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ABSTRACT

USING MULTIDIMENSIONAL ITEM RESPONSE THEORY
TO EVALUATE MEASUREMENT EQUIVALENCE:
A MONTE CARLO INVESTIGATION
By

Linda Baumunk Chard

This dissertation seeks to examine the accuracy of the #-index, a new
multidimensional item response theory (MIRT) index of comparative fit to a
measurement model involving multiple group respondents. To do this, the study utilizes
simulated data with known properties. Specifically, it focuses on measurement
equivalence as determined by similar factor structure, demonstrated by comparable
model fit across groups. Additionally, the study examines the effects that variation in
three experimental factors may have on the effectiveness of the W-index procedure as a
scaling method. In particular, it examines how sample size, strength of intertrait
correlation, and percentage of items lacking equivalence influence the detection of a lack
of measurement equivalence within an MIRT structure. Finally, to illustrate a practical
use of the W-index to examine measurement equivalence, it is applied to measures of
“Teacher collective responsibility for student learning” collected from seven U.S. school
districts. Here the purpose is to evaluate whether a battery of 26 items that were supposed
to measure the latent trait of teacher collective responsibility for student learning actually

did measure the same construct across groups.



The results show that the #-index procedure is a reliable MIRT method to
identify a lack of measurement equivalence under certain conditions. Specifically, those
conditions include a sample size of 2000 for any case or 1000, if the requirement for a
weak intertrait correlation (.02) is met. Additionally, the small sample size of 150 may
not result in an “Acceptable” identification of lack of equivalence, regardless of the other
criteria. Contrary to expectation, the percentage of items lacking ME was not a critical

factor for accurate identification with the #-index procedure.
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CHAPTER 1: INTRODUCTION
An essential attribute of any psychological or behavioral instrument is
measurement equivalence. That is, the instrument must measure the intended construct
equally well across measurement contexts such as instrument forms, measurement
occasions, raters, or subpopulations. On the surface, this seems a simple concept.
Unfortunately, this is not the case. In truth, the issue of measurement equivalence (ME) is
multi-faceted and perplexingly complex, resulting in numerous definitions and varying
procedures for investigation. The importance of ME is such that it is referred to by some
as a “prerequisite” for group comparisons (Riordan, Richardson, Schaffer, & Vandenberg,
2001). Regardless, evaluations of measurement equivalence between groups are not
routinely performed by data analysts. As a result, the validity of conclusions drawn from
studies where measurement equivalence is not considered may be in question
(Vanderberg & Self, 1993).
Measurement Equivalence Defined
The definition of measurement equivalence chosen for this study is that of
Cheung and Rensvold (2002), who describe it as the condition whereby members of
different groups associate survey items, or similar measures, with similar constructs. ME
refers to ‘‘whether or not, under different conditions of observing and studying
phenomena, measurement operations yield measures of the same attribute’’ (Horn &
McArdle, 1992, p.117). The specific attribute examined, which will be addressed later in
more detail, varies from study to study, depending on which psychometric properties are

investigated. The primary question being asked in an examination of measurement



equivalence, as it is considered in the study presented here, is “do the measures being
assessed represent the same construct between subgroups of the population being
measured?”’ When applied to a psychological or behavioral instrument, a lack of ME
indicates that measures from the instrument do not mean the same from one group to
another (Cheung & Rensvold, 1999; Vandenberg & Lance, 2000). Thus, by definition,
measures lack equivalence unless they measure the same construct with similar precision
across groups or populations. Lack of equivalence can be inferred when the psychometric
properties of an instrument are not comparable across groups (Hui & Triandis, 1985;
Knight & Hill, 1998).
The Importance of Measurement Equivalence

ME is essential for all behavioral and psychological instruments because,
according to Riodan and Vandenberg (1994), only when subjects from different groups
ascribe essentially the same meaning to the scale or items can meaningful across-group
comparisons be conducted. Routinely, researchers compare the mean response values for
various demographic groups based on measures that are drawn from an instrument
designed to measure a particular latent trait. From these observations, substantive
inferences are made concerning between-group differences in the level of the construct
purportedly represented by the measures. This creates a disconcerting situation: although
the observed differences might well be due to the way the construct is conceptualized in
each group rather than true group differences, a study of the measurement equivalence of
the measures from the instrument for these groups is seldom conducted. Thus, the
validity of these inferences is dependent on the often untested assumption that, across

groups, the measures carry the same meaning for the construct. When this assumption of



measurement equivalence is in fact violated, absolute differences in scores between
groups, and, therefore, inferences based on these differences, are likely to be misleading
(Chan, 2000). This presents a serious problem for researchers. If the construct of interest
is not measured equivalently across groups, then a comparison of means across groups
may be inaccurate, unwarranted, or even meaningless (Golembiewski, Billingsley, &
Yeager, 1976; Schmitt, 1982; Vandenberg & Self, 1993).

Some researchers, such as Horn and McArdle (1992), have recognized this fact
and attempted to make others aware of it. They pointed out the problem of not conducting
ME analyses by writing

If there is no evidence indicating presence or absence of
measurement equivalence-- the usual case -- or there is evidence
that such equivalence is not obtained, then the basis for drawing
scientific inference is severely lacking: findings of differences
between individuals and groups cannot be unambiguously
interpreted (p. 117).

In spite of this and similar attempts to alert researchers to the importance of
establishing measurement equivalence, most seem to be unaware of or have elected to
disregard the warnings. In a synthesis of the measurement equivalence literature
completed in 2000 involving 65 studies, Vandenberg and Lance found a substantial
number of cases where inaccurate inferences would have been made by the various
researchers if they had not undertaken the ME tests. In this account, they insist that “tests
of ME should be routinely conducted prior to conducting tests aimed at evaluating cross-
group differences” (p. 47). Hence, to avoid costly errors and to produce compelling
research results, prior to making direct between-group comparisons, it must be verified

that the measures from the instrument being used do not lack measurement equivalence.

According to Reise, Widaman, and Pugh (1993),
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Measurement equivalence is a basic requirement or prerequisite for

studying group differences with statistical models. Once measurement

equivalence is established, additional theoretically important questions

may be addressed, including questions regarding group differences

in means or variances on the latent variables identified (p. 562).
To do this, it is essential that reliable and valid methods for evaluating measurement
equivalence are developed. These methods can then be routinely applied to psychological
or behavioral instruments before comparisons of groups are made. Once it has been
verified that the measures do not lack ME, the means of latent variables can be suitably
compared (Bollen & Long, 1993; Byrne, Shavelson, & Muthén, 1989; Millsap & Everson,
1991; Riordan & Vandenberg, 1994).

Why Measurement Equivalence is not Routinely Investigated

The use of the term “equivalence” is relatively new, but the underlying concept
goes as far back as the work of Karl Pearson in the early 1900s (Millsap & Meredith,
2004). Even though a considerable amount of time has passed since its conception, ME
still does not enjoy the usage it warrants, given its importance. According to Steenkamp
and Baumgartner (1998), the exclusion of a verification of measurement equivalence
from routine data analysis exists for a variety of reasons. First, there is a bewildering
array of types and classifications of equivalence found in the literature. Also, there is
little consistency in the use of the term ME in the literature. Moreover, many researchers
are relatively unfamiliar with models that incorporate the means of latent and observed
variables. This is compounded by the fact that there are substantial methodological
complexities involved in testing for measurement equivalence, particularly if the data is

multidimensional. In real-world contexts, the latter is often the case. Added to this, many

of the existing methods are inappropriate for certain types of investigations, particularly



those involving real data and assumptions of unidimensionality or normality. Finally,
there is an absence of clear guidelines as to how to ascertain whether or not a measure
exhibits “adequate” equivalence. In totality, these factors result in uncertainty, confusion,
and the avoidance by many of crucial measurement equivalence substantiation.
Methods to Verify Equivalence

Structural Equation Modeling

In measurement equivalence examinations, the most commonly employed
statistical procedure is structural equation modeling (SEM), which uses confirmatory
factor analysis (CFA) procedures. In doing this, the most conventional procedure to
verify that the items on a given instrument do not lack equivalence is the demonstration
of equality of factor loadings (Byrne, Shavelson, & Muthén, 1989; Horn & McArdle,
1992; Rensvold & Cheung, 2001; Schmitt, 1982; Vandenberg & Lance, 2000,
Vandenberg & Self, 1993). A second common criterion for equivalence investigation is
equality of factor covariances (Schaubroeck & Green, 1989; Schmitt, 1982; Vandenberg
& Self, 1993). A third is the equality of the error variance/covariance matrices (Byrne,
1994; Drasgow & Kanfer, 1985; Marsh & Hocevar, 1985; Mullen, 1995). Finally, the
equality of variance/covariance matrices of latent variables is a fourth common SEM
criterion for evaluation (Byrne, 1994; Jackson, Wall, Martin, & Davids, 1993; Marsh,
1993, Marsh & Hocevar, 1985).
Item Response Theory

Item response theory (IRT), a measurement model that has been widely adopted
in the psychometric literature, has been less visibly investigated as a means for evaluating

ME. As an alternative to SEM, IRT methods can, in some cases, “provide different and



potentially more useful information for the establishment of measurement invariance”
(Meade, Lautenschlager, Michels, & Gentry, 2004, p. 362). In its favor is the fact that
IRT methods are not forced to meet the normal distribution assumption that plagues
existing methods based on CFA. Thus, they are more appropriate in situations in which
the assumption of normality may not be met. It is also to their advantage that sample-free
item parameter estimates and test-free ability estimates can be obtained (De Champlain &
Gessaroli, 1996).

As a result of increased use, within the IRT framework, several approaches to
investigating ME have been devised. Among these is that of model fit. This procedure is
based on the views of researchers such as Hambleton, Swaminathan, and Rogers, who
contend that “Equivalence only holds when the fit of the model to the data is exact in the
population” (1991, p. 23). This notion is the focus of the research presented in this
dissertation. Specifically, this dissertation seeks to evaluate the performance of a new
index for evaluating ME using a measure of model fit between groups of respondents to a
survey instrument using item response theory in a multidimensional setting.

Concerns of Measurement Equivalence Investigations

Because measurement equivalence investigations that examine factorial structure
in multidimensional item response theory (MIRT) are relatively new, as with almost any
fledgling area of research, there are still some unresolved concerns. The first concern is
one that is basic to any study. That is, what method or procedure is most effective for the
proposed investigation? In previous studies, some investigators have found a particular
IRT or MIRT-based procedure to be effective while others find it is not. As a result, the

researcher is left in a quandary as to what procedure may effectively be used in a given



situation. This may, in part, account for the less frequent use of MIRT procedures as
compared to the more popular SEM methods.

Another concern arises from the relatively small number of measurement
equivalence investigations currently being conducted, particularly using MIRT. Because
the number is small, there are fewer well-established guidelines or quantitative criteria
that may be used to make critical decisions in MIRT than in SEM. For instance, there is a
conspicuous absence of clear guidelines as to how to ascertain whether or not a measure
exhibits “adequate” equivalence. Additionally, dissimilar findings have been presénted
due to the fact that, although the intent of the studies is the same, the designs may not be.
Prime examples of this are found in the research reports of the effects on the detection
rate of lack of ME as a result of variation in the measurement context. With time and
additional studies that are similar in design, this concern may be overcome. However,
such is not now the case.

A review of the literature confirms that there are not as many investigations
concentrating on ME as other research areas. This supports the concern by investigators
that there simply are not enough corroborating studies of equivalence, particularly ones
that attempt to determine the condition under which competing methods result in
different conclusions. This view is expressed by Vandenberg (2002), who is one of the
many researchers calling for additional studies involving measurement equivalence
analyses. This view is also supported by another group of researchers, of which
Vandenberg is a part (Riordan et al., 2001), who also actively seeks an increase in Monte
Carlo studies to determine the accuracy of the existing methodologies intended to identify

a lack of measurement equivalence. In his writings, Vandenberg strongly advocates



research that compares the efficiency of one procedure to that of another under a
variation in measurement context. His concern is that there is developing an
‘“unquestioning faith on the part of some that the technique [being used] is correct or
valid under all circumstances” (p. 140). As a result of the insistence, a number of
investigators conducted promising research to examine equivalence using both of the two
most common methods: SEM and IRT (Facteau & Craig, 2001, Maurer, Raju, & Collins,
1998; Raju, Laffitte, & Byrne, 2002; Reise et al., 1993). However, at this point, this
number is also small.

A sizeable number of researchers have employed structural equation modeling
methods to address the equivalence issue essential for convincing and compelling
comparisons of group means. However, generally speaking, those who apply IRT models
have not followed their lead. Thus, these investigators inadvertently run the risk of
drawing conclusions that may be misleading, inaccurate, or even erroneous. To address
some of the concerns found in equivalence investigations and the lack of generally
accepted methods for determining a lack of measurement equivalence in the commonly
adopted framework of item response theory, this study focuses on the following issues.
First, it examines the accuracy of a new multidimensional item response theory (MIRT)
index of comparative fit to a measurement model with multiple groups of respondents,
referred to as the #-index. To do this, this study utilizes simulated data with known
properties. Specifically, it focuses on measurement equivalence as determined by similar
factor structure, demonstrated by comparable model fit across groups. Second, this study
examines the effects that variation in the measurement context may have on the

effectiveness of the W-index MIRT procedure as a scaling method. In particular, it



examines how the percentage of items lacking equivalence, sample size, and strength of
intertrait correlation influence the detection of a lack of measurement equivalence within
an MIRT structure. Finally, to illustrate a practical use of the W-index to examine
measurement equivalence, it is also applied to measures of “teacher collective
responsibility for student learning” collected from seven US school districts. Here the
purpose is to evaluate whether a battery of 26 items that were supposed to measure the
latent trait of teacher collective responsibility for student learning actually did measure
the same construct across groups.
Research Questions
Thus, to accomplish the intended purposes, the following questions are posed for
this study:
1) Can the W-index method using factorial structure equality accurately identify a lack
of measurement equivalence in a survey instrument?
2) Is the accuracy of the #-index of measurement equivalence using factorial structure
equality affected by variations in the number of items lacking equivalence?
3) Is the accuracy of the W-index of measurement equivalence using factorial structure
equality affected by variations in sample size?
4) Is the accuracy of the #-index of measurement equivalence using factorial structure

equality affected by variations in the strength of the intertrait correlation?



CHAPTER 2: REVIEW OF THE LITERATURE
This chapter reviews the multidimensional item response theory approach to
measurement equivalence investigation, some of the most common methods that employ
this approach, and results of prior studies involving ME. Additionally, a detailed
discussion is presented of the multidimensional random coefficients multinomial logit
model (MRCMLM) used in the study.
The Multidimensional Item Response Theory Approach
Early investigations of measurement equivalence were performed as a result of
attempts to identify violations of the unidimensionality assumption that is commonly
evoked for the sake of simplifying the creation of measures from responses to an
educational or psychological instrument. Researchers quickly discovered that in real-
world contexts, the unidimensional assumption is often difficult to support (Nandakumar,
1994). As a result, multidimensional item response theory models gained some popularity.
Although investigations of measurement equivalence using multidimensional item
response theory (MIRT) are comparatively new, the basic procedures are not. According
to Hambleton & Swaminathan (1985), basic IRT methods have been employed for almost
50 years. A review of the current ME literature involving MIRT methods verifies that,
although still relatively small, there is a notable growth in the number of studies in recent
years. One reason for this is that improved computer software production has facilitated
the application of all IRT methods to investigate a lack of ME and has now placed the
complexity of multidimensional investigations within the capabilities of nearly all
researchers. This has significantly increased the ability of MIRT methods to compete

with the more well-established SEM methods.
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Multidimensional item response theory procedures are systems designed to
determine consistent features of persons and items that influence responses, within a
multidimensional framework. In many cases, MIRT models are expansions of
unidimensional models that stipulate a nonlinear monotonic item response function to
account for the relationship between examinee level on a latent variable and the
probability of a particular item response (Linden & Hambleton, 1997; Lord, 1980).
According to Reckase (1997), multidimensional item response theory (MIRT), consists of
a general class of models that describe the interaction between persons and test items
where

the characteristics of the person are described using a vector of

hypothetical constructs. Further, the characteristics of the test items

are described using a set of item parameters and a functional form

that relates location in the space defined by the vector of person

parameters to the probability of correct response to each item (p. 25).

Here the focus is on modeling the relationship between person and test items. Thus, the
individual characteristics of the items are the center of attention in the investigation. This
is rooted in of the thinking of Lord (1980), who supported a need

to describe the items by item parameters and the examinees

by examinee parameters in such a way that we can predict

probabilistically the response of any examinee to any item even

if similar examinees have never taken similar items before (p. 11).

In MIRT, initially, a model is created representing the interaction between
persons and test items. The intent is to accurately reproduce the probability of a correct
response to an item for individuals at a particular point in the 0 space. Each item is of
concern as it is examined for appropriate fit. Concern is raised if there is a discrepancy in
the predicted probabilities for a particular range of abilities (Drasgow, Levine, &
McLaughlin, 1991). Here the focus is on conditional measures of fit.

11



The estimate for a given person is based on observed item responses given the
item parameters (Meade et al., 2004). The exact nature of the model to be used in the
investigation is determined by a set of item parameters that are potentially unique for
each item. In a simulation study, there are numerous item response models to select from.
Thus, it is of importance to select a model representative of the specific situation of
interest and the nature of the data to be generated. One such model that is representative
of the data in this study is the multidimensional random coefficients multinomial logit
model (MRCMLM).

The Multidimensional Random Coefficients Multinomial Logit Model

In the social sciences, log-linear models have been employed for several decades
(Keldermna & Rijkes, 1994; Knoke & Burke, 1980) with numerous multidimensional
item response theory models being used (Ackérman, 1992; Camilli, 1992; Embretson,
1991; Glas, 1992; Luecht & Miller, 1992; Oshima & Miller, 1992; Reckase, 1985). Of
the many current methods available for use with multidimensional data, the one chosen
for this study is the Multidimensional Random Coefficient Multinomial Logit Model
(MRCMLM; Adams, Wilson, & Wang, 1997), which is a multidimensional extension of
the Rasch model (Xie, 2001).

The MRCMLM was selected for this study for multiple reasons. First, it is
appropriate for the real data, which is known to be multidimensional. Second, it does not
necessitate a large sample size--the sample size for the real data example used in this
dissertation is 616. Third, Adams et al. (1997) demonstrated the MRCMLM was a
mathematically tractable and flexible multidimensional model that produces parameter

estimates that are readily interpretable. Fourth, it draws on the (often strong) relationship

12



between the latent dimensions to produce more accurate parameter estimates and
individual measurements. Last, and most importantly, as an adaptation of an IRT method,
the model does not necessitate meeting the normality assumption that other often-
employed methods, particularly in structural equation modeling, do.

Although the name MRCMLM is rather long and, at first, daunting, it can be
broken down into meaningful factors. Beginning with the left most word in the title, the
M, “multidimensional”, refers to the ability of the model to incorporation several latent
traits. This is particularly helpful in working with real data that is seldom “truly
unidimensional.” RC or “random coefficients” indicates that the model incorporates
random effects. This is slightly misleading, as it is actually a “mixed” model that is
capable of incorporating both fixed and random effects. MLM, “multinomial logit
model” (Amemiya, 1985) refers to a regression model that is applicable when the
dependent variable takes on discrete values (Adams & Wilson, 1996). This regression
model is used to decompose the location parameter into factors called base parameters.
Although just the 1-parameter model using only the location parameter is presented here,
there is also a 2-parameter model that uses both slope and location (Valbuena, 2002).

Structure of the MRCMLM.

The following explanation of the MRCMLM is adapted from that given by Briggs
and Wilson (2003). The MRCMLM assumes a set of D traits underlie the respondents’

responses. In the MRCMLM, the position of a person (n) on the D-dimensional latent
space is represented by a vector of latent traits 0,= [0,1, 0,2,...,0.p], where the D

dimensions may be non-orthogonal. These vectors can be appended across persons to

create an N x D matrix of positions in the latent space, ®. An item difficulty index, &y,
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depicts the relative difficulty of surpassing threshold & of item i (i.e. responding with
category x rather than category x-1 on the rating scale, where there are -1 categories).
Item difficulties can be appended to create a vector of item difficulties, 8. A response in
category k in dimension d of item i is scored bk,

The probability of a response in category x for item i is modeled as

. exp(b'ix0+a'ix 9) i
nix

-:.k

lexp(b'ix 0+ a'ix J)

™

X

The b; parameters are called category difficulties or thresholds. Each is defined as
the point on the theta scale (the trait level) at which the probability is 50% that the item
response is greater than threshold j (Reise et al., 1993). The intended dimensional
structure of the model is depicted using two matrices composed of vectors that relate each
item to the underlying dimensions. These two are the design matrix (A’) and the scoring
matrix (B’).

The design matrix, A’ = (a;,ayy, ..., as), consists of item scores mapped to their
intended dimensions, for each item. The number of rows is equal to the total number of
response categories for all generalized items.

To create the scoring matrix, B, the scores across D dimensions can be collected
into a column vector b’y = [bi1, bik,...,bixp], then collected into the scoring submatrix
for item i, B’;= ( b, ba, ..., bi), and then collecting into a scoring matrix B’ = ( B’},

B’,, ..., B’) for the whole test.
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The Context of Measurement Equivalence Investigations

Previously, the most common venues for studies of ME were across cultures
(Jansens, Brett, & Smith, 1995; Reise et al., 1993; Riordan & Vandenberg, 1994; Windle,
Isawaki, & Lerner, 1988). However, additional interest in cross-group measurement
equivalence has resulted in both increased use in this area and a salient expansion to
others. Many of these additional investigations are across a variety of demographic
groups other than those defined by ethnicity. Some of the other group classifications
include gender (Byrne, 1994; Collins, Raju, & Edwards, 2000), differing levels of
academic achievement (Byrne et al., 1989), rater groups (Facteau & Craig, 2001; Pentz &
Chou, 1994), and aspects of industrial organization (Drasgow & Kanfer, 1985).

Another prominent focus of investigations involving measurement equivalence is
the stability of measures across measurement conditions, such as different media of
measurement administration like those found in a web-based survey versus a paper-and-
pencil survey (Donovan, Drasgow, & Probst, 2000; Meade et al., 2004; Taris, Bok, &
Meijer, 1998). Still others are concerned with stability of measurement over time
(Golembiewski et al., 1976; Riordan et al., 2001; Taris et al., 1998). Even the already
strong interest in cross-culture investigations of ME has increased recently (Ghorpade,
Hattrup, & Lackritz, 1999; Ployhart, Wiechmann, Schmitt, Sacco, & Rogg, 2002;
Steenkamp & Baumgartner, 1998). This upsurge may be attributed partially to the
explosive growth of international markets and the ascendancy of multinational

organizations (Triandis, 1994).
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Factors Studied in Measurement Equivalence Simulations

The effect of a great many contextual factors on the accurate verification of ME
has been investigated. Some of the most frequently included factors in simulation and
Monte Carlo investigations are the effects of test length (De Champlain & Gessaroli,
1991; De Champlain, Gessaroli, Tang, & De Champlain, 1998; Flowers, Oshima, & Raju,
1999), the effects of intertrait correlation (Gosz & Walker, 2002; Hambleton & Rovinelli,
1986; Nandakumar, 1994; van Abswoude, van der Ark, & Sijtsma, 2004), and the effects
of theta location (Seraphine, 2000). Other studies have examined the effects of number of
traits (van Abswoude et al., 2004), the effects of the number of variant items (Gosz &
Walker, 2002; Hambleton & Rovinelli, 1986; van Abswoude et al., 2004), the effects of
sample size (De Champlain & Gessaroli, 1991; De Champlain et al., 1998), and the
effects of number of scale (Seraphine, 2000). A listing of these studies, as well as their
findings and other pertinent information, is presented in Appendix A.

Sample size.

One of the largest groups in these studies focuses on the influence of sample size
on the rate of accurate detection of lack of ME (Boles, Dean, Ricks, Short & Want, 2000;
Davidson & Chen, 1991; Facteau & Craig, 2001; Flowers, 1996, Idaszak, Bottom, &
Drasgow, 1988; Knol & Berger, 1991; Luczak, Raine, & Venables, 2001; Martin &
Firedman, 2000; Meade et al., 2004; Schaubroeck & Green, 1989; Schmitt, 1982;
Vandenberg, 2002; Vandenberg & Self, 1993; Yoo, 2002). Several previous simulation
studies have used as a “large” sample size 1000 or 2000 (Cohen & Kim, 1992, 1993; Lim
& Drasgow, 1990), while 150 is common for a “small” sample size (Hidalgo-Montesinos

& Lopez-Pina, 2002; Meade et al., 2004).
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Typical of the findings that identification of lack of ME is more accurate with
larger sample sizes are those from De Champlain and Gessaroli (1996). Their study was
designed to identify lack of ME through dissimilar dimensionality across groups using
the G* statistic with TESTFACT. The results showed a very slight increase in accuracy (as
displayed by a decrease in the rate of false acceptance) when the sample sizes was
increase from 250 to 500 (.07 to .06), but was significantly more accurate when the
sample size was increased to 1000 (.02). In line with this, additional studies involving
samples sizes of 150 (Hidalgo-Montesinos & Lopez-Pina, 2002; Meade et al., 2004)
determined that identification of a lack of ME was not as accurate with this small sample
size. Thus, based on findings such as these, it is hypothesized that, in this study, the rate
of accurate identification of lack of equivalence will be smallest when the samples size is
small (n = 150) and will increase with an increase in sample size, such that the best rate is
obtained when the sample size is largest (n = 2000).

Strength of intertrait correlation.

There are also some notable findings concerning the effect of the strength of the
intertrait correlation, as identified by a variety of procedures, utilizing commercially
produced software. Generally, the accuracy of the procedures decreases with an increase
in the intertrait correlation. However, there is no agreement as to the point at which
accurate identification can no longer be made. As might be expected, the specific
intertrait correlation values needed for accurate identification of lack of ME vary from
procedure to procedure. For example, Nandakumar (1994) found Stout’s t-statistic, as
implemented in DIMTEST, to be effective when the intertrait correlations were as high

as .70. In another study, Gosz and Walker (2002) found that although one test of ME
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(implemented in NOHARM; Fraser, 1985) accurately identified lack of equivalence only
up to intertrait correlations of .50, another (implemented in TESTFACT; Wilson, Wood,
& Gibbons, 1991) continued to performed well, even with high intertrait correlations

of .90. Using TESTFACT to identify false acceptance rather than accurate rejection, De
Champlain and Gessaroli (1996) reported a perfect rate for false acceptances (0.00) when
the intertrait correlation was zero. But that rate (indicating inaccuracy) rose to 0.10 when
the intertrait correlation was increased to .70. These variations in findings come as no
surprise, based on the diversity of methods. Nevertheless, it poses a problem for the
researcher as to what criteria to use. From these studies, a definitive conclusion can not
been drawn as to a value that signifies the point at which identification can no longer
accurately be made for all procedures currently available. For this study, the hypothesis is
made that, in line with some prior research, accurate identification of lack of equivalence
will be made with intertrait correlations of .40 or less, and the accuracy rate will decrease
with an increase in the strength of the intertrait correlation.

Number of items lacking equivalence.

There is a similar diversity in findings on the effect of number or percent of items
lacking equivalence. One example comes from a study by Hambleton and Rovinelli
(1986) involving six tests for lack of ME. They found that TESTFACT was effective
when only 30% of the total instrument items lacked equivalence. However, for the other
5 tests in the same study, (three methods of linear factor analysis, a residual analysis, and
Bejar’s method), they reported that for accurate identification, these test required 50% of
the total number of items lack ME. As with other experimental factors, the situation

exists that, across procedures and indices, the percentage of items on the instrument
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needed for accurate identification of lack of ME varies. Again, it is difficult to make a
direct comparison between findings, with different IRT or MIRT methods, different
variations in contextual settings, and different research designs. In the investigation
presented here, the maximum percentage of items lacking equivalence being investigated
is 23% (6 items). Thus, based on previous findings, it is hypothesized that in this study,
the most accurate identification of lack of equivalence will be made with the largest
number of items (6 items or 23%) but will decrease when a smaller percentage of items
lack equivalence.
Common Methods to Assess Measurement Equivalence

Differential Item Functioning

Within the IRT framework, there are multiple methods to investigate a lack of
measurement equivalence (McKinley & Mills, 1985). Regrettably, none of these has been
universally accepted. Of these, the most common method to assess equivalence is an
examination of differential item functioning (DIF) across groups of interest. An item is
defined to have DIF if respondents with the same ability but from different groups do not
have the same probability of endorsing the item (Hambleton et al., 1991). Numerous
indices exist for this purpose, but all of those indices are designed to determine whether
the responses of members of subgroups or subpopulations to a particular item are
consistent with their joint responses to the remaining items on the instrument. Hence, DIF
indices seek to determine whether ME exists between subgroups with respect to their
responses to individual items on the instrument. This item-level concept has also been

expanded to a more extensive examination that includes overall test differential
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functioning, as well as item differential functioning in a recently-emerging concept
known by the acronym DFIT (Raju, van der Linden, & Fleer, 1995).
Dimensionality

Other prior investigations of ME have been concerned with differential
dimensionality between subgrouﬁs. Most of the indices designed for this purpose are
commonly used to evaluate threats to the unidimensionality, although they could be
adapted for the purpose of evaluating whether differential dimensionality between
subgroups exists. Additionally, many of these procedures have software specifically
designed to facilitate their application. One of the best known is Stout’s t-statistic test of
essential dimensionality, facilitated by the computer programs DIMTEST (Stout, 1987),
DETECT, and Poly-DIMTEST. DIMTEST has been shown repeatedly to effectively
identify dimensionality in single test situations (De Champlain & Gessaroli, 1991; Hattie,
1996; Nandakumar, 1994; Seraphine, 2000; van Abswoude et al., 2004). Other well-
known tests include Bock’s full information factor analysis G4 statistic (1988), used in
TESTFACT;, McDonald’s nonlinear factor analysis (NOHARM, 1981, 1993) and the
Holland and Rosenbaum’s method (1986).

In spite of their appropriateness for some investigations, for a simulation study
involving Likert-scale survey items and multidimensionality, these methods are
inappropriate for two reasons. First, they are designed for a single test administered to a
single group of examinees within an exploratory factor framework. As noted by Byrne
and Campbell (1999), even though a given measurement may report accurately within
each of two or more groups, there is no guarantee that the measurement will operate

equivalently across groups. Winter and Prohaska (1983) support this view in their
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statement that “a measurement tool which works for one group may not work for
another” (p. 422). Second, some of the indices employed are intended for dichotomous
items and may not be effective when applied indiscriminately to polytomous or Likert-
scale data (Adams et al., 1997). Rather, a multidimensional, or MIRT, procedure that can
accommodate Likert-scale response items and multiple examinee groups is required for
this study.
Model Fit

A third more serviceable procedure to identify a lack of measurement equivalence
is to compare the model fit or value of the fit function across groups. Customarily, fit is
assessed at the item level by a statistic that depicts the congruence between the proportion
of item responses in a particular category predicted and the proportion of responses in a
particular category observed in the data (Hui & Triandis, 1985; Knight & Hill, 1998).

One common index used for this is the likelihood ratio (LR) test (Thissen,
Steinberg, & Wainer, 1988, 1993). In a unidimensional setting where the LR is to be used,
a baseline model is generated in which all item parameters for all test items are constraint
so that item parameters for like items are equal across measurement contexts. This model

provides a baseline likelihood value, Lc , for item fit to the model (the ¢ standing for

compact). Additionally, a second nested model is generated with some parameter(s)
changed. The specific change is defined by the design of the investigation. From this

model, a likelihood value, LR, , is also obtained (the a standing for augmented). The two
i

values are then compared, creating a likelihood ratio, LRi , such that
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_c
LR, = T (2)
9

where L. is the likelihood function of the baseline model and LR, is the likelihood
1

function in which item parameter(s) of item i are allowed to vary (Meade et al., 2004).
From this, a natural log transformation is taken, which results in a test statistic, %),

distributed as a chi-square, where

2 i -
7'(M)= Zln(LRI.)— 2InL_+2In Lai 3)

with M equal to the difference in the degrees of freedom between models.

In reality, this is a “badness-of-fit” test, where a statistically significant result
implies the baseline model fits significantly more poorly than the manipulated model.
Thus, a rejection of the null hypothesis indicates that there is a difference between the
two models or that there is a lack of equivalence with regard to item i. To complete the
investigation, the LR test is applied individually to each item in the instrument in order to
verify equivalence for all items. As would be expected, it is highly unlikely that a ratio
exactly equals one, indicating parameter equality across groups, for all items. Rather, a
ratio is sought that is not significantly different from one. Thus, the assessment is more
an evaluation of partial equivalence accompanied by an evaluation of the degree to which

variance will be tolerated.
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This concept of model fit has also been expanded for application to the
multidimensional situation. Here a fit statistic commonly reported is identified by the

term “deviance,” which is defined as

Deviance =-2 * (Lm - Ls) 4)

where Lm denotes the maximized log-likelihood value for the model of interest, and Ls is
the log-likelihood for the saturated model (http://www.statsoft.com/textbook/glosd.html).
This statistic is distributed as a chi-square with degrees of freedom equal to the number
of parameters that are unconstrained in Lm as compared to Ls. The deviance statistic is
not typically interpreted on its own. Rather, it provides a numerical value for the degree
to which the fit of the model estimated from the given parameters deviates from the

model generated by the data.
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CHAPTER 3: SIMULATION METHODOLOGY

In the next three chapters, a study is described in which simulated data were used
to determine the degree of accuracy in identifying a lack of ME using an MIRT index of
model fit under variations in measurement context. This chapter explains the
methodology and gives a detailed description of the index as well as the software used.

Investigation Objective

The intent of this study is to examine the use of a new index, the W-index, which
can be utilized in the context of multidimensional item response theory (MIRT) for the
purpose of identifying a lack of measurement equivalence (ME) between subpopulations
of survey respondents. The position is taken that a lack of equivalence is established by
demonstrating different factor structures for the same latent construct across groups of
interest (Buss & Royce, 1975; Mullen, 1995) as exemplified by lack of model fit. This is
based on the definition of equivalence employed by Hambleton et al, (1991), who stated
that “equivalence only holds when the fit of the model to the data is exact in the
population” (p. 23). Thus, if a difference across groups is found in the degree to which
the given model fits the data, the instrument lacks measurement equivalence.

The W-index: A Procedure to Access Across-groups Model Fit

The following section describes the index developed for this study, which is based
on a comparison of model fit between two groups and can be used to assess measurement
equivalence within an MIRT context. The procedure relies on a comparison of the
deviances of item responses from each group to a common MIRT configuration. The
group for whom an expected MIRT structure is specified is the reference group; the other

group is the focal group.
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Although the deviance statistic provides a measure of model fit for a given
situation, there is no existing index to compare fit across models, thereby determining if
one model fits significantly best or worse than another under varying conditions. For that
reason, the #-index, was developed for this study. To compute this, first, a

proportionality constant (PC) was created, defined by

_ deviance

PC =
(n-p)

(%)
where n = sample size; p = number of parameters estimated.

Then the PC value for focal group was compared to that for the reference group as a ratio:

pC focal

W = (6)

Creference

Thus, this ratio may be distributed in a form similar to an F-statistic, as it meets the
definition imposed by Hays (1988) for the F variable as “a random variable formed from
the ratio of two independent chi-square variables, each divided by its degrees of freedom
(1988, p. 332). The required assumption of normality for the F-ratio is met by sufficiently
large sample size under the Central Limit Theorem.
The null hypothesis to be tested is

Ho: W-index =1,

indicating the fit of the data to the model is statistically equivalent across groups.
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A rejection of the null hypothesis, at the customary rate of a = .05, indicates a lack of
equivalence because the fit to the model of the data response sets for the reference and
focal groups differ by more than can be expected due to random sampling.

It is important to point out that a conclusive determination of the lack of
measurement equivalence should not be made solely on the rejection of or failure to
reject the null hypothesis. Two situations exist that warrant additional substantive
investigation. First, there is the possibility that a large number of items lack equivalence
for both groups of interest. Such a situation would result in similar exceptionally large
deviance values. Thus, the resultant #-index would be statistically close to 1, leading to a
failure to reject the null hypothesis. Therefore, an inspection of the relative size of the
deviance as well as the total number of percentage of items lacking equivalence should
also be completed to verify items are not “equally bad” across groups.

Additionally, it is important to note that in some cases including items that lack
measurement equivalence across groups may not necessarily be undesirable. For example,
in prior cross-national investigations, it has been clearly established that some constructs
are consistently interpreted differently due to cultural differences (Cunningham,
Cunningham, & Green, 1973; Cole & Maxwell, 1985; England & Harpaz, 1983; Hui &
Triandis, 1985; Mullen, 1995; Singh, 1995; Steenkamp & Baumgartner, 1998). The
recognition and acknowledgement of this fact is important in a thorough measurement
equivalence examination. As a result, the identification of items displaying dissimilar
factor loadings should be followed by an assessment of the content of these items and an

attempt to quantify why such dissimilarity exists.
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Determination of W-critical Value

Unfortunately, the exact shape of the null distribution of the #-index is unknown.
Hence, we relied on a Monte Carlo approximation of that sampling distribution for the
sake of identifying appropriate critical values in the study reported here. Specifically,
pairs of item response datasets were generated that were in accord with the MIRT model
adopted for the reference group, and deviance statistics were computed based on the fit of
each dataset to the MIRT model posited to be optimal for the reference group. The W-
index for each pair of datasets was computed from each corresponding pair of deviance
statistics, and a frequency distribution of the #-index was obtained for a large number of
iterations of this process. The resulting frequency distribution allowed us to determine the
W-critical value for a particular configuration. By placing the focal group (i.e., the group
for whom the MIRT model is expected to be sub-optimal), in the numerator of the
fraction, it is expected to observe the W-index with values greater than 1.00 because the
fit of the data to the specified model is expected to be worse than it is for the reference
group. Thus, this allows for the adoption of one-tailed hypothesis tests. The W-critical
value obtained from the frequency distribution of the simulated data could then be used to
examine the lack of ME for the demographic groups under variations in experimental
factors. Because the deviance statistic has been shown to be a viable procedure for
determining model fit (Adams et al., 1997), it is hypothesized that in this study, the W-
index, based on the deviance statistic, will accurately identify a lack of measurement
equivalence as demonstrated by unsatisfactory model fit and dissimilar factorial structure

across groups.
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Assessment of Model Fit via ConQuest

This dissertation employs a piece of software entitled ConQuest (Wu, Adams, &
Wilson, 1998) to facilitate identification of across-group model fit using the MRCMLM.
The program utilizes marginal maximum likelihood to estimate vy, the matrix of
regression coefficients, Z, the variance-covariance matrix, and &, the item parameter
vector of the MRCMLM. The following is a summary of the complete explanation of this
procedure presented by the authors in the manual, ACER ConQuest: Generalized item
response modelling software (1998):

First, the unconditional, or marginal, item response model is obtained, which is
£ (5&.7.5)= [f, (¢10)7,(6:7,2)a6 ®)
0
From this, the likelihood function is given by
N
A= ]_[]fx(xn;é,r,z) ©
n=

where N is the total number of sampled persons.
Differentiating with respect to each of the parameters and defining the marginal posterior

as
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provides the following system of 3 likelihood equations:

N
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n
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x n n n
and 6 = [6h (g Y ,E,7,Z|x )do. (15)
n o " O\'n n n
n

This system of three equations may then be solved using an EM algorithm following the

approach of Bock and Aitken (1981).
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In ConQuest, the estimation algorithms can be either adaptations of the quadrature
method described by Bock and Aitken (1981) or the Monte Carlo method of Volodin and
Adams (1995). The choice of which to use is based on the number of dimensions
involved. Quadrature is the default method for fewer than three dimensions; the Monte
Carlo method is used otherwise. The fit of the model is ascertained by generalizations of
the Wright and Masters (1982) residual-based methods that were developed by Wu
(1997), using the deviance statistic. This program formally checks model fit by
alternatively positing dimensionality structures and comparing the fit between the latent
construct and the observed score of these nonlinear models.

Verification of Between-item Dimensionality

There is an important distinction between “within-item” and “between-item”
dimensionality in MRCMLM. In order to have “between-item dimensionality” the items
must have a significant loading (> 0.4) on only one factor (Wu et al., 1998). For the real
data, it was necessary to verify such a condition existed. However, for this portion of the
investigation, the data were simulated to meet this requirement, thus justifying the use of
the between-item feature in ConQuest.

Simulation Study Overview

For the simulation, the computer program SAS 8e (2004) and WINSTEPS (1999)
were utilized to generate multidimensional data similar to those collected for the National
Board for Professional Teaching Standards, using the Teacher Collective Responsibility
Survey Instrument—the instrument for which responses were analyzed in the real data
example section of this dissertation The instrument and cover letter are included in

Appendix B. The first step in the investigation was to generate a number of item response
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data sets. This was accomplished with the assistance of SAS8e (2004) and WINSTEPS
(1999). (See Appendices C and D) The first group generated was that for the baseline
condition. The baseline (null case) was defined to have no items lacking measurement
equivalence (referred to in the following discussions as the p = 0 condition). That is, the
factorial structure was the same for both groups of interest. Next, each data set was
submitted to ConQuest using a correctly specified model. Here a deviance statistic was
obtained. The deviance statistics from the null data sets were used to create the W-index
value (Appendix E). SAS 8e was used to determine the sampling distribution and the
accompanying critical value for a hypothesis test using o = .05 for the W-index
(Appendix F). The W-critical values were verified by additional null data sets generated
using the same procedure. Following this, data sets were created in which there was a
lack of measurement equivalence (referred to in the following conditions as the p # 0
conditions). Here the intent was to identify how often a true lack of measurement
equivalence could be detected by calculating the statistical power rate for the null
hypothesis of equal model fit across groups. These were fully crossed with 4 variations in
sample size and 3 variations in strength of intertrait correlation. From this, an evaluation
of the accuracy of the W-index procedure for identifying a lack of measurement
equivalence in measures from a controlled situation with known parameters was made
(Appendix G). For further information to aid the investigation, a logistic regression that

included all interactions and main effects was also completed.
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Multidimensional Item Response Data Sets

Constant Elements

In alignment with the real data, the simulated data response sets consisted of 26,
four-option, Likert scale items. Additionally, the discrimination parameters (o) were
constant both within and between items (i.e., we assumed that the data conformed to a
Rasch model). Also, the number of rating scale categories was set to equal 4 (k = 4) for
all items and across all remaining conditions. As another constant element, the distances
between the item category thresholds (taus) were set to be equal (-1, 0, and 1). The data
were generated to be multidimensional, with two dimensions. In the null condition only,
where no items lack equivalence (p = 0), 13 items loaded identically on each dimension
for both the focal and reference groups. In the other conditions, where some items lack
equivalence (p # 0), the factor loadings for the 26 items are different for the reference and
focal groups.
Data Generation Procedure

The data generation followed procedures suggested by Wherry, Naylor,
Wherry, and Fallis (1965). First, a set of two randomly generated simulee traits (thetas)
was created, each from a N(0,1) distribution, for each simulated response. This produced
a multidimensional setting, with D = 2. The correlation between the trait distributions
was varied as an experimental factor. In addition, a delta, or item difficulty parameter,
was randomly generated from a N(0,1) distribution for each item. For each matched pair
of simulee traits (thetas) and item difficulty (delta), an item response was calculated

based on a multidimensional Rasch Rating Scale Model, which is
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where, 1; represents the relative difficulties of the various item category thresholds that

were common across all items.

The response category for each item was determined by comparing the calculated
category probabilities of a given response to an item by a simulee with a number sampled
at random from a U[0,1] distribution. If the sampled number was less than the calculated
probability for the threshold between the first and second rating scale categories, then the
item response was scored as the first category. If the sampled number was larger than this
calculated probability but less than a second threshold’s probability, the item response
was scored as the second category, and so on. The process was completed for each
simulee on each of the items.

Null Condition: P = 0

The first data configuration constitutes the null situation, in which equivalence
holds across groups. These data sets define the sampling distribution for the W-index
against which the remaining simulated data sets were compared. In these data sets, no
items lacked measurement equivalence. This was established by generating data for two
groups of simulees using the same factor structure for both the focal and reference groups.
Here the value of p, or number of items lacking equivalence, was set equal to zero (p =
0). A separate version of the null condition was created for each cell of the experimental
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design described in the following sections (i.e., for each combination of sample size and
intertrait correlation). 200 null data sets were generated for each group for each cell of the
experimental design, thus producing 4,800 data sets. In addition to these data sets, a
separate grouping of data sets was also generated via the same procedure to verify
findings from the original data sets. This consisted of 100 sets for both the reference and
focal groups for each of the null conditions, resulting in an additional 2,400 data sets.
Experimental factors

Using the same procedure, additional data sets were generated in which
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