the non-standard analogs of the

MMCC(mA,mB) approximations discussed in Section 3.1. By limiting ourselves to

the wave functions |\Ilo) that do not contain higher—than—mB-tuply excited compo-

nents relative to reference |<I>) and by restricting the summation over n in Eq. (3.26)

accordingly, we obtain the following energy expression for the GMMCC(mA,m3)

methods:

mg n

EéGMMCC1(mA, m3) = Mum.) + 2 2(2010.-.(m..) Mk(mA)|‘I’)/(‘I’0|€Tw (<2).
n=1 k=l

(3.31)

where Mo(mA) is defined by Eq. (3.27). The exact GMMCC formalism, equivalent

to calculating the full CI energies, is obtained when |\Ilo) in Eq. (3.31) is the full CI

ground-state wave function and m3 = N. In this case, it is irrelevant what is the
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value of mA and where is the cluster operator T“) taken from. When I‘IIo) is exact

and m3 = N, Eq. (3.31) produces the exact energy, independent of the excitation

level mA and the source of cluster amplitudes defining T”).

In this thesis, we focus on the GMMCC(mA,m3) schemes with mA = 2, which

can be used to correct the results of the non-standard CCSD-like (e.g., ECCSD or

QECCSD) calculations. In analogy to the standard MMCC theory, two

GMMCC(mA, m3) approximations are expected to be particularly useful: the

GMMCC(2,3) method and the GMMCC(2,4) approach. According to Eq. (3.31),

the GMMCC(2,3) and GMMCC(2,4) energies are calculated as follows:

EéGMMCC’a. 3) = M0(2) + (on{Ml(2) + (342(2) + T1M1(2)] + [M3(2)

+T.M2(2) + (T: + §T3)M1(2)1}I<I>>/<%Ie11+11I<I>> . (3.32)

ESGMMCC’Q. 4) = Mo(2)+(‘1’o|{M1(2) + (342(2) + T1M1(2)1

+[M3(2) + T1M2(2) + (T2 + %T3)M1(2)]

+[M.,(2) + T1M3(2) + (T2 + éTE)M2(2)

1

+(T1T2 + 6 T13)M1 (2)1}|<I>)/(1I’oleT1+T2 I‘P) . (333)

As one can see, in the case of the GMMCC(2,3) approximation, we must calculate

moments M3(2), MZ)(2), and M3£(2), using Eqs. (3.29), (3.30), and (3.15), re-

spectively, in addition to moment Mo(2), Eq. (3.27). In the case of the GMMCC(2,4)

approach, we must determine moments M3132) and M2520), Eqs. (3.15) and

(3.16), respectively, along with moments Mo(2), M2(2) and M320), Eqs. (3.27),

(3.29) and (3.30), respectively. Clearly, when the singly and doubly excited moments

M39) and MZJAQ) vanish, the GMMCC(2,3) and GMMCC(2,4) energy expressions,

Eqs. (3.32) and (3.33), respectively, reduce to the MMCC(2,3) and MMCC(2,4) for-
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mulas given by Eqs. (3.21) and (3.22). This can only happen when the T1 and T2

clusters are obtained by solving the standard CCSD equations, Eqs. (3.6) and (3.7).

The second issue that needs to be addressed before the GMMCC(2,3) and

GMMCC(2,4) methods and other GMMCC(mA,m3) approximations are used in

practice is the issue of the wave function I‘llo) that enters Eqs. (3.31)-(3.33), which in

the exact theory is a full CI ground state. Clearly, in order to make the GMMCC(2,3),

GMMCC(2,4), and other GMMCC(m,4, m3) schemes usable in practical applications,

we must suggest some approximate forms of |\Ilo) that can be easily generated with

one of the inexpensive ab initio approaches. Finally, the third issue is the source of

the T1 and T2 cluster amplitudes which are needed to construct the GMMCC(2,3) and

GMMCC(2,4) energy expressions, Eqs. (3.32) and (3.33), respectively. As mentioned

earlier, in calculating the GMMCC(2,3) and GMMCC(2,4) energies we would like

to use the T1 and T2 cluster components which are more accurate in cases involving

multiple bond breaking than those obtained in the standard CCSD calculations. As

shown in Chapter 2, the T1 and T2 cluster components resulting from various types

of ECCSD calculations are much better than their standard CCSD counterparts,

when multiply bonded systems are examined. Thus, it is worth examining the pos-

sibility of combining the GMMCC(2,3) and GMMCC(2,4) schemes with the ECCSD

methods. The resulting ECCSD(T), ECCSD(TQ), QECCSD(T) and QECCSD(TQ)

approaches are discussed next.
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3.3 The ECCSD(T), ECCSD(TQ), QECCSD(T), and

QECCSD(TQ) Methods and their Performance in Cal-

culations for Triple Bond Breaking in N2

The ECCSD results for triple bond breaking in N2 are so much better than their

standard CCSD analogs that it is very important to analyze the effect of replacing

the CCSD values of the T1 and T2 cluster components in the MMCC calculations by

the ECCSD values of these clusters. Since the ECCSD and QECCSD methods are no

longer the standard CC theories, so that we can no longer assume that the singly and

doubly excited moments, MZ(2) and M2,.)(2), Eqs. (3.29) and (3.30), respectively,

vanish, we must use the GMMCC formalism discussed in Section 3.2 rather than the

standard MMCC formalism discussed in Section 3.1 in such considerations. In the

following, we test an idea of using the QECCSD and ECCSD values of T1 and T2,

resulting from the application of the Arponen-Bishop variant of the ECC theory, in

the GMMCC calculations.

As explained in Section 3.2, in practice we are interested in a truncated form of

the GMMCC theory that leads to relatively low costs of calculating the final energy.

All of our tests to date, including the calculations for N2 discussed below, indicate

that the lowest-order GMMCC scheme, employing the ECCSD or QECCSD values of

T1 and T2, which provides substantial improvements in the results for multiple bond

breaking, is the GMMCC(2,4) approach defined by Eq. (3.33). In this approach,

we only consider the generalized moments Mill'jjfi‘fkfl) with k = 1 — 4, i.e. mo-

ments corresponding to the projections of H(CCSD)|<1>) on singly, doubly, triply, and

quadruply excited determinants. The lower-order GMMCC(2,3) approach, defined

by Eq. (3.32), employing the ECCSD or QECCSD values of T1 and T2 and ignoring

the quadruply excited moments szbgla), provides improvements too, but the ne-
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glect of the quadruply excited moments Mfijbtiia) in the GMMCC calculations has

a negative impact on the results for multiply bonded systems, such as N2.

As in all approximate MMCC calculations, we must decide what to do with the

wave function |\Ilo) that enters the GMMCC(2,3) and GMMCC(2,4) energy formulas,

Eqs. (3.32) and (3.33). Since we are mainly interested in the “black-box” GMMCC

approaches of the CCSD(T) or CCSD(TQ) type, in this study of the performance of

the GMMCC theory employing the ECCSD and QECCSD values of T1 and T2, we use

the same types of the wave functions I‘llo) in Eqs. (3.32) and (3.33) as the wave func-

tions (1130511111) and (31305911‘111’) used in the CR—CCSD(T) and CR-CCSD(TQ),b

calculations (cf. Eqs. (3.23) and (3.25)). Depending on the choice of lilo) and the pre-

cise source of T1 and T2 clusters for the GMMCC(2,3) and GMMCC(2,4) calculations,

we introduce the following four approximations:

o ECCSD(T): The ECCSD(T) approach is defined as the GMMCC(2,3) method,

in which I‘IIO) is defined by Eq. (3.23) and in which T1 and T2 clusters originate

from the full ECCSD calculations of the Arponen-Bishop type.

0 QECCSD(T): The QECCSD(T) approach is defined as the GMMCC(2,3) method,

in which [\110) is defined by Eq. (3.23) and in which T1 and T2 clusters originate

from the QECCSD calculations of the Arponen-Bishop type.

0 ECCSD(TQ): The ECCSD(TQ) approach is defined as the GMMCC(2,4) method,

in which |\Ilo) is defined by Eq. (3.25) and in which T1 and T2 clusters originate

from the full ECCSD calculations of the Arponen-Bishop type.

0 QECCSD(TQ): The QECCSD(TQ) approach is defined as the GMMCC(2,4)

method, in which I‘IIO) is defined by Eq. (3.25) and in which T1 and T2 clusters

originate from the QECCSD calculations of the Arponen-Bishop type.
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Based on the above definitions, it is easy to verify that the ECCSD(T)/QECCSD(T)

energies can be calculated as follows:

E31Q1ECCSD‘T11 = 1140(2) + N“)mm, (3.34)

where

N111 = <<I>IT.1 Ml(2)l<1>> + <4>|TJ (142(2) + T1M1(2)]|<I>>

+<<I>|(T3[2’ + 232121432) + T. 1142(2) + (T: + %Tf)Ml(2)II<I>> (3.35)

and

D111 = 1+<<I>|TIT1I<I>>+<<I>|TJ (T. +17?) |<I>>+<<I>I(T§2]+Za)1(T1T2+éTf)I<I>), (3.36)

with T3] and 23 defined by Eqs. (2.61) and (3.24), respectively, and T1 and T2

obtained in the ECCSD/QECCSD calculations. The ECCSD(TQ)/QECCSD(TQ)

energies are calculated as

23319110051111”) = 1140(2) + N<TQ>/D<TQ>, (3.37)

where

N111” = N1“ + é<<I>I(T2‘ )1 [M.(2) + T1M3(2) + (T2 + 3T3)M2(2)

+(T1T2 + éT?)M1(2)]I<I>> (3.33)

and

011‘” = D11" + %<<I>|(TJ)2(-;-T22 + 116176 + #312), (3.39)

with N(T) and Dm defined by Eqs. (3.35) and (3.36), respectively, and T1 and T2

obtained in the ECCSD/QECCSD calculations.

The ECCSD(T)/QECCSD(T) methods reduce to the CR-CCSD(T) approach of

Refs. 11 and 30 (cf. Section 3.1) if the T1 and T2 clusters originating from the
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ECCSD/QECCSD calculations are replaced in Eqs. (3.34)—(3.36) by their stan-

dard CCSD values. Similarly, the ECCSD(TQ)/QECCSD(TQ) methods reduce to

the CR—CCSD(T),b approach of Ref. 31 (cf., also, Section 3.1) if the T1 and T2

clusters originating from the ECCSD/QECCSD calculations are replaced in Eqs.

(3.37)—(3.39) by their CCSD analogs. These straightforward relationships between

the ECCSD(T)/QECCSD(T) and ECCSD(TQ)/QECCSD(TQ) methods on the one

hand and the CR—CCSD(T) and CR-CCSD(T),b approaches on the other hand im-

mediately imply that once the T1 and T2 clusters are determined by solving the

ECCSD/QECCSD equations, the costs of calculating the ECCSD(T)/QECCSD(T)

and

ECCSD(TQ)/QECCSD(TQ) energies are essentially the same as the costs of the cor-

responding CR-CCSD(T) and CR-CCSD(T),b calculations or their standard CCSD(T)

and CCSD(TQf) counterparts. In particular, the most expensive steps of the

ECCSD/QECCSD-based ECCSD(T)/QECCSD(T) calculations (if we ignore the costs

of the ECCSD/QECCSD calculations) scale as 113123. The most expensive steps of the

ECCSD(TQ)/QECCSD(TQ) calculations (again, ignoring the costs of the

ECCSD/QECCSD calculations) scale as either nfinf’, or 123. The ECCSD(T) and

ECCSD(TQ) methods are much less practical, since the underlying ECCSD calcula-

tions that provide T1 and T2 clusters have steps that scale as N10 with the system

size. However, the QECCSD(T) and QECCSD(TQ) methods are very promising in

this regard, since both the underlying QECCSD calculations that provide T1 and T2

clusters and the calculations of the final QECCSD(T) and QECCSD(TQ) energies,

Eqs. (3.34) and (3.37), respectively, have steps that scale, at worst, as ngnf’, or n2 (M

or .N'6 with the system size). We must keep in mind, however, that the QECCSD(T)

and QECCSD(TQ) methods are approximations to the more complete ECCSD(T)
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and ECCSD(TQ) approaches. The questions, therefore, are:

(i) Do the QECCSD(T) and QECCSD(TQ) methods provide the results of the full

ECCSD(T) and ECCSD(TQ) quality?

(ii) Are the QECCSD(T) and QECCSD(TQ) methods sufficiently accurate to elimi-

nate the problems observed in the standard and completely renormalized CCSD(T)

and CCSD(TQ) calculations for triple bond breaking in N2?

The answers to both questions can be provided if we examine the results of the

benchmark ECCSD(T), ECCSD(TQ), QECCSD(T), and QECCSD(TQ) calculations

for N2 shown in Tables 3.1, 3.2 and Figures 3.1, 3.2, which we performed with the

computer codes developed in this thesis work".

As shown in Table 3.1 and Figure 3.1, the ECCSD(TQ) approach employing the T1

and T2 clusters obtained in the full ECCSD (Arponen-Bishop) calculations is capable

of providing spectacular improvements in the description of triple bond breaking in

the N2 molecule, as described by the STO-3G basis set, reducing the large unsigned

errors in the CCSD and CR—CCSD(TQ),b results in the R 2 5.0 bohr region, on

the order of 201—213 and 39—54 millihartree, respectively, and the 31—38 millihartree

errors in the ECCSD results to less than 4 millihartree. Remarkably enough, the

ECCSD(TQ) results for the N2 molecule, as described by the STO-3G basis set, in

the entire R _<_ 8.0 bohr (2: 4H,) region do not exceed ~ 4 millihartree, being much

smaller in the R m Re region. As shown in Table 3.1 and Figure 3.1, the ECCSD(TQ)

potential energy curve is located only slightly above the full CI curve and there is

no unphysical bump on it. Interestingly enough, the zero-body moment Mo(2), Eq.

(3.27), calculated with the ECCSD values of T1 and T2, which is corrected in the

ECCSD(TQ) energy formula, Eq. (3.37), by adding terms expressed via moments
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M311°.'.'.i5k(2) with k = 1 — 4, is a poor approximation to the exact, full CI, energy in

the region of large N—N separations (see Table 3.1). This demonstrates the remarkable

ability of the MMCC (or GMMCC) formalism to restore high accuracies in the bond

breaking region even when the CC energy that we are trying to correct (in this case,

the Mo(2)/ECCSD energy) is itself very poor.

The ECCSD(TQ) results for the STO-3G model of N2 shown in Table 3.1 and

Figure 3.1 are very encouraging, but, as mentioned earlier, the ECCSD(TQ) ap-

proach is not too practical due to the expensive N10 steps of the underlying ECCSD

calculations. It is, therefore, important to examine if the much more manageable

QECCSD(TQ) approximation, which relies on the T1 and T2 clusters obtained in the

QECCSD calculations and which is the N“ -.N‘7 procedure, provides the results of the

ECCSD(TQ) quality. The results in Table 3.1 indicate that the QECCSD(TQ) and

ECCSD(TQ) energies are virtually indistinguishable when the internuclear separation

R does not exceed 3.5 bohr (z 1.75Re). Only when the N-N separations exceed 3.5

bohr, the differences between the QECCSD(TQ) and ECCSD(TQ) results become

larger. Although the errors in the QECCSD(TQ) results in the R > 3.5 bohr are

greater than the corresponding errors obtained with the ECCSD(TQ) method, the

QECCSD(TQ) method provides an excellent description of the potential energy curve

of the STO—3G N2 molecule, reducing the 35—46 millihartree errors in the QECCSD

results and much larger errors in the CCSD and CR—CCSD(TQ),b results in the

R > 4.5 bohr region to 5—6 millihartree (see Table 3.1). As in the ECCSD(TQ) case,

the QECCSD(TQ) potential energy curve of the STO-3G N2 molecule is located very

close to and above the exact, full CI curve (see Figure 3.1). Thus, the QECCSD(TQ)

approach provides a highly accurate description of the large nondynamic correlation

effects characterizing the N2 molecule at larger N—N separations.
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The question is if the above observations obtained for the very small STO-3G

basis apply to larger basis sets. In order to answer this question, we performed the

QECCSD(TQ) calculations for the DZ model of N2 (see Table 3.2 and Figure 3.2). As

shown in Table 3.2, the errors in the QECCSD(TQ) results are somewhat greater than

in the case of the STO-3G basis set, but the overall patterns are the same. Thus,

the QECCSD(TQ) method provides considerable improvements in the CCSD and

QECCSD results, reducing the large negative, (—70) — (—121) millihartree, errors in

the CCSD results in the R = 2R9 —2.25Re region and the relatively large positive, 40—

50 millihartree, errors in the QECCSD results in the same region to 16—20 millihartree.

For smaller values of R, the improvements offered by the QECCSD(TQ) approach are

even greater. For example, the QECCSD(TQ) method reduces the 6.236 and 8.289

millihartree errors in the QECCSD and CCSD energies at R = Re and the 23.485

and 33.545 millihartree errors in the QECCSD and CCSD energies at R = 1.5Re to

1.002 and 6.011 millihartree, respectively. As shown in Table 3.2 and Figure 3.2, the

QECCSD(TQ) potential energy curve for the DZ N2 molecule is located above the

full CI curve and the QECCSD(TQ) approach completely eliminates the unphysical

humps on the CR-CCSD(T) and CR—CCSD(TQ) curves, obtained with the CCSD

values of T1 and T2. This shows that the use of the QECCSD rather than CCSD

values of the T1 and T2 clusters improves the results of the MMCC calculations. All

of this is very encouraging, since the QECCSD(TQ) method is a relatively inexpensive

single-reference approach employing the spin-adapted RHF reference. As shown in

Table 3.2 and Figure 3.2, all standard CC methods using the RHF determinant as a

reference, including the very expensive CCSDT and CCSDT(Q;) approaches, which

require iterative steps that scale as JV8 with the system size, completely break down

at larger N—N separations. The QECCSD(TQ) method provides a much smoother

62



and more accurate description of triple bond breaking in N2, with the relatively small

errors which monotonically increase with R, while eliminating all of the pathologies

observed in the standard CC calculations.

Interestingly enough, even the simplest QECCSD(T) method works reasonably

well, when the DZ model of N2 is examined (see Table 3.2), although one has to

keep in mind that the errors in the QECCSD(T) energies in the R S 1.5Rf region

are 2—3 times larger than in the QECCSD(TQ) case (see Table 3.2). Moreover, the

QECCSD(T) energies do not vary with R as smoothly as the QECCSD(TQ) energies

(cf. the nonmonotonic changes in errors in the QECCSD(T) results shown in Table

3.2). The same behavior is observed when the STO-3G basis set is employed. The

calculations for the STO-3G basis set show that the QECCSD(T) and ECCSD(T)

methods are incapable of providing significant improvements in the corresponding

QECCSD and ECCSD results when the internuclear separation R becomes large (see

213(2)

in the QECCSD(T) and ECCSD(T) energy expressions. It is interesting to observe,

Table 3.1). This is related to the absence of the quadruply excited moments M

though, that the QECCSD(T) results for the DZ model of N2 are much better than

the results of the CR-CCSD(T) calculations (not to mention the CCSD(T) results), in

which the quadruply excited moments M23219) are neglected too. This shows once

again that the T1 and T2 clusters resulting from QECCSD (and ECCSD) calculations

are of much higher quality than the T1 and T2 clusters obtained with the standard

CCSD approach, improving the results of the MMCC calculations.

63



3.4 Summary

We have demonstrated that the noniterative ECCSD(TQ) and QECCSD(TQ) meth-

ods, obtained by merging the ECC formalism of Arponen and Bishop with the gen-

eralized version of the MMCC theory that enables one to use the non-standard clus-

ter components to design the noniterative corrections to CC energies, provide an

accurate and variational description of potential energy surfaces involving multiple

bond breaking with the ease of a single-reference “black-box” calculation. In partic-

ular, the GMMCC-based ECCSD(TQ) and QECCSD(TQ) approximations employ-

ing T1 and T2 clusters obtained in ECCSD and QECCSD calculations do not suffer

from the non-variational collapse or unphysical behavior observed in the standard

CCSD, CCSD(T), CCSD(TQf), CCSDT, and CCSDT(Qf) calculations. The use of

the ECCSD and QECCSD values of the singly and doubly excited clusters has a

very positive impact on improving the results of the MMCC calculations in the bond

breaking region. In particular, the ECCSD(TQ) and QECCSD(TQ) methods em-

ploying the ECCSD and QECCSD values of T1 and T2 clusters improve the results

of the CR-CCSD(T) and CR-CCSD(TQ) calculations for triple bond breaking in N2,

which also use the MMCC theory but rely on the T1 and T2 clusters obtained with

the standard CCSD approach.

The results obtained in this thesis show that the new GMMCC theory is a flex-

ible formalism, which enables one to design the relatively inexpensive noniterative

CC methods employing the non-standard values of cluster components. The gener-

alized version of the MMCC theory provides us with precise information about the

many-body structure of the exact energy and the corrections that must be added to

standard or non-standard CC energies to recover full CI results. This is particularly

valuable in situations involving multiple bond stretching or breaking, where the stan-
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dard arguments based on MBPT fail due to the divergence of the MBPT series at

larger internuclear separations. The fact that one can use the standard as well as

non-standard cluster amplitudes in the GMMCC calculations is a very useful feature,

which gives us an opportunity to improve the results by using non-traditional sources

of cluster amplitudes that are more suitable for the applications of interest. The

results obtained in this thesis, in which we used the ECCSD and QECCSD methods

to generate the T1 and T2 clusters for the GMMCC calculations, are a clear demon-

stration of how useful the idea of using the non-standard values of cluster amplitudes

might be in the most challenging cases involving multiple bond breaking where all

standard single-reference CC methods (including high level methods such as CCSDT

or CCSDT(Qf)) fail.

We tested a few ECCSD- and QECCSD-based GMMCC approximations, in-

cluding ECCSD(T), QECCSD(T), ECCSD(TQ), and QECCSD(TQ). Although the

best results are obtained with the ECCSD(TQ) method, we cannot recommend this

method at this time for practical calculations due to the large costs of the under-

lying ECCSD calculations. The QECCSD(TQ) approach employing the QECCSD

values of T1 and T2 clusters is more promising in this regard, offering an accurate

description of large nondynamic and substantial dynamic correlation effects with the

computational steps that scale as N6 — .IV7 with the system size.
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Table 3.2.: The ground-state energies of the N2 molecule obtained for several inter-

nuclear separations R with the DZ basis set.“

 

 

 

Method 0.7511,. R} 1.2512. 1.512. 1.7511. 2R, 2.2512,.

CCSD 3.132 8.289 19.061 33.545 17.714 -69.917 —120.836

CCSDTc 0.580 2.107 6.064 10.158 —22.468 —109.767 —155.656

CCSD(T)c 0.742 2.156 4.971 4.880 —51.869 —246.405 —387.448

CCSD(TQf)c 0.226 0.323 0.221 —2.279 —14.243 92.981 334.985

CCSDT(Q;)d 0.047 —0.010 —0.715 —4.584 3.612 177.641 426.175

CR—CCSD(T)C 1.078 3.452 9.230 17.509 -2.347 —86.184 -133.313

CR-CCSD(TQ),ac 0.448 1.106 2.474 5.341 1.498 -40.784 -69.259

CR—CCSD(TQ),bc 0.451 1.302 3.617 8.011 13.517 25.069 14.796

QECCSD 2.506 6.236 13.609 23.485 31.060 40.085 49.741

Mo(2)/QECCSD° 1.908 4.164 7.935 13.623 33.109 70.120 106.399

QECCSD(T)f 1.000 2.941 7.121 11.661 8.454 10.330 17.977

QECCSD(TQ)S 0.412 1.002 2.443 6.011 11.393 ' 16.103 19.958

 

 

“All energies are in millihartree relative to the corresponding full CI energy values, which are

—108.549027, -109.105115, -109.054626, —108.950728, —108.889906, —108.868239, and

—108.862125 hartree at R = 0.75Re, Re, 1.25Re, 1.5Re, 1.75Re, 2R.” and 2.25Re, respec-

tively. The lowest two occupied and the highest two unoccupied orbitals were frozen in

correlated calculations.

bThe equilibrium value of R, R3, = 2.068 bohr.

cFrom Ref. 31.

dFrom Ref. 34.

eThe zero-body moment or the CCSD-like energy expression, Eq. (3.27), calculated using

the QECCSD values of T1 and T2 (obtained with the Arponen-Bishop ECC theory).

fThe GMMCC(2,3) result obtained using the QECCSD values of T1 and T2 and |\Ilo) defined

by Eq. (3.23) (obtained with the Arponen-Bishop ECC theory).

15The GMMCC(2,4) result obtained using the QECCSD values of T1 and T2 and |\Ilo) defined

by Eq. (3.25) (obtained with the Arponen-Bishop ECC theory).
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Figure 3.1: Ground-state potential energy curves of the N2 molecule as described by

the STO-3G basis set. The QECCSD and ECCSD calculations were performed using

the ECC theory of Arponen and BishOp.
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Figure 3.2: Ground-state potential energy curves of the N2 molecule as described by

the DZ basis set. The QECCSD calculations were performed using the ECC theory

of Arponen and BishOp.
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Chapter 4 Exactness of Two-Body Cluster

Expansions in Many-Body Quantum Theory

As demonstrated in Chapters 2 and 3, we can considerably improve the description of

chemical bond breaking and quasi-degenerate electronic states by performing ECCSD

calculations and by adding new types of noniterative energy corrections, based on

the GMMCC formalism, to the ECCSD energies. The ECCSD approaches and the

ECCSD-based GMMCC approaches are capable of eliminating the failures of the

standard CCSD, CCSD(T), and CCSD(TQf) methods, in spite of the fact that we only

use one- and two—body cluster operators in the ECCSD and ECCSD-based GMMCC

calculations. Our positive experiences with the ECCSD-based methods imply that

there is a lot of unexplored flexibility in the CC theories using only one- and two-body

clusters. The natural question arises if one can improve the quality of many-electron

wave functions based on the cluster expansions involving one— and two—body (or only

two-body) operators to a degree where the results become exact or virtually exact.

After all, the many-electron Hamiltonians used in quantum chemistry and atomic

and molecular physics do not contain higher—than-two—body terms. Thus, one may

wonder if there is a way to obtain the exact or virtually exact description of many-

electron systems with the CC-like theories that does not use higher—than—two—body

operators to construct the corresponding many-particle wave functions. An issue of

the exactness of the exponential cluster expansions employing two-body operators is
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discussed in this chapter.

4.1 Theory

It is well known that one can always obtain the exact solution of the electronic

Schr6dinger equation within a given basis set by performing the full CI calculations.

Unfortunately, the dimension of the full CI eigenvalue problem can easily run into

astronomical figures, even for small many-electron systems. This can be easily veri-

fied by applying the well-known Weyl’s formula97 for the number f(n, N, S) of spin-

adapted electron configurations that enter the full CI expansion of an eigenstate of

the electronic Hamiltonian H, i.e.,

2S+1 n+1 n+1

f(n’N’S)=m(N/2—S)(N/2+S+1)’ (4'1)

where 71 represent the number of correlated orbitals, N is the number of correlated

electrons, S is the total spin of an eigenstate under consideration, and (’1?) =

m!/[k!(m — k)!] is the binomial coefficient. For example, a full CI calculation of a sin-

glet electronic state for a system consisting of 10 electrons (e.g., the HF molecule or the

Ne atom) and described by only 20 orbitals requires using f(20, 10, 0) = 52, 581, 816

configurations. A modest increase of the number of orbitals from 20 to 30 results

in a steep increase in the number of configurations defining the full CI problem to

4.04 x 109. Those numbers should be compared with the much smaller numbers of

22,155 and 108,345 two-electron integrals defining the electronic Hamiltonians for the

n = 20 and 30 cases, respectively. The point-group symmetry and other symmetries

of the Hamiltonian can, on occasion, reduce the dimension of the full CI problem, but

savings resulting from the use of symmetry are minimal compared to the rapidly in-

creasing numbers of configurations defining the full CI wave functions with n and N.
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Indeed, the realistic calculation for a 10 electron system would require using ~ 100

orbitals. According to Eq. (4.1), the n = 100, N = 10, and S = 0 case leads to an

astronomical number of 9.94 x 1014 configurations in the corresponding full CI expan-

sion. This should be compared to a much smaller number of 12,753,775 two-electron

integrals defining the electronic Hamiltonian for the n = 100 case. Clearly, the num-

bers of full CI configurations would be significantly larger for N > 10 and for larger

n values due to the factorial scaling of the dimension of the full CI problem with the

system size. This should be contrasted with the relatively slow, n4-like, increase of

the number of two-electron integrals defining the Hamiltonian H with n. Thus, there

seems to be a conflict between the huge dimensionality of the full CI problem, which

prevents us from performing exact ab initio calculations for larger systems, and the

fact that the Hamiltonians for many-electron systems involve only one- and two-body

integrals, whose numbers are much smaller than the numbers of full CI coefficients

defining the exact wave functions. In spite of the tremendous progress in the area of

full CI calculations and computer technology (cf., e.g., Ref. 98 and references therein),

the exact ab initio calculations employing the full CI method remain limited to a few

electron systems described by small (usually, 71 ~ 20 — 30) basis sets.

4.1.1 The exp(X) Conjecture

It has recently been suggested that it may be possible to represent the exact or

virtually exact ground-state wave function of an arbitrary many-fermion pairwise in-

teracting system by an exponential cluster expansion involving a general two-body

99-105. If these statements were true, completely new ways of performingOperator

ab initio quantum calculations for many-fermion (e.g., many-electron) systems might

be suggested, which could provide enormous reductions in computational require-
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ments for accurate quantum calculations for pairwise-interacting many-fermion sys-

tems, eliminating the astronomical costs of generating the exact many-particle wave

functions by solving the full CI eigenvalue problem. Specifically, it has been proposed

that the exact ground-state wave function I‘IIO) of a given many-fermion system de-

scribed by the Hamiltonian,

1

H = zgcpq] + ivggcpcqcscr, (4.2)

containing up to two-body terms, obtained in a finite spin-orbital basis set, has the

following simple form”:

No) 5 I‘I’0(X)) = exlq’o), (43)

where X is a general two-body operator and |<I>o) is a normalized reference state,

which in principle is an arbitrary wave function that has a nonzero overlap with

|\Ilo), but in practice should provide us with a reasonable approximation of I‘IIO). In

Eq. (4.2) and equations presented below, we use, whenever possible, the Einstein

summation convention over repeated upper and lower indices. As in the earlier parts

of this thesis, the op and op operators represent the usual creation and annihilation

operators, respectively, associated with the one particle basis {p}. The 2% = (plilq)

and 1253 = (pqlzilrs) represent the usual one- and two-particle integrals defining the

Hamiltonian. In the language of second quantization,

1

X=X2=2 £3619cqcscr, (4.4)

where 33% are some coefficients. According to Nooijen99 (cf., also, Refs. 104, 105),

the number of independent coefficients 3:53 should be identical to the number of two-

particle integrals 1253 entering the Hamiltonian H, Eq. (4.2). One could redefine the

operator X by considering the one- and two—body components in Eq. (4.4)99’1‘”:102
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and write

1

X = X1 + X2 = 3:?)ch + Exgscpcqcscr, (4.5)

but this is not really necessary, since for a fixed number of particles (N), one can

always rewrite the Hamiltonian H, Eq. (4.2), in terms of two-body terms only. A

straightforward manipulation shows that

1

H 2 Ehggcpcqcscr, (4.6)

where

11% = 12133 + (2;,63 + 6523)/(N — 1), (4.7)

with 6;], representing the usual Kronecker delta. On the other hand, it may be bene-

ficial to use Eq. (4.5) rather than Eq. (4.4) in actual calculations, since the presence

of one-body term X1 = xgcpccl in the operator X may accelerate the convergence of

the resulting wave functions and energies.

The above representation of the exact ground-state wave function, Eq. (4.3), is

reminiscent of the exponential ansatz of the single-reference CC theory, Eq. (2.4).

There is, however, a fundamental difference between Eqs. (4.3) and (2.4). The

cluster operator T entering Eq. (2.4) is defined in terms of the particle-hole excitation

operators E31117? Eq. (2.7), where 7'1, . . . , in (a1, . . . , 01,.) are the spin-orbitals that

are occupied (unoccupied) in the reference configuration |<I>o) (which is then a single

Slater determinant), and it contains all many-body terms Tn with n = 1,. . . , N in the

exact case. The operator X, Eq. (4.4), or its analog defined by Eq. (4.5), entering Eq.

(4.3), has at most two-body terms, but of the general type (excitations, deexcitations,

and all other combinations of indices p, q, r, 8). Moreover, the reference configuration

|<I>o) can be a multi-determinantal state. One could, of course, truncate the many-

body expansion for the cluster operator T in Eq. (2.4) at a two-body component
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T2, Eq. (2.27), but then the resulting wave functions eT2|<I>o) and eT1+T2|<I>o), which

are used in the CCD and CCSD methods, respectively, are only approximate wave

functions. Thus, as we can see, there are significant differences between Eqs. (4.3) and

(2.4). However, because of the formal similarity of the CCD wave function, eT2|<I>o),

and Eq. (4.3), Nooijen and Lotrich106 and Van Voorhis and Head-Gordonlo“ call the

wave function ansatz defined by Eqs. (4.3) and (4.4) generalized CCD (GCCD) (the

wave function ansatz using Eqs. (4.3) and (4.5) is then called generalized CCSD or

GCCSD). A similar terminology has been used in Refs. 100—103.

4.1.2 Formal Arguments in Favor of the exp(X) Conjecture (Ground

States)

There are several facts that speak in favor of the correctness of Eq. (4.3). Nooijen

based his reasoning99 on the fact that the number of two-body coefficients $53 is iden-

tical to the number of components of the Nakatsuji two-particle density equation107,

which is, in turn, equivalent to the time—independent Schriidinger equation for Hamil-

tonians containing up to two-body terms. The problem that was left unsolved by

Nooijen is the solubility of a rather complicated exponential variant of the Nakatsuji

density equation, which forms an essential part of Nooijen’s analysis (cf. Eq. (11)

in Ref. 99). Van Voorhis and Head-Gordon based their reasoning104 on the fact (ex-

ploited in Quantum Monte Carlo techniques) that one can always obtain the exact

wave function by considering the expression

I‘I’o) = gr}; 621(4),), (48)

where the two-body operator 2, is defined as follows:

Z, = —(H - Eo)t, (4.9)
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with E0 representing the exact energy. They used Eq. (4.8) to write the two-body

operator X defining the exact wave function |\Ilo) via Eq. (4.3) as

t—mo

Similar arguments and equations have been presented by Nakatsujimr":103 , who also

considered the conditions for the wave functions parameterized by two-body oper-

ators to be exactloo. The problem with using Eq. (4.8) in this fashion is that the

operator 2,, Eq. (4.9), provides the exact wave function only in the t —+ 00 limit,

whereas the Operator X, Eq. (4.4) or (4.5), entering Eq. (4.3), is a finite operator.

This immediately implies that the operator X defining the exact wave function |\Ilo)

through Eq. (4.3) cannot be constrained to be of the Hamiltonian form, Eq. (4.9)

(cf. below for additional remarks). Eq. (4.8) does not Open up the possibility Of the

existence of a finite two-body Operator X, which is not necessarily defined through

infinite coefficients 3;; (which Eq. (4.10) produces). There also seem to exist some

contradictions between statements made in Refs. 100 and 102, 103. The exactness

of the GCCD or GCCSD wave functions was questioned in Ref. 100 and supported

in Refs. 102, 103 (see Refs. 108—112 for further debate; see the discussion below for

additional comments).

We have recently provided an evidence105 that the exact ground state of a many-

fermion system, described by the Hamiltonian containing one- and two-body terms,

may indeed be represented by the exponential cluster expansion employing a general

two-body operator, Eq. (4.3), by connecting the problem with the Horn-Weinstein

formula for the exact energym,

E0 = tl_i+m ((pole—tHHI‘IHD/(CPMC-‘tflI‘po)

= lim Em; = tli’m E(Xt), (4.11)

t—mo
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where

13...; E(X.) = (eelexi‘ HeX1I<I>O>/<<I>ole"5‘ exile.) (4.12)

and

1

X1: —§tH, (4.13)

and by determining the Operator X entering Eq. (4.3) through a direct minimization

of the expectation value expression

30(2) = (‘I’olemHeX I<I>o>/<<I>ole"“e1"l<1>o> (4.14)

over general two-body Operators

X = -~£3cpcqcscr (4.15)

This analysis (taken from Ref. 105) is described below.

Let us consider the family M of all two-body Operators X , Eq. (4.15), that are

defined by finite coefficients 2:53 and that have a general structure of the Hamiltonian

H, Eq. (4.6). This means that M consists Of all two-body Operators that are, for

example, Hermitian, since H is Hermitian; that satisfy relations, such as 5:53 = $35,

since has] = hag, etc. Obviously, the number of independent parameters 5:53 is

identical to the number of coefficients hgg or 1253 defining the Hamiltonian. It should

be noticed that all operators Xt, Eq. (4.13), and 2,, Eq. (4.9), belong to M, although

M is a much larger Operator family, which contains infinitely many Operators that are

not multiples of H. This remark is important for the considerations discussed in this

section, since one can always Obtain the exact wave function and energy by applying

Eqs. (4.8) and (4.11), with Z, and X; defined by Eqs. (4.9) and (4.13), respectively.

As pointed out above, neither the operator Z, nor its X, analog can provide the

exact description Of a many-fermion system for a finite value of t. We should search
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for the operator X defining |\Ilo) via Eq. (4.3) by minimizing the expectation value

expression, E0(X), Eq. (4.14), over all Operators in M.

Let us, therefore, examine what the direct minimization Of E0(X) in M leads

to. According to the Ritz variational principle, E0(X) is bounded from below by the

exact, full CI, energy, so that

&S%d) mm

for all Operators X E M. This implies that there should exist a two-body Operator

X E M that minimizes E0(X). We can write

E0(X) = min E0(X). (4.17)

XEM

Obviously,

E0 3 E0(X). (4.18)

Let us now consider the energy expression E0,“ Eq. (4.12), for an arbitrary (fixed)

value of t. We can immediately write,

E0(X) < E03, (4.19)

since E0(X) is a minimum value of E0(X), Eq. (4.14), in a space of all two-body

Operators X, whereas E0; = Eo(X¢) is the value of E0(X) at X = X, (cf. Eqs.

(4.14) and (4.12)). As a matter of fact, for a given value of t, one can always find a

two-body Operator Y from M such that E0(Y) < Em. An example of such Operator

might be provided by X,: with t’ > t, since, as shown in Ref. 113, E0,“ Eq. (4.12), is a

monotonically decreasing function of t. However, since the Operator family M is much

larger than the “one-dimensional” manifold of Operators Xt, which are multiples of H,

there is a chance that there exist two-body Operators Y E M which satisfy E0(Y) <

Em: and which are not given by Eq. (4.13). This indicates that the Operator X
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minimizing E0(X) may very well be a finite Operator (i.e., defined by finite coefficients

$53 and not Obtained by considering the limiting case Of the t —+ 00 operators Xt),

although we cannot provide a rigorous mathematical proof that this is indeed the

case and the existence of finite operator X may depend on the actual form of the

reference state |<I>o), which does not have to be a single Slater determinant (see, e.g.

Refs. 108-110). The existence Of a finite Operator X E M that minimizes E0(X)

according to Eq. (4.17) and that is not of the Hamiltonian form is supported by the

numerical calculations for a few many-electron systems105 (see the discussion below).

The inequalities (4.18) and (4.19) can be combined into the following result:

E0 S 13000 < E04, (4-20)

true for any value of t. In view Of the Horn-Weinstein energy expression, Eq. (4.11),

by considering the t —> OO limit in Eq. (4.20), we Obtain the identity

E0 = E0(X)- (4.21)

This means that the two-body Operator X, Obtained by minimizing the expectation

value expression E0(X), Eq. (4.14), gives the exact energy E0 and, by the virtue of

the variational principle, the exact ground state |\Ilo), as stated in Eq. (4.3).

The above analysis makes the exactness of Eq. (4.3) a real possibility, but one

should not treat it as a complete mathematical proof of Eq. (4.3), since we cannot rig-

orously prove the existence of the finite coefficients $53 that would define the optimum

operator X corresponding to a global minimum of E0(X) for an arbitrary reference

|<I>o). We can make, however, several useful Observations. First, the reasoning pre-

sented above, which is based on combining the Horn-Weinstein energy formula, Eq.

(4.11), with the minimization of E0(X), has an advantage over the arguments given

in Refs. 102—104 in that it frees us from necessarily assuming that the operator X can
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only be obtained by studying the t —+ 00 Operators X), Eq. (4.13), or 2,, Eq. (4.9).

By minimizing E0(X), Eq. (4.14), in a space of all two-body operators (or, equiva-

lently, by minimizing E0(X) in a finite-dimensional space Of variables :2”), which is

exactly how we Obtained Operator X in Ref. 105 (cf. the examples below), we may

be able to find finite parameters 117%, defining the exact wave function |‘Ilo), precisely

because the Operator X is not constrained to be a multiple of the Hamiltonian. If the

finite operator X, determined by some numerical procedure for minimizing E0(X) in

M, is a local rather than a global minimum on the E0(X) multi-parameter surface,

then the resulting energy E0(X), calculated by substituting X = X into Eq. (4.14),

and the resulting wave function |\I!o(X)), Eq. (4.3), do not have to be exact. How-

ever, even in this case, the Operator X may provide excellent results, opening up a

possibility of using the exponential wave functions (4.3), with X defined by Eq. (4.4)

(or (4.5)), in high-accuracy ab initio calculations. Second, the mathematical analysis

described above does not tell us anything about the specific form of the reference

state |<I>o) that should be used in the calculations exploiting the exp(X) ansatz. It is

possible, for example, that the finite parameters 2:53 that give the exact state |\IIo(X))

via Eq. (4.3) exist only for certain types of references |<I>o) that do not have to be

represented by a single Slater determinant (based on the analyses presented in Refs.

108—110, it is rather unlikely that |<I>o) is a single determinant although there is no

proof of this statement). It may happen, however, that highly accurate results are

already Obtained with the ordinary Hartree—Fock reference Km) and the additional

improvements are obtained by using a multi-determinantal reference state |<I>o) in the

definition of |\Ilo(X)), Eq. (4.3). All Of these issues are explored here by preforming

numerical calculations for a few small many-electron systems.
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4.1.3 Extension of the exp(X) Conjecture to Excited States

The exp(X) conjecture was originally proposed for the ground states, but we can

easily extend it to the excited states using the standard variational approach. For

example, we can construct the trial wave function for the first excited state |\I!1) as

12.06“)» = I‘I’1(X(l)))" (‘1’01‘1’1(X(1))>|‘I’0>- (422)

Here,

Iwe> =Noex(0)|‘i>o) (4.23)

is the previously obtained normalized ground state (.No is the normalization factor,

X(0) is the optimum two-body Operator representing |\Ilo), and I‘io) is the single- or

multi-determinantal reference state used in the calculation of |\I'o)) and

I‘P1(X“’)) =Meflnl<i>1> (4.24)

is the normalized exp(X)-like form of the first excited state, where |<I>1) represents

the reference state for |\Ill). By minimizing the energy functional

:__ (14300111124300)
~ (1)

EM ) (232290123300)

 (4.25)

over all two-body Operators X(I) 6 M, we Obtain the energy of the first excited state

and the corresponding wave function |\111) E |\P1(X(1))), where X(1) is the optimum

value of X(1) Obtained by minimizing E1 (X(1)), Eq. (4.25).

For the k-th excited state, we can define the trial wave function for variational

calculations as

Ic—l

W201)» = I2.(X1"1)> — Z<wmlw.(x‘*1»lwm>. (4.26)

m=0

where |\Ilm), m = 1, . . . , k — 1, are the previously computed states and

(2.06111) =44 e’1""|<i>.> (4.27)
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is the normalized exp(X)-like form Of the k-th excited state I‘IIk), with |<I>k) rep-

resenting the reference state for the k-th excited state. By minimizing the energy

functional

_ (112(X(*’)|H|151(X(k)))

(1117.0? "")|\i’k(X1")»

 E10?"‘1) (4.28)

over all two-body Operators X“) E M, we Obtain the energy of the k-th excited state

and the corresponding wave function l‘IIk) E |\II,,(X("))), where X(k) is the Optimum

value of X(k).

Since excited states of many-electron systems are almost always very

multi-determinantal and since they Often have significant singly excited components,

we may improve accuracies and accelerate the convergence of the numerical calcula-

tions for excited states using Eqs. (4.22)—(4.28) by using Eq. (4.5) (rather than Eq.

(4.4)) to represent operator X“), while Obtaining the reference states ling) by diag-

onalizing the Hamiltonian H in a small space spanned by a few Slater determinants

that we believe are important to describe the ground and excited states of interest.

This is what we did in our excited-state calculations described below.

4.2 Numerical Results

In our calculations for a few many-electron systems, we first concentrated on the fol-

lowing two aspects of theory: (i) the existence of finite coefficients $53 defining the

two-body operator X, Eq. (4.4), and (ii) the non-Hamiltonian nature of the Operator

X. Initially, we focused on the ground-state theory. We tested the exact ground-

state theory, in which we used the unexpanded form Of the exponential operator ex

to define the E0(X) energy rather than the truncated power series expansion in X.

This was made possible by representing the operators H and X as matrices in the

82



finite-dimensional N-electron Hilbert spaces relevant to a molecular system under

consideration (using all symmetry-adapted Slater determinants |<I>o) and @313“),

n = 1,. . . ,N, defining the full CI problem, as basis states). In order to calculate

the exact value of E0(X), Eq. (4.14), in a given iteration of the numerical proce-

dure used to minimize E0(X), we first diagonalized the matrix representing X with

some unitary matrix (7 to obtain the diagonal matrix D = 0X0“. Next, we con-

structed 8‘5 by taking the exponentials of the diagonal elements of D. Finally, after

constructing 85, we calculated the matrix representing ex as U‘leDU and applied

it to a column vector representing |<I>o) to Obtain |\IIO(X)) according to Eq. (4.3).

The value of 13.02) was obtained by calculating (11:00?)|H|\10(X))/(\10(X)|\po(22)),

using the matrices representing H and |\IIO(X)), as described above. In order to

determine the Optimum operator X and the corresponding energy E0(X), we used

the downhill simplex method82 to minimize the energy E0(X) in M (recall that M

is a family of all two-body Operators). Typically, our calculations required ~ 100

iterations to Obtain a reasonably converged result, although in some cases we had to

iterate much longer, particularly if we wanted to determine high decimal places. We

realize that the numerical procedures used to obtain the Optimum Operator X are not

suitable for routine calculations or for larger many-electron systems. The main point

Of this study is addressing the question if the exact or virtually exact many-fermion

wave functions can be represented by Eq. (4.3). In this context, the efficiency of the

numerical procedures used to determine X is of the secondary importance.

Our test calculations were performed for a few many-electron systems, including,

among others, the 8-electron/16—spin-orbital H8 modell”, which consists Of eight

hydrogen atoms arranged in a distorted octagonal configuration and described by

the minimum basis set (MBS) Obtained by placing one s function on each hydrogen
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atom. An example of the H8 model is very important for the discussion of the

exactness Of Eq. (4.3). This model provides us with a highly nontrivial situation,

where the number of independent two-body parameters $1733, defining Operator X,

or the number Of independent two-body integrals hf’g’ defining the Hamiltonian,

is considerably smaller than the dimension of the corresponding N-electron Hilbert

space. Indeed, the number of two—body parameters 253 defining operator X is in

this case 186, whereas the number of all spin- and symmetry-adapted configurations

defining the corresponding full CI problem is 468. The one-body parameter 3;], that

enter Eq. (4.5) do not change this situation. The total number of one- and two-body

parameters defining X, Eq. (4.5), is 198, which is still a lot less than the number of

full CI configurations describing the exact wave function. The H8 model is described

by a single parameter a (in bohr), which describes the deviation of the geometry of

the Dgh-symmetric H8 system from the regular octagonm. The following values of

a were particularly important for testing: a = 1.0 and a = 0.0001. The a = 1.0

H8 system is somewhat less demanding, since in this case the exact ground-state

wave function is dominated by the RHF configuration |<I>o). The more demanding

a = 0.0001 H8 model is characterized by a strong configurational quasi-degeneracy of

the ground electronic state involving the RHF reference |<I>o) and the doubly excited

configuration |<I>1) of the HOMO-LUMO typel”.

The results of our calculations for the ground-sate of the MBS H8 system are

shown in Table 4.1. As we can see, the exp(X) ansatz gives remarkably accurate

results for the ground-state of H8, even when the overlap of the reference state is as

small as 0.668268, as is the case when a = 0.0001 and we use the RHF determinant

as a reference. Independent of the value of a, we obtain microhartree accuracies,

which are a lot better than the accuracies resulting from various traditional CI and
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CC calculations. Our exp(X) calculations for the ground state employing two-body

or one- plus two-body Operators X are order of magnitude more accurate than the

CISD and CCSD calculations, which also use one- and two-body Operators only. In

fact, the exp(X) calculations provide a significantly better description of the ground

state than the CISDTQ calculations employing one, two-, three, and even four-

body excitations. The number of parameters used to describe the CISDTQ wave

function is much bigger than the number Of parameters used to define our exp(X)

wave functions. The results of our exp(X) calculations employing at most two-body

operators are as good as the CCSDTQ results. In fact, by using one- and two-body

parameters in X and the two-determinantal reference I430) (see Table 4.1), we obtain

the results which are considerably better than those Obtained with CCSDTQ, when

the challenging case Of the quasi-degenerate a = 0.0001 H8 model is examined.

As we can see, the presence of one-body operator X1 = xgcpql in X improves

the convergence toward the full CI results. The use of a two-determinantal refer-

ence state |<I>o), which reflects the predominantly two-determinantal character Of the

ground-state wave function at a = 0.0001, has a positive impact on the accuracy

of exp(X) calculations. Even if our numerical procedures do not produce the exact

(in a mathematical sense) energies, the microhartree accuracies, Obtained with the

exponential cluster expansions involving up to two—body Operators only, are truly in-

triguing. The parameters 2:53 or 2% and 2:53 defining the Optimum Operators X are

finite. For example, if we Optimize X assuming that X = X2 = é-ngcpcqcsor, the

largest values if 1:53 Obtained in our ground-state calculations are 0.316845 at a = 1.0

and 0.596623 at a = 0.0001. The corresponding operators X do not commute with

the Hamiltonian, so that the Optimum X Operators producing the highly accurate

results in Table 4.1 are not of the Hamiltonian form.
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In Table 4.2 we show the results of the exp(X) calculations for the first excited

state of the 1Ag symmetry. This state is dominated by the RHF configuration |<I>o)

and the doubly excited determinant of the HOMO-LUMO type |<I>1) in the quasi-

degenerate, a = 0.0001, region, so that it is natural to choose a two-determinantal

state |<I>1) = c01|<I>o) + c11|<I>1) as a reference in our exp(X) calculations (see footnote

“a” in Table 4.2). The exp(X) calculations for the first excited 1Ag state were per—

formed using the numerical procedure described in Section 4.1.3. To facilitate our

numerical effort, we considered the truncated form of the exp(X) expansion, where

the exp(X ) series is truncated at the X5° term. Since the optimum coefficients 22% and

$53 are rather small and X" enters the exp(X) expansion as iX", the truncation of

the exp(X) expansion at the 5%X50 term produces essentially no errors (errors that

cannot be detected in numerical calculations with the double precision Fortran). As

shown in Table 4.2, the exp(X) calculations for the first excited 1A9 state of H8 at

a = 0.0001 produce microhartree accuracies. For a = 1.0 we obtained a somewhat

larger error on the order of 0.4 millihartree, but this can be understood if we real-

ize that the reference state |<I>1) is not a very good representation of the exact first

excited-state wave function in this region of a. We must realize, however, that this

error is on the same order as the error resulting from the equation-of—motion (EOM)

CCSDTQ calculations (for basic information about EOMCC methods, see, e.g., Refs.

9, 60, 63), which use a much larger number of parameters to define the corresponding

wave function than the exp(X) expansion employing one- and two-body parameters

only. For a = 0.0001, the exp(X) calculations give a microhartree-level accuracy

for the first excited lAg state of H8. None of the conventional CI or CC methods,

including CISDTQ or even EOMCCSDTQ can produce the results of this quality.
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Table 4.1.: A comparison of the ground-state energies of the MBS H8 system obtained

with the exp(X)-like wave functions, where X = X2 (a purely two-body operator) or

X1 + X2 (3 sum of one- and two-body operators), with the exact, full CI, energies

and energies obtained in various CI and CC calculations. Full CI energies are total

energies in hartree and all other energies are errors relative to full CI (also in hartree).

We also give the overlaps of the normalized ground-state wave functions obtained with

the exp(X) ansatz and the full CI approach. The overlaps of the reference states |<I>o)

and I60) with the full CI ground-state wave function |\Ilo) are given for comparison.

 

 

Number of parameters

in the wave function a = 1'0 a = 0000]

Method (wave function)

 

 

Energ'es

Full CI 467 —4.352990 —4.204803

Noexp(X2)|<I>o)a 186 0.000008 0.000052

No exp(X1 + x2)|<1>0)a 198 0.000002 0.000020

1% exp(X1 + X2)|<I>o)b 198 0.000005 0.000007

CISD 46 0.008396 0.022779

CISDT 146 0.007984 0.016064

CISDTQ 320 0.000254 0.000449

CCSD 46 0.000546 0.005034

CCSDT 146 0.000026 —0.008362

CCSDTQ 320 -0.000001 —0.000035

Overlaps with a full CI wave function:

Noexp(X2)l(I’o)a 0.999998 0.999987

No exp(Xl + x2)|<1>o)a 0.999999 0.999995

1% exp(Xl + x2)|<i>o)b 0.999998 0.999998

no)“ 0.939657 0.668268

|<i>o)b 0.942804 0.909461

 

 

Who) is the ground—state RHF determinant.

b|<I>o) = CooI‘I’o) +clo|¢I>1), where |<I>o) is the RHF determinant and Mn) is the doubly excited

determinant of the (HOMO)2 —+ (LUMO)2 type. The coefficients coo and 010 defining the

reference I‘io) were obtained by diagonalizing the Hamiltonian in a space spanned by |<I>o)

and |<I>1) and by selecting the lower energy eigenstate of H in this two-dimensional subspace
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Table 4.2.: Same as Table 4.1 for the first excited state of the 1Ag symmetry.

 

 

Number of parameters

in the wave function a = 1'0 a = 00001

Method (wave function)

 

 

Energ'es

Full CI 467 -3.998978 —4.144027

M exp(X1 + X2)|<i>1)a 198 0.000405 0.000020

CISD 46 0.059314 0.042374

CISDT 146 0.031697 0.009726

CISDTQ 320 0.001608 0.000435

EOMCCSD 46 0.019605 0.015011

EOMCCSDT 146 —0.003174 —0.010505

EOMCCSDTQ 320 —0.000140 -0.000384

Overlaps with a full CI wave function:

371 exp(X1 + X2)|<i>1)a 0.999998 0.999992

|<i>1)a 0.791762 0.902255

 

 

3|<I>1) = c01|<I>o) +c11|<I>1), where |<I>o) is the RHF determinant and |<I>1) is the doubly excited

determinant of the (HOMO)2 —+ (LUMO)2 type. The coefficients cm and cu defining the

reference |<I>1) were obtained by diagonalizing the Hamiltonian in a space spanned by Km)

and Mn) and by selecting the higher energy eigenstate ofH in this two—dimensional subspace

”'61).
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4.3 Summary

Let us summarize the results discussed in this chapter. By combining the theoretical

arguments based on the Horn-Weinstein energy expression with variational princi-

ple and numerical calculations, we demonstrated that one can obtain the virtually

exact description of pairwise interacting many-fermion systems, including molecular

systems, by representing their ground- and exited-state wave functions by exponen-

tial cluster expansions employing general two-body or one- and two-body operators.

Based on the evidence reported in this chapter, we can conclude that the “optimum

two-body or one- and two-body operators defining these cluster expansions are fi—

nite and not of the Hamiltonian form. The results discussed in this chapter confirm

that one can tremendously improve the description of many-electron wave functions

without using higher—than—two-body cluster operators. All of this implies that there

is a lot of flexibility in the exponential cluster expansions, which was not utilized

in the past. Based on the formal arguments and the extraordinarily high accuracies

obtained in the calculations based on the exp(X) expansions, where X is a sum of

one- and two-body components or a purely two-body operator, we can conclude that

it is quite likely that one can formulate the exact or virtually exact many-electron

theories based on these kinds of expansions.
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