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ABSTRACT

An Overset Adaptive Cartesian/Prism

Grid Method for Moving Boundary Flow Problems

By

Ravishekar Kannan

The use of overset grids in CFD started more than two decades ago and has achieved

tremendous success in handling complex geometries. In particular, overset grids have

the advantage of avoiding grid re-meshing when dealing with moving boundary flow

problems. Traditionally the overset grid approach named the chimera approach was

mainly used for structured grids to simplify the grid generation process.

In this report, two particular unstructured grids are advocated for moving boundary

flow simulation, i.e., the use of overset adaptive Cartesian/prism grids. An algorithm

using the algebraic grid generation process was developed to construct

semi-structured prism grids are around solid walls. These body titted prism grids then

overlap a single adaptive Cartesian background grid. With the adaptive Cartesian

grid, the mesh resolution of the prism grid near the outer boundary can easily match

that of the oversetting Cartesian grid cells. For a moving grid, it is necessary to

readapt the Cartesian grid frequently. The overset adaptive Cartesian/prism grid

method is tested for both steady and unsteady flow computations at a variety of

Reynolds numbers. It is demonstrated that moving boundary flow computations can

be carried out with minimum user interferences.
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INTRODUCTION

A. Overview

The use of unstructured grids in computational fluid dynamics (CFD) has become

widespread during the last two decades due to their ability to discretize arbitrarily

complex geometries and the flexibility in supporting solution-based grid adaptations

to enhance the solution accuracy and efficiency."7 In the early days of unstructured

grid development, triangular/tetrahedral grids were employed primarily in dealing

with complex geometries. Recently, mixed or hybrid grids including many different

cell types have gained popularity because of the improved efficiency and accuracy

over pure tetrahedral grids. For example, hybrid prism/tetrahedral grids,8 mixed grids

including tetrahedral/prism/pyramid/hexahedral cells,9 and adaptive Cartesian grid

methods""17 have been used in many applications with complex configurations. In

addition, solution algorithms for computing steady flows on unstructured and hybrid

grids have evolved to a high degree of sophistication. The state-of-the-art spatial

discretization algorithm is probably the second-order Godunov-type finite volume

method.18 For time integration, explicit algorithms such as multi-stage Runge-Kutta

schemes are the easiest to implement. Convergence acceleration techniques such as

local time-stepping and implicit residual smoothingl have also been employed in this

context. However, for large-scale problems and especially for the solution of viscous

19-25

turbulent flows, implicit schemes are required to speed up the convergence rate.

The success demonstrated by unstructured grids for steady flow problems has



prompted their applications to unsteady moving boundary flow problems. For a

moving boundary flow problem, the computational grids must move with the moving

boundaries. The most straightforward approach is to deform the computational grid

locally using a spring-analogy type algorithm to follow the motion of the moving

boundaries.”5 The approach is very efficient because it does not require solution

interpolation. A disadvantage of the approach is that the grid integrity can be

destroyed by large motions or shear-type of boundary motions. To remedy this

drawback, local re-meshing can be applied whenever the grid becomes too skewed.

With local re-meshing, solution interpolations from the old to the new grid become

necessary. The hybrid approach of combining grid deformation with grid local

re-meshing seems to be the state-of-the-art in handling moving boundary problems,

and has been used successfully for a variety of applications.27 "7

Another powerful approach for moving boundary flow problems is the overset

Chimera grid method.28 Originally, the Chimera grid method was used to simplify

domain decomposition for complex geometries using structured grids. The method is

particularly useful for moving boundary flow simulations since grid re-meshing can

be avoided.29 However, frequent hole-cutting and donor cell searching may be

necessary to facilitate communications between the moving Chimera grids. With

continuous improvement over the last one and half decades, the Chimera grid method

has achieved tremendous success in handling very complex moving boundary flow

problems. More recently, in order to further simplify the grid generation process,



unstructured grids are also used in a Chimera grid system for moving boundary flow

computations, making the approach even more flexible in handling complex

geometries.30

In this report, we advocate the use of an overset adaptive Cartesian/prism grid method

for moving boundary flow computations. The method combines the advantage of

adaptive Cartesian/prism grid in geometry flexibility with that of Chimera approach in

tackling moving boundary flow without grid re-meshing. There are several reasons

why an adaptive Cartesian grid is used for moving boundary problems:

1. Cartesian cells are more efficient in filling space given a certain length scale

than triangular/tetrahedral cells. It is well known that it takes 2 right triangles to fill a

square(i.e. in 2D) and 12 tetrahedra (though not regular) to fill a cube

2. Searching operations can be performed very efficiently with the Octree data

structure. A brute force searching operation consumes time that is of the order of n2.

Using a clever implementation of the Octtree based data structure, the time consumed

can be made of the order of nlogn.

3. Solution based and geometry-based grid adaptations are straightforward to

carry out. It is well known that the solution-based adaptation using the magnitude of

the gradients can be carried out easily for a Cartesian grid

B. Objectives of the Present Study

3.] To develop a robust prism grid generator.



This prism grid generator must be capable of generating good body fitted grids for

most real life geometries in an optimal fashion. These body-fitted prism grids are

meant to resolve viscous boundary layers.

B.2 To generate a stationary background adaptive Cartesian grid.

The adaptive Cartesian grid is generated to cover the outer domain and to serve as the

background grid for bridging the “gaps” between the prism grids.

B.3 An algorithm to generate holes in the adaptive Cartesian grid to facilitate the

data communication.

The prism grids are used to generate holes in the adaptive Cartesian grid for data

communication. If the bodies move, the prism grids move with the bodies, while the

Cartesian grid remains stationary.

B.4 Automate the creation of new holes and identification of new donor cells.

After a few (tens of) time steps, new holes are cut out of the Cartesian grids, and new

donor cells are also identified. Solution fields are interpolated from the old Cartesian

grid to the new grid using cell-wise linear reconstruction.

C. Organization Of The Thesis

The report is organized as follows. In chapter 2, the overset adaptive Cartesian/prism

grid generation approach will be presented, together with illustration examples.



Chapter 3 gives a brief overview about the solver, boundary conditions and the

closure models for turbulence equations. In chapter 4, several steady and unsteady

moving boundary problems are computed. Grid refinement studies are performed to

ensure the computational solutions are grid independent. Computational results are

compared with experimental data and other simulations whenever possible. Finally

conclusions from this study are summarized in chapter 5.



ELEMENTS OF GRID GENERATION

A. THE PRISM GRID GENERATION SCHEME

Since we do not address geometry modeling issues in this report, it is assumed that

watertight surface grids are already generated with other packages, and serve as inputs

to the present Cartesian/prism grid generator. The generation of prismatic grids

follows the basic idea of many similar approaches, i.e., through surface extrusion in

the approximate surface normal direction?"33 Even after many years of development,

we are still searching for a “fool-proof” prism grid generator, which is capable of

handling arbitrarily complex surface shapes. The current algorithm is still not

“fool-proof”, and we plan to continuously improve its robustness and efficiency. It

does borrow many ideas already developed, and an idea to determine the optimum

direction for a given surface grid node seems to be new, and is implemented. The

steps employed to generate the prism grid is outlined next.

A.l Obtaining the Marching Vectors

This is the quintessential aspect of prism grid generation. Kallinderis3| defined the

term node-manifold as the list of faces confining the node to be marched. Common

sense tells us that the marching vector at any node should not make an angle greater

than 90° with the face normals of its manifold. If the above criterion is violated, the

tip of the marching vector is not visible from all the faces of the manifold. This results

in intersections of the surfaces and causing the flow solver to deliver unrealistic



results. So the paramount objective here is to ensure that the marching vectors

satisfy the visibility criterion. The secondary objective is to impose orthogonality.

Strict orthogonality can be achieved if the marching vectors are identical to the outer

normal. For the above scenario, the maximum of the angles between the marching

vector at a node and the face normals of its node-manifold is obtained. This angle,

0m, needs to be as small as possible (if 6m = O, the marching vector is perpendicular

to its node-manifold). The optimal orientation for the marching vector can be obtained

iteratively. An angle based weighting is used to obtain the initial guess for the

marching vector. According to this, the marching vector M,- at the node i is given by

ZB-n.

Mi :—216J (2.1)

1'

Where Oj is the angle subtended by the triangle j at the node i, n, is the surface normal

of the triangle j and the summation is from 1 to the number of triangles containing the

nodei.

The marching vector is then refined locally to reduce the maximum of the angles it

makes with the face normals of its node-manifold. An optimal orientation for the

marching vectors needs to be obtained in order to fulfill the paramount objective i.e.

ensuring visibility. In many real life geometries, the angle based weighting scheme

yields a marching vector that is invisible from some of the nodes in its node-manifold.

Examples of the above include the trailing edge of an airfoil, the tip of the nose and



the tail of a store and in the nacelles of airerafts. The algorithm for obtaining the

optimal marching vector is discussed below.

For each marching vector Mi, a set of vectors {S} which make a small angle 5 (about

1°) with M,- is obtained. For each of the vectors in the above set, the maximum of the

angles made with the face normals of the node-manifold in consideration is obtained.

Thus a set of maximum angles is obtained. The minimum value in the above set is

determined. If the minimum value is smaller than emax of M,, then the vector

associated with the minimum value is the new marching vector M;. This process is

repeated till the marching vector remains the same.

An inverse distance based smoothing given by Kallinderis was used to further smooth

the marching vectors. This was done to decrease the possibility of intersections.

 

Accordingly,

M.

20-097}

M, =aM, + j 'j , (2.2)
1

Z—

,- dij

Where a = 1- cos (6mm), node j is a neighboring node of node i, (1,; is the distance

between node i and node j. The summation is from 1 to number of neighbors of i. In

other words, the orientation of the marching vectors which make a large angle 6",“, i.e.

the critical angles are affected to a minimal extent.



A.2 Marching Step Based on the Curvature

Once the marching vectors are generated, the nodes need to be positioned at the next

layer. One of the many traits of a good body conforming grid is that the curvature of

the front needs to decrease fi'om one layer to the next layer. It would be unwise to

maintain a constant layer thickness at all nodes in a particular layer. It could be

figured intuitively that the marching vectors at concave nodes need to be marched

faster and the marching vectors at the convex nodes need to be marched slower. The

ratio of the marching steps between 2 adjacent nodes needs to lie between 0.5 and 2.0.

The above is carried out to ensure smooth transition. The average thickness increases

exponentially with increasing layers. The average thickness is the marching step when

the front in consideration is a planar surface i.e. the marching vector at a node is the

same as any of the face normals of its manifold.

 

C

C

O

A B

A B

CONVEX CONCAVE

Figure 2.1 Two Dimensional Concave and Convex models

A new scheme was devised to estimate the surface curvature. For better

understanding, let us start with a 2 dimensional model. Figure 2.1 depicts the

marching vectors for a two dimensional case. 0C is the un-smoothed marching vector

in figure 2.1. For the convex case, the angle between OC and 0A is greater then 90°.



Similarly the angle between OC and OB is greater then 90°. For the concave case, the

angle between OC and 0A is less than 90°. Similarly the angle between OC and OB

is less than 90°. This idea can be extended to three dimensions. In the three

dimensional case, the angles between the un-smoothed marching vector and the edges

connecting the node in consideration are determined. If each of the above angles is

greater than 90°, the surface is convex. If each of the above angles is lesser than 90°,

the surface is concave. In reality some saddle points occur. For such a scenario, the

average of the angles between the un-smoothed marching vector and the edges

connecting the node in consideration is determined. If this average is greater than 90°,

the surface is treated as a convex surface else it is treated as a concave surface.

A.3 Mean Filter Smoothing Algorithm

The algorithm discussed till now is not totally perfect. As per the algorithm, the nodes

in the concave region get closer with advancing layers. This results in the triangles

becoming increasingly obtuse with advancing layers and hence causing intersections

between the marching vectors. In order to circumvent the above, smoothing of the

nodes in the new layer is to be done so as the even the spacing between the nodes.

The most obvious choice for a smoothing operator was the Laplacian Smoothing

operator. This smoothing operator did not work out very well especially at concave

regions. After doing some literature survey, a new type of smoothing (Called Mean

filtering) which works well in the concave regime was obtained. This filter34 is

10



employed to smooth the nodes in the current layer. Each iteration of this filter consists

of the following steps

a. For each triangle i, compute the area weighted averaging normal:

ZAjnj

 

m,. =-—’——. (2.3)

2A1
1'

b. Normalize the averaged normals;

c. For each mesh vertex, perform the following vertex updating procedure:

C

ZAj<mj orj )m1-

1

rnew = old + 9 (2.4)

XA!
J

However the position of the new node is updated with the new value if

a. The new value of 6",.“ is less than some threshold value;

b. The thickness of the layer obtained using the modified position is greater than

a critical value.

A.4 Checking for Intersections

Most of the times, the efficiency and the accuracy of the flow solver depend on the

grid generated. Even extremely robust solvers deliver erroneous results if the grid is

invalid. A grid is said to be invalid if intersections exist. Intersections give rise to

negative areas and negative volumes and hence forcing the solver to diverge. So an

important issue in prism grid generation is to identify intersections. As all the prisms

ll



need to be checked for intersections, a fast scheme was developed to determine

intersections.

 
 

D

A

E /\ F

B c   

Figure 2.2 An example of a prism with no intersections

Figure 2.2 shows a prism with no intersections. Triangle ABC is the triangular face at

the current layer. Triangle DEF is the triangle at the next layer. Intersections can

occur when either of the below can occur

1. Nodes A and D do not lie on the same side of the planes BCEB, BCFB, EFBE and

EFCE

2. Nodes B and E do not lie on the same side of the planes ACFA, ACDA, DFAD

and DFCD

3. Nodes C and F do not lie on the same side of the planes ABEA, ABDA, EDAE

and EDBE

12



In spite of performing the mean filter smoothing operation, intersections can persist.

In this scenario, the marching vectors which cause intersections are tweaked locally

so as the remove the intersections. Correcting intersections locally is exceedingly time

consuming. However the possibility of intersections occurring is uncommon.

A.5 Checking for Overlaps

Overlaps can occur in small gaps and in multi-body configurations. A novel scheme

was developed to check for overlaps. Consider any 2 triangles T1 and T2 in the

outermost prism layer. If T1 intersects T2 or if T2 intersects T1, it can be concluded

that an overlap has occurred. This is shown in figure 2.3.

 

 

C

E

\ F

A B

D

Figure 2.3 An example of an overlap

A cursory approach for detecting overlaps is to check every triangle in the outermost

layer with all the possible triangles in that layer. The detection of these overlaps can

be exceedingly time consuming if done by the above detection mechanism. It could be

intuitively figured out that this brute force detection strategy consumes time which is

13



of the order of n2 where n is the number of triangles.

An Alternating Digital Tree (ADT) based search was employed. The coordinates of

each node in the outermost prism layer is fed into the ADT subroutine. ADT stores the

nodes based on their coordinates. Thus for each triangle node i, the nodes closest to it

can be determined easily by constructing a bounding box and searching the nodes

which lie inside that bounding box.

Extending the above idea, a bounding box is constructed for each triangle and all the

other triangles intersecting this bounding box are determined. Thus the check for

overlap for this triangle is done with the dozen or lesser triangles intersecting the

bounding box. In contrast the brute force method requires checking with all the other

triangles. ADT checking mechanism reduces the run time to be of the order of n log

(11).

Currently the correction is done on a local scale. However it is possible that the

correction done locally be totally inadequate. In these circumstances, the correction

measures needs to be applied from the first layer. This global corrective mechanism is

exceedingly time consuming and was avoided as much as possible.

14



B. THE ADAPTIVE CARTESIAN GRID GENERATION SCHEME

After the prism grid generation, an adaptive Cartesian grid was generated

automatically matching the grid resolution near the outer boundaries of the prismatic

grids. In order to support arbitrary local grid adaptations, the Octree data structure

was used. The following steps were employed to generate the initial grid:

1. Generate a single root node based on the domain size;

Recursively subdivide the root node until all cells are smaller than the

specified maximum cell size;

Identify all Cartesian cells intersecting the outer boundaries of the prismatic

grids;

Recursively refine the intersected cells until all the cells intersecting the

interfaces match the grid resolution of the prismatic cells;

The final adaptive Cartesian Grid was smoothed so that the length scales between 2

neighboring cells do not differ by a factor more than 2 in any coordinate direction. In

addition, several buffer layers with the same grid resolution near the outer boundaries

of the prismatic grids were used to minimize local discretization error.

B.1 Automated Hole Cutting and Donor Cell Identification

The use of overset adaptive Cartesian and prismatic grids has the potential of handling

moving boundary problems without any user interferences. A critical element in

15



chieving this level of automation is an automated hole cutting algorithm, in which

invalid Cartesian grid cells (cells inside the solid boundary) are excluded from the

calculation, and donor cells are identified for the hole boundary cells (inner boundary

Cartesian cells) and the prism outer boundary cells. A schematic of the hole cutting

operation is shown in figure 2.4.

\
-
L

*

 

 

 
 

  
 

  
 

/ Q__

LII/I h.'1'. L:

I 'ILI"t t

0 Hole Boundary Cells - lnterpolated from the Prismatic Grid

I Outer Boundary Cells ~1nterpolated from the Cartesian Grid

0 Blanked Cartesian Cells

 
     

Figure 2.4 Schematic of Hole-Cutting

The efficiency of the hole cutting algorithm is critical since many steps of the

hole-cutting operation is performed in the moving boundary flow simulation as the

prism grids move in the flow field. To achieve the maximum efficiency, search trees

were used extensively. One is the Octtree for the adaptive Cartesian grid and the other

is the Alternating Digital Tree (ADT) for bounding the boxes of prism cells. The use

16



of Octtree to speed up the search operations is another significant advantage of using

the adaptive Cartesian grid for moving boundary problems. The hole cutting

algorithm consists of the following steps

1. Blank all the Cartesian cells which are inside the solid boundary;

2. Use the Alternating Digital Tree (ADT) to find the prismatic cells, which

bound the centroids of the hole boundary cells. These prismatic cells are the

prismatic donor cells;

3. Generate a list of outer boundary cells and use the Octree tree to identify the

Cartesian Cells which bound the cell centroids of the last layer cells of the

prism grids. These Cartesian cells are the Cartesian donor cells.

After each time step/iteration, the field variables at the outer boundary cells are

interpolated from the Cartesian grid, while solutions at the hole boundary are

interpolated from the prismatic grids.

The Cartesian-Prism Overset grid generation algorithm was tested for several real life

geometries like a store configuration, missile configuration and a F16 aircraft. These

are shown in the figures 2.5, 2.6 and 2.7. The Cartesian-Prism Overset grid was also

generated on a wing-pylon-store multi body configuration as is shown in figure 2.8.

17



l8

configuration

Figure 2.6 Example of an overset Cartesian/Prism grid for the missile

 

Figure 2.5 Example of an overset Cartesian/Prism grid for the store configuration

 



 

Figure 2.7 Example of an overset Cartesian/Prism grid for the F-16

aircrafl configuration

 

Figure 2.8 Example of an overset Cartesian/Prism grid for the

wing-pylon-store configuration



NUMERICAL METHOD

A. FINITE VOLUME METHOD FOR DYNAMIC GRIDS

The time-dependent Reynolds-averaged Navier-Stokes equations for dynamic grids

can be expressed in the integral form as

a .

237 deV + <f(F'(Q)- Qvg -n)ds = 4F”(Q)ds, (3.1)

V S S

where S is the surface surrounding the control volume V, n is the out-going unit

normal of S, vs is the velocity of S, and Q is the vector of conserved variables, F is

the inviscid and Fv the viscous flux vectors. The eddy viscosity for turbulent flow is

calculated with the S-A turbulence model.35 The governing equations for inviscid flow

and for fixed control volumes are only sub-sets of Equation (3.1). If we integrate

Equation (3.1) in a polygonal control volume V,-, we obtain

§;<Qm)+z(Fi(Q)-Qvg.)fdsf =2%pr
f f (3.2)

where the summation indexfrepresents all the faces surrounding control volume V},

and vgn = Vg ' n . The inviscid flux is calculated using Roe’s approximate

Riemann solver36 with reconstructed state variables at both sides of a face. A least

square linear reconstruction scheme of the primitive variables is used.
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A.1 Determining the viscous flux

The viscous flux at a face can be expressed as a function of the flow variables and of

their gradients i.e.

Fv,f =fv(4f,VCIf) (3-3)

 

O

l,|+1 1+1 ,j+1

 

o» to
l-1J Li

«a «-

3+1) 1+2J

 

«- to

iJ—t 1+1J-1.     
 

Figure 3.1 Regular Cartesian grid stencils for gradient computation at

face (i+1)/2

Where qfis the mean of qu, and qf,R. If a simple average of VqL andVqR is

used as the gradient at the face, the variables at the two cells sharing the face

contribute less to the gradient than data further away from the face. In the case of a

regular Cartesian grid shown in Fig 3.1, the x gradient at the face i +1/2 resulting

from an average of VqL andVqR is

  

aqi+1/2,j = 1 (4:41,; " qi,j) + 3 (qi+2,j ‘ qi—1,j)

cr4)

6x 4 Ax 4 3Ax
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The terms in the brackets are the approximations for dq/dx. Thus only one quarter of

the final derivative is contributed by the data closest to the face. The other three

quarters are contributed by far-flung data which can obviously cause numerical

14,15
stiffness. To overcome this drawback, the following viscous reconstruction was

used.

Let m be the unit normal in the face tangential direction and I be the unit vector

connecting the left cell and the right cell of a face as shown in Fig 3.2. The derivative

of a variable in 111 direction is obtained from the cell wise inviscid reconstruction, i.e.

fl: (VqL.m +VqR.m)

dm 2

 
(3.5)

  

Figure 3.2 Schematic of viscous flux computation at a face
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Where VqL and VqR are the gradients in the left and right cells of the face from

inviscid reconstruction. Thus dq/dl is now

 

  

ii _ CIR ‘qL
——— (3.6)

0” IrR -rL 1

Thus Vq = (qx,qy) is obtained by solving the equations

dq
qxolx +qyo y :5.

(3.7)

q m + q m _ dq
x. x y. y dm

The gradient in a Cartesian grid calculated by the above scheme gives:

aqi+l/2,j _ ((1141,; “4:,1')

6x Ax (3 8)

aqi+1/2,j _ (qi+l,j+1 + qi,j+l ‘ qi+l,j—l - qi,j—l)

5y 44y

which is both accurate and correct.

A.2 The Geometric Conservation Law

The conservation of a constant flow is a necessary condition for any viable numerical

scheme. Otherwise mass, momentum or energy would be produced un-physically by

the numerical simulation. If we examine Equation (3.2), in order to preserve a

uniform free stream, we must have:

6V-
' = ngnde (3.9)

at f
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This is the so-called Geometric Conservative Law37 in its semi-discretized form.

Assume that the grid velocity is computed at time level n+l/2. Then we can us the

following time discretization to achieve second-order accuracy

1V_n+ ”Vin

I

=ngnde (3.10)

At f

Instead of having the grid velocity vgn satisfy Equation (3.10), we utilize the equation

to calculate vgn. In this case, we are sure that GCL is guaranteed. To this end, we

employ a simple fact: the volume that a cell sweeps over is equal to the total of the

volumes swept by its faces, i.e.

V"+1—V"=ZAVf (3.11)

where AV; represents the volume swept by face f Comparing Equations (3.10) and

(3.11), we arrive at the following equation:

AVf

5’" Atde

 

AVf = Atvgnde or v (3.12)

B. TIME INTEGRATION ALGORITHM

Once the fluxes are evaluated for each cell face using the preceding finite volume

scheme, the semi-discrete form of the governing equations is then integrated in time.

For convenience, we rewrite Equation (3.2) as the following nonlinear system:

(—'—6QtV) +R(Q): 0, (3.13)
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where R; is the residual given by

Ri(Q) = 2(Fi(Q)_Qvgn _FV(Q))fde (3-14)

1’

The easiest time integration algorithm for equation (3.14) is the explicit multi-stage

Runge-Kutta method. However for viscous flow computational, the heavily clustered

mesh imposes a too severe time step limit. We therefore employ the following family

of implicit schemes

n+1 n+1 n n

Qi Vi _Qi Vi

At +(1- (9)12, (Q"+‘)+ 6R.- (9") = o. (3.15) 

If 0 = 0, the scheme is the backward Euler method. If 0 = 1/2, the resulting scheme

known as the Crank-Nicolson method is second-order accurate in time. Equation

(3.15) represents a nonlinear system of coupled equations, which has to be solved at

each time step. It can be solved by introducing a pseudo-time variable 7,38

mm;(Q)= 0,
5T (3.16)

and ‘time-marching’ the solution using local pseudo-time Ar, until Q converges to

QM]. In (3.10), Q is the approximation of Q“, and the unsteady residual Ri'(Q is

defined as

Qi Vin+1 _ Qin Vin

At

 R!(Q)= +(1—6)R. (Q)+6R,- (2") (3.17)
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Obviously, Equation (3.17) can be solved by using a variety of numerical schemes

including the explicit multi-stage Runge-Kutta method. Note that this dual time

method with an explicit inner iteration scheme should be many times faster than the

explicit time marching method because local time-stepping in the pseudo time can be

used to accelerate the convergence rate. Of course the best efficiency is expected to be

achieved by an implicit inner iteration schemes. An efficient Block Lower-Upper

symmetric Gauss-Seidel (BLU-SGS) approach17 is employed to solve the inner

iteration.

C. BOUNDARY CONDITIONS

In order to treat the boundary cells as transparently as possible, a ghost cell is

generated for each boundary cell. Then the solution variables at the ghost cell are

computed from the boundary cell according to the physical boundary condition. For a

steady inviscid flow, the velocity components at the ghost cell for a solid wall

boundary are computed as:

ughos, =u—2nxvn vghos, =v—2nyvn, (3.18)

Where v" is the normal velocity given by

v" =unx + vny. (3.19)

Meanwhile, the density and pressure of the ghost cell are set to be the same as those

of the boundary cell. For unsteady moving boundary problems, the condition must be

26



adjusted since the boundary face is moving. Then the normal velocity should be

modified as

v" =unJr +vny ‘ng

(3.20)

Similarly for an unsteady viscous surface boundary, the velocity components at the

ghost cell are computed using the following equation,

ughost =—u+2nxvgn vghos, =—v+2nyvgn. (3 21)

In the far field, a characteristic analysis based on Riemann invariants is used to

determine the values of the flow variables on the outer ghost cells. This analysis

correctly accounts for wave propagations in the far field, which is important for rapid

convergence to steady state and serves as a ‘non-reflecting’ boundary condition for

unsteady applications.

For a hole boundary face or an interpolation boundary face, the fluxes are required at

the face center to update the conservative variables. In order to compute the flux at the

face center, the solution at the face center is required. Once a donor cell for the face

center is found from another grid, the solution is assumed linear over the donor cell,

and then the solutions at the face center are computed using a first-order Taylor

expansion.
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D. LIMITING TIMESTEP BASED ON GRID ADAPTATION

FREQUENCY

It is well known that the time step is always limited by the CFL criterion. In this

section, we get a first order estimate for the maximum time step possible based on the

frequency with which the Cartesian Grid is adapted.

It was explained earlier that the Cartesian grid is adapted once in every n time steps

where n varies from 8 to 20. During these 11 time steps, the position of the Cartesian

Donor remains constant. This implies that the quality of interpolation degrades from

time step 1 to time step n. The interpolation carried out is a linear interpolation. If the

prism traverses to such an extent that the prism recipients are outside the Cartesian

donor cells, a bad quality interpolation is obtained. In other words, a ceiling for the

time step is

At <=1 (3.22)

nV

Where 5 is the average thickness of the inner boundary Cartesian cells. This style

of estimation is only first order accurate. In fact for some problems, a time step which

is about a third of the ceiling needs to be used to obtain an accurate solution. In

addition, the above scheme needs to be modified for bodies which undergo a rotation

along with the translation like a pitching prolate.
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E. THE SPALART-ALLMARAS MODEL

To simulate flow turbulence, a RANS Spalart-Allmaras (S-A) model approach was

employed. The S-A one-equation model35 solves a single partial differential equation

for a variable i7 which is related to the turbulent viscosity. The differential equation

is derived by using empiricism and arguments of dimensional analysis, Galilean

invariance and selected dependence on the molecular viscosity. The model includes a

wall destruction term that reduces the turbulent viscosity in the log layer and laminar

sublayer. The equation can be written in the following form

V

2

~ ~~
1 ~ ~ ~

LID): =Cb1SV —Cw1fwl:d:| +;[V.((V+V)VV)+Cb2(VI/)2] (323)

The turbulent viscosity is determined via,

3

_~ _. I _
Vt—val’ fvl" 3 3 9 Z: a

Z +Cvl V (3.24)

m

Where v is the molecular viscosity. Using S to denote the magnitude of the

vorticity, the modified vorticity is defined as

~ 1’7

SsS+— v, v =1— (3.25)
K2d2f2 f2

_2’_

1 + 1”v1

Where d is the distance to the closest wall. The wall destruction function is defined as

6 1/6
~

1+C 3 6 V

g +cw3 SK d

(3.26)

The closure coefficients are given by:
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ab, = 0.1355

 

0'22/3

Cbz =0.622

k=0.41

W1: cbl +(1+Cb2)

k*k 0'

CW2 =0.3

CW3 =2

cv1=7.l

Once again, the ADT comes in handy. The distance to the closest wall is calculated

using the ADT data structure. A brute force method would be highly inefficient.
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RESULTS AND DISCUSSIONS

In this chapter, the results obtained by the overset adaptive Cartesian/prism grid

method are for both stationary and moving boundary flow problems are discussed and

compared with existing numerical and experimental data. The following 5 cases are

presented. Images in this thesis are presented in color.

A.VISCOUS FLOW OVER A STATIONARY SPHERE

In this section, we present the computational results of flow over spheres at various

Reynolds Numbers to validate the overset adaptive Cartesian/prism grid solver. The

flow over the sphere was simulated at Reynolds numbers of 118, 800 and 1.1x106. In

all the simulations, the incoming flow has a Mach number of 0.37. The cells are

clustered near the solid boundary and in the wake to capture the viscous effects. Local

time stepping was employed with CFL numbers in the range of 40-100. No slip and

no penetration boundary conditions were imposed at the wall. Characteristic boundary

conditions were imposed at the outer boundary of the computational domain. Both 0,,

and cf distributions were obtained and compared with experimental data or other

simulations. In order to obtain accurate cp and Cl distributions, the non-dimensional

wall distance y+ at the wall needs to be less than 1. So an iterative approach was

followed. The solutions were obtained for a particular grid clustering near the wall.

The y+ values were then calculated. If the maximum of the above was greater than 1,
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the grid was refined. This iterative process was carried on till the maximum y+ was

less then 1. To simulate flow turbulence, a RANS Spalart-Allmaras (S-A) model was

employed.

A parameter of much interest to design engineers is the total drag coefficient. The

total drag is composed of pressure drag and viscous shear drag, which can be easily

computed using surface integrals. From the cf distribution, one can easily compute the

separation angle since separation occurs at the angle where cfchanges its sign.

A.l Flow at Low Reynolds Number

The overset Cartesian/prism solver was first tested for two low Reynolds number flow

cases, i.e., Re = 118 and 800. The coarse and the fine meshes used for Re = 118 are

displayed in Figure 4.1.

 

Figure 4.1 Coarse and Fine Grids Used for Flow over a Sphere at Re = 118

At a Reynolds number of 118, the flow was steady and there was virtually no

shedding of vortices. There was a stationary vortex ring at the rear of the sphere,
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which was also experimentally observed. 39 At Re = 800, the flow field was unsteady

and there was periodic vortex shedding. Therefore the simulation was run in a time

accurate mode. Time and spatial (circumferential) averaged Cp and Cfprofiles for both

cases were obtained and displayed in Figures 4.4 and 4.5 for both coarse and fine

meshes. Note that there is excellent agreement between the solutions on the coarse

and fine meshes, indicating that the numerical solution is nearly grid independent. The

velocity vector plot on the fine grid on 2 = 0 for Re = 118 is compared with an

experimental flow picture in Figure 4.2. There is very good agreement on the size of

the separation region between the experiment and computation. At Re = 800, a vortex

pair loop was observed in the wake, as shown in Figure 4.3, which displays the

entropy distribution on plane x = 2D. The vortex pair was also observed

experimentally observed. ‘3

 
(b) Experiment

Figure 4.2 Velocity vector plot showing the

separation region at Re = l 18



 

Figure 4.3 Entropy distribution depicting the

vortex pair seen at x/D = 2 for Re = 800
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The sphere experienced a sideward force at Re = 800 due to the formation of the

vortex pair. The magnitude of the side force was about a fifth of the drag force. A time

averaging of the side force yielded zero. All the properties like the drag, separation

angle and the Cp and Cf distributions were obtained by time averaging the unsteady

flow (but statistically steady) field. The drag coeflicients for Re = 118 and 800 are

1.03 and 0.52, and the separation angles are 112.3 and 101.5 degrees respectively.

The skin friction coefficient profile for Re = 800 shown in Figure 4.5 is interesting.

Due to the separation of the boundary layer, Cf changes its sign. However at around

120 degrees, Cf starts to increase. This means that the boundary layer tries to reattach

to the sphere. Even though the incoming flow is laminar, the flow becomes unsteady

after separation. The viscous effects are negligible and the flow is now turbulent.

There is an enhanced mixing of momentum. This means the flow has more

momentum to move downstream. The cf increases and peaks at around 140 degrees.

However the adverse pressure gradient starts to dominate over the turbulent mixing.

The value of C; starts to decrease and becomes negative again. In contrast, at a

Reynolds number of 118, the viscous effects are dominant even afler separation. Thus

there is no reattachment of the boundary layer to the sphere at Re = 118.

A.2 Flow at High Reynolds Number

Next turbulent flow over a sphere at Re = 1.1x106 was computed with the S-A
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turbulence model. The computed cp profiles on the coarse (1.5x106cells) and fine grids

(2.1x106 cells) are compared with experimental data by Achenbach42 and simulation

results by Constantinescu40 in Figure 4.6. Note that the agreement in cp is quite good

between the present computation and other experimental and computational data.
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Figure 4.6 Comparison of Static Pressure Coefficients at Reynolds Number =

1.1e6

The simulation over the sphere at a Reynolds number of 1.1e6 yielded a drag

coefficient Cd of 0.09 and a separation angle of 115°. As expected, turbulent mixing

increases the separation angle to 115°. As separation is stalled, the c,, curve behaves

like its inviscid counterpart till around 90°. This can be seen from the figure 4.6. A

sharp reduction in the drag occurs at this Reynolds number. In this case, the viscous

contribution to the drag force was negligible (around 10%). The separation angle and

CI) distribution were in good agreement with the experimental results of Achenbach

and the data provided by Schlichting, as presented in Table 4.1. The drag coefficient

obtained from the current simulations was slightly lower than the experimental results.



The results of this super-critical case were compared with the DES results of

Constantinescu. The Cd obtained from the current simulation was in good agreement

with the results of Constantinescu. The Cf distribution did not match other data well.
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Figure 4.7 Comparison of Skin Friction Coefficient at Reynolds Number = 1.1e6

The peak value of Cf distribution and the separation angle obtained by Constantinescu

was in accord with the current simulation. However there were some differences at

angles close to zero and 180°. This can be seen from Figure 4.7.

 

 

 

  

Case Study Re Cd 9 (sep angle)

Experimental 1.1e6 0.12 118

Constantinescu’s results 1.1e6 0.084 1 14

Current Simulation 1.1e6 0.09 114.7 
 

Table 4.1 Data on Drag and Separation angle; Experimental Results from

Achenbach42 and Schlichting‘“; DES results from Constantinescu40
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Taneda39 reported the presence of a Q shaped vortex ending in a pair of spiral points.

He performed visualization experiments and observed that the vortex sheet separating

from the sphere rolls up into a Q shaped structure to form a pair of strong stream-wise

vortices. The Q vortex plot obtained from the computations is shown in the Figure

4.8.

  'j‘ /

I fly, \(x

212W” ‘ ‘ 1\a.

Figure4.8 The velocity vectors denoting the Q vortex plots atx/D= 0.65 and 1 at

a Reynolds number of 1.1e6.

Taneda also reported that the wake was not symmetrical but tilted. The tilting of the

wakes causes sideward forces on the sphere. These sideward forces are non zero even

in the mean and were observed in our study. The wake (as seen from the Figure 4.8)

has the same orientations at x/D = 0.625 and x/D = 1.5. This results in non-zero lateral

forces. The direction of this sideward force was random. Moreover the magnitude of

the sideward force was the same order ofmagnitude as the drag force.
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B. INVISCID FLOW OVER A MOVING SPHERE

This case was selected to validate the moving grid flow solver. A sphere moves from

right to lefl in quiescent air with a Mach number of 0.2. It is assumed that the flow is

inviscid. If the reference frame is fixed on the moving sphere, the flow field should

reach a steady state after the initial transients propagates out of the solution domain.

 

sphere problem

The computational grids at two different times are shown in Figure 4.9. The outer

boundary of the computational grid is located 32 times the diameter away from the

initial position of the sphere. The moving grid flow solver was first verified that the

GCL was satisfied. Then it was used to solve the moving sphere problem.

The pressure disuibutions at two different times are displayed in Figure 4.10. Note

that initially a very high/low pressure region was created on the left/right side of the

sphere due to the sudden motion. As time goes, the flow field becomes nearly

“steady” for an observer stationed on the sphere. In fact, the pressure field created by

the moving sphere after a long time is compared with that created by a free stream of
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Mach 0.2 over a stationary sphere in Figure 4.11. It is observed that the pressure fields

are very similar.

The steady state Cp distribution is shown in the figure 4.12. This Cp distribution

agrees with the distribution predicted by potential flow. The Drag force as a function

of time is plotted in the figure 4.13. As expected, the drag force goes to zero after a

long time.

   

  
(a) (b)

Figure 4.11 Comparison of pressure distributions for a moving sphere in

quiescent air (a) and flow around a stationary sphere (b)
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Figure 4.12 Static pressure Coefficient obtained for inviscid flow over a

sphere.
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Figure 4.13 Drag force of a sphere in inviscid flow (Obtained using

moving boundary method)

C. VISCOUS FLOW OVER A MOVING SPHERE

The moving grid solver was tested for a sphere moving in a viscous but laminar fluid.

The free stream pressure, temperature and density were prescribed the values used in

Case A. The Reynolds number based on the sphere speed was 118. The steady Cp and
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Cf distributions were obtained and were compared with the results obtained from

Case A. The match was very good as is seen from the figures 4.14 and 4.15. The drag

obtained was in good accord with that of the stationary sphere case (variation was

around 3%).
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Figure 4.14 Cp obtained for laminar flow over a sphere (Re = 118)
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Figure 4.15 Cf of a sphere in laminar flow (Re = 118)
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D. PROLATE SPHEROID UNDERGOING PITCH-UP

MANEUVER IN A LAMINAR FLUID

This case was selected to demonstrate the ability of the moving grid solver to handle a

rotational degree of freedom (DOF). The prolate was a 6: 1 :1 ellipsoid. The

non-dimensional angular velocity was 0.047. In addition, the centroid of the spheroid

performs a translation with 45.7 m/s. The Reynolds number based on the length of the

prolate was 100. The simulations were performed till the prolate was rotated by 30°

The motivation behind this case was to simulate a submarine entering a turning

maneuver. The experiments and the simulations (using the traditional methods)

performed for this are for turbulent flow (i.e. Re > 4.2 * 10° ). The current simulations

were performed using a single processor. Thus it is virtually impossible to get a

solution in a ‘finite’ time using a RANS/LES based turbulence model. Hence

simulating the motion in a laminar flow was a good alternative.

The cp and cf distributions were obtained and are shown in a reference frame attached

to the spheroid and aligned with the body axes. Figures 4.16 and 4.17 show the Cp

distributions at x/L of 0.11 and 0.43 plotted as a function of azimuthal angle ¢(¢ = 0

corresponds to the windward symmetry plane). The match between the fine (380000

cells) and the coarse (260000 cells) grids is not up to the mark at 10° angle of attack.

The transients are still in action at an angle of attack of 10°. Hence an extremely fine

grid is necessary to resolve the high pressure gradients arising from these transients.
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As expected, the cp at ¢=0 increases with the angle of attack.
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The C; distributions are plotted in the figure 4.18 and 4.19. As the cf does not change

sign, it can be concluded that separation has not occurred at the above-mentioned

locations. In addition, the cf at x/L = 0.11 is much higher than the cf at x/L = 0.43.

Hence the velocity gradients at x/L = 0.11 are higher than the velocity gradients at x/L

= 0.43. However, the grid density is nearly the same at x/L = 0.11 and x/L = 0.43.

Hence, the quality of the solution at x/L =0.43 is better than the quality at x/L = 0.11.

This can be seen from the cf plots. The match between the fine and the coarse grids is

not up to the mark at x/L = 0.11 (due to the high gradients). In contrast, the cf

obtained from the fine and the coarse grids are in good accord at x/L = 0.43.
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Figure 4.18 Cf distribution at x/L = 0.11 at 10 and 20 Degrees angle of attack
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E. WING-PYLON-STORE PROBLEM

As a final demonstration case, steady inviscid subsonic flow at Mach = 0.2 over a

relatively complex geometry — wing-pylon-store was computed. This steady flow is

simulated as a first step towards computing the store separation problem. The

computational grid is shown in Figure 4.21. The Chimera holes generated in the

Cartesian grid by the prism grids are shown in Figure 4.20. The pressure distribution

is shown in Figure 4.22. Detailed comparison with moving body experimental data

will be carried out the future.
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Figure 4.22 Computed pressure distribution for the

wing-pylon-store case
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CONCLUSIONS

In the present study, an overset adaptive Cartesian/prism grid method has been

developed to simulate moving boundary flow problems. The method combines the

advantage of adaptive Cartesian/prism grid in geometry flexibility with that of

Chimera approach in tackling moving boundary flow without grid remeshing.

Advantages of the method include:

1. Cartesian cells are more efficient in filling space given a certain length scale

than triangular/tetrahedral cells

2. Searching operations can be performed very efficiently with the Octree data

structure

3. Solution based and geometry-based grid adaptations are straightforward to

carry out.

The grid generator and overset flow solver are then tested for several steady and

unsteady flow problems with stationary and moving bodies. The GCL has been

satisfied with arbitrary grid motions. To test the accuracy of the overset interface

algorithm, steady flows around a sphere at various Reynolds number were computed

and compared with experimental data and other computations. There is very good

agreement between the present computation and other data. More specifically,

I. A stationary vortex ring was formed behind the sphere at Reynolds numbers lesser

than 400. For Reynolds numbers between 400 and 1000, a vortex pair loop was

observed in the wake region.
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2. At a Reynolds number of 800, cf changes sign three times. This is due to initial

separation of the boundary layer, followed by the reattachment of the boundary

layer and the separation, which occurs for the second time.

3. At a Reynolds number of 1.1e6, a Q shaped vortex ending in a pair of spiral

points was observed. These vortices are aligned in a direction, which produces

lateral forces, which are non-zero in the mean. Once again the cf increases after

separation due to turbulent mixing of momentum. However the peak value of cfis

still negative as the effect of adverse pressure gradient dominates over the

turbulent mixing.

The grid generator and flow solver have been coupled successfully to tackle a moving

boundary flow problem with reasonable computational results. The results obtained

by using the moving body flow solver were identical to the well-known results for a

translating sphere in a laminar (and in inviscid) fluid. The moving body flow solver

was also equipped to tackle a rotating degree of freedom. A rotating prolate in laminar

flow was attempted. The cp and cfprofiles looked realistic.

A. PLANS FOR THE FUTURE

A.1 Parallelize the code.

The current solver was implemented on a single processor. It is virtually impossible to

run a moving body simulation involving more than a couple of million cells using one

processor. In addition, the turbulent moving body problems require additional
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computational time for solving the equations of closure and for resolving the laminar

sub-layer. Hence the need for parallization of the code.

A.2 Further validation and demonstration with a high Reynolds number

store-separation problem

Store separation problem is probably the ultimate test for a moving boundary solver.

This problem involves unsteady flow that experiences huge separation. In addition,

this problem requires lots of computational time and resources.

A.3 Enable solution based grid adaptation

Solution based grid adaptation is straightforward when the grids are Cartesian grids.

Solution based adaptation is unnecessary for prism grids as their grid density is much

higher than the Cartesian grids.

A.4 Enable the moving body solver to handle 6 DOF (Degrees of Freedom) i.e. 3

translations + 3 rotations (currently only 4 DOF are possible)

This is necessary for simulating an actual store separation problem. After the store is

released, the store is given a nose—down maneuver. The aircraft needs to be given a

nose-up maneuver and a yaw maneuver. Thus the need for all the 6 degrees of

freedom.
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