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ABSTRACT

EVALUATION OF LlGHT—OXIDIZED OFF-FLAVORS IN REDUCED FAT MILK

AND CHEDDAR CHEESE USING SENSORY EVALUATION AND THE

ELECTRONIC NOSE

By

Hsin-Yen Chung

Exposure to light can result in Changes of sensory and nutritional qualities

of foods, including milk and other dairy products. This study was to evaluate the

light-oxidized and/or packaging off-flavors in milk and Cheddar cheese using

sensory evaluation, solid-phase microextraction coupled with gas

chromatography (SPME—GC), and an electronic nose (FOX 3000, AlphaMOS)

equipped with 12 metal oxide semiconductor (MOS) sensors.

Reduced fat (2%) milk in glass bottles exposed to fluorescent light (1000

Ix) at 5°C developed a significant light-oxidized off-flavOr in 8 hours, which was

detected by both consumer and trained panelists. Headspace pentanal and

hexanal increased as the light exposure time increased. Using a 95°C headspace

temperature for the electronic nose analysis provided better model discrimination

than 45°C or 70°C. By defining the harmful light exposure time as a milk

deterioration threshold, the 95°C linear discriminant analysis (LDA) model

correctly recognized 97% of the milk samples exposed to light for 8 hours or

longer. Quantitatively, the 95°C partial least squares (PLS) model provided better

prediction of the sensory scores than the 95°C multilayer perceptrons (MLP)

model.



The different packaging materials (237 ml glass, HDPE, HDPE—TiOz, PET

bottles, and PE-Coated paper cartons) were clearly discriminated and identified

using the electronic nose. However, packaging off-flavors in water and 2% milk

were not clearly defined by both sensory evaluation and electronic nose analysis.

The effect of packaging materials on light-induced oxidation in milk was cloSely

related to their light barrier properties. PE-coated paper cartons reduced light-

oxidation of 2% milk significantly (12 hours of light exposure, 1000 Ix), while

HDPE-Ti02 gave only partial light protection.

Light-induced quality changes (color and flavor) were limited to the top

surface of the vacuum-packaged Cheddar cheese, which was the portion that

was exposed to light (2000 Ix). Discoloration and off-flavors were detected by the

trained panel after exposure to light for 2 weeks. Color measurement showed a

continuous decrease in yellowness contributed the most to the discoloration,

along with a relatively small decrease in redness and increase in lightness. The

discriminant models of sensor responses using 90°C headspace samples had

higher correct identification rates and better discrimination than at 60°C. The

90°C PLS model provided better prediction of the sensory scores than the 90°C

MLP model.

The established discriminant and correlation models have shown the

potential of the electronic nose to be used as a complementary approach to

sensory evaluation to determine light-oxidized off-flavors in packaged milk and

Cheddar cheese.
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CHAPTER 1

INTRODUCTION

Exposure to light can result in changes in sensory and nutritional qualities

of foods. Photosensitized oxidation in the presence of riboflavin is believed to be

mainly responsible for the quality deterioration of milk and other dairy products

due to fluorescent light exposure on dairy shelves in retail stores [1-5].

Depending on the lighting conditions, eg. exposure duration, intensity and

wavelength, and barrier properties of packaging materials, the occurrence of

light-oxidized off-flavors in milk can take place in as soon as 15 minutes [6] to 12

hours [7, 8]. Turnover times of fluid milk average somewhere between 8 hours [6,

9] and 2-3 days [10]. Light-induced discoloration and oxidized off-flavors may

occur at the surface of cheeses, since cheeses are often wrapped in transparent

packaging and displayed in small pieces with large surface areas exposed to

light.

Potential migrants in milk packaging materials, such as oxidative

hydrocarbons from processed HDPE, PET or PE-coated paperboard [11-13],

may cause a defect referred to “packaging off-flavors” in milk. On the other hand,

packaging light and oxygen barriers reduce light oxidation by minimizing the

impact of fluorescent light in retail display and headspace oxygen content inside

the package, respectively.

An electronic nose is an instrument which comprises an array of electronic

chemical sensors with partial specificity and an appropriate pattern recognition



system, capable of recognizing simple or complex odors [14]. An electronic nose

analyzes all substances in gaseous samples as a whole, as an analogy to the

human olfactory system. It is more of a complementary approach than a

substitute for reference methods that use sensory panels [15]. An electronic nose

can be used as an automated discriminatory analysis tool for odors and flavors in

foods, and has the potential for applications such as quality control, process

control, and off-flavor detection [16].

This study was done to evaluate the light-oxidized and/or packaging off-

flavors in milk and Cheddar cheese using sensory evaluation, solid-phase

microextraction coupled with gas chromatography (SPME-GC), and an electronic

nose (FOX 3000, AlphaMOS) equipped with 12 metal oxide semiconductor (MOS)

sensors. In addition to the flavor changes, the light-induced discoloration of

Cheddar cheese was quantified using sensory evaluation and instrumental color

measurement.

Significance

Electronic noses, which can be automated and require less extensive

operating and preparatory measures, have the potential to be a complementary

approach for sensory evaluation. This study used a commercial electronic nose

system as the discriminatory analysis tool for light oxidized off-flavors in milk and

Cheddar cheese, and to determine a correlation between the sensory quality and

the electronic nose responses. The effect of current packaging materials as both

light barriers and sources of potential migrants was also investigated.



Hypothesis

The electronic nose equipped with 12 MOS sensors can perform

effectively in discriminating and predicting the sensory quality of the light-oxidized

and packaging off-flavors in milk, and light-oxidized off-flavors in Cheddar cheese.

Objectives

1. To discriminate light-oxidized off-flavors in milk using sensory evaluation

and instrumental headspace analyses, including the electronic nose and

SPME-GC.

2. To evaluate the quality of milk packaged in different packaging materials

of differing light barrier properties and having different potential packaging

off-flavor problems.

3. To discriminate light-induced discoloration and off-flavors in Cheddar

cheese using sensory evaluation and instrumental analySes, including

color measurements, electronic nose and SPME-GC.

4. To correlate the results of sensory evaluation and instrumental analyses

using multivariate statistical techniques.



CHAPTER 2

REVIEW OF LITERATURE

2.1. light-induced oxidation of milk

Light exposure can have a deteriorative effect on both sensory and

nutritional qualities of foods, including milk and other dairy products. Two types of

light-induced off-flavors in milk have been identified: a “burnt-feather” off-flavor

from protein oxidation usually appears early during light exposure but dissipates

in a few days, and a “cardboardy" off-flavor from lipid oxidation develops with

more prolonged light exposure and does not dissipate. Other nutrients, such as

vitamins, may also decompose in oxidative reactions.

Light absorption can directly initiate the oxidation; however, milk proteins

and lipids absorb very limited amounts of ultraviolet (UV) light and do not absorb

visible light [3]. Lipids such as unsaturated fatty acids are susceptible to

photolytic free radical autooxidation, which involves direct formation of free

radicals when exposed to high energy light such as UV. Most retail stores use

fluorescent light which is designed to generate only a very limited photon flux of

such detrimental wavelengths [5]. Similarly, aromatic amino acids, i.e. tryptophan,

tyrosine and phenylalanine, can absorb UV light below 310 nm, which can result

in direct photochemical changes, but it is not the main contributor responsible for

oxidative byproducts.

A photosensitizer, such as riboflavin, will absorb light energy and cause

photosensitized oxidation and result in the generation of oxidative active



compounds, which can cause further oxidative decomposition of milk proteins,

lipids and vitamins.

2.1 .1 . Photosensitized oxidation

Photosensitized oxidation is a light—induced oxidation which occurs in the

presence of photosensitizers such as chlorophyll and riboflavin, and generates

free radicals or singlet oxygen via Type I or Type II mechanisms, respectively

(Figure 1). The conjugated double bond structure of riboflavin readily absorbs

visible light energy (hv) [17] and forms an excited singlet state, 1Rib*, which by

intersystem crossing forms a triplet state, 3Rib*. Triplet riboflavin subsequently

generates substrate radicals and/or superoxide anions (Type I), or yields singlet

oxygen (Type II). Competition between substrate (Sub), i.e. proteins or lipids, and

oxygen (302) for triplet riboflavin (3Rib*) determines the predominant reaction

path. The type I reaction is predominant under conditions of high reactivity and/or

concentration of substrates, low oxygen concentration in the system, or Short

singlet oxygen lifetime. Milk has low oxygen solubility and, therefore, the type I

path may be predominant, compared to a lipid-based system such as olive oil

containing chlorophyll as the photosensitizer. However, studies using Electron

Spin Resonance Spectroscopy (ESR) have found evidence of singlet oxygen

formation in light-oxidized skim milk [18].

The activation energy of photochemical reactions is often much lower than

that of non-photochemical reactions. The activation energy of oxygen in the

singlet state (‘02) and the triplet state (302) is only 92 and 104 kJ/mol higher than



the ground state, respectively. The energy associated with any region in the

visible spectrum is sufficient (eg. the energy of a photon at 800 nm is 149 kJ/mol)

to produce singlet oxygen in the presence of a photosensitizer such as riboflavin

[4]. The temperature dependency of photosensitized oxidation is usually

negligible in the temperature range of food storage due to its low activation

energy, although temperature does affect the decomposition processes initiated

by singlet oxygen [5].
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Figure 1 Mechanisms of photosensitized oxidation catalyzed by riboflavin, the

photosensitizer. Riboflavin (Rib) absorbs a photon (hv) and forms an excited

singlet state, 1Rib"‘, which by intersystem crossing forms a triplet state, 3Rib*.

Triplet riboflavin subsequently generates substrate radicals and/or superoxide

anions (Type I), or yields Singlet oxygen (Type II) (modified from [3], Figure 3).



2.1.1.1. Degradation of milk proteins

Reaction of singlet oxygen with sulfur-containing amino acids, eg.

methionine, results in the “sunlight flavor” or “activated flavor", which is described

as “burnt feather”. The oxidative degradation of methionine results in the

formation of low molecular weight sulfur-containing volatiles such as methional or

dimethyldisulfide [19, 20] (Figure 2). Methional is relatively unstable and breaks

down into more stable components, including mercaptans, sulfides, and

disulfides [1, 21]. In skim milk an increased level of dimethyldisulfide was found

with an increased level of sensory off-flavor scores [20]. The formation of

dimethyldisulfide requires only Cleavage of the methionine side chain and thus it

is more likely to occur than methional formation, which depends on cleavage of

the protein backbone [3, 5].

Several studies have shown the effects of light exposure on amino acids

and milk proteins, such as photoaggregation of whey proteins [22] and loss of

amino acids, eg. methionine, cysteine and tryptophan [23-25]. However, other

studies designed to evaluate the level of amino acid destruction in commercially

packaged milk under fluorescent light exposure have found insignificant changes

in the aminoacid content. Dimick (1973) [7] exposed homogenized milk in half-

gallon containers (fiberboard, blow-molded plastic, and glass) to 100 ft—c (1076 Ix)

of fluorescent light for 144 hours, which resulted in no significant difference in the

amino acid concentration when compared to the unexposed control. Hedrick and

Glass (1975) [26] drew a similar conclusion by comparing the amino acid content



of 17 amino acid in milk packaged in paperboard and plastic gallon containers

subjected to 150 ft-c (1614 IX) of fluorescent light.
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Figure 2 Mechanism of methionine reacting with singlet oxygen (‘02): (a) The

formation of methional depends on cleavage of the protein backbone; (b)

dimethyldisulfide is formed by Cleavage of the methionine side chain (modified

from [3], Figure 1).



2.1.1.2. Oxidation of milk lipids

The “cardboardy” or “metallic” off-flavor is caused by oxidation of

unsaturated fatty acids in milk lipids, particularly phospholipids [27], and is

initiated by free radicals or singlet oxygen (Figure 3).
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Figure 3 Lipid oxidation initiated by free radicals (02" or R' ) or singlet oxygen

(02), whichIs generatedIn the presence of riboflavin. Autooxidation involving

cleavages of lipid hydroperoxides (LOOH) depends on the presence of catalytic

metalIons (M2) or enzymes such as peroxidases. The sign“=”indicates

reactions affected by primary antioxidants (from [3], Figure 2).



Secondary lipid oxidation products are formed when lipid hydroperoxides

decompose to alkanes, alkenes, aldehydes, alcohols, ketones, esters, and acids.

Due to their low sensory thresholds, the unsaturated ,aldehydes and ketones are

usually considered the primary sources of oxidized off-flavors. Odor-active

compounds such as hexanal and pentanal have been found to increase in milk

on exposure to fluorescent light, where hexanal is the predominant lipid oxidation

byproduct in light-oxidized milk [28].

2.1 .1 .3. Vitamin destruction

Riboflavin (0.41 mg riboflavin in 8 oz. of milk, [29]) is consumed rapidly

when exposed to light, and the two main photosensitized oxidative pathways are

cyclic (Figure 1). The degradation is probably due to attack by some of the

activated oxygen species generated by deactivation of the excited states of

riboflavin, including singlet oxygen, superoxide, peroxides, and-the hydroxyl

radical [3]. Photolysis of riboflavin in aqueous solutions is proportional to time of

light exposure and light intensity [30]. The decrease in riboflavin content has

been used to indicate the extent of riboflavin-sensitized light oxidation in milk [31-

33] and other dairy products [34-36], and the effectiveness of the package used

to protect the milk [37, 38] or other dairy products [39, 40] from light oxidation.

Besides riboflavin (vitamin 32), other nutrients such as vitamin A and its

precursor carotenoids, other B vitamins, vitamin C (ascorbic acid), and vitamin D

are also light sensitive. The oxidative reactions affecting these nutrients can be

affected by the presence of riboflavin [1, 3], especially by the singlet oxygen

generated in photosensitized reactions (Figure 1).
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Naturally occurring vitamin A and its precursors (retinol and retinyl esters)

in milk (about 10-60 ugl100mL) were found to be relatively more stable to light

exposure than riboflavin [1]. However, a significant reduction in vitamin A (retinyl

palmitate) was caused by light exposure in supplemented low fat and nonfat

milks containing vitamin A fortification levels between 2000 and 3000 IU per

quart (Federal Regulations 21 CFR 131.135 and 21 CFR 131.143 for low fat and

nonfat milk, respectively) [41]. It was reported that 50% loss of total vitamin A

occurred in milk packed in HDPE containers exposed to 200 ft-c (2152 Ix)

fluorescent light for 3 hours [42]. A more recent study showed that even a brief,

moderate light exposure (2000 lx for 2 hours) can significantly reduce the vitamin

A content in reduced fat (2%) and skim milk in HDPE gallon containers [41]. The

photostability of fortified vitamin A is affected by the carrier used and the

chemical form of the vitamin [43, 44].

The vitamin C (ascorbic acid) content is about 2 to 5 mgi100g in fresh milk

[45]. Its degradation was found to be proportional to the amount of light

transmitted into the container in the presence of riboflavin. The stability of

ascorbic acid is maintained in the absence of riboflavin [46, 47]. Ascorbic acid,

acting as a singlet oxygen quencher, has been reported to effectively reduce the

level of dimethyl disulfide and other oxidative volatiles generated in

photosensitized oxidation in the presence of riboflavin [20, 48-50].

Light exposure is essential to change provitamin D into vitamin D and its

related compounds [51]. However, vitamin D can be also be destroyed by

riboflavin-photosensitized oxidation. Light accelerates the loss of vitamin D in
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skim milk containing riboflavin, but that decomposition rate was not affected by

light in a model system in the absence of riboflavin [52]. Similar results were

observed in two other studies [51, 53], though oxidation of vitamin D was not

observed in the systems without riboflavin under light exposure, nor in those with

riboflavin but stored in the dark.

2.1.2. Wavelength dependent impact of light

Light absorption and light stability (i.e. quantum yield) of photosensitizers

and other light sensitive components are wavelength dependent. Light sources

with distinct spectral distributions can have very different impacts. Yellow colored

lighting, which filters out the light below 500 nm, is suggested for dairy retail

displays [54, 55] to reduce the photosensitized oxidation in the presence of

riboflavin.

2.1 .2.1. Light absorption

Only absorbed light can initiate Chemical reactions [3]. Riboflavin as the

photosensitizer in milk and dairy products has three absorption bands as shown

in Figure 4. The third band in the visible region (blue to green, broad maximum at

430-460 nm) is the main band responsible for the photosensitized oxidation in

milk and dairy products [4].

12
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Figure 4 Absorption spectrum of riboflavin at different wavelength (from [4],

Figure 3).

Other photo-sensitive components in milk such as vitamin A (retinyl

palmitate) and vitamin C (ascorbic acid) have strong absorption bands at

maximums of 325 and 270 nm, respectively (Figure 5). Protection from light at

these wavelengths (UV range < 380 nm) may protect vitamin A and C from

primary photooxidation; however, photosensitized oxidation in the presence of

riboflavin can still cause losses of vitamin A and C in most of the visible light

region [4], especially the light below 500 nm [54, 55].
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Figure 5 Absorption spectra of (a) vitamin A and (b) vitamin C (modified from

[37], Figure 3).
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2.1.2.2. Quantum yield

The quantum yield can be explained as the light stability (or sensitivity) of

molecules at varying wavelengths. This parameter has been suggested as a

replacement of rate constants for light-induced changes in foods [3]. It is defined

as the number of molecules converted by one photon, as shown below:

(b = molecules reacted = AC,-

photons absorbed by reacting compound Q,-

 

where AC,- is the change in concentration of the specific compound during a

period of time resulting from the number of photons absorbed by the compound,

0;. during the sample period. Quantum yield ranges between zero and one, with

the exception of chain reactions where 49 may be larger than one. Combining the

absorption Spectra with light intensities at different wavelengths allows the ‘

calculation of the number of photons absorbed [3].

The apparent quantum yield is based on total light absorption and may be

used for comparison with photo-induced processes in comparable systems, as

shown below:

(p = moles reacted = ACINA’"
app photons absorbed by food matrices Qtotal

 

where AC; is the change in concentration of the reacting compound determined

by a specific Chemical analysis such as gas chromatography, NA is Avogadro’s

number, m is the mass of the illuminated sample of food matrix, and Qtotal is the

total number of photons absorbed by the system. Assuming no light transmission

and minimum reflection from the food matrix, the apparent quantum yields were
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calculated for the secondary oxidation volatiles generated in light-induced

oxidation of Havarti cheese [36].

2.1.2.3. Light sources

Different light sources, eg. sunlight or fluorescent light, can have very

different emitting spectra (Figure 6), and therefore can have very different

impacts on light sensitive food ingredients. The light sources with high light

emission at the critical wavelength ranges (considering both the light absorption

and quantum yields) are expected to cause more product damage. Since light

oxidized off-flavors in milk and dairy products are mainly generated by riboflavin

photosensitized oxidation, light sources with lower emission below 500 nm are

believed to be less harmful, since the absorption band of riboflavin at 430-460

nm is believed to be the main band responsible for photosensitized oxidation [4].

For instance, warm white fluorescent lights generally have less impact than cool

white lights.

Alternatively, filtering out the light in the critical wavelength ranges can

reduce the impact of light. Use of pigmented packaging materials or putting a

colored filter directly on the light source can reduce the light transmission in

specified wavelength ranges. To protect milk and other dairy products from

photosensitized oxidation, it is critical to filter out the visible light below 500 nm,

particularly at the harmful blue-violet visible range of 400-500 nm, by colored or

opaque light barriers (Figure 7, [56]). IDF (lntemational Dairy Federation)
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recommends that the maximum permissible light transmission through packaging

material should be 8% at 500 nm and 2% at 400 nm [57, 58].
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Figure 6 Emission spectra of (a) sunlight. (b) Philips 83/36 W white, (c) Philips

16/40 W yellow, (d) Philips 33/40 W white (modified from [2], Figure 3).

17

 

 



A light source or packaging material with reduced light transmission below

500 nm has a yellow appearance, since relatively more yellow-orange-red light

(i.e. above 500 nm) is perceived by human eyes (Figure 7). Hansen et al. (1975)

[55] studied the effects of colored lamps and lamp filters on milk packaged in

HDPE containers, and found that yellow lamps or yellow/green filters protected

milk from light-induced oxidation, where the off-flavor development was delayed

from 5-7 hours (cool-white lamp) to 30-40 hours (yellow lamp).
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Figure 7 Energy output for a typical supermarket white lamp (modified from [56],

Figure 1).



2.1.3 Occurrences of light-oxidized off-flavors in milk

Light-oxidized off-flavors in milk have been widely studied [2-4, 27, 59].

Since the 1960’s, many studies have been conducted using various light

exposure conditions, eg. light sources with different spectral emissions, light

intensities (distance-dependent), exposure times, and storage temperatures. Milk

composition (e.g. fat or prooxidant/antioxidant contents) and packaging

size/material also significantly affect the development of light-induced off-flavors.

In addition, sensory scores and measurement of headspace volatiles are often

used to define the occurrence of light-oxidized off-flavors. Table 1 lists the

internal and external factors affecting the photosensitivity of milk and dairy

products to visible light.

Table 1 lntemal and external factors affecting the photosensitivity of milk and

dairy products to visible light (from [4], Table 2).

 

Factors Photopreventive action Photosensitizing action

 

Intrinsic factors (generally properties of the product itself)

Structure, texture compact, scattering translucent

Own coloration dark colorless, bright

Content of reducing substancesl (pro)oxidants

antioxidants

- vitamins C (ascorbic acid) 32 (riboflavin)

- unsaturated fatty acids - peroxide formation

- fat photodiffusion degree of unsaturation

- heavy metals - catalysis (e.g. CU”)

- dissolved Oz reducing microflora synergy with light

- free amino acids - formation of methional

(proteolysis)
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Table 1 (continued)

 

 

Factors Photopreventive action Photosensitizing action

Heat treatments: harsh gentle

pasteurization, UHT formation of -SH formation of -S-S-

treatment, etc. (= reducing) (= oxidants)

Mechanical treatment:

homogenization ? ?

Extrinsic factors (to be considered)

Source of light

spectrum UV (A < 350 nm)

source: day light

source: artificial light

light (= intensity)

duration of the exposure

Geometry

distance from the source

presentation, disposition

of products

possible auxiliary means

Packaging

light transmission of

packaging

- with coloring

- with pigmentation

material thickness

oxygen permeability

Storage

effect of temperature on:

- 02 solubility

- activation energy

shelf life

“cut-off” (material)

“white warm”

weak

shon

great

closely packed

framed crate, baskets

weak/zero

brown-red

turbid/light scattering

thick

weak/zero

room temperature

low

shod

high energy available

“white cold”

strong

long

shon

dispersed

high

blue-green

translucent

(ultra)thin

high

low

room temperature

long
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According to the Plastic Bottle Institute, approximately one half of the fluid

milk products in plastic containers remain in the dairy case (and therefore maybe

exposed to light) for at least 8 hours [6, 9]. A New Zealand study revealed that

the fluid milk turnover time may be as much as 2-3 days, resulting in severe light

exposure [10]. Light intensity depends on the light source as well as distance

from the light source, with ranges reported from 80 to 12000 Ix in dairy retail

display cabinets [5]. Measurements took place in dairy cases bearing products in

5 supermarkets and 3 convenience stores in the area around Ithaca, New York,

with light intensities ranging from 750 to 6460 Ix [6]. Different packaging materials

have different light barrier properties, and different container sizes have different

surface—to-volume ratios, which results in various light exposure conditions for

the fluid milk.

Dunkley et al. (1963) [54] reported that the minimum light exposure

conditions to develop a detectable “light flavor” for milk in clear quart bottles (946

ml), were one half inch from a cool white lamp, for 20 minutes. Satter and

deMan (1973) [60] exposed homogenized whole milk in returnable plastic 3 quart

jugs (2.84 L) to 100 ft-C (1076 IX) and 200 ft-c (2152 Ix) of 40W cool-white

fluorescent light, which resulted in significant off-flavors in 12 and 3 hours,

respectively, as determined by 12-18 trained panelists using a duo-trio test.

Dimick (1973) [7] and Coleman et al. (1976) [8] tested homogenized milk in half-

gallon (1.89 L) plastic containers and reported that the milk had a sharply

decreased flavor score after 12 hours of light exposure (100 ft-c, i.e. 1076 Ix) at a

refrigerated temperature. Hansen et al. (1975) [55] reported light oxidized off-
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flavors in milk stored in HDPE containers and exposed to 200 ft-c (2152 Ix) of

cool-white fluorescent light at 33°C. The light oxidized off-flavor was first

perceived by a trained panel at 2-4 hours, and a more intense off-flavor was

developed at 5—7 hours, which was expected to be detectable by average

consumers.

Chapman et al. (2002) [6] exposed 2% milk in HDPE gallon (3.785 L)

containers to 2000 Ix of fluorescent light at 6°C, which resulted in a significantly

detectable quality change for a 10-member trained panel in 30 minutes, and for a

94-member consumer panel in 2 hours. The minimum light exposure times in

order for the quality change to be noticed by 50% of the panelists, determined by

interpolation, were 15 minutes and 54 minutes for trained and consumer panels,

respectively. The tests were performed using a semi-ascending paired difference

method [61] with an 11-point intensity line scale of difference from control. In

another study [62], it was shown that half of the teen and adult consumers could

detect an off-flavor in less than 2 hours of light exposure. The light-oxidized milk

was objectionable to teen consumers.
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2.2. Effects of milk packaging

Storage of milk in different packaging materials may affect milk quality by

impacting the development of packaging and light-oxidized off-flavors. Packaging

off-flavors from high density polyethylene (HDPE), polyethylene terephthalate

(PET), and PE-coated paper cartons has been reported as “plastic”, “bitter”,

“oxidative”, or “lacks freshness”. On the other hand, packaging materials with

good light barrier properties minimize the impact of fluorescent lighting in retail

display, and reduce light-oxidized off-flavors.

2.2.1. Off-flavors from milk packaging materials

Potential migrants in milk packaging materials may cause a defect

referred to as “packaging off-flavors” in beverages such as milk. Migrants may

include oxidative hydrocarbons from processed HDPE, PET and plastic coated

paper cartons, or solvents used during lamination, coating or printing processes.

Shelf-life needed and storage temperatures of various milk products are also

critical factors. For instance, fresh milk is expected to be stored at refrigerated

temperature for less than two weeks, while UHT aseptic milk may have a shelf-

Iife greater than six months at room temperature.

Studies using gas chromatography (GC) have been widely conducted to

identify the problematic compounds. An “indicator“ compound, eg. hexanal, is

used to “measure” the extent of oxidative degradation and is often correlated to

the off-flavor intensity. In order to precisely reveal the actual consumer impact of

the packaging off-flavor, sensory evaluation is essential. It has been suggested
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that sensory evaluation is the most reliable way to determine off-flavors

originating from packaging [63].

2.2.1 .1 . Polyethylene (PE)

Polyethylene, especially high-density polyethylene (HDPE), dominates the

milk packaging business because it is low-cost, durable and lightweight [64]. Off-

flavors in milk packaged in polyethylene containers have been described as

“plastic”, “off-flavor", “bitter", and “oxidative”. It was found that the off-flavor

compounds were already present in the granular PE [11, 65, 66], and the

converting and extrusion processes may further increase the amount of off-flavor

volatiles [67]. Oxidative hydrocarbons generated at high temperature and/or

substantial shear stress during processing, may be present at the surface of

polyethylene pouches or bottles [11, 65]. Those low molecular weight byproducts

from oxidation or thermal degradation may migrate to food syStems, such as

water or milk, and result in off-flavors. Addition of antioxidants, e.g. lrganox 1010,

butylated hydroxytoluene (BHT) and d-tocopherol, are often used to reduce the

oxidation and thermal degradation of polyethylene [68-70]. Other potential

migrants (but which may not be significant) [67] from PE containers include

antioxidants, plasticizers, solvents, and other additives used in making or

converting polyethylene.

Although alkanes and alkenes make up a significant portion of the thermal

degradation fragments of polyethylene [71], aldehydes and ketones are of

particular concern, due to their low odor thresholds and high polarity, which make
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them more likely to desorb from a non-polar polymer like polyethylene [71, 72].

Using a gas chromatography/olfactometry technique (GCO), Bravo (1992) [11]

found that 14 odor-active compounds were present, but only eight of them were

identified, i.e. hexanal, l-hepten-3-one, 1-octen-3-one, octanal, 1-nonen-3-one,

nonanal, trans-2-nonenal, and diacetyl. A “wax-like” descriptor was assigned to

the overall odor, while the individual components were fruity, herbaceous, rancid,

metallic, waxy, pungent, or orangy. The study confirmed that o-unsaturated

aldehydes and ketones are responsible for much of the off-odor associated with

thermally oxidized polyethylene.

Polyethylene used for milk packaging is formed as mainly blow-molded

high-density polyethylene (HDPE) jugs, low-density polyethylene (LDPE)

pouches, and the inner LDPE seal layer of paper cartons. Ho et al. (1995) [71]

evaluated the packaging off-flavors in drinking water contained in blow molded

HDPE bottles containing various antioxidants (vitamin E, lrganox 1010, and BHT),

using sensory evaluation and purge-and-trap GC-MS. Forty-seven volatiles,

including n-alkanes, 1-alkenes, aldehydes, ketones, phenolics, olefins, and

paraffins from C6 to C18, were identified. The acceptability of the water was

correlated inversely with intensity of odor and taste sensory scores, as well as

the concentrations of aldehydes and ketones present. Maneesin (2001) [73]

reported that storing water in HDPE containers (processed at 204°C with addition

of lrganox 1010) for three months imparted significant off-flavors, using nonanal

content in water as the off-flavor indicator, along with different-from—control

sensory tests and headspace analysis using an electronic nose.
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Compared to HDPE, LDPE is in general processed under more vigorous

conditions, i.e. higher processing pressures and temperatures [73], and therefore

the off-flavors from LDPE pouches and coatings may be more of a concern [72,

74]. Srivastava and Rawat (1978) [75] reported that

paper/aluminum/polyethylene pouches tolerated heat (75-90°C in boiling water)

but imparted “plastic flavor" to milk, in terms of their consumer acceptability.

Many studies have been conducted to investigate the use of polyethylene

as a milk packaging material; however, due to its transparency, quite often light-

induced off-flavors are more pronounced than packaging off-flavors.

2.2.1.2. Polyethylene terephthalate (PET)

“Portability improves profitability” [76] and reflects the growing market for

single-serve milk packages. Polyethylene terephthalate, an attractive packaging

material with high clarity, low oxygen transmission rate, considerable mechanical

strength, light weight and versatility [64], is becoming an increasingly popular

packaging material for milk. However, an odorous degradation product from PET

processing (acetaldehyde) is a concern in PET packaged water and milk.

Van Aardt (2001) investigated the origination and sensory impact of

acetaldehyde in milk [12, 77]. Since PET is a clear, transparent material, and

acetaldehyde is a contributor to light-oxidized off-flavors, acetaldehyde in milk

may be present due to both light-induced oxidation and migration from PET.

Sensory detection group thresholds of acetaldehyde in milk containing 3.25%,

2%, and 0.5% fat were determined to be 3939, 4020 and 4040 ppb, respectively,
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with no statistically significant difference among differing fat levels. Headspace

analysis (SPME-GC) showed that fluorescent light exposure (1 100-1300 lx, 4°C,

18 days) resulted in an increase of acetaldehyde in milk. However, a trained

panel using a nine-point sensory scale was not able to detect acetaldehyde in

either light-exposed or light-protected samples. It was found that acetaldehyde

levels in milk stored in various packaging materials (glass, HDPE, Clear PET,

Clear PET with UV absorber and amber PET) were all below the human flavor

threshold.

2.2.1.3. Paper cartons

Paper cartons, such as gabletops or Tetra-Pak (Brick-Paks), are widely

used for pasteurized milk including ultra-high temperature sterilized (UHT) milk.

One or more polymer layers are combined with paperboard, to provide good

barrier properties, heat resistance and printability [64]. An aluminum layer may

also be added to increase the light and oxygen barrier properties of paper

cartons. Mehta and Bassette (1978, 1980) [78, 79] reported that UHT milk in

aluminum foil-lined cartons, as judged by a 5-member trained panel and a 24-

member untrained consumer panel, was not as good as freshly pasteurized milk,

but superior to milk in plain polyethylene-lined cartons. A positive correlation was

found between the off-flavor intensity and the n-pentanal concentration.

Off-flavors recognized as “lacks freshness” [80] or “stale” [78] in paper

carton packaged milk were found to significantly impair the milk acceptance [13,
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81]. Often the off-flavors are the result of oxidative hydrocarbons migrating from

the LDPE inner coatings [67].

Leong et al. (1992) [13] investigated the packaging off-flavor in water and

in homogenized milk with fat contents of 3.25%, 2% or 0.05%, packaged in PE-

coated paperboard cartons for one, three or six days at 22°C. Paired

comparison tests were performed by a 10-member screened panel. It was found

that packaging off-flavor in water and milk was recognized within one day of

storage, with no significant increase in the off-flavor intensity in the following

three days of storage. Smaller size cartons had a more intense packaging off-

flavor, since the surface area to volume ratio is larger for smaller containers.

Heat sealing did not contribute significantly to the packaging off-flavor.

Gandhi (1996) [81] had elementary school children (2"d through 5th grades)

taste reduced fat (2%) milk in half-pint (237 ml) PE-coated paperboard cartons

(stored for three days at 22°C), and evaluated the results using a two-Sided

paired preference test and a nine point hedonic scale. The results indicated that

the elementary sch00l children had a Significantly higher preference and

acceptability rating for the control, milk stored in glass containers, than for milk in

cartons. The same samples were evaluated by an 11-member trained panel

using a paired comparison test, and the flavor difference between milk in glass

and cartons was also recognized.
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2.2.2. Light barrier properties of packaging materials

To protect milk and other dairy products from photosensitized oxidation, it

is critical to filter out the visible light below 500 nm, particularly in the harmful

blue-violet visible range of 400-500 nm, using colored or opaque light barriers

.[56]. Figure 8a shows the light transmission at various wavelengths for different

milk packaging materials. Glass allows the highest light transmission through the

UV and visible ranges of the spectrum. Compared to the natural (unpigmented)

HDPE, the addition of UV absorber eliminates the light transmission below

400 nm but not between 400-500 nm. Yellow pigments significantly reduce the

light transmission below 500 nm, and the bright yellow pigment is more effeCtive

than the pale yellow pigment. White pigment (titanium oxide, TiOz) reduces the

light transmission but will still allow partial light transmission at 400-500 nm.

Paper cartons (Figure 8b) have the least light transmission and offer the best

light protection to milk. The light transmission through PE cartOns is below the

recommendations from IDF (lntemational Dairy Federation) for pasteurized milk

[58]. IDF recommends that the maximum permissible light transmission through

packaging material should be 8% at 500 nm and 2% at 400 nm [57].

29



 

 

 

 

 
 
 

  
 

  

   
 

90 (a) Glass (200 mils)

Natural HDPE

80

C

.3 7° Natural HDPE

“(2 60 with 0.1% UVAbsorber

E

g 50

p 40 2% Pale Yellow HDPE

32

30

20 2% TiOz HDPE

10 % Bright Yellow HDPE

Paper Carton ]

0

300 400 500 600 700 800

Wavelength (nm)

12 (b) — PE coated paper carton

------- PElbarrier paper carton

:10 —- Aluminum-foil carton .

.§ 8 ..........................................................

E e

E

I'- 4

ES

2 ........................... , ,,,,,,

o , 5*. .r T CW - .. e . . s ..-.--zi'ri“.'f.":': r . - . - w—s- s.

300 350 400 450 500 550 600

Wavelength (nm)

Figure 8 Light transmission through various packaging materials. (a) Glass,
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Since the 1960’s, the effect of packaging material on light induced quality

deterioration of milk has been widely studied [7, 8, 32, 33, 55, 60, 77, 82-86].

Satter and deMan (1973) [60] reported that opaque pouches protected milk from

light induced quality changes (24 hours of cool-white fluorescent light, 1076 lx or

2152 Ix); paper cartons protected milk up to 12 hours but not longer; HDPE jugs

offered less light protection (3 hours at 2152 IX and 12 hours at 1076 IX), and

Clear pouches provided the least light protection (3 hours at 2152 IX and 6 hours

at 1076 Ix). Dimick (1973) [7] reported that paperboard containers protected milk

from light-oxidized flavor changes up to 48 hours, whereas milk in plastic and

glass containers developed the off-flavor following only 12 hours of exposure

(1076 lx). Coleman et al. (1976) [8] evaluated milk stored in HDPE jugs and

unpigmented and colored (yellow, red, blue and black) paper cartons and

exposed to cool-white fluorescent (1076 lx). It was found that all paper cartons

offered greater protection to light induced flavor changes thandid HDPE jugs,

and there were no significantly different protection effects for the paper cartons

printed in different colors. Pouches of milk packaged in different PE overwraps of

varying light transmittances (printed white/yellow, aluminum ink, or coextruded

black/white pigments) [83] and aluminum foil shields on the bottom and the top of

the HDPE jugs [33] were proposed to provide additional light protection. Van .

Aardt et al. (2001) [77] reported better milk quality retention in amber PET and

UV compounded PET than in clear PET bottles.
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2.2.3. Other packaging factors affecting milk quality

2.2.3.1. Size and shape

Size and shape directly affect the diffusion rates of the migrants and have

an effect on the packaging off-flavors in milk. For example, Leong et al. (1992)

[13] reported a significantly stronger packaging off-flavor in milk packaged in half-

pint (237 ml) paper cartons than milk in quart (946 ml) and half-gallon (1893 ml)

containers, after 6 days of storage at 22°C. The ratio of surface area to volume

can be used as a measurement of the size/shape factor. The higher the ratio, the

relatively larger surface area is available for migration per unit volume, and

therefore the packaging off-flavor is likely to be more significant.

Light penetration also depends on the ratio of surface area to volume, or

more precisely (but also more difficult to define), the ratio of surface area that is

exposed to light, eg. the top surface of a package, to the package volume.

Dunkley et al. (1963) [54] mentioned in a comparison of glasspint (473 ml), quart

(946 ml) and half-gallon (1893 ml) bottles, the intensity of light oxidized off-flavor

produced by one hour exposure was inversely related to the container size.

Packaging size also affects the microbial stability of milk. Erickson (1997)

[87] compared milk in 1 liter pouches, 2 liter PE-coated paper cartons, and one

gallon (3.785 L) HDPE jugs. Slightly higher microbial populations (total and

psychrotrophic counts) were found in milk packaged in the larger containers, and

in milk whose package had been opened and dispensed. It was suggested that a

unit gallon of milk may remain fresher when packaged in multi-unit packages

than if packaged in one single container.

32



2.2.3.2. Oxygen permeability

Good oxygen barrier properties are more critical for long shelf life milk

products such as UHT milk. Rysstad et al. (1998) [58] evaluated the sensory and

chemical shelf life of UHT milk stored in aluminum-foil, non-foil barrier (X-board),

and PE cartons, with oxygen transmission rates of ~0, 10-20 and >1000

ml

m2 .24 h-atm

 
, respectively. The light transmission properties of these three

paperboards are shown in Figure 8b. At 6°C with no light exposure, milk in PE

cartons had significant off-flavor after 24 weeks, while in the other two materials

(which were better oxygen barriers) there was no off-flavor detected in 26 weeks.

When exposed to light, off-flavors developed in PE cartons after 2 weeks, in X-

board after 8 weeks, and were not detected in milk stored in aluminum-foil

cartons. .

For fresh pasteurized milk, the oxygen in the packaging headspace, in

addition to the oxygen dissolved in the milk, is usually sufficient to induce light

oxidation, which usually can be initiated in a relative short period of time (from 15

minutes to 12 hours).
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2.3. Light oxidation of cheese

Light-induced oxidation may take place if cheese is exposed to sunlight or

fluorescent light, and can lead to quality changes in color and flavor, as well as

loss of nutrients or formation of potentially toxic compounds [3]. Cheeses are

susceptible to light-induced quality changes, since they are often wrapped in

clear transparent packaging materials, in small pieces under fluorescent light in

the dairy cases for longer times than milk [34]. Oxidative quality changes are

mostly located at the cheese surface [3]. Discoloration and off-flavors caused by

light oxidation may lower product quality and marketability [5].

2.3.1. Discoloration of Cheese

Color is an important attribute affecting the appearance acceptability of

Cheddar cheese. To reinforce natural color and provide appearance to match

market preference, annatto extract and B-carotene are the two colorants often

used [88]. Annatto is a water-based colorant and more readily dissolves in milk

than B-carotene. Discoloration of Cheddar cheese is often associated with

annatto, which is susceptible to oxidation and sensitive to processing parameters

such as pH and temperature [89].

Hong et al. (1995) [90] described the factors affecting light-induced

discoloration of annatto-colored Cheese. Under light exposure, the surface of

Cheddar cheese may experience a slow decrease in redness along with a rapid

decrease in yellowness, resulting in a decrease of hue angles (0° for red and 90°

for yellow), where the hue angle is defined as tan"(bla) for a (redness) > 0 and b



(yellowness) > 0. Exposure to cool white fluorescent light (vs. warm white), high

light intensity, longer light exposure, higher storage temperature (i.e. 8°C vs. 2°C)

lower pH (i.e. 4.8 vs. 5.4) reduces the color stabilityof annatto and results in

more severe discoloration. Hong et al. (1995) [91] conducted a study to

investigate the effects of packaging and lighting. He found that exposure of

Cheddar cheese in modified atmosphere packaging (flushed with 99% carbon

dioxide prior to sealing) to cool-white fluorescent light (3500 Ix) at 8°C for 14 days,

resulted in significant decreases in yellowness and hue angles, and the effects

were more pronounced when using a packaging film with a higher oxygen

transmission rate. Using the same lighting condition, he found that Cheddar

cheese in vacuum packaging had slightly lower yellowness values and an

increase in redness. Incorporating a UV absorber into the cheese packaging did

not improve the color stability, while enclosing it in aluminum foil provided a

significantly great protection. I

Petersen et al. (1999) [88] compared the light sensitivity of annatto and [3-

carotene, two commercial colorants, to monochromatic light at 313, 366 or 436

nm, in a model system as well as in an industrial scale production. In general,

exposure to UV light (313 or 366 nm) caused more color bleaching than

exposure to visible light (436 nm). Annatto had higher apparent quantum yields,

i.e. more sensitivity to light, than B-carotene, irrespective of wavelength. The light

sensitivity of both colorants depended significantly on the combination of pH (5.2

and 5.4) and light wavelength. When exposed to light at 316 nm, annatto was

much more unstable at low pH than B-carotene. Lowering the pH increased the

35



discoloration of Cheddar cheese during light exposure, which may be due to

acid-base equilibrium, eg. between superoxide radical (05‘) and a more

reactive hydroperoxyl radical (H05) with pKa as 4.8 ' [5].

“Pink discoloration” is observed with annatto-colored cheese, has been

known and studied since the 19305. Unlike the light-induced discoloration [90],

the pink discoloration is not limited to the surface, but can occur throughout the

cheese loaf [92]. Possible causes of this color defect include mold enzymes and

acids [93, 94], sulfhydryl compounds [95, 96], precipitation of caratenoids due to

hydrogen sulfide [97], fluorescent light exposure [90, 98], and pH [90]. A recent

study by Shumaker and Wendorff (1998) [92] reported that cooking temperatures

and types of emulsifying salts used had a significant effect on the occurrence of

pink color. High cooking temperature resulted in slight decreases in Hunter a and

b values, and overall decreases in hue angles. High sodium citrate to disodium

phosphate ratio (emulsifying salts) resulted in decreased hue angles. Low

cheese pH was expected to accelerate pink discoloration but it did not cause

significant color changes in this study.
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2.3.2. Light-induced flavor changes of cheese

Oxidation of lipids and proteins contributes to light-induced flavor changes

in Cheeses. Under fluorescent light exposure, lipids and proteins may experience

photosensitized oxidation in the presence of riboflavin, which presents in cheese

at levels of 0.30-0.60 mgl100 g [5, 99]. Free radicals and/or singlet oxygen are

involved in these oxidative reactions with low activation energies, which can

cause further decomposition of lipids and proteins.

Mortensen et al. (2004) [5] comprehensively reviewed light induced

changes in packaged Cheeses, and summarized their work on this topic [36, 100-

103] as well as the related work of other researchers [34, 35, 39, 88, 90, 91, 104-

107]. Studies related to different cheese products were summarized in terms of

various packaging characteristics, light exposure times and intensities,

parameters investigated (i.e. instrumental or sensory measurements), and major

results [5]. Factors affecting the occurrence of light-induced qUality changes,

including cheese products, process parameters, packaging materials, and light

exposure were reviewed.

Cheese compositional characteristics which affect its photosensitized

oxidation include types and amounts of fatty acids, amino acids, prooxidants, and

antioxidants. High fat cheeses are more susceptible to oxidative discoloration

since more oxidizable substrate is available. High unsaturated fatty acid content

cheeses (due to the addition of vegetable oil), are more prone to oxidation than

normal saturated fatty acid cheeses. Oxidative decomposition of proteins mainly

involves the amino acids and not the peptide backbone, and therefore the
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amount of “free” amino acids is more important than the total protein content.

Prooxidants include metals, such as copper [108] and iron [109] from processing

equipment or nutrient fortification, and sensitizers, such as riboflavin and

chlorophyll (e.g. herbs in cream cheese), can accelerate oxidative reactions.

Antioxidants found in cheese include carotenoids and tocopherols (mainly in the

lipid phase), and small amounts of ascorbic acid in the aqueous phase [110, 111].

B-carotene is the second most light absorbing constituent of cheeses (Figure 9).

It may protect riboflavin by absorbing a Significant fraction of the harmful light

energy in synergy with y-tocopherol; however, under certain conditions it may

function as a prooxidant instead of an antioxidant [112].

Low pH cheeses are more susceptible to discoloration. The physical

properties of the cheese matrix, in terms of light penetration and oxygen

absorption, directly affect the area and depth of the oxidizable region.

Homogenization of milk reduces the particle diameter and increases the number

of particles, which has the net result of increasing light reflection. Solid-sample

fluorescence spectroscopy [106] has been used to visualize the intensity and

propagation of light-induced oxidation in dairy products including Jarlsberg

cheese, and 5-6 mm of light penetration was reported.
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Figure 9 Absorption spectra of the major naturally occurring colorants of cheeses

at concentrations found in milk (4.52 mm riboflavin in phosphate-citrate buffer,

pH 6.6, and 0.37 mm B-carotene in carbon tetrachloride); from [5], Figure 2.
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Packaging materials affect light-induced oxidation because of their light

and/or oxygen barrier. Aluminum foil is an excellent barrier to light, and

metallization of plastic materials is widely used to improve the oxygen, moisture

and light barrier properties. The effect of wall thickness, pigments and titanium

oxide has been reviewed previously.

Along with oxygen transmission rate, initial gas composition and product

to headspace ratio will affect oxygen availability. Vacuum packaging reduces

light-induced oxidation by reducing the oxygen content in the package

headspace [91]. Oxidation can still take place, however, because of the oxygen

dissolved in the product. Extremely low oxygen levels (e.g. 0.01%) can be

achieved using oxygen absorbers [102, 103], which can reduce the amount of

secondary oxidative volatiles.

Cool-white fluorescent light can be as harmful to cheeses as it can be to

milk. The turnover times are expected to be considerably longer for Cheeses than

fluid milk, which may be from 8 hours [6, 9] to 2-3 days [10]. In addition, cheeses

are often wrapped in transparent packaging and displayed in small pieces with

large surface areas exposed to light. Significant quality changes in Harvarti

cheese were observed after 12 hours of light exposure, regardless of storage

temperature (3°C and 10°C), light source (yellow light and standard fluorescent

light), or light intensity (600 lx or 1200 Ix).
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2.4. Electronic nose

An electronic nose is an instrument, which comprises a headspace

sampling system, an array of gas sensors with partial specificity, i.e. differing

selectivity, and a computer to perform signal processing and data processing (i.e.

pattern recognition), to analyze gaseous samples qualitatively and/or

quantitatively, and is often used as an analog of human olfactory responses

(Figure 10). A generally accepted definition of an electronic nose from Gardner

and Bartlett (1994) [14, 113] is, “an electronic nose is an instrument which

comprises an array of electronic chemical sensors with partial specificity and an

appropriate pattern recognition system, capable of recognizing Simple or complex

odors.” It is different from conventional substance-specific chemical sensor

systems, because an electronic nose is designed to quantify and characterize all

substances present in gaseous samples as a whole, without separating and

identifying the individual compounds like a gas chromatograph. The sensor

arrays respond to the mixture of substances simultaneously and create unique

sensor response profiles. After extracting certain response features at the signal

processing step, the extracted features are collected for data processing using

multivariate analysis. Differentiation and/or recognition are then performed based

on the multivariate models, which may be then used to identify the unknown

samples. More of a complementary approach instead of a substitute for

reference methods that use sensory panels [15], an electronic nose can be an

automated discriminatory analysis tool for odors and flavors in foods, and has the
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potential for applications such as quality control, process control, and off-flavor

detection [16].

Using various combinations of metal electrodes, electrolytes, and applied

potentials, Hartman (1954) [115] assembled the very first experimental array of

amperometric electrochemical gas sensors to analyze odorous samples,

although there was no serous attempt to process the data patterns [113]. Several

studies developed sensory arrays based on temperature-sensitive resistors,

modulation of conductivity, modulation of the contact potential, etc. However, the

concept of using chemical gas array coupled with computer-based odor

classification was not established until Persaud and Dodd (1982) [116] in the UK.

and lkegami et al. (1985) [117] in Japan built their systems [113]. After nearly 20

years of development since then, many commercial electronic nose systems are

currently available on the market (Table 2). Most are desktop analytical

instruments, which operate sensors at high temperature (e.g.-Metal Oxide

Semiconductors, MOS) or because of the bulk of the sensors (e.g. Mass

Spectrometry, MS). Several handheld units based on SAW (Surface Acoustic

Wave) or CF (Conducting Polymer) mechanisms are also available, eg. the

Cyranose 320TM from Cyrano Sciences, which uses a 32-channel carbon black

polymer composite chemiresistor array.

43



Table 2 Commercially available electronic nose instruments (modified from [118],

[119] Table 4.7 and [120] Table 7.1)

 

Number of

 

Manufacturer Chemosensor Type‘ Sensors Pattern Recognltlon

Agilent Technology MS ..2 I ANN, PCA, PLS

Alpha M05 M08, CP, SAW, QCM, 6-24 ANN, DFA, PCA

MS

AppliedSensor MOSFET, MOS, QCM - —

AromaScan CP 32 PCA, ANN

Bloodhound Sensors CP 14 ANN, CA, PCA

Cyrano Sciences CP (composite) 32 PCA

EEV Ltd. Chemical Sensor CP, MOS, QCM, SAW 8-28 ANN,DFA, PCA

System

Electronic Sensor GC, SAW 1 SPR

Technology

Element MOS — -

Environics Industries IMCELL — -

HKR Sensorsysteme QCM 6 ANN, CA, DFA, PCA

Lennartz Electronic MOS, QCM 16-40 ANN, PCA, PCR

Marconi Applied CP, MOS, QCM - -

Technologies

Microsensor Systems SAW - -

Neotronics Science CP 12 -

Osmetech CP 48 -

RST Rostock MOS, QCM 6-10 ANN, PCA

Sensobi Sensoren (microsensor) 8-16 -

Shimadzu MOS 6 PCA

SMart Nose MS - PCA, DFA

Technobiochip QCM 8 —

Technologies AB MOSFET, QCM - -

WMA Airsense MOS 10 ANN, DC, PCA, SPR

 

1Chemosensor type; Mass Spectrometry- MS; Metal Oxide Semiconductor — MOS, Organic

Conducting Polymer — CP, Quartz Resonator Microbalance — QCM, Surface Acoustic Wave -

SAW, Gas Chromatography - GC, Quadrupole Mass Spectrometry - QMS, Infrared - IR and

Metal-oxide-semiconductor Field Effect Transistor — MOSFET. Pattern recognition; Artificial

Neural Network - ANN, Distance Classifiers — DC, Principal Component Analysis - PCA,

Statistical Pattern Recognition - SPR, Discriminant Function Analysis - DFA, Cluster Analysis -

CA and Principal Components Regression — PCR.

2 lnforrnation not available.



2.4.1. Sensor arrays

A chemical gas sensor is a device that is capable of converting a chemical

quantity into an electrical Signal which corresponds to the concentration of

specific particles such as atoms, molecules, or ions in gases [119]. It is a

reversible process: a dynamic equilibrium develops as volatile compounds are

constantly being adsorbed and desorbed at the sensor surface [121]. The types

of Chemical sensors that are used in the electronic nose applications need to, but

may not only, respond to odorous volatiles. Gas sensors respond to a range of

organic molecules, depending on the sensor construction, but they also respond

to water vapor, which is odorless to humans. In general, CP sensors are the

more sensitive to humidity changes than MOS sensors.

Chemical gas sensors that are ideal to be used in electronic noses Should

have high sensitivity (comparable to the human nose which can smell to 10‘12

g/ml) and partial specificities, i.e. each sensor responds to a different range of

compounds present in the gaseous sample. It is also ideal to have the sensOrs

insensitive to humidity and temperature, with high stability and reproducibility,

short reaction and recovery time, easy calibration, durable and inexpensive [121].

The advantages/disadvantages of chemical sensors based on

conductometric, capacitive, potentiometric, calorimetric, gravimetric, optical, and

amperometric principles are listed in Table 3. The schematic diagrams of the five

commercially available sensor mechanisms are shown in Figure 11.
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Figure 1 1 Schematic diagrams of five different kinds of sensors. (a) metal oxide

semiconductor (MOS); (b) conductive polymer (CP); (c) quartz crystal

microbalance (QCM); (d) surface acoustic wave (SAW); (e) MOS field effect

transistor (MOSFET). Modified from [121], Figure 1.
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Based on the operating temperatures, these sensors can be categorized

as hot sensors (e.g. MOS, MOSFET) and cold sensors (e.g. CP, SAW, QCM).

Operating at higher temperatures may make the sensors less sensitive to

moisture with less carry over from one measurement to another, and therefore

they may have less sensor drift and longer lifetime [15]. On the other hand, the

high operating temperature consumes more enerQY. as well as limits their use as

sensors for handheld/portable devices. Comparison of the performance of the

MOS, MOSFET, CP, OMB and SAW sensors is shown in Table 4.

Table 4 Comparative properties and performance of the most frequently used

gas sensors in electronic nose instruments (from [122], Table 1).

 

 

Performance MOS MOSFET CP QMB SAW

Selectivity Poor Moderate Moderate High High

Sensitivity > 0.1 ppm > 0.1 ppm 0.01 ppm > 0.1 ppm ppb

Reproducibility Poor Good Good Moderate Moderate

Temperature Low Low High Moderate High

dependence

Carrier gas Synthetic Synthetic lnertl lnertl lnertl

air (02) air (02) Synthetic Synthetic Synthetic

air (02) air (02) air (02)

Humidity Low Moderate High Low Low

dependence

Operating 300-400 100-200 Ambient Ambient Ambient

temperature (°C)

Response time (0.5 - 5) (0.5 - 5) (20 - 50) (20 - 50) (20 - 50)

(sec)

Recovery time Fast Fast Slow Slow Slow

Lifetime (years) 3 - 5 1 - 4 1 - 2 < 2 < 2
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2.4.1.1. Metal oxide semiconductors (MOS)

The n-type metal oxide semiconductors, e.g. SnOz, ZnO, and Fe203,

respond to reducible gases such as H2, CH4, 0sz or H28 with increased

conductivity at temperatures of ZOO-500°C [119]. At equilibrium (i.e. baseline),

oxygen in the air is adsorbed on the surface [O(S)‘] by trapping free electrons [e]

from n-type semiconductors, which consequently produces a high resistive layer.

e + ‘A 02 —+ O(s)'

When the reducible gases [R(g)] are introduced to the system and react with the

sensors, they consume the oxygen atoms adsorbed on the surface [RO(g)] and

increase free electrons [e], which thus increases their conductivity.

R(0) + Ols)‘ —+ ROIQ) + 6

Similarly, p-type semiconductors (e.g. CuO, MO and COO) respond to oxidizable

gases (e.g. 02, N02, CI2) which decreases their conductivity during the reaction.

Note that these instruments usually measure the resistance (R) instead of the

conductivity (0), based on the relationship:

L 1 L _ . ..

R = _ = _. _ , where p. reSIstIVIty,

F’(A) 0(A)

L: length,

A: cross section area.

The reaction between gases and surface oxygen varies depending on the

operating temperature of the sensors and the activity of semiconductor materials,

including the doped impurities and catalytic metal additives such as palladium

(Pd) or platinum (Pt) [119]. The impurities act as additional electron donors (or
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acceptors). Controlling the doped amount of impurities can change the

conductivity of the sensors, i.e. sensitivity. The catalytic metals doped to the

sensors or coated as a thin layer on the sensor surface control the selectivity of

the sensors.

MOS sensors have been widely marketed and used in many commercial

electronic nose systems, due to their high sensitivity and stability, compared to

sensors based on other mechanisms, eg. CP, QCM, SAW, although MOS

sensors have relatively poorer selectivity [123], i.e. are less substance-specific

and responding to a wider range of compounds. Redundant information obtained

as a result of poor selectivity may be reduced using multivariate methods such as

principle component analysis (PCA) or discriminant function analysis (DFA) at

the data processing step. Other limitations of MOS sensors include: their high

sensitivity to ethanol, C02, and moisture, which masks desired responses to

aroma compounds, i.e. “blinds” the sensors to other analytesi of interest, the

baseline recovery may be slow for some high molecular weight compounds, and

certain reactive gases such as sulfur compounds or weak acids may have

irreversible binding reactions and can permanently “poison” MOS sensors [15].

2.4.1.2. Conductive organic polymer (CP)

CP sensors rely on a change in conductivity when exposed to reducible or

oxidizable gases. Reversible changes in conductivity take place when chemical

substances (e.g. methanol, ethanol, and ethyl acetate) adsorb and desorb from

the polymer [119]. The sensors (Figure 11b) are composed of a substrate (e.g.
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fiberglass or silicon), a pair of gold-plated electrodes, and a conducting organic

polymer such as polypyrrole, polyaniline, polythiophene, or polyacetylene as a

sensing element [15, 123]. The common feature of these electronically

conducting materials is a one-dimensional polymer backbone with conjugated

double bonds, i.e. alternating single and double bonds, which enables a super-

orbital to be formed for electronic conduction [113, 119]. Polypyrrole can be

either fully oxidized or doped by different amounts of counter-anions, which

balances the charge on the polypyrrole backbone and changes the polymer

conductivity. The properties of the resulting conducting polymers depend on the

choice of monomer and counter-anions and the polymerization conditions, eg.

solvent used and concentration of the monomer and counter-anions [113].

GP sensors have the following advantages [15, 113, 119]: (1) a wide

Choice of materials can be synthesized; (2) relatively low cost materials; (3)

respond to a broad range of organic vapors; (4) operate at r00m temperature; (5)

allow extreme miniaturization, i.e. small sizes, since the sensor responses are

independent of the polymer length. The disadvantages of CP sensors include [15,

123]: (1 ) sensitive to moisture; (2) relative long response time; (3) short life-time;

(4) poor batch-to-batch reproducibility; (5) pronounced sensor drift over time or

with changes in temperature.
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2.4.1.3. Quartz crystal microbalance (QCM) and surface acoustic wave (SAW)

QCM and SAW sensors are gravimetric odor sensors, using acoustic

wave devices that operate by detecting the effect of sorbed molecules on the

propagation of acoustic waves [119]. A basic device consists of a piezoelectric

substrate, such as quartz, LiNbO3 or ZnO, with a chemically and thermally stable

sorbent coating. Sorption of vapor molecules into the sorbent coating is then

detected by the change in resonance frequency and amplitude of oscillation of

the propagation of acoustic waves on the piezoelectric materials [15, 113]. The

sensitivity and selectivity of a sensor depends on the thickness of the quartz

crystal and the choice of sorbent coating materials, which must take into

consideration the solubility parameter of the sorbent coating and detecting gases

[113]. QCM sensors (Figure 11c) propagate the acoustic waves inside the crystal

(e.g. quartz). SAW sensors (Figure 11d) comprise a relatively thick plate of

piezoelectric material with electrodes, usually of gold, to excite the oscillation of

the surface, i.e. the acoustic waves transmitted at the surface of the crystal [15,

113].

Both QCM and SAW sensors can be operated at room temperature, and

can be modified for a higher degree of specificity by choosing different sorbent

coatings. The main problems with QCM and SAW sensors are their relatively

poor long-term stability and high sensitivity to moisture, poor batch-to-batch

reproducibility, and pronounced sensor drift over time or with Changes in

temperature.
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2.4.1.4. Metal-oxide semiconductors field-effect transistors (MOSFET)

MOSFET sensors rely on a change of electrostatic potential to respond to

gases [123]. A MOSFET sensor consists of a silicon semiconductor, a silicon

oxide insulator and a catalytic metal “gate”, e.g. palladium, platinum, iridium or

rhodium (Figure 11e). In the case of the palladium (Pd) MOSFET transistor, the

applied voltage on the metal gate (i.e. palladium) and the drain (where the

current flows out) contact creates an electric field, which influences the

conductivity of the transistor. When the metal gate reacts to the substances

which can generate hydrogen atoms (H' ), such as hydrogen, ethanol, and

hydrogen sulfide [113], the electric field and thus the current flowing through the

sensor are modified. The changes in voltage necessary to keep a constant

current flow are then recorded as the sensor responses [123].

The selectivity and sensitivity of MOSFET sensors are influenced by the

operating temperature (SO-200°C), the composition of the metal gate, and the

microstructure of the Catalytic metal [123]. MOSFET sensors have similar

advantages and disadvantages as those reported for MOS sensors, such as high

sensitivity and robustness. To achieve good quality and reproducibility the

MOSFET sensors may require higher levels of manufacturing expertise [123].
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2.4.2. Signal processing

Prior to entering the data processing step for pattern recognition, signal

processing is required to extract the feature(s) of the sensor responses. Each

sensor in the sensor array gives a dynamic response over time while reacting to

the injected gaseous samples. An ideal first order sensor response to a step odor

input, i.e. an instantaneous step Change in odor concentration at t = 0 over a

Specified period of time (until the end of region III), is shown in Figure 12a. The

steady-state region III is the region that is commonly used to estimate the sensor

parameter because it eliminates any variability in the flow delivery system, eg.

dead-time and flow rate [113]. The MOS sensors in this study used the sensor

R-Ro

O

 parameter in the steady-state region (Figure 12b), max( ), the rescaled

maximum value of the resistance R to the baseline resistance R... Since the

injected volatile concentrations decreased gradually instead 0f the ideal step

input, the steady-state region lll may not end as a sharp slope as shown in

Figure 12a.

If the response time of the sensors to odors is relatively long, the initial

slope (i.e. the slope of the linear portion in region I) may be used as a predictor of

the final steady-state value [113]. If there is no significant variability in the

dynamic behavior of the sampling system, eg. using an automated sampling

system instead of manual sampling, parameters in the dynamic regions II and IV

may be useful in data processing.
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Figure 12 Sensor responses of (a) an ideal first order odor sensor responding to

a step odor input (b) MOS sensors in this study (R: resistance). Figures modified

from [113], Figure 6.13.
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To remove or reduce the irrelevant sources of variation (either random or

systematic), a data preprocessing step is often applied before the data, i.e. the

extracted feature(s) described above, are entered into the multivariate analysis.

Preprocessing changes the data which will either positively or negatively

influence the results [124]. Several common preprocessing techniques are

described below.

Normalization of a sample vector is accomplished by dividing each

variable by a constant [124]. Amine et al. (1998) [125] compared the

performance of three types of normalization applied to MOS sensor responses

(FOX 4000 system, AlphaMOS), and concluded that the sum normalization

nvars

(normalizing to unit area by dividing Z lle, where the xj is the jth sensor

j=1

response of sample x in the experimental set) gave the best differentiation in

principle component analysis (PCA) and discriminant function analysis (DFA).

Mean centering is a common preprocessing tool that is applied to account

for an intercept in the data. Variable scaling is achieved by dividing each element

in a variable vector by the standard deviation of the variable. Autoscaling is the

application of both mean centering and variable scaling [124]. These are

common tools for variable preprocessing. For example, mean centering is always

used in PCA. As shown in Figure 13, without mean centering, the first principle

component (PC1) describes the direction from the origin to the cloud of data,

instead of the variance of the data (Figure 13b).
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Figure 13 Example of PCA (a) without mean centering and (b) after mean

centering.
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2.4.3. Data processing

Pattern recognition (PARC) is the second most critical element of an

electronic nose, after the design of sensor arrays. A more generalized definition

of electronic nose was used for techniques using multivariate analysis techniques

to analyze any multiple instrumental measurements, such as the area responses

on a chromatogram [126] or peaks on a mass Spectrum (e.g. HP 4440A from

Agilent Technologies and SMart NoseTM from SMart Nose).

Figure 14 shows the multivariate analysis techniques applied to electronic

nose data, including statistical chemometric methods and biologically inspired

methods [114]. “Unsupervised” Ieaming routinely separates the different classes

from the response vectors, by discriminating between unknown odor vectors

without being presented with the corresponding descriptors. On the other hand,

in “supervised” Ieaming a known set of odors iS systematically introduced to build

a model, which is then evaluated by testing/predicting the class membership of

an unknown odor. Based on the data distribution assumption (e.g. normal

distribution), the classical statistical methods can be categorized as parametric

(e.g. discriminant function analysis, DFA) and non-parametric (e.g. nearest

neighbor, NN) methods.

The biologically inspired methods are more capable of handling non-linear

data, and have further advantages such as Ieaming capabilities, self-organizing,

generalization and noise tolerance. Since electronic noses are designed to

simulate human noses, it may be more desirable to apply biologically motivated

algorithms that imitate the human brain by learning from patterns.
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More detailed description of the multivariate analysis techniques used in

this study are discussed in Chapter 2.6.

Quantitative r Supemsedi MLR

 

 

 
 

 
 

 

 

 

 
  

 

 

  
 

 

PLS

Statistical

, Unsupervised PCA

chemometrlcs { NN

Pattern CA '{ Ward’s

anal sis T

y Supervised E DFA —O— LDA

. PCR

Multivariate * Unsupervrsed4_ SOM

analySIS _ ”m + MLP

Supervised PNN

RBF

LVQ

. . , FIS

Biologically L Supervrsed l FNN

inspired Fuzzy FCM

methods Self-supervised ART

A Fuzzy ARTMAP

Self-supervised

Others + GA

Supervised NFS

Wavelets

Figure 14 Classification scheme of the multivariate pattern analysis techniques

applied to the electronic nose data, including multiple linear regression (MLR),

partial least squares (PLS); principle component analysis (PCA), Cluster analysis

(CA) including nearest neighbor (NN), discriminant function analysis (DFA)

including linear discriminant analysis (LDA), principle component regression

(PCR), artificial neural networks (ANN) including self-organizing map (SOM),

multi-layer perceptron (MLP), probabilistic neural networks (PNN), radial basis

function (RBF), Ieaming vector quantization (LVQ), fuzzy inference systems (FIS),

fuzzy neural networks (FNN), fuzzy c-means clustering (FCM), adaptive

resonance theory (ART), fuzzy ARTMAP, genetic algorithms (GA), neuro-fuzzy

systems (NFS) and wavelets (from [114], Figure 6.3).
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2.4.4. Applications of the electronic nose

2.4.4.1. Electronic nose in milk applications

Electronic nose systems have been widely applied in many different areas,

such as environmental monitoring, medical diagnostics and health monitoring,

natural product identification, process monitoring, food and beverage quality

assurance, automotive and aerospace applications, detection of explosives,

cosmetics and fragrances [127]. Table 5 shows some examples of electronic

nose applications in natural products including foods, and the sensors and

pattern recognition methods that have been applied. Of main interest in this study

are the cases involving dairy products and their packaging. These are reviewed

below.

Heating time and temperature control of the pasteurization process affect

milk quality. Cooked off-flavor in pasteurized milk was the first flavor defect in

milk that was analyzed using an electronic nose. Sulfur containing volatiles such

as hydrogen sulfide, which is generated during pasteurization, give a “cooked or

sulfurous taint” in milk. Further overheating may produce carbonyl compounds,

nonenzymatic browning or Maillard reaction byproducts [128]. Sberveglieri et al.

(1998) [129] showed promising results using a lab-made electronic nose, with an

array of four MOS sensors, to discriminate (using principle component analysis,

PCA, and cluster analysis, CA) the heat treatments of whole milk, i.e.

pasteurization, direct ultra high temperature (UHT) method and “in bottle”

sterilization. The result was then verified by the headspace volatile contents

quantified using DH (dynamic headspace using absorbent Tenax).

60



Table 5 Recent electronic nose applicationsIn natural products (modified from

[130], Table 19.1).

 

 

Application Sensor Data Analysis

Toasting level of oak wood 6 MOS PCA, DFA, NN

barrels .

Fennentation- Bioprocess eNOSE 4000 (Neotronics)- DA

monitoring 12 CP

Freshness of soybean curd 6 M08 PCA

Cheese ripening eNOSE 5000 (1ZCP 8 MOS); CDA

60MB; 10MOS-FET + 5MOS;

.Smart Nose (MS)

Milk spoilage 14 CP (Bloodhound) BP-NN, DFA, PCA, CA

(yeast/bacteria)

Espresso (7 blends) Pico-1 (5 Thin Film MOS) PCA, ANN

Espresso 4 thin film Tin Oxide PCA, MLP ANN, data is drift

Beans/Groundlliquid corrected

Coffee 12 MOS Fuzzy ARTMAP

Vanillin fortified Grapefruit ion-trap MS chemical sensor PCA, DFA

Juice

Fruit Ripeness monitoring Tin Oxide NN

Fruit Quality thickness shear mode quartz PCA and Learning Vector

resonators (TSMR) coated Quantization (LVQ) neural

with pyrrolic macrocycle network

Tomato Aroma e-NOSE 4000 (12 CP) MVDA (CDA)

Soft rot detection in potato 2 MOS and 3 MOS (2 Threshold

tubers ' experiments)

Oatmeal oxidation Fox 3000 (Alpha MOS) PCA, SIMCA

Barley Grain Quality 10 MOSFET, 6 MOS, 1 C02 PCA, PLS, PLS-DA, SIMCA

monitor

Cereal quality BH114, Blood hound, PCA,’DA, CA

14surface-responsive

polymer array

Wheat classification by 16 electrochemical K-NN, NN

grade

Wheat quality CP array RBF-ANN (92 samples in

training)

Rice Quality 10 MOSFET and 12 MOS PCA

Capelin spoilage for fishmeal

production

Mahi-mahi freshness

Chicken Freshness

Minced Meat Rancidity

Swine Products

Olive oil quality

Frying Fat Quality

Corn oils

Maize Corn oil rancidity

Tansy Essential Oil

Golden Rod Essential Oil

Wood Chip Sorting

FreshSense (9

electrochemical gas sensors)

AromaScan (32 CP)

8 M08

HP 4440

FOX 2000, 6 MOS

8 CP

4 MOS

AromaScan (32 CP)

MOSES ll- 8 MOS, 8 QMB's

32 CP

32 CP

32 CP
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PLS1, saturated generalized

linear model

MDA using AromaScan A328

Windows software v. 1.3

Neural net

PCA

LDA, SIMCA

PCA

Compared results of MOS

sensors to reference food oil

sensor using line plots.

PCA

PCA

PCA

PCA

PCA



\fisser and Taylor (1998) [131] tested the performance of a commercial

electronic nose, Aromascan A328 equipped with 32 CP sensors, by analyzing

varieties of food products. The fresh and cooked milk samples were differentiated

using a sensory panel (triangle test), and the headspace volatiles of salt-added

samples (to reduce relative humidity) were clearly discriminated in PCA analysis.

However, the electronic nose was not capable of differentiating aromas from

cheese, coffee and banana. This was due to the high moisture sensitivity of CP

sensors, and the sensor responses were mainly influenced by the water vapor

instead of the volatiles from the product. Mulville (2000) [132] reported that an

electronic nose equipped with MOSFET, MOS and IR sensors was able to

differentiate boiled/non-boiled milk mixtures in ratios of 0/100, 10/90 and 50l50

using PCA analysis.

Zondervan et al. (1999) [133] used an electronic nose (Neotronics eNOSE

4048) equipped with 12 CP sensors and an autosampler to analyze 8 blockmilks

(obtained by heating and drying/concentrating a mixture of milk and sugar to ca.

98% dry matter) at various stages of processing, and associated the results with

the sensory scores given by a trained panel of 23 members using quantitative

descriptive analysis. Volatiles generated in the Maillard reaction during the

caramelization step are the main contributors of the product flavors. The results

showed that the electronic nose was capable of differentiating samples (PCA and

DFA) and predicting the sensory scores (ANN).

Since off-flavors in milk comprise a mixture of numerous volatiles, a gas

Chromatograph can be used to determine the volatile contents, which then can
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be analyzed using the same multivariate analysis techniques. Vallejo-Cordoba

and Nakai (1993, 1994, 1995) [134-137] developed pattern recognition

techniques to differentiate pasteurized milk with different shelf-lifes, which were

determined by sensory evaluation based on ADSA guidelines. The shelf life was

ended whenever a score of 5 or lower was recorded by three of the five judges.

Incubation for 18 hours at 24°C produced headspace volatiles from milk samples

which were then quantified by DH-GC (chapter 2.5) and analyzed using

multivariate analysis. Principle component regression (PCR) based on the DH-

GC peak areas was capable of predicting the milk shelf life within an accuracy of

:l:2 days, which was much better than that obtained using psychotropic bacteria

counts (PBC). An artificial neural network (ANN) was also used for shelf-life '

prediction and it performed better than PCR. Linear discriminant analysis (LDA)

was able to classify the milk with different shelf-life and identify the spoilage-

associated volatiles. Marsili (1999, 2000) [126, 138] investigated cooked (UHT

milk), light-oxidized, lipid-oxidized (added copper), and microbial spoiled UHT

milk via a similar approach, using SPME-GC instead of DH-GC.

2.4.4.2. Electronic nose in Cheese applications

Electronic noses analyze the mixture of volatiles directly, as typical

Cheese flavors do not depend upon a single key component, but originate from a

variety of aroma compounds, i.e. component balance theory [139]. Most studies

in this field focus on either differentiating the types or origins of cheese samples,

correlating to the sensory quality, or monitoring the aging processes of cheese
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manufacturing. Similarly, DH-GC or SPME-GC coupled with pattern recognition

techniques may also be generalized as an “electronic nose” [140].

Wijesundera and Walsh (1998) [141] analyzed various cheeses using an

electronic nose fitted with 18 MOS sensors (FOX 3000 from AlphaMOS). Six

varieties of cheese (Edam, Gouda, Parmesan, Pecorino, Jarlsberg and Cheddar)

were cut into 3 x 1 x 1 cm pieces, sealed in 20 ml headspace vials, and

equilibrated at 40°C for 15 minutes. Using PCA, most of the six varieties were

discriminated except for two overlapping pairs: Edam/Gouda and

Parmesan/Pecorino. Cheddar cheeses at different aging times (1, 3, 7, and 22

months) were also fully discriminated with PCA.

Drake et al. (2003) [142] exploited a mass spectrometer (MS) based

electronic nose (HP 4400, Agilent Technology) to differentiate aged Cheddar

cheeses from different locations, using PCA and CA (cluster analysis). Pillonel et

al. (2003) [143] differentiated 20 Emmental cheese samples from Switzerland,

Germany, France, France, Austria and Finland using DH-GC and PCA analysis.

Schaller et al. (1999) [144] tested five sensor technologies and four

instruments: eNose 5000 (EEV Chemical Sensor Systems) with 12 CP and 8

MOS sensors, QMB6 (HKR-Sensorsysteme) with 6 QMB sensors, NST 3220

(Nordic Sensor Technologies) with 10 MOSFET and 5 MOS sensors, and SMart

Nose (SMart Nose Ltd.) based on a mass spectrometer (MS), to analyze the

Swiss Emmental cheese samples at different stages of ripening. The results of

PCA and DFA showed that MOS sensors gave the best discrimination, but the

MOS sensors seem to be damaged by short-chain fatty acids released from the



Emmental cheese [15]. The CP sensors had pronounced sensor drift and

resulted in poor selectivity. The QCM sensors had relatively lower sensitivity and

were not capable of detecting the differences between cheese samples, and

neither did the MS system. The MOSFET sensors did not give good

discrimination between samples. Their attempt [145] to detect the rind taste off-

flavor due to inadequate ripening and/or storage in Emmental cheese was not

successful using the NST 3220 system. Schaller et al. (2000) [146] then applied

preconcentration techniques (purge-and-trap or SPME) and significantly

improved the performance of the SMart Nose system (MS based) to differentiate

Emmental cheese samples ripened for 1, 21, 98 and 180 days.

Squibb (2001) [147] evaluated two handheld electronic nose systems,

pprAE (RAE Systems) and Cyranose 320TM (Cyrano Sciences). The pprAE

uses a photoionization detector and was able to detect differences between

rancid and normal rapeseed oil samples and to detect the spiking of cardboard

and tissue paper with disinfectant. The Cyranose 320TM instrument was able to

distinguish mature Cheddar cheese from the other cheese samples, but could

not differentiate between mild and medium cheese.

Trihaas et al. (2002) [148-150] focused on the microbiological quality of

Danish blue cheese and Camembert cheese, and analyzed them using the two

electronic nose systems: BH-114 (Bloodhound) employing 14 CP sensors and

aFOX-3000 (AlphaMOS) was equipped with 6 MOS, 4 CP and 2 QCM sensors.

Both systems proved to be capable of defining the ripening stage of the cheese

samples.
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O’Riordan and Delahunty (2003) [151, 152] evaluated cheese-grader-

classified (based on market specification of sensory characteristics) Cheddar

cheese samples using an electronic nose system fitted with 8 MOS sensors.

Electronic nose discrimination (PCA) between cheeses was related to

composition, the profile and abundance of headspace volatiles, and the

descriptive sensory characteristics of the cheeses.

2.4.4.3. Electronic nose in packaging applications

Several studies have used electronic noses to study off-flavors from

packaging materials, eg. HDPE, PET, and paper cartons. As discussed

previously (Chapter 2.2.1), migrants such as oxidative hydrocarbons and residual

solvent or additives may cause packaging off-flavors in the food contents.

Maneesin (2001) [73] investigated the packaging off-flavor from one-gallon

HDPE water containers. The electronic nose (12 M08 senSors, FOX 3000,

AlphaMOS) was capable of discriminating the volatiles from HDPE produced with

different antioxidants (lrganox 1010 and a-tocopherol), but not the water

contained in the HDPE containers. Similarly, Das (2003) [66] used the same

electronic nose to analyze 8 HDPE resin samples, and also found that the

instrument was capable of discriminating the resins but not the water samples

containing the resins at 40°C for one week.

To detect retained solvents on printed packaging films, van Deventer and

Mallikarjunan (2002) [153, 154] evaluated the performance of three electronic

nose systems: FOX3000 (AlphaMOS) equipped with 12 MOS sensors, Cyranose
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320m (Cyrano Sciences) equipped with 32 CP sensors, and QMB6 (HKR

Sensorsysteme) equipped with 6 QCM sensors. The results of linear discriminant

analysis (LDA), which were displayed on two-dimensional canonical

discriminants plots, indicated that all three systems correctly identified 100% of

the unknown samples, while the FOX3000 and Cyranose 320TM were superior

based on discriminatory power and practical features.

For quality control purposes, Poling et al. (1997) [155] constructed

multivariate models of volatiles from various qualities of PET pellets and

paperboard, based on the sensor responses of the electronic nose FOX 4000

(AlphaMOS) fitted with 18 MOS sensors. The models were then used to

successfully predict the qualities of unknown samples.

To monitor taints related to printed solid boards, Heinio and Ahvenainen

(2002) [156] utilized an electronic nose NST 3320 (Nordic Sensor Technologies)

equipped with 10 MOSFET, 12 MOS, one 002 sensor and One humidity sensor,

to differentiate 20 solid board samples that were unprinted, lacquered, and offset-

printed in 14 different colors. The electronic nose succeeded (PCA) in grouping

these materials according to their coloring agents or lacquering, despite slight

overlapping of replicates, and showed some of the off-flavor intensities obtained

from sensory tests.
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2.5 Solid-phase microextraction (SPME)

Solid-phase microextraction is a solvent-less extraction technique

developed in 1990 [157], which involves the exposure of a fused silica fiber with

a thin layer of polymer coating, to isolate and concentrate analytes (volatiles or

semivolatiles) from a gaseous or liquid sample, or the headspace of a liquid or

solid sample. Analytes are absorbed or adsorbed by the fibers, and later

thermally desorbed in the injection port of a gas Chromatograph (Figure 15), or

dissolved into the m0bile phase of a SPME/HPLC interface, and then delivered to

the HPLC column for separation [158].

At equilibrium, the amount of an analyte extracted by the coating is

determined by the thickness of the polymer coating [159], and the magnitude of

the partition coefficient of the analyte between the sample matrix and the coating

materials [160]. Although SPME is an equilibrium sampling method, it can still be

highly reproducible through proper calibration and precise Control of the exposure

time (Figure 16). Temperature can also affect the equilibrium during extraction

since the partition coefficient of the analyte is temperature dependent. Other

factors which can affect SPME precision [160] include: agitation conditions,

sample volume, headspace volume, vial shape, conditions of the fiber coating

(e.g. cracks, adsorption of high molecular weight species), geometry of the fiber

(thickness and length of the coating), sample matrix components (e.g. salt,

organic material, humidity), time between extraction and analysis, analyte losses

(adsorption on the walls, permeation through Teflon, absorption by septa),

geometry of the injector, fiber positioning during injection, condition of the injector
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(pieces of septa), stability of the detector response, and moisture in the needle,

etc. These experimental parameters should be kept constant to ensure good

reproducibility of the SPME extraction.

(a)

(b)

 

 

 

 

  
Figure 15 Solid phase microextraction (SPME) to concentrate headspace

volatiles: (a) extraction; (b) desorption [159].
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Figure 16 Effect of time on amount of analyte absorbed (modified from [161]).

Based on the characteristics (e.g. volatility and polarity) of target analytes,

polymer coatings and/or coating thickness should be selected. In general, highly

volatile compounds require a thick coating, and a thin coating is most effective for

adsorbing/desorbing semivolatile analytes. Table 6 lists the types of SPME fibers

available (Supelco, Bellefonte, PA) and recommended use.

A technical document from Supelco Inc. [162] gives a detailed review of

SPME applications up to the year 2001 in the areas of foods, polymers/coatings,

natural products, pharmaceuticals, biological matrices, toxicology, forensics, and

environmental (water, pesticides, soil and air). Applications using SPME-GC to

analyze the headspace volatiles of milk and Cheese are reviewed below.

70



Table 6 Types of SPME fibers and their recommended use (modified from the

table “SPME Fiber Assemblies” in [162]).

 

Film Thickness Recommended use

 

Polydimethylsiloxane

(PDMS)

PolydimethylsiloxnelDivinylbenzene

(PDMS/DVB)

Polyacrylate

(PA)

Carboxen/Polydimethylsiloxane

(CARIPDMS)

CarbowaxlDivinylbenzene

(CW/DVB)

Carbowaxl'l’emplated Resin

(CW/TPR)

DivinylbenzenelCarboxen/PDMS

(DVB/CAR/PDMS)

Considered nonpolar for nonpolar

analytes

Ideal for many polar analytes,

especially amines

Highly polar coating for general use,

ideal for phenols

Ideal for gaseous/volatile analytes,

high retention for trace analysis

For polar analytes, especially for

alcohols, low temperature limit

Developed for HPLC applications,

eg. surfactants

Ideal for broad range of analyte

polarities, good for C3-020 range
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Marsili (1999) [126] quantified the light-induced headspace volatiles in 2%

milk and skim milk. Spiked pentanal and hexanal in milk were analyzed by SPME

(75 pm CARIPDMS fiber, 45°C, 15 minutes) and DH (dynamic headspace, i.e.

purge-and-trap and thermal desorption using the absorbent Tenax), to compare

the method performance. It was found that the SPME method showed

significantly better repeatability, i.e. a lower coefficient of variation (%CV), and

had comparable detection limits (0.3 nglml pentanal and 0.8 nglml hexanal in 2%

milk) and linear least squares correlation coefficients. A study conducted by

Contarini and Povolo (2002) [163] using a DVBICARIPDMS fiber concluded that

SPME and DH had similar repeatability.

Marsili (1999) [126] used the same SPME method to develop a rapid

technique to study the off-flavors in milk. A mass spectrometer (MS) and

multivariate statistical analysis (MVA), which was PCA in the study, were used to

identify and differentiate the headspace volatiles from abused milk samples with

detectable malodor or off-flavors, including cooked (UHT milk), light-oxidized,

lipid-oxidized (added copper), and microbial spoiled UHT milk. Furthermore,

Marsili (2000) [138] collected commercial 2% milk and chocolate milk and stored

them at 7.23:0.5°C until the end of shelf-life, which was determined when 3 of the

4 judges gave a score below 5, followed the ADSA guidelines. A SPME-MS-MVA

technique, using partial least squares (PLS), was utilized to correlate the

headspace volatiles and the shelf-life as determined by sensory evaluation. It

was found that the SPME-MS-MVA technique was a viable alternative to current
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commercial electronic nose instruments, and capable of differentiating off-

flavored milk, and also could predict the milk shelf-life.

Van Aardt et al. (2001) [12, 77] used a SPME technique (75 um

CARIPDMS fiber, 45°C, 15 minutes) to quantify the acetaldehyde in milk, which

can originate from both light-induced oxidation and through migration from PET

bottles. Gonzélez-COrdova and Vallejo-COrdoba (2003) [164] using SPME (85pm

PA fiber, 70°C, 30 minutes equilibrium time, and 60 minutes exposure time) to

determine the hydrolytic rancidity, i.e. amounts of free fatty acids (FFA), and was

able to correlate this to the rancid flavor intensity sensory scores using stepwise

multiple linear regression. Piero et al. (2003) quantified the short chain saturated

aldehydes (C5-C9) in the headspace of infant formula (powder) using SPME

(65pm PDMS/DVB fiber, 25°C, 15 minutes) coupled with GC-MS. Hexanal, a

potential marker of milk powder oxidation, was quantified in the ppm level using

an isotope dilution technique. I

SPME coupled with GC or HPLC has been widely used to analyze aroma

[140, 146, 165-173], off-flavors [107] and contaminants [174, 175] in cheese.

Frank of al. (2004) collected the headspace volatiles of Cheddar, blue-mold, and

hard-grating (Parmesan, Pecorino and Crane Padano) styles of cheese varieties

using a CARIPDMS fiber (22°C, 16 hours), and analyzed them using GC-

olfactometry and GC-MS. Sulfur compounds such as dimethyl trisulfide and

methionol played an important role in cheese aroma. Pionnier et al. (2004) [173]

studied the aroma release during eating in vivo, using a 100 um PDMS fiber to

collect headspace volatiles of stirred cheese slurries at 25°C over time. Peres et
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al. (2001) [166] used different SPME fibers (PDMS, PA, PDMSIDVB, and

CARIPDMS) to extract the headspace volatiles of Camembert cheese samples

(20°C, 10 minutes), and a model was constructedusing CARIPDMS fiber

coupled with GC-MS and stepwise discriminant analysis (SDA). Pinho et al.

(2002, 2003) [168, 170, 171] quantified volatile free fatty acids (FFA) in Terrincho

ewe cheese, and compared the performance of the six fibers: PDMS,

PDMSIDVB, CW/DVB, DVBICARIPDMS, PA, and CARIPDMS. It was concluded

that the CARIPDMS fiber (20°C, equilibrium time of 20 minutes, and exposure

time of 30 minutes) gave the most complete Cheese volatile profiles. Kim et al.

(2003) studied the light-oxidized volatile compounds in goat’s milk Cheese using

a 65 pm PDMSIDVB fiber (40°C, equilibrium time of 30 minutes and exposure

time of 30 minutes), and concluded that fluorescent light can increase the

headspace volatile compounds including 1-heptanol, heptanal, nonanal, and 2-

decenal [107]. Zambonin et al. (2001 and 2002) [174, 175] extracted two types of

mycotoxins, cyclopiazonic acid (CPA) and mycophenolic acid (MPA), from the

surface of semi-soft Cheeses and blue-veined cheeses, respectively, using a 60

pm PDMSIDVB fiber (room temperature, pH 3 buffered solution, 30 minutes)

coupled with HPLC-UV.
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2.6. Multivariate statistical techniques

2.6.1. Unsupervised Ieaming techniques

2.6.1.1 Hierarchical clustering analysis (HCA)

Hierarchical clustering analyses (HCA) proceeding by either a series of

successive mergers (agglomerative hierarchical methods) or a series of

successive divisions (divisive hierarchical methods), can be used to examine the

interrelationships between all observations in a two-dimensional plot and is

known as a dendrogram [124, 176]. It is a measure of dissimilarity between

group observations, based on the pairwise dissimilarities among the observations

in the two groups [177]. Three linkage criteria for agglomerative hierarchical

procedures are illustrated in Figure 17, including single linkage (minimum '

distance or nearest neighbor), complete linkage (maximum distance or farthest

neighbor), and average linkage. A single linkage dendrogram is generated based

on their neamess in row space; in this each sample is initially treated as an

individual cluster, then joined to the “nearest neighbors” to create fewer numbers

of clusters, as the analysis proceeds. This continues until only one cluster

remains (Figure 17d). Cutting the dendrogram horizontally at a particular height

partitions the data into disjointed clusters represented by the vertical lines that

intersect it. Groups that merge at high distance values, eg. objects (1, 2) and (3,

4, 5) (Figure 17d), are candidates for natural Clusters. It is interesting to compare

the actual class membership, if available, with the natural clustering. If they are

not coincident, the measurements (X '8) might not be sufficient to differentiate

different groups, and clustering might be affected by factors not considered.
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In brief, samples which are more “similar", e.g. milk or Cheddar cheese

subjected to the same duration of light exposure, are expected to be naturally

clustered, i.e. in the same or nearby clusters.
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Figure 17 An example of hierarchical clustering analysis (HCA). The intercluster

 

0
'
.

distances can be defined as (a) single linkage, d24, (b) complete linkage, d15,

and (0) average linkage, 6

dendrogram for distances between 5 objects [176].
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2.6.1.2 Principle component analysis (PCA)

Principle components are the linear combinations of the p random

variables X1, X2, Xp , which represent a new coordinate system with

maximum variability [176]. The first principle component (PC1) is the projection of

the p -dimensional data that explains the most variance of the original variance-

covariance structure. The second principle component (PC2) is orthogonal to

PC1 and explains the maximum amount of the remaining variation, and so on.

Let 2 be the covariance matrix associated with the random vector

XT = [X1, X2, ..., Xp] with the mean u = E(X) such that

z = Cov(X) = E(X — u)(X - p)T .

Using singular value decomposition (SVD), Z can be written as

  

£=PAPT,

"A, o o i

o 12 :
where P =[e1,92,...,ep], A = . . 0 .

_0 0 1p-

T .
eigenvectors e,- = [e,-1,...,e,-p] , and eigenvalues 24 _>. 22 2 2 1p 2 0.

The im principle component PCi is given by

PCi = e,-TX,

or PCi=e,-1X1+e,-2X2+---+e,~po i=1,2,..., p,

where

Var(PCI)=e,T2-e,-=,1, i=1,2,..., p
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Cov(PCi,PCi')=e,oT2-e,« = o, i: i'.

Computationally, let i be a n x p data matrix representing n observations

for the p variables. Assume i is mean-centered (u = O ), i.e. the estimated mean

has been subtracted from each column:
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- n
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The principle components PC1, PCk can be obtained using the

52’s: . .
singular value decomposition of Z = ———1 usmg the same procedure described

on the previous page.
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p

Notice that the total population variance ZVar(X,-) equals the total

i=1

variance of the principle components,

P ‘ P

ZVar(X,-) = tr(Z) = tr(PI\PT) = tr(l\) = 11 + 22 + + AP = ZVar(PCi) ,

i=1 i=1

and the proportion of total population variance explained by each PCi is

1" i=1,2,...,p.
’11 + 12 + - ~ + zip

Principle component analysis can be used for data reduction. Since the

algorithm used to select each PC explains the maximum amount of the remaining

variance of X, most variation is expected to be represented by PC1, PCk,

k s p. Scatter plots of the first two or three PC’s (k = 2 or 3) are useful for

observing p -dimensional data on two dimensional (Figure 18) or three

dimensional plots, which will explain most of the variation of the original data

matrix explained.

Geometrically, PCA involves rotation of the original coordinates

(dimension p) to the new coordinates (dimension k s p):

x = TPT + e.

T is called the score matrix, with columns as latent vectors. P, the loading matrix,

contains the information about how the original measurements are related to the

principle components. In PCA, the columns of P are simply the eigenvectors of

the covariance matrix )2. Error e = 0 when all principle components are included

in the model (k = p). Dimension reduction (k < p) is achieved when most of the
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variation can be represented by fewer principle components so that o is small

and can be ignored.
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Figure 18 An example of principle component analysis (PCA). (a) Principle

components PC1 and PC2 in the original three dimensional space composed by

variables X1, X2 and X3; (b) scatter plot of the first two principle components PC1

and PC2. Diagrams were generated using Minitab R13 (Minitab lnc., PA).
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2.6.2. Supervised Ieaming techniques

2.6.2.1 Linear/quadratic discriminant function analysis (LDA/QDA)

Discrimination and classification involves defining decision boundaries so

as to separate observations from different populations. R. A. Fisher (1938) first

introduced the linear discrimination method described above, for two or more

populations [178]. Let x be a px1 data vector which represents one observation

of the p variables. From Bayesian decision theory, the posterior probabilities of

assigning x to class a),- is

Pm, M = clo<xlw.-)I-'>(w.-)

Z [’0‘ I 60])P(€0j)

j=1

where P(co,-)is the prior probabilities of class (0;, and p(x | (0,) is the conditional

densities of x given 02,-. A set of discriminant functions is defined as

g,-(x),i =1,...,c, which allocates x to class (12,-if g,-(x) >g,-u(x), for all i¢ i'. To

minimize the error rate of classification, x should be assigned to the group with

the highest posterior probability [179],

 

MK I (WWW)

C

Zp<x|wj)P(w,-)
j=1

thus g.-<x>=P(w,- IX)=

C

If g,-(x) is redefined by ignoring the scale factor X p(x | wj)P(wl-) and taking its

j=1

natural logarithm, it will become

g,(x)=lnp(x|w,)+lnP(a2,) i=1,...,c,
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and random variables X1, X2, ,Xp are multivariate normal distributed

P(X I mi) " Np (Fiji)

and the discriminant functions are

1 _ 1 .

g,- (x) = -§(x -p,-)T Z,-1(x—p,~)-§ln2n—§ln|£,-|+lnP(w,-) I: 1, 0.

Moreover, if it assumes all classes have identical covariance matrices,

Z,- = Z, the discriminant functions are simplified as,

1 T ..1
9i (X) = --2—(X-|.Ii) Z, (x-pi)+lnP(a),-),

which involves measuring the squared Mahalanobis distance(x — p,- )T 2‘1 (x - pi)

from x to the nearest group mean pi. Dropping the quadratic term xTZ'1x

which is independent of i, the discriminant functions then are linear:

-1 T 1 1' -1 .

g,(x)=(2 pi) x+ --2-p,-Z p,+lnP(w,-) I=1,...,C.

Linear decision boundaries can be used to separate groups with the same

covariance matrices, with the assumption of equal and unequal P(w,-)’s, and

which are demonstrated in Figure 19a and Figure 19b, respectively.

For cases where we have unequal group covariance matrices, 1,- ¢ 2, the

quadratic term xTZ‘1x cannot be dropped, and the discriminant functions. are

quadratic:

T

910‘) = XT(--;—Z,71]x +(Z’1pi) x +|:—%pf2‘1pi+lnP(wi)] i= 1, c.
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A quadratic decision boundary used to separate two groups with different

covariance matrices is demonstrated in Figure 19¢.

(a) ’51 =22, P(w1)=P(°°2) (c) :1 =42. P(w1)=P(w2)

 

  

 
Figure 19 Decision boundaries defined based on the discriminant functions. (a)

linear boundaries of two classes with identical covariance and equal prior

probabilities; (b) linear boundaries of two classes with identical covariance and

unequal prior probabilities; (c) quadratic boundaries of two classes with different

covariance and equal prior probabilities; (d) decision boundaries for four normal

distributions [179].
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In short, linear discriminant function analysis (LDA) can be used to

separate classes that are normally distributed using the equal covariance

assumption. This can be evaluated using the “test of homogeneity” on the group

covariance matrices [180]. Quadratic discriminant function analysis (QDA) can be

applied when covariances are assumed or tested unequal. Figure 19d shows an

example of decision boundaries for multiple group discrimination.

For visual inspection or graphical description of LDA, canonical

discriminant analysis (CDA) may be used to reduce the dimension from a large

number p to a relatively few (2 or 3) linear combinations, such that the between-

class variance 8 is maximized relative to the within-class variance W [176, 177].

The between-class covariance matrix is,

c T
B = Zn,- (in -u)(m -u) .

i=1

where c is the number of classes,

It; is the percentage of class i samples in the entire data set,

pi is a column vector denoting the mean vector of class i, and

C

p is the overall mean vector such that p = 2p,- /c.

i=1

The within-class variance W is the common covariance matrix 5:. Note that

B +W equals the total covariance of X .To obtain the linear combination of X

that maximizes the ratio of between-class variance and within-class variance, the

1 1

singular value decomposition (SVD) is applied to (W 2 )TBW 2 , to find its



eigenvectors v1, v2, vs, corresponding to the nonzero eigenvalues. We then

obtain the discriminant coordinates

1 .

a,-=W 2v,- i=1,2,..., ssmin(c—1,p).

Therefore, the k ‘“ canonical discriminant (CAN k) can be written as

CANk=a;x, k=1,2,..., s

or CAN/r = ak1X1+ akzxz +~- + akpX , where a,- = [a,-1,...,a,-p ]T.

Figure 20a is an example of the first canonical discriminant (CAN1), which

is the linear combination of the original variables X1, X2 and X3 that maximizes

the difference between groups “. ” and “o ”. It is not necessary that the canonical

discriminants are the same as the principle components, which are the linear

combinations of the original variables that maximize the total variance. When the

total variance is mainly contributed by the between—group variance, the canonical

discriminants are expected to be similar to the principle components. Figure 20b

shows an example when the first canonical discriminant (CAN1) is very different

from the first principle component (PC1).
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Figure 20 Examples of canonical discriminant analysis. (a) The first canonical

discriminant (CAN1) in the three dimensional space composed by variables X1,

X2 and X3; (b) a case where the CAN1 is very different from PC1, the first

principle component. Diagrams were generated using Minitab R13 (Minitab lnc.,

PA).
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2.6.2.2. k-nearest neighbor (k-NN)

The k-nearest neighbors (k-NN) method is a nonparametric classification

technique, which classifies unknown observations based on their similarity with

observations in “training” data. That is, for a given unlabeled object x, the

method finds k closest labeled objects in the training data set, and assigns x to

the class that appears most frequently within the k “neighbors”. For example,

using Euclidean distances and k = 3 to measure the similarity between unknown

and training data in a two dimensional space is illustrated in Figure 21a.

The selection of k and the metric to define closest “neighbors” are critical

to the performance of k-NN. Considering

1sksmin(n,-) i=1,...,c,

where n,- is the number of training samples in class mi, and c is the number of

the classes. If the classes are well separated, the one nearest neighbor has a

high probability to be in the same class, thus k=1 provides a good classification

rule [124]. If classes are not clearly separated, using k>1 may yield smoother

decision regions and provide probabilistic information, though it may also destroy

the locality of the estimation and increase the computational burden. Weighted

distances may be applied instead of Euclidean distances for higher dimensional

data, to reduce the severe requirements for computation time and storage, as a

result of lack of data reduction in such a nonparametric procedure [179].

In k-NN, the identification of an unknown observation depends on the

“majority votes", if the closest k neighbors of an unknown observation do not
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have a majority class, a “tie” occurs and the unknown data cannot be assigned to

any group (Figure 21b).

‘A

. 1.a A”0.) Ox I

1 I
A

I

(b)

 
Figure 21 Examples of k-nearest neighbor (k-NN). (a) 3-NN, the k-nearest

neighbor such that k = 3, where the unknown observation x is assigned to the

class 001, since two out of the three “neighbors” from the training set belong to

(01. (b) A “tie” occurs in 4-NN, where the unknown observation x cannot be

assigned to either (01 or (02.

88



2.6.3. Quantitative analyses

2.6.3.1 Partial least square (PLS) regression

Partial least square regression generalizes and combines the features

from principle component analysis and multiple linear regression, to predict

dependent variables (Y) from independent variables (XT = [X1, X2, Xp]) and

to describe their common structure [181], for example, to predict sensory scores

(Y) from the instrumental measurements (X). When Y is a vector and X is full

rank, the prediction can be accomplished using ordinary multiple linear

regression (MLR). MLR is not applicable if X's are highly correlated, or the

number of observations are smaller than the number of X's (n < p). Principle

component regression (PCR) applies multiple linear regression using principle

components of X as predictors, to eliminate the multicollinearity problem by

using the orthogonality of the principle components. However, PCR does not

choose an optimum subset of predictors for Y. Principle components are

selected to explain X and not necessary to be the best subsets to explain Y.

The PLS approach is an indirect modeling technique (Figure 22) which

finds components from X that are also relevant for Y, using simultaneous -

decomposition of X and Y. The selection of these components, called latent

vectors, is to explain as much as possible the covariance between X and Y.

The decomposition of X and Y (the estimator of Y) are

x = TPT, and

v = TBCT,

where T is the score matrix and P is the loading matrix.
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Figure 22 The indirect modeling concept of partial least squares (PLS) approach

(modified from [182], Figure 3).
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The columns of P are the latent vectors, which are not orthogonal in PLS

(note that the loading matrix P in PCA is orthogonal). B is a diagonal matrix with

the regression weights as diagonal elements. The PLS. is to find two sets of

weights (w and c ), which can be used to create linear combinations of the

columns of X and Y such that their covariance is maximum, i.e., to find the first

pair of vectors t and u such that

{t = Xw, u = Yc| wTw =1, max [cov (t,u)]} .

When the first latent vector is found, it is subtracted from both X and Y and the

procedure is re-iterated. PLS can be performed using the iteration algorithm

above [181] or singular value decomposion [124].

2.6.3.2. Multilayer perceptron (MLP)

Neural networks are adaptive computer architectures based on an

analogy of the biological neural system, and are used to Ieam or discover the

association between input and output patterns, and to analyze the structure of

the input patterns. The basic neural network units of neurons (Figure 23a), are

connected by weighted connections (synapses), and arranged in layers. Values

of the parameters (i.e. the synaptic weights) of the networks are modified

iteratively as a function of the model performance. Mean square error (MSE), the

average squared error between the network outputs and the target outputs, is a

common criterion function for feedforward networks such as multilayer

perceptrons [1 83].
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Multilayer perceptrons (MLP, Figure 23b) are used in a supervised

manner with an error back-propagation algorithm. Network Ieaming starts with an

untrained network, and a training pattern is presented to the input layer. The

signal is passed through hidden layers, and the output obtained at the output

layer. Synaptic weights and biases are then adjusted based on an error-

correction rule, e.g. to minimize the MSE [184]. Back-propagation Ieaming

updates the network weights and biases in the direction in which the MSE

decreases most rapidly:

xk+1 = Xk - 0ka

where xk is a vector of current weights and biases, gk is the current gradient,

and ak is the Ieaming rate [179, 185].

Neural network transfer functions are denoted by f in Figure 23, and can

be any differentiable functions which generate outputs. They are. required to be

differentiable since the back-propagation algorithm calculates the derivatives of

any transfer functions used. A typical MLP contains one or more non-linear

sigmoidal functions (e.g. log-sigmoid or tan-sigmoid functions) in the hidden

layers, and a linear function in the output layer [185].

Training the MLP using gradient decent in the criterion function (e.g. MSE)

ultimately reaches the lower bound of the error when having infinite training data.

The choice of Ieaming rate (ak) and number of weights affects the asymptotic

error value, as well as how fast the training error decreases, since in practice we

do not have infinite data points for training. Also, when the lower bound of

training error is reached, it often makes the models too optimistic, i.e. the models
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may not be applicable for another independent data set. Therefore, an early stop

criterion based on a validation data set, is usually needed. Network training stops

when the error reaches a minimum for the validation set [179].

Bias x0: 1

x1 cell 1
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Input layer Hidden layer Output layer

Figure 23 Multiplayer perceptron (MLP) structure. (a) A neuron, the basic neural

unit; (b) a multilayer perceptron [183].
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CHAPTER 3

MATERIALS AND METHODS

3.1. Sample preparation

Milk in one gallon clear HDPE containers (3.785 L) was obtained from a

local retail store (Meijer, Okemos, MI) and distributed into the glass or other milk

packaging materials on the same day. At Meijers, the milk was displayed on

open stainless steel shelves at ~5°C, with lighting by fluorescent bulbs covered

by yellow plastic tubes, i.e. gold shield [54, 55]. Milk samples, within 10-14 days

of sell-by dates, were picked from the middle of the bottom shelves, immediately

wrapped in brown paper bags, transported to the laboratory, and stored in a 5°C

refrigerator within 15 minutes. A fan was installed inside of the refrigerator to help

reduce the temperature fluctuation to within 11°C.

3.1.1. Light-oxidized off-flavors in 2% milk

Reduced fat (2%) milk was distributed into glass bottles (nominal capacity

8 oz, clear, Boston Rounds, Qorpak, Bridgeville, PA) in a 5°C environmental

chamber. Samples were then exposed to cool-white fluorescent light (4 bulbs of

Light of America F15 T8 CW OP11 15W) for 48 hours at 5°C. The light intensity

was measured from the top of the sample bottles using a digital light meter

(Model SLM 110, A.W. Sperry Instruments, NY), and the average light intensity

was recorded as ~1000 lx. All sample bottles were wrapped in aluminum foil prior

to light exposure. The aluminum foil wraps of randomly selected sample bottles



were removed for 2, 4, 8, 12, 24, 36 and 48 hours. Two controls (“0" and “d”)

were prepared using the same type of glass bottles that were wrapped in

aluminum foil and stored in the dark for 0 or 48 hours. Milk was light exposed for

specified times, immediately removed from each container, and prepared for use

in sensory evaluation and headspace analyses using SPME or the electronic

nose (experimental flowchart in Figure 24).For sensory evaluation, 20 ml of the

milk samples were distributed into glass vials (nominal capacity 20 ml, screwed

top with foil-lined cap) in a 5°C environmental chamber, covered with aluminum

foil and stored at 5°C. Milk samples were moved to ambient temperature (~21°C)

approximate one hour prior to each sensory session. The milk temperature was

maintained at 10-15°C for all sensory testing [186]. For instrumental analyses, 1

ml of the milk sample was removed from each container using a 1 ml serological

glass pipet, sealed in a 10 ml headspace vial, and stored below -18°C.

 

Reduced fat (2%) milk in glass bottles exposed to fluorescent light

  
(1000 Ix) at 5°C for 0,2, 4, 6, 8, 12, 24, 36, or 48 hours.

..................I.----------_----

Instrumental analyses

 

I I I I I I I I I I I I I I I I I
I

I I I I I I I I I I I I I I I I I I I I

Sensory evaluation

 

SPME-GC (45°C headspace)
  

Triangle tests (consumer panel)
 

 

 

Flavor rating (trained panel)

  
 

  
(45, 70, 95°C headspace)

 

:

l
I

5

Electronic nose I

I

:

E

  
 

   

 
  

  
Correlation

 

Figure 24 Experimental flowchart to investigate the light-oxidized off-flavors in

2% milk, using sensory evaluation and instrumental analyses.
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3.1.2. Packaging off-flavors in 2% milk

Samples of HDPE. HDPE compounded with TiOz (HDPE-TiOz), and PET

bottles (food grade, nominal capacity 8 02., Boston Rounds, eBottles.com,

Woodbridge, CT) were purchased from an internet store (eBottles.com). PE-

coated paper cartons (nominal capacity 8 oz., Gable top) were obtained from a

local dairy plant (Melody Farms, Lansing, MI); the empty cartons were erected

and sealed using equipment at Melody Farms. The empty cartons were opened.

filled manually with milk or water, and resealed using binder clips (Figure 25).

Glass bottles (nominal capacity 8 02., clear, Boston Rounds, Qorpak, Bridgeville,

PA) filled with milk or water were used as the control.

 
Figure 25 Packaging materials used for milk and/or water. Front row left to right:

a PE-coated paper carton, a HDPE-TiOz bottle, and a PET bottle. Back row left to

right: a HDPE bottle, a glass bottle, and a glass bottle wrapped in aluminum foil.
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To investigate the effects of packaging off-flavors, samples of various

packaging materials were analyzed using the electronic nose. Water and 2% milk

stored in various packaging materials at 5°C for 3 days were analyzed using the

electronic nose, and sensory evaluation performed using a consumer and/or

trained panel. The experimental flowchart is shown below (Figure 26).

 

Pieces of glass, HDPE, HDPE- Inswmenmj analysis

 

TiOz, PET bottles, and PE- Electronic nose

 

coated paper cartons (45, 70, 95°C headspace)

 

 

 

 

Water stored in glass, HDPE, Electronic nose

 
 

(95°C headspace)
HDPE-TiOz, PET bottles, and   
 

PE-coated paper cartons at 5°C

5 Sensory evaluation

for 3 days :
 

 

 

Triangle tests
 

Reduced fat (2%) milk stored in
 

  
(consumer panel)

 

glass, HDPE, HDPE-TiOz, PET

 

bottles, and PE-coated paper Flavor rating

cartons at 5°C for 3 days (trained panel)  

 

 
 

    

Figure 26 Experimental flowchart to investigate packaging off-flavors in 2% milk,

using sensory evaluation (triangle tests and flavor rating based on ADSA

guidelines) and instrumental analysis (electronic nose).
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One gram of the HDPE, HDPE-TiOz, PET bottles, or PE-coated paper

cartons cut into pieces of ~1 cm2 were sealed in 10 ml headspace vials for

electronic nose analysis. One gram of glass from broken glass bottles was used

as the control. The headspace samples of various packaging materials were

generated at 45, 70 or 95°C for 15 minutes, using the oven located on the

autosampler of the electronic nose.

Water (HPLC grade in 4 L amber glass jugs, J.T. Baker, Phillipsburg, NJ)

stored in various packaging materials at 5°C for 3 days, was analyzed using a

series of triangle tests and the electronic nose. Twenty ml of the water samples

were distributed into 20 ml glass vials and evaluated at ambient temperature

(~21°C) using a consumer panel. One ml of water samples was removed from

each container using a 1 ml serological glass pipet, sealed immediately in a 10

ml headspace vial, and stored at ambient temperature prior to electronic nose

analysis. Water in the original 4L jugs was used as the control.

Reduced fat (2%) milk was stored in the glass, HDPE, HDPE-TiOz, PET

bottles, and PE-coated paper cartons at 5°C for 3 days. One ml milk sample was

removed from each container using a 1 ml serological glass pipet, sealed in a 10

ml headspace vial immediately, and stored below -18°C for electronic nose

analysis at a later time. Twenty ml of the milk samples that had been stored in

glass, HDPE, and PET bottles, and PE-coated paper cartons was distributed into

20 ml glass vials in a 5°C environmental chamber and evaluated at 10-15°C by a

consumer panel or a trained sensory panel.
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3.1.3. Light-oxidized and packaging off-flavors in 2% milk

Reduced fat (5%) milk stored in glass, HDPE, HDPE-TiOz, PET bottles,

and PE-coated paper cartons were exposed to fluorescent light (1000 Ix) at 5°C

for 12 hours (Figure 27). One ml milk sample was removed from each container

using a 1 ml serological glass pipet, sealed immediately in a 10 ml headspace

vial, and stored below -18°C for electronic nose analysis at a later time. Twenty

ml milk samples was distributed into 20 ml glass vials in a 5°C environmental

chamber and evaluated at 10-15°C by a consumer or a trained sensory panel.

 

Reduced fat (2%) milk in glass, HDPE, HDPE-TiOz, PET bottles, and

PE-coated paper cartons exposed to fluorescent light (1000 Ix)

  
 

 

 

  
   

 

 

  
 

at 5°C for 12 hours.

E Sensory evaluation E Instrumental analysis E

E Triangle tests E E Electronic nose E

(consumer panel) I (95°C headspace) I

E Flavor rating

E (trained panel) E

Figure 27 Experimental flowchart to investigate the light-oxidized and packaging

off-flavors in 2% milk, using sensory evaluation and instrumental analysis

(electronic nose).
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3.1.4. Cheddar cheese samples

A block of cheedar cheese (21.3 kg, medium sharpness, aged at 5°C for 7

months) was obtained from the Michigan State University Dairy Plant. The outer

layer (~ 5 cm) of the cheese block was trimmed off and discarded. The cheese

block was then cut into one-pound (454 9) blocks and vacuum-sealed in

transparent shrink bags (Cryovac® B-series, Cryovac, Duncan, SC), which were

characterized as high gloss and low oxygen permeability. Table 7 lists the

oxygen and water vapor transmission rates of the Cryovac® B-series bags.

Table 7 Oxygen and water vapor transmission rates of the Cryovac® B-series

bags, given the temperature (°C) and relative humidity (%RH).

 

 

 

 

 

 

 

Transmission rate Value Source

Oxygen transmission 3 _ 6 cc Product specification

rate at 44°C, 0% RH m2 -day from the supplier

Oxygen transmission 24 CC Measured using an

rate at 5°C, 60% RH m2 -day Oxtran1

:Nater vapor t t 0.5 _ 0.6 _9___ Product specification
ransmrssron ra e a 100,,"2 . day from the supplier

378°C, 100% RH   
 

‘ A modified Oxtran 100 - Twin (Mocon lnc., Minneapolis, MN), operated inside of

an environmental chamber controlled at 5°C, 60% RH.
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The Cheddar cheese in 1-Ib vacuum-sealed blocks was arranged

randomly in the environmental chamber and exposed to fluorescent light (2 bulbs

of Philips F48T12/CWIHO 60W) for 0, 2, 4 and 6 weeks. The relative humidity

fluctuated between 50—70% RH due to the malfunctioning relative humidity

control of the chamber. The oxygen transmission rates of the vacuum bag did not

vary significantly at different relative humidity (Table 7), thus the fluctuation of

relative humidity was not expected to affect the results. The light intensity was

measured from the top of the cheese blocks using a digital light meter (Model

SLM 110, A.W. Sperry Instruments, NY), and the average light intensity was

recorded as ~2000 Ix. All cheese blocks were wrapped in aluminum foil prior to

placement to the chamber, and the foil wraps were removed for 0, 2, 4 or 6

weeks for randomly selected samples. To avoid deviations in light exposure, all

cheese blocks were rearranged followed a random sequence generated using

Matlab 6.1 (The MathWorks lnc., Natick, MA) every 3 days, during the 6 weeks of

light exposure. Figure 28 shows the arrangement of the Cheddar cheese blocks

in the 5°C environmental chamber equipped with the light fixture. A

Two samples, i.e. surface slabs (the top surface) and interior slabs (~1 cm

below the top surface), were taken from the Cheddar cheese samples exposed

for a specified duration of light. For color measurement and sensory evaluation,

3mm thick slabs were sliced off using a cheese cutter (Model CC-12, Nelson-

Jameson, Marshfield, WI), vacuum-sealed in Nylon/PE bags (0.75 mil nylon/ 2.25

mil polyethylene, Koch, Kansas City, MO), and stored at 5°C until one-hour prior

to sensory evaluation. All samples were evaluated at ambient temperature
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(~21°C). For headspace analysis, 1 mm thick slabs were removed using a razor

blade, and cut into a disk-like specimen (0.15: 0.01 9, id = 11 mm) using a test

tube. Each specimen was sealed in a 10 ml headspace vial and stored below

—1 8 °C for analysis at a later time.

 
Figure 28 The arrangement of the Cheddar cheese samples exposed to

fluorescent light (2000 lx) at 5°C for 0, 2, 4, or 6 weeks. The aluminum foils were

unwrapped at the specified weeks. Cheese blocks were rearranged randomly

every 3 days.

Figure 29 shows the experimental flowchart to investigate the light-

induced deterioration of Cheddar cheese and its effect on color, body/texture,

and flavor, using sensory (different-from-control and ADSA rating) and

instrumental methods (color measurement, SPME-GC and the electronic nose).
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Surface and interior slabs of the Cheddar cheese samples exposed to

fluorescent light (2000 Ix) at 5°C for 0, 2, 4, or 6 weeks.
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E Sensory evaluation 5 Instrumental analyses E

Different-from-control in color, E E Color measurement E

body/texture, and flavor 5 (CIE L* a* b*)

E (trained panel) E SPME-GC E

E i E < :

E Rating in body/texture and E E (60°C headspace) E

flavor (trained panel) E E Electronic nose E

(60 and 90°C headspace)

5 I

Correlation     
   

Figure 29 Experimental flowchart to investigate the light-induced deterioration of

Cheddar cheese in color, body/texture, and flavor, using sensory evaluation and

instrumental analyses.
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3.2. Sensory evaluation

Triangle tests were performed by a 24-member consumer panel, which

was recruited mainly from the students and faculty members of the School of

Packaging and Department of Food Science & Human Nutrition, Michigan State

University. A rating based on the ADSA guidelines and different-from-control

tests were performed using a trained panel of 8-9 members, which consisted of

the coach and members of the Michigan State University dairy judging team for

Collegiate Dairy Products Evaluation Contest, 2002. The trained panelists

received training on the ADSA guidelines for six types of dairy products: milk,

Cheddar cheese, creamed cottage cheese, Swiss type yoghurt, butter and ice

cream, for 4-6 hours per week for a 6-8 week period.

Panelists were told to spit out all test specimens after judging (foam cup

was provided), and rinse their mouth with deionized water between specimens if

necessary. A three-digit random number was assigned to each milk, water or

cheese specimen. Random number codes and permutations were generated

using Matlab 6.1 (Mathworks lnc., Natick, MA). The sensory evaluation designs

and test forms for all sensory tests are shown in Appendix 6.2.

3.2.1. Triangle tests performed by a consumer panel

Triangle tests were conducted in the sensory laboratory using a consumer

panel of 24 panelists, to determine the overall flavor difference between samples

and the control. Each panelist evaluated samples in an individual booth and

recorded the results on the data sheet provided. For each sample set, a series of
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four triangle tests were presented sequentially and randomly. Each triangle test

contained a total of three specimens of two samples (treatment and control), with

two identical and one “odd” specimen. Panelists were told to determine the odd

specimen, and had to guess even if no difference was apparent.

3.2.2. Rating based on ADSA guidelines performed with a trained panel

Numerical sensory scores of milk flavor (from 1: pronounced off-flavor to

10: no criticism) were obtained from an 8-member trained panel. Evaluation was

performed using the scoring guidelines from the American Dairy Science

Association (Table 8 and Appendix 6.2.2). No criticisms were assigned a score of

“10”. Sixteen milk flavor criticisms were evaluated, and an overall flavor score

assigned based on the existence and intensities of the off-flavor(s). Eight milk

specimens were presented simultaneously in each sample set, and the panelists

were asked to rate the specimens from left to right. Milk from the original one

gallon HDPE containers was provided as a reference, panelists were not asked

to give a sensory score to the control.

Rating the body/texture and flavor of the Cheddar cheese was performed

using a 9-member trained panel, following the ADSA guidelines, which assigned

scores according to the perceived defects of cheese samples (Table 9). Rating

on body/texture (from 1: defective to 5: no criticism) was given based on the

criticisms listed in Table 9. The criticisms “gassy” and “open” were excluded

since they are not expected as a result of light exposure. For flavor, all 13

criticisms were evaluated (from 1: pronounced off-flavors to 10: no criticism).
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Table 8 Product attributes and scores of the ADSA guideline for scoring off-

flavors in milk (S: slight, D: definite, P: pronounced). No criticism is assigned a

score of 10. Pronounced acid, rancid and unclean off-flavors are not acceptable

and denoted as “ *" [80].

Flavor

Acid

Bitter

Cooked

Feed

Fermented! Fruity

Flat

Foreign

 

#

Garlic/onion

Lacks Freshness

Malty
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Oxidized --Metal
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#
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Table 9 Product attributes and scores of the ADSA guideline for scoring flavor

and body/texture defects of Cheddar cheese (S: slight, D: definite, P: pronounced)

[80].

 

  
 

 

Flavor 3 D P

Bitter 9 7 4

Feed 9 8 6

Fermented 7 5 3

Flat/Low Flavor 9 8 7

Fruity 7 5 3

Heated 9 8 7

High Acid 9 7 5

Oxidized 8 6 3

Rancid 6 4 1

Sulfide 9 7 4

Unclean 8 6 3

Whey Taint 8 7 5

Yeasty 6 4 1

Body/1'exture

Corky 4 3 2

Crumbly 4 3 2

Curdy 4 3 2

Gassy 3 2 1

Mealy 4 3 2

Open 4 3 2

Pasty 4 3 1

Short 4 3 2

Weak 4 3 2  
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3.2.3. Difference-from-control tests using a trained panel

Evaluation was performed by a 9-member trained panel. A different-from-

control test using a rating of 0 (no difference) to 5 (extreme difference) was

applied to determine the difference in color, body/texture, and flavor, between the

test samples and the control, i.e. the sample slabs of ~1 cm below the Cheddar

cheese having no light exposure.

3.3. Electronic nose analysis

Headspace volatiles generated from 2% milk, water, packaging materials

(glass, HDPE, HDPE-TiOz, PET bottles, and PE-coated paper cartons) or cheese

samples were analyzed using the electronic nose (Fox 3000, Alpha-MOS,

Toulouse, France) equipped with 12 metal oxide semiconductor sensors

(chamber A: T30/1 , P10/1 , P10/2, P40/1 , 170/2, PA2; chamber C: LY/LG, LYIG,

LYIAA, LY/Gh, LYIgCTl, LY/gCT). Liquid or solid samples were sealed in 10 ml

headspace vials and placed in the sample trays (Figure 30c). The autosampler

was programmed to move the sample vials to the oven (Figure 30b) to generate

headspace volatiles, which were then injected into the injection port (Figure 30e)

of the sensor chamber (Figure 30b) using a 5 ml gas-tight syringe (Figure 30d).

Twelve MOS sensors reacted simultaneously to the injected headspace

sample, which was a mixture of volatiles, which resulted in a change in

 resistance (R) from the resistance at equilibrium R0. Maximum values of RRRO

0

were recorded for preprocessing and multivariate statistical analysis. Four

replicates of each sample set were analyzed in a semi-random order. Each
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sample set was independently evaluated twice; one for building a supervised

model and the other for testing model generalization.

Each sample vial was taken directly from -18°C storage and placed on the

tray of the autosampler (HS 100) immediately before each injection. Headspace

was generated at specified temperatures for 15 minutes, and then 2.5 ml of the

static headspace was taken by syringe and directly injected by the autosampler

into the sensor chambers. Sensor responses (the scaled sensor resistance

change, R-Ro, divided by the equilibrium sensor resistance prior to injection, R0)

were recorded and processed using a personal computer and the acquisition

software (Alpha SOFT version 8.0, Alpha-MOS, Toulouse, France).
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Figure 30 The electronic nose system (Fox 3000, Alpha-MOS): (a) compressed

air; (b) even, used to generated headspace volatiles at specified temperatures

and times; (c) sample trays to hold vials; (d) gas-tight syringe; (e) injection port; (f)

sensor chamber containing the 12 MOS sensors; (9) computer, to collect and

analyze data. The parts (b), (c), (d) belong to the autosampler (HS 100).
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3.4. Solid-Phase Microextraction-Gas Chromatography (SPME-GC)

Headspace analysis was performed using a gas chromatograph coupled

with solid-phase microextraction (SPME) sampling [159]. A 75um

Carboxen/Polydimethyl Siloxane (CARIPDMS) fiber, or a 65pm

PolydimethylsiloxnelDivinylbenzene (PDMSIDVB) fiber was mounted in a manual

holder (Supelco, Bellefonte, PA) and used to collect the headspace volatiles

generated by heating milk or Cheddar cheese specimens in 10 ml headspace

vials, using an oven with precise temperature control (gas chromatograph HP

5890). A Hewlett-Packard gas chromatograph (HP 6890) equipped with FID

detector and integrator (HP 3395) was used to separate the headspace volatiles

desorbed from SPME fibers.

To select the proper analytical condition, a standard solution of 10 nglml of

pentanal, hexanal, dimethyl disulfide, methional (3-methylthiopropionaldehyde),

and 20 nglml of lntemal standard 4-heptanone was prepared inEHPLC grade

water and sampled using two different SPME fibers (CARIPDMS and

DVBIPDMS). One ml standard solution was sealed in a 10 ml crimp-top

headspace vial and stored at 5°C. Sampling temperature was controlled using a

refrigerator (5°C) or GC oven (30 and 45°C). Five minutes of preheating was

followed by sampling times at 5, 15 or 25 minutes. A complete randomized

design was applied to 27 specimens, at three sampling temperatures (5, 30 and

45°C) and times (5, 15 and 25 minutes). Three replicates were performed for

each combination. Reproducibility was evaluated by comparing the coefficient of

variation (%CV), which is a measure of the deviation of a variable from its mean,
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%CV = standard devratron x 100% .

mean

 

Normalization of the peak areas using the peak area of the internal standard [28,

126] was also evaluated.

3.4.1. SPME-GC for milk samples

One ml milk sample was taken using a 1 ml serological glass pipet,

transferred to a 10 ml sealed crimp-top headspace vial, and stored below -18°C

for analysis at a later time. Headspace sampling was performed using a

CARIPDMS fiber at 45°C for 15 minutes with 5 minutes of preheating. The

separation of volatiles from milk was accomplished using a 30 m x 0.32 mm x

0.25 pm HP5 column. Column temperature was initially set at 35°C for 12

minutes, which allowed all target volatiles to pass through the column, and then

heated to 220°C at a rate of 20°Clmin, to clean up the volatiles generated by

degradation of the fiber.

External standards were prepared by spiking analytical grade pentanal,

hexanal and dimethyl disulfide into 2% milk, at levels of 0, 0.5, 1, 2, 4 and 10

nglml. Four replicates of each concentration were analyzed. Three replicates

were used to build the correlation models, i.e. training data, and one replicate

was used to test the model performance. Initial levels of pentanal, hexanal, and

dimethyl disulfide in the 2% milk were estimated by extrapolating the regression

line to the x-axis. Quantification was based on the linear regression equations of

the calibration curves, with the addition of the estimated initial concentration of

the volatile components.
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3.4.2. SPME-GC for Cheddar cheese samples

Cheddar cheese specimens (disk-shaped solid, 0.15: 0.01 g) were sealed

in 10 ml vials and stored below -18°C for analysis at a. later time. Separation of

the volatiles from Cheddar cheese was accomplished using a 60 m x 0.25 mm x

0.25 pm Supelcowax 10TM column (Supelco, Bellefonte, PA). Column

temperature was set initially at 35°C, and then heated to 220°C at a rate of

2°Clmin. Headspace of cheese samples were generated at 60°C for 15 minutes,

and four replicates were performed for each sample. Volatiles were identified by

comparing the peak retention times of the standards, and the peaks with better

reproducibility were selected for further multivariate analyses. Three replicates

were used to build the correlation models, i.e. training data, and one replicate

was used to test the model performance.

3.5. Light transmission of milk packaging materials

Percent light transmission of the various packaging materials (HDPE,

HDPE-TiOz, PET, and PE-coated paper cartons in white or blue) in the 200-1100

nm range was measured using a UV-visible spectrophotometer (Lambda 25,

PerkinElmer, Wellesley, MA) equipped with an integrating sphere (RSA-PE-20).

Samples were cut into 4 cm x 4 cm pieces, mounted on a sample holder with a

window (id. = 1 cm) and aligned perpendicular to the light path.
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3.6 Color measurement of cheese

Surface slab (top 3 mm surface) and interior slab (3 mm slices of ~1 cm

below the top surface) color (ClE L* a* b*) of the of the Cheddar cheese exposed

to fluorescent light were measured using a spectrophotometer (Hunterlab

ColorQuest 45°l0° Spectrophotometer, Hunter, VA). Sample slabs packaged in

Nylon/PE bags were placed on top of the sample holder with a window (i.d.=

1 cm), and the color measured reflectively in a 45°l0° geometry (Figure 31a).

The CIE L*a*b* color space (Figure 31b) is the color standard developed

by the lntemational Commission on Lighting (Commission lntemationale

d‘Eclairage, CIE) in 1976 [187]. It defines the color perceived by human eyes

using three parameters: L* indicates lightness or luminosity, from white to black.

The chromaticity coordinates a* and b* indicate color directions: +a to -a is from

red to green, and +b to -b from yellow to blue, and the center is achromatic, hues

of gray. As the values of a* and b* increase, such that the point moves out from

the center, the chroma or purity of the color increases. The Euclidean distance

between two color points (AE) is

 

AE = J(AL *)2 + (Aa *)2 + (Ab *)2

where AL *, Aa *, Ab * are the differences in lightness, redness and yellowness.

It is a convenient way of presenting color differences between the standard and

the samples [188].
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Figure 31 Schematic diagram of (a) 45°l0° geometry of the spectrophotometer

[189]; (b) the CIE L* a* b* color space [187].
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3.7. Multivariate statistical techniques

3.7.1 Data preprocessing

R-Ro

O

 Maximum values of the relative sensor resistance changes, max( ).

were recorded and mean centered, i.e. subtracting the average from each sensor

among different samples. Mean centering was applied to account for an intercept

term in the regression models [124]. The mean values of the training sets were

used for mean centering of both training and test sets.

3.7.2. Unsupervised learning techniques

Hierarchical clustering analysis (HCA) and principle component analysis

(PCA) were performed using PROC CLUSTER and PROC PRINCOMP

procedures (SAS 8.0, SAS Institute, Cary, NC), respectively. In HCA, single

linkage (nearest neighbor) was used as the algorithm for similarities, with the

computation of eigenvalues and normalizing of distances suppressed. Results of

HCA were presented in a dendrogram, where each step in the clustering process

is illustrated by a join of the tree. In PCA, principle components were calculated

from the covariance matrix, and scatter plots of the first two or three principle

components were generated for visual inspection of the data points. The scree

plots (PROC FACTOR) may also be plotted to examine the fraction of total

variance in the data as explained or represented by each principle component.
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3.7.3. Supervised Ieaming techniques

Linear/quadratic discriminant function analysis (LDNQDA), and k-nearest

neighbor (k-NN) were performed using PROC DISCRIM procedure (SAS 8.0,

SAS Institute, Cary, NC). In LDA/QDA, “testing of the equality of normal

population parameters” [180] was carried out prior to the analysis. If there is a

strong evidence of unequal variances among the groups, QDA is expected to

have a better performance of defining the decision boundaries. On the other

hand, LDA is used to separate classes that are normally distributed with equal

covariance. A parametric method, based on a multivariate normal distribution

within each class, was used to derive the LDA or QDA. Models were cross-

verified by the Ieave-one-out method, i.e. each observation was classified using a

discriminant function computed from the other observations in the training set. An

independent test data set was used to test the model generalization. Canonical

discrimination plots with the first two or three LDA discriminants were generated

for visual inspection of the sample discrimination. Nonparametric classification

was based on a k-NN algorithm (k s number of replicates), i.e. no assumption of

multivariate normal distributed data was required. Cross-validation and testing of

the model generalization was performed using similar procedures as used in

LDA/QDA analyses.

The correct identification rates (i.e. hit rates) were calculated at the steps

of training (model building), validation (cross validation of training set using

leave-one-out method), and testing (applying an independent test data set).

Correct identification rates of training data are usually the highest for the
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“training” step, as the models are built using the same data set. The “validation”

step, which is used to verify the model stability, may have lower correct

identification rates: cross validation was performed by leaving out one data point

at a time and verifying its “identified” group using the reduced models built by the

rest of the training data set. The “test” step is applied to test the model

generalization, i.e. how well the model works when applied to an independent

data set. It may have either a higher or lower correct identification rate than the

validation step. A model is considered to be unstable if the correct identification

rate is extremely high for training but low for validation, or to be “optimistic” when

the rate is high for training but low for the test step.

3.7.4. Quantitative analyses

Partial least squares analysis (PLS) was performed using PROC PLS

(SAS 8.0, SAS Institute, Cary, NC). The singular value decomposition (SVD)

algorithm was used to compute extracted PLS factors. Models were verified

using cross validation (leave—one-out method in training set) for PLS, along with

the test set validation. A SAS macro “plsplot.sas” (available at

http:/Iwww.sas.com) was used to generate scatter, loading and residual plots for

visual inspection of model performance.

Multilayer perceptrons (MLP) was performed using the Neural Network

Toolbox 4.0 of Matlab 6.1 (The MathWorks lnc., Natick, MA). A feed-forward

backpropagation network was constructed, with a tan-sigmoid function in the

hidden layer, and a linear function in the output layer (Figure 32). An independent
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data set was applied for validation (early stopping to avoid over-fitting) as well as

for testing (estimating a network’s ability to generalize), with the following training

parameters (Figure 33).
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Figure 32 The feed-forward backpropagation network with 12 input nodes,

which correspond to the mean-centered 12 sensor responses), and one output

node, i.e. numerical sensory score (figure modified from Matlab output).
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epochs 100 mu_dec 0.1

goal 0 mu_inr: 10

max_fail 5 mu_max 10000000001 ‘

mem_reduc 1 show 25

min_grad time Inf
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Figure 33 Training parameters of the feed-fonNard backpropagation network

(figure modified from Matlab output).
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Root mean square error (RMSE) was used to evaluate the performance of

the models. RMSE values are determined by calculating the deviations of

predicted responses from their expected ones, summing up the measurements,

and then taking the square root of the sum:

 

iElfi'(Xi')-F(Xi))2

RMSE: i .
n

 

where E(xi) is the predicted response based on the model, F(x,-) is the

expected response, n is the number of specimens. The smaller the RMSE, the

better the performance of the model.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Light-oxidized off-flavors in 2% milk

4.1 .1 . Sensory evaluation

Using a 24-member consumer panel, a series of four triangle tests were

conducted sequentially, to determine if milk exposed for 2, 4, 8, or 12 hours could

be differentiated from the control, i.e. milk stored in aluminum foil-wrapped glass

bottles (Table 10). It showed that light exposure (1000 Ix, 5°C) resulted in a

subtle olfactory change in reduced fat milk after 4 hours (p < 0.20). A significant

overall difference was detected after 8 hours (p < 0.05), and 13 out of 24

consumer panelists had the correct responses. The flavor change was more

noticeable after 12 hours (p < 0.01).

The “occurrence” of light-oxidized off-flavors in milk is dependant on the

light exposure conditions and sensory techniques. The light-oxidized off-flavors

were reported to appear in milk as soon as 15 minutes to 12 hours (Chapter

2.1.3, [6-8, 54, 60, 62]). Fluid milk in clear transparent packages has been shown

to be highly susceptible to consumer-detectable light-induced quality changes

due to retail display. Fluid milk is often displayed for times ranging from at least 8

hours [6, 9] to 2-3 days [10].
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Table 10 Triangle test results on light-oxidized 2% milk in glass bottles against

control, i.e. 2% milk milk stored in aluminum foil-wrapped glass bottles. Tests

were performed by a 24-member consumer panel.

 

 

Duration of light Number of correct responses from

exposure 24 subjects p

2 hours 9 —*

4 hours 11 0.20

8 hours 13 0.05

12 hours 15 0.01
 

Milk samples with differing levels of light oxidation were then evaluated by

an 8-member trained panel, based on ADSA guidelines. The test was performed

in a semi-ascending sequence, such that samples were presented to the

panelists from short to long light exposure times, to avoid the carry-over effect of

light-oxidized off-flavors. The sensory scores of 2% milk in glass bottles

decreased with increase in the duration of light exposure, to a Score of ~5.5 in 24

hours (Table 11 and Figure 34). Compared to the control sample (no light ‘

exposure), the decrease in sensory scores of the milk samples was not

statistically significant until after 36 hours of light exposure (Table 11). However,

the sensory scores of 2% milk decreased after 4 hours of light exposure and

were further reduced in milk exposed to light for 8 hours or longer (Figure 34).

The variances were significantly greater for milk samples exposed to light for 8

hours and longer, which was evidence of the off-flavor “detection” on the part of

the trained panel. Increased variance among different treatments limits the

application of analysis of variance (ANOVA) and multiple comparisons (e.g.

Tukey’s studentized range test) to indicate a change in sensory scores. The
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ADSA guidelines are designed to monitor various off-flavors in milk from different

sources and not specific for light-oxidized off-flavor. Milk samples with “slight”,

“definite” or “pronounced” light-oxidized off-flavors should receive a score of “8”,

“6" or “3”, respectively (chapter 3.3.3). Oxidized but not highly oxidized milk

samples tended to receive a “6” as they contained a “definite” but not quite

“pronounced” off-flavor. Thus similar ratings may be given to milk samples with

slightly different intensities of light oxidized off-flavors. Due to the large variation

and more “clustered” rating scale, light-oxidized quality change was not

statistically significant until after 36 hours of light exposure (1000 Ix), although the

detection of off-flavors by some members of the trained panel was observed in 4

or 8 hours.

The consumers picked up a moderate light-oxidized flavor change after 4

hours of fluorescent light exposure (1000 Ix, 5°C), and the change was significant

after 8 hours and more pronounced after 12 hours. The trained panel gave

significantly lower sensory scores to milk exposed to light for 36 hours or longer,

although the reduction in average sensory scores and increased sensory score

variances indicated that the off-flavor development was occurring in 4 or 8 hours.
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Table 11 Sensory scores of light-oxidized 2% milk based on ADSA guidelines.

Scores were given by an 8-member trained panel.

 

Duration of light S ‘
ensory score

 

exposure (hours)

0 8.50 10.54 a‘

2 8.38 11.06 a,b

4 7.75 10.89 a, b,c

8 6.63 11.60 a, b,c

12 6.38 12.20 a, b,c

24 5.63 12.93 a, b,c

36 5.38 12.62 c

48 5.50 11.77 b,c
 

‘ Means with the same letter are not statistically different at a=0.05 (Tukey’s

studentized range test).
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Figure 34 Flavor sensory scores based on ADSA guidelines of 2% milk in glass

bottles exposed to 0, 2, 4, 8, 12, 24 or 48 hours of fluorescent light (1000 Ix, 5°C).

.; mean values of each treatment; *: possible outliers.
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4.1.2. Headspace analysis using SPME-GC

4.1.2.1. Optimizing the headspace sampling parameters

Two different SPME fibers (CARIPDMS and DVBIPDMS) were used to

collect the headspace volatiles of the standard aqueous solution (pentanal,

hexanal, dimethyl disulfide, methional, and 20 nglml of internal standard 4-

heptanone) at 5, 30 or 45°C for 5, 15 or 25 minutes. Pentanal, hexanal, dimethyl

disulfide and lntemal standard 4-heptanone can be clearly identified and

quantified from the GC chromatograms, while the peak for methional had very

poor resolution and reproducibility (data not shown). Methional is not stable in

aqueous solutions and tends to decompose to lower molecular weight sulfur

compounds such as methyl mercaptan and dimethyl sulfide [1, 20]. Preliminary

testing showed that volatized methional can be collected using a CARIPDMS

fiber, along with decomposed products including dimethyl disulfide.

High temperature may increase SPME volatile adsorptiOn by increasing

the headspace volatile content, or decreasing the adsorbtion by reducing the

partition coefficient of volatiles between the fiber and vial headspace. Sampling

temperatures (5, 30 and 45°C) had the opposite effect on CARIPDMS and

DVBIPDMS fibers, such that higher temperature resulted in more volatile

adsorption by the CARIPDMS fiber (Figure 35a, b and c), but less volatile

adsorption by the DVBIPDMS fiber ((Figure 35, fand g).
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Figure 35 Area responses for (a) pentanal, (b) hexanal and (c) dimethyl disulfide

sampling using CAR/PDMS, or DVBIPDMS fiber (d, e, f, respectivelY). at different

sampling temperatures (9: 5°C, 0: 30°C, 4: 45°C). Error bars show the

standard deviations of three replicates.



Table 12 Coefficient of variation (%CV) for the CARIPDMS fiber used to quantify

volatiles in the standard aqueous solution.

 

Temperature Time
Without Nonnalizatlon Nonnallzed Uslng LS.‘
 

 

(°C) (mln.) PEN HEX DMDS PEN HEX DMDS

5 5 11.50 21.19 20.22 19.96 12.99 18.43

15 10.95 11.54 24.72 24.21 21.98 10.87

25 25.23 38.27 35.71 20.37 11.43 15.74

30 5 2.01 3.45 11.86 13.78 9.24 18.35

15 3.43 6.92 9.57 4.77 3.22 16.32

25 5.34 3.17 8.86 3.30 4.53 6.50

45 5 6.71 5.41 18.09 5.07 4.26 18.07

15 3.55 0.68 12.03 5.36 6.13 9.65

25 2.24 9.55 22.72 16.00 10.61 12.18
 

‘ normalized using the area response of the internal standard 4-heptanone

Table 13 Coefficient of variation (%CV) for the DVBIPDMS fiber used to quantify

volatiles in the standard aqueous solution.

 

 

 

Temperature Time Without Nonnallzatlon Nonnallzed Using LS.1

(°C) (mln.) PEN HEX DMDS PEN ' HEX euros

5 5 5.69 2.10 21.80 2.57 2.35 19.13

15 8.75 4.70 8.99 12.30 2.38 4.91

25 35.87 25.11 31.24 39.84 8.81 12.67

30 5 20.96 23.40 37.63 17.54 9.97 21.96

15 15.83 8.18 7.15 11.78 10.59 9.19

25 16.79 6.97 10.08 22.48 11.73 10.81

45 5 17.40 19.70 70.28 34.16 11.23 59.68

15 9.09 17.52 16.73 16.78 9.37 6.05

25 44.1 1 20.64 6.53 29.62 26.99 8.54
 

7' normalized using the area response of the lntemal standard 4-heptanone
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Sampling methods with higher adsorption may provide better sensitivity

and reproducibility (lower %CV if the standard deviations are similar). The

CARIPDMS fiber, which is designed to analyze tracevolatiles and to have high

affinity to volatiles in general, had much higher area responses than the

DVBIPDMS fiber (Figure 35).

The amounts of pentanal and dimethyl disulfide absorbed by the

CARIPDMS fiber were closer to the equilibrium at higher temperatures (30°C and

45°C), as the increments of adsorbed volatiles overtime were decreasing (Figure

35), while the adsorption was still linearly dependent on sampling time at 5°C.

More time was required for hexanal adsorption to reach equilibrium. SPME may

be used as a pre-equilibrium or an equilibrium sampling technique. If the

sampling time is long enough for a system (among liquid phase, headspace, and

fiber) to reach equilibrium, the area response will not increase with sampling time

(Figure 16). In general, the higher the sampling temperature, the sooner the

system reaches equilibrium. With accurate timing, quantification using SPME is

repeatable, even though equilibrium is not reached. Therefore, sampling using

the CARIPDMS fiber at 45°C for 15 minutes was selected to be used in this study

based on its more reproducible pentanal and hexanal contents, i.e. lower %CV

(Table 12).

The use of an internal standard, 4-heptanone, was suggested [28, 126] to

improve reproducibility. However, normalizing the area responses of pentanal,

hexanal, and dimethyl disulfide with the internal standard did not always reduce

the coefficients of variation (Table 12 and Table 13). The amount of 4-heptanone
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absorbed varied similarly as did the other volatiles, and the variation was not

always cancelled out by normalization. Different volatiles have different affinity to

SPME fibers, which can also be affected by the other volatiles in the system.

Since the internal standard did not always improve the reproducibility of the

process, it was eliminated to simplify the sample preparation and to avoid

unnecessary variation.

4.1.2.2. Quantifying the headspace volatiles of light-oxidized milk

Under fluorescent light exposure (1000 Ix, 5°C), pentanal content

increased rapidly in 2% milk over time, while no significant increase in pentanal

occurred in samples in the dark (Figure 36). It has been reported that [28, 190]

formation of pentanal increased with a second-order polynomial correlation, and

that riboflavin plays an important role in the formation of pentanal. Hexanal

content also increased with increased exposure time, but not as rapidly as

pentanal during the first 12 hours. Marsili (1999) [28] exposed 2% milk to 200 ft-c

(2152 Ix) fluorescent light in half-gallon (1.89 L) HDPE jugs, and found that the

amount of pentanal and hexanal continuously increased, with a more rapid

increase of pentanal for the first 12 hours.

Hexanal, a secondary product of lipid oxidation, has often been used as

an indicator of lipid oxidation. In this study 2% milk exposed to light for 4 hours

had a very mild flavor change (Table 10), and the hexanal level was 2.5110

nglml (i.e. ppm). The light-oxidized off-flavor was detected by consumers when

light exposure time reached 8 hours (p < 0.05), whereas the hexanal content
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remained at about the same level, 2511.1 nglml (Figure 36). Pentanal, which is

also a secondary oxidative product of lipid oxidation but is generated via different

mechanisms than hexanal, had concentrations of 3710.6 and 6210.5 nglml in

2% milk exposed to light for 4 and 8 hours, respectively. Lee (2002) [190] found

that the antioxidants ascorbic acid and BHA (hydrogen atom donors as

antioxidants) decreased the formation of pentanal but that sodium azide (singlet

oxygen quencher) increased the formation of pentanal. Both antioxidants and the

singlet oxygen quencher reduced the formation of hexanal and heptanal.

Dimethyl disulfide has been reported as being mainly responsible for the

light oxidized off-flavors in skim milk, as a major byproduct from milk protein

deterioration [20]. However, the expected increase in dimethyl disulfide was not

detected (Figure 36). Marsili (1999) [28] was not able to quantitatively determine

the concentration of dimethyl disulfide, since the dimethyl disulfide peak

response was very small on the GC chromatograms, obtained using a

CARIPMDS fiber or Tenax trap system coupled with a thermal desorption unit for

headspace sampling. Conversely, Jung et al. (1998) claimed that in skim milk,

dimethyl disulfide content increased significantly within 8 hours of light exposure

(2400 Ix, 20°C) in a 150 ml Erlenmeyer flask. He quantified the amount of DMDS

using a Tenax trap coupled with a thermal desorption unit for headspace

sampling.
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Figure 36 The amount of (a) pentanal (b) hexanal, and (c) dimethyl disulfide in

2% milk with (O) and without (6) light exposure for 0 to 48 hours. Error bars

show the standard deviations of three replicates.
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4.1.3. Headspace analysis using the electronic nose

Figure 37 shows the profiles of sensor response overtime, to the 95°C

headspace samples of 2% milk exposed to fluorescent light for 0 or 48 hours.

The differences between sensor profiles of the two samples were not distinct and

difficult to visually justify by comparing the 12 MOS sensor responses directly.

R-Ro

O

 Therefore the steady-state parameter, max( ), was recorded (Figure 12)

and analyzed using multivariate statistical methods for pattern recognition

(Chapter 3.7).

Unsupervised learning techniques, hierarchical clustering analysis (HCA)

and principle component analysis (PCA), did not show an obvious pattern or

separation among the headspace volatiles generated at 45, 70 or 95°C, for 2%

milk exposed to light for 0, 2, 4, 8, 12, 24, 36 or 48 hours (Figure 38, Figure 39

and Figure 40). Although an unclear pattern with few “outliers” was observed in

the 45°C headspace sample set (Figure 38), the milk samples exposed to 36 and

48 hours of fluorescent light were partially clustered within the group in HCA as

well as PCA. However, it was difficult to define a clear separation boundary.

The first two principle components (PC1 and PC2) were able to explain

88.63% (i.e. 52.44% + 36.19%), 94.21%, and 92.14% of the total data variation

of the 12 sensor responses for 45, 70, and 95°C headspace volatiles,

respectively. That is, after projecting the 12 data dimensions into the two

dimensional space constructed by the PC1 and PC2, most of the total variance

was preserved in the two dimensional models.
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Figure 37 Sensor responses ( ) of the electronic nose to 95°C headspace
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Figure 38 (a) HCA and (b) PCA of the sensor responses for 45°C headspace of

2% milk exposed to 0, 2, 4, 8, 12, 24, 36, or 48 hours of light at 5°C. Sample “d”

was stored in the dark for 48 hours.
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was stored in the dark for 48 hours.
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was stored in the dark for 48 hours.
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Supervised Ieaming techniques (LDA/QDA and k-NN) were applied to

discriminate the sensor responses for 45, 70 and 95°C headspace volatiles of

light oxidized 2% milk (Figure 41, Figure 42, and Figure 43). Discriminatory

methods were evaluated by comparing the correct classification rates (i.e. hit

rates) to the training, validation and test steps. As discussed in Chapter 2.6.2, the

LDA linear approach is more applicable for data with equal group variances,

while QDA may work better for data with unequal group variances (Figure 19).

The equality of normal population parameters was tested, and the results

p > 0.05 (data not shown) indicated there was no strong evidence of unequal

group variances. LDA had a comparable or higher correct identification rate than

QDA at the test steps (Figure 41, Figure 42, and Figure 43). The QDA

identification rates were higher for training and lower for the validation and test

steps, which implied that QDA models might be too optimistic; the quadratic

functions were not necessary for separating groups with equal variances and

therefore more classification mistakes occurred in predicting the group identities

of the unknown samples at the test steps.

Among the k-NN methods with various k, 1-NN had the most correct

identification rate at the test step. When unknown samples were subjected to the

model, their identities were determined by their closest one “neighbor” in the

training data. In 2-NN, 3-NN or 4-NN, taking the closest two, three or four points

did not improve the identification. It is mainly the occurrence of “ties” that

prevents better identification, thus the model is not able to identify the unknown

sample if the two “neighbors” belong to different groups in 2-NN. This also
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implies that the groups were fairly close to each other in the models, so counting

more “neighbors” resulted in lower correct identification rates.

Only one third or less of the light-oxidized milk samples in the test data set

were correctly identified in terms of their exact light exposure duration. Poor

differentiation among the milk samples with similar extent of light oxidation was

mainly responsible for the low identification rates.
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Figure 41 Classification rates for discrimination methods applied to the sensor

responses using a headspace temperature of 45°C for 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, using LDA, QDA, and k-NN for k = 1, 2, 3,

and 4.
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Figure 42 Classification rates for discrimination methods applied to the sensor

responses using a headspace temperature of 70°C for 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, using LDA, QDA, and k-NN for k = 1, 2, 3,

and 4.
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Figure 43 Classification rates for discrimination methods applied to the sensor

responses using a headspace temperature of 95°C for 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, using LDA, QDA, and k-NN for k = 1, 2, and

3.
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The LDA models can be graphically displayed as canonical discrimination

scatter plots (Figure 44a, Figure 45a, and Figure 46a). Independent test data

sets were then evaluated by the models (Figure 44b, Figure 45b, and Figure 46b).

The first two canonical discriminants CAN1 and CAN2 were able to explain

86.20% (i.e. 71.23% + 14.97%), 78.75% and 91.53% of the total variances of the

12 sensor responses for the 45, 70 and 95°C headspace volatiles of the light

oxidized milk, respectively, which means most of the total variance was

preserved in the two dimensional models constructed by CAN1 and CAN2. Milk

samples with the same duration of light exposure were not differentiated

completely, but samples with similar extent of light oxidation still tended to be

closer to each other. This trend was more obvious at 95°C (Figure 46) rather than

70°C or 45°C.

The goodness of the model generalization, i.e. the ability of the models to

be applicable for unknown sample prediction, can be evaluated by comparing the

group regions on the discriminant scatter plots at the training and test steps. The

95°C training and test data had a more consistent group distribution. The test

data belongs to the same group (i.e. same light exposure duration) as was

projected as shown by their similar group territories, compared to the 45°C and

70°C samples. For both training and test data, the groups arranged along the

CAN1 coordinate with the levels of light exposure (Figure 46). It reflected the fact

that all sensors responded to the light oxidized volatiles in a similar way, the

more volatiles, the higher the sensor responses.
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Figure 44 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace of 2% milk samples exposed to 0, 2, 4, 8, 12, 24, 36, or 48

hours of light was generated at 45°C.
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Figure 45 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace of 2% milk samples exposed to 0, 2, 4, 8, 12, 24, 36, or 48

hours of light was generated at 70°C.
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Figure 46 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace of 2% milk samples exposed to 0, 2, 4, 8, 12, 24, 36, or 48

hours of light was generated at 95°C.
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The data were then evaluated by “pooling” the results. Instead of

assigning off-flavor samples to their exact light exposure duration, a “harmful light

exposure time” was defined as the “threshold” point .for milk deterioration, i.e. the

differentiation between the two categories “good” and “bad” which was then

tested. For instance, the LDA or 1-NN model based on the 45°C headspace

samples was able to recognize 89% of 2% milk exposed to light for 24 hours or

longer at the test step (Figure 47). The LDA and 1-NN models based on the 70°C

headspace samples identified 83% of the 2% milk exposed to light for 24 hours

or longer (Figure 48). More importantly, the LDA model based on 95°C

headspace samples correctly recognized 97% of the 2% milk exposed to light for

8 hours or longer (Figure 49), which had comparable sensitivity to the consumer

triangle sensory testing (Table 10).

The electronic nose provided better discrimination at 95°C than at 70°C

and 45°C. Higher headspace temperature increased the amount of volatiles and

resulted in higher sensitivity and better discrimination. Although undesired

volatiles may also be generated due to overheating the milk, it will not be an

issue if the volatiles from overheated milk are consistent or generated in a similar

manner.
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Figure 47 Classification rates of the defined threshold of harmful light exposure

for discrimination methods applied to the sensor responses using a headspace

temperature of 45°C using LDA, QDA, and k-NN for k = 1, 2, 3, and 4.
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Figure 48 Classification rates of the defined threshold of harmful light exposure

for discrimination methods applied to the sensor responses using a headspace

temperature of 70°C using LDA, QDA, and k-NN for k = 1, 2, 3, and 4.
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Figure 49 Classification rates of the defined threshold of harmful light exposure

for discrimination methods applied to the sensor responses using a headspace

temperature of 95°C using LDA, QDA, and k-NN for k = 1, 2, 3.
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4.1.4. Correlation of results from sensory and instrumental analyses

Since light oxidized milk received lower sensory scores and had higher

levels of oxidative byproducts in the headspace, a negative correlation is

expected between sensory quality and headspace volatiles, analyzed using the

electronic nose or SPME-GC. The goal is to set up an instrumental method which

can be applied in a rapid quality evaluation of milk and which has high correlation

to sensory scores.

Headspace pentanal, hexanal, and dimethyl disulfide in 2% milk were

quantified using SPME-GC. Correlation between their headspace volatile

contents and the numerical sensory scores was investigated using PLS (Figure

50) and MLP (Figure 51). The predicted sensory scores and the root mean

square error (RMSE) were used to evaluate the perforrnanoe of the models. The

smaller the RMSE, the better the performance of the model.

The MLP model, which was based on a non-linear backpropagation

algorithm, gave more precise predicted sensory scores and lower root mean

square error (RMSE) than the PLS model. The PLS model is a linear statistical

method and was used to find latent component(s) of the independent variables,

i.e. headspace levels of pentanal, hexanal, and dimethyl disulfide.

Similar RMSE values at the training and test steps in both models

indicated the models were not over-fitted.
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Figure 50 PLS predicted versus actual flavor scores of 2% milk exposed to O, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on levels of pentanal, hexanal and

dimethyl disulfide quantified using SPME-GC. Models were applied to (a) training

data and (b) test data. The reference line indicates equal values of predicted and

actual sensory scores.
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Figure 51 MLP predicted versus actual flavor scores of 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on levels of pentanal, hexanal and

dimethyl disulfide quantified using SPME-GC. Models were applied to (a) training

data and (b) test data. The reference line indicates equal values of predicted and

actual sensory scores.
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PLS and MLP models were also used to investigate the correlation

between sensory scores and electronic nose sensor responses for the 45, 70

and 95°C headspace samples of light oxidized 2% milk (Figure 52 to Figure 57).

It showed that the electronic nose was not able to provide an effective prediction

of sensory scores at 45°C or 70°C headspace, whether the applied model was

PLS or MLP. The 45°C or 70°C headspace temperature was not high enough to

generate sufficient volatiles in the headspace and resulted in low sensitivity and

poor prediction, regardless of the applied multivariate technique.

On the other hand, the sensor responses for 95°C headspace samples

resulted in a relatively more precise prediction (Figure 54 and Figure 57). The

95°C PLS model (RMSE = 0.3828) had predicted sensory scores varied with a

range ~1, which increased slightly but was still reasonable when applying to the

test data set (RMSE = 0.5470). The 95°C MLP model had a low RMSE (0.0040)

and narrower ranges on predicted sensory scores, compared to the 95°C PLS

model (Figure 54a) at the training step. However, it gave a poor prediction at the

test steps (RMSE = 1.0748) which indicates over-fitting by the MLP model.

Training loops based on a backpropagation algorithm may have proceed too long,

which resulted in an over-fitted model. The MLP model was too optimistic for the

training data and failed to be adapted for an independent data. The model did not

cover the reasonable variation among future unknown samples.
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Figure 52 PLS predicted versus actual flavor scores of 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on the sensor responses using a

headspace temperature of 45°C. Models were applied to (a) training data and (b)

test data. The reference line indicates equal values of predicted and actual

sensory scores.
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Figure 53 PLS predicted versus actual flavor scores of 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on the sensor responses using a

headspace temperature of 70°C. Models were applied to (a) training data and (b)

test data. The reference line indicates equal values of predicted and actual

sensory scores.
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Figure 54 PLS predicted versus actual flavor scores of 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on the sensor responses using a

headspace temperature of 95°C. Models were applied to (a) training data and (b)

test data. The reference line indicates equal values of predicted and actual

sensory scores.
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Figure 55 MLP predicted versus actual flavor scores of 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on the sensor responses using a

headspace temperature of 45°C. Models were applied to (a) training data and (b)

test data. The reference line indicates equal values of predicted and actual

sensory scores.
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Figure 56 MLP predicted versus actual flavor scores of 2% milk exposed to 0, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on the sensor responses using a

headspace temperature of 70°C. Models were applied to (a) training data and (b)

test data. The reference line indicates equal values of predicted and actual

sensory scores.
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Figure 57 MLP predicted versus actual flavor scores of 2% milk exposed to O, 2,

4, 8, 12, 24, 36, or 48 hours of light, based on the sensor responses using a

headspace temperature of 95°C. Models were applied to (a) training data and (b)

test data. The reference line indicates equal values of predicted and actual

sensory scores.
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The PLS approach was to find latent component(s) from the sensor

responses that were also relevant to the sensory scores. It was expected that

some of these would be well defined since higher volatile contents or sensor

responses were expected from light-oxidized samples with lower sensory scores.

The MLP was a better model than PLS when over-fitting was not a concern. The

models, developed based on training data, should cover potential variation in

both training and future unknown samples. This usually depends on the

reproducibility of the instrumental measurements or the selection of training data.

4.2. Packaging and light-oxidized off-flavors

4.2.1. Off-flavors from packaging materials

The milk packaging materials, glass, HDPE, HDPE-TiOz, PET, and PE-

coated paper cartons, were cut into ~1 cm2 pieces, sealed in 10 ml headspace

vials, and analyzed using the electronic nose. The sensor responses for the 45,

70 or 95°C headspace samples were then analyzed using the unsupervised

(HCA and PCA) and supervised (LDA/QDA and k-NN) Ieaming techniques.

A natural clustering and clear separation among various packaging

materials were observed on HCA dendrograms and PCA score plots (Figure 58

to Figure 60). PE-coated paper carton (denoted as “P”) headspace samples were

more separated from glass, HDPE and HDPE-TiOz samples at all headspace

temperatures. This implies that PE-coated carton material, which contains

additives from both paper and PE layers, had a distinctively different headspace

volatile composition than that of the glass and plastic materials.
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Figure 58 (a) HCA and (b) PCA of sensor responses for 45°C headspace of

various packaging materials: glass (G), HDPE (H), HDPE-Ti02 (T), PET (E), and

PE-coated carton material (P).
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Figure 59 (a) HCA and (b) PCA of sensor responses for 70°C headspace of

various packaging materials: glass (G), HDPE (H), HDPE-TiOz (T), PET (E), and

PE-coated carton material (P).
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Figure 60 (a) HCA and (b) PCA of sensor responses for 95°C headspace of

various packaging materials: glass (G), HDPE (H), HDPE-TiOz (T), PET (E), and

PE-coated carton material (P)
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Supervised Ieaming techniques, LDA/QDA and k-NN for k = 1 to 4, were

used to build differentiation and recognition models (Figure 61 to Figure 63). The

training data did not have significant evidence of unequal variance among groups,

i.e. testing the equality of normal population parameters had p > 0.05 (data not

shown), thus using the quadratic approach (QDA) was not necessary and may

have overfitted, which resulted in lower correct identification rates. Instead, the

linear boundaries (LDA) provided better recognition for the unknown samples at

the test step. The nonparametric k-NN approach had the same correct

identification rates at all k’s as did the LDA. The high and constant correct

identification rates indicated that the groups were well-separated in the models,

therefore, the classification did not depend on the discriminant methods.
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Figure 61 Correct classification of various discrimination methods applied to

sensor responses for the 45°C headspace of various packaging materials, using

LDA/QDA and k-NN for k-- 1, 2, 3, 4.
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Figure 62 Correct classification rates of various discrimination methods applied

to sensor responses for the 70°C headspace of various packaging materials,

using LDA/QDA and k-NN for k = 1, 2, 3, 4.

C
o
r
r
e
c
t
I
d
e
n
t
i
fi
c
a
t
i
o
n

1.0
 

0.9 1

0.8 -

0.7 -

0.6 a

0.5 -

0.4 .

0.3 1

0.2 -

0.1 .

  
A

V

 

 

—e—Training

+Validation

- . e-- Test   
  0.0  I I I I I

LDA QDA 1-NN 2-NN 3—NN 4-NN

Discrimination Method

Figure 63 Correct classification rates of various discrimination methods applied

to sensor responses for the 95°C headspace of various packaging materials,

using LDA/QDA and k-NN for k = 1, 2, 3, 4.
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The correct identification rates at the test steps for the LDA and k-NN

models were 0.6, 0.7 and 0.95 for models based on 45, 70 and 95°C headspace

samples, respectively (Figure 61 to Figure 63). More volatiles were released at

higher headspace temperature, which resulted in more intense sensor responses,

and gave more clearly defined regions for correct recognition of unknown

samples.

Linear discriminant models can be graphically displayed in two-

dimensional canonical discriminant scatter plots (Figure 64 to Figure 66). The

first two discriminants, CAN1 and CAN2, explained 99.73%, 99.05% and 96.42%

of the total variance of the sensor responses for 45, 70, and 95°C headspace

samples, respectively. It showed clear separation among the different packaging

materials. Unknown samples (i.e. an independent test data set), while being

projected to the models, were mostly located at the expected regions, with A

slightly larger group variances. The PE-coated carton material and PET were

well separated from the other packaging materials, and all PE-coated carton

material and PET samples in the test data set were fully recognized using LDA or

k-NN (data not shown).

The closeness of glass, HDPE and HDPE-TiOz headspace samples was

responsible for the incorrect identification. This implies that the headspace

volatiles from HDPE (and HDPE-TiOz) were relatively low, which resulted in

similar sensor responses to glass, which is an inert material and no or little

headspace volatiles were expected under the test conditions.
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Figure 64 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace samples of various packaging materials: glass (G), HDPE (H),

HDPE-Ti02 (T), PET (E), and PE-coated carton material (P), were generated at

45°C.
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Figure 65 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace samples of various packaging materials: glass (G), HDPE (H),

HDPE-TiOz (T), PET (E), and PE-coated carton material (P), were generated at

70°C.
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Figure 66 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace samples of various packaging materials: glass (G), HDPE (H),

HDPE-TiOz (T), PET (E), and PE-coated carton material (P), were generated at

95°C.
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Direct analysis of the packaging materials led to more intense sensor

responses from the more concentrated headspace volatiles and resulted in (clear

differentiation. In addition, significantly less interference from water vapor was

expected, since MOS sensors also respond to water vapor, which is odorless.

However, not all types of volatiles in packaging materials will migrate to food

contents; when the migration takes place, not all amounts will migrate to the food

matrix. Quantifying the volatiles from packaging materials directly may not

correctly reflect the actual impact of migration of packaging off-flavors, which

were mostly not detected by consumers.

4.2.2. Packaging off-flavors in water and 2% milk

4.2.2.1. Sensory evaluation

Two series of triangle tests, each performed by 24 consumer panelists,

were conducted to investigate if the direct contact of packaging materials (glass,

HDPE, PET and PE-coated paper cartons) resulted in detectable flavor changes

in water or 2% milk at 5°C for 3 days. It was found that water stored in HDPE

bottles had a very mild flavor difference (p < 0.10) from the control, i.e. deionized

water (Table 14). No significant packaging off-flavors in 2% milk were detected

(Table 15).

Packaging off-flavors from HDPE bottles were very subtle but still had the

most correct responses from the consumers among the tested packaging

materials, in both water and 2% milk (Table 14 and Table 15). Oxidative

hydrocarbons generated during plastic processing are responsible for the
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packaging off-flavors [11-13], and the intensities vary dependent on the severity

of the processing conditions (temperature and/or pressure).

Table 14 Triangle test results on HPLC grade water in glass, HDPE, PET bottles

and PE-coated paper cartons at 5°C for 3 days; HPLC grade water stored in a

4 L amber glass jug was used as the control. Tests were performed by a 24-

member consumer panel.

 

Number of Correct Responses from

 

Packaging Material 24 Subjects p

Glass 9 -

HDPE 12 0.10

PET 8 —

Paper Cartons 7 --
 

Table 15 Triangle test results on 2% milk in glass, HDPE, PET bottles and PE-

coated paper cartons, at 5°C for 3 days; 2% milk stored in a 4 L amber glass

jugs was used as the control. Tests were performed by a 24.-member consumer

panel

 

Number of Correct Responses from

 

Packaging Material 24 Subjects p f

Glass 6 -

HDPE 10 --

PET 9 —

Paper Cartons 6 -
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The results are contrary to those from analysis of the packaging materials

using the electronic nose, where HDPE was found to have less headspace

volatiles than PET and PE-coated carton material (Figure 64 to Figure 66).

Qualitatively, the volatiles in the high temperature headspace (45, 70 or 95°C for

the electronic nose analysis) of packaging materials were not necessarily odor-

active migrants causing packaging off-flavors in water or 2% milk after storage at

5°C for 3 days. In addition, the responses and threshold levels of volatiles are

different for the human nose and the electronic nose. Quantitatively, analysis of

the potential migrants in packaging materials directly may overestimate the

concentrations of the actual migrants. In addition, the migrants which cause

packaging off-flavors may have low volatility and mostly exist in the liquid phase

instead of the headspace.

An 8-member trained panel evaluated 2% milk in glass, HDPE, HDPE-

TiOz, PET bottles and PE-coated paper cartons, and was not able to show a

significant flavor change, when stored at 5°C for 3 days (Table 16 and Figure 67).

2% milk samples in glass bottles received a slightly lower score (6.38:1:2.07) than

2% milk in HDPE (7.001177) and HDPE-Ti02 (77511.39), which have been a

result of the large variance of the sensory scores. Statistically, 2% milk in glass,

HDPE, HDPE-TI02 and PET bottles did not have significant flavor difference

(Table 16). Samples in PE-coated cartons had a slightly lower absolute sensory

score (4.63:2.26). However, there was no strong evidence of a significant flavor

change in PE-coated cartons, due to the highly diverse sensory scores (two

outliers at score 1 and 9).
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Table 16 Sensory scores of 2% milk in glass, HDPE, HDPE-TiOz, PET bottles

and PE-coated paper cartons at 5°C for 3 days. Scores were given by an 8-

member trained panel. .

 

 

Duration of light Sensory Score

exposure (hours) (average 1 standard deviation)

Glass 6.38 12.07 a b

HDPE 7.00 11.77 a b

HDPE-Ti02 7.75 11.39 a

PET 5.88 12.90 a b

Paper Carton 4.63 12.26 b
 

‘ Means with the same letter are not statistically different at 0 =0.05 (Tukey’s

studentized range test).
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TiOz, PET bottles, and PE-coated paper cartons, at 5°C for 3 days.
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The highly diverse sensory score, especially for the samples stored in

PET and PE-coated cartons, might indicate detection of packaging off-flavors by

part of the trained panel. The same trained panel (but not conducted on the same

day) gave a sensory score of 8.501054 to the 2% milk in glass bottles and

stored in the dark for 48 hours (Table 11), which was unexpectedly different from

the score assigned to the 2% milk in glass bottles and stored in the dark for 3

days (63812.07). Several panelists commented that there was long lasting

aftertaste in water and 2% milk stored in various packaging materials (data not

shown). Since the samples were evaluated in random order, the aftertaste of

packaging off-flavors may have interfered with the evaluation of further samples,

and led to the large variance in sensory scores.

4.2.2.2. Headspace analysis using the electronic nose

The 95°C water and 2% milk headspace samples were analyzed using the

electronic nose. Unsupervised Ieaming techniques, HCA and PCA, did not show

an obvious pattern or separation among the water or 2% milk samples stored in

various packaging materials at 5°C for 3 days (Figure 68 and Figure 69).
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Figure 68 (a) HCA (b) PCA of sensor responses for the 95°C headspace of

water stored in various packaging materials: glass (G), HDPE (H), HDPE-TiOz

(1'), PET (E), and PE-coated paper cartons (P), at 5°C for 3 days. Control (C) is

water from the original 4L amber glass jug.
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Figure 69 (a) HCA (b) PCA of sensor responses for the 95°C headspace of 2%

milk stored in various packaging materials: glass (G), HDPE (H), HDPE-TiOz (T),

PET (E), and PE-coated paper cartons (P), at 5°C for 3 days. Control (C) is milk

from the original gallon HDPE jug.
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Supervised Ieaming techniques, LDA/QDA and k-NN for k = 1 to 4, had

poor correct identification rates at the test step, for water and 2% milk stored in

various packaging materials less than 0.3 and 0.2, respectively (Figure 70 and

Figure 71). A graphical display of LDA results as canonical discriminant scatter

plots showed a grouping trend, but no group separation in the models can be

clearly defined (Figure 72a and Figure 73a). When projecting unknown samples

on the models, it showed poor recognition for both water and 2% milk samples

(Figure 72b and Figure 73b). The headspace volatiles of each packaging

material were clearly differentiated by the electronic nose (Figure 66), while the

water or 2% milk samples were not able to be differentiated based on their

packaging materials. It was probably a result of low concentration of the migrants

in the water and 2% milk headspace, and the interference of water vapor, which

MOS sensors respond to. Maneesin (2001) [73] and Das (2003) [66] found that

the electronic nose (FOX 3000, AlphaMOS) was capable of discriminating

volatiles originated from different HDPE jugs or resins, but the water samples

having direct contact to the HDPE or resins were not fully differentiated.

In conclusion, packaging off-flavors did not prove to be a concern from

storing 2% milk in glass, HDPE, HDPE-TiOz and PET bottles, and PE-coated

paper cartons (half-pint, 237 ml) at 5°C for 3 days. Both sensory and instrumental

analyses did not indicate any strong evidence of significant packaging off-flavors.
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Figure 70 Correct classification rates of various discrimination methods applied

to sensor responses for 95°C headspace of water in various packaging materials,

using LDA/QDA and k-NN for k = 1, 2, 3, 4.
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Figure 71 Correct classification rates of various discrimination methods applied

to sensor responses for 95°C headspace of 2% milk in various packaging

materials, using LDA/QDA and k-NN for k = 1, 2, 3, 4.
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Figure 72 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace samples of water stored in various packaging materials: glass

(G), HDPE (H), HDPE-TiOz (T), PET (E), and PE-coated paper cartons (P), were

generated at 95°C.
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Figure 73 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace samples of 2% milk stored in various packaging materials:

glass (G), HDPE (H), HDPE-TiOz (T), PET (E), and PE-coated paper cartons (P),

were generated at 95°C.
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4.2.3. Packaging and light oxidized off-flavors in 2% milk

Packaging materials also have different light barrier properties and thus

offer different protection for milk against light-induced oxidation, which can be

induced by light in both the UV and visible ranges (chapter 2.1.1). Glass is a very

poor light barrier and allows light in the higher UV range (300- 400 nm) and

throughout the visible range (400-700 nm) to pass through (Figure 8). Clear

transparent PET also allows light transmission in the higher UV range (320- 400

nm) as well as 90% of the visible light (400-700 nm) to transmit into the product

(Figure 74). Translucent, unpigmented HDPE has up to 70% light transmission at

400—700 nm. Addition of TiOz to HDPE reduces light transmission significantly,

from ~ 70% to < 20% of visible light. PE-coated paper cartons have the lowest

visible light transmission ~ 10%, and the blue colored portion provides additional

light protection at 550-750 nm. Table 17 shows the thickness of the tested

packaging materials.

To protect milk and other dairy products from photosensitized oxidation in

the presence of riboflavin, it is critical to reduce the UV and visible light

transmission, especially at 500 nm and below (Figure 7). Addition of white (TiOz)

and/or yellow pigment results in substantial reduction in light transmission [84].

Paper cartons had the lowest light transmission, and more protection can be

expected from the paper cartons printed in deep yellow or orange [1], although it

has been reported that similar protection is provided by paper cartons printed in

different colors (unpigmented, yellow, red, blue, and black) [8].

178



Table 17 Thickness of the tested packaging materials.

 

 

 

 

  
 

Packaging material Thickness1 (mil) Thickness (mm)

HDPE 30.7134 077910.086

HDPE-Ti02 29211.5 ' 074110.037

PET 19611.9 049910.048

PE-coated paper carton 17.0101 043210.002

‘ measured using a micrometer (Model 549, Testing Machines, lnc., Amityville,

MY.)
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Figure 74 Percent light transmission (200-1100 nm) of various packaging

materials: (a) PET; (b) HDPE; (c) HDPE-TiOz; (d) PE-coated paper cartons in

white; (e) PE-coated paper cartons (blue).
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4.2.3.1. Sensory evaluation

A series of triangle tests (Table 18) showed that 2% milk in PE-coated

paper cartons had no significant olfactory quality change after exposure to 12

hours of fluorescent light (1000 Ix) at 5°C, while light-induced quality change in

milk stored in other packaging materials (HDPE, HDPE-TiOz and PET) was

detectable by consumers. Incorporation of the pigment Ti02 into HDPE (HDPE-

TiOz) reduced but did not eliminate flavor changes (p < 0.01), compared to HDPE

and PET (p < 0.001). The light protection offered by milk packaging was closely

related to their light barrier properties (Figure 74). Paper cartons allowed the

least light transmission and provided the best light protection among the

packaging materials tested, followed by HDPE-TiOz.

Table 18 A series of triangle tests on 2% milk stored in HDPE, HDPE-TiOz, PET

bottles and PE-coated paper cartons, and exposed to 12 hours of fluorescent

light at 5°C; 2% milk stored in aluminum foil wrapped glass bottles was used as

the control. Tests were performed by a 24-member consumer panel.

 

Packaging Material Number of Correct Responses from

 

24 Subjects

HDPE 17 0.001 ,

HDPE-TiOz 15 0.01

PET 17 0.001

Paper Carton 9 -
 

The sensory scores, from an 8-member trained panel, of 2% milk in paper

cartons and HDPE-TiOz bottles were slightly, but not significantly, higher than

others (Table 19 and Figure 75).
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Table 19 Sensory scores of 2% milk stored in glass, HDPE, HDPE-TiOz, PET

bottles, and PE-coated paper cartons, and exposed to 12 hours of fluorescent

light at 5°C. Scores were given by an 8-member trained panel.

 

 

. . Senso score

133611391119 material (average 1 starrIIdard deviation)

Glass 5.75 12.55 a

HDPE 5.25 12.92 a

HDPE-Ti02 6.50 11.41 a

PET 5.25 12.19 a

Paper Carton 6.88 12.36 a
 

1 Means with the same letter are not statistically different at o = 0.05 (Tukey’s

studentized range test).
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Figure 75 Sensory scores using a trained panel of 2% milk stored in glass,

HDPE, HDPE-TiOz, PET bottles, and PE-coated paper cartons exposed to 12

hours of light at 5°C.

181



Milk exposed to light for 12 hours in glass bottles received similar sensory

scores of 6.381220 (Table 11) and 57512.55 (Table 19) in different tasting

sessions. It indicates a reproducible sensory ability of the trained panel for light

oxidized off-flavors.

4.2.3.2. Headspace analysis using the electronic nose

Unsupervised Ieaming techniques, HCA and PCA, did not show an

obvious pattern or separation among the light oxidized 2% milk samples stored in

various packaging materials (Figure 76). 1

Supervised Ieaming techniques, LDA and 1-NN, had correct identification

rates at the test step, 0.54 and 0.63, respectively (Figure 77). Graphical display

of LDA results as canonical discriminant scatter plots showed a grouping trend

and partial differentiation (Figure 78a), when samples with no or moderate light-

oxidized off-flavors (control, paper cartons and HDPE-TiOz) were clearly

differentiated from oxidized samples (glass, HDPE and PET). The first canonical

variable (CAN 1) explained 97.09% of the total variance. Along the CAN1

coordinate, the control (milk in aluminum foil wrapped glass bottles), PE-coated

paper cartons and HDPE-TiOz, glass, HDPE and PET, were roughly aligned in

the order of expected “good milk” to “light-oxidized milk”, based on light barrier

properties of the packaging materials. The distribution was less distinct when

projecting unknown samples on the models (Figure 78b). A similar trend was

also observed among the light oxidized 2% milk prepared in glass bottles for 0 to

48 hours (Figure 46).
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milk exposed to fluorescent light at 5°C for 12 hours, in various packaging

materials: glass (G), HDPE (H), HDPE-TiOz (1), PET (E), and PE-coated paper
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PE-coated paper cartons provided the best light barrier and resulted in the

least light-oxidized off-flavors in 12 hours of light exposure, compared to glass,

HDPE, HDPE-TiOz and PET, although the potential for packaging off-flavors in

paper cartons has been reported [13, 81] and recognized as a flavor defect

“lacks freshness” in the ADSA sensory guidelines (Table 8). Since the amounts

of migrants, e.g. oxidative hydrocarbons, at the surface of the PE coating depend

on the processing conditions, the intensity of packaging off-flavors varies. In this

study the packaging off-flavors were not significantly perceived by either

consumer or trained panels. Compared to light-oxidized off-flavors, the

packaging off-flavors were less intense and more difficult to detect.
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Figure 77 Correct classification rates of various discrimination methods

(LDA/QDA and k-NN for k = 1, 2, 3, 4) based on sensor responses for 2% milk

stored in various packaging materials and exposed to fluorescent light at 5°C for

12 hours.
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Figure 78 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace of 2% milk stored in glass (G), HDPE (H), HDPE-TiOz (T), PET

(E), and PE-coated paper cartons (P) and exposed to light for 12 hours was

generated at 95°C.
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4.3. Light oxidation of Cheddar cheese

A Cheddar cheese block (21.3 kg) was cut into one pound (454 9) pieces,

vacuum sealed in Nylon/PE bags, and exposed to cool-white fluorescent light

(2000 lx) at 5°C for 0, 2, 4 or 6 weeks. The surface slabs (top surface) and

interior slabs (1 cm below the top surface) were sampled and evaluated by both

sensory and instrumental analyses, to determine any quality changes in color

and flavor.

4.3.1. Discoloration of Cheddar cheese

Annatto extract, the water based colorant, was used to enhance the color

appearance of the Cheddar cheese, however, it is also susceptible to oxidation

and sensitive to processing parameters such as pH and temperature [89]. A 9-

member trained panel using a different-from-control test was used to investigate

the color change in Cheddar cheese due to light exposure (Table 11 and Figure

79). Cheddar cheese had a significant color change on the top surface in 2

weeks, and a more pronounced discoloration when exposed to light for 4 and 6

weeks. Visual examination revealed that color bleaching was responsible for the

differences in color. The Cheddar cheese surface slab which was wrapped in

aluminum foil, i.e. no light exposure, had the same color as the interior slabs of

all cheese samples, regardless of the light exposure duration of the cheese

samples. The interior slabs did not show significant change in flavor or color,

which shows that the light-induced discoloration only took place at the top

surface, which was the portion exposed to light.
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Table 20 Difference-from-control sensory scores in color1 of Cheddar cheese

samples. Interior and surface slabs were taken from Cheddar cheese blocks at

0, 2, 4 or 6 weeks of light exposure (2000 Ix). Scores were given by a 9-member

trained panel.

 

Time (weeks) Color (different-from-control)

 

 

Interior Surface

0 0.22 10.44 C 0.33 10.50 c

2 0.44 10.53 c 2.00 10.71 b

4 0.22 10.44 c 3.00 10.87 a

6 0.22 10.44 C 3.00 10.87 a
 

1 Ranged from 0: no difference to 5: extreme difference.

2 Means with the same letter are not statistically different at 0 =0.05 (Tukey’s

studentized range test).
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Figure 79 Difference-from-control sensory scores in color of Cheddar cheese

samples. (a) Interior and (b) surface slabs were taken from Cheddar cheese

blocks at 0, 2, 4 or 6 weeks of light exposure (2000 Ix). .; mean values of each

treatment; .1; possible outliers.
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Color measurements using a spectrophotometer (CIE L* a* b*) showed a

significant increase in lightness (L*) and decrease in redness (a*) and yellowness

(b*), on the top surface of Cheddar cheese exposed to light (Table 21).

Yellowness decreased continuously over the 6 weeks of the light exposure (2000

Ix), from 45.361 0.82 to 30.601 0.73. Redness started to drop after 4 weeks.

Lightness had a relatively small increase over the 6 weeks period.

The overall color change (AE) represents the color differences between

the sample and control, i.e. vacuum packed Cheddar cheese wrapped in

aluminum foil. The AE values showed a similar trend as the different-from-control

sensory scores, with smaller variation (Figure 79). The color change of the top

surface took place in 2 weeks, and developed further in 4 and 6 weeks.

Hong et al. (1995) [90] suggested using hue angles (0° for red and 90° for

yellow) to measure the color change of Cheddar cheese, to evaluate “pink

discoloration”, a common problem that is normally a result of several processing

factors such as cooking temperature, emulsifying salts [92], pH or light exposure

[90]. They reported that Cheddar cheese exposed to fluorescent light (3500 lx,

cool-white) at 8°C for 14 days had significant decreases in yellowness and hue

angles as the oxygen transmission rates of the packaging films increased. Table

22 shows the hue angles of the Cheddar cheese samples. The top surface of the

Cheddar cheese that was exposed to fluorescent light (2000 Ix) had a significant

decrease in hue angles (i.e. more “pink” in color visually) in 2 weeks, while no

further decrease in hue angles was observed in 4 or 6 weeks.
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Table 21 Color measurements (CIE L* a* b*) of the Cheddar cheese samples

exposed to 0, 2, 4 or 6 weeks of the fluorescent light (2000 Ix).

 

 

 

Time (weeks) Lightness (L*)

Interior Surface

0 75.141 0.25 b, c1 74.811 0.40 c

2 75.161 0.46 b, c 75.53: 0.35 a, b

4 75.001 0.43 b, c 75.70: 0.32 a

6 74.941 0.32 0 76.001 0.45 a
 

1 Means with the same letter are not statistically different at a = 0.05 (Tukey’s

studentized range test).

 

Time (weeks)

Redness (a*)

 

 

Interior Surface

0 12.061 0.27 b1 11.801 0.30 b

2 12.591 0.21 a 11.701 0.40 b

4 12.521 0.26 a 10.291 0.28 c

6 12.751 0.13 a 9.891 0.24 d
 

I Means with the same letter are not statistically different at a = 0.05 (Tukey’s

studentized range test).

 

Yellowness (b*)

Time (weeks)
 

 

Interior Surface

0 46.891 0.55 a1 45.361 0.82 b

2 46.201 0.59 a, b 37.571 0.76 c

4 45.731 0.44 b 32.811 0.72 d

6 45.731 0.76 b 30.601 0.73 e
 

1 Means with the same letter are not statistically different at a = 0.05 (Tukey’s

studentized range test).
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Figure 80 Color difference (AE) of Cheddar cheese samples. (a) Interior and (b)

surface slabs were taken from Cheddar cheese blocks with 0, 2, 4, 6 weeks of

light exposure (2000 Ix). 0: mean values of each treatment; at: possible outliers.

h
-
1

0
'
1

9,, as .1. E11 53

Table 22 Hue angle, tan'1(bla), of the Cheddar cheese samples exposed to 0, 2,

4 or 6 weeks of the fluorescent light (2000 Ix).

 

Time (weeks) Hue angle (degree)

 

 

Interior Surface

0 75.57 10.27 a1 75.42 10.35 a

2 74.76 10.26 b 72.71 10.31 c

4 74.71 10.31 b 72.59 10.47 c,d

6 74.42 10.33 b 72.08 10.68 c,d

1 Means with the same letter are not statistically different at a = 0.05 (Tukey’s

studentized range test).

 

190



4.3.2. Body and texture of Cheddar cheese

Sensory tests were conducted to evaluate if there was a change in the

body and texture of the Cheddar cheese, due to the light exposure. A different-

from-control test (from 0: no difference to 5: extreme difference) showed no

significant changes occurred (Table 11 and Figure 81). There was a slight but not

significant increase in the “differences” in body and texture of the top surface

slabs exposed to light for 4 or 6 weeks.

“Body and texture” is part of the sensory quality evaluation of Cheddar

cheeses, based on ADSA guidelines (Table 9). A score from 5 (no criticisms) to 1

(poor quality) was assigned based on the sample defects in body and texture, e.g.

crumbly, pasty or weak. The results were in agreement with the different-from-

control test. No significant deterioration in body and texture, and slight but not

significant decreases in the sensory scores of the top surface of the Cheddar

cheese occurred for cheese exposed to light (Table 11 and Figure 81).
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Table 23 Difference-from-control sensory scores of body and texture1 of

Cheddar cheese samples. Interior and surface slabs were taken from Cheddar

cheese blocks with 0, 2, 4 or 6 weeks of light exposure (2000 lx). Scores were

given by a 9-member trained panel.

 

Time (weeks) Body and Texture (different-from-control)

 

 

Interior Surface

0 0.44 10.73 a 0.11 10.33 a

2 0.22 10.44 a 0.56 11.01 a

4 0.56 10.88 a 1.44 11.33 a

6 0.56 10.73 a 1.44 11.42 a
 

1 Ranged from 0: no difference to 5: extreme difference.

2 Means with the same letter are not statistically different at a = 0.05 (Tukey’s

studentized range test).
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Figure 81 Difference-from-control sensory scores for body and texture of

Cheddar cheese samples. (a) Interior and (b) surface slabs were taken from

Cheddar cheese blocks with 0, 2, 4 or 6 weeks of light exposure (2000 Ix). -:

mean values of each treatment; *2 possible outliers.
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Table 24 Sensory scores of body and texture of Cheddar cheese samples,

based on ADSA guidelines1. Interior and surface slabs were taken from Cheddar

cheese blocks with 0, 2, 4 or 6 weeks of light exposure (2000 lx). Scores were

given by a 9-member trained panel.

 

Body and Texture (ADSA)

 

 

Time (weeks)

Interior Surface

0 4.56 1 0.53 a 4.89 1 0.33 a

2 4.44 1 0.53 a 4.78 1 0.44 a

4 4.56 1 0.53 a 4.22 1 0.67 a

6 4.44 1 0.73 a 4.11 1 0.78 a
 

1 Ranged from 1: poor quality to 5: no criticisms.

2 Means with the same letter are not statistically different at 0 =0.05 (Tukey's

studentized range test).
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Figure 82 Sensory scores for body and texture of Cheddar cheese samples,

based on ADSA guidelines. (a) Interior and (b) surface slabs were taken from

Cheddar cheese blocks with 0, 2, 4, 6 weeks of light exposure (2000 IX). 0: mean

values of each treatment; *: possible outliers.
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4.3.3. Light-induced flavor changes of cheese

4.3.3.1. Sensory evaluation

Different-from-control evaluation (Table 11 and Figure 81) showed a

significant flavor difference from the control, on the top surface of the Cheddar

cheese exposed to light for 2 weeks. After 4 weeks of light exposure, differences

were slightly but not significantly higher, and remained almost constant at 6

weeks. The sensory scores from the trained panel (Table 26 and Figure 84) were

in agreement with the different-from-control test. The scores were assigned to

samples based on the flavor criticisms of Cheddar cheese, e.g. bitter, high acid

or rancid, etc. (Table 9). From the listed 13 criticisms, the top surface of Cheddar

cheese exposed to light for 2, 4, or 6 weeks received lower sensory scores due

to the criticisms such as “oxidize , rancid” and “unclean” (data not shown).

4.3.3.2. Headspace analysis using SPME-GC

Using the CARIPDMS fiber coupled with GC, 24 volatiles were identified

by comparing the peak retention times of the samples to standards (Table 27).

The volatiles identified in the Cheddar cheese headspace included aldehydes,

ketones, alcohols, acids and sulfur compounds. It was reported [105] that

aldehydes and ketones were the major constituents of the volatile fraction of

shredded Cheddar cheese packaged under C02 and N2, respectively. Acetic

acid and sulfur compounds were also quantified. High concentrations of lipid

oxidation products, e.g. aldehydes, appeared in light-oxidized shredded

Cheddar cheese.
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Table 25 Difference-from-control sensory scores in flavor1 of Cheddar cheese

samples. Interior and surface slabs were taken from Cheddar cheese blocks at

0, 2, 4 or 6 weeks of light exposure (2000 Ix). Scores were given by a 9-member

trained panel.

 

Time (weeks) Flavor (different-from-control)

 

 

Interior Surface

0 0.56 10.73 b 0.56 10.73 b

2 1.11 11.05 b 2.44 11.01 a

4 0.78 10.97 b 3.67 11.00 a

6 0.56 10.73 b 3.56 10.88 a
 

TRanged from 0: no difference to 5: extreme difference.

2 Means with the same letter are not statistically different at 0 =0.05 (Tukey’s

studentized range test).
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Figure 83 Difference-from-control sensory scores in flavor of Cheddar cheese

samples. (a) Interior and (b) surface slabs were taken from Cheddar cheese

blocks at 0, 2, 4, or 6 weeks of light exposure (2000 Ix). 0: mean values of each

treatment; 1: possible outliers.
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Table 26 Flavor sensory scores of Cheddar cheese samples based on ADSA

guidelines1. Interior and surface slabs were taken from Cheddar cheese blocks

with 0, 2, 4 or 6 weeks of light exposure (2000 Ix). Scores were given by a 9-

member trained panel.

 

Flavor (ADSA)

 

 

Time (weeks)

Interior Surface

0 8.89 10.60 a,b 8.89 10.93 a,b

2 8.89 10.60 a,b 7.22 11.56 b

4 8.44 11.33 a,b 5.22 11.48 b

6 9.11 10.33 a 5.11 12.03 b
 

1 Ranged from 1: poor quality to 10: no criticism.

2 Means with the same letter are not statistically different at 0 =0.05 (Tukey’s

studentized range test).
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Figure 84 Flavor sensory scores of Cheddar cheese samples based on ADSA

guidelines. (a) Interior and (b) surface slabs were taken from Cheddar cheese

blocks with 0, 2, 4, or 6 weeks of light exposure (2000 IX). 0: mean values of

each treatment; *2 possible outliers.
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Table 27 Volatiles identified1 in the headspace (60°C, 15 minutes) of Cheddar

 

 

cheese.

Peak Compound Retention time (min) Selected2

1 pentane+hexane 5.80 *

2 heptane 6.61 *

3 acetaldehyde 6.80 _ *

4 carbon disulfide 6.93

5 methyl sulfide 7.40 *

6 acetone 8.60 *

7 ethyl acetate 9.28 *

8 methanol 9.85 *

9 2-butanone 9.94

10 2-propanol 10.29

1 1 ethanol 10.58 *

12 pentanal 1 1.76 *

13 2-butanol 12.92

14 1-propanol 13.27

15 dimethyl disulfide 14.75

16 2-methyl-1-propanol 14.84

17 hexanal 14.88 *

18 1-butanol 16.64 *

19 heptanal 18.10 *

20 2-heptanone 18.16

21 1-pentanol 20.10 *

22 acetic acid 26.95 *

23 propionic acid 29.47 *

24 butanoic acid 31.73 *
 

1 Comparing retention time of the standards.

2 Peaks with better reproducibility were selected for further multivariate

analyses
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Peak compounds with good reproducibility were selected for further

multivariate analyses, i.e. HCA/PCA to investigate the sample differences.

LDA/QDA and k-NN were used to build models for unknown sample recognition,

and PLS/MLP to correlate the area responses of the selected volatiles to the

flavor sensory scores from the trained panelists (Table 26 and Figure 84).

Using the unsupervised learning techniques, HCA and PCA, showed clear

separation (Figure 85) between the surface slabs (SO, 82, S4, and S6) and

interior slabs (l0, l2, l4, and I6), except for two “outliers” (82 and S4). Further

group separation among the group of surface slabs (i.e. the top surface of the

Cheddar cheese samples) showed changes in the headspace volatile contents

due to light exposure, whereas the interior slabs (i.e. 1 cm depth from the top

surface) were relative close to each other on the PCA score plot (Figure 85b).

Supervised models using LDA/QDA and k-NN for k = 1 to 3 (Figure 86)

showed high correct identification rates at the training and test steps.

Considering the overall model performance, 1-NN provided the best

discrimination (Figure 86). Its correct identification rates were the highest at the

training and test steps, and relatively higher than LDA/QDA at the validation step.

Clear discrimination between different samples and an accurate identification of

unknown samples was shown for the LDA model graphically presented on the

canonical discriminant plots (Figure 87). The first two discriminants, CAN1 and

CAN2, explained 99.74% of the total variance. Note that CAN1 explained most of

the variation between interior and surface slabs, and CAN2 was able to identify

samples with different light exposure times.
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Figure 85 (a) HCA and (b) PCA of area response of SPME-GC. Headspace

samples were the interior (l0, l2, l4 and I6) and surface slabs (SO, 82, S4, S6) of

the Cheddar cheese samples exposed to fluorescent light for 0, 2, 4, or 6 weeks.
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Figure 86 Correct classification rates of various discrimination methods

(LDA/QDA and k-NN for k = 1, 2, 3, 4) based on headspace volatiles of interior

and surface slabs of the Cheddar cheese samples exposed to fluorescent light

for 0, 2, 4 or 6 weeks, quantified using SPME-GC.
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Figure 87 Canonical discriminant scatter plots of headspace volatile contents

quantified using SPME-GC of (a) training (b) test data, Headspace samples of

interior (l0, l2, l4, l6) and surface (SO, 82, S4, S6) slabs of the Cheddar cheese,

were generated at 60°C.
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Although the discriminant models showed clear group separation (Figure

87) and high correct identification rates (Figure 86), they may not be useful to

identify the light-oxidized Cheddar cheese. The separation among the samples

with different extents of light oxidation was much smaller than the separation

between the surface and interior slabs. CAN1 accounted for 99.34% of the total

variance, while only 0.40% for CAN2. Moreover, the sample SO (top surface with

no light exposure) had similar sensory scores as the interior slabs (l0, l2, l4 and

I6), but was separated from the interior slabs on the canonical discriminant

scatter plot (Figure 87). All interior slabs had similar sensory scores but were

positioned separately on the scatter plot, in a similar manner as the surface slabs

which were light-oxidized. It appears that the discrimination was more based on

where the samples were taken from than the light-induced flavor changes. The

collection of reproducibly identified volatiles may not cover all volatiles that were

responsible for the light induced flavor changes, and may have caused the

misleading results.

Quantitatively, PLS and MLP models were applied to investigate the

correlations between the sensory scores and the area responses of headspace

volatiles quantified using the SPME-GC (Figure 88 and Figure 89). The MLP

model performed better than the PLS model, in terms of both the ranges of

predicted sensory scores and the RMSE. However, the models may not be

reliable for predicting light-oxidized Cheddar cheeses for the same reasons

discussed previously.
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Figure 88 PLS predicted versus actual flavor scores of interior (l0, I2, I4, l6) and

surface (SO, 82, S4, 86) slabs of the Cheddar cheese, based on area response

of SPME-GC to 60°C headspace. Models were applied to (a) training and (b) test

data. The reference line indicates equal values of predicted and actual sensory

scores.
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Figure 89 MLP predicted versus actual flavor scores of interior (l0, l2, I4, l6) and

surface (SO, 82, S4, 86) slabs of the Cheddar cheese, based on area response

of SPME-GC to 60°C headspace. Models were applied to (a) training and (b) test

data. The reference line indicates equal values of predicted and actual sensory

scores.
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4.3.3.3. Headspace analysis using the electronic nose

Headspace samples of light-oxidized Cheddar cheese were generated at

60 or 95°C for 15 minutes and then analyzed using the electronic nose. Figure 90

shows the profiles of sensor response over time, to the 60°C headspace samples

of the top surface of Cheddar cheese exposed to light for 0 and 6 weeks. The

differences between sensor profiles of the two samples were not distinct by

comparing the 12 MOS sensor responses directly. This may be due to the high

sensitivity of MOS sensors to ethanol and other alcohols, such that the intense

response may mask the sensor responses for other analytes of interest.

Unsupervised leaning techniques, HCA and PCA, were applied to view the

discrimination and natural grouping of the headspace samples of Cheddar

cheese generated at 60°C and 90°C (Figure 91 and Figure 92). No clear

separation was apparent in the 60°C PCA score plot (Figure 91b). A partial

grouping in the 90°C PCA score plot roughly followed the extent of light oxidation

(Figure 92b). Samples with no light exposure (I0, l2, I4, l6 and SO) formed a

cluster (around PC1 = 10.2 and PC2 = -0.01), and the top surface samples (82,

S4 and S6) then partially grouped and gradually moved away from this cluster as

the light exposure time increased.
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Figure 90 Sensor responses of the electronic nose to 90°C headspace of the

top surface samples of Cheddar cheese (a) without (b) with 6 weeks of light

exposure at 5°C.
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Figure 91 (a) HCA and (b) PCA of electronic nose sensor responses for the

60°C headspace samples of interior (l0, l2, I4 and I6) and surface slabs (SO, 82,

S4, S6) of the Cheddar cheese samples exposed to fluorescent light for 0, 2, 4 or

6 weeks.
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Figure 92 (a) HCA and (b) PCA of electronic nose sensor responses for the

90°C headspace samples of interior (l0, I2, l4 and I6) and surface slabs (SO, 82,

S4, S6) of the Cheddar cheese samples exposed to fluorescent light for 0, 2, 4 or

6 weeks.
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Supervised learning techniques, LDA/QDA and k-NN for k = 1 to 4, were

applied to training data, which contained four replicates of the surface slabs (SO,

82, S4, and S6) and interior slabs (l0, l2, l4, and I6). The models were cross-

validated using the leave-one-out method, and the models were then used to

identify the “unknown” samples from an independent test data set, which

contained three replicates of the surface slabs SO, 82, S4, and S6.

LDA and 1-NN had the highest correct identification rates (0.4 and 0.5,

respectively) at the test steps, for both 60°C and 90°C headspace samples

(Figure 93 and Figure 94). A more distinct group separation for the 90°C

headspace samples of the Cheddar cheese with differing light oxidation was

apparent on the canonical discriminant scatter plot (Figure 96), while the 60°C

headspace samples were only partially separated (Figure 95). The Cheddar

cheese samples without light exposure, i.e. IO, I2, l4, I6 and SO, grouped at the

negative CAN1 (the first canonical discriminant) region (Figure 95a and Figure

96a). Along the CAN1 coordinate, Cheddar cheese top surface samples exposed

to light for 2, 4, and 6 weeks were aligned. While subjecting an independent test

data set to the models, the 90°C headspace samples stayed at similar group

territories (Figure 96b). The 60°C headspace samples from the test set were

scattered and shifted to a very different range, which implied a poor model

generalization. The supervised models based on sensor responses for 90°C

headspace samples had higher correct identification rates (Figure 94) and better

discrimination (Figure 96).
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QDA, and k-NN for k = 1 to 4) applied to the sensor responses for 60°C

headspace of interior and surface slabs of the Cheddar cheese samples exposed
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Figure 95 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace samples of interior (IO, 12, I4, I6) and surface (SO, 82, S4, S6)

slabs of the Cheddar cheese, generated at 60°C.
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Figure 96 Canonical discriminant scatter plots of the (a) training (b) test data

sets. Headspace samples of interior (I0, l2, I4, l6) and surface (SO, 82, S4, S6)

slabs of the Cheddar cheese, generated at 90°C.
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The electronic nose can analyze the sample headspace as a whole and is

not concerned about “not covering all volatiles that are responsible for the light-

induced flavor changes”, as the SPME-GC attempted to do. As expected, the

sample SO (top surface without light exposure) was close to all interior slab

samples, which were not exposed to light. The grouping of light-oxidized cheese

samples in both PCA and LDA (Figure 92b and Figure 96) was in agreement with

the sensory score trend (Figure 83 and Figure 84).

Quantitative PLS and MLP models were used to investigate the

correlations between the sensory scores and the sensor responses of the

electronic nose to the 60°C and 90°C headspace samples of the light oxidized

Cheddar cheese (Figure 97 to Figure 100). Considering the RMSE and predicted

sensory score, 90°C headspace samples provided better fitted PLS and MLP

models, and more precise prediction of sensory scores. The 90°C PLS model

had a similar model RMSE but a better test set prediction, compared to the 90°C

MLP model. The PLS approach was to find latent component(s) from the sensor

responses that were also relevant for sensory scores, which can be well defined

since higher volatile contents and sensor responses were expected from light-

oxidized samples with lower sensory scores.

213



q

I

.

G

P
R
E
D
I
C
T
E
D
F
L
A
V
O
R
S
C
O
R
E

 

    
(a) Training (RMSE = 0.4862)

   
TlllllllllllllIIIIllllllllllIIIIIIIIIIIITIIIIIIIIII

5 6 7 8 9 IO

ACTUAL FLAVOR SCORE

 

12,

n;

d

(
D
O

L
A
l
A
L
A
l
A

A
A
A
L
L
A

P
R
E
D
I
C
T
E
D
F
L
A
V
O
R
S
C
O
R
E

O
-
N

(
I
)

:
5

U
1

0
"

H
I
G

A
l
l
l
l
l
l
A
l
l

A
l
A
A
A
l

1
A

1

fl

1

- 364G

3§4

 588

(b) Test (RMSE = 2.6181)

32

82

32
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S4, 86) slabs of the Cheddar cheese, based on electronic nose

sensor responses for 60°C headspace. Models were applied to (a) training and

(b) test data. The reference line indicates equal values of predicted and actual

surface (SO, 82,

sensory scores.
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Figure 98 MLP predicted versus actual flavor scores of interior (l0, l2, I4, l6) and

surface (80, 82, S4, 86) slabs of the Cheddar cheese, based on electronic nose

sensor responses for 60°C headspace. Models were applied to (a) training and

(b) test data. The reference line indicates equal values of predicted and actual

sensory scores.
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Figure 99 PLS predicted versus actual flavor scores of interior (l0, l2, l4, I6) and

surface (80, 82, S4, 86) slabs of the Cheddar cheese, based on electronic nose

sensor responses for 90°C headspace. Models were applied to (a) training and

(b) test data. The reference line indicates equal values of predicted and actual

sensory scores.
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Figure 100 MLP predicted versus actual flavor scores of interior (l0, l2, l4, l6)

and surface (80, 82, S4, 36) slabs of the Cheddar cheese, based on electronic

nose sensor responses for 90°C headspace. Models were applied to (a) training

and (b) test data. The reference line indicates equal values of predicted and

actual sensory scores.
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Light-induced color and flavor quality changes were limited to the top

surface of the vacuum-packaged Cheddar cheese, which was exposed to light

(2000 Ix). Discoloration and off-flavors were detected by an 8-member trained

panel after exposure to light for 2 weeks, and the quality changes were more

pronounced after 4 and 6 weeks. Color measurement indicated that a continuous

decrease in yellowness contributed the most to the discoloration, along with a

relatively small decrease in redness and an increase in lightness. No body and

texture changes in light-oxidized Cheddar cheeses occurred. The electronic nose

has the advantage of being able to analyze the sample headspace as a whole

and is not concerned about “not covering all volatiles that are responsible for the

light-induced flavor changes” which is what the SPME-GC technique tries to do.

The discriminant models based on sensor responses for 90°C headspace

samples had higher correct identification rates and better discrimination than at

60°C. The 90°C PLS model had a similar model RMSE but a. better test set

prediction, compared to the 90°C MLP model.
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CHAPTER 5

CONCLUSIONS

Both consumer and trained panelists detected the light-oxidized off-flavor

in reduced fat (2%) milk developed in glass bottles under 8 hours of light

exposure (1000 Ix) at 5°C. The CARIPDMS fiber was selected to collect the

headspace volatiles of light oxidized milk. Headspace pentanal and hexanal

increased as the light exposure time increased. Using a 95°C headspace

temperature for the electronic nose analysis provided better model discrimination

than 45°C or 70°C, due to the higher volatile contents generated at the higher

headspace temperatures. The first canonical discriminant was indicative of the

extent of light-oxidation. Light-oxidized milk was poorly recognized as a function

of light exposure time, but samples with a similar extent of light oxidation were

close to each other in the discriminant models. By defining the harmful light

exposure time as a milk deterioration threshold, the 95°C LDA model correctly

recognized 97% of the milk samples exposed to light for 8 hours or longer.

Quantitatively, the 95°C PLS model provided better prediction of the sensory

scores than the 95°C MLP model.

The different packaging materials (237 ml glass, HDPE, HDPE-TiOz, PET

bottles, and PE-coated paper cartons) were clearly discriminated and identified

using the electronic nose. However, no significant packaging off-flavors in water

or 2% milk were perceived by consumer panels, except water stored in HDPE

bottles had a very mild flavor difference (p< 0.10) from pure water. The water and
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milk samples stored in the various packages were only partially differentiated in

electronic nose analysis. HDPE was found to have less headspace volatiles than

PET and PE-coated cartons when the packaging materials were analyzed

directly, but the sensory tests indicated that the water and 2% milk in HDPE had

more intense off-flavor than in PET and PE-coated cartons. The effect of

packaging materials on light-induced oxidation in milk was closely related to their

light barrier properties. PE-coated paper cartons reduced light-oxidation of 2%

milk significantly (12 hours of light exposure, 1000 Ix), while HDPE-TiOz gave

only partial light protection. Compared to light-oxidized off-flavors, the packaging

off-flavors were less intense and more difficult to detect. Packaging off-flavors in

water and 2% milk were not clearly defined by either sensory evaluation or

electronic nose analysis.

Light-induced quality changes (color and flavor) were limited to the top

surface of the vacuum-packaged Cheddar cheese, which was the portion that

was exposed to light (2000 lx). Discoloration and off-flavors were detected by the

trained panel after exposure to light for 2 weeks. Color measurement showed a

continuous decrease in yellowness contributed the most to the discoloration,

along with a relatively small decrease in redness and increase in lightness. No

body and texture changes in light-oxidized Cheddar cheeses were noticed. The

electronic nose has the advantage of analyzing the sample headspace as a

whole. The discriminant models of sensor responses using 90°C headspace

samples had higher correct identification rates and better discrimination than at
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60°C. The 90°C PLS model had a similar model RMSE, but was able to better

predict the test set, compared to the 90°C MLP model.

The established discriminant and correlation models have shown the

potential of the electronic nose to be used as a complementary approach to

sensory evaluation to determine light-oxidized off-flavors in packaged milk and

Cheddar cheese.

Recommendations for future work

1. A standardized method for evaluation of light-induced changes in different

foods is needed.

2. Preconcentration techniques such as DH and SPME may be used for

headspace sampling, to improve the differentiation of milk with different

extent of light oxidation.

3. For low— or non- volatile off-flavored compounds in liquid or aqueous

systems (e.g. certain packaging off-flavors), an electronic tongue consists

of an array of liquid sensors can perform in a similar manner as an

electronic nose to the volatiles. The technology has been commercialized

and used in many applications such as analyzing beverages (e.g. wine

[191], juices [192, 193], and milk [193]) and monitoring fermentation [194].

4. Numerous mathematical techniques have been proposed to compensate

the sensor drifts and to reduce the instability of the discriminant models for

quality control routine. Verification and improvement of these long term

calibration techniques in food and packaging applications are needed.
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APPENDICES

A.1. SAS and Matlab programs

A.1.1. Data import in SAS

(SAS 8.0, SAS Institute, Cary, NC)

/*Input macro variables below:*/

%let dsn = mk9501; /*training data set name*/

%let dsnv = mk9502; /*test data set name*/

%let score = mkscore; /*sensory scores of training set*/

%let scorev = mkscore; /*sensory scores of test set*/

data &dsn;

infile "d:\ehose\&dsn..txt" firstobs=2 expandtabs;

input obs idS n samp$ LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_1 PlO_1

P10_2 P40_l T70_2 PA2;

if samp = 'CTR' then samp = '0'; if samp = '2LT' then samp = '2';

if samp = '4LT' then samp = '4'; if samp = '8LT' then samp = '8';

if samp = '12L' then samp = '12'; if samp = '24L' then samp = '24';

if samp = '36L' then samp = '36'; if samp = '48L' then samp = '48';

if samp = '48D‘ then samp = 'd';

run;

data &score;

infile "d:\enose\&score..txt" firstobs=2 expandtabs;

input smean smed logpen logdmds loghex; run;

data &dsn; merge &dsn &score; run;

data &dsnv;

infile "d:\enose\&dsnv..txt" firstobs=2 expandtabs;

input obs id$ n samp$ LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l P10_1

P10_2 P40_l T70_2 PA2;

if samp = 'CTR' then samp = '0'; if samp = '2LT' then samp = '2';

if samp = '4LT' then samp = '4'; if samp = '8LT' then samp = '8';

if samp = '12L' then samp = '12'; if samp = '24L' then samp = '24';

if samp = '36L' then samp = '36'; if samp = '48L' then samp = '48';

if samp = '48D' then samp = 'd';

run;

data &scorev;

infile "d:\enose\&scorev..txt" firstobs=2 expandtabs;

input smean smed logpen logdmds loghex; run;

data &dsnv; merge &dsnv &scorev; run;
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A.1.2. HCA and PCA using SAS

options ls=64 ps=45 nodate nonumber;

goptions reset=all;

/*Input macro variables below:*/

%let dsn = mk9501; /*training data set name*/

%let sn = 950C; /*sample name, in text*/

/*Hierarchical Clustering Analysis*/

/*Single linkage (nearest neighbor) as the algorithm for similarities.

*/

proc cluster data=&dsn noeigen method=single nonorm out=clout;

id id;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l PlO_l PlO_2 P40_l T70_2

PA2;

run;

proc tree data=clout;

id id;

title2 "Hierarchical Clustering Analysis (&sn)";

run;

/*Principle component analysis: proc princomp*/

/*Compute principle components from covariance matrix.

Proc factor was applied to generate scree plot.*/

proc princomp data=&dsn cov out=sout;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l PlO_l P10_2 P40_l T70_2

PA2;

run;

proc factor data=&dsn scree;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l P10_l PlO_2 P40_l T70_2

PA2;

run;

data labels;

set sout;

retain xsys '2' ysys '2';

y=prin2;

x=prinl;

text=samp;

keep xsys ysys x y text;

proc gplot data=sout;

plot prin2*prinl /annotate=labels;

label prinl='PCl' prin2='PC2';

symbol v=none;

title2 "Principle Component Analysis (&sn)";

run;
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data label2;

set sout;

retain xsys '2' ysys '2';

y=prin3;

x=prin2;

text=samp;

keep xsys ysys x y text;

proc gplot data=sout;

plot prin3*prin2 /annotate=labe12;

label prin2='PC2' prin3='PC3';

symbol v=none;

title2 "Principle Component Analysis (&sn)";

run;

data label3;

set sout;

retain xsys '2' ysys ‘2' zsys '2';

z=prin3;

y=prin2;

x:prinl;

text=samp;

keep xsys ysys zsys x y 2 text;

proc g3d data = sout;

scatter prin2*prinl = prin3 /grid shape = 'point' annotate=label3;

label prinl='PCl' prin2='PC2' prin3 = 'PC3';

title2 "Principle Component Analysis 3D_l (&sn)";

run;

data label4;

set sout;

retain xsys '2' ysys '2' zsys '2';

z=prin3;

y=prinl;

x=prin2;

text=samp;

keep xsys ysys zsys x y 2 text;

proc g3d data = sout;

scatter prinl*prin2 = prin3 /grid shape = 'point' annotate=label4;

label prinl=‘PCl' prin2='PC2' prin3 = 'PC3';

title2 "Principle Component Analysis 3D_2 (&sn)";

run;
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A.1.3. LDA/QDA and k-NN using SAS

goptions reset=all;

/*Input macro variables below:*/

%let dsn = mk4501; /*training data set name*/

%let dsnv = mk4502; /*validation data set name*/

%let sn = 450C; /*sample name, in text*/

/*Testing the Equality of Normal Population Parameters*/

proc discrim data=&dsn method=normal pool=test wcov pcov bcov manova;

class samp;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l PlO_l PlO_2 P40_1 T70_2

PA2;

title2 "Testing the Equality of Normal Population Parameters (&sn)";

run;

/*LDA: normal populations with same cov*/

proc discrim data=&dsn out=lout outstat=lstat

method=normal list pool=yes pcov manova

crosslist outcross = lcross

testdata=&dsnv testlist testout = ltest;

class samp;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_1 P10_l PlO_2 P40_l T70_2

PA2;

title2 "Linear Discriminant Analysis (&sn)”;

run;

/*QDA: normal populations with different cov*/

proc discrim data=&dsn out=qout outstat=qstat

method=normal list pool=no wcov

crosslist outcross = gcross

testdata=&dsnv testlist testout = gtest;

class samp;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l PlO_l PlO_2 p40_1 T70_2

PA2;

title2 "Quadratic Discriminant Analysis (&sn)";

run;

/*k-NN; k=1~4*/

/*k=l*/

proc discrim data=&dsn out=klout outstat=klstat

k=1 crosslist outcross = klcross

testdata=&dsnv testlist testout = kltest;

class samp;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l PlO_1 P10_2 P40_l T70_2

PA2;

title2 'Nonparametric Discriminant Analysis: kNN, k = 1';

run;

/*k=2*/

proc discrim data=&dsn out=k20ut outstat=k2stat

k=2 crosslist outcross = k2cross
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testdata=&dsnv testlist testout = k2test;

class samp;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l PlO_l PlO_2 P40_l T70_2

PA2;

title2 'Nonparametric Discriminant Analysis: kNN, k = 2';

run;

/*k=3*/

proc discrim data=&dsn out=k30ut outstat=k3stat

k=3 crosslist outcross = k3cross

testdata=&dsnv testlist testout = k3test;

class samp;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_1 PlO_l PlO_2 P40_l T70_2

PA2;

title2 'Nonparametric Discriminant Analysis: kNN, k = 3';

run;

/*k=4*/

proc discrim data=&dsn out=k4out outstat=k4stat

k=4 crosslist outcross = k4cross

testdata=&dsnv testlist testout = k4test;

class samp;

var LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_l PlO_l PlO_2 P40_1 T70_2

PA2;

title2 'Nonparametric Discriminant Analysis: kNN, k = 4';

run;

/*Canonical Discriminant Analysis*/

proc discrim data=&dsn outzcanout outstat=canstat

canonical crosslist outcross = cancross

testdata=&dsnv testlist testout = cantest;

class samp;

var LY_LG LY_G LY#AA LYhGh LY_gCTl LY*gCT T30_l PlO_l PlOWZ P40w1 T70_2

PA2;

title2 "Canonical Discriminant Analysis (&sn)";

run;

/*Plot Canonical Discriminant Model: 2D and 3D*/

/*2D plot-model*/

data labels;

set cancross;

retain xsys '2' ysys '2';

y=can2;

x=canl;

text=samp;

keep xsys ysys x y text;

proc gplot data=cancross;

plot can2*canl /annotate=labels;

label canl='CANl' can2='CAN2';

symbol v=none;

title2 "Canonical Discriminant Analysis: Model (&sn)";

run;

/*3D plot—model*/

data labelB; set cancross;
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retain xsys '2' ysys '2' zsys '2';

z=can3; y=can2; x=canl;

text=samp;

keep xsys ysys zsys x y 2 text;

proc g3d data = cancross;

scatter can2*can1 = can3 /grid shape = 'point' annotate=label3;

label canl='CANl' can2='CAN2' can3 = 'CAN3';

title2 "Canonical Discriminant Analysis: Model 3D (&sn)";

run;

/*Plot Canonical Discriminant Test Data; labeled with original

grouping*/

/*2D plot-test*/

data labels;

set cantest;

retain xsys '2' ysys '2';

y=can2;

x=canl;

text=samp;

keep xsys ysys x y text;

proc gplot data=cantest;

plot can2*canl /annotate=labels;

label canl='CANl' can2='CAN2';

symbol v=none;

title2 "Canonical Discriminant Analysis: Test (&sn)";

run;

/*3D plot test*/

data label3; set cantest;

retain xsys '2' ysys '2' zsys '2';

z=can3; y=can2; x=canl;

text=samp;

keep xsys ysys zsys x y 2 text;

proc g3d data = cantest;

scatter can2*canl = can3 /grid shape = 'point' annotate=label3;

label canl='CANl' can2='CAN2' can3 = 'CAN3';

title2 "Canonical Discriminant Analysis: Test 3D (&sn)";

run;

/*Plot Canonical Discriminant Test Data; labeled with identified

grouping*/

/*2D plot-testid*/

data labels;

set cantest;

retain xsys '2' ysys '2';

y=can2;

x=canl;

text=_into_;

keep xsys ysys x y text;

proc gplot data=cantest;

plot can2*canl /annotate=labels;

label canl='CANl' can2='CAN2';

symbol v=none;
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title2 "Canonical Discriminant Analysis: Test_id (&sn)";

run;

/*3D plot testid*/

data label3; set cantest;

retain xsys '2' ysys '2' zsys '2';

z=can3; y=can2; x=canl;

text=_into_:

keep xsys ysys zsys x y 2 text;

proc g3d data = cantest;

scatter can2*canl = can3 /grid shape = 'point' annotate=labe13;

label canl='CANl' can2='CAN2' can3 = 'CAN3';

title2 "Canonical Discriminant Analysis: Test_id 3D (&sn)";

run;

/*Export classification results of resubsitution, cross-validation and

test data*/

data classes;

set lout(rename=_into_=lout); set lcross(rename=_into_=lcross); set

ltest(rename=_into_=ltest);

set gout(rename=_into_=qout); set qcross(rename=_into_=qcross); set

qtest(rename=_into_=qtest);

set klout(rename=_into_=klout); set klcross(rename=_into_=klcross); set

kltest(rename=_into_=k1test);

set k20ut(rename=_into_=k2out); set k2cross(rename=_into_=k2cross); set

k2test(rename=winto_=k2test);

set k3out(rename=_into_=k3out); set k3cross(rename=_into_=k3cross); set

k3test(rename=_into_=k3test);

set k4out(rename=_into_=k4out); set k4cross(rename=_into_=k4cross); set

k4test(rename=_into_=k4test);

set canout(rename=_into_=canout); set cancross(rename=_into_=cancross);

set cantest(rename=_into_=cantest);

keep samp lout lcross ltest gout gcross qtest klout klcross kltest

k20ut k2cross k2test k30ut k3cross k3test

k4out k4cross k4test canout cancross cantest;

run;
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A.1.4. PLS using SAS and MLP using Matlab

A.1.4.1. Partial Least Square Analysis (PLS)

options ls=64 ps=45 nodate nonumber;

goptions reset=all;

%INCLUDE 'd:\enose\plsplot.sas';

/* plsplot.sas is available at http://www.sas.com */

/********‘kir*******~k******************************~k***+*********/

/*Partial Least Square (PLS) sensory scores vs.sensor response*/

/*Input macro variables below:*/

%let dsn = mk9501; /*training data set name*/

%let dsnv = mk9502; /*validation data set name*/

%let sn = 950C; /*sample name, in text*/

%let y_name = smean; /*Y variable(s) */

%let x_name = enose; /*X variables (5) */

%global xvars yvars predname resname xscrname yscrname num_x num_y lv;

%let xvars=LY_LG LY_G LY_AA LY_Gh LY_gCTl LY_gCT T30_1 PlO_l PlO_2

P40_l T70_2 PA2;

%let yvars=smean;

%let ypred=yhat1;

%let yres=yresl;

%let predname=yhat;

%let resname=res;

%let xscrname=xscr;

%let yscrname=yscr;

%let num_y=l;

%let num_x=12;

title2 "PLS (&sn) Y: &y_name; X's: &x_name";

proc pls data=&dsn method=pls(algorithm=svd) outmodel=estl

cv=one censcale;

model &yvars = &xvars;

output out=outpls p=&ypred yresidual=&yres

xresidual=xresl~xre812 xscore=xscr yscore=yscr

stdy=stdy stdx=stdx h=h press=press t2=t2

xqres=xqres yqres=yqres;

run;

/*Stop here and check the output*/

/************************************************+******************~k/

/* According CVTEST result, decide lv = number of latent components */

%let lv=4; *** Number of PLS components in model ***;

/**************+*******+*****~k**+***********************+~k**~k***++++vir/

/*Plot predicted vs. actual scores*/

data labels; set outpls;

retain xsys '2' ysys '2'; y=&ypred; x=&yvars;

text=samp;

keep xsys ysys x y text;

proc gplot data=outpls;
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plot &ypred*&yvars /annotate=labels;

label &ypred='Predicted' &yvars='Actual ADSA Flavoring Score';

symbol v=none;

run;

/*Plot predicted vs. actual scores with 450 ref line */

data anno; _

function='move'; xsys='l'; ysys='l'; x=O; y=O; output;

function='draw'; xsys='l'; ysys='l'; color='red'; x=lOO; y=lOO; output;

run;

proc gplot data=outpls;

plot &ypred*&yvars / anno=anno haxis=axisl vaxis=axis2;

label &ypred='Predicted' &yvars='Actual ADSA Flavoring Score';

symboll i=none v=dot c=blue;

run;

%plot_scr(OUtP15)7

%plotxscr(outplS);

%res_plot(outpls);

%nor_plot(outpls);

%get_bpls(estl,dsout=bpls);

%get_vip(estl,dsvip=vip_data);

data eval;

merge bpls vip_data;

run;

proc print data=eval;

run;

/*******~k*******************************~k*****************************/

/*PLS: Analyzing test data using the PLS model above*/

goptions reset=all;

title2 "PLS (&sn) Y: &y_name; X's: &x_name";

/*step 1: refit the model with missing values on validation set*/

data dsnj; set &dsn &dsnv(drop=&yvars); run;

proc pls data=dsnj method=pls(algorithm=svd) outmodel=estl cv=one;

model &yvars = &xvars;

output out=outpl52 p=&ypred yresidual=&yres

xresidual=xresl-xrele xscore=xscr yscore=yscr

stdy=stdy stdx=stdx h=h press=press t2=t2

xqres=xqres yqres=yqres;

run;

/*step 2: put the predicted values and actual observations in the same

data set. */

data outplsv; set outplsZ; if obs > 36; keep &ypred samp n; run;

data dsnv; set &dsnv(keep=&yvars samp n); run;

data predict; merge dsnv outplsv; run;

/*Plot predicted vs. actual scores*/

data labels; set predict;

retain xsys '2' ysys '2'; y=&ypred; x=&yvars;

text=samp;

keep xsys ysys x y text;
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proc gplot data=predict;

plot &ypred*&yvars /annotate=labels;

label &ypred='Predicted' &yvars='Actual ADSA Flavoring Score';

symbol v=none;

run;

/*step 3: calculate the residuals at the points in the test set. */

data predictr; set predict; '

yresl=&yvars—&ypred;

run;

%res_plot(predictr);

/***************~k******************~k********************************~k*/

*Export the predicted values and residuals, for calculating root-mean-

square (rme) of the models*/

data &dsn.rme;

set outpls (rename=yresl=resOl); set predictr (rename=yresl=re502);

keep resOl resO2;

run;

PROC EXPORT DATA: WORK.&dsn.rme

OUTFILE= "D:\tmp\&dsn.rme.xls"

DBMS=EXCELZOOO REPLACE;

RUN;
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A.1.4.2. Multilayer Perceptrons (MLP)

The Neural Network Toolbox 4.0 of Matlab 6.1 (The MathWorks lnc., Natick, MA)

was launched (Figure 101) by typing in

 

>> nntool

-.= NetworldData Manager

npuls Networks Outputs
,_,,____ it“!

Targets Errors

npul Delay States Layer Dela‘r States

Networks and Data

 

[ Help HNewData j[NewNetworln ]

HEMCM‘S only

 

  
 

Figure 101 Start-up view of Neural Network Toolbox 4.0 embedded in Matlab

6.1.

A feed-forward backpropagation network was constructed, with a tan-

sigmoid function in the hidden layer, and a linear function in output layer. An

independent data set was applied for validation (early stopping to avoid over-

fitting) as well as for test (estimating a network’s ability to generalize).
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A.2 Designs and Forms of Sensory Tests

A.2.1. Triangle tests

A.2.1.1. Triangle test form (an example)

 

Triangle Test

 

  

 

Name Date 9/26/2002

Sample: 2% milk # 1

Instructions

Four independent sets (D, A, B, C) of samples will be presented sequentially.

Each set has 3 samples; 2 are identical; determine which one is the odd sample.

If no difference is apparent, you must guess.

Smell and taste samples from left to right.

You may spit the sample out after judging (foam cup is provided).

Rinse your mouth by water between samples if necessary.

Which is the odd sample? (Check the box)

 

       
 

 

      

 

 

      

 

 

      

Set A D 425 u 565 El 716

Set B D 513 El 422 D 641

Set C [3 356 C] 562 D 814

Set D r: 610 E] 701 D 375

COMMENTS:
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A.2.1.2. Design of triangle tests on light-oxidized 2% milk

 

 

 

 

 

    
 

 

 

 

Set Sample Treatment Coding

A CONTROL without light exposure 102 763 685

24 HR 24 hours of light exposure 893 582 967

B CONTROL without light exposure 204 665 048

12 HR 12 hours of light exposure 912 462 460

C CONTROL without light exposure 506 615 951

8 HR 8 hours of light exposure 884 046 169

D CONTROL without light exposure 473 133 371

4 HR 4 hours of light exposure 683 464 581

Panelist Serve A B C D
Order

1 ABDC 893 763 967 912 665 048 884 615 951 473 464 581

2 ACDB 102 582 685 912 462 048 884 046 951 473 133 581

3 ADBC 893 582 685 204 462 048 884 615 169 473 464 371

4 ABCD 893 582 685 912 665 460 506 615 169 683 133 371

5 BDCA 893 582 685 912 462 048 506 615 169 473 133 581

6 DBCA 102 763 967 204 462 460 884 046 951 683 133 581

7 ADCB 893 763 685 204 665 460 506 046 169 683 133 371

8 DBAC 893 763 685 204 462 460 506 046 951 683 133 581

9 BDAC 102 582 685 912 462 048 884 615 169 683 464 371

10 CABD 893 763 685 912 665 460 506 046 951 683 133 371

1 1 BCDA 102 582 967 912 665 048 506 046 169 683 464 371

12 DCAB 893 763 967 204 665 460 506 046 169 683 464 371

13 CDAB 893 763 967 912 665 460 884 615 169 473 464 581

14 BCAD 893 763 967 204 462 048 506 046 951 473 464 371

15 BADC 102 582 685 204 462 048 884 046 951 473 464 581

16 DACB 102 763 967 912 665 048 884 615 951 473 133 581

17 CDBA 102 582 967 912 665 048 884 615 169 683 464 371

18 CADB 102 763 967 204 462 460 506 615 169 683 133 581

1 9 CBAD 893 763 685 204 665 460 506 046 951 473 464 371

20 DCBA 102 582 967 204 462 048 884 615 951 473 464 581

21 DABC 102 582 685 912 665 460 506 046 169 473 464 371

22 BACD 102 763 967 204 462 460 506 615 169 473 133 581

23 CBDA 893 582 685 912 462 048 884 615 951 683 133 371

24 ACBD 102 582 967 204 665 460 884 046 951 683 133 581     
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A.2.1.3. Design of triangle tests on water stored in various packaging materials

 

 

 

 

 

     
 

 

 

Set Sample Treatment Coding

A CONTROL 4L glass jugs 472 271 875

GLASS 237 ml glass bottles, 979 252 737

B CONTROL 4L glass jugs 681 831 709

HDPE 237 ml HDPE bottles 379 502 428

C CONTROL 4L glass jugs 150 378 853

PET 237 ml PET bottles 697 860 593

D CONTROL 4L glass jugs 838 370 546

CARTON 237 ml paper cartons 568 702 444

Panelist Serve A B C D
Order

1 CBAD 979 271 875 681 502 709 150 860 593 568 370 546

2 DACB 472 271 737 681 831 428 697 378 853 838 702 444

3 DBAC 979 271 875 379 502 709 697 860 853 568 370 444

4 BADC 472 252 875 379 502 709 1 50 860 593 568 702 546

5 ADCB 472 271 737 379 831 428 1 50 860 593 838 702 444

6 CDAB 979 271 737 379 831 428 697 378 593 838 370 444

7 ACBD 472 252 737 681 502 428 1 50 378 593 568 370 546

8 ABDC 979 271 875 379 831 428 150 860 853 838 702 546

9 CDBA 472 252 737 379 831 709 150 378 593 568 370 444

10 BDCA 979 252 875 379 831 709 150 860 853 838 370 444

1 1 DCBA 472 252 737 681 502 709 150 860 853 838 702 546

12 BDAC 979 271 875 681 831 428 697 378 593 568 370 546

13 DCAB 979 271 737 681 502 428 697 378 853 838 370 444

14 DABC 472 252 875 681 502 428 1 50 860 853 838 702 444

15 BACD 472 271 737 681 831 428 150 378 593 568 702 546

16 ABCD 979 252 875 379 502 709 697 860 853 838 702 546

17 ADBC 472 252 875 681 502 709 150 378 593 568 370 444

18 CABD 472 252 875 379 831 709 697 378 593 568 702 546

19 BCAD 979 271 737 681 831 428 697 378 593 568 702 546

20 DBCA 979 252 875 379 831 709 697 860 853 838 702 546

21 CBDA 979 252 875 681 502 428 697 860 853 838 702 444

22 ACDB 979 271 737 379 502 709 150 860 593 838 370 444

23 CADB 472 271 737 681 502 709 697 378 853 568 370 546

24 BCDA 472 252 737 379 831 428 697 378 853 568 370 444      
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A.2.1.4. Design of triangle tests on 2% milk stored in various packaging materials

 

 

 

 

 

      
 

 

Set Sample Treatment Coding

A CONTROL 4L glassjugs 371 694 716

GLASS 237 ml glass bottles 425 565 511

B CONTROL 4L glass jugs ’ 873 732 641

HDPE 237 ml HDPE bottles 513 422 172

C CONTROL 4L glass jugs 356 434 116

PET 237 ml PET bottles 498 562 814

D CONTROL 4L glassjugs 212 701 924

CARTON 237 ml paper cartons 610 493 375

Panelist Serve A B C D
Order

1 DABC 425 565 716 513 422 641 356 562 814 610 701 375

2 DCAB 371 565 51 1 873 422 641 498 434 1 16 610 493 924

3 BDAC 425 694 716 873 422 172 356 562 814 212 701 375

4 BDCA 425 694 716 513 732 641 356 434 814 610 701 375

5 ADCB 425 694 511 513 732 172 498 434 116 610 701 375

6 CBAD 371 565 716 873 422 641 498 562 1 16 212 493 375

7 CDAB 371 565 511 513 732 641 498 562 116 212 701 375

8 DBAC 425 694 51 1 873 732 172 498 562 1 16 212 701 375

9 BCDA 371 694 51 1 513 732 641 356 562 116 610 493 924

10 BACD 371 694 511 873 732 172 498 434 814 212 701 375

1 1 CDBA 371 565 51 1 873 422 172 356 562 814 212 493 924

12 DCBA 425 694 716 513 422 641 498 434 814 212 493 375

13 CBDA 371 565 716 873 732 172 498 434 814 610 701 375

14 ACBD 425 565 716 513 732 172 356 562 116 212 493 924

15 ACDB 371 694 51 1 873 422 641 356 434 814 610 701 924

16 ADBC 371 565 716 513 422 641 356 562 116 212 493 375

17 ABCD 425 694 716 513 732 172 498 434 814 610 701 924

18 DACB 425 694 51 1 513 732 172 356 562 814 610 493 924

19 CADB 371 694 51 1 513 422 641 498 434 1 16 212 493 924

20 BADC 425 565 716 513 732 641 356 562 1 16 610 701 924

21 DBCA 425 565 716 873 732 172 498 562 116 212 493 924

22 ABDC 425 694 51 1 873 422 172 356 434 814 610 701 924

23 CABD 371 565 51 1 873 422 172 498 434 1 16 610 493 924

24 BCAD 371 565 716 873 422 641 356 434 814 212 493 375        
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A.2.1.5. Design of triangle tests on 2% milk stored in various packaging materials

and exposed to 12 hours of fluorescent light

 

 

 

 

 

     

Set Sample Treatment Coding

A CONTROL 237 ml glass bottles, without light exposure 950 606 891

HDPE 237 ml HDPE bottles, 12 hours of light exposure 231 485 762

B CONTROL 237 ml glass bottles, without light exposure 921 176 635

HDPE-Tl02 237 ml HDPE-Ti02 bottles, 12 hours of light exposure 738 405 916

C CONTROL 237 ml glass bottles, without light exposure 681 831 709

PET 237 ml PET bottles , 12 hours of light exposure 379 502 428

D CONTROL 237 ml glass bottles, without light exposure 304 193 202

CARTON 237 ml paper cartons, 12 hours of light exposure 189 682 541
 

 

 

. Serve
Panelist Order A B C D

1 CBDA 231 606 891 738 176 635 681 831 428 189 193 202

2 DBCA 950 606 762 738 176 635 681 831 428 189 193 202

3 CDBA 231 606 891 921 405 635 681 502 428 304 682 541

4 DCBA 950 485 891 921 405 916 379 831 709 304 682 202

5 ACDB 950 485 762 921 405 916 379 502 709 304 682 541

6 ADBC 231 606 762 738 176 916 681 502 709 189 193 202

7 BCDA 231 606 891 738 405 635 681 831* 428 189 682 202

8 BADC 231 485 891 921 176 916 379 502 709 304 682 202

9 DCAB 950 485 891 921 176 916 379 502 709 189 682 202

10 ABDC 231 606 762 921 405 635 379 831 428 189 682 202

1 1 CADB 950 485 762 921 405 635 379 831 428 189 193 541

12 BDCA 231 606 762 738 176 635 681 502 428 189 193 541

13 DBAC 231 485 891 738 176 635 379 831 709 304 682 541

14 CABD 231 606 891 738 176 916 379 831 428 304 193 541

15 ADCB 950 606 762 738 176 916 681 502 709 304 682 202

16 DABC 950 485 762 921 176 916 379 502 709 189 193 541

17 BDAC 950 485 762 921 405 916 681 502 428 304 682 202

18 CDAB 231 485 891 738 405 635 379 831 709 304 682 541

19 CBDA 950 606 762 921 405 916 681 502 709 304 193 541

20 DBCA 950 485 891 738 176 916 681 502 709 189 193 541

21 CDBA 231 606 762 738 405 635 379 831 428 304 193 541

22 DCBA 950 485 891 921 176 916 681 502 428 189 193 202

23 ACDB 231 485 891 738 405 635 379 831 709 304 193 541

24 ADBC 950 606 762 921 405 635 681 831 428 189 682 202        
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A.2.2. Milk scoring card based on ADSA guidelines

  

 

SCORE SHEET FOR MILK (SET A)

NAME: GENDER: '3 F l M AGE: DATE:

DIRECTIONS: Rate milk samples (from left to right) for the criticisms. # 1

Specify the intensity of the off—flavors (S: Slight, D: Definite, P: Pronounced)

For example, a sample with slight cooked flavor is rated at ‘cooked' column as 0 S

SAMPLE 621 444 615 791 921 738 176

FLAVOR (1-10) . ..._ __ _

ACID 0_ O_ O __ O_ O_ O_ O __

BITTER O__ O_ O__ O____ O_ O_ O____

COOKED O_ O_ O_ O__ O_ O_ O_

FEED O_ O __ O_ O __ O_ O_ O_

FERMENTED/FRUITY O __ O _ O_ O_ O_ O_ O_

FLAT 0_ O __ O_ O_ O __ O_ O_

FOREIGN O_ O__ O__ O_ O_ O_ O_

GARLIC/ONION O __ O_ O __ O_ O_ O_ O_

LACKS FRESHNESS O_ O_ O_ O_ O __ O_ O_

MALTY O __ O_ O __ O_ O_ O_ O_

OXIDIZED-LIGHT O __ O_ O_ O_ O_ O_ O_

OXIDIZED—METAL O __ O_ O_ O_ O_ O_ O_

RANCID O_ O_ O_ O__ O_ O__ O_

SALTY O __ O __ O __ O __ O_ O_ O __

UNCLEAN O_ O_ O_ O_ O___ O_ 0—

COMMENT: 
h 0 0
|

l
|
|
|
|
|
|
l
|
|
l
|
|
|

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
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A.2.3. Score cards for difference-from-control and ADSA rating of light-oxidized

Cheddar cheese

 

SCORE SHEET FOR CHEDDAR CHEESE

NAME: DATE:

GENDER: E F U M AGE: (#1)

DIRECTIONS: Rate cheese samples (coded in 3-digit numbers) and compare with the control. Specify the

intensity of the criticisms (S: Slight, D: Definite, P: Pronounced).

1. coLoR DIFFERENCE FROM cONTROL

SAMPLE 405 391 738 821 544 921 615 176

NODIFFERENCE - 0 O O 1 O. 0 0 . 0 , ;.0

VERY SLIGHT DIFFERENCE O O O O O O O O

SLIGHTDIFFERENCE O O 0 ‘ ' O; ' O 70;"; TO” 10""

MODERATE DIFFERENCE O O O O O O O O

LARGEDIFFERENCE ‘0 O 30: " :0 i 0 [00 £2501

EXTREME DIFFERENCE O O O O O O O O

2. BODY AND TEXTURE: (1-5)- please neglect “gassy” and “open" criticisms

psAMPLE. .405 3391.25,. 788 93.821“ 544 921 £615 178:

BODYAND

TEXTURE(1-5) —— — — — -——— —— — —

CORKY

CRUMBLY

   

  

  
  

 

PASTY

SHORT

WEAK

COMMENT:

*BODY AND TEXTURE DIFFERENCE FROM CONTROL

SAMPLE 405 391 738 821 544 921 6‘1 5 176

NO DIFFERENCE O O O O O O O O

VERY SLIGHT DIFFERENCE O O O , O 0 O O O

SLIGHT DIFFERENCE O O O O O O O O

MODERATE DIFFERENCE 0 O O O O O O 0

LARGE DIFFERENCE O O O O O O O O

EXTREME DIFFERENCE O O O O O O 0 O  
 



 

 

3. FLAVOR (1 -1 O)

SAMPLE 405 391 738 821 544 921 615 176

FLAVOR

(1 -1 0) —

BITTER O

FEED O

FERMENTED O

FLAT/LOW

FLAVOR

FRUITY

HEATED

HIGH ACID

OXIDIZED

RANCID

SULFIDE

UNCLEAN

WHEY TAINT

YEASTY

COMMENT:

 

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

I

O
O
O
O
O
O
O
O
O
O
O
O
I
O

|

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

| | l I I

O
O
O
O
O
O
O
O
O
O
O
I
O
O

I I

O

I I I I I I I I

O
O
:
O
O
O
O
O
O
O
O
O
O
O

I l I I | |

0
0
0
0
0
0
0
0
0

*FLAVOR DIFFERENCE FROM CONTROL (0-5)

SAMPLE 405 391 738 821 544 921 615 176

No DIFFERENCE , O O O O O 0 O O

VERY SLIGHT DIFFERENCE O O O O O O O O

SLIGHT DIFFERENCE 0 O 0 0 0 0 O O

MODERATE DIFFERENCE O O O O O O 0 0

LARGE DIFFERENCE O O 0 O 0 0 O O

EXTREME DIFFERENCE O O O O O O O O

(#1)
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A.2.4 Designs of difference-from-control and ADSA rating of light-oxidized

Cheddar cheese

 

 

 

 

 

    
 

 

 

 

 

Specimen Position Light Exposure (wk) Coding

Interior 0 821

Interior 2 391

Interior 4 738

Interior 6 405

Surface 0 544

Surface 2 615

Surface 4 921

Surface 6 176

. Specimen

Panel's“ 1 2 3 4 5 6 7 8

1 405 391 738 821 544 921 615 176

2 738 405 391 821 921 544 176 615

3 405 391 821 738 921 176 544 615

4 391 405 821 738 615 176 544 921

5 738 405 821 391 921 544 615 176

6 405 821 391 738 921 615 176 544

7 405 738 391 821 615 176 921 544

8 821 738 405 391 615 921 176 544

9 738 821 405 391 615 544 921 176
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A.3 Boxplot Interpretation

A box plot (or box-and-whisker plot, [195]) displays a statistical summary

of a variable: median, quartiles, range and, possibly and extreme values.

........................

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

......................

 

   

*.................

*.................

Data point(s) larger than

Q(.75)+1.5 IQR

Largest data point

less than or equal

to Q(.75)+1.5 iQR

C(75)

Q(.5) = Median

- Mean

C(25)

Smallest data point ,

bigger than or equal

to Q(.25)-1.5 [QR

Data point(s) less than

Q(.25)-1.5 [QR

Figure 102 Boxplot Interpretation. IQR: interquartile range. Q(.25): 25th

percentile; Q(.5): 50th percentile; Q(.75): 75th percentile.
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A.4. Preliminary results

Several sets of preliminary experiments were performed. To access the

repeatability and reproducibility of the sample preparation, sensory evaluation

and instrumental analysis, the results may be compared to those in Chapter 4.

A41. Light—oxidized off-flavors in 2% milk

A.4.1.1. Sensory evaluation

Table 28 Sensory scores of light-oxidized 2% milk based on ADSA guidelines.

Scores were given by an 8-member trained panel.

 

Duration of light
Senso score

exposure (hours) ry
 

 

 

 

    

    

        

  

   

4 7.38 :l:1.60

8 7.00 12.07

12 5.75 i255

24 5.63 12.92

10—

9- l : I
E 8 “ .
O 7 - °

8 6 _ j 0 0

tr 5 —

g 4 _ * l .

LI. 3 fl

1 _

0 _ I I I I

4 8 12 24

TIME (HOURS)

Figure 103 Flavor sensory scores based on ADSA guidelines of 2% milk in

glass bottles exposed to 4, 8, 12 and 24 hours of fluorescent light (1000 Ix, 5°C).

0: mean values of each treatment; *: possible outliers.
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A.4.1.2. Headspace analysis using SPME-GC

A
r
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R
e
s
p
o
n
s
e

A
r
e
a
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e
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p
o
n
s
e

Figure 104 Calibration curves of (a) pentanal (b) hexanal and (c) dimethyl

   

  

   

 

 
 

16000 ~

14000 _ (a) PEN y =1027.7x + 1070.1

12000 _ R2=0.8664 :

10000 ~ 0

e

8000 .

0000 - e

4000 - 2

2000 .

0 T F l l

0 2 4 6 8 10

Concentration (nglml)

12000 ‘ (b) HEX y = 829.45x + 1759.7

10000 g R2 = 0.8976

 
 

 
Concentration (nglml)

(c) DMDS y = 653.26x + 334.44

8000 - R2 = 0.8327

0
0

 
 

 
Concentration (nglml)

disulfide in 2% milk.
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A.4.1.2. Headspace analysis using the electronic nose

 

   

0.02:

. 09 4
2 4 2

0.01- 8 2 O

as 12 24

8i It

8 0.00: 36

N 123624 0

8 48
-0.01- 43 36

-002- 1224 36

0087-006 -004 -0.02 0.00 0.02 0.04 0.06 0.08

PC1: 74.66%

Figure 105 PCA based on 45°C electronic nose sensor responses of 2% milk

samples exposed to light (1000 Ix) for 0, 2, 4, 8, 12, 24, 36 and 48 hours.
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12

  
-2 0 2 4

CAN1 : 57.05%

10

Figure 106 LDA based on 95°C electronic nose sensor responses of 2% milk

samples exposed to light (1000 Ix) for 0, 2, 4, 8 and 12 hours at 5°C.
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A.4.2. Light oxidation of Cheddar cheese

A.4.2.1. Discoloration of Cheddar cheese

Table 29 CIE L* a* b* values of Cheddar cheese samples exposed to

fluorescent light (2000 Ix) for 0 and 2 weeks. '

 

 

 

Duration of light ,, ,, ,,

exposure (wks) L a b

0 7485:0421 12.64i0.27 52.0w .06

2 7404:029 12.59i0.37 4950:3134      
1 Standard deviation of the sample

A.4.2.2. Light-induced flavor changes of cheese

 

    

003

450C

0.02

a?

g 0.01

O

N l

8 0.00

-0.01 0

O_0.02 . 2 45c

-030 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40

PC1:98.70%

Figure 107 PCA based on 45°C and 60°C electronic nose sensor responses of

Cheddar cheese samples exposed to fluorescent light (2000 Ix) for 0 and 2

weeks.
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