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ABSTRACT

A MODE-MATCHING APPROACH TO DETERMINE THE

SHIELDING EFFECTIVENESS OF A DOUBLY—PERIODIC ARRAY

OF APERTURES IN A THICK CONDUCTING SCREEN

By

Derik Clayton Love

The transmission of electromagnetic waves through apertures in a conducting

screen is a problem that has been examined many times before. Several techniques

have been used when the apertures are periodically arranged, and computational

approaches have allowed for the analysis of complex aperture shapes. However, past

literature is typically concerned with screens whose thickness is comparable to or

smaller than the aperture dimensions (i.e. thin screens). Further, the usual focus is

on transmission within a narrow band of frequencies.

The shielding properties of planar, periodic structures have been considered in

prior efforts. For a thick conducting screen of apertures, one approach for estimating

the shielding effectiveness is to treat the screen as an array of cylindrical waveguides.

This is referred to as the waveguide below cut—off principle. The result is dependent

on the attenuation constant of the aperture and the aperture length. This technique

is limited by the fact that it was developed to describe the attenuation of waves

propagating in an opening whose length is at least five times its width. In addition,

this approach is only relevant when the frequencies of interest are below the cut-off

frequency of the dominant waveguide mode.

This dissertation uses mode-matching to determine the shielding effectiveness of a

doubly-periodic conducting screen of apertures whose thickness can be several times

the aperture size. This is accomplished by modeling the screen as an array of cylin-

drical waveguides. This study considers rectangular and circular apertures, and the



fields within them are represented using waveguide modal fields. The reflected wave

above the screen and the transmitted wave below the screen are found by applying

Floquet’s Theorem, thereby exploiting the doubly-periodic nature of the screen of

apertures. After enforcing boundary conditions and building a system of linear equa-

tions, the system is then truncated to produce a matrix equation which is solved

using standard techniques. The shielding effectiveness of the screen is determined by

comparing the transmitted power to the incident power carried by a plane wave. It

is clear that as the thickness of the screen increases, the transmitted power is greatly

reduced at frequencies below the cut-off frequency of the dominant waveguide mode.

However, increasing the thickness also increases the attenuation of the higher-order

waveguide modes, leading to non-convergent solutions to the matrix equation. By

selectively eliminating higher-order modes from consideration, meaningful solutions

are found. Results also show the effect of increasing the number of Floquet modes,

varying the incidence angle, and changing the incident plane wave polarization.

The mode-matching results for rectangular apertures are very similar to data

obtained by applying the waveguide below cut-off principle. However, the mode-

matching approach can be used in cases where the frequencies of interest are above

the cut-off frequncy of the dominant waveguide mode, when higher-order modes will

begin to propagate. Comparisons are also made to previously published data using

the mode-matching approach. The data curves are in strong agreement in each com-

parison. However, it should be noted that the previously published data considers the

principal Floquet mode as the only propagating mode. That approach is inconsistent

with the definition of the propagation constant for Floquet waves. Experimental data

using commercial-grade aluminum honeycomb is also presented as another compari-

son for the mode-matching results. In each case, the curves are in good agreement in

describing the transition from strong shield to weak shield.
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CHAPTER 1

INTRODUCTION

The transmission of electromagnetic waves through apertures in a conducting screen

is a problem that has been examined many times before [1H4]. Several techniques

have been used when the apertures are periodically arranged [5]-[12], and computa-

tional approaches have allowed for the analysis of complex aperture shapes [13]-[19].

However, past literature is typically concerned with screens whose thickness is com-

parable to or smaller than the aperture dimensions (i.e. thin screens). Further, the

usual focus is on transmission within a narrow band of frequencies.

The shielding properties of planar, periodic structures have been considered in

prior efforts [20]-[22]. For a thick conducting screen of apertures, one approach for

estimating the shielding effectiveness is to treat the screen as an array of cylindrical

waveguides. This is referred to as the waveguide below cut-off principle [23]. The

result is dependent on the attenuation constant of the aperture and the aperture

length. This technique is limited by the fact that it was deveIOped to describe the

attenuation of waves propagating in an opening whose length is at least five times its

width [24]. In addition, this approach is only relevant when the frequencies of interest

are below the cut-off frequency of the dominant waveguide mode.

This dissertation uses mode-matching to determine the shielding effectiveness of a

doubly-periodic conducting screen of apertures whose thickness can be several times

the aperture size. This is accomplished by modelling the screen as an array of cylin-

drical waveguides. This study considers rectangular and circular apertures, and the

fields within them are represented using waveguide modal fields. The reflected wave

above the screen and the transmitted wave below the screen are found by applying

Floquet’s Theorem, thereby exploiting the doubly-periodic nature of the screen of



apertures. After enforcing boundary conditions and building a system of linear equa-

tions, the system is then truncated to produce a matrix equation which is solved

using standard techniques. The shielding effectiveness of the screen is determined by

comparing the transmitted power to the incident power carried by a plane wave. It

is clear that as the thickness of the screen increases, the transmitted power is greatly

reduced at frequencies below the cut-off frequency of the dominant waveguide mode.

However, increasing the thickness also increases the attenuation of the higher—order

waveguide modes, leading to non-convergent solutions to the matrix equation. By

selectively eliminating higher-order modes from consideration, meaningful solutions

are found. Results also show the effect of increasing the number of Floquet modes,

varying the incidence angle, and changing the incident plane wave polarization.

The mode-matching results for rectangular apertures are very similar to data

obtained by applying the waveguide below cut-off principle. However, the mode-

matching approach can be used in cases where the frequencies of interest are above

the cut-off frequncy of the dominant waveguide mode, when higher-order modes will

begin to propagate. Comparisons are also made to previously published data using

the mode-matching approach. The data curves are in strong agreement in each com-

parison. However, it should be noted that the previously published data considers the

principal Floquet mode as the only propagating mode. That approach is inconsistent

with the definition of the prOpagation constant for Floquet waves. Experimental data

using commercial-grade aluminum honeycomb is also presented as another compari-

son for the mode-matching results. In each case, the curves are in good agreement in

describing the transition from strong shield to weak shield.

This dissertation describes all of the theoretical, numerical, and experimental

investigations involved in this study. Chapter 2 outlines the theory, including deriva-

tions of fields produced both by the Floquet waves and within the apertures. Also

included is a detailed description of the enforcement of boundary conditions on the



electric and magnetic fields, and a full explanation of how the boundary conditions

were used to create a system of linear equations. Finally, the computation of shielding

effectiveness will be shown. Chapter 3 outlines calculations and numerical results for

both rectangular and circular apertures, including computation of the integral expres-

sions that are described in Chapter 2. The experimental set-up and results are dis-

cussed in Chapter 4. An open set-up using horn antennas and a network analyzer was

used to conduct shielding measurements on samples of aluminum honeycomb. The

results confirmed the general behavior versus frequency that was expected. Chapter

5 discusses the considerations that were made in order to obtain the numerical results

in Chapter 3. This involves the truncation of the matrix equation in order to solve

for the unknowns. Most important was the observation that as the thickness of the

screen increased, the number of waveguide modes had to be reduced in order to get

convergent solutions to the matrix equation. The remaining chapters include conclu-

sions, references, and appendices for techniques that were critical to the development

of the theory.

Mode-matching applied to thin screens is not a new technique, and neither is com-

puting and/or measuring shielding effectiveness. However, using mode-matching to

determine the shielding effectiveness of thick screens across a wide range of frequen-

cies is a new direction. To the author’s knowledge, the comparison of mode-matching

numerical results to experimental data for aluminum honeycomb has not been done

until now. Also, the use of styrofoam boards covered in foil tape to analyze the hon-

eycomb samples is a new approach, but similar to using large metal plates with an

aperture to analyze composite materials.



CHAPTER 2

THEORETICAL FORMULATION

2. 1 Floquet Waves

The layout of a screen of apertures is shown in Figure 2.1. It is considered to be of

infinite extent in the x and y directions and have thickness t in the z direction. The

screen contains apertures that are arranged in a doubly-periodic fashion, with the first

axis of periodicity being the x-axis and the second making an angle (150 with respect

to the x-axis. From Figure 2.1, the screen has a periodicity of c along the x-axis

and d along the skewed axis. By representing the screen as an array of cylindrical

waveguides, each element of the array is represented by a cell and the center element

is regarded as the unit cell. The unit cell (S) is composed of two regions, the aperture

region (Q) and the conducting region (S —Q), as shown in Figure 2.2 (Note: Although

the figure shows a rectangular unit cell, there are other possible choices for the unit

cell geometry; the rectangular cell is used as an example to graphically indicate S and

Q). A plane wave is incident on the screen with wave vector It:i = :izkj, + 9k; — 2kg,

where

k; = k1 sin 0,- cos (23,-,

k; = k] sin 01‘ SlIl $15

k: 2 k1 cos 0,,

k1: (AM/(M161),

and 61 and #1 are the permittivity and permeability, respectively, in region I (z > 0).

Similarly, 62 and #2 are the permittivity and permeability in region 11 (—t < z < 0),

and 63 and ug are the permittivity and permeability in region 111 (z < —t). The



azimuthal angle (1),: is measured from the positive x-axis toward the positive y-axis,

while the zenith angle 9,- is measured from the positive z-axis toward the negative

z-axis.

If regions I, II, and III are assumed source-free, the fields in each region can be

expressed using a TE/TM decomposition of the fields [25]. Furthermore, Hertzian

potential functions can be used to determine the fields while still maintaining the

wave nature of the solution [25]. The Hertzian potentials that are used are

He(:r,y,z) = 2He(:r,y,z) (TMz Case),

I'Ih(:z:,y, z) = 2Hh(a:,y, z) (TEz Case).

Due to the longitudinal nature of the potentials, their satisfaction of the wave equa-

tion simplifies to only requiring the scalar component to satisfy the scalar Helmholtz

equation [25], or

(V2 + k2)H.,, = 0.

The fields due to the potentials are

 
3H8 , 82 . .

E = V; 62 + Z (a + k2) He 4']pr X VtI-Ih, (2.1)

H 2

H = Vt%z—h' 'I' 2 (% + [62) H}, — jtdéé X VtIIe, (2.2)

where

A 3

Vt — V — 2E,

k2 = w2uc,

so that It? 2 w2ulel and kg = w2u3c3.

Because of the doubly-periodic nature of the array of apertures and the plane



wave excitation, the potentials in regions I and III must obey Floquet’s Theorem,

such that

Ileh(a:,y,z) = e—J'ke'eIe‘Jkei/nfha y,z2).

Using the results from Appendix A, HZ, can be expanded in a Fourier series such that

  

   
 

 

Heh(x y,ZZ) = Z Hehmn(z j27rm ‘7“L2” CSC ¢Oy + ‘7_272m COt $03].

171,712—“)

Using this, He], can be rewritten as

n..<e.y, e) = e—jkixe”ii/Hm v.2z)

= if unmet-1121’" .e.>—(2%" eseee— ——coteo + my
m,n=—oo

: Z I_I¢3hmn(zZ)6 _‘jam$e—jflmny (23)

m,n——oo

where

2 .

a... = 7"” + k; (2.4)

c

2 2m

fimn—— 1:; csc 450 — —:— cot $0 + 19;, (2.5)

and the indices m and n are the Floquet mode indices. Substituting 116,, into the

Helmholtz equation leads to

2 2 2

(V2 + mud, (3— + a_ + a_ + k2) n...
81:2 By? 822

oo 2 . .

= Z (—a?,, - fimn + k2 + 823) Hehmn(z)e—]amxe—Jflm"y

= 0. (2.6)



If a function an(z) is defined such that

52

an(z) = (413,, — 63",, + k2 + 5—3) Hehmn(z),

(2.6) can be rewritten as

Z an(z e—jamxe—jflmny : 0. (2.7)

m,n—-oo

The orthogonality of the exponentials can be used to simplify (2.7) by removing the

infinite summations. This is done by multiplying (2.7) by another pair of exponential

expressions and integrating over the unit cell region over which the Floquet waves are

defined. This leads to

[ejaaxejflaby [ Z an Z)8("jamxe—jfimny] d3 : O (2.8)

S m,n=—oo

Interchanging the order of summation and integration, (2.8) becomes

2 an(z)[f ej(aa — am):z:ej(fiab — 5mn)yd3] = 0, (2.9)

m,712-00 3

The orthogonality of the exponentials allows the integral in (2.9) to be evaluated such

that

/8j(aa _ am)$ej(flab “7 ,an)yds —__—_ Aséaméb‘na

S

where A, is the area of the unit cell, and 6 is the Kronecker delta function [26].

Rewriting (2.9) once more leads to

As 2 (Sam6anmn(Z) : Asan(Z) : 0

m,n=—oo



With A, being a constant and assumed not equal to zero, it follows that

2

an(z) 2 (“air _ 181277.11 + k2 + 1‘) Hehmn(3) = 0i
822

or

32

(F3711: + 6—22‘) Hehmn(z) = 0, (2.10)

where

F2 = k2 — a2 — 2 .

The solution to the ordinary differential equation in (2.10) is

Hehmfl(z) : azhmne—ernz + ae—hmne-I-Jl—‘mnzi

which represents waves either propagating or evanescent in the +z and -z directions.

The potential expression in (2.3) can now be rewritten as

oo _. _. . 3)

Ileh(:1:,y,z)= Z aghmne jamxe Jflmnye'I'JI-‘Snnz

m,n=—oo

when 2 < —t, and

0° —' _° _' (1)
Heh($,y,2)=

Z ajhmne Jamilie Jfimnye JanZ

m,n=—oo

when 2 > 0, where

12 2 2 2

Final = k1_ am _ Ian’

F92=%—a;—fimn mn’

and k1 = CIA/(#161) and k3 = w(/(,u3€3) represent the wave number in regions I and

+

ehmn ehmn
III, respectively. Also, the coefficients a and a represent the complex Floquet



wave coefficients in regions I and III, respectively. Two observations are made here.

The first is that the sign of FEM must be chosen such that

%{M} >0 and 3{M} <0

to ensure that propagating Floquet modes propagate away from the screen and evanes-

cent Floquet waves in each region decay away from the screen. The second observation

is that the potential expressions can be rewritten as

00 — — '1' -r + '1’“) z
Ugh: Z aehmne J "m 6 J m" (2.11)

m,n=-oo

when 2 < —t, and

00 — '1' -r — T“) z
Ugh: Z agihmne J "m 6 J "m (2.12)

m,n=—oo

when 2 > 0, where Tmn = iam + gs... and r = 5:2: + 32y + 22.

The Floquet wave fields will be matched to fields within a waveguide whose lon-

gitudinal axis is the z-axis, and thus only the transverse components of the electric

and magnetic fields will be needed. The transverse electric field is taken from (2.1)

as

He . -

Et 2 V??? + jwuz x th'lh, (2.13)

while the transverse magnetic field is taken from (2.2) as

an,

Ht = Vt 52

 — jwei x th'le. (2.14)

With complete expressions for the Hertzian potentials in regions I and III, the electric

and magnetic field expressions for both regions can be determined. Substituting (2.11)



and (2.12) into (2.13) leads to the electric field, which is

(1)
(1) . .

00
64:]Ffrffize—JTmn ' 1‘.E53) : Z:

m,n:—oo

(1)

rainrflrmn — wu(1)a,:5nn(rmn x 2)

(3)

  

Similarly, the magnetic field can be found by substituting (2.11) and (2.12) into (2.14),

which leads to

(1)
(1) 00 (1) . (3) .

H53) =2 Z $ahimnl‘frfri1'mn + wquagfimhmn x z) eTJanZeTJTm" ' r.

m,n:—oo (3)

  

In cases where signs, subscripts, and/or superscripts are stacked, the upper signs,

subscripts and superscripts correspond to region I (z > 0), while the lower signs,

subscripts and superscripts correspond to region 111 (z < —t). Making some substi-

tutions for constants and taking :2 x Ht, the transverse electric and magnetic fields

can be expressed as

00

Et = 2 [$143an jinn _ AfitmnRIEnn 7 (2'15)

00 (1) (1)

e x H. = 2: Maui’s-f... + A3..n(°)R.im. . (2.16)

where

(1)

143:1"! : 03711111513717.7111: V AS,

:I: :l: /

Ahmn : (up?) Cl’hmnTTnn A8,

3

(1)

- (3)

lerznn : 7A-mnlerrEn : R2mne:FJI-‘mnz3

[3
Ri : (fmn X ‘2)an : lenBZFJanZ,

lmn

10



(1) <1)

Ri : 1 e;jr§3,lze—jrmn.r= Rmnezpjréilz,

m" «A:

 

 

1 .

Rm = ”97m" "3
me

len : (ff-mu X 2)Iimna (217)

R2mn : 'fmnanna (218)

A Tmn

7fmn : a

Tmn

Tmn : ITmnl = V 03,; + 53mm

and the wave admittances are given by

 

(3) _ (3)

Y8 (1) ’

(3)
mu

(1)

(1) (3)

1453’ _ m" .

wM1)

(3)

2.2 Waveguide Fields

2.2.1 Modal Fields

To determine the fields within the screen, a modal expansion will be performed using

Hertzian potentials. The Hertzian potentials used for this expansion are

Hep(:c,y, z) = 2H8p(x,y, z) (TMZ Case),

th(:1:,y, z) = illhpcr, y, z) (TEZ Case),

11



where p is an index to represent a particular waveguide mode. Due to their longitu-

dinal nature, these potentials must satisfy the scalar Helmholtz equation, or

(V2 + k§)He,,p = 0, (2.19)

where kg = w2p262, and 62 and #2 represent the permittivity and permeability, re-

spectively, in the aperture regions within the screen (region II). The waveguide modal

electric and magnetic fields in terms of the Hertzian potentials are

 
311,, 62 . 2

Ep = Vt 62 +2 g + kg Hep + JUJIJQZ X VtHhm (2.20)

2

Hp thLIB-[:p'i- 2(66—2 +k2) th— jwfgi X VtHep- (2.21)

The separation of variables technique can be used to express the solutions to (2.19)

as [25]

Hep : wrap“): 3064;719:529

Hm, = was, weak”,

where the mode functions 1126,, and 21),”, must satisfy

vfwehp + kzweh, = 0, (2.22)

and

k3 = k3 — k3. (2.23)

To complete the satisfaction of the Helmholtz equation, Z(2) = eszkzz satisfies

62Z

2 _07 +kZ—0.

12



As was the case with the Floquet wave derivation, the fields of interest within

the waveguide are the fields transverse to the direction of wave travel, or the fields

transverse to the longitudinal axis of the waveguide, which is the z-axis. Therefore,

(2.20) and (2.21) can be used to obtain the transverse fields as

 

 

8H6 , A

Etp 1' Vt 82p + mez X thhp) (2.24)

an

H,,, = v. a:1" — jwegé x thep. (2.25)

For the TMZ case, the potential Hep can be used in (2.24) and (2.25) to express the

modal transverse field components as

E,, = acetpeifjkzz, (2.26)

Htp : _}/ep(2 X etp)e:ijZZ, (2.27)

where

etp($a y) = jkzvtwepcra 3!), (2'28)

and the complex wave admittance is

 

A modal expansion of the total transverse electric field within the waveguide in terms

of sinusoidal functions and complex coefficients AP and Bp leads to

E,T = 21/1,, sin(kzz) + B,, cos(kzz)]Etp (2.29)

p

13



where

 
Etp _ 8t? a

fpe

fpe = fetp ' etp d3, (2.30)

9

and fpe is used to make the modal fields orthonormal. For a modal expansion of the

transverse magnetic field (2 x Hg), (2.26) and (2.27) can be used to reason that

. T 8 A T

JWEgEt 2 BER: x Ht ]. (2.31)

This is accomplished by taking the cross product of 2 and Htp, and then taking a

derivative with respect to 2 such that

(796; (73 x Htp) = — (—Yep(2 x 2 x tp)e:‘tjkz )

 

= :izjwfzetpeq:jkzz

: jWCQEtp.

Substituting (2.29) into (2.31) leads to

jwézEzw = jLUCQ Z[AP SinUCzZ) + Bp COS(kzz)]EtP

p

,LUEQ .

: ZJk—kz[Ap31n(kzz) + 8,, COS(kzZ)]Etp

p Z

1 .k2 -
= — ZJ—kz[Ap sm(kzz) + Bp COS(kzZ)]Etp

772 p k2

a .

= ngXHtTl

14



where 772 represents the intrinsic impedance in region II. The solution for 2 x Hf is

A T 1 .k2 .

z x H, = —E ij—[Ap cos(kzz) — Bp srn(kzz)]Etp. (2.32)

p Z

For TE modes, a similar approach can be used to determine the fields. Ilhp can

be used in (2.20) and (2.21) to express the modal transverse field components as

Htp : ¥htpe¥jkzz, (2.33)

E”, = z,,,(2 x htp)e:ijzz, (2.34)

where

htp($a y) :jkzvtwhp($ay)1 (235)

and the complex wave impedance is

 

The modal expansion for the total transverse electric field is

E? = {[0, sin(kzz) + Dpcos(kzz)]Etp (2.36)

p

where

_ th(2 X htp)
 

Etp — a

V fph

fph = [th(2 X htp) ' thl'2 x htp) d8, (2-37)

{2

Cp and Dp are complex coefficients for the TB modes, and fph is used to make the

fields orthonormal. To obtain the magnetic field expansion, it can be shown using

15



(2.33) and (2.34) that

6

jwug (:2 x H?) = ——(E‘f). (2.38)
82

This is accomplished by taking the cross product of 2 and Htp, and then multiplying

by jam such that

jwpg (2 X Htp)

Substituting (2.36) into (2.38) leads to

6

5;

The solution for 2 x H,T is

2xH3‘

T

E)t

— (2 x (3.532))

raw/22 (2 x h...) eszkzz

8 .

5; 2,10,, Sln(k'z2) + DP cos(kzz)]Etp

Z kz[Cp cos(kzz) — DP sin(kzz)]Etp

p

jUJ/Lg (2 x HE).

:—J— 2 kz[Cp cos(kzz) — Dp sin(kzz)]Etp

Z kz[Cp cos(kzz) — D,D sin(kzz)]Etp

:1 :j—k—Z[Cp cos(kzz) — DP sin(kzZ)lEtp- (2-39)
772 p k2

2.2.2 Mode Functions for Rectangular Waveguides

For the case involving rectangular apertures, the screen is modeled as an array of

rectangular waveguides. Many textbooks have analyzed the rectangular waveguide,

16



including [25]-[27]. Some details of determining the mode functions are repeated here.

Consider a rectangular aperture defined such that —% S a: S g and —g g y g g,

and filled with a material with permittivity 62 and permeability [1.2. To properly

represent the fields within the aperture, the mode functions $8,, and 1pm, must satisfy

(2.22) and (2.23). In addition, each mode function must also satisfy the appropriate

boundary condition. For TM modes, that is the homogeneous Dirichlet boundary

condition, or

$61) = wepctvy) : 0: 117,3] 6 P,

where I‘ is the contour defining the boundary of the waveguide. Also, the index p

refers to the 12‘" mode, whether it is a TM or TE mode. The well-known result is

that 1126,, can be represented as

([28,, = sin [191C (:1: + 3)] sin [Icy (y + 3)] , (2.40)

where

and

k§=k§—k§=k§+k§.

Just to clarify, the index 12 refers to the 1)“ mode combination of the indices m and

n for TM and TE modes.

For TE modes the requirement is satisfaction of the homogeneous Neumann

17



boundary condition, or

611))”, _ 81/2)”, _

an — an (x’y)—0’ $,yEF,

  

where n is the variable for the normal direction to I‘. The well-known result is that

112)”, can be represented as

b

7,3,”, = cos [ch (x + g)] cos [Icy (y + 5)] , (2.41)

where

k. = M, m = 0,1,2,3,...
a.

kyzfl, n=0,1,2,3,...

b

and

k§=k§—k§=k§+k§.

Also, m and 72. cannot be simultaneously equal to zero for TB modes.

2.2.3 Mode Functions for Circular Waveguides

For the case involving circular apertures, the screen is modeled as an array of circular

waveguides. Many textbooks have analyzed the circular waveguide, including [28] [27].

Some details of determining the mode functions are repeated here.

Consider a circular aperture defined such that 0 S r S a, and filled with a material

with permittivity 62 and permeability [1.2. To properly represent the fields within the

aperture, the mode functions 1126p and 1,12,”, must satisfy (2.22) and (2.23). In addition,

each mode function must also satisfy the appropriate boundary condition. To satisfy

the homogeneous Dirichlet boundary condition for TM modes, the well-known result

18



is to define 2128p as

 
([28,, 2 JC (X: 7*) [AC cos(c¢) + BC sin(cd>)], (2.42)

where xcd is the d“ zero of the a“ order Bessel function of the first kind. Also,

42:43—43:33,

 
kr : Xcd

a

To satisfy the homogeneous Neumann boundary condition for TB modes, the

well-known result is to define whp as

whp = JC (2%”) [AC cos(c¢) + BC sin(c¢)], (2.43)

where x’cd is the d“ zero of the derivative of the ct" order Bessel function of the first

 

kind. Also,

kgmn : kg _ kgmn : kfmnz?

kl : Xfid

r a °

2.3 Enforcement of Boundary Conditions

In order to relate the Floquet wave and waveguide coefficients, boundary conditions

are enforced at the upper and lower surfaces of the screen, which correspond to

z = 0 and z = —t, respectively. This is accomplished by taking the transverse field

expressions and equating them at the boundaries. Using (2.15), (2.29), and (2.36),

the continuity of transverse electric field within the aperture region leads to

hmn
E; + ' {—Aijzm, — 4+ len] = ZG,E.,, r e o (2.44)

mm P

19



when 2 = 0 and

_. _ (3) _ (3lt

Z [AemnRzmne jrmnt _ Ahmanmne jrmn

m,n

= Z [—Fp sin(kzt) + G, cos(kzt)] Etp, r e 9 (2,45)

12

when 2 = —t. F], and G,p are used here to represent the waveguide coefficients for

both TM and TE modes, given the similarity between (2.29) and (2.36). It is assumed

that the transverse electric field outside of the aperture but within the unit cell will

go to zero at z = -t due to the presence of a perfect electrical conductor in that

space. The quantity E; represents the transverse electric field in the plane 2 = 0 due

to the incident plane wave, and it is defined as

E1: E3(§Iex + gey)e_jk0($ cos (bisin 0,- + ysin ¢,sin 6,), (2.46)

where e...c and 8,, are used to describe the transverse field components and E3 is the

incident electric field amplitude. Using (2.16), (2.32), and (2.39), the continuity of

transverse magnetic field within the aperture region leads to

877171

2 x H; + Z[A+ n(1)R2m.. + A,,,,,,Y,,(1)R1mn] = E [323134 , r e o

 

p 772

(2.47)

when 2 = 0 and

- (3) . (3)

Z AemnY€(3) R2mne_Jant
_ fimnYh(3)R1mn€_]ant

=2 {—FP cos((kt) + GP sin(k t)] Etp, 1- E Q (2.48)

p

20



when 2 = —t. The quantity 2 x H2 represents the transverse part of the incident

magnetic field in the plane 2 = 0, and it is defined as

2 x H: ___ (3)111 _ ihy)-§—ée—jk0(x cos (bisin 6,- + ysin (i), sin 6,), (2.49)

1

where hm and hy describe the transverse field components and 171 is the intrinsic

impedance in region I. Also, up is defined such that

.192
Up = Jig—

for TM modes and

.kz

VP — J};

for TE modes.

2.4 System of Linear Equations

The Floquet waves are orthogonal such that

[len ' Rpm'n'ds : 611’6mm’6nn’a

s

and 6 is the Kronecker delta function [26]. Having enforced the boundary conditions,

the orthogonality of the Floquet waves can be used on (2.44) and (2.45) to solve for

the Floquet wave coefficients. Multiplying (2.44) by Rfmw and integrating over S

gives

Aim, 2 [E1 - R'fmnds — Zap/13., - R;,,,,,ds. (2.50)

s 1’ n

Multiplying (2.44) by Ram’n’ and integrating over S gives

Ari-rm 2 [E3 ' Rgmnds — Zap/EU) ° R’Emnds' (251)

s P n

21



Multiplying (2.45) by Ring”, and integrating over S gives

- 3

Ah—mn = ejrinzlt Z [Fp sin(kzt) — GP cos(kzt)] lEtp - R’fmnds. (2.52)

P n

Multiplying (2.45) by R3,)", and integrating over S gives

- 3

24;," = ejrinilt 2 [—F,, sin(kzt) + GP cos(kzt)] [Em - Rgmnds. (2.53)

p n

The modal waveguide fields are orthogonal [28][29] such that

[Etp ' EthdS = 6ppl.

n

In fact, they are orthonormal due to the normalization that is applied by (2.30)

and (2.37). The waveguide field orthogonality can be used with (2.47) and (2.48) to

obtain additional expressions involving the Floquet wave coefficients and waveguide

coefficients. Multiplying (2.47) by Etp: and integrating over 9 gives

— 2 f E.,,- [Agni/9122..., + Ajmni/S’len] d3 = fiFp+/[2 x H§]-E.,,ds. (2.54)
m,nQ

772 Q

Multiplying (2.48) by Etpr and integrating over 9 gives

emn

' 3

Z / e-JrlnlztEw. [A,j,,,,,Y,f3)R1m,, —- A" Yengmn] ds

m,nQ

= ;£[Fp cos(kzt) + G,, Sin(kzt)l- (2-55)
2

Making some substitutions, (2.50)—(2.55) can be rewritten as

Alf-mn : Slmn _ ZGPPIpmny
(2.56)

P
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Ajr-nn : 32m?! _ Z GpP2pmm (2.57)

P

_ ‘ (3

Ahmn = (,ij); 2le sin(kzt) — GP cos(kzt)]P1pmn, (2.58)

p

_ __ jF(3)t _ .

Aemn — e m" :1 PP sm(kzt) + G,D cos(kzt)]ngm,,, (2.59)

p

U

77—:FP : — ZlA:mnYe(l)Q2pmn + AtmnYIfI)lemnl — Sp, (2-60)

m,n

_‘ (3) _ _

Z 6 erntlAhmnYh(3)Q1Pmn _ Aemn3/e(3)Q2Pmnl : glFP COS(k2t) + GP Sin(kzt)la

2

(2.61)

where

Slmn — fE; ' Rimnds, (2.62)

S

S2mn — [Ef ' R'Emndsa (2.63)

S

5,, = /(2 x H;) Etpds, (2.64)

0

Plpmn — [Etp Rimnds, (2.65)

0

P2,”... _ f E”, Rgmnds, (2.66)

0

lemn : [Etp ' lendsa (2.67)

0

Q2pmn : [Etp ' R2mnd3' (2.68)

Eliminating the Floquet coefficients by substituting (2.56) and (2.57) into (2.60), and

(2.58) and (2.59) into (2.61), and making some additional substitutions, leads to

Fp — Z: Gil—{pi 1‘ jp,

23
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FPWPC + Gpwg — Z[F,~Tp,- — G,Up,] = 0, (2.70)

where

JP 2 —‘Sp — Z[Y;(1)S2an2pmn — Y/fl)Slan1pmnla

m,n

Kpi Z Z[Yh(l)Plianlpmn + n(l)P2ian2pmnla

m,n

sz’ Z Sin(kzt) Z[}/e(3)P2ian2pmn + Ye(1)Plian1pmn]7

m,n

Upi : COS(kzt) Z[Ye(3) P2ian2pmn + K(I)Plianlpmnla

- 772

J =—J,
:0 up?

- 772

Kiz—Ki,
:2 Vp :0

u

Wcz—acos kzt,
p 772 (P)

s V -
WP :2 l srn(kzt).

772

Expressions (2.69) and (2.70) can be used to construct a square matrix equation of

the form Ax = b, where the unknowns are the waveguide coefficients. Once the

waveguide coefficients are known, (2.56)-(2.59) can be used to compute the Floquet

coefficients.

2.5 Shielding Effectiveness

Shielding effectiveness is defined as the ratio of power carried by the Floquet waves

in region III to the power carried by the incident plane wave in region I. Computing

the power carried by the Floquet waves requires determining the power transmitted

through the unit cell. This is computed by integrating the time-average Poynting

vector,

1 , .
P=S/§R(Ex H )-zds. (2.71)
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Using vector identities and passing the dot product inside of the 3% expression, (2.71)

can be rewritten in terms of the transverse components of the electric and magnetic

fields, leading to

=—/-2—$2 (2 x H*))ds. (2.72)

Recalling (2.15) and the complex conjugate of (2.16) for the fields in region 111

gives

00

Et 2 Z [Ac—mnR‘Z—mn — hmnRI—mn] ’

m,n=—oo

0° (3) 3
z x H; = Z [—.4;qu prq + Agpjlw ”3.2-pg].

p.q=-oo

Writing out the dot product in (2.72) gives

A a: 00 —* It —* — 3 *

Et ' (Z X Ht) 2 Z [AemnAepq-mn Rque(YB) + AhmnAhpq lmn Rlpqh( )

m,,np,q=—oo

(3)* — —* — —ar 3*

AemnAhqu'Zmn Rlpqh _AhmnAepq 1mn R2pq}/e( ) ] ' (273)

Substituting (2.73) into (2.72) leads to four integral expressions. The integrals can

be evaluated using the orthogonality properties of the Floquet waves, giving

. 3 _- 3*
' (3) _ 3)*[R2mn’ 7;.qu : eJPS'nZIZe JanLz/Rzmn , 13;?qu : (3]an Ze JIM“nz5mp5nq,

s

lpq lpq

' 3 t 3)

S/Rl—mn' 12““ d3_— eijnze_.7F$n22 2 f len' R“ d3_— ejrmnze"—3.112: zémpanqa

S

(3) z__ _* _. (3)*z

/R2mn ' Rlpqu—— ejI-‘mn 6 jrm zS/R2mn ' lpqd :0,

S

(3) z_ —¢ _ F _ F(3)*Z * _

/ Rm, .1221,qu _ 6] mu 6 J / R1"... - 122,,qu _ 0.

S S

25

I
l



Equation (2.72) can now be rewritten to reflect transmitted power such that

00 .
1 * ‘ 3 _ 3 t

Ptrans = —2§R 2 (IA_ |2Ye(3)* + IAITmnIZYhm) )ejrgnZIZe ‘71“:an ' (274)emn

m,n=-oo

For prOpagating Floquet modes,

F532 = k; — a?" — 6,2,", > 0, F32, is real and positive,

while for evanescent Floquet modes,

F53? 2 kg — a; — 5,2,," < 0, 17):), is imaginary and negative.

The Floquet wave admitttances Ye”) and Yhm are defined as

 

(3) L063

Ye (3) ’
mn

Yo) F533.

h 01/13

and w, 63, and #3 are always real and positive. Therefore, for evanescent modes, Ye“)

and Yhm are imaginary, so these modes provide no contribution to the series, and

(2.74) can be rewritten as

1 _ _

Ptrans : _"2— [Z (lAemnl23/e(3) + IAhmn|2Yh(3))] a (275)

m,n

where m and n correspond to the indices of propagating modes. The power carried

by the incident plane wave is determined by substituting (2.46) and (2.49) into (2.72),

leading to

Rnc : —/

5

1‘2

/ [(eyhx—erhy) 0 ds
S 7h

 §R[E§- (2 x H;'*)] ds = —

 

N
I
H

N
I
H
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_ —A3 COS 6i '2

E' . 2.762m 0 < >

Shielding effectiveness (SE) is computed based on the ratio of transmitted power to

incident power so that

SE”; = ~1010g10 (
Prans

‘ ) . (2.77)

Pine

The transmission coefficient (T) is the negative of the shielding effectiveness in dB

such that

 (2.78)
Prans

TdB = —SEdB = 1010g10 ( t ) .

Pinc
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Figure 2.1. Doubly-periodic conducting screen of apertures with general cross-sec-

tional shape.
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Figure 2.2. Unit cell for a doubly-periodic conducting screen of apertures with general

cross-sectional shape.
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CHAPTER 3

NUMERICAL RESULTS

3.1 Rectangular Apertures

The layout of the screen for the rectangular aperture case is shown in Figure 3.1,

where the skew angle of the array, (1)0, the x-periodicity c and the skewed periodicity

d are shown. Figure 3.2 shows the unit cell, where the aperture dimensions are a and

b, and the unit cell dimensions are u and v.

3.1.1 Calculations

In order to compute the shielding effectiveness of a screen of rectangular apertures,

a total of 14 integral calculations must be made. Four of them, (2.30), (2.37), (2.62),

and (2.63), refer to TM or TE modes, or neither. By contrast, (2.64), (2.65), (2.66),

(2.67), and (2.68) account for the other ten because each must be calculated for both

TM and TE modes within the aperture. However, some similarities between the

different formulas will lead to some redundancy in the calculations.

3.1.1.1 Computing Slmn and 52".”

Substituting (2.17) and (2.46) into (2.62) leads to

Slmn 2 [E2 ' RImnds

S

6:3,an — eyam E6

”a?” + 6,2,", \/A—s

X [fa-214160 cos <25. sin 9. - am)e-J'y(ko sin ((5. sin 9. — fimn)d3

S

 

 = (Biff—3.112;?)é’i—EFGVG) <3“
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where

sin [2:(ko cos ()5,- sin 0,- — 6%)]
F =

(:5) (k0 cos ab,- sin 0, - am)

 

‘)

__ sin [y(k0 sin ()5,- sin 0,- —- ,an)]

G(y) _ (k0 sin ¢,— sin 0, — 577m)

 

Equation (3.1) is true for all combinations of the Floquet mode indices m and 11 except

for three. If m = n = 0, (2.62) becomes

 51m, = 825” ‘ €me 133%. (3.2)

V013,. + (33....

If m = 0 only, (2.62) is expressed as

Slmn : (63.6mm _ eyam) 2EOU’G (B) . (33)

\/a3.+53m. W” 2

And if n = 0 and (250 = 90°, then (2.62) is found to be

Slmn = (ezflmn _ eyam) 2E‘O’vly (E) . (34)

«Grant/33.... WW 2

Using similar reasoning, substituting (2.18) and (2.46) into (2.63) leads to

 

 

 

S2771" : /E: ' REmnds

3

exam + eyflmn E5

2 («aw/33.... ) W17

X [e-j-Wco cos d).- sin 0.- — am)e-J'y(ko sin <2.- sin 0.- — 67....)(13

3

(8752.132?) 35—14969) ““5”
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Equation (3.5) is also true for all combinations of the Floquet mode indices m and n

except for three. If m = n = 0, (2.63) becomes

 52m, 2 (exam + eyfim") mm. (3.6)

«03.. + 33....

If m = 0 only, (2.63) is expressed as

 

 

_ exam + eyfimn 2E3u (3)

S2mn — ( \/agn + ’63”! ) MG 2 - (3.7)

And if n = 0 and $0 = 90°, then (2.63) is found to be

_ exam + eyfimn 2E3v (u)

S2mn '— ( “0112" + 1812"” ) mF 2 . (3.8)

3.1.1.2 Computing fpe and fph.

To evaluate fpe, the normalization integral for TM modes in the aperture, (2.40) is

substituted into (2.28), leading to

 

2262211226)

[1... (+212 t, (23.)),

which is then substituted into (2.30) such that

etp = jkz (ikr cos

0

'- 7

= —kf / k: cos2 [km (II) + g” sin2 ky (y + 3) ds

9 _ -

—kZ/k: sin2 [km (a: + g)] cos2 Icy (y + g)l ds

0 . .

= .23 (1.3+ kg) ”1” (3.9)
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This result is found by using basic substitution to evaluate the integrals and discarding

any terms that involve the sine of an integer multiple of 7r, which is always zero.

To evaluate fph, the normalization integral for TE modes in the aperture, (2.41)

is substituted into (2.35), leading to

th (73 X htp) : .719th? (fig?! COS [km- (£13 + 3.)] Sin [kg (y + 3)]

_ 32k: sin [km (a: + 3)] cos [kg (y + g”),

which is then substituted into (2.37) such that

 

fph : /Zh,,(2 x hip) - th(23 x htp)ds '

n

= —w2,u2 / k: cos2 [km (a: + g)] sin2 ka (y + g) ds

9 ..

—w2,u2 / k: sin2 [kx (x + E» cos2 {Icy (y + g) ds

Ln .

99
4 .

  

= —w2,i2(k§+k3) (3.10)

This result is also found by using basic substitution to evaluate the integrals and

discarding any terms that involve the sine of an integer multiple of 7r, which is always

zero. Equation (3.10) is valid for all TE modes in the aperture except for those

involving either km 2 O or 19,, = 0. If k,D = 0, fph becomes

f,,, = / th(2 x h,,,) - th(2 x h,,)ds

Q

-w2u2 / k: sin2 [Icy (y + 3)] d3

9

2ab

313'
= —w2u2k (3.11)
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If Icy = O, fph becomes

f,,, = / th(2 x h,,,) . th(2 x h,,,)ds

fl

: —w2p2/k: sin2 [k1, (a: + 3)] d3

9

= —w2u2k332§. (3.12)

3.1.1.3 Computing Sp

Using (2.26), (2.28), (2.40), and (2.49) in (2.64) and making some substitutions gives

53’“ = /(2 x H;') - Etpds

Q

. a b

= Gogeuflevyy sin [km (a: + 5)] cos [Icy (y + 5)] ds

_ “93$ ’0 y 9)] ' 9
Huge ey cos [km (a:+2 s1n[ky (y+2)]ds

— GG(E)G 9-HH(9)H 9 (313)

for TM modes, where

Go = —]szOmy,

771V fpe

H0 2 Mhykm

771\/f—pe

_ —kxeu1'$[1 — 2sin2(k$a:)] + kme‘umx
 

 

 

v (avid/[1 —— 2sin2(k y)] — v e—vyy
G = y y y , 3.15

111(1)) : uxe [1 28m ($33)] uxe ’ (3.16)

u§+k§
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—kyevyy[1 — 25in2(kyy)] + [eye—”31y
 

112(9) = 113+ k3 , (3.17)

ux = —jko cos Q5,- sin 6,, (3.18)

'03, = —jk0 sin (b,- sin 61'. (3.19)

There are a couple of special situations that should be noted for making these cal-

culations. If either um = 0 or k1, = 0, the effect on (3.14) and (3.16) can be found

directly from those expressions. However, if um = km 2 0, (3.13) becomes

32’“ = —H0aH2 (g) . (3.20)

Similarly, if vy 2 kg = O, (3.13) simplifies to

a

33"“ = GOG1 (5) b. (3.21)

The effect of either 12,, = 0 or kg = 0 can be found by directly evaluating (3.15) and

(3.17).

For TE modes, using (2.34), (2.35), (2.41), and (2.49) in (2.64) and making some

substitutions gives

33E = [(2xH§)-E,,ds

Q

r .

= —G0/eu1‘xevyy sin [km (:16 + g» cos kyn (y + g) ds

9 l .

u :1: v y a - F b l
—H0/e-Tey cos kat x+§ smkan y+-2- ds

9 .

—GOG1 (g) 02 ('3‘) — Hoar1 (g) H2 (2;) , (3.22)

where 01(17), 02(3)), H1(a:), H2(y), ux, and 2),, are defined by (3.14), (3.15), (3.16),
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(3.17), (3.18), and (3.19) respectively, just as they were for the TM case. The change

is in the definition of Go and H0, where

Go = J——————"‘Z"”E°hxk.,
"It/fph

'kzZ .-
H02] ”BO/2,3,,

Tin/f7);

for TE modes. Similar to the TM case, if um = km 2 0, (3.22) becomes

b

SEE Z —H0CLH2 (é) .

If 21,, 2 kg = 0, (3.22) simplifies to

5;”? = 43001 (521-) b.

3.1.1.4 Computing Plpmn, ngmn, lemn, and Qgpmn

(3.23)

(3.24)

In order to evaluate Plpmn, ngmn, lemn, and Qgpmn, the same computations that

were carried out previously for SI, are repeated. In fact, the formulas to be shown will

include the functions 01(23), G2(y), H1(:c), and H2(y), which are defined by (3.14),

(3.15), (3.16), and (3.17), respectively.

To calculate Plpmn for TM modes, substituting (2.4), (2.5), (2.17), (2.26), (2.28),

and (2.40) into (2.65) gives

1pmn
PTM = f E,,, ~R‘1'mnds

Q

. b ,

= —Go/eu1$evyy sin [km (:1: + 525)] cos ky (y + 2)

n L ..

+Ho/euxxevyy cos [k1, (a: + 3)] sin ky (y + 3y

n L- .1 
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d3

d3

 



= m(,).2(g)-...(g)fl.(g),

where

jkzkyam

G = .

° mmwz. + 32...

ijkI/an

H0 2 ,

mam+ 32....

”at : Jam,

 

vy : jfimn-

If u,c 2 km, 2 0, (3.25) becomes

TM

Plpmn
= HoaH2 (g) .

If 1),, = kg“ = 0, (3.25) simplifies to

PTM

1pmn
= —G001 (g) b.

(3.26)

(3.27)

(3.28)

(3.29)

For TE modes, Plpmn is found by substituting (2.4), (2.5), (2.17), (2.34), (2.35), and

(2.41) into (2.65), giving

P575111 : [Etp ' lend3

9

= GO/euflevyy sin [1:3, (as + g)] cos [kg (y + 3)] ds

{2

u :1: v a - b
+H0/e x e 313’ cos [km (:1: + 2)] sm [16,, (y + 5)] ds

0

= GOG1 (g) 02 (g) + HOH1 (g) H2 (3) ,
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where

jk2 ka:amZhp

FAQ/swag. + 33.;

H0 2 jkzkyflmnzhp

WA.,/fph\/a3. + 33,...

If at = 16;; = 0, (3.30) becomes

0

b

1317,;an = HoaH2 (5) . (3.31)

If vy 2 kg = 0, (3.30) simplifies to

P55... = 0001 (g) b. (3.32)

To calculate ngmn for TM modes, substituting (2.4), (2.5), (2.18), (2.26), (2.28),

and (2.40) into (2.66) gives

P3333311 : [Em ' Rgmnds

n

__ u a: v y - a b
—— GO/e 3‘ e y sm [kz (30+ -)] cos [kg (y+—)] ds

9 2 2

+H0/euxxevyy cos [kI (a: + g» sin [Icy (y + 3)] ds

0

= G001 (g) 02 (g) + mm (‘23) H2 ('3') , (3.33)

where

= jkzkyfimn

V A3 V fpe a?" + (8721111,

jkzkzam

x/A—s\/f;(/a3.+ 3...’

 
0

 
H0:
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and (3.39) and (3.40) still apply. If um = legc = 0, (3.33) becomes

P2531" _—. Homer2 (g) . (3.34)

If vy = Icy = O, (3.33) simplifies to

Fig" = (1001 (g) b. (3.35)

When calculating ngmn for TE modes, substituting (2.4), (2.5), (2.18), (2.27),

(2.35), and (2.41) into (2.66) gives

P” = f E”, . R’fmnds

Q

2pmn

= uxsz: v y - 9)] 9
Goa/e e 1’ s1n [163(3) + 2 cos [Icy (31+ 2)] d8

+H0 / euxxevyy cos [kx (a: + 3] sin [k,, (y + 3)] ds

9

 

 

a b a b

= 0001 (5) 02 (5) + HoHl (5) H2 (’3) , (3.36)

where

G jkzkzamth

0 = a

m" fph V (1727; + fig";

H0 : jkzkyfimnzhp

«MR/a?" + fizz;

If um = km = 0, (3.30) becomes

b
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If vy = Icy = 0, (3.30) simplifies to

P223" = GOG1 (g) b. (3.38)

In order to compute lemn and Qgpmn for TM and TE modes, the formulas are

almost identical to what has been shown for Plpmn and ngnm. The only difference is

that (3.39) and (3.40) are defined such that

um = —jam, (3.39)

’03} : _jfimna (3.40)

which are the complex conjugates of the versions used in computing Plpmn and ngm.

Otherwise, the formulas and constants are exactly the same.

3.1.2 Discussion of Results

Figure 3.3 shows a plot of transmission coefficient versus frequency, where each curve

represents a different value of screen thickness. The transmission coefficient is the

negative of the shielding effectiveness in dB. The aperture is square shaped with di-

mensions a = b = 3.6 mm, while the unit cell is also square shaped with dimensions

11 = v = 3.6254 mm. The difference accounts for the thickness of the conducting

region. These aperture dimensions were chosen because they are typical of the di-

mensions of aluminum honeycomb, samples of which were used for an experimental

comparison to the numerical data. The excitation is a normally incident plane wave

with magnetic field perpendicular to the y — 2 plane, and the array of apertures is

unskewed, i.e. (b0 2 90°. Because the array is unskewed, the periodicity and the

unit cell dimensions along each direction are the same, i.e. c = u and d = v. It is

clear that increasing the thickness of the screen decreases the transmission of power

through the screen at the lower frequencies. It is also important to note that once
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the frequency reaches approximately 41 GHz, the shielding effectiveness approaches

0 dB irrespective of the screen thickness. This is expected given that the aperture

size in this case is 3.6 mm, which corresponds to a cut-off frequency of 41.64 GHz for

the dominant TElo and TE” modes of a square waveguide. For a normally incident

plane wave with electric field perpendicular to the x— 2 plane, the results are virtually

identical. To compute the curves in Figure 3.3, 882 Floquet modes were used. 60

waveguide modes (mode indices 3 5) were used to compute the curves for the 1.1 mm,

2.2 mm, and 4.4 mm curves. For the larger thickness values, the curves for the shield-

ing effectiveness did not provide meaningful data when using 60 waveguide modes.

The trends that were observed in increasing from 1.1 mm to 2.2 mm to 4.4 mm were

not apparent. However, using less waveguide modes did produce useful results that

showed a continuing trend toward better shielding performance at lower frequencies

when thickness was increased. The reasoning behind the use of less waveguide modes

for higher thickness values is explained in Chapter 5, including the techniques that

were used to evaluate problems with high thickness values. The number of waveguide

modes used to compute the other curves in Figure 3.3 are shown in Table 3.1. All 60

waveguide modes and their corresponding cut-off frequencies are shown in Table 3.2.

Figure 3.4 shows the impact of changing the incidence angle 0,- for a TM-polarized,

incident plane wave with a screen thickness of 5.5 mm. Results for 15° and 30° were

computed, but are omitted due to their similarity to the 0° case. The dips in the

higher frequency region are due to forced resonances that occur just prior to the

onset of grating lobes. These points are known as Wood’s anomalies [5] [9], and they

occur at the point in frequency where the separation between the apertures is about

a wavelength. For the TE—polarized incident plane wave case, the curves in Figure

3.5 show more modest differences for the change in incidence angle. However, this

case does indicate a downward shift in the resonant frequency as 6,- is increased, as

was noted in [5]. Here, the resonant frequency is considered the point at which full
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transmission is achieved. This is somewhat different from the TM-incidence case,

where the increase in 0,- has no effect on the resonant frequency. Similar to the TM—

incidence plot, results for 15° and 30° were omitted due to their similarity to the 0°

case.

In getting numerical results for the rectangular aperture case, the choice for the

number of Floquet modes was (2 x 10 + 1)2 x 2 = 882, where each mode index (m

and n) ranges from —10 to +10 and there are TM and TE sets of modes. This was

the number of modes used in [19], and it represents the starting point for this study.

Some consideration was given to the idea that using more Floquet modes, while more

time-consuming for computations, might provide more accurate data. Figure 3.6

shows the comparison between using 882 Floquet modes and 1922 Floquet modes

while holding the number of waveguide modes at 60. No appreciable difference was

seen between the two cases when t=4.4 mm, and all curves were computed using

882 Floquet modes. A similar consideration was made with regard to the number of

waveguide modes being used. Increasing the thickness beyond 6.6 mm prevents the

use of 60 waveguide modes, but Figure 3.7 shows that just using the two dominant

modes (TEm and TEm) 0f the square waveguide gives virtually the same curves as

using 60 modes when t=4.4 mm. However, it should be noted that if the apertures

were larger, higher-order modes would contribute at a lower point in frequency.

Figure 3.8 - Figure 3.14 show comparisons between mode-matching results and

data using the waveguide below cut-off formula at different thicknesses. The

waveguide below cut-off formula for transmission coefficient is given by

T,”3 = 2010g10 (erad) (3.41)

f 2

a=wm,|(7€) —1. (3.42)
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The quantity d is the length of the aperture, and fc is the cut-off frequency of the

dominant rectangular waveguide mode, which in this case is given by fc = 41.64 GHz.

As the thickness of the screen is increased to five times the aperture width and larger,

the agreement between the curves gets stronger. In fact, the waveguide below cutoff

formula was developed to describe the attenuation of waves propagating in an opening

whose length is at least five times its width [24]. The mode-matching approach is

not limited to a certain ratio between aperture width and aperture length/screen

thickness, making it more flexible for making shielding effectiveness calculations. In

addition, the mode-matching approach can be used for frequencies above the cut-off

frequency of the dominant waveguide mode.

Figure 3.15 and Figure 3.16 show mode-matching results using the proposed ap-

proach in comparison to past published results for mode-matching from [10]. Also,

Figure 3.17, Figure 3.18, and Figure 3.19 compare results to published data from [19].

In each figure, both sets of data are very closely related. However, it should be noted

that in [10] and [19], only the (m = 0,n = 0) Floquet mode was considered to be

propagating. The curves are in very good agreement if that consideration is taken into

account. However, if the frequencies of interest are high enough, other Floquet modes

will become propagating and should therefore be included in the analysis [21][30]. In

fact, the transmission nulls in Figure 3.15, Figure 3.16, and Figure 3.19 are due to the

Wood’s anomaly mentioned earlier. And in each case, the next propagating Floquet

mode occurs very close in frequency to the location of the Wood’s anomaly.

3.2 Circular Apertures

The layout of the screen for the circular aperture case is shown in Figure 3.20, where

the skew angle of the array, (150, the x-periodicity c and the skewed periodicity d are

shown. Figure 3.21 shows the unit cell, where the circular aperture radius is a, and

the hexagonal unit cell dimension is u.
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3.2.1 Calculations

In order to compute the shielding effectiveness of a screen of circular apertures, a

total of 14 integral calculations must be made. Four of them, (2.30), (2.37), (2.62),

and (2.63), refer to TM or TE modes, or neither. By contrast, (2.64), (2.65), (2.66),

(2.67), and (2.68) account for the other ten because each must be calculated for both

TM and TE modes within the aperture. In addition, due to the mode functions used

for the circular aperture case, calculations must be done seperately for even and odd

modes. However, some similarities between the different formulas will lead to some

redundancy in the calculations.

3.2.1.1 Computing Slmn and 82".”

Substituting (2.17) and (2.46) into (2.62) leads to

Slmn : [Ef fmnds

S

  
_ exfimn — eyam E6

Mai. + 5.2.... Wis

x fe—ijco cos (pisin 6,- — am)e-jy(k0 sin (bisin 0,- — flmn)ds

s

  

 

 

_ exflmn — eyam 4E5

" (m ) m [F1(u) + F2(u)l (343)

where

_jp 2“ jp 2n

F1(u) = e p 3’75 (ej(%+px)u_1) ———ep3’72? (1_e—j(%—px)u),

p, (7% + p.) p.475 - p.) 3 44

—jp 2“ jp 2" ( ° )
F201): 8 p 3’73 (ej(%_px)u_1) ——§E_—:7—3—(1—e—j(%+pf)u),

py (7% _ pm) py(\/§ + pm) (3 45)

px 2 k0 cos ¢,—sin 6i — am,
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py 2 k0 sin (b,- sin 0,- — 5",".

This result is obtained by forming linear equations for the unit cell boundaries and

integrating over the limits. The equations are

( ) —1 2n

yl :8 fix fl,

( )_ _L + _23

yz :1: fix fl,

(1‘) — -1— _ 2—

313 «gm fl,

( ) —1 2H.

y4 I \/§ «3,

and F1(:c) and F2(2:) are expressed as

0 312(1)

171(27): /e_]p:rx [ / e_]pyydy] dx,

_“ 311(17)

u 314(3)

F231;): fe-Jpzar[ / e_]pyydy]d:r.

0 y3($)

Equation (3.43) is true for almost all combinations of the Floquet mode indices. If

m = n = O, (3.43) becomes

_ 62:,an — eyam i

Slmn — (m ) EO\/Z;' (346)

If the mode indices are such that pg 2 Pia/5, (3.43) still applies with (3.44) and (3.45)

 

simplifying to

  

. 2u
' 2u

F1(u)= e )(e]( +pm)u_1) '6V3

py (% +pa:
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2n' 2a

—pr75 _. p e-pr75

F2(u) = e p (e “7% + pflu — 1)+j—-——u. (3.48)

p, (7% + pm) pg

Using similar reasoning, substituting (2.18) and (2.46) into (2.63) leads to

 

S2mn : [Ef ' Rgmnds

S

_ exam + eyfimn E3

(M. + 42.... «A.
x [e—jarUco cos qbisin 6, — am)e—jy(k0 sin qfi, sin 9,- — ’an)d5

S

exam + eyfimn
_ ( 02 +_5_2 ):€A§8[F1(u)+F2(u)] (3-49)

with F1(u) and F2(u) given by (3.44) and (3.45), respectively, for most Floquet mode

 

 

index combinations. If m = n = 0, (3.49) becomes

exam + e m. ,5

52.... = ( 2 3‘: )Em/As. (3.50)

v am + 1617171

If the mode indices are such that py 2 pa, J3, (3.49) still applies with (3.47) and (3.48)

 

defining F1(u) and F2(u), respectively.

3.2.1.2 Computing f,,,..3 and fph

To evaluate fpe, the normalization integral for TM modes in the aperture, (2.42) is

substituted into (2.28), leading to

e.,, = jk. (raga...) cos(c¢>) — 3§Jc(k.r) sin(c¢)) , (3.51)

for even TM modes, and

em = jkz (feré(k,r) sin(cq§) + (fig-Jdkrr) cos(cq’))) , (3.52)
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for odd TM modes. Substituting either (3.51) or (3.52) into (2.30) gives

 

n

: —k3k3 [[Jé(krr)]2[cos(c¢)]2ds — [5302/—12—[Jc(krr)]2[sin(c¢)]2ds

Q Q T

: —7rk§k3/T[J£(krr)]2dr — 7rk302/l[Jc(krr)]2dr, (3.53)

0 0 T -

aslongascséo. Ifc=0,

fpe = [em ' etp d8

0 V
= —ka3 [[J;(k.r)12ds

n

= —2nk§k3 / r[J;(k.r)]2dr (3-54)

0

for even TM modes, and fpe = 0 for odd TM modes. The integrals in (3.53) and

(3.54) can be computed in closed form, or they can be determined numerically.

To evaluate fph, the normalization integral for TE modes in the aperture, (2.43)

is substituted into (2.35), leading to

th (2 x h,,,) = 3'15.th (3k.Jg(k;r) cos(c¢) + 1=§J6(k;r) sin(c¢)) , (3.55)

for even TE mdoes, and

th (23 x h.,,) = jkthp (aergmy) 3111(5)) — ngcucy) cos(c¢)), (3.55)

for odd TE modes. Substituting either (3.55) or (3.56) into (2.37) gives

f,,, = / th(2 x h,,) . th(2 x h,,)ds

n
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= —(kzk:.th)2[[J£(k:.r)]2[cos(c¢)]2ds — c2(kthp)2/ :—2[Jc(k;r)]2[sin(c¢)]2ds

:2 Q

a

= —7r(kzk;th)2/T[Jé(k;r)]2dr —- 7rc2(kthp)2/-71:[Jc(k;r)]2dr (3.57)

0

aslongascaéO. Ifc=0,

fph = [ZIP(2 X htp) - th(23 x htp)ds

n

—(k.k;zhp>2 [[J;(k;r)12ds
fl

= ”(a/42%)? / r[J;(k;r)]2dr (3.58)

for even TE modes, and fp), = 0 for odd TE modes. The integrals in (3.57) and (3.58)

can be computed in closed form, or they can be determined numerically.

3.2.1.3 Computing 5,,

Using (2.26), (2.28), (2.42), and (2.49) in (2.64) and making some substitutions gives

5,?“ = [(2 x H;‘) . Etpds

Q

a 21r

= +G0/rJé(krr) [/ cos(cq§)sin(¢)e_jkor sin 6,-cos(¢ _ (qufiJ dr

0 0

a 21r

—G1/Jc(k,r) [/ sin(c¢)cos(¢)e—jkor sin 9,-cos(¢ _ ¢‘)d¢] dr

0 0

a 27r

—02/7‘J£(k,.r) [/ cos(c¢)cos(d))e_jk0r sin 6,cos(q’> — abildqfi] dr

0 0

a 27r

—G3/Jc(krr) [/ sin(c¢>)sin(¢)e—jkor sin O‘COSW _ ¢i)d¢] dr

0 0

:- + [0004 — 0206] / rJ;(k,r)Jc+1(kor sin (mar

0

— [0005 + 0207] / rJ;(k.r)Jc_1(kor sin 0,)dr

0
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— [0105 + G367] / Jc(k,r).]c+1(kor sin 0,)dr

0

— [GIG4 — G305] / Jc(k,.r)Jc_1(k0r sin 0,)d7‘ (3.59)

o

for even TM modes, and

53‘“ = [(2 x H;) - E,,,ds

n

a 21r

= +GO/rJé(krr) [/ sin(c¢)sin(¢)e—jkor sin 0,cos((b — ¢i)d¢] dr

0 o

a 21r

+G1/Jc(k,r) [/ cos(c¢)cos(¢)e_jkor sin 0,cos(¢ _ ¢i)d¢:l dr

0 o

a 21r

—02/7‘J£(k,.r) [/ sin(c¢)cos(¢)e_jkor sin 6,-cos((b _ ¢i)d¢] dr

0 0

+G3 [6 Jc(krr) [7cos(cq5) sin(¢)e—jkor sin 0" COS<¢ _ ¢ildq§] dr

0 o

= — [COGS + 0204] [arJé(k,r)Jc+1(kor sin 0,)d7‘

o

'l' [GOG7 —' 0205] jTJé(kTT)Jc-1(k0T sin 9i)d7‘

0

+[G1G5 + G3G4] [0 Jc(k,.'r)Jc+1(k0r sin 0,)dr

. o

+ [GIG7 — 0305] / Jc(k,.r)Jc_1(korsin 6,)dr (3.60)

0

for odd TM modes, where

jkzkrEf,
 

GO : hm,

771V fpe

GI = JkZCEO hat,

Tin/7;;
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jkzkrEg

 

 

 

Gz = h ,

771V fpe y

jkzcEf,
G3 = h ,

771V fpe y

G4 = 7er+1 sin[(c +1)(,75,~], (3.61)

G5 = m“ sin[(c — 1)¢,], (3.62)

G6 = 7rjc+1cos[(c + 1)¢,-], (3.63)

G, = TFjC_1COS[(C -— 1)(b,~]. (3.64)

(3.59) and (3.60) are valid as long as c ¢ 0. If c = 0,

SE“ = [(2 x H;) -E,,,ds

n

a 21r . .

= +00 / rJ,',(k,r) (/ sin(¢)e—Jk0’"sm 91' COW ‘ ¢ild¢] dr

0 0

a 27r

-02/TJ6(k,-T) '/cos(¢>)e_]kor sm 0,cos(¢ _ 050MB] dr

0 o

= j27r[Go sin (b,- — G2 cos (15,] [TJ6(k,.r)J1(k0r sin 6,)dr (3.65)

0

for even TM modes, and 8,,TM = O for odd TM modes. The integrals in (3.59), (3.60),

and (3.65) must be determined numerically.

For TE modes, using (2.34), (2.35), (2.43), and (2.49) in (2.64) and making some

substitutions gives

5;“? = [(2ng).E,,,ds

Q

27r

= +00 / Jc(k;r) [/ sin(c¢) gamma—31““Sin 92' COW ‘ ¢ild¢ dr

0 0
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a 27r

+01/rJ£(k,'.r) [/ cos(c¢)cos(¢)e_jkor sin 0‘C08(¢ — ¢i)d¢] dr

0 0

0

—Gg/a.]c(k:.r) [7sin(c¢)cos(¢)e—jkor sin 6,-cos(¢ _ ¢i)d¢] dr

0

+Gg/arJé(k;r) [7cos(cq§)sin(¢)e_jkor sin 0‘C05(¢ _ ¢i)d¢] dr

0 o

‘l' [G1G6 + G364]/0TJ£(I€TT)JC+1(IC0T sin 0,)(17‘

0

+ [6'le — 0305]/arJé(krr)Jc_1(k0r sin 0,)dr

o

— [GOG6 + 0204] / Jc(k,r)JC+1(k0r sin 0,)dr

0

+ [0007 — 0205] / Jc(k,.r)Jc_1(k0rsin 6,)dr (3.66)

0

for even TE modes, and

TE

SP
[(2 x H;') - Etpds

Q

a 21r

—G0/rJé(k,.r) [/ cos(c¢)sin(¢)e_jkor sin O‘COSW — ¢i)dq§] dr

0 0

a 21r

+G1/Jc(krr) [/ sin(c¢)cos(¢)e—jk0r sin 0,cos(¢ _ ¢i)d¢] dr

0 0

a 21r

+G2/1'Jé(k,r) [/ cos(c¢)cos(¢)e_jkor sin Q‘COSM — ¢ild¢] dr

0 0

a 2n

+03/Jc(krr) [/ sin(c¢)sin(¢)e_jkor sin 6,-cos(¢ — ¢‘)d¢] dr

0 o

+[G'1G'4 — G3G6] [TJé(k,.'r)Jc+1(k0r sin 0,)d7‘

o

+ [0105 + G307] / rJ;(k,r)Jc_,(kor sin 0,)dr

0
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— [GOG4 — G2G6] / Jc(krr)Jc+1(kor sin 0,)d7‘

0

+ [0005 + G207] / Jc(k,r)Jc_1(k0r sin 6,)dr (3.67)

0

for odd TE modes, where

_ jkthpCEa

771m

_J'kthpkf-Eé

— 771m

_ jkthcha

— 771m

= jkthpk;E6 h

771m y,

and G4,G5,G6, and G7 are defined by (3.61), (3.62), (3.63), and (3.64), respectively.

GO hm)

GI hr:

02 hy,

G3

(3.66) and (3.67) are valid as long as c ¢ 0. If c = 0,

s,” = [(2 x H;‘) . E,,ds

n

a ‘21r 1,

= +01/TJ6(k,'.r) /cos(¢)e_jkor sin 0,cos(¢ — (mdqu dr

0 -0

 

a '21r

+G3 / rJ,’,(/s;.r) / sin(¢)e_jk°TSin 92mm — $066] dr

0 -0

a.

= j27r[G'1cos (b,- + 03 sin 65,-] /rJ6(k,'.r)J1(k0r sin 0,)dr (3.68)

0

for even TE modes, and SEE 2: O for odd TE modes. The integrals in (3.66), (3.67),

and (3.68) must be determined numerically.

3.2.1.4 Computing Plpmn, ngmn, CAM", and Qgpmn

In order to evaluate Plpmn, P2pmm lemn, and Qgpmn, the same computations that

were carried out previously for 8,, are repeated.
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To calculate Plpmn for TM modes, using (2.4), (2.5), (2.17), (2.26), (2.28), and

(2.42) in (2.65) gives

  

P17131511: = [Em ' lend8

a

(1 "2w '1

= +G2/rJé(krr) fcos(c¢)cos(d>)ejr<m" COS“) _ ”m")d¢ dr

0 _o .

a '21r

—G0/7‘Jé(k,.r) foos(c¢)sin(¢)ejr<m" COSW — 14"")qu dr

0 .0 n

a. ’21r

+G3 / Jc(krr) [sin(c¢) sin(¢)ejr<m" COSW — an)d¢] dr

0 .o

a '21r

+G1/Jc(krr) fsin(c¢) cos(¢)ejr<m" COSW _ l4"")d65] dr

0 _o 

+ [0207 + G065] jTJé(krT)Jc_1(CmnT)dT

0

+ [GQG6 — G004] iTJé<krT)Jc+1(<mnT)dT

0

— [G3G5 — G1G4] j Jc(krT)Jc+1(CmnT)dT

0

+ [G3G7 + G105] [a Jc(krT)Jc—1(Cmnr)dr (3.69)

0

for even TM modes, and

TM _

Plpmn '—

”211'

 

-0

" 271’

 

/sin(c¢>) COS(¢)ejTCmn COSW — ”mnldqb

 
(/ sin(c¢) Sin(¢)ej7‘Cmn 005015 — anldqil

o .

21r
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dr

d7‘

—03/Jc(krr) [/ cos(c¢)sin(¢)ejr<m" 005” .— Vm")d¢ dr

0 o



a 21r

—G1/Jc(k,.r) [/ cos(c¢)cos(¢)ejr<mn COSM _ Um")d¢ dr

0 0

a

: + [G205 — 0007]/7J(:(krT)Jc—1(Cmnr)dr

0

a

+ [G204 + G006] frJé(krr)Jc+1(Cmnr)dr

0

— [0304 + 010,] / Jc(k,r)Jc+1(Cmnr)dr

0

+ [G305 — 0.07] / J.(k.r)J._i(<mnr)dr (3.70)
0

for odd TM modes, where

jkzkram

: s/A—scmnfl’

jkzcozm

Z «raw:

2 jkzkrflmn

«mm/f?

_ j1620an

_ mcmnfl’

G4 = 7er+1 sin[(c + 1)Vm,,], (3.71)

 

0

 

1

 

2

 

3

G5 = 7176-1 sin[(c — 1)Vm,,], (3.72)

G6 = 7rjc+1cos[(c +1)um,,], (3.73)

G7 = 7rjc“1cos[(c — 1)an], (3.74)

(mu : V (13,, + 53mm

[an

an = arctan .

Om
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(3.69) and (3.70) are valid as long as c 75 0. If c = 0,

TM __ t

Plpmn _ [Etp ' lend8

9

a ”211'

'2 +02/7‘J6(k,r) [cos(¢)ejr<m" COSM — Um")d¢] dr

0 .0

 

a 1' 271'

—(;O / was”) / sin(¢)efl€mn 00505 — ”mnldns] dr

0 .0

a

= j27r[Go sin(1/m,,) — G2 cos(1/m,,)]/rJ6(k,r)J1(k0rsin 6,)dr (3.75)

0

for even TM modes, and PTM = 0 for odd TM modes. The integrals in (3.69),
1pmn

(3.70), and (3.75) must be determined numerically.

For TE modes, using (2.4), (2.5), (2.17), (2.34), (2.35), and (2.43) in (2.65) gives

1pmn
P” = f 13,, - R’fmnds

Q

”211' _

2' —GO/1‘J£(kf.r) foos(c¢)sin(¢)ejr<m" COSM’ _ ”m")d¢] dr

0 -0

 

a '21r

—62/rJé(k;r) foos(cd))cos(¢)ejr<m" COSW _ anld¢] dr

0 .0

" 21r

+G1/Jc(k,',r) lsin(c¢)cos(¢)ejrcm" COSW _ anld¢ dr

0 L0 .

a '21r

—G3/Jc(k;.7') [sin(c¢)sin(¢)ejrcmn COSW _ ”m")d¢l dr

0 ..0  

= + [0005 - G2G7] [TJé(krT)JC_1(CmnT)dT

0

— [0004 + 6206] / rJ;(k.r)J..i(<mnr)dr
0

+ [010. + 0306] / J.(k.r)Jc+i(<m..r)dr
0

55



+ [0105 - G307] / J,(Is.r)J,_,(gm.,r)dr (3.76)

0

for even TE modes, and

TE _ at

Plpmn _ [Etp ' lends

Q

a

 

'21r

= —GO/r.]é(k:.r) /sin(c¢)sin(¢)ej7‘<mn COSW _ VWJdgb] dr

0 .0

a ’21r

—02/rJé(k,’.r) fsin(c<f>) cos(q§)ejr<m" COSW — anldqs] dr

0 .0

a ('21r .

~01 / Jc(k:.r) foos(cgb) cos(¢)efl<mn COSW — ”m")d¢] dr

0

I
I O

 .0
+03 / J.(k;r) 766s(c6) sin(¢)ej7"<mn COW — ”mnldqs] dr

0

= — [0007 + G265] i TJ£(krT)JC_.1(CmnT)dT

0

+ [GoGs — G204] jTJ£(k7-T)Jc+1(<mn1')d7‘

0

— [GIGG — G3G4] j Jc(krT)Jc+1(CmnT)dT

0

— [0107 + G305] j Jc(krT)Jc_1(CmnT)dT (3.77)

0

for odd TE modes, where

G0 : jkzk;thIan

V AsCmnV fph

l = jkzthcfimn

V AsCmnV fph

_ jkzk;z,,,am

V AsCmnV fph,

 

 

 

2
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_ jkzthcam

V AsCmnV fph ,

and G4, G5,G'6, and G7 are defined by (3.71), (3.72), (3.73), and (3.74), respectively.

 

3

(3.76) and (3.77) are valid as long as c # 0. If c = 0,

P” = f 13,, - Rfmnds

Q

1pmn

a ’27r

= —GO/TJ6(/€;.T) fsin(¢)ejr<"m COS” _ anld¢] dr

0 L0

 

a '21r

—G2/1‘J6(k;r) fcos(¢)ejr<m" COS<¢ _ ”m")d¢] dr

0 60

= —j27r[Gosin(1/mn) +G2 cos(1/mn)]frJ6(k,'.T)J1(CmnT)dT (3-78)

0

for even TE modes, and P133, 2 0 for odd TE modes. The integrals in (3.76), (3.77),

and (3.78) must be determined numerically.

To calculate ngmn for TM modes, using (2.4), (2.5), (2.18), (2.26), (2.28), and

(2.42) in (2.66) gives

132,111)?an : [Etp ' Rgmnds

Q

a ”271'

= +G2/rJé(krr) /cos(c¢)cos(¢)ejr<mn COSW — an)d¢] dr

0 L0

0 ”211'

+G0/rJé(krr) foos(cq’>) sin(¢)ejr<m" COSW _ ”m”)dq§] dr

0 _0 
a ’21r

—G1/Jc(krr) f3in(c¢)cos(¢)ejr<m" COSW _ anld¢] dr

0 .0

 

a '21r

+03 / Jc(k,-T) 1/ sin(c¢)sin(¢)ej’"4mnc°s(¢ — ”mnldn] dr

0 0

z — [G0G5 — G207]frJé(krr)JC_1(Cmn7‘)dT

0
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+ [G2G5 + GoG4] / TJé(krT)JC+1(CmnT)dT

0

— [6104 + 0306] / Jc(k,r)Jc+1(Cmnr)dr

0

— [0,05 — G307] / Jc(k,.r)Jc_1(Cm,,r)dr (3.79)

0

for even TM modes, and

P27133117: = [Etp ' Rgmnds

Q

a 1'27r

2: +02 frJéUcJ) [sin(c¢) cos(¢)ejr<m" COSW — Um")d¢] dr

0 .0

 

a 1‘21r

+G0/rJé(krr) fsin(c¢) sin(¢)ejr<m" COS(¢ — Um")d¢] dr

0 .0

a ' . T

+0. / 1.062) / cos(c¢) cos(¢)e17‘Cmn COS(¢— ”mnldgb dr

0 -0 ..

' 21r 1

-03/Jc(krr) foos(c¢)sin(¢)ejr<mn COS“) — ”m")dqb dr

0 .L0  

= + [0205 + 0007] frJ;(k.r)Jc_1(gm,r)dr

0

+ [0204 - (3005] / rJ;(k.r)Jc+,(gm,,r)dr

0

+[01G6 - G304] / Jc(krT)Jc+1(CmnT)dT ’

0

+ [010. + G3G5] / Jc(k,.r)Jc_1((mnr)dr (3.80)

0

for odd TM modes, where

 
jkzkrfimn

0 = a

V AsCmnV fpe

1 _ J' 1920an

— mcmnm’
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j k, krozm

G = .
2 mcmnfl

jkzcam

V AsCmnV fpe,

(3.79) and (3.80) are valid as long as c 75 0. If c = 0,

 

 
3

P2161611; — [Em ' Rgmnds

Q

a '21r "

= +00 / "J6(krr) / cos(¢)ej’"4m"cos(¢ ‘ ”m")d¢ d"
0 -0 .

a '21r . j

+Gg/7‘J6(kr7') [sin(¢)e-7TC"‘" COSW _ an)d¢, dr

0 .0 .1  

j27r[G2 cos(1/m,,) + Co sin(1/,,,,,)] [TJ6(k,r)J1(Cm,,r)dr (3.81)

0

for even TM modes, and PTM = 0 for odd TM modes. The integrals in (3.79),
2pmn

(3.80), and (3.81) must be determined numerically.

For TE modes, using (2.4), (2.5), (2.18), (2.27), (2.35), and (2.43) in (2.66) gives

P27115111 : [Etp . Rflmnds

Q

a ’27r
-

= +G2/rJé(k,'.r) (/ cos(c¢)cos(¢)ejr€m" COSM _ an)d¢ dr

0 0

a 21r

—Go/rJé(k:.r) (/ cos(c¢)sin(¢)ejr<m" COS“) _ an)d¢ dr

0 0  
a '21r

+G1/Jc(k;r) fsin(c¢) cos(q§)ejr<m" COSW _ an)d¢] dr

0 -0

 

a 211*

+03 / J,(k;r) / sin(c¢) sin(6)ei’“<mn COW — an)d¢] dr

0 .0

= + [6207 + G005][TJé(krT)Jc—1(Cmnr)dr

0
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+ [G206 '_ G004] /r']£(krr)']c+1(<mnr)dr

o

+ [G104 “— G3G6]/Jc(krT)Jc+1(Cmn7')dT

0

+ [0.05 + G3G7] / Jc(k,.r)Jc_1(Cm,,r)dr (3.82)

0

for even TE modes, and

P27617321: : [Etp ' R;mnd3

Q

a "21r

: +G'2/7'Jé(k:.r) /sin(cq§)cos(¢)ejr€m" cos(¢ — ”m")d¢] dr

0

I
r O

 

a 21r

—Go/rJé(k;r) fsin(cq§)sin(q1>)ej7‘c"mCOS“5 _ l4"")dqb] dr

0 .0

'27r 7

—GI/Jc(k:.r) foos(c¢)cos(¢)ejr<mn COS(¢_ ”m")d¢ dr

0 .-0

" 27r

—G3 / Jc(k:.r) / COS(C¢) sin(¢)ej"<mn 0080’ — an>d¢l dr

0 .b0  

= + [0205 — 0007] iTJ£(krT)JC_1(CmnT)dT

0

+ [0204 + GoGs] jTJ£(k,-T)Jc+1(cmn7‘)d7'

0

— [GIGS + G364] ] Jc(krT)Jc+l(CmnT)dT

0

—' [0107 — G305] [0 Jc(krT)Jc_1(CmnT)d7‘ (3.83)

0

for odd TE modes, where

 

jkszthOfm

0 = 7

«3416.47;

jkzthcam

: mcmnfl’

 
1
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= .775szthan

V AsCmnV fph

: jkzthcflmn

V AsCmnV fph

and G4,G5,Gs,and G7 are defined by (3.71), (3.72), (3.73), and (3.74), respectively.

 

2

 

3

(3.82) and (3.83) are valid as long as c 7e 0. If c = 0,

P27115671 : [Etp ' Rzmnds

n

a '21r

= +Gg/TJ6(,€;.T) [cos(¢)ej7~<mn COSM _ ”mnldqb] dr

0 -0

 

a "211'

—Go/7‘J6(k:.r) f3in(¢)ejr€m" COSW _ an)d¢] dr

0 -0

a

2: j27r[G2 cos(um,,) — Go sin(1/mn)] frJé(k;T)J1(CmnT)dT (3-84)

0

for even TE modes, and PTE = 0 for odd TE modes. The integrals in (3.82), (3.83),2pmn

and (3.84) must be determined numerically.

In order to compute lemn and Qgpmn for TM and TE modes, the formulas are

identical to what has been shown for Plpmn and BMW. This is true despite the fact

that len and Rgmn are used to compute lemn and szmn instead of RIM and

Rs...-

3.2.2 Discussion of Results

At this time, numerical results for the circular aperture case are not available.
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Table 3.1. Number of modes used to calculate the curves in Figure 3.3.

 

 

 

 

 

 

 

 

 

 

Thickness (mm) Modes Used

1.1 60

2.2 60

4.4 60

7.7 30

8.8 30

9.9 30

18.0 6

26.0 4

40.0 2    
 

Table 3.2. Cutoff frequencies for modes of square apertures.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Modes Cut-off frequency fc (GHz)

TE10,TE01 41.64

TM11,TE11 58.89

TEOQ, TE20 83.28

TM12,TM21,TE12,TE21 93.11

TMQQ, TE22 117.77

TE03, TE30 124.91

TM13,TM31,TE13,TE31 131.67

TM23, TM32, TE23, TE32 150.13

TE04, TE40 166.55

TM14,TM41,TE14,TE41 171.68

TM33, TM33 176.66

TM24, TM42, TE24, TE42 186.21

TM34, TM43, TE34, TE43, TE05, TE50 208.19

- TM15,TM51,TE15, TE51 212.31

TM25, TM52, TE25, TE52 224.23

TM44, TE44 235.54

TM35, TM53,TE35, TE53 242.79

TM45, TM54, TE45, TE54 266.62

TM55, TE55 294.43
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Figure 3.1. Doubly-periodic conducting screen of apertures with rectangular cross—

section.
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‘ 11 >   
Figure 3.2. Unit cell for a doubly-periodic conducting screen of apertures with rec-

tangular cross-section.
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Figure 3.3. Comparison of transmission coefficient for screens of different thicknesses

for normally incident TM polarized plane wave.
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Figure 3.4. Comparison of transmission coefficient versus frequency for various inci—

dence angles when t=5.5 mm for TM polarized incident plane wave.
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Figure 3.5. Comparison of transmission coefficient versus frequency for various inci-

dence angles when t=5.5 mm for TE polarized incident plane wave.
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Figure 3.6. Comparison at t=4.4 mm between using 882 Floquet modes vs. 1922

Floquet modes.
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Figure 3.7. Comparison at t=4.4 mm between using 60 waveguide modes vs. 2

waveguide modes.
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Figure 3.20. Doubly-periodic conducting screen of apertures with circular cross-sec-

tion.
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Figure 3.21. Hexagonal unit cell for a doubly-periodic conducting screen of apertures

with circular cross-section.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Setup

4.1 .1 Sample Materials

As a means of comparing the numerical results with measured data, an experiment

was set up in order to test the mode-matching approach against actual measure-

ments to determine how well it can predict shielding performance [31]. Samples of

commercial-grade aluminum honeycomb were used in the experiment. The honey-

comb was available with rectangular apertures and hexagonal apertures. The rectan-

gular aperture sample, which was supplied by Benecor, Inc. of Wichita, KS, is about

2 ft. in length and width, and approximately 1/2 inch in thickness. The apertures

are square with about 1 /4 inch in length and width. The hexagonal aperture sample,

which was supplied by Plascore, Inc. of Zeeland, MI, is about 1 ft. in length and

width while the thicknesses is approximately 13/ 16 in. The aperture cell size is about

3/4 in. The foil thickness for all of the samples is approximately 0.003 in. (3 mils).

4.1.2 Equipment

An HP851OC Network Analyzer was used to perform frequency domain transmission

measurements. For samples whose apertures have a dominant mode cut-off frequency

in the range of 2—18 GHz, the Michigan State University arch range was used along

with American Electronic Laboratories H-1498 horn antennas for transmitting and

receiving. Figure 4.1 shows a sketch of the low frequency measurement set-up, in-

cluding the arch range, the network analyzer, the antennas, and the sample being

tested. The arch range, designed and built by the Georgia Tech Research Institute, is

a metallic structure 20 ft. in diameter and 4 ft. high. The receiving and transmitting

antennas are connected to the network analyzer using coaxial cables, and lenses are
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used to collimate the transmit and receive beams. The sample was mounted into

an empty window in a styrofoam board, and the rest of the board was covered with

aluminum tape (see Figure 4.2 for a description). The board is 4 ft. high, 4 ft. wide,

and 1 in. thick. This approach is similar to the one mentioned in [32] to measure

the shielding effectiveness of composite material samples. Mounting the sample in

a board allowed for reducing the effect of a large beam spot size at low frequencies.

The board was then placed onto a styrofoam mount between the transmit and receive

antennas.

For samples whose apertures had a dominant mode cut-off frequency in the range

of 20-40 GHz, a benchtop set-up was used to conduct the experiment. See Figure 4.3

for a sketch of the high frequency measurement set-up. The 8510C network analyzer

was connected to two EMCO 3116 horn antennas with K-type connector cables. Just

as with the arch range set-up, the samples were placed into windows in 4’ x 4’ x 1”

styrofoam boards, and the rest of the board was covered with aluminum tape. A

styrofoam mount was used to position the board containing the sample. The cables

that were used with the high frequency horns were about 3 ft. long, so the transmit

and receive antennas were about 2 ft. from each other, with the sample in the middle.

For horn antennas to be operating in the far-zone, the wave must travel a distance

larger than 2 = 2D2//\0, where D is the largest dimension of the antenna and A0 is

the free—space wavelength at the frequency of interest. For the 2-18 GHz range, the

distance 2D2//\0 ranges from 0.7 ft at 2 GHz to 6.34 ft at 18 GHz. The distance

between the horn antenna and the sample is approximately 10 ft, so the far-zone

requirement is achieved for the low-frequency case. For the 20-40 GHz range, the

distance 2D2/A0 ranges from 4.8 ft at 20 GHz to 9.6 ft at 40 GHz. These values are

both larger than the distance between the antennas and the sample, so the set-up

does not meet the far-zone requirement. However, despite the fact that the horns are

not in the far-zone, the agreement between numerical and experimental results is still
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pretty good.

4.2 Procedure

4.2.1 Low Frequency Measurements

For all measurements, a two-level calibration was conducted. The first level involved

calibrating the network analyzer using the appropriate standards. For the low fre-

quency measurements, the standards were applied to the ends of the 2.4 mm connec-

tion cables. From the ends of the 2.4 mm connection cables, connector adapters were

used to go from 2.4 mm to 3.5 mm to SMA. Coaxial cables with SMA connectors

were used to link the 8510C with the transmit and receive antennas, both of which

use SMA connectors. The second level of calibration involved taking two transmission

measurements in addition to the sample measurement. The first is an empty mea-

surement, which in this case is a measurement with the window in the board being

empty (no sample). The second is a noise measurement, where a board of the same

size as the one with the window is used to perform a transmission measurement. This

board is completely covered with aluminum tape. The noise measurement includes

the effects of diffraction of the transmitted wave around the edges of the measure-

ment board. The use of the three measurements will be explained in the calculations

section.

4.2.2 High Frequency Measurements

For all measurements, a two-level calibration was conducted. The first level involved

calibrating the network analyzer and cables using the appropriate standards. From

the ends of the 2.4 mm connection cables, connector adapters were used to go from

2.4 mm to 3.5 mm to K. Cables with K-type connectors were used to link the 8510C

with the transmit and receive antennas, both of which use K-type connectors. And

due to the compatibility of 3.5 mm connectors and K-type connectors, 3.5 mm cali-

bration standards were used to calibrate to the ends of the K-type connector cables.
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As was the case with the low frequency experiment, the second level of calibration

involved taking empty and noise measurements in addition to the sample measure-

ment.

4.3 Calculations

To determine the tranmission coefficient at a particular frequency, the three measure-

ments that are used are

Ssampge — Measured transmission S-parameter for sample in window,

Sum-88 — Measured transmission S-parameter for blocking plate,

Sammy — Measured transmission S-parameter for empty window,

where 512 or 5'21 can be used depending on the set-up. Using those three values, the

transmission coefficient is defined as

Ssample — Snoise
 

ng = —SEdB = 2010g10 (4.1)

  Sempty _ Snoise

It should be noted that because of the use of S-parameter measurements in (4.1),

2010g10 is used instead of 1010g10 because S-parameters are analogous to voltage and

current measurements. By contrast, (2.77) and (2.78) use IOlog10 because power

quantities are involved.

4.4 Discussion of Results

Figure 4.4 shows a comparison between numerical and experimental data for a screen

of rectangular apertures (Benecor sample). The apertures are square shaped with

a width of 1/4 in. (approximately 6 mm). The screen thickness is about 1/2 in.

(approximately 13 mm). Overall, there is pretty good agreement in terms of the
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transition from low transmission (below ~20 dB) to full transmission. This case, as

with all others in this section, is for normal incidence.

Figure 4.5 shows a comparison between numerical and experimental data for a

screen of hexagonal apertures (Plascore sample). The apertures have a width of

3/4 in. (approximately 19 mm) between parallel sides. The screen thickness is about

13/16 in. (approximately 21 mm). Square apertures of the same width are used to

model the hexagonal apeture sample, and the results are in good agreement with the

measured data. It is anticipated that once results are available, the use of circular

apertures may prove to be even closer to the measured result. It should also be noted

that this data was obtained despite large losses in measured power due to attenuation

in the coaxial cables.

In both cases, the measured data goes above the 0 dB mark, which at first does not

seem reasonable. However, the contribution to transmission due to diffraction around

the edges of the screen could lead to that kind of behavior. In general, the measured

and numerical data are in good agreement. It is also worth noting that in the context

of a shielding application, where the frequency range of operation would be well below

the point where full transmission occurs, the effects due to edge diffraction are not

expected to be as significant.

88



Tranhsmitting Receiving

orn <1 horn

antenna antenna

Lens

Styrofoam board

with window

   
HP 851 00

Network Analyzer
  

   

Figure 4.1. Equipment arrangement for taking low frequency measurements

(2—18 GHz)
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Figure 4.2. Styrofoam board with window used to hold aluminum honeycomb sam-

ples. The dark grey region is covered with foil tape.
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CHAPTER 5

DISCUSSION OF MODE SELECTION

One of the major obstacles in this research was determining why the shielding calcula-

tion does not produce useful results for 60 waveguide modes when the screen thickness

exceedes 6.6 mm. Originally, the matrix equation was solved using Gaussian Elim-

ination [33]. When the convergence problems arose, Singular Value Decomposition

(SVD) [33] was used in order to determine if the increase in thickness caused the

square matrix in the matrix equation to become badly conditioned. This was accom-

plished by computing the condition number of the square matrix versus frequency for

all of the thickness values of interest. According to [33], the matrix is badly condi-

tioned once the condition number of the matrix exceeds the accuracy of the computer,

which is about 1015. Figure 5.1 shows a plot of the condition number versus frequency

for a variety of thickness values, where 60 waveguide modes and 882 Floquet modes

were used in each case. There is no absolute threshold where having a condition

number lower than that point leads to meaningful solutions. However, at the highest

thickness values, the condition number is well past the values that produce useful

results. Further, increasing the thickness of the screen does make the condition num-

ber higher when using 60 waveguide modes. An attempt was made to use SVD in

order to discard small singular values in order to improve matrix conditioning, but

the solutions were not any better than before. To deal with the problem, the condi-

tion number of the square matrix was reduced by considering less waveguide modes

for very thick screens. Modes were removed in order of highest cut-off frequency.

The concern was that a significant amount of accuracy would be lost by taking that

approach. However, Figure 5.2 shows that for the case of the 4.4 mm thick screen,

the use of 60 waveguide modes provides virtually the same result as the use of several
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other combinations of waveguide modes, including using only the 2 dominant modes.

This would seem to suggest that the use of 60 modes is unnecessary. However, it

should be stated that the need to disregard higher-order modes arises from the fact

that the increase in thickness attenuates those modes so severely that they need to be

removed from consideration. Figure 5.3 shows that even with 60 waveguide modes,

the condition number never exceeds 1015 for the 4.4 mm thickness case. As was stated

before, 1015 appears to be a value such that if the condition number is well below that

value, the shielding effectiveness calculations will converge. If the condition number

far exceeds that value, the calculations generally do not converge.

For the case of the 6.6 mm and 7.7 mm thick screens, a point should be made.

Figure 5.4 indicates that the shielding effectiveness converges for all choices of number

of waveguide modes used when the thickness is 6.6 mm. Also, Figure 5.6 shows that

the shielding effectiveness results do not converge for the 7.7 mm case when using 60

or 40 waveguide modes, but they do converge for 30 or less. However, an interesting

observation is that Figure 5.7 shows a condition number at or above 1020 for the

7.7 mm thickness when using 60 modes, while 40 modes leads to condition numbers

between 1013 and 1015. Meanwhile, Figure 5.5 shows condition numbers of between

1016 and 1019 for the 6.6 mm thickness when using 60 modes. So, despite the fact that

the 7.7 mm case with 40 modes has a lower condition number than the 6.6 mm case

with 60 modes, the former does not produce practical data while the latter does. This

reemphasizes the point that while the condition number does give some indication of

how the thickness is affecting the solution of the matrix equation, an absolute point

where having a lower or higher condition number guarantees a convergent result was

not found.

More examples of the effect of reducing the number of waveguide modes on the

convergence of the shielding computation are shown in Figure 5.8 - Figure 5.12 for

thicknesses of 8.8 mm, 9.9 mm, 18.0 mm, 26.0 mm, and 40.0 mm. The vertical scales
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were adjusted to include the most information possible, but some curves were not

included. For example, the 60 waveguide mode case for 9.9 mm thickness is not

included in Figure 5.9 because it deviated too much from the curves shown in the

figure.
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CHAPTER 6

CONCLUSIONS

A mode-matching approach for computing the shielding effectiveness of a doubly-

periodic array of apertures in a thick conducting screen has been presented. The

effect of choosing thicknesses much larger than the aperture is the expected result

of lower transmission of power. Mode-matching has shown some agreement with the

waveguide below cutoff formula and strong agreement with other published results

using mode-matching. The technique does suffer from an inability to yield meaning-

ful data when the thickness is increased to a point where inaccurate solutions are

produced. The use of Singular Value Decomposition led to the conclusion that the

condition number is well beyond the accuracy of the computer when the thickness

is increased a great deal. To produce useful and accurate solutions, the number of

waveguide modes included in the analysis is reduced, which also reduces the condition

number.

This dissertation considers mode-matching applied to apertures that are rectan-

gular and circular in shape. Future work will consider hexagonal and other shapes

for aperture arrays in thick screens. The shielding prediction is more flexible than

the waveguide below cutoff approach, and the result is more exact. Other benefits

include observance of the Wood’s anomaly, a strong reliance on the well-known prin-

ciples of waveguide theory, and practical application to the prediction of shielding

performance of aluminum honeycomb and other doubly-periodic structures.

The measurements performed as part of this study were successful in confirming

some of the results that were predicted numerically. Future work will be done in order

to measure the effects of changing the incidence angle, predicting the occurrence and

overall effect of the Wood’s anomaly, determining the impact of using smaller and
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larger sample sizes, and using other measurement techniques.
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APPENDIX A

DERIVATION OF 2-D FOURIER SERIES REPRESENTATION OF A

PERIODIC FUNCTION IN SKEWED COORDINATES

Following the method of [34], a Fourier Series expansion is applied to a periodic poten-

tial function in a skewed coordinate system. Figure A.1 shows a lattice configuration

with periodicity in two directions, one along the y-axis and the other along a direction

at an angle 0 with respect to the y-axis. If r is defined as

1‘ =lld1+l2d2,

where 11 and Z2 are integers, and d1 and d2 are vectors describing the direct lattice,

the reciprocal lattice can be defined by the vectors b1 and b2, and they must obey

bi'dk=6ik7 Z,k=1,2

or

b1 .1. £12

and

()2 _L d1.

Letting

d1 = dull? + dlyga

d2 = d2x5? + dzygi

b1 :; b19353 + blyga

b2 = b2xi + b2yga
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and

 

dlzr: dly

D 2 row vectors, (A.1)

(12:1: d2y

blx b2:

B 2 column vectors, (A2)

bly b2y

then

DB = dlxbla: + dlybly dlzb2x + dlyb2y (A3)

.. d2xblx + d2yb1y d2xb2x + d2yb2y

_ d. -b. all . b2

. d2 - b. at - b2

1 0

0 1

Therefore,

B = D“,

and any point r in the x-y plane can be described using coordinates (51,62) such that

7‘ = 51611 + 52612

where

51 = 7'51, (AA)

52 = 7' ' b2- (A.5)

A periodic function F(:r, y) in the direct lattice has the same value at the points

r = (:12, y) and r’ = r +l1d1 +12d2, where ll and 12 are integers. The Fourier Series
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Representation of F(x, y) in skewed coordinates is obtained by using

F(x, y) = f (51, £2) = Z ewe—27W ("151 + "62), (A.6)

where m and n are integers, cm" are the Fourier series coefficients, and f has a period

of unity in (51,52) coordinates. Substituting (A.4) and (AS) into (A.6) leads to

17(3), y) = Z Cmne-27l'j[m(b1 ' 7') + ”(b2 ° 7)] (A7)

01‘

F($, y) = E: C e—27i'j[h - 1‘],

where

h = mbl ‘l' nbg.

Since dxdy = deéldfg, where 3,; is the unit cell area, the Fourier coefficients cm are

found using

1 ' .

Cmn = ELF($,y)e+2m[h rldxdy.

Using Figure A.2, which was adopted from [19], (A.1) can be rewritten as

all 0

D = (A.8)

d2 COS Q50 d2 SlIl Q50

Substituting the elements from (A.8) into (A.3) leads to

1

d1b1x+0= 1 =>blz = —,

d1

(111)254—0201?be =0,

. —1

d2 cos dob” + (12 SH] 460ny = 0 => bly = — cot Q50,

d1
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d2 COS ¢ong + (12 sin (250be = 1 fi b2y :

d2 8111 (150

Rewriting b1 and b2 gives

1 - 1

b1 d—IIB — a: C01} Q5031,

b - i csc (b2 — d2 0y:

and using those results in (A.3) leads to

' 1
DB 2 d1 0 3;

d2 cos c150 d2 sin (150 all cot qio Ell; csc (150

F

1 0

O 1 L
(A.7) can now be expressed as

Fe, y) = z c...e-2vrjim<b1 -r> + nu» - r>1
m,n

: Z cmne—27rj [m ((%i — 31; cot 4303)) ~r) + n ((2%; csc $03)) -r)

l 1
: Zcmne

mn
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Figure A.1. Doubly-periodic direct lattice
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