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ABSTRACT

ON PREDICTION AND DETECTION OF EPILEPTIC SEIZURES BY MEANS OF

GENETIC PROGRAMMING ARTIFICIAL FEATURES

By

Hiram Alexer Firpi

This work presents a novel, general-purpose algorithm called Genetic Programming

Artificial Features (GPAF), which consists of a genetic programming (GP) algorithm and

a k-nearest neighbor classifier, and which surpasses the performance of another recently

published method called Genetically Found, Neurally Computed Artificial Features for

addressing similar classes of problems. Unlike conventional features, which are designed

based on human knowledge, experience, and/or intuition, the artificial features (i.e.,

features that are computer-crafted and may not have a known physical meaning) are

systematically and automatically designed by a computer from data provided. In this

dissertation, we apply the GPAF algorithm to one of the most puzzling brain-disorder

problems: the prediction and detection of epileptic seizures. Epilepsy is a neurological

condition that makes people susceptible to brief electrical disturbance in the brain thus

producing a change in sensation, awareness, and/or behavior; and is characterized by

recurrent seizures. It affects up to 11% of the worldwide population, or sixty million

people, and 25% cannot be fiJlly controlled by current pharmacological or surgical

treatment. The possibility that an implantable device might eventually warn patients of an

impending seizure is of utmost importance, allowing on-the-spot medication or safety

measures.



Epileptic electroencephalographic (EEG) signals were treated from a chaos theory

perspective. First, we reconstructed the EEG state-space trajectories via a delay-

embedding scheme. Then these pseudo—state-space vectors were input to a genetic

programming algorithm, which designed one or more (non)linear features providing an

artificial space where the baseline (nonseizure data) and preictal (preseizure data, or ictal

data in case of detection) classes are sufficiently separated for a classifier to achieve

better accuracy than using principal components analysis, our benchmark feature

extractor. The GPAF algorithm was applied to data segments extracted from 730 hours of

EEG recording obtained from seven patients. The machine automatically discovered one

or more patient-specific features that predicted epileptic seizures with a time horizon

from one to five minutes before the unequivocal electrographic onset of each seizure.

Results showed that 43 of 55 seizures were correctly predicted, for a 78.19% correct

classification rate, while 55 epochs out of 59 representative of baseline conditions were

classified correctly, for a low false positive rate per hour of 0.0508. In the case of

detection, a low false-positive-per-hour-rate and a high detection rate were also achieved.

A generic (cross-patient) model for prediction of epileptic seizures was also found, at the

expense of decreased performance with an average of 69.09% sensitivity. The GPAF

algorithm was additionally investigated to design seizure detectors. Evaluating 730 hours

of EEG recording showed that with customized, artificially designed detectors, 83 of 86

seizures were detected. Seven previously unreported seizures were also detected in this

work.
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“Discovery consists of seeing what everybody

has seen and thinking what nobody has thought”

—A1bert von Szent-Gyorgyi

A good feature extractor consists of “seeing” what every

method has seen and computing what no method has computed
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Chapter 1

Introduction

A woman wakes up and brushes her teeth. Then, she goes to the kitchen and prepares

her breakfast. Later, the woman gets dressed and takes her belongings and she is ready

to go to work. On her way to work, suddenly a small device starts to beep and she stops

the vehicle and takes a pill: the beeping indicates to her that soon she will sufler an

epileptic seizure.

In the near future, the above hypothetical scenario is likely to be possible with the help of

a new device that will be marketed to detect or predict epileptic seizures. Although

epileptic seizures have been studied extensively in recent decades, many of the

circumstances surrounding epileptic seizures are unknown to this day. Researchers have

used several techniques to analyze electroencephalographic signals (EEGs) to develop a

methodology to predict and detect such seizures. In this work, we shall present an

algorithm that will create artificial features directly from EEG signals. In theory, these

features Should provide a classifier with equal or better discrimination power to predict or

detect a seizure than the classical features used for such tasks.

1.1 Motivation

Since the invention of the electroencephalograph, great progress has been made in

Studying brain disorders. One Of the most studied brain disorders is epilepsy, a

neurological condition that makes people susceptible to brief electrical disturbance in the



brain and that is described by a change in sensation, awareness, and/or behavior. Epilepsy

iS characterized by recurrent seizures. It affects up to one percent of the population of the

world, or sixty million people, and 25% cannot be fully controlled by current medical or

surgical treatment.

Many approaches have been proposed to extract information from EEG signals in

seeking to develop algorithms to predict or detect epileptic seizures. To extract the

relevant information that can facilitate such prediction or detection, features are

calculated using conventional techniques and methodologies, which are time-consuming,

trial-and-error processes requiring a great deal of efl‘ort from researchers.

In this manuscript, we propose a systematic methodology to automatically create

artificial features—features that are computer-generated and may not have a known

physical meaning——directly from EEG signals, and which we project to have similar or

better discrimination power to categorize EEG signals between preictal or baseline, in

the case ofprediction, and between ictal and baseline, in the case Of detection.

1.2 Objectives

The main Objectives of this work are as follows:

1. Extend the framework of Firpi and Echauz [31] by creating artificial features directly

from EEG signals. In [31], features were created using afeatures-fi'om-features basis.

Here, afeatures-fiom-data basis will be used.

 



2. Prescribe a general-purpose systematic methodology that can automatically create

features that capture generalizations without the intervention of researchers

performing exhaustive analysis to select features.

3. Generalize the capabilities of the Genetically Found Neurally Computed Artificial

Features algorithm (GFNCAF), proposed by the author in [31], by using Genetic

Programming (GP), which allows for the evolution of more complex networks, unlike

GFNCAF, which used an arbitrary, fixed network.

4. Apply the GFNCAF extension, called Genetic Programming Artificial Features

(GPAF) algorithm, to create artificial features directly from raw EEG data, to predict

and detect epileptic seizures.

1.3 Methods

A large archive (730 hours) of digital intracranial EEG recordings obtained from patients

undergoing presurgical evaluation at the Emory Epilepsy Center of Emory University in

Atlanta, GA, was available for this purpose. Data were obtained as a routine procedure

independent of our work. No human subject was placed at risk by or at Michigan State

University. The prediction and detection problems will be cast as a dichotomous

classification, in which EEG signals are fed to the GP algorithm in order to produce

artificial features that can grant maximal separability between ictal and baseline EEG

signals, or between preictal (before seizure) and baseline EEG signals, as possible. A

library of mathematical operators (or functions) will be provided to the GP

learning/classification system in order for it to develop complex artificial features.

3



1.4 Contributions

The contributions of this work include:

0 An algorithm that can automatically generate artificial features from raw EEG

signals to predict epileptic seizures with Similar or better classification rates than

those obtained through previously published methods.

0 An algorithm that can automatically generate artificial features directly from raw

EEG Signals to detect epileptic seizures, Similarly to or better than through

previously published methods.

0 The first step toward a generic model of artificial features for prediction of

epileptic seizures.

0 A generic model for detection of epileptic seizures that has similar or better

performance to that of current methods/features.

1.5 Outline

Chapter 2 introduces the epilepsy disorder and defines some of the terminology used in

the medical community. A brief overview is presented on the literature about the

importance of relevant measurements to apply to the prediction and detection Of epileptic

seizures. A review is provided Of the classical and non-classical techniques used today to

extract features from EEG Signals for prediction and/or detection applications. A brief

overview of a related algorithm, called the Genetically Found, Neurally Computed

Artificial Features algorithm, is presented. Finally, a brief explanation about genetic

algorithms and genetic programming is provided.

4



In Chapter 3, we introduce the genetic programming artificial feature algorithm (GPAF).

Later, the GPAF is tested on a problem where randomly generated vectors are classified

as either parallel or nonparallel.

In Chapter 4, we present the implementation of the GPAF algorithm to design

artificial features for prediction Of epileptic seizures. We explain a method to reconstruct

space-state trajectories, called delay embedding. Later, these reconstructed states are

input to the GPAF algorithm, which constructs the predictors. Many experiments are run

on the EEG data of seven patients.

In Chapter 5, we implement the algorithm to design artificial features for detection of

epileptic seizures. Details about detection are explained. Detectors are tested on EEG data

of seven patients. Finally, Chapter 6 concludes with benefits, limitations, and

recommendations regarding the GPAF algorithm.

 



Chapter 2

Literature Review

This chapter first defines what epilepsy is. Also provided is a review of previous work,

methodologies and techniques that have been used to predict and detect epileptic

seizures. Classical signal analysis methods used in recent decades to analyze

electroencephalographic Signals (EEGS), such as Fourier transforms and wavelets, as well

as others, will be discussed. Furthermore, an overview will be presented on related work

presented in [30] and [31]. Finally, the foundation of genetic programming is laid out.

2.1 Epilepsy Overview

According to the Epilepsy Foundation of America [22], epilepsy is a neurological

condition that makes people susceptible to seizures. A seizure is a term used to describe

change in sensation, awareness, or behavior brought about by a brief electrical

disturbance in the brain. Seizures vary from a momentary disruption of the senses, to

short periods of unconsciousness or staring spells, to convulsions. There are many types

of seizures, and some people have only one type of seizure, while others may have more

than one type. Even though they look different, all seizures are caused by a sudden

change in how the neurons of the brain send electrical Signals to each other [22]. Epilepsy

can be caused by anything that affects the brain, such as tumors or strokes. Sometimes



epilepsy is inherited; sometimes it is caused by trauma, like from head injury in a car

accident; however, in many cases no cause can be found for such disorder.

Today, one way to treat epilepsy is through the use of anticonvulsant medicines.

These medications control seizures for many people with this disorder; however, they do

not cure it. Other alternatives treat the condition by means Of surgery, by a demanding

ketogenic (high-fat) diet, which is principally administered to children, or by electrical

stimulation of the vagus nerve, a large nerve leading into the brain, through implantation

of a vagus nerve stimulator that offers partial relief [1]. From a control systems

perspective, all of these treatment options are still a form of sensorless, open loop control.

Regardless, the goal of any treatment is to stop seizures with as few side effects as

possible.

There are some controversial findings concerning seizure prediction by animals.

Some studies have suggested that dogs can predict seizures in children. In [29] and [54],

Kirton et al. have reported that dogs could predict epileptic seizures from minutes to

hours before the seizure occurred. The researchers collected the data by means of

questionnaires sent to the owners who claimed their dogs could predict epileptic seizures

in their children. The study reported that among 60 dogs, nine dogs were judged to be

able to predict epileptic seizures with 80% accuracy (of course, this measure is difficult

to state with high reliability, as it clearly depends on the interpretation of the dog’s

owner). The dogs were reported to let the children know that they were about to suffer a

seizure by licking, whimpering, or standing next to them. (Of course, these behaviors are

not unusual, and it is easy to see how the Observer’s biases might influence the
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interpretation of the data.) In previous studies, the dogs were reported to bark for no

apparent reason and behaved erratically (much like other animals foreshow tsunarnis,

etc.). One interesting point is that those dogs were not trained to do such task. Therefore,

such behavior, if present, was somehow learned by the dogs without human training. The

study does not indicate how the dogs learned such “ability” or what the dogs are

measuring or seeing in the child to be able to predict the seizure. However, some

researchers have conjectured that these dogs can “see” or “smell” small electrical or

chemical changes, using visual or olfactory or increased sweating information to predict

seizures. Critics in the epilepsy medical community have pointed to the fact that the

evidence collected for such claims is weak, that the dogs’ bizarre behavior may in fact be

what triggers some of the “predicted” seizures, and that in a large number of cases, the

seizures are psychogenic (clinical fits without corresponding EEG evidence), however

such dogs seem to be of great psychological value to the patients.

Since the invention of the electroencephalogram, most of the studies on epileptic

seizures have been carried out using electroencephalographic (EEG) signals. Many

approaches have been proposed to extract information from EEG Signals that can be used

to develop algorithms to predict or detect epileptic seizures (many of them are discussed

in Section 2.4). Features are highly informative measures or attributes eluded from raw

data can facilitate tasks such as prediction or detection. These are calculated using

conventional methodologies that are time-consuming, trial-and-error processes requiring

a great deal of effort from researchers. All of these techniques rely on knowledge of a

feature formula or algorithm that may have been obtained from intuition, tradition, the
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physics of the problem, analogies to problems in other fields, etc. There is no guarantee

that any Of these conventional features extracts maximally relevant information from the

raw data. Nevertheless, seizure prediction studies using conventional features

increasingly hint at the fact that the information is there, waiting to be fully extracted. Litt

et al., in [60], presented evidence that mesial temporal lobe seizures are generated in a

series of events that evolve over hours, leading to the clinical seizure onset. This series of

events can be recorded by depth intracranial EEG. However, this work was conducted by

scoring, manually, many hours Of EEGS and the predictability was largely limited to what

a basic energy feature could reveal about preictal changes. More recently, it has been

Shown that complicated feature calculations can be realized in miniaturized hardware

using a cellular neural network approximation of the feature on a chip [70], [90].

However, before beginning a full discussion Of previous work in the literature

review, we note from the preceding paragraph the importance of selecting good measures

to detect and predict epileptic seizures. As noted, the prediction/detection of epileptic

seizures can be viewed from a pattern recognition point of view. The stages that involve

pattern recognition are detailed in [18]. The system is summarized in three stages:

preprocessing, feature extraction, and classification. Preprocessing refers to those

processes or operations on the data that are performed before other stages are started. The

main task of preprocessing is to improve the quality of the data/images. In an EEG

analysis framework, the preprocessing stage is used to maintain the integrity of the signal

and to filter out line noise using a 60 Hz notch filter. Also, a low-pass filter is used prior

to digital sampling to avoid aliasing of signals.
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Feature extraction is the process by which quantitative or qualitative measures are

obtained that distill relevant information from raw data. A dimensionality reduction is

obtained through this process by mapping the high-dimensional space of the raw data to a

relatively low-dimensional space of features. However, other processes, like the feature

creation process, in which new features are created from other features or directly from

raw data, can also be performed in this stage. By means of feature extraction techniques,

we can also reduce the number of features to be used and then select those features that

improve the discrimination task. Because this stage is the main issue in this work, in

Section 2.2 we cite, discuss, and extend the theory on this subject.

Finally, classification is the process by which a system categorizes an object, making

use of its features. There are two types Of classifiers: supervised classifiers and

unsupervised classifiers (although there already are classifiers proposed that combine

supervised and unsupervised techniques). Supervised classifiers are those that must be

trained using labeled samples, i. e., samples whose classes are known a priori. There are

two kinds of supervised classifiers: parametric and nonparametric. Parametric classifiers

are those classifiers that assume a probability density fimction (PDF) for the data. Among

those are Gaussian and mixture model [18] classifiers. On the other hand, nonparametric

classifiers do not assume a probability density function. Among those classifiers are k-

Nearest Neighbors [76], its fuzzy version, Fuzzy k-Nearest Neighbor [51], Parzen-

windows [18], and Genetic Classifiers [73]. Artificial Neural Networks [41] are also

nonparametric classifiers, given that they do not assume a PDF, though they are

considered to be hybrid methods because the parameters, called weights, must be
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calculated. More details about classifiers are beyond the scope of this work, however, for

in-depth information, readers may refer to the references cited above.

Nevertheless, before we continue with the next section, we need to define and state

clearly some terminology about epilepsy that is used in the medical community. A

preictal signal refers to an EEG Signal from a time period preceding the known

occurrence of an epileptic seizure. The term preseizure will be used interchangeably with

preictal throughout the text. An ictal signal is the EEG recorded during a seizure. A

baseline signal is referred to as a normal signal (nonseizure signal), Specifically

excluding preictal signals. It will also be called seizure-free or nonseizure data

throughout the text. Unequivocal clinical onset (UC0) of the seizure is when an Observer

can see the consequences of the seizure in the person, such as a convulsion. Unequivocal

electrographic onset (UEO) is when the seizure onset is identified in EEG by an expert

electroencephalographer.

2.2 Relevance of Features

As was stated previously, features are highly informative measures or attributes eluded

from raw data for tasks such as classification, regression, and probability density

estimation. Feature extraction have been pinpointed as the cornerstone of most proposed

works in order to advance the seizure prediction and detection Objectives. For instance,

Figure 2.1 depicts the waveform of a Signal from which we can obtain several measures

such as the spectral components derived from the Fast Fourier Transform, and statistics,

such as mean, variance, skewness, etc. These measurements, which make this Signal
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Figure 2.1 Waveform of an arbitrary signal.

different from others, are named features. Many authors have agreed that the

specification of useful features (sensitive, specific, robust, computationally efficient,

among others) is the most important key to machine learning with statements like: “In

general, feature extraction is the most crucial aspect of classification” [52], “An ideal

feature extractor wouldyield a representation that makes thejob ofthe classifier trivial”

[18], “The precise choice of features is perhaps the most diflicult task in pattern

processing ” [65], ”the selection of variables is a key problem in pattern recognition”

[36]. In fact, according to Kil and Shin [52], a good set of features should have the

following attributes:

o A large interclass mean and small intraclass variance

0 Discard irrelevant variables

- Computationally inexpensive to measure
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o Uncorrelated with other features

0 Mathematical definable

o Explainable in physical terms

From the feature PDFS, we can acquire information to design Optimal or close-to-

optimal decision structures (i. e., classifiers). However, the performer of the classifiers are

linked to the relevance of the input features whose power set (all possible subsets) may

not be carrying the maximum information available from the raw data.

The action of establishing features have been relied on humans by means of trail-

and-error or previous knowledge or intuition of the physics as approaches tO create them.

With the exponential increasing of the computing power of processors, a new realm has

been opened to explore new methods to systematize the prescription of features in a given

problem. In works [8], [31], and [89], the authors took advantage of the increasing power

of computers and proposed algorithms whose results defy the classical subset selection

results. In these manuscripts the creation of artificial features was proposed. Artificial

features are defined as features computer-generated and do not necessary have a physical

meaning. By definition, artificial features possess the first five attributes mentioned

above; however, the Sixth attribute not necessarily has to be true. In fact, the creation

artificial features is motivated by the fact that conventional features (which possesses the

Six attributes), when chosen arbitrarily or Simply because of tradition, in situations where

domain knowledge is insufficient, often fall far short of performance requirements. It is

the relaxation of this last attribute that may give to the artificial features the capability to

“capture” relevant information from the raw data. Soft-computing methods like
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evolutionary algorithms (discussed further) can be used to construct and optimize

artificial features for a given problem. These artificial features are expected to resemble

or surpass the classification accuracy of conventionally chosen features. The contrasting

characteristics between conventional and the desired characteristics for the artificial

features are provided in Table 2.1.

Table 2.1 Conventional vs. artificial features.
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Generally, when computing features for a given problem, many of them are

calculated or collected. Later, it is in the feature extraction stage where commonly the

dimensionality of the feature space is reduced or the informative ones are selected by

means of classical algorithms like principal components analysis, making them “top-

down” approaches. In contrast, artificial features algorithms are “bottom-up” approaches,

creating just the right set of features. That is, the artificial features algorithm decides the

nature and the number of features that are necessary, from few to many features.



In the literature, feature extraction methods (which are also called feature creation,

feature optimization, feature learning, feature discovery, feature mapping, feature

augmentation, feature transformation [104], and Signal or data projection [52]) have been

proposed in two ways: linear feature extractors and nonlinear feature extractors. Linear

feature extractors create features as a linear combination of input features (e. g., principal

components analysis) or create features as a linear combination of the raw inputs by

means of such methods as adaptive noise filtering and time-frequency transform [52] [32]

[79]. On the other hand, nonlinear feature extractors create features as a nonlinear

combination of input features by means of a hidden layer in a neural network [10] or by

combining them using mathematical operators [8] [30] [89] [55].

In the next section, we mention the classical measures or features used to analyze

EEG signals, and related work that proposes different approaches to Obtain better and

more relevant (informative) features.

2.3 Conventional Measures Used in Signal Analysis

Although there exist many measures from various research fields, in this work, we recall

some of the measures most used for prediction and detection of signals, not just in

epilepsy applications, but also in different areas like signal processing, system

identification, stochastic systems, and so on.

Arithmetic Mean: statistical measure that yields the expected value (average or first

moment statistic) of a given set of data X. This mean is the most commonly used.
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Geometric Mean: another kind of mean used to determine average factors.
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Harmonic Mean: another of the various ways to calculate the average of a set of data.
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Variance: measures how widely Spread or distributed the data are from the mean ,u.
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Standard Deviation: the square root of the variance.
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Skewness: measures the degree of asymmetry of the distribution of a set of data.
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Kurtosis: measures the degree of peakedness of the distribution of a set data X (the 3 is

subtracted to make it 0 for Gaussian distribution).
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Signal Energy: measures the energy of a given signal x(t).
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Energy of Wavelet Packets: the energy Of wavelet-packet coefficients is derived from a

five-level decomposition of signal within a sliding Observation window into wavelet-

packet coefficients based, e. g., on the Daubechies 4 mother wavelet. The sum Of squared

coefficients at each terminal node of the decomposition tree gives spectral energies.

N

~22 22.1.2. 09)

Spectral Entropy: the normalized Spectral entropy is the entropy of the spectrum of the

signal x normalized by log2(length(S)), where S =f(x)/Z(f(x)) andf(-) is the power Spectral

density function. The normalized spectral entropy is an index from 0 to 1 almost

insensitive to the signal length.

H=_N Silog2(S.~). (2.10)

i=1 1032(N)

Signal Curve length: it is calculated as the sum of the lengths of the vertical line

segments between successive samples of a signal. The signal curve length is

simultaneously sensitive to amplitude (AM) and frequency modulation (FM).

N

L=z|xi—x,-_,I- (2.11)

i=1

2.4 Signal Analysis and Feature Extraction in Epilepsy

Various methodologies have been used for decades to analyze EEG signals to extract

relevant features that give insight as to when an epileptic seizure will occur. Among the
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most classical methods are Fourier transform, wavelets, and chaos analyses. A brief

overview ofthese methodologies is provided subsequently.

The brain disorder we deal with here is mesial temporal lobe epilepsy (MTLE).

MTLE is strongly associated with complex partial seizures, the most common type of

seizure, being present in 40% of all epilepsy cases reported [14]. In this section, we cite

papers and manuscripts that present approaches to predict and detect MTLE seizures. We

mention for each citation what problems the author(s) are dealing with.

2.4.1 Fourier Transform

Early on, when EEG Signals began to be studied, Fourier transform was the most logical

method applied to study such Signals. Fourier transform is a technique used to represent

aperiodic signals for all values of time in the frequency domain, unlike the Fourier series,

which is a technique to represent periodic signals over specific values of time. This

transformation gives us the frequency components, better known as the frequency

spectrum, of the signal at hand. The Fourier Transform (FT) is

F(w)= j: f(t)—fw’dz, (2.12)

where a) is the frequency (co = 211/) and f(t) is the signal in the time domain. As

mentioned, FT shows the spectral components of the signal at hand; and in EEG signals

the frequency bands most widely studied to track the seizures are the alpha band, a, (8-13

Hz), theta band, 0, (4-8 Hz), delta band, 6, (.5-3.5 Hz) and beta band, B, (14-30 Hz,

although it can reach up to a maximum of 40 Hz). Authors [103] have applied the FT to

see if there are indications that can Shed a clue to predict seizures. However, one of the
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main problems of FT is that it can Show the frequency components of the signal but it

cannot indicate in what instant of time these occur because time is integrated out in

Equation (2.12). However, EEGS are non-stationary signals time localization is of

interest.

2.4.2 Wavelet Transform

In [94], the wavelet transform has been used to detect epileptic seizures. Wavelet

transform [39] is a mathematical transformation that uses scale and translation properties

to decompose the input signal into its components of frequency that appear at different

resolutions. One of the main properties of wavelets is that they decompose the frequency

components so as to indicate in what interval Of time a given component occurs. The

wavelet transform is defined by the following mathematical expression:

1 a l - 2'

‘1’“725): \l—H— jx(’)/’ {7}” 2 (2.13)

where s and r are the scale and translation parameters respectively, Mt) is the

transformation function, often called the mother wavelet, and x(t) is the input signal. In

[94], Szilagyi, Benyo, and Szilagyi used wavelets to decompose the EEG signals into

their spectral components a, 0, 6, and fl bands. Later, these spectral measurements were

input to an artificial neural network (discussed in detail below) that was trained to output

whether an EEG signal is an epileptic or a baseline (normal) wave.

In [9], Chen, Zhong, and Yao used wavelet-transformed features to extract or detect

the characteristic values (the authors refer to these values as singular values) of the sharp
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waves and spikes, which indicate a clinical onset, and which are embedded in EEG

signals. The authors defined a wavelet that permits reconstruction of the high frequency

components of the EEG and detection of the spikes by taking those as singular values and

using local maxima of their wavelet transform modulus.

In [63], where Mehta, Koser, and Venziale are also interested in detecting ictal

events, they proposed an automated method to detect ictal processes based on wavelet

decomposition. In their publication, the authors claimed that the average power spectrum

of the EEG of a resting, healthy person follows power law attenuation with a scale-

invariant property over a range of clinically interesting frequencies, suggesting a hidden

scale-invariant property. This statistical scale-invariant property was monitored, and

when appreciable changes in the statistical measurement were detected, an onset of

seizure could be determined. These statistical changes were represented using wavelets

with which coefficients measured the variance of progression over different scales, thus,

reflecting changes of scale-invariant signals.

2.4.3 Fractal Dimension

Fractal dimension [28] is a concept that represents the space-filling ability of an irregular

geometric object of interest with an infinite nesting of structure (e. g. line segment,

square, etc.). While the familiar dimensions, such as topological dimension, are specified

as integer values, a fractal dimension may be a fractional value. The fractal dimension is

defined by the following equation in the limit as r vanishes:

 FD = 10g(N),

log(r)
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where N is the number or bulk measure of self-similar pieces and r is the magnification

factor.

One area where fractal dimension is usefully applied is analysis of time series. In

[26] and [27] the application of FD to predict and detect the clinical onset of seizures was

proposed as a real-time tool. In their work, the authors used the Katz method to calculate

the FD of the EEG waveforms. They used baseline signals as well as ictal data to test the

techniques. Esteller et al. [25], determined that using the Katz approach to FD was a good

way to detect onset of seizures. On the other hand, in [25], Esteller et al. proposed an

even more efficient measure to detect seizure onsets. The feature, called curve length or

line length, is less computationally expensive. In their work, the authors Showed that, by

processing the EEG signals with the curve length feature, they were able to detect seizure

onsets with a delay of 4.1 seconds, with 0.051 false positives per hour and one false

negative out of 111 seizures analyzed in over 1,215 hours of intracranial EEG data.

In [53], Kirlangic et al. also proposed the use of FD as a feature for an adaptive EEG

segmentation algorithm (AEEGS) in epilepsy, instead of using Fourier transforms (FT)

and Fast Fourier Transform used previously in the AEEGS algorithm.

2.4.4 Artificial Neural Networks

Artificial neural networks (ANNS) [41] are networks (i.e. equations) that can do a

mapping of input to output with high levels of complexity. This complexity depends on

the number of layers and neurons that the network contains. ANNS can perform many of
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the complex tasks that are present in real-world application problems, like nonlinear

classification, function approximation, and control of dynamic systems, among Others.

ANNS have also been used to classify or detect epileptic EEG signals; however, they

have been used more to classify EEG states rather than to create features. In [67], the

authors used ANNS to classify EEG Signals between normal (baseline) and ictal signals.

The authors used, as feature inputs, classical statistics of signals, such as zero-crossing,

variance, integral of absolute value, parameters extracted from amplitude histogram, and

power spectrum values from the four different spectral components ofEEGS.

In [72], Ozdamar et al. used a variant of neural networks, called adaptive resonance

theory neural network (ARTNN), for floating point values. This network is an

unsupervised self-organizing system that can cluster data into different classes; such

networks are suitable for input patterns that cannot be defined by a static input. In this

work, the ARTNN should be able to detect the transient patterns of EEG signals and

classify them into their respective classes. When a signal that cannot be classified is

input, the algorithm stores the Signal in a database for future classification. Since the

network is an unsupervised technique, an external trainer was used to label output from

the network that classifies the output between spikes or non-spikes. EEG raw data were

the input to the network.

Another algorithm to detect epileptic waveforms was proposed in [74], in which Park

et al. used a wavelet transform, a neural network, and an expert system to design a

multiple channel system to detect epileptiform signals. The EEG signals (raw data) were

preprocessed by the wavelet transform (WT) to reduce the number of inputs to the neural
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network, thus the WT works as the feature extractor. Later, once the preprocessed data

are input to the neural network, the ANN performs signal processing and accentuates the

epileptic spikes. The network was trained, using the backpropagation method, to output a

threshold value that is input to an expert system, a database of 16 if-then rules that

captures the knowledge and experience Of EEGers, and takes this input along with the

inputs of neighboring channels (surrounding electrodes) to make a decision whether the

Spikes at hand are epileptic or not. The authors reported up to an average of 5.5 false

detections per hour.

Bigan [4] presented an automatic system to identify EEG waveforms that use an

ANN, whose inputs (features) are measurements of frequency changes in the EEG signals

during an interval of time. Additionally, classical measurements such as magnitude and

power spectrum analysis were also calculated from EEGS and those were input, along

with the ANN output, to create a final decision regarding seizure onset. Other works

using variants of artificial neural networks to predict or model epileptic seizures have

been proposed in [6], [7], and [19].

2.4.5 Lyapunov Exponents

Lyapunov exponents [68] (LE) are standard measures to determine whether a system is

chaotic. LE measures the average rate of convergence or divergence of nearby

trajectories. The LE is defined as

_ - 1 WHO“)
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where Ax(x0, t) is the radius of an ellipsoid evolving in time. LE can also be viewed as a

measure of how easy it is to perform prediction in a given system: positive exponents

indicate chaoticity and thus unpredictability.

Iasemidis et al. [45] proposed the design of a mesial temporal lobe epileptic seizure

prediction implantable system using a version of LE, which they called Short-term

maximum LE. Using LE to measure the rate of divergence in the brain is just an

approximation of the LE, given that the brain is a highly nonstationary system. The

authors claimed to have obtained good results, predicting 82% of all cases of seizures

using EEG data from different patients. The authors also claimed to have predicted

seizures with an average Of 71.1 min. before the ictal onset. Controversy over these

results remains, since at the reported high FPH levels, random chance cannot be ruled

out.

2.4.6 Fuzzy Logic

Fuzzy logic [102] is a technique that offers some Of the linguistic ambiguity that exists in

human language (e.g., low, medium, high). This property makes fuzzy logic suitable to

deal with ambiguous and noisy data. In fuzzy logic, rules are stated using multivalent if-

then statements, i. e., if an event occurs to some degree, then its respective output is fired

to some other degree. For this reason, Harikumar and Sabarish [42] proposed the use of

fuzzy logic to classify the risk level of epileptic seizures. In this work, the authors

calculated five features: signal energy, number of positive and negative spikes exceeding

a threshold, number Of sharp waves, total number of spikes and sharp waves in

24



neighboring channels, and variance. These were then input to the fuzzy logic system and

three outputs per channel were calculated indicating the seizure risk. The output was

expressed with five fuzzy sets: normal, low risk, medium risk, high risk, and very high

risk. Inputs were also represented with similar statements. With these inputs, rules could

be constructed to design the fuzzy logic system. A post-processing Of the fuzzy logic

output was carried out to obtain better classification. The authors Obtained up to 80%

correct classification ofthe onset of seizures.

2.4.7 Cellular Neural Networks

A cellular neural network (CNN) [11] [12] is a recurrent nonlinear network in which

neurons are locally connected and the dynamics are identical for each node. Commonly,

these neurons are called cells. CNNS of one or two dimensions are the most commonly

used.

Each cell in the CNN contains an input, an internal state, and an output. The state

equation for cell C2,- is defrned as follows:

in; = -x2-j + 224mm. + Zanumn + 22,-, (2.16)
mneNij mneNy-

where x2,- 6 R is the state, y,-,- e R is the output, u,~j e R is the input, and 22,- e R is the bias.

Am, the feedback weights, and B,,,,,, the feedforward weights, are connected from cell CW,

to C2}. N2,- is the l-neighborhood of C,-,-, where C,,,,. is also a member (CM 6 N.-,-).

The output equation is described by the following piecewise linear equation:

yg. a f(xij)= é—Qxy. +1|—|x,.j -1|). (2.17)
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Tezlafl' et al., in [97], proposed the use of CNN to anticipate or predict epileptic seizures,

first studying the patterns that the CNN outputs when the onset Of a seizure was occurring

vs. not occurring, in a software Simulation environment. Then the authors implemented

the CNN parameters (i. e., control and feedback weights) in a Universal Machine CNN

(UM-CNN), a CNN computer. The authors used this to state the viability of a portable

device to predict epileptic seizures. We note that the feature extraction here is performed

by the CNN. Similar work was presented in [96], except that this time they used a

discrete time-delay CNN, a variant in the universe of CNNS.

2.4.8 Genetic Algorithm

The genetic algorithm (GA) is a global search, general-purpose Optimization algorithm in

which, by means of so-called genetic operators, many possible solutions are evolved in

an attempt to locate the best solution. Because our approach involves evolutionary

algorithms (i.e., GA or genetic programming), we leave firrther details for the next

section to explain those algorithms. However, the definition provided for GA gives an

intuitive idea to understand the papers that will be discussed next.

In [15], [16], and [17], unlike in previous work mentioned where a few features were

used as inputs, the EEG signals were processed by multiple levels of feature extraction,

starting with six features: curve length, signal energy, nonlinear energy, spectral entropy,

and energy of wavelet packets. Later, signals processed by those features were analyzed

visually and processed into a second stage of features, such as maximum spikes,

minimum spikes, kurtosis, variance, and skewness, among others. These processed EEG
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signals were again processed in a third stage of feature extraction, where similar features

to those calculated in the second stage were used. After this stage, a GA was used to look

for the Optimal set of features that would be input to a classifier, which would decide if

the EEG Signal is a baseline (normal) or a preictal Signal. Also, the GA would select

which channels (i.e., electrodes) would be used for the study. A probabilistic neural

network (PNN) was used as a classifier. Experiments were run using data from Six

different patients. For each patient, a different set of features was the optimal set to

perform the best classification. The results suggested that a specific predictor is necessary

for every patient.

2.4.9 Additional Work

Although several approaches have been proposed to address epilepsy prediction and

detection problems, in this work we do not discuss all of them in detail. Briefly, other

approaches have been proposed in [101], where nonlinear dynamic systems theory was

used to detect seizures. Another scheme was proposed in [99], a method for feature

extraction using an extension of singular value decomposition (SVD) to detect epileptic

seizures. Other researchers have tried to establish an analytical model for epilepsy, as was

the case in [69].

2.5 Genetically Found, Neurally Computed Artificial Features

Regarding the approaches discussed in the previous section, classical features are selected

manually, i. e., by the expert or researcher who is studying the problem. Those procedures

are what we term conventionalflzatures-from—data-based. On the other hand, in the work
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of D’Alessandro et al., a higher level of intelligence was added to select the optimal set

by using a GA; however, the set of features used were still conventional features, and so

analysis and study by the researcher were required.

In [31], Firpi and Echauz proposed an approach called genetically found, neurally

computed artificialfeatures (GFNCAF). In their work, the GFNCAF algorithm was used

to create an artificial feature from EEG signals that were processed using conventional

features: wavelet packets, skewness, and curve length. This procedure is termed

artificial-features-from-conventional—feature-based. The GFNCAF algorithm is

composed of a genetic algorithm, a neural network and a classifier, all connected in

cascade. Figure 2.2 depicts the GFNCAF algorithm. Briefly, it works as follows: the

conventional features (i. e., processed EEG signals), denoted as x,- in Figure 2.2, are input

to the neural network, which in [31], for convenience, is implemented as an algebraic

network (called so because it uses only elementary mathematical Operators). The

operators, denoted in Figure 2.2 as 0,, on each node Of the network are selected by the

GA to create the artificial feature. Later, the classifier receives the output from the

network, denoted as y,-, and evaluates the training or testing data to decide whether the

EEG signal was preictal vs. baseline, in the case Of prediction, or baseline vs. ictal, in the

case of detection. For this work, the authors implemented a k-nearest neighbor classifier.

The GFNCAF algorithm was used to create artificial features that can help to predict

a seizure 10 minutes before it occurs. In fact, the algorithm was able to find features that

have given the classifier more discrimination power than using the three original classical

features. Similar results were also Obtained when GFNCAF was used to find artificial
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Figure 2.2 Genetically found, neurally computed artificial feature algorithm block

diagram.

features that could detect seizures with equal or better performance than by using the

original three features.

In the conclusion, the authors touched upon some points that could improve the

GFNCAF algorithm. Among them, they indicated that more flexibility needed to be

allowed to the neural network, and not just to the inputs, in order for the GFNCAF

algorithm to advance from creating simple features to creating complex artificial features

that may give more discrimination power among the classes.

2.6 Evolutionary Algorithms

Evolutionary Algorithms (EAS) are a family of algorithms that draw analogies from

natural evolution. Some of the evolutionary processes mimicked by such algorithms

include: reproduction, selection (or survival of the fittest), mutation, and genetic

crossover. In conjunction with a fitness function evaluation, combinations of any of these
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processes give rise to algorithms, like genetic algorithms (GA, discussed in more detail in

Section 2.6), evolution strategies (ES) [34] [80] [85], and evolutionary programming (EP)

[35]. In addition, GA was the basis for development of other evolutionary algorithms, for

example, genetic programming (GP) [57] [58]. Other similarities that EAS have are: most

maintain population-based solutions (individuals), the score of the individuals is obtained

via evaluation of an objective (fitness) function, many of them run a fixed number of

iterations (or generations), and various parameters (i.e., strategy parameters, which

define the behavior of the EA—for example, mutation rate, crossover probability,

selection probability, size Of the population, and number of generations) must be set.

2.7 Genetic Algorithms

The genetic algorithm (GA) [38] [40] [43] [66], introduced by Holland in the late 19603

[44], is a general-purpose global search optimization method that imitates a small subset

of the processes of natural evolution. The main properties of GA are its operators:

selection, crossover, and mutation. There are two primary types of GA: binary and real-

valued. In a binary GA, solutions, also called individuals or chromosomes, are

represented as strings or vectors of binary values.

Because most real-world problems deal with numbers (integer or real), a mapping

function is Often needed to map a binary string to a set of numbers, formally called a

phenotype. These phenotypes are evaluated using an objective or fitness function, which

is an equation or algorithm used by the GA to assign a cost or value to each evaluated

solution. This score is called the fitness of the solution. Fitness functions are either to be
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maximized or minimized, depending on the formulation of the problem. Another kind of

GA, a real-valued GA, uses a continuum Of real values (or, in fact, finite-length, floating-

point representations of such numbers) to represent the parameters of the problem under

evaluation. A brief overview is shown about the GA Operators mentioned previously.

Selection

The selection operator is the process by which a set of individuals, also known as an

intermediate population, is picked from a population using a criterion based on the fitness

of the individual. There are several selection types. One of the most popular types is

fitness proportional selection, often called roulette wheel selection. This selection type

relates the probability of selection Of an individual in a linear fashion to its relative fitness

in the population. This means that individuals with a better fitness have a proportionally

higher probability to be selected. Another commonly used selection method is

tournament selection, which closely emulates the mating competition in natural selection.

In this approach, a small set of chromosomes is randomly selected, and then the

chromosome among them with the best fitness is selected. These tournaments are

repeated as many times as parents are needed.

Crossover

Crossover or recombination is the operator by which the GA creates new individuals,

called ofifspring, which are combinations Of (usually pairs of) the parents selected using

the previous operator, (i. e., the intermediate population) and that will belong to the new

population. One-point crossover randomly picks a crossover point between two loci in

the bit strings and exchanges the bit strings after this point. Two—point crossover is
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similar to the former, but instead picks two positions on the string and exchanges the

values at the loci between them. In a real-valued GA, we can use recombination similarly

to its use in a binary GA. However, other approaches have also been studied for

recombination, such as a blending method, blend crossover (BLX-a) and quadratic

crossover, among others [2] [24].

Mutation

The main idea behind a mutation operator is to introduce diversity into the population. In

a binary GA, mutation is quite simple: invert the bit value (negating, i. e., 0 to 1 or vice-

versa) at each locus, based on a probability called the mutation rate. For a real-valued

GA, although there are different types of mutation [64], one ofthe most simple is uniform

mutation. The number of genes that will be mutated is derived by multiplying the

dimension (i.e., length) of the individual by the mutation rate and the population size.

This determines the number of genes randomly selected on the chromosome. Finally,

those genes that were selected for mutation are replaced with new uniform-randomly

generated values.

The canonical GA is implemented as follows (Figure 2.3 shows a flowchart of the

GA):

1. The problem to be solved is cast aS the max' ' " ’ ' ' ' " of a fitness

function that indicates the desirability of a potential solution.

2. A population of candidate solutions is initialized randomly, and is subject to

certain constraints.
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3. Each chromosome is evaluated using the fitness or cost function and assigned

a fitness score.

4. Each chromosome is assigned a probability of reproduction in each iteration,

better called a generation. This probability is assigned using a selection

operator that generally depends upon the fitness distribution of individuals.

5. During each generation, a new population is actively evolved by applying the

operations of selection, crossover, and mutation. Typically, the algorithm is

terminated upon reaching a predefined maximum number of generations or a

level of fitness desired.
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2.8 Genetic Programming

Genetic programming (GP) [57], established formally by Koza [56], is closely related to

GA, although it has a few critical differences. In GP, the length of the chromosome is

variable and the representation is formulated using trees instead of the strings used in

GA. Another important aspect of GP, unlike GA, in which chromosomes often directly

encode the solution to the problem, is that the tree provides a program or solver that is

used to solve the problem, or instructions for how to construct a solution. In GP, there are

two types of nodes: functions, which have some number of arguments that they Operate

on, and terminals. Figure 2.4 depicts an example of a GP program (function), which

illustrates the fimctions {cos, log, ( )2, +, x} and terminals {vbvz} and encodes the

fimction cos(v1)(log(vz) + (v.)2).

Given that in the GP algorithm, the result is a program rather than a solution, the

evaluation to determine the performance of the resultant program is somewhat different

than for a GA. In GP, a set of input data is provided to the program (i. e., the program is

executed in some environment) and the output data of the program are evaluated in order

to know the performance of the program. For GP problems in which the performance is

partially determined by the environment, each program Should be evaluated using many

samples as input to determine the fitness of the tree.

AS in GA, in GP, genetic operators: selection, crossover, and mutation, are used as

the engine to create new programs and add diversity in the population. Selection in GP is

typically implemented using the same Operators as in GA, such as tournament selection

34



 
Figure 2.4 A tree diagram of a GP chromosome. The dark circles indicate the function

nodes and the light circles indicate the terminal nodes.

and fitness proportional selection (see Section 2.6), although other selection routines have

also been proposed, such as fitness-overselection.

Among crossover routines for GP are subtree exchange crossover, self-crossover,

module crossover, and context-preserving crossover. Crossover, in GP, typically creates

two different trees from two parent trees by selecting random points in each tree and

swapping the subtrees below them. Figure 2.5 shows an illustration of crossover in a GP

context. There are many mutation routines similar to those used in GA, and others

specifically designed for GP. Some of these are: point mutation, permutation, hoist,

collapse subtree mutation, and gene duplication [3], among others. Figure 2.6 illustrates a

typical form of mutation in a GP context. The iteration of the GP algorithm is similar to

those steps presented for GA in Figure 2.3.
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(b)

Figure 2.5 Illustration of a typical crossover operator in GP. (a) The parents, indicating

the subtrees that will be swapped. (b) The results (children) after crossover is performed.
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Figure 2.6 Illustration of the mutation operator in a GP framework. (a) The individual,

indicating the subtree that will be mutated. (b) The result after mutation is performed.
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Chapter 3

Genetic Programming to Create Artificial Features

In this chapter we discuss the limitations of the GFNCAF algorithm and introduce and

discuss the genetic programming-derived artificial feature (GPAF) algorithm, which is

the proposed solution to overcome the limitations encountered in the GFNCAF approach.

Later, we apply the GPAF algorithm in a demonstration problem where the algorithm

Should learn the concept of parallelism, creating an equation able to determine whether or

not two randomly generated vectors are parallel. A comparison with GFNCAF results on

this problem is provided.

3.1 GFNCAF Algorithm Limitations

The previous chapter discussed the genetically found, neurally computed artificial feature

algorithm. This algorithm was intended to create artificial features—that is, computer-

crafted features—that have the same or greater relevance as the classical features used to

create the new one, and therefore, to give the classifier more power to distinguish among

classes. However, the GFNCAF algorithm still has various limitations that were noted by

Firpi in [30]. The limitations are summarized as follows:

0 The algorithm starts creating features from a limited library of features, rather than

creating the features directly from the data under study
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The unary and n-ary operator set was limited to a set of only a few mathematical

operations

The neural network used in their work was based on an arbitrarily chosen, fixed-

architecture network (number Of nodes determined a priori), in which the only

topological connections that could be connected or disconnected were the inputs

The topological structure of the network does not evolve, limiting the Space of

possible artificial features (solutions)

The authors suggested how to extend the capability and performance of the

algorithm to give more relevance and power to the new features. Those points are:

Allow arbitrary topological connections in the neural network to be active or inactive

when creating new artificial features

Let the evolutionary part of the algorithm develop its own neural network structure

and control the number ofunary/n-ary layers, nodes, and connections

Allow more complex unary and n-ary operators in the neural network nodes (e.g,

trigonometric and transcendental operations)

Allow the algorithm to start creating features directly from data under study, rather

than using a limited library of pre-defined features

In the next section, we discuss an approach to implementing some Of the above ideas.

3.2 Genetic Programming Artificial Features

The limitations described in the first and second bullets above regarding the GFNCAF

algorithm can be overcome by using GP. The typical tree representation of GP programs
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can be seen as an algebraic network, or vice versa, from a GFNCAF point of view.

Similarities and differences between the GFNCAF and the GP algorithms were noted in

[30]. After depth and size parameters for the tree are set up, the GP can evolve any tree

structure allowed by its syntax rules, to create Simple features (functions) as well aS

complex features, unlike in the GFNCAF algorithm, in which the algebraic network

(replaced by a tree diagram in the GP framework) is a fixed (although previous

knowledge could also be added to a network when it is being designed). Its topological

connections are fixed, and the only topological connections able to be on or Off are the

inputs. GPS have been used to create artificial features previously. Similar approaches

appeared in [55] [89], where the authors used GP to create features (although they refer to

this process as feature extraction) that provide the classifier better performance than using

the original features.

Because GP can use any type of function with verified closure (i. e., the function

Should be defined for any argument the system can present it), there are many functions

available, such as trigonometric, polynomial, and transcendental functions. This richness

helps to address the limitation stated in the third bullet of the previous section. Figure 3.1

shows the block diagram of the genetic programming artificial features algorithm

(GPAF). The genetic programming produces the program (fimction) that creates the

artificial feature. The program receives as input (i. e., as a terminal in the GP tree) the data

of interest (input signal) and the output is the result of this artificial feature. The Signals

input to the GP are not limited to only one; many inputs can be provided, which would

result in a GP program with multiple terminals. Data processed by the artificial feature is
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Figure 3.1 Diagram of the GP-based artificial features algorithm. The input data (Signal)

are processed by the program generated by GP. Later, the output is used to train the

classifier.

used to train a classifier, which is being used as a supportive component to evaluate the

performance of the GP program or artificial feature. In addition, testing data must be

processed by the artificial feature, in order to be evaluated by the classifier. The classifier

can be a parametric or nonparametric classifier, such as maximum likelihood or k—nearest

neighbor classifiers, among others. Because one of the contributions of this work is to

prescribe a general-purpose algorithm that automatically creates artificial features from

conventional features or raw data, we selected the k-nearest neighbor classifier because is

a nonparametric, nonlinear classifier capable to produce multiple thresholds and an easy

trainable procedure. The error or misclassification of samples in the classifier is the

measure used by the GP for the fitness or cost function.
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3.3 Comparing GPAF and GFNCAF Algorithms

In [30], the feasibility of the GFNCAF algorithm was tested with a problem in trying to

learn the concept of parallelism from a set of randomly generated vectors. In the present

work, we use this same problem to Show clearly the implementation of the GP-based

artificial features. Also, the results Obtained are compared with those Obtained in [30].

In the vector parallelism learning problem, it is desired to find an efficient method of

testing whether two given vectors are parallel (to within some error tolerance) or not. A

simple analytic geometric equation that precisely measures whether two vectors are

parallel is the absolute cosine formula

I202 (211: Kama-(2222,2221 z twee + 212.2221 (21)
II(Axt,Ay1)||I(Ax22AJ’2]i (“A2212 2. AYIZXAX22 + Ayzzi .

 

where (Ax), Ayl) and (sz, Ayz) are increments of each component for two given vectors

(the vectors’ tails need not originate fi'om the point (0,0) on the plane) . These data are

relevant features. If the result of |cos(@| is equal to one, the vectors are parallel;

otherwise the vectors are nonparallel. This equation can be seen as a nonlinear, reduction

transformation given that the equation is reducing the feature Space (dimensionality) from

four features to one feature.

In a first experiment, we use the GPAF algorithm to find an artificial feature that has

similar or equal performance to the absolute cosine equation, using as possible terminals

any of the increment features, i. e., Ax], Ayl, sz, and/or Ayz. Later, in a second

experiment, we input to the GPAF algorithm the terminal sets (Ax), Ayl, X], y.) and (An,
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Ayz, X2, yz), where (x1, y1) and (X2, y;) are the tail coordinates of two vectors at hand. It

should be noted that these initial points of a vector do not in themselves provide relevant

information to determine whether two vectors are parallel. Therefore, it is expected that

the GPAF algorithm will realize which features are irrelevant and disregard them, i. e., it

will not use them in designing the artificial feature. The functions available for the GP are

{+, —, x, -:-, I, l l, ( )2, f }, the same set of mathematical operators used in experiments

with the GFNCAF algorithm. Because we are providing conventional (original) features

to the algorithm to create an artificial one, this problem is what we term the artificial-

feature-from-classical-feature-based approach.

To measure the performance of a GP program (artificial feature), we use Equation

(3.2):

N

P - giyi -y,-I (3.2)

error ——_2

N

where Pena, is the percent of misclassification of samples, y, is the output of the classifier

that value of 0 or 1, j}, is the desired output, i is the sample index, and N is the total

number of samples evaluated.

In these experiments, for the classifier stage (see Figure 3.1), we use the same

classifier used in [30], k-nearest neighbor with Euclidean distance as metric, to be able to

compare the results of the GPAF algorithm, presented here, with those reported by Firpi

and Echauz using the GFNCAF algorithm. The constant k is set to three. Again, the

output of the classifier is one if the vectors are parallel, and zero if they are not.
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3.4 Results and Comparison

Similar to the data generated by Firpi and Echauz, in these experiments, 128 parallel and

128 nonparallel vector pairs were generated for training while another set of equal Size

was generated for testing. The vectors had randomly generated increments in a range of

(—5, 5) and initial points in a range between (—10, 10). Table 3.1 shows the classification

accuracies of all sets of test vectors. The number of neighbors, k, was set 5.

From the table, it can be observed that by using the k-NN classifier with 4 increment

features as inputs, we can Obtain up to 75% Of classifications correct. Also, as was

expected, when four features are processed by Equation (3.1) (i. e., absolute cosine

formula), the classifier categorizes with 100% accuracy.

Table 3.1 Results of the classifier using the indicated feature inputs.

 

 

Feature Inputs input to Classifier Correct percent

Ax], Ayl, sz, Ayz Ax], Ayl, sz, Ayz 75%

Axl, AyLsz, Ayz, x), yLXz, y; Ax], Ayl, sz, Ayz, x1, y1,xz, y; 55%

Ax], Ayl, sz, Ayz 1 absolute cosine feature 100%

Ax), Ayl, sz, Ayz 1 GP feature (Eq. (3.3)) 100%

Ax), Ayn, sz, Ayz l GFNC feature (Eq. (3.4)) 100%

Ax), Ayn, sz, Ayz, x1, yLXz, y; 1 GP feature (Eq. (3.5)) 100%

Ax], Ayn, sz, Ayz, x], y], x2, y; 1 GFNC feature (Eq. (3.6)) 84.2%
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When four relevant features were processed by the GP feature, a 100% correct

classification was obtained. Figure 3.2 depicts the tree diagram for the GP artificial

feature. From this tree, a GP artificial feature designed by the GPAF algorithm, Equation

(3.3) can be obtained. It can be noted that the GP algorithm examines every input feature

even when it is able to disregard any feature input.

I sziAxliiAyliViAxli l—Ax22 —Ax22.

IlimlimzAhl - IAyl Iszzl

 

(3.3)

For comparison, Equation (3.4) shows the formula that was found by the GFNCAF

algorithm with four relevant features in [30]. The interested reader is referred to the

indicated source.

Jig—(m—Ay
zflz “[(Axl ‘szzlz '(Aytz -Ay22). (3.4)

It can be noted that the equations are different; however, both of them still meet the

 

 

requirement to classify random vectors correctly.

The evolution of fitness, number Of nodes, and number Of levels (depth) through

generations are shown in Figure 3.3. This figure portrays the accuracy of the program

(artificial feature) versus its complexity.

In the second experiment, running the GPAF algorithm with eight possible terminal

values, a classification of 100% was Obtained. The tree diagram is Shown in Figure 3.5.

From the tree diagram, the following analytical expression can be obtained:

 

lily: + szlezKAytsz - Art/31a). (3.5)
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All four relevant features appear in the equation. Also, an irrelevant feature, y. (initial

point), was included by the algorithm. This variable can be considered noise; nonetheless,

the artificial feature achieves perfect classification at the expense of added computational

effort. It is likely that a bigger sampling of random vectors where y. would have been

represented throughout the whole plane would have made this variable’s irrelevance

more Obvious to the algorithm. Figure 3.4 presents the accuracy versus complexity graph

of this experiment.

Again, for comparison purposes, the expression found by the GFNCAF algorithm for

the same problem (i. e., with eight feature inputs) is stated in Equation (3.6). We note

GFNCAF was also confused by a non-essential feature 022) in this case.

(Ax: _ mghygyg. (3.6)

Table 3.1 shows that this equation achieved an 84.2% classification of correct

vectors. Although GFNCAF algorithm could not find an artificial feature that performed

perfect classification, the tendency of the algorithm to pay attention to the relevant

features and disregard those that are irrelevant—the same tendency noticed in the GPAF

algorithm—is apparent.

The GP used for these experiments included Simple crossover and mutation operators

with variable probability of occurrence [87]. To avoid bloat (i.e., unwarranted grth of

tree size until reaching the maximum depth), a dynamic depth technique was used [88].

The number of generations was set to 100 and the population size was 50 individuals.

Lexicographic parsimony pressure [61] was the selection method used. The initial

population was created using the Rarnped Half-and-Half method [57] with size variation.
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Figure 3.2 Tree diagram for the artificial feature found by the GPAF algorithm.
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Figure 3.4 Evolution Of fitness, levels (depth), and nodes for GP feature with 8 inputs.
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Figure 3.5 Tree diagram for the artificial feature with 8 feature inputs.

3.5 Summary

In this chapter, we introduced, discussed, and tested the feasibility Of the GP-based

artificial features (GPAF) algorithm to create artificial features for a test problem in

which a function was sought that could help categorize a set of random vectors as parallel

vs. nonparallel. The problem used an artificial-feature-from-classical-feature-based

approach. The algorithm found artificial features that process original features, giving a

resultant feature that later was input to the classifier. Then a k-NN classifier was used,

classifying the inputs into their respective classes. A comparison of results with another
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work, the genetically found, neurally computed artificial feature (GFNCAF) algorithm

[30], was presented. From results, it can be seen that both GFNCAF and GPAF are able

to create highly complex, nontrivial, nonlinear, transformations that could increase the

separability among the classes—in this case, between parallel and nonparallel vectors—

helping the classifier to make a better decision when classifying the data. However, the

properties of the GP algorithm (i. e., just indicating to the algorithm the maximum depth

and the number ofnodes, and the algorithm takes care of the feature’s topology) make the

GPAF algorithm more flexible to create Simpler as well as more complex features. For

this reason, sometimes the parsimony of the GPAF algorithm’s results may be smaller.

For instance, in Equation (3.5), the GPAF algorithm created an equation that contains

more elements (i. e., inputs and operators) than that created by the GFNCAF algorithm

(Equation (3.6)) for the same experiment, but the GPAF-designed feature achieved

perfect classification. The GP algorithm cannot ensure that it will find results that achieve

the intended objectives with the maximum parsimony possible in a limited-time

framework (in fact, no evolutionary algorithm can), but only that at least a suboptimal

solution will be found. Because the GP algorithm is the search engine of the GPAF

algorithm, the previous statement also applies to it.

On the other hand, with the inclusion of the GP algorithm to replace the evolutionary

component and the algebraic network, the first and second recommendations bulleted in

Section 3.1 to improve the GFNCAF algorithm were addressed and implemented. The

third and fourth bullets were not implemented because the degree of complexity of the

problem in this chapter (i. e., categorization of parallel and nonparallel vectors) did not
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require improvements for such limitations. However, in the next chapter, such limitations

will be addressed for the prediction and detection of epileptic seizures.
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Chapter 4

GPArtificial Features Applied to Seizure Prediction

In this chapter, we explain the application of the GPAF algorithm to epileptic seizure

prediction. The next section shows describes how the electroencephalographic signals

(EEGS) used in this research were obtained. The EEGS were intracranial voltage signals

measured in patients with mesial temporal (middle of lateral brain lobes) epilepsy. We

also present some concepts from nonlinear dynamic systems theory, concerning state-

reconstruction via a delay-embedding method, and provide an example of using such a

method. Later, we merge nonlinear dynamic systems concepts with the GPAF algorithm.

Additionally, we define the benchmark classifier that will be compared in performance

with those designed by the GPAF algorithm. The following sections contain the

mathematical development of the performance metrics for the GP version. Also, we

present the function and tenrrinal sets chosen for the GP algorithm. Results for various

patients are presented in the last section.

4.1 Clinical Context

The anonymized intracranial EEG data archive used for these experiments was obtained

from a tripartite database from Georgia Institute of Technology, Emory University, and

University of Pennsylvania. The EEG data were recorded from epileptic patients

undergoing a pre-surgical evaluation. According to the Epilepsy Foundation of America

[23], of every 100 new cases of epilepsy reported, one patient is a candidate for surgery
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and 70% percent of those are cured by removing a part of the affected region in the brain.

To perform these evaluations, recordings were Obtained by surgically implanting scalp

electrodes or intracranial electrodes deep inside the brain. Intracranial electrodes are

preferred over scalp electrodes because EEG Signals are recorded practically clear of

undesired artifacts created by physiological activities like heartbeat, chewing, moving,

blinking, etc. The patients suffered complex partial seizures, seizures that arose focally

and caused of loss of consciousness. Intracranial recordings allow neurologists to identify

more accurately the foci, where the seizures originated. Identification of the correct foci

was not possible using scalp electrodes. For each patient, a six-contact depth electrode

was placed in each temporal lobe throughout a hole drilled in the back of the skull

(occipital region) as depicted in the picture in Figure 4.1. To know the coordinates at

which the electrodes Should be placed, high—resolution MRI images from the patient were

used.

Epileptologists visually reviewed all the EEG recordings and marked each seizure by

first identifying seizure activity on the EEG and later moving backward in time to

determine where the earliest EEG changes from baseline to epileptic seizure activity

occurred in the patient. Second, the unequivocal electrographic onset (UEO) was

identified. This is the point in time that marks the onset of seizures [82] without any

doubt that a seizure is occurring. Additionally, for each patient, intracranial EEG archive,

synchronized video, and medical records were revised. Other relevant clinical aspects
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Figure 4.1 Electrodes placed in the hole drilled in the back area of the skull.

 

like clinical activity, sleep-cycle times, and times and doses of medication administered

during the hospital stay were also recorded.

4.1.1 Data Acquisition Equipment and Process

Continuous IEEG and video of patients were collected on a digital, 64-channel, 12-bit

Nicolet BMS-SOOO epilepsy monitoring system. The EEG Signal was downloaded from

tape to CD-ROM. EEGS were digitized at 200 Hz, and recorded afier filtering through a

bandpass of 0.1—100 Hz. A digital 60-Hz notch filter was also employed to suppress line

noise. Hospital stays varied from 3 to 14 days. For this work, 66 CDs totaling several

gigabytes of raw data were available. Figure 4.2 shows the electroencephalographic

signal for a case in which an epileptic seizure will not occur immediately thereafter and

Figure 4.3 Shows the electroencephalographic signal shortly before an epileptic seizure.

The durations of these signals are 10 minutes.
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4.1.2 EEG Data Description

AS was mentioned previously, the anonymized intracranial EEG data archive used for

these experiments was Obtained mostly from Emory University School of Medicine.

From this archive, we have available EEG data for seven patients. There are baseline

Signals as well as (pre)ictal signals. Table 4.1 shows the number of tapes that are seizure-

free signals and the number of tapes that contain one or more seizures available for each

patient.

Table 4.1 Number of baseline and seizure tapes available.

 

 

Patient No. of Baselines No. of Seizures

A 2 4

B 2 4

C 1 8

D 14 6

E 20 5

F 3 6

G 11 8

 

The durations of the EEG recordings vary from 38 hours of recording for patient D

up to 275 hours of recording available for patient G. Each EEG recording tape lasts

approximately eight hours (although a few are Shorter).

Because during the EEG signal recording procedure much interference, such as 60

Hz line voltage, blackouts, and other forms of noise can be introduced, the EEG

recordings are not pure or clean. To remove some Of these artifacts, a preprocessing step

is carried out. Even after that, many of those artifacts pass through the filters. For this
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reason, if we design an algorithm to predict seizures, it may happen that the algorithm

triggers (indicates a seizure) because of one of those artifacts and not because a seizure

will actually occur. Given this Situation, if all the available EEG hours were evaluated,

we would need to analyze and study all the recordings and verify one-by-one all places

throughout the EEG Signal where the algorithm triggered to indicate a seizure in order to

see whether the algorithm is responding to valid EEG data or, instead, to a recognizable

artifact. This verification would be tedious beyond practical limits.

For this reason, baseline and preictal data segments of ten-minute duration were

extracted from the whole EEG data set for each patient for training and validation

purposes. The extracted EEG data segments are a statistical sample that represents the

whole EEG archive of a patient. These segments were analyzed “by eye” to be sure that

they were clean and that no recognizable artifacts were present. As a general rule, we

extracted as many baseline epochs as there were epileptic seizures in the patient’s EEG

record; however, in some cases, a few more baseline epochs were extracted.

4.2 EEG Signals at a Glance

In this work our interest is to apply the GPAF algorithm to extract or create artificial

features that increase the performance of the classifier. In this chapter, we apply the

GPAF algorithm to create a feature that could perform an acceptable rate of classification

in categorizing EEG data as either baseline or preictal waveforms.

In this work, we deal with mesial temporal lobe epilepsy (MTLE). First, let us look

at the EEG data for both baseline and preictal classes. Figure 4.2 shows two epochs (i. e.,
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data segments), where one is a baseline segment and the second is a preictal segment;

both of them often minutes duration (as mentioned before, EEG signals were sampled at

200 Hz; therefore, a ten-minute epoch contains 120,000 points). The preictal epoch initial

point was taken to begin fifteen minutes before the UEO, and it ended five minutes

before the UEO. That is, in order to obtain a prediction a sufficient time in advance of the

seizure onset, we wanted to base the prediction on a signal epoch ending at least five

minutes before UEO. From the illustration, it can be noted that there is no obvious visual

pattern that helps us to distinguish one signal from another. Figure 4.3 presents the

(empirically determined) probability density function of both EEG data epochs. It can be

seen in the picture that the baseline data and preictal data are almost completely

overlapping. In fact, if we calculate the first- and second-order statistics for both signals,

we obtain that the means for both classes are approximately zero (i.e., 112,353.,“ z 0 and

ppm“... z 0) and the variances are ozbasennc = 2550.0 and ozpreicm] = 707.02, making

virtually impossible a high classification rate without any preprocessing of the EEG

signals.

57



 

 

0_8 r T r r r T fir r r

0.6 t
4

0.4 r r

 
 

V
o
l
t
a
g
e

[
V
]

 

 
 

 

-0.6 _

'0'80 1 2 3 4 5 6 7 8 9 10

Time [min]

(a)

0.8 Y I r I I r f r

0.6 ~
-

0.4 - ‘

  

V
o
l
t
a
g
e

[
V
]

 

  
 

-0.4 - c

-0.6 - a

J 1 l l I I l l l

0.80 1 2 3 4 5 6 7 8 9 10

Time [min]

(b)

Figure 4.2 Illustration of ten-minute-duration baseline signal (a) and ten-minute-duration

preictal Signal, extracted until five minutes before UEO (b).
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Figure 4.3 Probability density functions for two-ten minutes epoches: one baseline (solid-

line) and one preictal (dashed-line).

4.3 Nonlinear Dynamical Systems and State-Space Reconstruction

It has been proposed that EEG signals are nonlinear [77], nonstationary [103], high-

dimensional (because of the number of neurons in the brain), and chaotic (complicated,

but of relatively low dimension) [47], [78]. Whether or not EEG signals are nonlinear is

still being argued by other researchers, some of whom propose that EEG Signals are

linearly generated, i. e., that one should treat EEG Signals like output of a linear system to

which the input is noise [86], [98]. Nonetheless, in this work, we treat EEG signals as

nonlinear and chaotic Signals. EEG signals have been analyzed from many perspectives

and using different methodologies, most of which were cited and briefly discussed in

Chapter 2.
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Many authors have applied nonlinear dynamics tools to analyze EEG data. Chaos theory

[91] states that in a system with apparently disordered dynamics, an underlying order

resides in the data. Chaotic systems have various characteristics [91]:

o Chaotic systems are aperiodic

0 They are sensitive to the initial conditions. A slight change in them can cause a

completely different long-term output response (therefore, unpredictability in the

long term)

0 The equations that dictate the dynamics of the system are nonlinear.

Point two (above) states that long-term prediction is impossible; however, it has also been

stated that prediction in the short term, in chaotic systems, is possible.

Let us consider a system with dynamics described by

;=2(.,(2),.,(.),.....,(.» (41>

with a unique observable output described by

y(t)=f(x1(t)2x2(t)L'--2xn(t))2 (4.2)

where n is the number of equations that describe the dynamic behavior of the system.

Evaluating these equations from an initial state x0, a trace is left afterward by the state

vector x while traversing the state-space R". This state trajectory is denoted B,(xo).

Nonlinear dynamic theory asserts that the state trajectory B,(xo) can be reconstructed

by uniformly sampling Equation (4.2) to obtain a time-series, which we denote yr, Where

k = 0, ..., n, -—l , where n, is the number of samples and

y. syn“), (4.3)
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where r is the delay or sampling interval. This strategy is called time-delay embedding

[95]. Figure 4.4 illustrates a state trajectory being reconstructed by delay—embedding.

This method involves building a pseudo-state vector A]. (also known as the embedding

vector) of n, delayed samples (using Equation (4.3)) from the observable measurements

y(t):

7% = [yk—(ne—l) yk-(ne—Z) yk]- (4.4)

The parameter n. is also known as the embedding dimension. Equation (4.4) is a pseudo-

state vector at time k. To perform the state reconstruction completely, we need to slide

the window through all the samples taken, 12,. This last statement can be formulated as a

matrix: if we stack all the embedding vectors in a vector column, we obtain the following

 

matrix:

' yo yr yz yne—r-

Yr yz 2’3 yne

P: y2 y3 y4 ynen , (4.5)

_}’Ne-I J’Ne yNe+l J’ns-1_ 
where N... denotes the number of embedding vectors and equals n, — (n. — 1). This matrix

is called the embedding matrix. Such a matrix contains or samples the trajectory of B,(xo).

However, the embedding matrix I" does not contain an exact copy of the trajectory but a

distorted or copy of the “genuine” trajectory of B,(xo). To be more consistent with

topological concepts, the embedding matrix is a diffeomorphism of the original

trajectory. A dtfieomorphism [37] is a differentiable homeomorphism (smoothly distorted
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Figure 4.4 Reconstruction ofthe delay-embedding trajectory from a time-series.

copy) of the original trajectory that preserves the topological properties of the trajectory,

such as number of holes, Sharp comers, and thus properties like fractal dimension and

Lyapunov exponents. Although more details are beyond the scope ofthis work, interested

readers are referred to a full explanation in [20].

One valid question that comes up is what value Should he be set to? If the embedding

dimension is set such that n, 2 n (recalling n is the order or the number of equations that

describe the system in Equation (4.1)), a state reconstruction can be generated though not

guaranteed (e.g. , a Klein bottle needs a four-dimension Cartesian space to describe its

trajectory even though it is a two-dimension manifold) not, because only it equations are

needed to solve for n unknowns. On the other hand, if n, < n, it is still possible to

“recover” the state-space if the trajectory settles in a lower-dimensional region. Takens

[95] proposed the embedding theorem, which gives us an upper bound on the embedding
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dimension n... Takens’ bound guarantees that the state-space can be reconstructed by

setting n, = 2n + 1. However, in practice, the value of n iS not known; but given such an

upper bound for ne, various strategies have been conceived. One of the simplest methods

used is to start evaluating the model with {21.3 = l, 2,..., ns} and increase it until an

acceptable prediction error is obtained, i. e., the difference between the predicted value

and the real value is low [75]. Additionally, some researchers have said that what the

embedding theorem states is that even if a system is of infinite order, a finite number of

delays of the observable measurement (observable output) can be used to realize the

whole dynamics, given that the state confines its trajectory to a space of finite dimension.

Such cases have been reported in studies of turbulent fluid flow [84].

For the sake of clarity and comprehension, consider a well-known chaotic system:

the Lorenz attractor. The equations that govern the dynamics, although simple, produce

chaotic behavior. When a three-dimensional system is plotted in a three-dimensional

space, the trajectory of the system can be Observed. Figure 4.5(a) illustrates the Lorenz

attractor in a three-dimensional plot. Equation (4.4) states that we can reconstruct a

diffeomorphism of the original trajectory using the previous values of an observable

measure from the system under study. In this case, we know that the order of the system

is n = 3. Therefore, using a pseudo-state vector formed by one state variable and two

delayed samples of it, we reconstruct the trajectory. Figure 4.5(b) Shows the state

reconstruction of the Lorenz attractor.
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Figure 4.5 (a) Lorenz attractor and (b) its reconstruction using the previous values of a

state variable.

4.4 State-Space Reconstruction and the GPAF Algorithm

Early in the previous section, it was mentioned that the dynamics of the EEG Signals are

considered to be of high-dimensionality. This fact is discernible because the human brain

has approximately 1011 neurons and each of these neurons can be described with an

equation that dictates its dynamics, making the order of the brain practically infinite or at

least very high-dimensional. However, it was also mentioned that researchers have stated

that the embedding theorem states that a finite number of delays of the observable

measurement (observable output) can be used to reproduce the whole dynamics when the

state confines its trajectory to a Space of finite dimension. Thus, we can hope to capture a

“pocket” of deterministic components of the state trajectory of the EEG Signals by taking

previous samples of the observable output and creating an artificial state vector with n.



elements (denoted A). in Section 4.3). The idea of modeling EEG Signals by a delay-

embedding method has been proposed before in [20].

Given that we can reconstruct the state trajectory from previous values, our approach

is to input such deterministic components, represented as pseudo-state vectors (i. e., M)

evolving in time (i. e., embedding matrix F), to a genetic programming module and by

means of the algorithm, to find a pattern or transformation, probably nonlinear (although

a linear transformation is possible), that yields a subspace where the baseline and preictal

classes exhibit the maximum separability possible, making viable the prediction of

epileptic seizures. In other words, the GP algorithm Should combine the inputs (states) in

a (non)linear way and output a function that separate the classes such that the

performance of the classifier is better than without a transformation or a benchmark

previously defined. Let us define an expression that captures mathematically the essence

of what was stated above. Let

y.~[k] = 4120»), (4-6)

where ([1,- is the transformation function (or artificial feature) designed by the GP

algorithm; i is the artificial feature index (equal to 1 if the GP module is designing just

one artificial feature), and

A = {x[n],x[n- t],x[n—21]-~,x[n—(ne —l)r]} (4.7)

is the set of delayed samples (inputs) that the GP will use in any combination (with

replacement) to construct the artificial features. Therefore, the artificial feature is a

function defined (13,-: R"? —> R. The parameter T is the delay time, which will be
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determined using the autocorrelation function (discussed in Section 4.5), and n, is the

embedding dimension. There are various methodologies to determine an adequate

embedding dimension, the simplest being trial-and-error in increasing dimension, as

mentioned before.

One work of particular interest in this area, due to its relationship with our work, was

presented in [62]. McConaghy et al. proposed the use of a GP algorithm to reconstruct a

chaotic dynamic state of a given system. The GP system designed polynomials that

reconstructed the exact dynamics of the chaotic system. Also, the GP determined the

embedding dimension given that the authors added the delay operator z'1 to the function

set, which applies a unit delay to all terminals in its argument. Therefore, before

evaluating the program (individual or chromosome) to score its fitness, a preprocessing is

performed on each individual to apply the delay operators such that the terminals in the

argument receive their respective delays.

AS is done with many conventional features—for example, the Fourier coefficients,

or the energy of a signal, etc., in which the feature is calculated over data viewed through

an observation window—in the genetic programming artificial feature (GPAF) algorithm,

we will also use an observation window, also known as a sliding window, which will be

slid through the entire signal being processed. The sliding window is defined by two

parameters: length of the window, denoted L, and the displacement factor, denoted D,

alternatively described as the percentage of overlap between adjacent sampling windows.

Figure 4.6 depicts the sliding window concept over an arbitrarily selected fifteen-second-

duration EEG Signal. The length L defines the number of points that will be analyzed at
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Figure 4.6 Sliding window slides (solid rectangle) over an EEG Signal. The dashed

rectangle indicates the position where the window will be displaced in the next

computation.

the same time. On the other hand, D is defined as the number of new points that will be

used in the next evaluation, such that D = L — 0, where 0 is the overlap, or the number

that will be evaluated again from the previous position of the window. To compress and

smooth out the variability in the data, a summation operator will be applied at each

window position. Recalling Equation (4.6) and adding to it the sliding window, i. e., a

summation operator, the resultant equation is stated as

2.121: ”(Elf-“(2142122-21...,2In—(n. —1>21>. (2s)
n=l+(k-I)D
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The y,-[k] is the GP artificial feature of the EEG Signal x[n], termed here the artificial

feature time series; the subscript i denotes the number of the feature (i. e., we can have a

single artificial feature or a vector of such features), it is the index that controls the

displacement inside the sliding window, and k is the discrete time unit of this time-series

(or the index that indicates the next sliding-window position). The sliding window

observes all L points in window-position k, whereas index n iS delimited by l + D(k—l) S

n S D(k-—1) + L (superscript and subscript on the summation symbol). In this work, we

selected n to advance by steps of one, thus taking advantage of all of the EEG data

available and scrutinizing the data in maximum detail looking for patterns.

A point y2[k] in Equation (4.8) is proportional to an average of the GPAF-processed

points Observed through the Sliding window, in which the argument of the summation 1]),-

(i. e., the GPAF function) is found by the GP algorithm, and in which at each window

position k, the number L ofpoints will be reduced, by means of Equation (4.8), to a Single

point at the output. Thus, if we have a Signal that contains PTO, points and we set

displacement to D, the number of output points after the entire signal is processed by the

GP artificial feature is

K=fE’-—-L—+l, (4.9)

D D

where the 1 - L/D adjusts for the beginning and end of the Signal where the window of

length L is not complete; thus, some of those positions (or points) are not calculated.

To summarize all the components of the GPAF algorithm, a block diagram is

presented in Figure 4.7. Figure 4.8 illustrates the transformation performed by the GPAF.
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Figure 4.7 Diagram of the genetic programmed artificial features algorithm. The input

Signal is processed by the program generated by the GP. Later, the output is used to train

the classifier.

The function (1) is the artificial feature, i. e., the program generated by the GP that

increases the separation between classes. Once the EEG data are processed by the

artificial feature, y (the artificial feature Space) is obtained and input to the classifier

(denoted as u). The classifier is used as an auxiliary component to calculate the fitness of

the program (artificial feature); however, a researcher may decide not to use a classifier

and to let the GP algorithm designs the decision structure (i. e., classifier), but that will

carry an enormous computational cost. Additionally, if the researcher decides to use a

classifier to calculate the fitness, he/She must be aware that the artificial features are
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optimized for the classifier that was selected. Although it may be desired that the

artificial features work well with any classifier, such performance cannot be guaranteed.

The GPAF algorithm will continue evaluating new programs (artificial features or

individuals) until the GP reaches a pre-set maximum number of generations or the fitness

goal is met, according to a fitness function explained in Section 4.6.

  

 

Artificial feature

space

  

  

EEG space-state

reconstruction

Figure 4.8 Schematic of the nonlinear transformation performed by the GPAF algorithm,

denoted d), in cascade with a classifier, denoted 11, which categorizes the data into one of

two possible classes: baseline or preictal. The variable x is the EEG signal at hand and

variable y represents the data afier processing by the GP artificial feature.

4.4.1 Classifier

Although in the GPAF algorithm any classifier may be used, in this work we selected the

classifier with two aspects in mind. Recalling from Chapter 1, one of the contributions of

this work is to prescribe a general-purpose algorithm that automatically creates artificial

features from conventional features or raw data. Therefore, we selected the k-nearest

neighbor (k-NN) classifier as the classifier component for the GPAF algorithm. This

70



classifier is a nonparametric, nonlinear, and thus a multi-threshold one, making it suitable

even for multi-dimensional, multi-modal problems. In addition, the training process is

relatively easy, by just giving to the classifier the whole training dataset. Again, as was

previously mentioned, because we selected the k-NN classifier, the artificial features are

going to be optimized for such classifier. We do not guarantee that such artificial features

will have a good performer if any classifier such statement cannot be guaranteed.

There are many metrics or rules used in k-nearest neighbor classifiers. Among them

are the Minkowski metric, Manhattan distance (also known as city block distance), and

the Tanimoto metric. In this work, we will use the Euclidean distance, which is the most

common metric used and a special case of the Minkowski metric, and is defined as

 

D(a,b)= Jim. —b,.)2 , (4.10)

i=1

where a and b are the vectors between which the metric is to be calculated.

4.4.2 Detailed Example

Figure 4.9 shows all the components that comprise the GPAF algorithm and the steps

involved in the evaluation of one individual. In the figure, we provide an example where

two artificial features are being sought (thus, an individual corresponds to a two-tree

“forest”). The first step iS the generation of the initial population of artificial features (I).

The artificial features are transformed from vectors to trees for comprehension purposes

(II). Such trees encode the artificial features. From these, the artificial functions are

translated into mathematical expressions (the arguments Of the summation operators) to
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be evaluated (Ill). Later, the EEG signal, segmented with the Sliding window (IV) is

processed by the artificial features generating the artificial Signals (V). Later these

artificial data are input to the k-NN classifier to execute the categorization task (VI). In

661’?

the illustration, label “0” denotes the baseline samples and denotes the preictal (or

ictal) samples. In the training phase (i. e., when artificial features are being designed), we

can evaluate either the training data or a checking data set (a data set different from the

training data intended to resemble the validation data) to calculate the classification error,

the performance measure that will drive the GP search (further discussion about the

performance index is in Section 4.6). It Should be noted that this entire illustration is just

to evaluate one individual (i. e., one forest). After all individuals in the initial population

are evaluated, the genetic operators take over to create the next population of artificial

features. The errors are calculated again. This process is repeated until either a

performance goal is reached or the maximum number of generation is met.

4.5 Autocorrelation Function

The autocorrelation function [71] of a random process or a signal q[n] is defined as the

expected value of the multiplication of q[n] and a time-Shifted version of itself.

Mathematically, the autocorrelation (discrete version) is defined as follows:

qu [n,n+m]= E[q[n]q[n+m]]. (4,11)

What the autocorrelation tells is how quickly the self—similarity of a process (or a

given Signal) changes with respect to time. To graph an autocorrelogram, Equation (4.11)

is evaluated for different lags, m, and the results are displayed in the graph. A
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Figure 4.9 Detailed illustration of the GPAF algorithm process.
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Figure 4.10 Characteristic autocorrelation plot.

characteristic normalized autocorrelation plot is shown in Figure 4.10. It can be noted

that the closer m (the lag) is to zero, the larger is the autocorrelation.

One parameter that is determined from the autocorrelation plot is the autocorrelation

time. It is the value of m for which the autocorrelation value, qu(n,n+m), is zero or

crosses zero for the first time. In Figure 4.10, this value (point) is indicated, on the lower

left side ofthe plot, with two dashed-lines.

To determine the delay time I (see Section 4.3), the autocorrelation plot of an EEG

preictal Signal (selected for training purposes) will be Obtained and the autocorrelation

time will be visually determined for each patient. The autocorrelation time (delay) value

can be represented using time units, e. g. , seconds.

74



4.6 Performance Index

The desirability of the artificial features is quantified using classifier-based performance

metrics. These performance metrics drive the search of the GP algorithm for the “best”

set of artificial features. The prediction/detection epileptic seizure problem is a classical

detection problem, with the sole difference that in a classical detection the test is whether

the event at hand is noise or a Signal-plus-noise. In our case, we are the test is to know

whether the event at hand is nonseizure (analogous to noise) or preseizure (analogous to a

signal) data. We can model this more formally by letting

H0: y 6 NS

(4.12)

H]: y e S.

This is the classical binary hypothesis test. Typically, H0 is known as the null hypothesis,

and states that y is coming from the nonseizure class NS, whereas H1 is the alternative

hypothesis that states that y is coming from the preseizure S class. Figure 4.11 Shows an

illustration of two conditional PDFS, where p(y|NS) denotes the conditional PDF for the

nonseizure class, while p(yIS) denotes the conditional PDF for the preseizure class. There

are various metrics that can be defined from this illustration. These metrics comprise

integrals, determination of PDFS, and class-decision boundaries. Thus, we develop

empirical measures of such metrics, which are unbiased estimates based on counting.

Counting can be performed either on a point basis or a block basis. In point-basis

counting, a sample (i. e., a point) in the artificial feature space is counted as one example,

whereas in block-basis counting, a series of artificial feature samples (i.e., a string of
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Figure 4.11 PDFS for a binary hypothesis test.

points) is counted as one example. From the above hypothesis, we can define a series of

classifier (detector) decisions, which are presented as a confusion matrix in Table 4.2.

Table 4.2 Confusion matrix of the classifier decisions.

S NS

3 NC? NFN

 

 

NS NFp NCN

    

S and NS are labels for true preseizure and nonpresiezure classes, while their “hats” (with

circumflex marks) indicate the classes declared by the classifier, Ncp is number of correct

positives (preseizure class detections), NCN is number of correct negatives, N“) is number

of false positives (false alarms, when the algorithm or device said that a seizure will

occur and it does not), and NFN denotes number of false negatives (preseizure class

misses, when the algorithm says that a seizure will not occur, then it does). Addtionally,

we define NS = Ncp + NFN, the number of preseizure examples, NNS = NCN + Npp, the

number of nonpreseizure examples, and N202 = N5 + NNS = Ncp + NFN + NCN + Npp, the
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total number of examples. Using the classifier decisions stated above, we can derive a set

of empirical formulas to calculate various classifier-based performance metrics. These

metrics are provided in Table 4.3. The quantities PCP, PFN, Ppp, and PCN are denoted in

Figure 4.11.

Table 4.3 Multiple classifier-based performance metrics for the GP cost function.

 

 

Metric Formula

Probability of correct _ NCP

posrtrve PCP — —N

(Sensitivity)
S

Probability of false Pm = NFN 1-22.1,

negative 8

Probability Of correct N

negative PCN = ————NCN = l — PFP

(Specificity) NS

Probability of false P = Npp

positive FP NNS

NCP
Selectivity Sel =

NCP + NF?

Probability of correct P = NCP + NCN

classification C Ntot

PE:AI7N+AI:P=1_R:

tot

Probability of error

 

The selectivity is another definition for specificity quantity [100], which denotes

how many of the feature-vectors (or a Single feature) categorized as preseizure actually

were preseizure. Additionally, we can estimate the prior probabilities empirically as
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Shown in Table 4.4, where P(S) denotes the prior probability of the preseizure data and

P(NS) denotes the prior probability ofthe nonseizure data (baseline).

Table 4.4 Prior probability metrics from the confusion matrix.

 

Quantity Formula
 

Prior probability of P(S) = NS

preseizure Nto,

 

N

Prior probability of P(NS) = Tvy‘s‘

nonpreseizure m

=1 — P(S)
 

From Tables 4.3 and 4.4, we can state the performance index (or fitness function) for the

GP algorithm. The probability of error can be stated as

PE = P(E | S)P(S)+ P(E | NS)P(NS)

= PFNP(S)+ PFPP(NS) '
(4.13)

Equation (4.13) penalizes the two types of errors: the number of false positives and the

number of false negatives, which are scaled by their respective prior probabilities. In

some problems, it is possible to use the priors to penalize the errors; however, for

prediction and detection of epileptic seizures this may not be enough because P(S) is very

small considering the time scales used (seizures just last approximately minutes while the

nonseizure data may last hours); and missing of seizures (false negatives) are relatively

unacceptable. For this reason, we invoke the error risk metric, which assigns risk factors

r > 0 to adjust the relative costs of the errors. Equation (4.14) Shows the error risk metric

RE = IDFN P(S)rFN + PFPP(NS)rFP, (4.14)
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where rm is a risk term associated with missing preictal signals and er is a risk term

associated with declaring false positives. We can interpret the P(S)rFN and P(NS)er as

penalty factors (or weight factors); thus, we can rewrite Equation (4.14) as

RE =PFN”FN+PFF”FF- (4-15)

Typically, missing a seizure is considered worse than declaring a false alarm; therefore, it

is intuitive to set am > rm: to compensate for the effects of a low P(S). For example, we

can assign am = 0.75 and 71'“) = 0.25. This makes the GP algorithm to pay attention to

both types of errors. However, the exact values of penalty weights can be adjusted

according to the patient’s untreated seizure frequency, forms of therapy, or other factors.

For a given feature vector or a Single artificial feature, the minimum error risk

problem is

min R
Q E , (4.16)

where Q is the Space of all possible class decision boundaries or the Space that contains

all possible mappings from input feature y to classifier output. The optimal decision

structure [10] is given by

C = ar max p S lit , NS in .

(y) C2§{S,NS}{ (yl FN p(yl FF} (4-17)

If we define the likelihood ratio, the decision rule declares class S if

PIYIS) > P(NS)rFP = ”FF

p(y|NS) P(S)rI-‘N ”EN

 

, (4.18)

where fl'Fp/flFN is the threshold. The decision rule for the threshold on the posterior

probability declares class S if
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l

P(S'y)>m'
(4.19)

If P(S) is very small, this threshold can be very small, as in the maximum-likelihood rule.

For example, ifP(S) = 0.005 and am = 0.75 and erp = 0.25, values that place more stress

on avoiding FNS than maximum likelihood, the threshold is 0.0017.

To discourages the GP algorithm from designing artificial features for which its

classifier makes too many errors of one type and too few of the other type, we added a

constraint to the minimum risk problem as stated in Equation (4.20):

ngIRE lb 2 Bo i- (4.20)

For instance, the constant-declaration classifier whose output is always class preictal (i. e. ,

it is always declaring that a seizure is occurring) has only 25% error risk:

RE = 0(0.75) +1(0.25) = 0.25. (4.21)

However, this classifier is merely a device that medicates the patient in a prescribed

open-loop regime. The balance constraint drives the algorithm to make more useful

decisions based on the input artificial feature. In the cost function of the genetic

programming system, this contraint is added as a penalty term to the error risk if the

balance is less than 50%.

 

0.75 P + 0.25 , b50.5

Cost Function = ( ) FN ( )PFP , (4.22)

(0-75)Pm + (0-25)P1:p 22 7(1— b), b > 0.5

where yis a weight commonly equal to 1 and b is the balance defined as

2 P - P

b - 1 I F” “’l (4.23)
_ _|0.5—PFN|+|0.5-PFP|+I'
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The parameter b is O for the worst case when either (PCN, Ppp) = (0,1) or (1,0), and is l in

the best case when Pm = PFP [21].

Depending on the value of the threshold arrived at by changing the probability or the

likelihood ratio, we move the operating point of the classifier along the receiver operating

characteristic (ROC [92]; PCN vs. Ppp) curve, trading off the ability to detect preseizures

for the ability to detect nonpreseizures (and losing optimality as initially defined by the

performance metrics). If the risk 71:? is increased, the probability threshold is also

increased, reducing the propensity of the system to declare S. In contrast, to make the

detector (i. e., classifier) more sensitive, the risk rm should be increased. The complexity

of the classifier decision boundaries changes in the n-dimensional space of features as the

value of thresholds on the likelihood ratio or the probability changes.

4.7 Benchmark Classifiers

As a frame of reference for our proposed methods, principal components analysis [49]

(also known as Karhunen-Loéve transform in engineering) will be implemented as the

feature extractor. Principal components analysis (PCA) is a well-known, established

nonparametric feature extractor that performs a linear transformation over the input

space, returning a subspace with the best (in the least-sum-of-squared-error sense)

uncorrelated representation of it. Mathematically, PCA is defined as

Y = CDTX , (4.24)

where X is the input data and (DT are eigenvectors associate with the largest eigenvalues.

Such eigenvalues are obtained from the covariance matrix of the input data X. The
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number of eigenvalues (and thus the number of eigenvectors) is related to the number of

dimensions to which it is desired to reduce the input space (i. e. , X).

The embedding matrix (denoted as F in Section 4.3) with it, columns (equal in

number to the embedding dimension), is input to the PCA. That is,

_ x[l] x[l — 2'] x[l — 22'] - -- x[l — (ne — l)r] _

x[2] x[2 — r] x[2 — 21] - -- x[2 — (ne —1)t]

x[3] x[3 — r] x[3 — 21] - -- x[3 - (ne — l)r]

x[n] x[n — T] x[n - 21] -- x[n - (ne —1)r]

Lx[hs] x[ns —T] x[ns—Zt] x[ns —(ne—1)TL

where x[] is the EEG signal and n is the time index. The parameter ne is the embedding

, (4.25)

  

dimension, whose value defines the number of features input to the PCA. The number of

components selected to reduce the dimensionality of the input data X will be same

number of artificial features that was needed by the GPAF algorithm to achieve a

satisfactory result. Then these components are processed by the sliding window yielding

D(k—1 L

y2 Ikl= 2);),- (n), (4.26)
n=l+(k-1)D

where 01- is the principal component j selected by the PCA, j = l, 2,...,nc, and n. is the

number principal components. The parameters L and D will be set to the value set for the

GPAF features. The summation of all points can be considered an elemental feature

(summation is proportional to the mean). For instance, if nc = 2 and letting 0. = x[n—r]

and 02 = x[n] to be the principal components, the features in Equation (4.27) are obtained.
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Multidimensional

EEG raw data PCA

Sliding window Classifier

Figure 4.12 Stages of the PCA k-NN benchmark classifier.

D(k-1 L

.2121: 2512-21.
n=l+(k—1)D

(4.27)

D(k—1 L

y2M = x[n].

n=l+(k-—I)D .

Finally, the output of the sliding-window-processed data is input to a k-NN classifier

that will categorize the data into its respective classes, i. e., baseline or preictal class.

Figure 4.12 illustrates the process of the first benchmark classifier. For instance, if we

have that for a given patient, the GPAF algorithm found three artificial features, the

dimension ofXwill be reduced by the PCA to three. Later, each one ofthese features will

be processed by the Sliding window, yielding three feature vectors that are input to the

classifier.

A k-NN classifier alone is the second benchmark classifier to be used for comparison

against the performance of the GPAF algorithm. That is, the matrix X in Equation (4.25)

(pseudo-state vector) is processed through the sliding window and a vector of size ne
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input directly to a k—NN classifier, so there is no dimensionality reduction. That is, the

number feature vectors input to the classifier is equal to ne, the dimension ofX.

4.8 Receiver Operating Characteristic (ROC) Curve

For the experiments that we will present in Section 4.10, we will provide the receiver

operating characteristic curve plots, an easy, visual way to compare the performance of

the GPAF algorithms and the benchmark classifiers. We will also provide the area-under-

curve statistic, a measure that allows us an easier way to compare the performance among

classifiers. There are two ways to plot an ROC curve: theoretical and empirical. In the

theoretical way, the PDFS of both classes (i. e., seizure and nonseizure) are needed. If the

more typical ROC curve is going to be plotted (i. e., Pcp vs. Pm), we to calculate PM as

PFA = My 1 Nsldy, (4.28)

5

where 6 is the threshold and PCP as

Pcp = [p(ylslay (4.29)

5

for each value of 6 from —00 to oo [50]. Each pair (Pm, Pep) corresponding to a value of 6

is plotted in the graph. Both axes (Pm, Pcp) go from 0 to 1. An ideal classifier would be

one for which the ROC curve is a vertical line from coordinates (0,0) to (0,1) and a

horizontal line from (0,1) to (1,1), with (0,1) being the point at which the classifier would

yield perfect discrimination. However, this framework is not possible because the

distributions of the conditional PDFS are unknown. Additionally, the classifier used for
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the GPAF algorithm and the benchmarks is a nonparametric classifier, which outputs not

a probability, but a label. For this reason, to plot the ROC, which may be considered an

empirical or estimated ROC, we define a set of equations to estimate the probabilities

PCP, PFp using the output of the classifier. Let us define

_ P(YIS) >
L(y)————-—-—pINS) < 5, (4.30)

where L(y) is the likelihood ratio, 6denotes the threshold, and p(yIS) and p(y|NS) are the

conditional probabilities which are estimated as

 

and (4.31)

 

where k is the number of nearest neighbors, d2S is the Euclidean distance between the

sample point being tested and the closest preseizure point i, and d2NS is the Euclidean

distance between the sample point being tested and the closest nonseizure point i. It can

be noted that the further away are the closest points of a class, the lower is the probability

of y to belong to that class; correspondingly, the closer the k closest points of a given

class are, the greater is the probability that y belong to that class. Equation (4.32)

provides an estimation of the conditional probabilities that allow us to calculate and

computationally graph the likelihood ratio stated in Equation (4.30). Moving the

threshold 5from (—oo, 00) allows us to estimate Pm and PCP by counting those nonseizure
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samples that were misclassified (i.e., exceeded the threshold and were classified as

preseizure samples) and those preseizure points that were classified correctly as shown in

Table 4.3 (i.e., sensitivity and probability of false positives). For each evaluation of 6,

Pm and Pcp are calculated obtaining a point in the (empirical) ROC curve plot. To

smooth the ROC curve, it will be plotted using point-basis samples. That is, each point in

the artificial feature space is counted as one example.

4.9 Function and Terminal Sets for GP

In GP algorithms, the user must Specify the function set and terminal set that the GP

algorithm will use to create the programs. Table 4.5 shows the functions that will be

available for the GP.

Because functions need to satisfy the closure property in GP, the square root,

logarithm, and division operators are implemented in a protected way. Protected-division

works identically to ordinary division except that it outputs one when its denominator

input is zero. In order to avoid complex values, the protected square root operator applies

an absolute value Operator to the input value before the taking the square root. Also,

logarithms are protected versions that output zero for an argument of zero and apply an

absolute value operator to the argument to handle negative arguments. By increasing the

function set by adding to it more functions (i. e., trigonometric and transcendental

functions), we are addressing and implementing the third recommendation to overcome

the limitations found in the GFNCAF algorithm experiments in [30]. We recall that in

that work, the function set was limited to {+, —, x, -:-, l, I I, ( )2, J— }. With the function set
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provided in Table 4.5, we are giving more complexity to the search Space and increasing

the likelihood to create better artificial features.

Table 4.5 List of functions and their respective symbols for the GP algorithm.

 

Function Symbol

 

addition

subtraction

multiplication

division

square

square root

natural logarithm

logarithm base 2

logarithm base 10

absolute value

sine

cosine

+

()2

M

In

log;

l0210

sin

COS

 

AS a terminal set, the GP has available {x[n], x[n—r], ..., x[n—(ne—l)r]}, i. e., based on

an insight from chaos theory, the number of elements in the terminal set is ne, the

embedding dimension. Again, the delay time t is determined using the autocorrelation

plot as explained in Section 4.5. With this information (embedding vector) as input to the

GP algorithm, we are addressing the fourth and last recommendation to overcome the

limitations of the GFNCAF algorithm (bulleted early in Section 3.1). By essentially



inputting raw data to the GP algorithm, we expect the GP to explore and exploit the EEG

data, increasing the chance of finding more informative and successfirl patterns to

discriminate the classes.

In this chapter, the maximum tree depth was set to 10 and the population size to

1000. The initial population was generated using the ramped half-and-half method. The

GP algorithm used a crossover operator with a rate of 0.9, fitness proportional selection,

and a breeding operator with a rate of 0.1. The GP algorithm was extended to allow it to

evaluate not just one tree per individual, but multiple trees per individual (i. e., a forest),

allowing us to generate a prespecified number of features for a patient Simultaneously.

All the trees of the individual were evaluated at the same time; however, there was no

crossover among trees (features) of the same individual—crossover was done only

among homologous trees. Although it is possible to configure the GP algorithm

(software) to decide how many artificial features is going to evaluate per forest

(individual), in this work, we limited the algorithm to start looking for one artificial

feature. If no satisfactory results were obtained, then we increased the number of artificial

features to two. The same procedure was executed if no satisfactory results were

obtained. However, features were not incremented to more than three artificial features.

To reduce the computing time, LilGP software was used, a popular genetic programming

system implemented in C code (the genetic programming algorithm implemented in

Chapter 3 could not be used because of the impractically high computing time for the

experiments given that it is a Matlab-based code).
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4.10 Results

In the experiments in this section, all baseline and preictal epochs were of ten minutes

duration, thus containing 120,000 points in each epoch. Preictal segments were selected

to end five minutes before the UEO occurred. Figure 4.13 illustrates how the preictal

epochs were selected. The length of the Sliding window is set to L = 800 points (or 4 s)

and D = 400 points (or 2 3). Additionally, the maximum for the embedding dimension 11,,

was set to 6, which was arbitrarily selected. The number of nearest neighbors for the k-

NN classifier was set to k = 5. For training, we used a holdout validation technique. Each

patient had for training data two epochs, a baseline epoch and a preictal epoch. In this

chapter, baseline epochs are labeled with small letters, whereas the preictal epochs are

labeled with capital letters.

Experiments were carried out using point-basis classification. As was stated

previously, in point-basis classification each point counts as an example, whereas in the

block basis, an entire segment (epoch) of data is considered a sample. Figure 4.14 Shows

 

 

   

Preictal epoch Data

10 min long ignored

-15 min -5 min 0 rinin

UEO

Figure 4.13 Illustration showing from where preictal epochs are extracted. It starts at 15

min before the UEO and ends 5 min before the UEO. The data between 5 min and the

UEO are not used.
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Point basis Block basis

(a) (b)

Figure 4.14 Point and block basis examples. A Signal with a sampling of At is illustrated.

(a) in point basis, each point (shaded area) is an example for the classifier while (b) in

block basis a segment of points is considered an example (Shaded area).

an example of each basis. In the figure, a hypothetical artificial signal sampled at At is

presented, in which for the point basis, each point is considered an example for the

classifier, while in the block basis, a segment (string of points) is considered an example

for the classifier. From this, it is intuitive that while the block basis is more informative to

make a decision, given that we are using more points, a lot more data will necessary to

train the classifier. On the other hand, the point basis is not as informative as the block

basis, given that we are using a point as an example; however, there are many data

available to train the classifier. Here, a ten-minute long epoch is treated as a block. The

problem with reporting results (to the drug delivery component) on the point basis is that

we do not want to have an implantable device that medicates the patient each At that the

classifier says a point in the signal is preictal. The question that comes up is whether we

can predict the seizures or not. Therefore, we need to transform the point basis results to a

block basis in order to integrate the decision from the classifier over a predetermined,

fixed period. When the evolution of classifier’s decisions is monitored over a fixed
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period, the device (classifier) can make a better decision on whether to medicate (i. e.,

drug) the patient or not. To convert from point basis to block basis, we define a threshold,

also known as “chance level”. The chance level to convert from point basis to block basis

was set to 65% in order to increase the confidence of the decision beyond the noise floor

that a "coin flipper" at 50% would create. If the sum of the point-basis classification

results of a preseizure epoch is equal to or exceeds the threshold, then the epoch will be

labeled preictal; otherwise, it will be categorized as baseline (nonseizure). Thus, an epoch

for which 35% or more of the point-basis classifications classify it as baseline is labeled

as baseline by the block-basis classifier; otherwise it is labeled preictal.

In the next subsections, for the sake of Simplicity, we refer to the GPAF algorithm,

which includes the GP algorithm and k-NN classifier, as the GPAF classifier or just

GPAF, while the benchmark algorithm that includes the PCA transformation and k-NN

classifier is called the PCA k-NN classifier or Simply PCA. Of course, k-NN alone refers

to a k-NN classifier used on full-dimensionality data, without preprocessing by PCA or

using GP-evolved artificial features.

4.10.1 Patient A

For this patient, seizures were diagnosed as coming from left anterior hippocampus. Two

kinds of seizure were clinically identified—simple partial and complex partial seizures.

For the training stage, we used one baseline epoch and one preictal epoch. To validate the

artificial feature, we had three baseline and three preseizure epochs available. The time
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delay obtained from the autocorrelation function was set to r = 32 (or 0.16 5). Thus, the

terminal set for this patient was {x[n], x[n—32], x[n—64], x[n—96], x[n—128], x[n——l 60]}.

As stated above, the default prediction horizon was set to five minutes before the

UEO. However, after several evaluations, the GPAF algorithm could not find a set of

artificial features that achieved good performance. Therefore, we moved the prediction

horizon to one minute before UEO. The GPAF algorithm was executed again and a set of

features was found. Equation (4.32) shows the artificial features y, [k], y2[k], and y3[k]:

y.[kl= “miifgtoinogwein-szi».

 

n=l+400(k—l)

400““ Menuhin-160]) (4 32)
y k = . '

2H n=l+§0(k-l) x[n-96]

400k+400 4

y3[k]= Z (x[n—128D .

n=l+400(k—l)

Table 4.6 Shows the results for the training epochs (point basis). The table also shows the

results for the PCA k-NN and k-NN classifier benchmarks. Results for training data Show

that the transformation provided by the artificial features achieves an increment on the

overall performance ofthe classifier.

Table 4.6 Results for training data for patient A (point basis).

 

 

 

 

Epoch PCA k-NN k-NN GPAF

a 65.55% 65.55% 87.87%

A 67.89% 65.89% 67.10%

Overall 66.72% 65.72% 77.44%
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Table 4.7 presents the results for the validation data. The results for validation data are on

a block basis using the threshold previously defined (for point basis results, see Appendix

I). The table Shows the number of preseizure epochs (PSz), the number of baseline

epochs (BS), the number of false positives (FP), the rate of false positives as a percentage

(FP rate), the number of false negatives (FN), and the rate of false negatives as a

percentage.
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Figure 4.15 Receiver Operating characteristic curves from testing data.

Table 4.7 Results for validation data for patient A (block basis).

 

 

PSz BS FP FP rate FN FN rate

k-NN 3 3 0 0% 3 100%

PCA 3 3 0 0% 3 100%

GPAF 3 3 O 0% 0 0%
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While all classifiers Show good performance classifying all the baseline epochs correctly,

the GPAF classifier was the only one that classified all three preictal epochs correctly.

Figure 4.15 depicts the receiver operating characteristic (ROC) curve for the three

different classifiers. Although not close to an ideal curve, it shows that the GPAF

classifier exceeds the performance of the benchmark classifiers. Because the ROC curve

is a visual tool, we compare the three classifiers by also calculating the area under the

curve (AUC) of the ROC, an easier way to compare the performer among classifiers. The

AUC values for the classifiers are AUCLNN = 0.499, AUCPCA = 0.499, and AUCGPA}? =

0.688. Theoretically, the classifier cannot achieve an AUC worse than 0.5 because the

class labels could always be reversed; thus, the AUCLNN = 0.501 and AUCPCA = 0.501.

The AUC statistic Shows that the transformation provided by the artificial features

produces a better classifier system than the benchmark classifiers.

4.10.2 Patient B

For patient B, seizures were found coming from the right inferior temporal neocortex and

were diagnosed as complex partial. There were seven baseline epochs and five preictal

epochs for training and validation purposes. One baseline and one preictal epoch were

used to train the GPAF algorithm. The delay I for this patient was set to r = 30 (or 0.15 S)

based on autocorrelation calculations; thus, the terminal set was {x[n], x[n—30], x[n—60],

x[n—90], x[n—120], x[n—150]}.Equation (4.33) Shows the artificial features found for this

patient by way of the GPAF algorithm.
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400k+400

Yr [1‘]: Z x[n]-(x[n—30D2-

n=l+400(k—l) (4.33)

y2[k]= 400kz+4ooln(x[nD—x[n—90]+(x[n—150])22
n=l+400(k—l)

Table 4.8 shows point basis results for training epochs along with the results for the

benchmark classifiers, using a prediction horizon of five minutes. Table 4.9 Shows the

results for validation data on a block basis (see Appendix I for point basis results). All

baseline epochs were classified correctly by all the classifiers. On the other hand, the k-

NN and PCA k-NN classifiers missed two and three preictal epochs, respectively, while

GPAF failed to predict only one seizure. Figure 4.16 Shows the ROC curves for the three

classifiers. The k—NN has an AUCLNN = 0.735, the PCA k-NN an AUCPCA = 0.609, and

GPAF a AUCGPAF = 0.874. Looking at the ROC and AUC statistics, it is clear that the

GPAF classifier had a better performer.

Table 4.8 Results for training data of patient B (point basis).

 

 

 

 

PCA k-NN k-NN GPAF

a 68.46% 59.06% 92.29%

C 72.15% 83.56% 90.94%

Overall 70.40% 71.24% 91.62%
 

Table 4.9 Results for validation data for patient B (block basis).

 

 

PSz BS FP FP rate FN FN rate

k-NN 4 6 0 0% 2 50%

PCA 4 6 O 0% 3 75%

GPAF 4 6 0 0% 1 25%
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Figure 4.16 Receiver operating characteristic curves from testing data for patient B.

4.10.3 Patient C

This patient has complex partial seizures. Seizures were found to be multifocal, coming

from right and left inferior frontal neocortex, left temporal neocortex, and left

hippocampus. The delay was set to r = 31 (or 0.155 S) and thus the terminal set was

{x[n], x[n—31], x[n—62], x[n—93], x[n—124], x[n—155]}. For training and validation, we

have eleven baseline and eleven preictal epochs.

For this patient, only one artificial feature was needed. Equation (4.34) Shows the

GPAF formula derived. AS well as being relatively Simple, it used only three of the six

possible dimensions in the terminal set.

400k+400

.VIkI: _l Emk-llpgmhlnD-(fln—ISSDZ ~logm(cos(x[n—124])). (4,34)
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Table 4.10 presents the training results of the GPAF equation and benchmark classifiers

k-NN and PCA k-NN (the PCA algorithm reduced the dimensionality of the data to 1).

Table 4.11 shows the results for the validation data. The benchmark classifiers classified

correctly all the baseline epochs; however, the k-NN classifier missed one seizure

whereas the PCA k-NN classifier missed four seizures. On the other hand, the GPAF

classifier achieved a perfect classification. Figure 4.17 Shows the ROC curves. We note

that both k-NN and GPAF achieved near optimal curves (a Sharp 90-degree elbow along

the axes) in this case. From the figure, we can determine the AUC values, yielding AUCk-

W = 0.952, AUCPCA = 0.778, and AUCGPAF = 0.967. The GPAF algorithm not only found

a single artificial feature that achieved perfect classification (in the block basis sense), but

also a single feature, which uses just three out of six inputs available, that yielded a

higher accuracy classification in a point basis sense (see Appendix I).

Table 4.10 Results for training data for patient C (point basis).

 

 

 

 

Epoch PCA k-NN k-NN GPAF

a 85.95% 98.66% 96.66%

D 66.88% 87.27% 97.66%

Overall 76.42% 92.97% 97.16%
 

Table 4.11 Results for validation data for patient C (block basis).

 

 

PSz BS FP FP rate FN FN rate

k-NN 10 10 0 0% l 10%

PCA 10 10 0 0% 4 40%

GPAF 10 10 0 0% 0 0%
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Figure 4.17 Receiver Operating characteristic curves from testing data for patient C.

4.10.4 Patient D

This patient was diagnosed with complex partial seizures coming from the right inferior

frontal region. The delay for this patient was set at 1: = 27 (or 0.135 S). Therefore, the

terminal set was {x[n], x[n—27], x[n—54], x[n—81], x[n—108], x[n—l35]}. For training and

validation purposes, we had twelve baseline and eleven preictal epochs available. The

prediction horizon for this patient was five minutes, the default horizon. Following the

training procedure described earlier in this section, one baseline and one preseizure epoch

were used. However, when the GPAF algorithm was executed, it found a set of features

that achieved acceptable performance over the preictal epochs (six out of ten), but not

over some baseline epochs. Because of this, we decided to use two five-minute-duration

baseline epochs for the training process (plus the Single preictal epoch) thus giving the
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GPAF algorithm a better representation of the baseline data of this patient. Under these

conditions, two artificial features were found that achieved a more practical performance.

Equation (4.35) Shows the genetically-designed features.

400k+400 2

2.1/2F 2: 122.0(1212-271) 1212-271.
n=1+400(k—1)

(4.35)

400k+400

k = x n—54 +M.

Y2” n=1+§0(k—l)l [ ] x[n-81]

Table 4.12 Shows the results for the training epochs. Table 4.13 presents the validation

results (block basis) (see Appendix I for point basis results). It shows that the benchmark

classifiers, while correctly classifying all baseline epochs, also misclassified all the

preictal seizures (ten of them). On the other hand, the GPAF classifier misclassified one

baseline epoch and just four preseizure epochs (six seizures were predicted correctly five

minutes before the seizure occurred). Finally, Figure 4.18 Shows the ROC curve for

validation data (point basis). The ROC is not close to the ideal; however, it still does

better than the benchmark classifiers. To measure this, we calculated the AUC values

yielding AUCkNN = 0.519, AUCPCA = 0.513, and AUCgpAp = 0.673. Although, the AUC

for the GPAF is very far from the ideal 1, it is not nearly as close to the "coin-flipper"

case as are the benchmark classifiers k-NN and PCA k—NN.

Table 4.12 Results for training data for patient D (point basis).

 

 

 

Epoch PCA k-NN k-NN GPAF

c and e 70.57% 70.90% 83.61%

A 76.92% 72.24% 87.96%
 

Overall 73.75% 71.57% 85.79%
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Table 4.13 Results for validation data for patient D (block basis).

 

 

 

 

PSz Bs FP FP rate FN FN rate

k-NN 10 10 0 0% 10 100%

PCA 10 10 0 0% 10 100%

GPAF l 0 1 0 1 1 0% 4 40%
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Figure 4.18 Receiver operating characteristic curves from testing data for patient D.

4.10.5 Patient E

Patient E was found to have complex partial seizures coming from the left hippocampus

and left anterior temporal cortex. The EEG data include Sixteen baseline epochs and the

same number Of preictal epochs. Preictal epochs were extracted five minutes before the

UEO (unequivocal electrographic onset of seizure). The delay factor I was set to r = 49

(or 0.245 3). Consequently, the variables in the terminal set are {x[n], x[n—49], x[n—98],
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x[n—147], x[n—l96], x[n—245]}. For this patient, two artificial features were found, for

which equations are shown in (4.36).

 

 

 

 

 

 

 

n=l+400(k—l)

(4.36)

400k+400 2

Y2 M = Z (log10(x[n])) -

n=1+400(k—1)

Table 4.14 Results for training data for patient E (point basis).

Epoch PCA k-NN k—NN GPAF

g 74.16% 84.9% 85.23%

P 76.51% 74.16% 94.3%

Overall 75.42% 79.6% 89.63%

Table 4.15 Results for validation data for patient E (block basis).

PSz BS FP FP rate FN FN rate

k-NN 15 15 0 0% 6 40%

PCA 15 15 1 6.67% 6 40%

GPAF 15 1 5 1 6.67% 4 26.67%

 

Table 4.14 shows the results for the benchmark and GPAF classifiers evaluated with

the training data. The GPAF algorithm created two artificial features that for the training

data achieved about 10% higher correct classification than the benchmark schemes. Table

4.15 presents the results for the validation EEG data. The k-NN classifier misclassified

one baseline epoch and six preictal epochs. The PCA k-NN classified all baseline epochs

correctly, however, missed six preictal epochs. Finally, the GPAF classifier failed to

categorize one baseline epoch correctly, but also misclassified four preictal epochs; in
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other words, it was able to correctly predict two more seizures than the benchmark

classifiers did.

Figure 4.19 Shows the ROC curve. From this, we can calculate the AUC values

yielding AUCLNN = 0.821, AUCPCA = 0.749, and AUCGPAF = 0.884. Although the k-NN

classifier had good performance, the GPAF classifier had a still better AUC value. Also,

we need to remark that the k-NN classifier used all dimensions (six of them) in the

terminal set, whereas the GPAF features used just two inputs (states)——that is, x[n] and

x[n—I47].
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Figure 4.19 Receiver operating characteristic curves for patient E.

4.10.6 Patient F

This patient was diagnosed with complex partial seizures coming from bilateral regions.

Some seizures came from the left hippocampus and other seizures came from the right
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temporal region. This patient, though, had seven seizures in the data; one epileptic seizure

occurred very early in the recording, leaving us without enough data to extract ten

minutes prior to the UEO mark. Therefore, we had Six preictal epochs and eight baseline

epochs for training and validation purposes. Because the delay was equal to r = 55 (or

0.275 s), the elements of the terminal set are {x[n], x[n—55], x[n—llO], x[n—165], x[n—

220], x[n—275]}. Equation (4.37) Shows the GP artificial feature for this patient. Table

4.16 Shows the training results. The artificial feature achieved an overall improvement of

7% in classification accuracy over the benchmark classifiers.

400k+400

ylkl = Zcos(log.o(x[nl- x[n - 551»- (4.37)
n=l+400(k—1)

Table 4.17 shows the results for the validation data. Although the k-NN classifier

categorized all baseline segments correctly; it also misclassified one preictal epoch,

falling short by 0.79% (see Appendix I, epoch F) to be classified correctly at five minutes

before the UEO. On the other hand, the PCA k-NN and GPAF classifiers categorized all

epochs correctly. However, when the ROC curves are plotted in Figure 4.20, it shows that

the ROC curve for the k-NN classifier is closer to the ideal ROC curve than that for the

PCA k-NN classifier. In fact, the AUC values are AUCLNN = 0.979 and AUCPCA = 0.834.

Table 4.16 Results for training data for patient F (point basis).

 

 

 

 

Epoch PCA k-NN k-NN GPAF

a 84.56% 94.63% 86.91%

A 68.79% 78.19% 96.31%

Overall 76.59% 86.45% 93.65%
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Table 4.17 Results for validation data for patient F (block basis).

 

 

PSz BS FP FP rate PM PM rate

k-NN 5 7 0 0% l 20%

PCA 5 7 0 0% 0 0%

GPAF 5 7 0 0% 0 0%
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Figure 4.20 ROC curves from testing data for patient F.

None of those, however, surpassed the performance of the GPAF classifier, for which

AUCgpAp = 0.985.

Equation (4.37) shows that GP artificial feature used just two dimensions (or states),

x[n] and x[n—55], while the k-NN classifier necessarily used all Six dimensions in the

terminal set. In other words, the GPAF algorithm created an artificial that performs

slightly better than the k-NN classifier while using fewer—in this case, two—dimensions.
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On the other hand, although the PCA k-NN classifier classified all epochs correctly, it

reached an overall point basis classification of 78.2%, while the GPAF classifier reached

94.45%. Therefore, the GPAF is not just classifying epochs correctly, but also Classifying

those with high-accuracy, allowing a larger margin for error.

4.10.7 Patient G

Like most patients, this patient also suffered complex partial seizures, which came from

the left hippocampus and left inferior temporal neocortex. This patient had 31 seizures, of

which twenty seizures were subclinical seizures, SO only eleven were clinical seizures.

Although it is known that subclinical seizures are disruptive to the brain [59], in this

work, our target is the prediction Of clinical epileptic seizures. In the next chapter, we

discuss subclinical seizures more fully, in the context of the seizure detection (rather than

prediction) problem.

There were eleven preseizure epochs and eleven baseline epochs for training and

validation processes. The delay was r = 33 (or 0.165 s) and terminal set was {x[n], x[n—

33], x[n—66], x[n—99], x[n—132], x[n—165]}. Initially, in the training phase, we used one

baseline epoch and one preictal epoch, yielding a set Of artificial features that had good

performance on preictal data; however, they displayed poor performance on non-training

baseline data, classifying some epochs correctly but other epochs completely wrong.

Therefore, we decided, again, to use two five-minute-duration baseline epochs from two

different timefrarnes in the training data in order to give to the GPAF algorithm a better
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representation of the baseline data of this patient. Using these data, the GPAF algorithm

was able to design the features shown in Equation (4.38).

yIIkI= ‘”§18.,(.[.-22p.1.[.1.

 

 

 

 

n=l+400(k—l)

(4.38)

400k+400 1

y2[k]= z cos[(x[n_66])z]+|x[n-99]_(x[n]+tog(x[n])).
n=l+400(k-l)

Table 4.18 Results for training data for patient G (point basis).

Epoch PCA k-NN k-NN GPAF

a and h 49.83% 67.89% 79.26%

A 50.17% 38.8% 81.94%

Overall 50% 53.35% 80.36%

 

Table 4.19 Results for validation data for patient G (block basis).

 

PSz Baseline FP FP rate FN FN rate

 

k-NN 8 8 2 25% 4 50%

PCA 8 8 0 0% 8 100%

GPAF 8 8 2 25% 3 37.8%

 

Table 4.18 Shows the results for the GPAF equations. It also shows the results for the

benchmark k-NN and PCA k-NN classifiers. In Table 4.19, the validation data results are

presented. The k-NN classifier misclassified two baseline epochs and four preictal

epochs. The PCA k-NN classified all baseline epochs correctly but misclassified all

preictal seizures (eight of them). Finally, the GPAF classifier misclassified two baseline

and three preictal epochs. The GPAF classifier, compared against the k-NN classifier,

could predict one more seizure correctly. Figure 4.21 Shows the ROC curves. The areas
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Figure 4.21 Receiver operating characteristic curve for validation data.

under curve are AUCk-NN = 0.632, AUCPCA = 0.469 (or 0.531 by the worst binary

classifier argument), and AUCGPAF = 0.733. Again, the GPAF classifier achieved better

performance than the benchmark classifiers by Obtaining an overall 9.64% increase in

correct classification (for the point basis results, see Appendix I) over the k-NN classifier

and an overall 18.33% increase in correct classification (on the point basis) over the PCA

k—NN. This means that the GPAF classifier classified epochs correctly with higher

accuracy than its benchmark counterparts.

4.11 Discussion

In this section, we summarize the results described in the preceding subsections. Table

4.20 shows the overall results where the performance of the benchmark classifiers and the
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GPAF classifier are measured counting all the epochs. We have a total of 59 baseline

epochs and 55 preseizure epochs. The table shows that the number of baseline epochs

misclassified was small, with the GPAF classifier misclassifying more, 4 out of 59, for a

false positive rate of 6.78%. On the other hand, the k-NN classifier Showed poor

prediction performance by missing 27 out of 55 seizures (or it correctly predicted 28

seizures) for a false negative rate of 49.09%. The other benchmark, the PCA k-NN

classifier, obtained the worst performance, misclassifying 34 of 55 preseizure epochs (it

correctly predicted only 21 seizures). It resulted in a 61.82% false negative rate. The high

false negative rates yielded by the benchmark classifiers make them impractical for

clinical purposes. On the other hand, the GPAF classifier was able to predict 43 preictal

epochs out of 55 (it missed twelve Of them), yielding a 21.81% false negative rate. These

results make the GPAF classifier by far the best Of the three classifiers, for this purpose.

Table 4.20 Overall results for all three classifiers.

 

 

PSz BS FP FP rate FN FN rate

k-NN 55 59 3 5.08% 27 49.09%

PCA 55 59 1 1.69% 34 61.82%

GPAF 55 59 4 6.78% 12 21 .81%

 

It is clear that the artificial features crafted by the GP algorithm play an important

role in getting a better separation of the classes and thus Obtaining a better classification.

Also, we make clear that the block basis classification depends on what value is set for

the threshold used to transform from point basis to block basis classification. For all

patients evaluated above, this threshold was set to 65%. However, if we move the

threshold to a lower value, we would have an increase in the number of preictal epochs
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classified correctly. For example, consider Patient D. If we set the threshold to 50%, the

block basis classification rate changes drastically. Table 4.21 presents the results with the

new threshold. The k-NN classifier now misclassifies two additional baseline epochs, but

is able to predict four seizures, unlike when using 65%, when all seizures were missed.

The PCA classifier misclassified most of the baseline epochs (seven of them) while

classifying correctly seven preseizure epochs. Finally, the GPAF classifier misclassified

two more baseline epochs and classified correctly one additional preictal epoch (it missed

only three seizures). A reduction of the false negative rate was obtained at the expense of

an increase of the false positive rate. However, the GPAF still was not drastically affected

by the new threshold given its superior point basis classification.

Table 4.21 Results for validation data on block basis for patient D using 50% threshold.

 

 

PSZ BS FP FP rate FN FN rate

k-NN 10 10 3 30% 6 60%

PCA l 0 l 0 7 70% 2 20%

GPAF l 0 l 0 3 30% 3 30%

 

The overall point basis classification using the GPAF classifier was 65.10% (with a

standard deviation i 32.16%), whereas the overall point basis classification for the k-NN

was 51.49 at 15.32%, and the overall classification using the PCA k-NN was an average

of 50.86% with a standard deviation i15.44%. The mean of the GPAF classifier was

roughly 15% over the average of the benchmark classifiers (the standard deviation was

high because one baseline and three preictal epochs were poorly classified). This means
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that the GPAF classifier yielded a high-accuracy classification, so we were able to define

the threshold for the block-basis decision with higher confidence.

The overall average of the point-basis classification accuracy of GPAF across all

patients was 78.55 _+_ 25.26%, whereas the PCA k-NN classifier achieved 62.46 i 17.75%

and the k—NN classifier achieved 69 at 23.53%. The GPAF classifier surpassed the best

benchmark classifier, the k—NN, by about 9% in the mean. The GPAF classifiers achieved

an average prediction time of 4.43 minutes (before UEO).

4.12 Statistical Test

However, this comparison is not sufficient to establish whether our algorithm is better or

not. Therefore, we wished to perform a statistical test. TO determine whether the

statistical test Should be parametric or nonparametric, we plotted the probability density

functions (PDF) of the classification of the epochs across all patients (114 epochs in total)

for the three different algorithms. Figure 4.22 depicts the PDFS.

From the figure, it is easy to determine that the PDFS are not normally distributed; a

nonparametric statistic test should be employed. We selected the Mann-Whitney U test

[81], also called the Wilcoxson test. Although nonparametric tests are not as powerful as

parametric tests, according to Conover [13], a comparison of the relative efficiency

between the Mann-Whitney test and the two-sample t-test, which is parametric, is close.

We are interested in knowing whether the GPAF algorithm’s performance is equal to or

better than the benchmark algorithms’ performances, across the ensemble of data. Thus,

the hypothesis for the statistical test is as follow:
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Figure 4.22 PDFS for the percentage of correct classification of the epochs for the three

algorithms (from Appendix 1).

Ho: E[X] = E[Y]

Ha: E[Y] < E[X],

where H0 is the null hypothesis, Ha the alternative hypothesis, X denotes the epochs

(4.39)

processed with the GPAF algorithm, Y denotes the epochs evaluated with the PCA k-NN

and is E[] is the expected value. Also, a Wilcoxson test was established between the

GPAF classifier and the k-NN classifier with the hypothesis

Ho: E[X] = E[Z]

(4.40)

Ha: E[Z] < E[X],

where Z denotes the epochs processed by the k—NN classifier. The level Of significance or

was set to 0.05. Because 114 samples (number of epochs) are considered a large number,

the P-value is calculated using a normal (2) distribution (by means of the central limit
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theorem). For the hypothesis in Equation (4.39), the statistical test value was 6.59 and the

P-value was 4.54><10'll z 0. The critical value (the value that must be exceeded in order

to reject the null hypothesis) for one-tailed, or = 0.05, was 1.659. Therefore, the null

hypothesis is rejected and the alternative hypothesis is accepted. That is, the expected

value (or mean) of the GPAF classification is larger than the mean of the PCA k—NN

results. In the second case, for the hypothesis in Equation (4.40), the statistical test value

was 3.61 and the P-value was 3.09X10'4, which indicates that the null hypothesis was

rejected and the alternative was accepted, because the critical value was 1.659. In other

words, the mean of the GPAF results was larger than that of k-NN classifier. Therefore,

the statistical tests state that the improvement in the mean performance of the GPAF over

the other two methods is statistically Significant to a very high level, well beyond the 5%

level represented by a critical value of 1.659. Of course, the statistical test results do not

necessarily imply that the GPAF algorithm is better than the benchmark classifiers but

just simply assure us that the GPAF results are better.

4.13 Generic GPAF Equations

Ideally, it is desirable to find not just a good predictor for a given patient, but also a

general set of features that will work for all patients by tuning a set of parameters to

customize the predictor for the needs of such patients. Although such an approach has

been proposed in the past, little effort has been exerted in this direction—in part because

of the lack of an algorithm that allows researchers to explore the precursor patterns to

predict seizures directly from the raw EEG data.
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In this section, we present the results of an experiment intended to find a set of artificial

features or a generic predictor model that yields acceptable results. In the experiment, we

set the number of artificial features to three. A holdout validation technique was used for

training and validation purposes, where the baseline and preictal epochs were clipped to

five minutes, in order to reduce the computation load. Preictal epochs were the five

minutes immediately leading to the UEO, except for patient A, for whom EEG data were

extracted up to one minute before the UEO. Additionally, we used the same delay values

previously determined for each patient in the terminal set. That is, during training, when a

given patient was being evaluated, the algorithm set its delay values in the artificial

features to integer multiples Of that patient’s autocorrelation time. The parameters of the

GP were set the same as before except for the number of generations, which was

increased to 250 because of the complexity of the problem.

Equation (4.41) Shows the artificial features found by the GPAF algorithm.

Surprisingly and interestingly, the GPAF algorithm came up with a set of artificial

features that yielded an acceptable, but also, surprising, result.

400k+400

yr ik] = ZX[n]+ logz (ln(x[n - 2T]))+ ln(x[n — TI) .

n=l+400(k—l)

400k+400

yzlki= ZX[n—T]+x[n—5T].
(4-41)

n=l+400(k-l)

400k+400

y3 [k] = leln — T].

n=l+400(k—l)
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Table 4.22 Validation results for seven patients.

 

 

 

Patient PSz BS FP FP rate FN FN rate

A 3 3 0 0% 1 33%

B 4 6 0 0% 2 50%

C 10 10 0 0% 0 0%

D 10 10 1 10% 3 30%

E 15 15 1 10% 4 26.67%

F 5 7 0 0% 0 0%

G 8 8 2 25% 7 87.5%

Overall 55 59 4 4.5% 17 22.71%
 

Table 4.22 shows the results for the validation data. Overall, the set of features

misclassified just 4 of out 59 baseline epochs for a rate 4.5% of false positives, whereas

17 preictal epochs out of 55 were not classified correctly for a false negative rate of

22.71%.

Comparing these results against those of the previous section, where a set of features

was optimized for each patient, reveals that Equation (4.41) misclassified the same

number of baseline epochs, while missing five seizures more than were missed

collectively by the artificial features shown in the previous section. Most of those

misclassifications were on patient G, in which just one seizure was predicted. Similar to

results presented before for patients C and F, the Equation (4.41) also achieved perfect

classification. The average overall accuracy achieved was 76.79 i 27.56%, roughly 2%

less in the mean than that achieved by the “customized” artificial features, although the

standard deviation was also a little higher. The results from Table 4.23 demonstrate that it

is possible to optimize a generic model to capture the characteristics of individual
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patients. These results might pave the way for more research on a general model that

captures the dynamics hidden behind the epileptic seizures.

4.14 Training the GPAF Algorithm Using the Leave-One-Out Method

It is generally desirable to train a classifier using the leave-one—out cross validation

method. The leave-out-one method (LOO) tends to extract from a given dataset the model

with the highest classification accuracy, as it uses the largest possible training set against

which to perform each remaining testing classification, but at the price of the highest

requirements for computation. This computational expense is precisely the reason that the

LOO method was not chosen as the training method for most runs of the GPAF

algorithm. Nonetheless, as a way to reinforce this work, we provide the results for a

patient evaluated with the GPAF algorithm using a leave-one-out method.

Data from patient B were selected for the experiment. The total number of epochs

available, twelve, created too much processing load for use in a full LOO method;

therefore, three baseline epochs (a, c, e) and three preictal epochs (C, D, E) were

randomly selected from the twelve epochs available for this patient. Since only these six

datasets will be used for both training and validation, the analysis corresponds to LOO

for that universe of Six datasets, and demonstrates the sorts of gains in accuracy available

with more computational resources.

To train, we set the algorithm to leave one baseline and one preictal epoch out for

validation and to use the remaining four for training, doing this with all combinations of

baseline and preictal epochs. The parameters for the GP algorithm and k—NN classifier
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were set the same as before. The number of features was set to two, thus producing two

artificial features. The terminal set for the patient was the same, given that the delay

value was unaltered.

Equation (4.42) Shows the equation found by the GPAF algorithm using LOO cross

validation for patient B. The first artificial feature y1[k] is the signal energy of the state

x[n—60]. Table 4.23 provides the results using the LOO cross-validation, where Pc

denotes the percent of correct classification.

400k+400

y. [kl = Z (x[n -- 60])2 .
n=1+400(k—l)

(4.42)

400k+400

yzlk]= Zx[n-90]-(x[n-150]—x[n—120D.

n=l+400(k-l)

Table 4.23 Results using leave-one-out cross validation.

 

 

Epochs Pc

a, C 79.3

c, D 84.31

e, E 85.14

a, D 77.63

a, E 68.78

c, C 73.96

e, C 80.63

c, E 78.46

e, D 86.14

 

Average 79.59 i 5.94 %
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According to the results from the table, using the LOO method, the GPAF equations

achieved good, low-variance classification results even when epoch E, which in holdout

validation was misclassified, iS included (see Appendix 1, patient B). These results Show

that to design good artificial equations with high accuracy and low-variability, the leave-

One-Out method can definitely be useful. However, when running many experiments,

such as was done here, across many patients, it would have required an impractically

large computer resource. In this work, there were large archives of EEG signals,

containing many epochs, but use of all of them would have consumed more computer

time than was available. This LOO run demonstrates that better accuracy could be

obtained for clinical application if Significant computing resources were available for

analyzing each patient’s EEG signals, or if a satisfactory cross-patient model could be

found.

Finally, we want tO remark that the GPAF algorithm did not just design artificial

features with unknown physical meanings, but was able to produce some interpretable

equations that are well known to researchers in epilepsy. In this case, the GPAF

algorithm designed a feature measuring the energy of the Signal, which is one Of the

conventional features used for prediction and detection of epileptic seizures.

4.15 Comparison with Another Proposed Method

Because the benchmarks used for comparison with the GPAF algorithm in this chapter

are neither proven nor well-known methods for extracting features to predict epileptic

seizures, in this section we would like to compare our results with another reported
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method that used the same EEG database. In Chapter 2, we briefly discussed a method

proposed by D’Alessandro et al. [15], in which a GA was used to find a set of

conventional features (and channels or electrodes) that best predicted seizures, while at

the same time having a l‘Ow false positive rate. Table 4.24 shows the average results

reported in their work, where “baseline tested” is the number of ten-minute-duration

epochs used for the experiments, “preictal tested” is the number of preictal epochs used

for the experiments, “FP rate” is the fraction of baseline epochs misclassified, “FN rate”

is the fraction of preictal epochs misclassified, and FPH is the rate of false positives per

hour. The table also displays the results Obtained by the GPAF algorithm’s customized

equations and the generic (cross-patient) GPAF equations (denoted as “Gen. GPAF”).

The table shows that both GPAF-generated sets of features had better performance than

the D’Alessandro’s method. However, it is clear that we tested a lower number of

baseline epochs. Additionally, D’Alessandro et al. reported an average prediction time of

3.46 minutes (before UEO), whereas the GPAF and generic GPAF achieved an average

prediction time of4.43 minutes (before UEO).

We need to consider that in [15], the authors used 70% (they had 46 preictal epochs)

of the preseizure data available for training, while the rest was used for validation

purposes. For this reason, surrogate preictal data sets were artificially generated to

increase the amount of the preictal data available. The authors did not indicate how many

surrogate epochs were generated (therefore, the preictal tested cell just indicates that

more than 46 seizures were used). In contrast, we used roughly 11% percent of the

preictal data available (we had 62 preictal epochs in total) for training purposes, and 89%
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of the data for validation purposes. This reliance on only a smaller set of training data

appears to be another advantage of the GPAF method.

Even though the comparison is not under completely identical conditions, Since

training and validation sets are not the same, the data are drawn from the same pool, and

the results favorable over pre-existing methods. Results do not demonstrate that our

algorithm outperforms D’Alessandro’s approach in all respects, but simply indicate that

the GPAF algorithm produced promising results that are worthy of further investigation.

Table 4.24 Comparison of D’Alessandro’s algorithm and GPAF results.

Number Baseline Preictal

 

 

 

System Patients Tested Tested FP Rate FN Rate FPH

D’Alessandro 4 276 +46 9.53 37.5 0.278

GPAF 7 59 55 6.78 21.81 0.068

Gen. GPAF 7 59 55 6.78 30.91 0.068

4.16 Summary

This chapter presented the application of the GPAF algorithm, introduced in Chapter 3, to

design of a set of artificial features helping to predict epileptic seizures. The theory

behind the reconstruction of the state-Space trajectory for a chaotic system was explained

early in the chapter. We reconstructed the state-space trajectory for a time-varying

empirical model of the EEG. Those reconstructed dynamic variables were input to the GP

algorithm, which designed a set of artificial features to separate the baseline data from the

preictal data. The discrimination task was carried out by the classifier component of the

GPAF algorithm—in this case, a k-nearest neighbor classifier was used. By implementing

the GP algorithm as the search engine for artificial features, using the delay embedding
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scheme as input data to the GP, and adding more functions to the function set of the GP,

we addressed every one of the suggested recommendations by the author in [30] and

stated in Section 3.1.

The algorithm was evaluated over seven patients: six with a prediction horizon of

five minutes, and one with prediction horizon of one minute before the UEO. Results

from two benchmark classifiers were used to compare against the results of the GPAF

algorithm. In all the experiments carried out, the GPAF-designed features surpassed the

performance of the benchmark classifiers, yielding high accuracy on a point basis as well

as on a block basis.

Although the training for the customized artificial equations was carried out using

holdout validation, because of computing resource limitations, we carried out an

experiment using a reduced LOO cross-validation on Six epochs from patient B, which

produced a pair of artificial features that yielded good results with high confidence.

Results in this chapter also illustrate that, although a unified model for the epilepsy

prediction problem is still far from trivial, the design of optimized, nontrivial features for

each patient makes viable a custom-implantable device with the artificial features

integrated into the chip.

Finally, we evaluated an algorithm to design a generic set of artificial features that

works across patients, using only one pre-calculated patient-Specific characteristic, the

delay parameter. The results were much better than expected, yielding three simple

equations that predicted the epileptic seizures across patients, better than the benchmark
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classifiers. These equations are a step forward in the search for a general model for

epilepsy prediction.

In the next chapter, we use the GPAF algorithm to design features for detection

(rather than prediction) of epileptic seizures—a relatively easier problem, yet still far

from trivial.
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Chapter 5

Detection of Seizure Onset by Means of GPAF

In this chapter, we discuss the development of features that can help detect, with high

accuracy, the onset of seizures. We then present the application of the GPAF algorithm

for the detection case. It will be implemented in different patients such that the algorithm

can create a feature that has a detection rate similar to or better than that of the

benchmark classifier.

5.1 Why Detect Onset of Seizures?

At first glance, detection of seizure onset does not seem very beneficial, from a medical

point of view, if it is compared with the obvious benefit offered by prediction of such

attacks. However, the truth is that detection of seizure onset is as important as prediction

of seizures. There is one benefit from a diagnostic perspective and two potential benefits

from a therapeutic perspective:

0 To diagnose what area of the brain is generating the seizures. Patients with

epileptic disorders that are untreatable with current medications are candidates for

surgery. Evaluation of surgical candidates consists of hospitalization, stopping all

anti-seizure medications and any other such treatment, inserting EEG probes, and

observing patients to determine in what area of the brain seizures are generated. If

seizures are generated in critical areas of the brain, the subject is rejected for
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surgery; otherwise, surgery is possible. In some cases, the patient presses a button

each time he or She feels that an attack is imminent. This procedure can be done

by only about 50% of the patients with MTLE who maintain volitional control of

their finger at the start of seizure [5]. Monitoring also includes video recordings in

order to visually confirm clinical events. Review of such video is an exhaustive,

tedious, and time consuming process. In the video recording analysis, labeling of

seizures is limited to those that are clinical seizures (i. e., the patient exhibits

clinical symptoms of seizure during the convulsion); therefore, subclinical

seizures—those where the patient does not exhibit any externally observable

symptoms—are not labeled as seizures. Developing an algorithm that can detect

all the (clinical and subclinical) seizures and record the time when the seizures

occurred, regardless of the patient’s display of clinical symptoms, would give the

neurologists a more accurate “profile” of the brain Of the patient. It could also

allow performing surgeries after a shorter period of observation.

Early detection can trigger immediate therapy. If early detection of seizures can

be achieved by a detection algorithm, therapy (e.g, drug or an electrical stimulus)

from an implantable device could be initiated, avoiding a seizure’s complete

evolution and allowing the patient to continue doing ordinary daily activities like

driving or talking, without any clinical consequence like loss of consciousness or

suffering of convulsions.

A chronic therapeutic effect on patients. Just as traditional medications, used to

attempt to control or relieve a given condition, must often be administered over an
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extended time period (e. g., antibiotics usually require days to weeks to kill

bacteria), similarly extended treatment may be needed to see all the beneficial

therapeutic effects of an implantable detection device firing an electrical stimulus

each time the device detects epileptiform activity (i. e., abnormal behavior of the

EEG signals). It is hypothesized that such extended treatment may have a chronic

therapeutic effect on the patient, reducing the number of epileptic seizures that are

suffered and thus improving the quality of life of the patient.

5.2 lctal EEG Signals

Unlike preictal Signals, in which no obvious sign is visible, in ictal Signals, noticeable

changes can be observed throughout the evolution of the seizure. This means that

detection of EEG seizures is somewhat easier than prediction of seizures. The ictal period

includes the Unequivocal Electroencephalographic Onset (UEO) of the seizure, the

indicator observable by EEGerS that denotes that a seizure is starting. Figure 5.1 depicts

an ictal Signal of two minutes duration.

Patients’ data used for these experiments were the same as in Chapter 4; thus, so are

their clinical profiles. In the training phase of the experiments, we used baseline and ictal

epochs of two minutes duration, thus containing 24,000 points each (recall EEG Signals

were sampled at 200Hz). For ictal epochs, we used one minute of data before the UEO

and one minute of data after it (for example, see Figure 5.1). The training set for each

patient was three baseline epochs and three ictal epochs.
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Figure 5.1 A two-minute duration ictal Signal. The dashed line indicates the UEO.

Whereas in Chapter 4 the extracted baseline and preictal epochs of ten minutes duration

were used for validation purposes, in this chapter, in the validation stage, we used the

entire EEG archive available for each patient. Because the detector is less sensitive than

the predictor, the detector Should be able to ignore artifacts that might be considered by

the predictor as precursors of an epileptic seizure. Yet, afier classification Of the

validation data was completed, further analyses were conducted to verify that any false

positives were not due to one ofthose artifacts.

5.3 Detection with GP Artificial Features

Although detection of seizures is not as hard as prediction of seizures, the problem is still

far from trivial. Many algorithms and methods have been developed to do such tasks, of

which several were cited and briefly discussed in Chapter 2; however, most algorithms
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still fail to detect some seizures. In this chapter, we apply the genetic programming

artificial feature (GPAF) algorithm to create a feature that finds a pattern or gives a

transformation that delivers more separability between baseline and ictal classes, with a

similar or better classification rate than the benchmark classifier that was explained in

Section 4.7. In other words, this transformation will make the task of the classifier (i. e.,

categorization) easier; therefore allowing detection of the seizures with higher accuracy.

The implementation of the GPAF algorithm for detection is exactly as was explained in

Section 4.4, with the GP algorithm using the same cost firnction as presented in Section

4.6.

Unlike the prediction case, where a whole preictal epoch was labeled as belonging to

one class, in detection, we need an additional labeling detail because the ictal data are

clipped. For ictal epochs, the first minute before the UEO was labeled as baseline data

and the rest of the epoch (i. e., the minute ofEEG data after the UEO) was labeled as ictal.

Figure 5.2 depicts the new classification labeling (the EEG signal was normalized to

one). Figure 5.2 makes this clear. The one-minute-EEG data before the UEO has an

amplitude similar to baseline data. Given that for the detection case a large part of the

information used to detect seizures is provided by the amplitude of the signal, it is

reasonable that our previous labeling (of the whole epoch as belonging to one class)

would be confusing to the GPAF (or any other) algorithm.

The GP algorithm used the same fitness function as in the previous chapter.

Therefore, we measured metrics such as the numbers of false positives and false
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negatives. In this chapter, we sought to achieve a false negative rate of 10% or less and

no more than two false positives per day (or a false positive rate of 0.0833 per hour).
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Figure 5.2 Classification labeling for a two-minute ictal epoch. The dashed-straight line

(step) indicates the classification for this epoch.

5.4 Benchmark Feature

In the case of seizure prediction, a benchmark had to be created against which to compare

the GPAF algorithm. However, in the seizure detection case, a benchmark was already

available. It is a conventional (handcrafied) feature called line length or curve length that

may well be the best one implemented to date for detection of epileptic seizures [25].

Equation (5.1) shows the mathematical expression.

LL(k)= i]x[n]—x[n— l]. (5.1)

n=k-L+l
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Although the equation is simple, the feature can detect abrupt changes in a given signal;

and that is precisely the characteristic activity that present when a seizure occurs. That is,

the line length feature is sensitive to sudden changes in the amplitude (it is the discrete

analog of the absolute value Of the derivative of the function) and frequency. Line length

linearly tracks AM and FM activity in a signal.

 

 

x[n] y[k]

— LL(k) —b

  

 

 

   
EEG signal Line-length Classifier

Figure 5.3 Line length feature benchmark classifier.

In this chapter, we compare the results of the GPAF algorithm against the results

provided by the k-NN classifier after processing the EEG data using the line length

feature. Figure 5.3 shows an illustration Of the benchmark classifier using the line length

feature, where x[n] is the EEG signal, y[k] is the output of the line length, (y[k] is

calculated from Equation (5.1), and we have used the y[k] notation to be consistent with

previous equations and diagrams), and c denotes the output label of the classifier. This

benchmark does not use the delays used for the GPAF algorithm. However, Equation

(5.1) can also be viewed as a state-Space reconstruction using two dimensions x[n] and

x[n—l] (that is, the embedding dimension is two), with the delay T = 1.
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5.5 Decision Integration Window

As in the seizure prediction experiments, detection experiments were conducted using a

point basis, where each point in an artificial feature epoch counts as one example, i.e.,

each point k is an example for the classifier (see Figure 4.14). Similarly, if, for instance,

an implantable device (with GPAF features integrated) classified each t seconds over an

incoming EEG signal, the device could not be allowed to medicate the patient based on

the decision that the classifier makes each At seconds. The device needs a longer, fixed-

length window, so that it can observe the past evolution of the point-basis classification

during a defined period to decide whether or not a patient is suffering a seizure. Even

when this window is buffered, the point basis creates too much flickering at the binary

output. We denoted the length of this window as LDIW. This parameter controls a tradeoff

between the number of false positives and the detection delays of seizures (thus, it also

controls the number of seizures that are detected; however, because most seizures are

detected sooner or later given the sudden and large changes on the EEG signal’s

amplitude, what is also of great interest is how early those seizures can be detected). How

the length of the window affects the number of false positives, false negatives, and

detection delay is as follows:
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False

. . Increase Decrease

Posrtrves

False

. Decrease Increase

Negatives

Detection

Decreases Increases

Delay
 

129



This parameter can be fixed as a constant for all patients, that is, the same LDlw value for

all the patients. However, this parameter allows more flexibility in our approach, to make

the system tunable for better patient-Specific performance. Here we selected LDIW by

trial-and-error, but the ability of the GP algorithm to automatically select the optimal

parameter will be investigated in the future.

The detection algorithm uses the concept of a time tolerance. A detection will be

considered to be made correctly up to one minute before and through one minute after the

UEO. If the detector detects the seizure earlier than a minute before UEO, it is considered

a false positive; whereas if the seizure is not detected within one minute after the UEO, it

is considered a false negative.

5.6 Results

The feature-sampling periods for creating the data sets were different. Since the relative

amplitude variability of the EEG signals at the moment of an attack is much higher than

the relative variability of the preictal EEG (see Section 4.2), features were generated

every 0.125 seconds. Therefore, the length of the Sliding window was set to D = 50 points

(0.25 s) and L = 200 points (1 S). The same Sliding window parameters were used for the

curve length feature. Thus, the number of points in an epoch processed by the GP-

generated equation K was 477 points. Holdout validation was used as training technique.

The training data consisted of three baseline and three ictal epochs for each patient.

Euclidean distance was set as the metric and the number of nearest neighbors for the k-

NN classifier was set to k = 5, a value typically used. The classifier was set to output one
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when ictal data are present (that is, a seizure is being detected) and zero otherwise.

Finally, as stated before, the embedding dimension was set to six.

In the experiments, the Low parameter was set identical for both the GPAF

algorithm and the curve length benchmark for each patient.

In these experiments, we set the number of trees for each individual in the GP

module to two; that is, the GPAF algorithm created two artificial features for each

patient. Also, the GP algorithm used the same set of functions presented in Section 4.8.

The maximum depth for a tree was set to 10 and the population Size to 1000 individuals.

The initial population was generated using the ramped half-and-half method. A crossover

operator with a rate of 0.9, fitness proportional selection, and a mutation operator with a

rate of 0.1 were used.

5.6.1 PatientA

This patient suffered six seizures through 45.0 hours of EEG recording. Based on

autocorrelation analysis of the ictal signal, the delay was set to T = 19 (or 0.095 s) and the

terminal set was {x[n], x[n—19], x[n—38], x[n—57], x[n—76], x[n—95]}. Equation (5.2)

shows the artificial features found by the GPAF algorithm for the detector of this

patient’s seizures. Table 5.1 provides the results for GPAF and curve length equations,

where FP denotes the number of false positives, FPH is the rate of false positive per hour,

FN denotes the number Of false negatives, LDIW is the length of the decision integration

window, ADT denotes the average delay of detection time, S2 is the number Of seizures

131

 



that occurred throughout the EEG archive, and HP is the number of hours of EEG

recordings processed.

This patient had a high average Of detection time because one seizure was detected

with an outlier delay of 35.75 s. For this patient, the traditional curve length measure

outperformed GPAF, overall.

yl[k]= sogso (x[n—76D2

n=l+50(k-l) 108(xl” “191).

 

 

 

(5.2)

50k+150

yz [k]: Zx[n—95]-x[n— 76].

n=1+50(k—l)

Table 5.1 Results for validation data for patient A.

System FP FPH FN me ADT 82 HP

GPAF 6 0.133 0 3.75 3 15.67 s 6 45.0

Curve length 5 0.111 0 3.75 s 7.67 s 6 45.0
 

5.6.2 Patient B

Through 46.2 hours Of EEG recording, this patient suffered 5 seizures. The delay was T =

11 (or 0.055 S) and terminal set was {x[n], x[n—l 1], x[n—22], x[n—33], x[n—44], x[n—55]}.

Equation (5.3) Shows the equations designed by the GPAF algorithm. Additionally, Table

5.1 provides the results Obtained from the validation of the GPAF equations and the curve

length feature. The table Shows that using the GPAF equations, just one false positive

occurred. GPAF was able to detect all five seizures that occurred. In addition, the GPAF-

based detector was able to achieve a lower average detection delay.
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Figure 5.4 A seizure from patient B, which depicts a beta-buzz pattern.

 

 

 

50k+150

y][k]= Zloglo(x[n-l l]—x[n—22]+‘lxIn—11]).

n=l+50(k—l)

(5.3)

50k+150 IO x n _ 1 1

Y2Ik1= 2 log,[ g2([ D J

n=l+50(k-l) xi" — 331+ x[n — 44]

Table 5.2 Results for validation data for patient B.

System FP FPH FN me ADT 82 HP

GPAF 1 0.022 0 3.75 s 1.15 5 46.2

Curve length 1 0.022 0 3.75 S 4.35 5 46.2

 

A good average Of detection delay was achieved because this patient had a

characteristic pattern called “beta-buzz” in which the amplitude dramatically drops before

the UEO. Figure 5.4 Shows the characteristic pattern, which occurs a few seconds before

the UEO that is located exactly at one minute in the plot. Summarizing across measures,
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GPAF never under-performed the curve length detector, and outperformed it on average

time to detection.

5.6.3 Patient C

This patient had an archive of 65.7 hours of EEG recording, in which eleven clinical

seizures were diagnosed. The delay was T = 19 (or 0.095 s) and terminal set was {x[n],

x[n—19], x[n—3 8], x[n—57], x[n—76], x[n—95]}. The pair of artificial features found by the

GPAF algorithm is in Equation (5.4). Table 5.3 shows the results for the validation data,

where zero false positives and thus a zero false positive rate per hour occurred and all

eleven seizures were detected. Finally, though not better than the curve length, the

artificial equations produced a low average of detection delay.

ytlkl= '2" [21221-W]

 

 

 

n=l+50(k-l) x[n 95] (5 4)

y [k]: 150k+50 I (x[n _19]_ x[n])2 l

2 n=l+150(k—1)“log10 (10810 (x[n " 38Dl|

Table 5.3 Results for validation data for patient C.

System FP FPH FN LDIW ADT 82 HP

GPAF 0 0 0 3 S 1.93 S 11 65.7

Curve length 0 0 0 3 s —l.82 s 11 65.7

 

5.6.4 Patient D

This patient has 156.4 hours of EEG recording in which eleven clinical seizures were

found. The delay was T = 9 (or 0.045 S) and the terminal set was {x[n], x[n—9], x[n—18],
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x[n—27], x[n—36], x[n—45]}. Equation (5.5) Shows the artificial functions found by the

GPAF. Some very interesting results were found for this patient. The first artificial

equation y1[k] is the curve length feature, but with delay of 9 instead of 1. AS seen in

Table 5.4, the GPAF equations and the curve length both performed well, producing no

false positives or false negatives, and the average detection delay (ADT) with GPAF was

lower than that with curve length.

y1[k] = ”gm" - 9]— x[n].

 

 

n=l+50(k—l)

(5.5)

50k+150

yzM = 2'34"]

n=l+50(k—l)

Table 5.4 Results for validation data for patient D.

System FP FPH FN Lplw ADT 82 HP

GPAF O O O 2.75 S 2.1 s 11 156.4

Curve length 0 0 O 2.75 s 4 s 11 156.4

 

5.6.5 Patient E

This patient has the longest EEG archive, lasting 197.3 hours, in which fifteen seizures

were found. The delay was I = 9 (or 0.045 s) and the terminal set was {x[n], x[n-9], x[n—

18], x[n—27], x[n—36], x[n—45]}. The pair of artificial features is presented in Equation

(5.6). Table 5.5 provides the results for both the artificial features and the curve length

feature. Both of them produced the same number of false positives, providing a false

positive rate of 0.025 per hour, which is acceptable. All seizures were detected, with the
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GPAF features producing a slightly better average delay of detection although this

difference does not appear to be statistically Significant.

 

 

50k+150

yl[k]= Zx[n—18]-x[n—36].

n=l+50(k—l)

(5.6)

50k+150

yz [k] = lenl+ x[n - 9]+ x[n — 36]- x[n — 45].

n=l+50(k—1)

Table 5.5 Results for validation data for patient E.

System FP FPH FN LDIW ADT 82 HP

GPAF ‘ 5 0.025 0 4.25 s 10.9 s 15 197.3

Curve length 5 0.025 0 4.25 5 11.05 S 15 197.3

 

5.6.6 Patient F

The entire EEG database of this patient lasts 66.2 hours, during which six clinical

seizures were identified. The delay was t = 20 (or 0.1 S) and the terminal set was {x[n],

x[n—20], x[n—40], x[n—60], x[n—80], x[n—100]}. Equation (5.7) shows the artificial

features designed by the GPAF algorithm. Table 5.6 shows results obtained with the

GPAF equations and the curve length feature. For this patient, the GPAF-designed

equations produced three false positives, whereas the curve length feature produced

fifteen of them. The average detection delay was lower for the GPAF equations.

On the other hand, both algorithms failed to detect one seizure previously reported.

However, the GPAF algorithm could detect three clinical seizures, of which one is

depicted in Figure 5.5, and one subclinical seizure that had not been previously reported;

whereas the curve length feature detected an extra subclinical seizure (that is, the GPAF
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features did not detect the additional subclinical seizure). The clinical seizures lasted

roughly one minute, whereas the subclinical seizures lasted 16 to 18 seconds.

50k+150

 

 

 

y, [k] .-= zlog(./x|n —- 100 I - x[n — 20]).

n=l+50(k-l)

(5.7)

50k+l50 I x[n _ 100]

y [kl= -
2 n=1+so(k—1)|x["]' 1031004" ‘ 60D|

Table 5.6 Results for validation data for patient F.

System FP FPH FN me ADT 82 HP

GPAF 3 0.045 1 3.75 S —9.21 S 7 66.2

Curve length 4 0.060 1 3.75 s 5.33 s 7 66.2
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Figure 5.5 Clinical seizure previously unreported for patient F.
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5.6.7 Patient G

This patient had available 153.8 hours of EEG for the training and validation procedures.

This patient suffered 31 seizures, of which twenty were subclinical. Unlike in the

prediction problem, here we also included the subclinical seizures so that the GPAF

algorithm could design a detector that also warns about such seizures. Subclinical

seizures are epileptic seizures, but of duration usually no more than 30 seconds and

without overt, clinically evident symptoms, i. e., they are detected only with EEG. Figure

5.6 shows a subclinical seizure.
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Figure 5.6 Subclinical seizure. The signal is normalized to one.

The delay was I = 15 (or 0.045 s) and the terminal set was {x[n], x[n—15], x[n—30],

x[n—45], x[n—60], x[n—75]}. Equation (5.8) shows the artificial features found by the

GPAF and Table 5.7 shows the results for the validation data. Although the number of
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false negatives was zero, the number of positives was so high that the artificial equations

were impractical (see below). A Similar result was obtained for the curve length feature.

50k+150

 

 

y,[1]: z |x[n_3o]+((x[n_4s])'2+(1og(x[n].x[n-6op)2f.

n=1+50(k-l)

(5.8)

50k+150

yz [k] = Z‘lxln — 60'.

n=1+50(k-1)

Table 5.7 Results for validation data for patient G.

System FP FPH FN me ADT 82 HP

GPAF — — 0 2.75 0.105 31 153.8

Curve length — — O 2.75 3.07 31 153.8

 

We realized that, unlike the other patients, this patient had many subclinical seizures.

Figure 5.2 illustrates what was happening. The classification labeling that was used

before was also being applied to subclinical seizures, but Figure 5.6 shows that once a

subclinical seizure ends, the amplitude of the Signal goes back to normal. In fact, the

amplitude of the Signal afier the seizure is Similar to the amplitude before the seizure.

Therefore, to address this problem, we redefined the classification labeling for the

subclinical seizures. The classifier should output one just when the seizure is occurring,

and zero both before and afier the seizure. Also, this patient had some seizures that

created a “catch 22”—the situation when neurologists, who are trying to place the

intracranial electrodes at the seizure foci, do not know exactly where those are located.

Because of this, sometimes the electrodes are misplaced, creating delays in the EEG

recordings of seizure activity of up to tens of seconds. For this reason, because our
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observation of the data suggested the existence of such delays, for Six seizures, we

corrected the UEOs forward in time by 6 to 12 seconds.

Although the GPAF algorithm was run again to see what features would be designed

using the revised information, we also evaluated Equation (5.8) again using the new

classification labeling. Table 5.8 shows the results for the validation data. The number of

false positives is approximate, given that there were still too many events for an accurate

false positives count. Additionally, approximately eight hours of EEG recording, during

which there were no seizures, were highly misclassified; therefore, the real number of

false positive is a lot larger. Increasing the length of the DIW did not yield an acceptable

solution; given the setting DIW = 2.75 5, four seizures were still missed (although all

were subclinical).

Table 5.8 Results for validation data using the new classification labeling.

System FP FPH FN me ADT 82 HP

GPAF 85 0.553 4 2.75 8.361 31 153.8

 

 

 

The GPAF algorithm was run using the new classification labeling. Equation (5.9)

shows the artificial features found. Table 5.9 provides the new results for the validation

data. Clearly, these artificial features are achieving good performance. The two seizures

missed by the GPAF equation were both subclinical seizures. However, an additional

unreported subclinical seizure was detected by both methods. Additionally, a low false

positive rate was achieved. In contrast, the curve length feature had a high false positive

rate (although the number of false positives is an approximation, as explained above). In

fact, the number of false positive for the curve length feature was larger because
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misclassified almost eight hours of EEG recording. If the parameter LDIW was increased,

several seizures were missed.

_ 50k+150 xn- mn- +M

yllk]_n=l+§(k—l)[ 75] [ 60] x[n—30]'

(5.9)

50k+150 (x[n _ 60])2

y2[k]= Z ln(x[n—451)'
n=1+50(k—1)
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Figure 5.7 Classification labeling for subclinical seizures. The dashed-straight line

indicates the ideal classification for this epoch.

 

Table 5.9 Results for validation data for patient G using new classification labeling.

 

 

System FP FPH FN LDIW ADT 32 HP

GPAF 11 0.072 2 2.75 5.81 31 153.8

Curve length 81 0.527 0 2.75 3.40 31 153.8
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5.7 What Causes False Positives?

It is natural to wonder about the anomalies that tend to make the GPAF classifier produce

false positives. Some of the false positives occur because artifacts are present, as

discussed below. In the results of the previous section, artifact-type false positives were

not counted, however, in this section we Show pictures of how a false positive is

produced by an artifact. In the following figures, the means of the artificial features were

subtracted to shift the artificial Signals to zero for easier comparison. Figure 5.8 shows an

artifact, called blackout, detected in the EEG recording of patient B. The picture Shows

that as soon as the blackout starts, the artificial features change suddenly, making the

detector “fire.” Blackouts were excluded as false positives given that such artifacts occur

because of the recording equipment and process. Another artifact that leads to false

positives is full-scale swings. Figure 5.9 depicts a full-scale swing detected by the

artificial features for patient D. Once again, it represents a flaw in the EEG recording

system.

However, not all false positives are due to artifacts; some result from brain-generated

events. Figures 5.10 and 5.11 show seizure-like events that occurred in patient B. These

“false start” events may last just a few seconds. If their duration iS more than 30 seconds,

they can be considered epileptic seizures. Both graphs illustrate that the detector was

“firing” during the false start (the frequency increased). Additionally, the EEG of patient

E also exhibited “delta trains,” whose frequency components are between 0.5 and 4.0 Hz.

Figure 5.12 presents an example of a delta train.
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Figure 5.9 Full-scale swing occurring during EEG recording of patient D.
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Figure 5.10 False start occurring during the EEG recording of patient E.
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Figure 5.12 Delta train in EEG recording of patient E.

5.8 A Generic Detector

A universal, generic detector, such as the curve length feature, is desired because it can

be applied to any patient without the need for extracting data to design a detector for the

seizures of the patient at hand. Using only a small amount of baseline and ictal data, the

detector Should able to detect most seizures and at the same time have a low false positive

rate. In this section, we Show a general detector designed by the GPAF algorithm.

For this experiment, we used only one baseline epoch and one ictal epoch of two

minutes duration from each available patient. Therefore, the training data set consisted of

seven baseline and seven ictal epochs (a total of 28 minutes of data). The training ictal

epoch for patient G was a subclinical seizure. The holdout method was used for training.
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1n searching for a generic detector, we also fixed the delay parameter by obtaining an

average from the delays calculated previously. The average delay was 16. Therefore, the

terminal set was {x[n], x[n—l6], x[n—32], x[n—48], x[n—64], x[n—80]}. The LDIW

parameter, which is not specifically tied to any feature, was adjusted for each patient and

was not necessarily the same value used for the customized detector in the previous

section. The parameters for the GP algorithm and k-NN classifier were set as before.

Equation (5.10) Shows the artificial equations found by the GPAF algorithm.

 

_ _ _ ,_ 2+x[n]-sirlsirtxlnD)-x{n—481_o ,_
J’ilkl-n=I+]ZS(:(k_l)("1" 64] x[ 80D (x[n—16D2—logm(x[n—l6]) 182(31 641)-

yz[k]= ='IS(:Z:E[):)]+x[n-8O]+x[n—32]-x[n—16]—cos(x[n—48D.

(5.10)

Table 5.10 provides the results for the seven patients using the validation data, their

respective whole EEG archives. The results were acceptable for most patients, having

similar performance to the curve length feature. Five patients out of seven met the

specifications of a 0.0833 of false positive rate and less than 10% of false negative.

Table 5.10 Results for validation data for the general detector.

 

 

 

Patient FP FPH FN Lplw ADT 82 HP

A 3 0.067 0 3.75 15.08 6 45.0

B 2 0.043 0 3.75 0.1 5 46.2

C 0 0 0 3.25 0.16 l 1 65.7

D 0 0 0 2.5 1.55 1 1 156.4

E 25 0.159 O 6.25 19.13 15 197.3

F 8 0.121 1 6.25 16.17 7 66.2

G 2 0.013 2 2.75 6.22 31 153.8

Overall 5.71 0.058 0.429 4.07 8.34 86 730.6
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For patient E, a 0% false negative rate was achieved; however, this patient had a flurry of

EEG seizure-like bursts in the form of false starts and delta trains, which caused all of the

false positives. Because of this, the length of the decision window was increased to filter

out several false positives; however, this decision affected the average detection delay.

Patient F had a rate of 14.29% false negatives. However, three clinical and two

subclinical unreported seizures previously were detected (found by the customized and

curve length feature presented in Subsection 5.6.6); additionally, the detector found an

additional subclinical seizure, which was not detected by either the customized or curve

length detector. If all seizures were counted, the false negative rate for this patient drops

to 7.69%. On the other hand, this patient had many epileptiform discharges (spike-and-

wave patterns) that lasted only a few seconds. These electrical discharges made the

generic detector fire, producing several false positives.

Finally, a similar Situation occurred with the results for patient G. Two subclinical

seizures were missed, yielding a false negative rate of 6.45%. However, a previously

unreported subclinical seizure was found. A low false positive rate per hour was

achieved. Additionally, a series of nineteen epileptiform discharges—spike-and-wave

EEG pattems—was also detected.

5.9 A Detector with r = 1

It is clear, as mentioned previously, that the curve length feature exhibits quite good

detection performance for all patients. Even for patient D, where the GPAF found the
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curve length, the original curve length equation performed Slightly better than the GPAF

equation. (Note that it was not possible for the GPAF search to find the identical curve

length feature, because it was not given the possibility to use I = 1 in its terminal set;

instead, for previously justified reasons, 1: was set using autocorrelation data.) Therefore,

it is natural to ask if the better performance was because of the maximum correlation that

the curve length feature displays; that is, the delay equals one. Therefore, we selected

patient G to rerun the GPAF algorithm, but with delay 1 =1. The set of terminals or

delays was {x[n], x[n—l], x[n—2], x[n—3], x[n—4], x[n—5]}. Patient G was selected because

that patient exhibited the most false negatives. The rest of the parameters was set as

before. Equation (5.11) Shows the artificial features found by the GPAF algorithm.

50k+150

y; [kl = -1 gtlgl- X[" -1]- 10910009201" -1]- Iln - 31))-

- (5.1 1)

.21.]: 2x14.
n=l+50(k—l)

Perhaps not surprisingly, the algorithm found a pair of features in which the first, y1[k],

contains the term |x[n] — x[n—1]|, which is precisely the curve length feature; whereas the

second term in the same equation is a “tuning” or “noise” term, given that its relative

magnitude is so small that it has little effect. The second feature was not contributing to

better discrimination, given that when the GPAF features were compared with the curve

length, the latter was still performing better. When it was removed, the curve length

feature and y1[k] in Equation (5.11) performed similarly, with the difference of 0.255 in

lead or delay of detection of some seizures caused by the log term in the GPAF feature.
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In a second experiment, we ran the GPAF algorithm to find a generic set (that is, using

the EEG data epochs from all patients) of artificial features, in the same way as in the

previous section, but with the delay equal to one. Equation (5.12) shows the equations

found by the GPAF algorithm, whereas Table 5.11 provides the results for the validation

data.

50k+150 2

Y2 [k]: X (x[n " 3D '

n=l+50(k—l)

(5.12)

50k+150

yz [k] = Zx[n — 3]- (x[n]+ x[n — 5D.

n=l+50(k—l)

Unlike the generic detector found before, these equations are simpler; however,

according to the table, the general artificial detector achieved good performance. Except

for one patient, the patients had an average of two false positives or fewer per day. At the

same time, a low average false negative rate was achieved. Patient F had the most

seizures missed. Patient F had the longest decision window. That is, because the detector

was being triggered by epileptiform discharges (in the form of spike-and-wave artifacts)

not lasting more than three seconds, in order to filter out these EEG discharges, the length

of the window was increased, at the expense of two (reported) clinical seizures missed.

However, it detected three clinical and one subclinical seizures, but another subclinical

seizure that had been previously detected by the curve length was missed. On the other

hand, although postictal activity was not counted as false positives, it was observed for

patient C using Equation (5.12). However, such activity was not seen using the

customized detector (i.e., Equation (5.4)) or the generic detector (i. e., Equation (5.10)).
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That means that this set of features is very sensitive for patient C. Additionally, all the

false positives for patient F were false starts. Such EEG patterns also affected the

previous set of artificial features.

Table 5.11 Validation data results for the general detector with delay equal one.

 

 

 

Patient FP FPH FN me ADT SZ HP

A 2 0.044 0 3.75 14.42 6 45.0

B 2 0.043 0 3.75 25.2 5 46.2

C 0 0 0 3.75 -—1.3 l 1 65.7

D 0 0 0 2.5 9.34 1 1 156.4

E 12 0.061 0 3.75 5.65 15 197.3

F 13 0.196 2 5 9.75 7 66.2

G 13 0.084 1 2.75 4.53 31 153.8

Overall 6 0.061 0.429 3.61 9.66 86 730.6
 

5.10 Training by Leave-One-Out Method

All the training phase for detection (as well for prediction) was done using a holdout

method (or split-sample validation). AS previously mentioned, a problem with this

method is that there is variability, given that the classification is tied to the training data

selected for use. To avoid (or at least to reduce) this effect, a leave-one-out method can

be used; however, is computationally intensive. Because of this, we did not use the leave-

one-out (LOO) method for most experiments; however, we will Show here results for

patient G using a form of the LOO method. Unlike prediction, where we were using EEG

epochs for training and validation purposes, in detection, we had an entire EEG archive—

in this case, patient G had 153.8 hours of EEG recording—which made it impractical to

segment all the data and run the algorithm with two-minute segments. Therefore, our
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LOO implementation was very limited, using three baseline and three ictal epochs (two

subclinical were included, one of them was the one missed by the all the detectors when

patient G was processed) of two-minute duration. Although the length of the epochs is

shorter for detection, we needed to calculate more points, given that the Sliding window is

0.25 S long.

The parameters for the GP algorithm and k—NN classifier were the same used to

obtain the customized artificial features for patient G. Equation (5.13) provides the

GPAF-designed features. The results are Shown in Table 5.12, where Pc denotes the

percent of correct classification FP denotes false positives, and FN is false negatives. The

length of the decision window was set to 2.5 5. Two false positives were detected among

all the combinations, and one seizure was misclassified, which was the one missed by all

the detectors previously tested. By looking at the mean and standard deviation, which

was i 7.19 %, we can state that a detector with high confidence was found by the GPAF

algorithm.

150k+50 2

yr [k]: 2 (x[n ‘ 20D -

n=l+150(k-1)

(5.13)

150k+50

y2[k1= len — 301- (x[n — 50]— x[n - 40D.

n=1+150(k-1)

It seems clear that using the LOO method for training produces models—detectors,

in this case—that are more accurate, but on the other hand, they are computationally

expensive. High-end computers are needed in order to make LOO practical for this
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application, considering the amount of data that must be processed, at least when

conducting many experiments in a short timeframe.

Table 5.12 Results for the leave-one-out method.

 

 

 

Set Pc FP FN

1 96.13 0 1

2 82.34 1 0

3 81.57 0 0

4 95.40 0 0

5 81.51 0 0

6 94.25 0 0

7 82.55 0 0

8 96.34 1 0

9 95.72 0 0

Overall 89.53 0.22 0.1 1
 

5.11 Discussion

Section 5.6 shows that the GPAF algorithm can produce or design sets of equations with

similar or better performance to that of a conventionally human-crafted feature—in this

case, the curve length. For the customized artificial features, just four seizures were

missed (with three being subclinical seizures, one of which was found in this work by

other detectors), for a rate of 4.35% false negatives (88 of 92 seizures caught, counting

the previously unreported ones), which more than satisfies the requirement set, being no

more than 10%. Also, in 703.6 hrs (roughly 30.4 days) of EEG recordings, just 23 false

positives were signaled, for a rate of 0.0315 false positives per hour. The false positive
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requirement was 0.0833 false positive per hour so the system exceeded the expectation.

The curve length feature achieved an average 0.1314 false positives per hour. However,

this value was affected most by the results in patient G. Also, it missed just one

previously reported seizure on patient F, yielding a false negative rate of 1.09%. Note,

however, that GPAF was using two equations (artificial features) while the curve length

is just one equation, allowing the GPAF equations more flexibility.

A generic detector for all patients was also successful. This model was sufficiently

general to allow use of a fixed (average) delay parameter. The overall false positive rate

per hour was a low 0.055, and only three seizures were missed, of which two were

subclinical. However, this model was also able to detect an additional subclinical seizure

in patient F. This yielded a low false negative rate of 3.22% (90 seizures of 93 were

detected, after counting the seizures that had not been previously reported). This general

detector was created by the GPAF algorithm with just one baseline and one ictal epoch of

two minutes duration from each patient, a very limited dataset (due to computational

expense) compared with the entire body of data available. Time (generations) limits on

the evolution of GPAF features were also imposed, for the same reason. Our point is that

a better model may be obtained if more data, more generations, and a leave-one-out

method were used. With an experiment, we demonstrated that a high-accuracy, low-

variance model could be designed by using a larger dataset with leave-one-out cross

validation.

Similar results were obtained by the generic model with the delay set to one, yielding

an overall false positives per hour rate of 0.058, and missed seizure rate of 4.35% (88 of
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92 seizures were detected, adding the previously unreported seizures). Clearly, for seizure

detection, exploring the maximum correlation (that is, by using I = 1) to design new

artificial features may also lead to better artificial detectors.

Similar to prediction, in detection, the number false positives and false negatives (and

thus the average of detection delay) is affected by the length of the decision window.

Although the length can be fixed, it seemed beneficial to fix the length for each patient.

Additionally, the design of artificial features from the GPAF algorithm is affected by

where we start to label the ictal class. Initially, we were labeling the ictal epochs one

minute before the UEO in order to give to the GPAF algorithm a way to track some sort

of signal that indicates that an epileptic seizure was imminent. However, artificial

features then produced too many false positives, because part of the data was in conflict

with the post-UEO data, aS was explained earlier in this chapter. Therefore, we decided to

start labeling data as ictal class only after UEO. After that, good artificial features were

obtained. However, we also learned that the classification Should not start for all patients

at UEO. For example, patient B has a characteristic pattern before UEO, known as beta-

buzz, in which amplitude collapses and frequency increases considerably. This pattern

was precisely the one that made the detector fire, allowing an early detection of the

seizures. However, in general, the length of the decision integration window, the

classification labeling, and the possible feature complexity provided by the GP algorithm

provide much flexibility to design good artificial features. First, the GP algorithm tries to

explore the search space looking for the “optimal” artificial features, based on the data

and the classification labeling. Later, the points misclassified can be corrected using the
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decision integration window, using its length parameter to control the tradeoff between

false positives and negatives. This architecture allows us to design detectors that pay

attention to the EEG patterns and Specifics of each patient.

Unlike in the prediction case, where the GPAF algorithm far outperformed the

benchmark classifiers, in this chapter we cannot claim that the GPAF algorithm

outperformed the curve length feature; rather, the GPAF algorithm did better for some

patients and the curve length feature did better for other patients. However, the GPAF

algorithm has a desirable property: it provides room for improvement. By providing more

data, adding a term in the fitness function that considers in some better way the detection

delay, and using high-end computers to enable use of more data and more thorough

search, there is a high probability that the GPAF algorithm will find better artificial

features that respond to the characteristics of a particular patient than does one universal

feature. Additionally, we can increase the number of artificial features, for additional

discriminating power.

Finally, this work has shown that the GPAF algorithm is not only able to create

artificial features with no known physical meaning, but also is able to find some features

that are known to be good features—specifically, this was the case for patient D and

patient G with delay set to one. Although not the central object of this study, these results

confirmed the claims by Esteller et al. [25] in the sense that the line length feature is a

good and efficient feature for detection of epileptic seizure onsets.
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5.12 Summary

In this chapter, we presented the GPAF algorithm for the seizure detection problem,

demonstrating its use in several experiments. These experiments yielded detectors that

had low false positive rates per hour and low false negative rates (in total, 88 of 92

seizures were detected). In addition to customized equations that were compared with the

curve length feature and had similar or better results than that benchmark, we also

presented a generic detector that Showed good performance by detecting 90 seizures

(clinical and subclinical, including the seizures discovered during the experiments) out of

93, and by being able to detect an extra seizure that was not detected by either the other

GPAF-generated detectors or by the benchmark.

Artificial features were also designed using a terminal set with delay 1? set to 1. In the

first such experiment, just using EEG data for patient G, the GPAF algorithm found an

expression that resembled the curve length feature, the benchmark feature. In a second

experiment, this time to find a generic detector, the GPAF algorithm came up with a set

of simple equations that yielded a low false positive rate and detected 88 of 92 seizures

(counting even those that were discovered in these experiments).

Finally, an experiment was run with the GPAF algorithm using a leave-one-out

method on an expanded dataset as the training process. Although this method is of

limited practical value because of its computational intensiveness, this experiment

showed that a detector with low variability can be found by such a process.
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Chapter 6

Conclusions and Recommendations

In this dissertation, we proposed the genetic programming artificial features (GPAF)

algorithm, intended to overcome the reported limitations of the genetically found,

neurally computed artificial features (GFNCAF) algorithm. The GPAF algorithm was

first tested on a problem of design of an artificial feature that discriminates between

parallel and nonparallel vectors. Results were compared with those of the GFNCAF

algorithm. Later, we used the GPAF algorithm to design artificial features for epileptic

seizure prediction directly from the raw intracranial EEG data via state-space

reconstruction for seven patients. In the last chapter, the methods were applied to

machine design of epileptic seizure detectors.

6.1 Benefits of the Algorithm

The GPAF algorithm, along with the space-state reconstruction technique, allows

researchers and medical personnel to design a set of features that take into account the

characteristics or patterns that are “hidden” in the intracranial EEG Signals of a given

patient in order to predict or detect epileptic seizures. Similar to an optometric test that

prepares the prescription for eyeglasses for a patient, a set of features optimized for the

needs of a patient could someday be programmed into a chip to be implanted in the
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patient by a surgical procedure, providing warnings or automatically administering

medications or electrical stimulation.

On the other hand, the GPAF algorithm could also be applied in several other fields

of study, such as signal analysis, optimization, intelligent control, pattern recognition, and

biomedical engineering. The computational framework described in this dissertation also

represents an advance in the development of new analyses and practical techniques to

predict epileptic seizures, while paving the way for application to other important

problems that remain unsolved, such as prediction of earthquakes or cerebral infarct.

The GPAF algorithm offers a modest contribution in advancing the area of pattern

recognition. Previous work, in which preprocessing or transformation of the input data to

the classifier has been recognized as allowing achievement of better classification, has

relied upon scaling the input features (that is, multiplying original features by

coefficients) or selecting the most informative features (that is, turning on or off the

original features) usually using a genetic algorithm. In this work, we have extended the

meaning of feature extraction by allowing the GP algorithm to create artificial features,

based on use of case-Specific but algorithmically determined terminal function sets that

allow enough flexibility to make either Simple or complex transformations. This makes

the task of the classifier easier.

Additionally, in this work we dealt with a dynamic system, the brain. Using state-

space reconstruction allows us to work directly in the time-domain—avoiding the need to

make some transformation to another domain like frequency, for example—while trying

to capture the deterministic dynamics underlying what appears to be random behavior of
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the EEG Signals. Although it does not make sense to apply state-space reconstruction in a

dynamic system in which the state variables are already well-known, the GPAF algorithm

could still be used for tasks that include diagnosis, estimation, and detection, by

highlighting patterns that can be confused with other normal behavior or are submerged

in undesired anomalies like noise.

6.2 Conclusions

In this dissertation, we have proposed an algorithm aimed at capturing a very broad set of

artificial feature characteristics, thus, intended to overcome the limitations of the

traditional features that have been used in the past for prediction and detection of

epileptic seizures and to overcome the limitations of the feature creator algorithm

GFNCAF. The genetic programming artificial features algorithm extracts relevant

information from the EEG data. Looking at the raw EEG data——in this case, through

state-space reconstruction—to look for patterns was valuable, endowing the algorithm

with the ability to pay attention to the dynamics of each individual patient as a system. At

the same time, with the inclusion of a genetic programming (GP) module as the search

engine to look for the artificial features, the GPAF algorithm overcame the limitations of

the GFNCAF algorithm by having vastly expanded control over the structure

(connections, functions, and inputs) of the features.

Experiments showed that predictive patterns vary from patient to patient, given that

the artificial features designed were different on a per-patient basis in structure as well as

in number of features needed for good prediction. Thus, it was also Shown that, although
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prediction of epileptic seizures could be difficult, seizures can be predicted with a

reasonable time margin before onset, potentially allowing intervention using a medical

treatment.

A generic (cross-patient) detector was designed that could easily be programmed into

an implantable chip.

With the GPAF algorithm, we are automating much of the process involved in

designing customized predictors and detectors. Once the patient is instrumented for EEG

recording, the EEG data can be fed to the GPAF algorithm, which can design the

predictor or detector (artificial features). Later, these equations could be programmed into

an implantable chip, which could then intelligently trigger various forms of intervention.

Finally, this work has Shown that the GPAF algorithm is not only able to create

artificial features without needing to ascribe physical meaning to the Signals, but also is

able to find some man-made features that are known to be good features.

6.3 Limitations and Recommendations

Albeit this work was intended to overcome the shortcomings of the GFNCAF algorithm,

we still found some limitations, which we summarize below along with some

recommendations, providing to the GPAF algorithm more room for improvement.

0 Increasing Computing Performance: Although we ran the experiments on a 3GHz

Pentium IV PC, it was not enough to run the GPAF algorithm for an acceptable

number of generations. According to Banzhaf et al., GP population Sizes typically

Should range between 500 and 5000 individuals. They also mention that for good
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search on challenging problems, the population Size should be even larger. Our

population sizes ranged between 500 and 1000 individuals, and the number of

generations was no larger than 200. However, it is well known that the GP

algorithm is computationally intensive, consuming a large amount of memory and

CPU time. Because of this, there were also limitations on the amount of EEG data

that could be used for training in each run, with consequent limitations on the GP

algorithm to look for a better set of features. In order to increase considerably the

memory and CPU time resources available, parallel computing or high-

performance computers (supercomputers) could be considered for such purposes.

Extend GPAF Algorithm Capability: In this work, the GPAF algorithm was

limited to designing or finding the arguments (GP program) of a summation, and

could not produce a set of artificial features that contained embedded summations

or other vector-handling operators, because the GP algorithm used was Single-

typed (scalar-typed). For instance, the GPAF algorithm presented in this work

cannot produce artificial features that include quotients of summations, because

the GP algorithm does not handle vectors inside the programs. This shortcoming

limited the flexibility of the GP algorithm and thus the complexity of the artificial

features that it could explore or design. To allow the GPAF algorithm to produce

more complex features, a strongly-typed genetic programming system could be

implemented as the search engine for artificial features—i.e., a GP algorithm that

contains mechanisms to prevent policy violations (enforce well-formed formulas)

in mixing different types of data like vectors and scalars, for example. With this,
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the GPAF algorithm would have much more flexibility to create the simplest as

well aS very complicated features, probably yielding more accurate results.

Use All EEG Channels: In this work, the intracranial EEG data available came

from one channel per patient. Similar to the approach used by D’Alessandro et al. ,

we could provide multiple channels to the GPAF algorithm and let it decides

which channels are more “informative” to extract patterns in order to predict (or

detect) the epileptic seizures.

Support Vector Machine as classifier: an SVM could be implemented as a

classifier component for the GPAF algorithm. An SVM processes the data first

and projects them into a high-dimensional Space by means of a nonlinear

function. This classifier may yield a better separation of the classes, increasing the

capability of the GPAF algorithm.
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Appendix I

This appendix shows the point-basis results for all the epochs available evaluated with

the benchmark classifiers, as explained in Section 4.9, and GPAF algorithm, for each

patient. Small letters denote baseline epochs, whereas capital letters denote preictal

epochs.

Patient A

Point-basis classification results for patient A.

 

 

 

Epoch PCA k-NN k-NN GPAF

b 50.5 53.51 61.54

c 46.82 52.51 57.86

d 45.82 53.85 57.19

B 55.18, 47.49 80.33

C 49.83 45.15 69.23

D 54.52 42.14 73.91

Overall 50.45 49.1 1 66.68
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Patient B

Points-basis classification results for patient B.

 

 

 

Epoch PCA k-NN k-NN GPAF

b 63.88 57.86 82.61

c 67.22 72.91 89.63

d 67.22 67.89 86.96

e 63.88 53.85 88.29

f 67.56 62.21 81.61

g 66.56 51.51 77.26

B 59.2 85.62 85.62

C 40.8 57.19 66.56

D 67.89 87.63 94.65

E 34.78 54.85 53.17

Overall 59.9 65.15 80.64
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Patient C

Points-basis classification results for patient C.

 

 

 

Epoch PCA k-NN k-NN GPAF

b 87.63 99.67 100

c 50.17 79.59 100

d 84.62 98.99 40.8

e 87.96 100 70.9

f 76.92 95.65 99.0

g 86.62 100 100

h 87.96 99.33 100

i 88.63 100 87.63

j 72.58 91.97 100

k 90.3 100 97.32

A 80.93 89.63 100

B 69.57 83.27 99.66

C 51.17 76.92 87.63

E 63.88 81.94 81.61

F 75.25 87.29 99.0

G 55.85 77.59 97.99

H 30.1 15.38 96.99

I 75.59 89.29 99.0

J 67.22 85.28 96.66

K 70.57 89.29 100

Overall 72.68 87.27 92.71
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Patient D

Points-basis classification results for patient D.

 

 

 

Epoch PCA k-NN k-NN GPAF

a 77.93 75.25 96.66

b 78.26 68.9 96.33

d 52.17 47.83 47.16

f 38.46 71.24 96.65

g 46.15 64.88 91.30

h 43.14 64.88 90.97

i 41.81 58.53 45.82

j 42.81 35.12 20.74

k 44.48 43.14 51.84

I 40.47 63.88 88.63

B 10.70 12.37 0.33

C 53.85 50.50 74.92

D 56.86 34.45 8.03

E 63.21 44.15 53.18

F 57.19 55.18 86.29

G 57.86 60.20 77.93

H 61.54 51.17 86.96

I 31.77 34.78 17.07

J 58.19 47.16 86.29

K 59.87 46.15 84.95

Overall 50.86 51.49 65.10
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Patient E

Points-basis classification results for patient E.

 

 

Epoch PCA k-NN k-NN GPAF

a 31.88 42.28 26.85

b 56.71 77.52 72.82

c 82.55 99.66 100.0

d 86.58 100.0 100.0

e 48.32 64.43 70.47

f 89.93 97.31 100.0

h 87.85 82.21 100.0

i 85.9 100.0 100.0

j 46.64 73.15 57.05

k 80.87 74.83 100.0

1 85.23 100.0 100.0

m 86.58 95.97 100.0

n 91.95 100.0 100.0

0 58.39 71.81 53.69

p 59.06 80.87 74.5

A 62.75 41.61 79.53

B 70.13 68.12 93.29

C 57.05 48.99 48.99

D 74.16 79.53 92.95

E 78.19 75.5 94.63

F 74.83 78.52 92.28

G 76.51 74.16 94.3

H 79.53 74.16 94.97

1 36.58 28.86 17.11

J 79.87 79.87 97.32
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K 76.85 78.86 97.32

L 79.19 79.19 98.32

M 43.62 36.91 49.66

N 44.3 31.21 78.52

0 20.81 4.03 9.4

Overall 67.79 71.28 79.8
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Patient F

Points-basis classification results for patient F.

 

 

 

Epoch PCA k-NN k-NN GPAF

b 74.24 94.63 83.56

c 75.59 94.97 86.58

d 71.57 90.27 66.56

e 88.63 100.0 100.0

f 85.28 100.0 100.0

g 83.95 100.0 100.0

h 83.28 100.0 100.0

B 72.57 89.63 97.99

C 76.58 88.29 99.33

D 78.93 92.98 100.0

E 80.2 89.3 100.0

F 67.89 64.21 99.33

Overall 78.2 92.02 94.45
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Patient G

Points-basis classification results for patient G.

 

 

 

Epoch PCA k-NN k-NN GPAF

b 61.54 80.6 60.2

c 48.49 55.52 9.03

d 50.84 60.54 26.76

c 52.84 69.23 71.57

f 54.18 67.22 59.2

g 61.54 80.6 79.26

i 41.14 11.37 94.65

j 37.46 13.38 96.66

B 42.48 59.53 29.77

C 48.91 66.89 79.6

D 42.81 63.21 90.97

E 48.5 61.54 84.28

F 45.15 67.56 51.17

G 50.84 68.23 90.64

H 46.82 66.56 89.97

1 38.46 19.4 51.51

Overall 48.25 56.94 66.58
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Appendix II

Glossary

ANN: Artificial neural network — a network of interconnected units, called neurons,

which activate or fire an output signal depending on the input Signal. The network is

trained using a training algorithm, e. g., backpropagation algorithm, and training data.

Neural networks are also known as universal approximators, given that they are able to

approximate any function if sufficient nodes and training set data are provided.

EA: Evolutionary algorithm — a family of computer algorithms inspired by natural

selection processes. In addition to GP, those algorithms include the Genetic Algorithm

(GA), Evolutionary Programming (EP), and Evolution Strategies (ES). These algorithms

are population-based and use one (or all) of the so-called genetic operators: selection,

crossover, and mutation.

Epilepsy: (gp'9-lgp's5) — a neurological condition that makes people susceptible to

seizures. A seizure is a term used to describe a change in sensation, awareness, or

behavior brought about by a brief electrical disturbance in the brain. Seizures vary from a

momentary disruption of the senses, to Short periods of unconsciousness or staring spells,

to convulsions.

GA: Genetic algorithm — a general purpose, global optimization search algorithm that

emulates the natural selection process by using genetic operators: selection, crossover,

and mutation.

GFNCAF: Genetically found neurally computed artificial feature — an algorithm

proposed in [31], which uses a GA and a classifier to create relevant artificial features

from a given set of conventional features or raw data directly. The algorithm also may

reduce the dimensionality of the feature Space.

GP: Genetic programming - an extension of GA, genetic programming (GP) uses the

genetic operators to evolve programs (solvers), unlike GA, which evolves solutions to

solve problems, among them real-world applications. One of the most important aspects

of GP is its variable length representation, which is designed to find simple as well as

complex programs.

GPAF: Genetic programming artificial feature — an algorithm that uses a GP in

combination with a classifier to construct artificial features from a set of classical features

or raw data. This approach overcomes some ofthe limitations of the GFNCAF algorithm.
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lctal: (Tk't91) — period or Signal in which a seizure occurs.

k-NN: k-nearest neighbor classifier — a supervised, nonparametric classifier which uses a

distance measure, commonly Euclidean distance, to categorize an input pattern depending

on the class value of the maximum number of samples closer (nearest neighbors) to the

input pattern. Typically, 11: is assigned to be three or five.

PFA: probability offalse alarm —- probability that the next negative class feature vector

sample (which for practical purposes is approximately all samples) will be a false

positive.

PFN: probability offalse negative — probability that the next positive class feature vector

sample will be a false negative.

Preictal: (pr'é-‘l'k'PD — Signal refers to an EEG signal from a time period just prior to an

epileptic seizure.

UCO: unequivocal clinical onset -— time when an observer can see the consequences of a

seizure in the person, for example, a convulsion.

UEO: unequivocal EEG onset — time of seizure onset identified in an EEG signal by an

electroencephalographer.
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