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ABSTRACT

INTEGRATION OF MULTIPLE CUES IN BIOMETRIC SYSTEMS

By

Karthik Nandakumar

Biometrics refers to the automatic recognition of individuals based on their physiolog-

ical and/or behavioral characteristics. Unimodal biometric systems perform person recog-

nition based on a single source of biometric information and are affected by problems like

noisy sensor data, non-universality and lack of individuality of the chosen biometric trait,

absence of an invariant representation for the biometric trait and susceptibility to circum-

vention. Some of these problems can be alleviated by using multimodal biometric systems

that consolidate evidence from multiple biometric sources. Integration of evidence ob-

tained from multiple cues is a challenging problem and integration at the matching score

level is the most common approach because it offers the best trade-off between the in-

formation content and the ease in fusion. In this thesis, we address two important issues

related to score level fusion. Since the matching scores output by the various modalities

are heterogeneous, score normalization is needed to transform these scores into a common

domain prior to fusion. We have studied the performance of different normalization tech-

niques and fusion rules using a multimodal biometric system based on face, fingerprint and

hand-geometry modalities. The normalization schemes have been evaluated both in terms

of their efficiency and robustness to the presence of outliers in the training data. We have

also demonstrated how soft biometric attributes like gender, ethnicity, accent and height,

that by themselves do not have sufficient discriminative ability to reliably recognize a per-

son, can be used to improve the recognition accuracy of the primary biometric identifiers

(e.g., fingerprint and face). We have developed a mathematical model based on Bayesian

decision theory for integrating the primary and soft biometric cues at the score level.
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CHAPTER 1

Introduction

1.1 Biometric Systems

Identity management refers to the challenge of providing authorized users with secure

and easy access to information and services across a variety of networked systems. A reli-

able identity management system is a critical component in several applications that render

their services only to legitimate users. Examples of such applications include physical ac-

cess control to a secure facility, e-commerce, access to computer networks and welfare

distribution. The primary task in an identity management system is the determination of

an individual’s identity. Traditional methods of establishing a person’s identity include

knowledge-based (e.g., passwords) and token-based (e.g., II) cards) mechanisms. These

surrogate representations of the identity can easily be lost, shared or stolen. Therefore,

they are not sufficient for identity verification in the modern day world. Biometrics offers

a natural and reliable solution to the problem of identity determination by recognizing in-

dividuals based on their physiological and/or behavioral characteristics that are inherent to

the person [1].

Some of the physiological and behavioral characteristics that are being used for biomet-

ric recognition include fingerprint, hand-geometry, iris, retina, face, palmprint, ear, DNA,

voice, gait, signature and keystroke dynamics (see Figure 1.1). A typical biometric sys-

tem consists of four main modules. The sensor module is responsible for acquiring the

biometric data from an individual. The feature extraction module processes the acquired

biometric data and extracts only the salient information to form a new representation of the



 

(e) (0 (g) (h)

  
(i) (j) (k) (I)

Figure 1.1: Characteristics that are being used for biometric recognition; (a) Fingerprint;

(b) Hand-geometry; (c) Iris; (d) Retina; (e) Face; (1) Palmprint; (g) Ear structure; (h) DNA;

(i) Voice; (i) Gait; (k) Signature and (l) Keystroke dynamics.



data. Ideally, this new representation should be unique for each person and also relatively

invariant with respect to changes in the different samples of the same biometric collected

from the same person. The matching module compares the extracted feature set with the

templates stored in the system database and determines the degree of similarity (dissimilar-

ity) between the two. The decision module either verifies the identity claimed by the user

or determines the user’s identity based on the degree of similarity between the extracted

features and the stored template(s).

Biometric systems can provide three main functionalities, namely, (i) verification, (ii)

identification and (iii) negative identification. Figure 1.2 shows the flow of information in

verification and identification systems. In verification or authentication, the user claims an

identity and the system verifies whether the claim is genuine. For example, in an ATM

application the user may claim a specific identity, say John Doe, by entering his Personal

Identification Number (PIN). The system acquires the biometric data from the user and

compares it only with the template of John Doe. Thus, the matching is 1:1 in a verification

system. If the user’s input and the template of the claimed identity have a high degree of

similarity, then the claim is accepted as “genuine”. Otherwise, the claim is rejected and the

user is considered an “impostor”. In short, a biometric system operating in the verification

mode answers the question “Are you who you say you are?”.

In a biometric system used for identification, the user does not explicitly claim an iden-

tity. However, the implicit claim made by the user is that he is one among the persons

already enrolled in the system. In identification, the user’s input is compared with the

templates of all the persons enrolled in the database and the identity of the person whose

template has the highest degree of similarity with the user’s input is output by the biometric

system. Typically, if the highest similarity between the input and all the templates is less

than a fixed minimum threshold, the system outputs a reject decision which implies that
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the user presenting the input is not one among the enrolled users. Therefore, the matching

is 1:N in an identification system. An example of an identification system could be access

control to a secure building. All users who are authorized to enter the building would be

enrolled in the system. Whenever a user tries to enter the building, he presents his biomet-

ric data to the system and upon determination of the user’s identity the system grants him

the preset access privileges. An identification system answers the question “Are you really

someone who is known to the system?”.

Negative identification systems are similar to identification systems because the user

does not explicitly claim an identity. The main factor that distinguishes the negative identi-

fication functionality from identification is the user’s implicit claim that he is not a person

who is already enrolled in the system. Negative identification is also known as screening.

As in identification, the matching is 1:N in screening. However in screening, the system

will output an identity of an enrolled person only if that person’s template has the highest

degree of similarity with the input among all the templates and if the corresponding similar-

ity value is greater than a fixed threshold. Otherwise, the user’s claim that he is not already

known to the system is accepted. Screening is often used at airports to verify whether a

passenger’s identity matches with any person on a “watch-list”. Screening can also be used

to prevent the issue of multiple credential records (e.g., driver’s licence, passport) to the

same person. To summarize, negative identification answers the question “Are you who

you say you are not?”.

Verification functionality can be provided by traditional methods like passwords and ID

cards as well as by biometrics. The negative identification functionality can be provided

only by biometrics. Further, biometric characteristics are inherent to the person whose

identity needs to be established. Hence, they cannot be lost, stolen, shared, or forgot-

ten. Therefore, biometric traits provide more security than traditional knowledge-based or



 

Figure 1.3: Some illustrations of deployment of biometrics in civilian applications; (a) A

fingerprint verification system manufactured by Digital Persona Inc. used for computer

and network login; (b) An iris-based access control system at the Umea airport in Sweden

that verifies the frequent travelers and allows them access to flights; (c) A cell phone man-

ufactured by LG Electronics that recognizes authorized users using fingerprints (sensors

manufactured by Authentec Inc.) and allows them access to the phone’s special functional-

ities such as mobile-banking; (d) The US-VISIT immigration system based on fingerprint

and face recognition technologies and (e) A hand geometry system at Disney World that

verifies seasonal and yearly pass-holders to allow them fast entry.



token-based identification methods. They also discourage fraud and eliminate the possibil-

ity of repudiation. Finally, they are more convenient to use because it eliminates the need

for remembering multiple complex passwords and carrying identification cards. Although

biometric systems have some limitations [2], they offer a number of advantages over tra-

ditional security methods and this has led to their widespread deployment in a variety of

civilian applications. Figure 1.3 shows some examples of biometrics deployment in civilian

applications.

1.2 Multimodal Biometric Systems

1.2.1 Why Multimodal Biometrics?

Unimodal biometric systems perform person recognition based on a single source of

biometric information. Such systems are often affected by the following problems [3]:

  
(a) (b)

Figure 1.4: Examples of noisy biometric data; (a) A noisy fingerprint image due to smear-

ing, residual deposits, etc.; (b) A blurred iris image due to loss of focus.



   
(a) (b) (C)

Figure 1.5: Three impressions of a user’s finger showing the poor quality of the ridges.

o Noisy sensor data : Noise can be present in the acquired biometric data mainly due

to defective or improperly maintained sensors. For example, accumulation of dirt or

the residual remains on a fingerprint sensor can result in a noisy fingerprint image as

shown in Figure 1.4(a). Failure to focus the camera appropriately can lead to blurring

in face and iris images (see Figure l.4(b)). The recognition accuracy of a biometric

system is highly sensitive to the quality of the biometric input and noisy data can

result in a significant reduction in the accuracy of the biometric system [4].

o Non-universality: If every individual in the target population is able to present the

biometric trait for recognition, then the trait is said to be universal. Universality is

one of the basic requirements for a biometric identifier. However, not all biomet-

ric traits are truly universal. The National Institute of Standards and Technology

(NIST) has reported that it is not possible to obtain a good quality fingerprint from

approximately two percent of the population (people with hand-related disabilities,

manual workers with many cuts and bruises on their fingertips, and people with very

oily or dry fingers) [5] (see Figure 1.5). Hence, such people cannot be enrolled in a

fingerprint verification system. Similarly, persons having long eye-lashes and those



suffering from eye abnormalities or diseases like glaucoma, cataract, aniridia, and

nystagmus cannot provide good quality iris images for automatic recognition [6].

Non-universality leads to Failure to Enroll (FTE) and/or Failure to Capture (FTC)

errors in a biometric system.

Lack of individuality: Features extracted from biometric characteristics of different

individuals can be quite similar. For example, appearance-based facial features that

are commonly used in most of the current face recognition systems are found to

have limited discrimination capability [7]. A small proportion of the population can

have nearly identical facial appearance due to genetic factors (e.g., father and son,

identical twins, etc.). This lack of uniqueness increases the False Match Rate (FMR)

of a biometric system.

Lack of invariant representation: The biometric data acquired from a user during

verification will not be identical to the data used for generating the user’s template

during enrollment. This is known as “intra-class variation”. The variations may be

due to improper interaction of the user with the sensor (e.g., changes due to rotation,

translation and applied pressure when the user places his finger on a fingerprint sen-

sor, changes in pose and expression when the user stands in front of a camera, etc.),

use of different sensors during enrollment and verification, changes in the ambient

environmental conditions (e.g., illumination changes in a face recognition system)

and inherent changes in the biometric trait (e.g., appearance of wrinkles due to ag-

ing or presence of facial hair in face images, presence of scars in a fingerprint, etc.).

Figure 1.6 shows the intra-class variations in face images caused due to expression,

lighting and pose changes. Ideally, the features extracted from the biometric data

must be relatively invariant to these changes. However, in most practical biometric



systems the features are not invariant and therefore complex matching algorithms are

required to take these variations into account. Large intra-class variations usually

increase the False Non-Match Rate (FNMR) of a biometric system.

Susceptibility to circumvention: Although it is very difficult to steal someone’s bio-

metric traits, it is still possible for an impostor to circumvent a biometric system using

spoofed traits. Studies [8,9] have shown that it is possible to construct gummy fingers

using lifted fingerprint impressions and utilize them to circumvent a biometric sys-

tem. Behavioral traits like signature and voice are more susceptible to such attacks

than physiological traits. Other kinds of attacks can also be launched to circumvent

a biometric system [10].

  
(a) (b) (c) (d)

Figure 1.6: Four face images of the person in (a), exhibiting variations in (b) expression,

(c) illumination and (d) pose.

Due to these practical problems, the error rates associated with unimodal biometric

systems are quite high which makes them unacceptable for deployment in security criti—

cal applications. The state-of-the-art error rates associated with fingerprint, face and voice



Table 1.1: State-of-the-art error rates associated with fingerprint, face and voice biometric

systems. Note that the accuracy estimates of biometric systems are dependent on a number

of test conditions.

 

 

 

 

 

   

Test Test Parameter False Reject False Accept

Rate Rate

Fingerprint FVC 2004 [11] Exaggerated skin 2% 2%

distortion, rotation

FpVTE 2003 [12] US. government 0.1% 1%

operational data

Face FRVT 2002 [13] Varied lighting, 10% 1%

outdoor/indoor

Voice NIST 2004 [14] Text independent, 5-10% 2—5%

multi-lingual    

biometric systems are shown in Table 1.1. Some of the problems that affect unimodal bio-

metric systems can be alleviated by using multimodal biometric systems [15]. Systems

that consolidate cues obtained from two or more biometric sources for the purpose of per-

son recognition are called multimodal biometric systems. Multimodal biometric systems

have several advantages over unimodal systems. Combining the evidence obtained from

different modalities using an effective fusion scheme can significantly improve the overall

accuracy of the biometric system. A multimodal biometric system can reduce the FIE/FTC

rates and provide more resistance against spoofing because it is difficult to simultaneously

spoof multiple biometric sources. Multimodal systems can also provide the capability to

search a large database in an efficient and fast manner. This can be achieved by using a rel-

atively simple but less accurate modality to prune the database before using the more com-

plex and accurate modality on the remaining data to perform the final identification task.

However, multimodal biometric systems also have some disadvantages. They are more ex-

pensive and require more resources for computation and storage than unimodal biometric

ll



systems. Multimodal systems generally require more time for enrollment and verification

causing some inconvenience to the user. Finally, the system accuracy can actually degrade

compared to the unimodal system if a proper technique is not followed for combining the

evidence provided by the different modalities. However, the advantages of multimodal sys-

tems far outweigh the limitations and hence, such systems are being increasingly deployed

in security-critical applications.

1.2.2 How to Integrate Information?

The design of a multimodal biometric system is strongly dependent on the application

scenario. A number of multimodal biometric systems have been proposed in literature that

differ from one another in terms of their architecture, the number and choice of biometric

modalities, the level at which the evidence is accumulated, and the methods used for the

integration or fusion of information. Chapter 2 presents a detailed discussion on the design

of a multimodal biometric system.

Four levels of information fusion are possible in a multimodal biometric system. They

are fusion at the sensor level, feature extraction level, matching score level and decision

level. Sensor level fusion is quite rare because fusion at this level requires that the data ob-

tained from the different biometric sensors must be compatible, which is seldom the case

with biometric sensors. Fusion at the feature level is also not always possible because the

feature sets used by different biometric modalities may either be inaccessible or incompat-

ible. Fusion at the decision level is too rigid since only a limited amount of information

is available. Therefore, integration at the matching score level is generally preferred due

to the presence of sufficient information content and the ease in accessing and combining

matching scores.

12



In the context of verification, fusion at the matching score level can be approached in

two distinct ways. In the first approach the fusion is viewed as a classification problem,

while in the second approach it is viewed as a combination problem. In the classification

approach, a feature vector is constructed using the matching scores output by the individual

matchers; this feature vector is then classified into one of two classes: “Accept” (genuine

user) or “Reject” (impostor). In the combination approach, the individual matching scores

are combined to generate a single scalar score which is then used to make the final decision.

Both these approaches have been widely studied in the literature. Ross and Jain [16] have

shown that the combination approach performs better than some classification methods

like decision tree and linear discriminant analysis. However, it must be noted that no single

classification or combination scheme works well under all circumstances.

1.3 Thesis Contributions

A review of the proposed multimodal systems indicates that the major challenge in

multimodal biometrics is the problem ofchoosing the right methodology to integrate or fuse

the information obtained from multiple sources. In this thesis, we deal with two important

problems related to score level fusion.

0 In the first part of the thesis, we follow the combination approach to score level

fusion and address some of the issues involved in computing a single matching score

given the scores of different modalities. Since the matching scores generated by the

different modalities are heterogeneous, normalization is required to transform these

scores into a common domain before combining them. While several normalization

techniques have been proposed, there has been no detailed study of these techniques.

In this thesis, we have systematically studied the effects of different normalization

schemes on the performance of a multimodal biometric system based on the face,

13



fingerprint and hand-geometry modalities. Apart from studying the efficiency of the

normalization schemes, we have also analyzed their robustness to the presence of

outliers in the training data.

The second part of the thesis proposes a solution to the problem of integrating the

information obtained from the soft biometric identifiers like gender, ethnicity and

height with the primary biometric information like face and fingerprint. A mathemat-

ical model based on the Bayesian decision theory has been developed to perform the

integration. Experiments based on this model demonstrate that soft biometric identi-

fiers can be used to significantly improve the recognition performance of the primary

biometric system even when the soft biometric identifiers cannot be extracted with

100% accuracy.
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CHAPTER 2

Information Fusion in Multimodal Biometrics

Multimodal biometric systems that have been proposed in literature can be classified

based on four parameters, namely, (i) architecture, (ii) sources that provide multiple ev-

idence, (iii) level of fusion and (iv) methodology used for integrating the multiple cues.

Generally, these design decisions depend on the application scenario and these choices

have a profound influence on the performance of a multimodal biometric system. In this

chapter, we compare the existing multibiometric systems based on the above four parame-

ters.

2.1 Architecture

Architecture of a multibiometric system refers to the sequence in which the multiple

cues are acquired and processed. Typically, the architecture of a multimodal biometric sys-

tem is either serial or parallel (see Figure 2.1). In the serial or cascade architecture, the pro-

cessing of the modalities takes place sequentially and the outcome of one modality affects

the processing of the subsequent modalities. In the parallel design, different modalities

operate independently and their results are combined using an appropriate fusion scheme.

Both these architectures have their own advantages and limitations.

The cascading scheme can improve the user convenience as well as allow fast and effi-

cient searches in large scale identification tasks. For example, when a cascaded multimodal

biometric system has sufficient confidence on the identity of the user after processing the

first modality, the user may not be required to provide the other modalities. The system

can also allow the user to decide which modality he/she would present first. Finally, if the
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system is faced with the task of identifying the user from a large database, it can utilize the

outcome of each modality to successively prune the database, thereby making the search

faster and more efficient. Thus, a cascaded system can be more convenient to the user and

generally requires less recognition time when compared to its parallel counterpart. How-

ever, it requires robust algorithms to handle the different sequence of events. An example

of a cascaded multibiometric system is the one proposed by Hong and Jain in [17]. In this

system, face recognition is used to retrieve the top it matching identities and fingerprint

recognition is used to verify these identities and make a final identification decision. A

multimodal system designed to operate in the parallel mode generally has a higher accu-

racy because it utilizes more evidence about the user for recognition. Most of the proposed

multibiometric systems have a parallel architecture because the primary goal of system de-

signers has been a reduction in the error rate of biometric systems (see [16], [18] and the

references therein).

The choice of the system architecture depends on the application requirements. User-

friendly and less security critical applications like bank ATMs can use a cascaded multi-

modal biometric system. On the other hand, parallel multimodal systems are more suited

for applications where security is of paramount importance (e.g., access to military instal—

lations). It is also possible to design a hierarchical (tree-like) architecture to combine the

advantages of both cascade and parallel architectures. This hierarchical architecture can be

made dynamic so that it is robust and can handle problems like missing and noisy biomet-

ric samples that arise in biometric systems. But the design of a hierarchical multibiometric

system has not received much attention from researchers.
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2.2 Sources of Multiple Evidence

Multimodal biometric systems overcome some of the limitations of unimodal biomet-

ric systems by consolidating the evidence obtained from different sources (see Figure 2.2).

These sources may be (i) multiple sensors for the same biometric (e.g., optical and solid-

state fingerprint sensors), (ii) multiple instances of the same biometric (e.g., multiple face

images of a person obtained under different pose/lighting conditions), (iii) multiple repre-

sentations and matching algorithms for the same biometric (e.g., multiple face matchers

like PCA and LDA), (iv) multiple units of the same biometric (e.g., left and right iris im-

ages), or (v) multiple biometric traits (e.g., face, fingerprint and iris). In the first four

scenarios, multiple sources of information are derived from the same biometric trait. In the

fifth scenario, information is derived from different biometric traits.

The use of multiple sensors can address the problem of noisy sensor data, but all other

potential problems associated with unimodal biometric systems remain. A recognition sys-

tem that works on multiple units of the same biometric can ensure the presence of a live

user by asking the user to provide a random subset of biometric measurements (e.g., left

index finger followed by right middle finger). Multiple instances of the same biometric,

or multiple representations and matching algorithms for the same biometric may also be

used to improve the recognition performance of the system. However, all these methods

still suffer from some of the problems faced by unimodal systems. A multimodal biometric

system based on different traits is expected to be more robust to noise, address the prob-

lem of non-universality, improve the matching accuracy, and provide reasonable protection

against spoof attacks. Hence, the development of biometric systems based on multiple

biometric traits has received considerable attention from researchers.
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2.3 Levels of Fusion

Fusion in multimodal biometric systems can take place at four major levels, namely,

sensor level, feature level, score level and decision level. Figure 2.3 shows some examples

of fusion at the various levels. These four levels can be broadly categorized into fusion

prior to matching and fusion after matching [19].

2.3.1 Fusion Prior to Matching

Prior to matching, integration of information can take place either at the sensor level or

at the feature level. The raw data from the sensor(s) are combined in sensor level fusion

[20]. Sensor level fusion can be done only if the multiple cues are either instances of the

same biometric trait obtained from multiple compatible sensors or multiple instances of the

same biometric trait obtained using a single sensor. For example, the face images obtained

from several cameras can be combined to form a 3D model of the face. Another example

of sensor level fusion is the mosaicking of multiple fingerprint impressions to form a more

complete fingerprint image [21, 22]. In sensor level fusion, the multiple cues must be

compatible and the correspondences between points in the data must be known in advance.

Sensor level fusion may not be possible if the data instances are incompatible (e.g., it may

not be possible to integrate face images obtained from cameras with different resolutions).

Feature levelfusion refers to combining different feature vectors that are obtained from

one of the following sources; multiple sensors for the same biometric trait, multiple in-

stances of the same biometric trait, multiple units of the same biometric trait or multiple

biometric traits. When the feature vectors are homogeneous (e.g., multiple fingerprint im-

pressions of a user’s finger), a single resultant feature vector can be calculated as a weighted

average of the individual feature vectors. When the feature vectors are non-homogeneous

(e.g., feature vectors of different biometric modalities like face and hand geometry), we
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can concatenate them to form a single feature vector. Concatenation is not possible when

the feature sets are incompatible (e.g., fingerprint minutiae and eigen-face coefficients).

Attempts by Kumar et al. [23] in combining palmprint and hand-geometry features and by

Ross and Govindarajan [24] in combining face and hand-geometry features have met with

only limited success.

Biometric systems that integrate information at an early stage of processing are believed

to be more effective than those systems which perform integration at a later stage. Since

the features contain richer information about the input biometric data than the matching

score or the decision of a matcher, integration at the feature level should provide better

recognition results than other levels of integration. However, integration at the feature level

is difficult to achieve in practice because of the following reasons: (i) The relationship

between the feature spaces of different biometric systems may not be known. In the case

where the relationship is known in advance, care needs to be taken to discard those features

that are highly correlated. This requires the application of feature selection algorithms prior

to classification. (ii) Concatenating two feature vectors may result in a feature vector with

very large dimensionality leading to the ‘curse of dimensionality’ problem [25]. Although,

this is a general problem in most pattern recognition applications, it is more severe in

biometric applications because of the time, effort and cost involved in collecting large

amounts of biometric data. (iii) Most commercial biometric systems do not provide access

to the feature vectors which they use in their products. Hence, very few researchers have

studied integration at the feature level and most of them generally prefer fusion schemes

after matching.
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2.3.2 Fusion After Matching

Schemes for integration of information after the classification/matcher stage can be di-

vided into four categories: dynamic classifier selection, fusion at the decision level, fusion

at the rank level and fusion at the matching score level. A dynamic classifier selection

scheme chooses the results of that classifier which is most likely to give the correct deci-

sion for the specific input pattern [26]. This is also known as the winner-take-all approach

and the device that performs this selection is known as an associative switch [27].

Integration of information at the abstract or decision level can take place when each

biometric matcher individually decides on the best match based on the input presented to

it. Methods like majority voting [28], behavior knowledge space [29], weighted voting

based on the Dempster-Shafer theory of evidence [30], AND rule and OR rule [31], etc.

can be used to arrive at the final decision.

When the output of each biometric matcher is a subset of possible matches sorted in

decreasing order of confidence, the fusion can be done at the rank level. Ho et al. [32] de-

scribe three methods to combine the ranks assigned by the different matchers. In the highest

rank method, each possible match is assigned the highest (minimum) rank as computed by

different matchers. Ties are broken randomly to arrive at a strict ranking order and the final

decision is made based on the combined ranks. The Borda count method uses the sum of

the ranks assigned by the individual matchers to calculate the combined ranks. The logistic

regression method is a generalization of the Borda count method where the weighted sum

of the individual ranks is calculated and the weights are determined by logistic regression.

When the biometric matchers output a set of possible matches along with the quality

of each match (matching score), integration can be done at the matching score level. This

is also known as fusion at the measurement level or confidence level. Next to the feature

vectors, the matching scores output by the matchers contain the richest information about
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the input pattern. Also, it is relatively easy to access and combine the scores generated

by the different matchers. Consequently, integration of information at the matching score

level is the most common approach in multimodal biometric systems.

2.4 Fusion at the Matching Score Level

In the context of verification, there are two approaches for consolidating the scores ob-

tained from different matchers. One approach is to formulate it as a classification problem,

while the other approach is to treat it as a combination problem. In the classification ap-

proach, a feature vector is constructed using the matching scores output by the individual

matchers; this feature vector is then classified into one of two classes: “Accept” (genuine

user) or “Reject” (impostor). Generally, the classifier used for this purpose is capable of

learning the decision boundary irrespective of how the feature vector is generated. Hence,

the output scores of the different modalities can be non-homogeneous (distance or similar-

ity metric, different numerical ranges, etc.) and no processing is required prior to feeding

them into the classifier. In the combination approach, the individual matching scores are

combined to generate a single scalar score which is then used to make the final decision.

To ensure a meaningful combination of the scores from the different modalities, the scores

must be first transformed to a common domain.

2.4.1 Classification Approach to Score Level Fusion

Several classifiers have been used to consolidate the matching scores and arrive at a de-

cision. Wang et al. [33] consider the matching scores resulting from face and iris recogni-

tion modules as a two-dimensional feature vector. Fisher’s discriminant analysis and a neu-

ral network classifier with radial basis function are then used for classification. Verlinde and

Chollet [34] combine the scores from two face recognition experts and one speaker recog-

nition expert using three classifiers: k-NN classifier using vector quantization, decision-tree
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based classifier and a classifier based on a logistic regression model. Chatzis et a1. [35] use

fuzzy k-means and fuzzy vector quantization, along with a median radial basis function

neural network classifier for the fusion of scores obtained from biometric systems based

on visual (facial) and acoustic (vocal) features. Sanderson et al. [19] use a support vector

machine classifier to combine the scores of face and speech experts. They show that the

performance of such a classifier deteriorates under noisy input conditions. To overcome

this problem, they implement structurally noise-resistant classifiers like a piece-wise linear

classifier and a modified Bayesian classifier. Ross and Jain [16] use decision tree and linear

discriminant classifiers for combining the scores of face, fingerprint, and hand-geometry

modalities.

2.4.2 Combination Approach to Score Level Fusion

Kittler et al. [36] have developed a theoretical framework for consolidating the evidence

obtained from multiple classifiers using schemes like the sum rule, product rule, max rule,

min rule, median rule and majority voting. In order to employ these schemes, the matching

scores must be converted into posteriori probabilities conforming to a genuine user and

an impostor. They consider the problem of classifying an input pattern X into one of

m possible classes (in a verification system, m = 2) based on the evidence provided by

R different classifiers or matchers. Let f,- be the feature vector (derived from the input

pattern X) presented to the 2"" matcher. Let the outputs of the individual matchers be

P(wj Iii), i.e., the posterior probability of the of class wj given the feature vector 5:}. Let

C 6 {011, L02, . ' . ,wm} be the class to which the input pattern X is finally assigned. The

following rules can be used to estimate oz

Product Rule: This rule is based on the assumption of statistical independence of the

representations f1, :32, - - - , 553. The input pattern is assigned to class c such that
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R

c = argmaxj H P(wj|:f:'i).

i=1

In general, different biometric traits of an individual (e.g., face, fingerprint and hand-

geometry) are mutually independent. This allows us to make use of the product rule in

a multimodal biometric system based on the independence assumption.

Sum Rule: The sum rule is more effective than the product rule when there is a high level

of noise leading to ambiguity in the classification problem. The sum rule assigns the input

pattern to class e such that

R

c = argmaxj Z P(wj|f,-).

221

Max Rule: The max rule approximates the mean of the posteriori probabilities by the

maximum value. In this case, we assign the input pattern to class c such that

c = argmaxj max P(wj|5c’,-).
1

Min Rule: The min rule is derived by bounding the product of posteriori probabilities.

Here, the input pattern is assigned to class c such that

c = argmaxj min P(wj|;f3’,-).

I

Prabhakar and Jain [37] argue that the assumption of statistical independence of the

feature sets may not be true in a multimodal biometric system that uses different feature
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representations and different matching algorithms on the same biometric trait. They pro-

pose a scheme based on non-parametric density estimation for combining the scores ob-

tained from four fingerprint matching algorithms and use the likelihood ratio test to make

the final decision. They show that their scheme is optimal in the Neyman-Pearson decision

sense, when sufficient training data is available to estimate the joint densities.

The use of Bayesian statistics in combining the scores of different biometric matchers

was demonstrated by Bigun et al. [38]. They proposed a new algorithm for the fusion

module of a multimodal biometric system that takes into account the estimated accuracy

of the individual classifiers during the fusion process. They showed that their multimodal

system using image and speech data provided better recognition results than the individual

modalities.

The combined matching score can also be computed as a weighted sum of the matching

scores of the individual matchers [16,33]. Jain and Ross [39] have proposed the use of user-

specific weights for computing the weighted sum of scores from the different modalities.

The motivation behind this idea is that some biometric traits cannot be reliably obtained

from a small segment of the population. For example, we cannot obtain good quality

fingerprints from users with dry fingers. For such users, assigning a lower weight to the

fingerprint score and a higher weight to the scores of the other modalities reduces their

probability ofbeing falsely rejected. This method requires learning of user-specific weights

from the training scores available for each user. In [39], user-specific thresholds was also

suggested.

2.5 Evaluation of Multimodal Biometric Systems

The performance metrics of a biometric system such as accuracy, throughput, and scal-

ability can be estimated with a high degree of confidence only when the system is tested on
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a large representative database. For example, face [13] and fingerprint [12] recognition sys-

tems have been evaluated on large databases (containing samples from more than 25,000 in-

dividuals) obtained from a diverse population under a variety of environmental conditions.

In contrast, current multimodal systems have been tested only on small databases contain-

ing fewer than 1, 000 individuals. Further, multimodal biometric databases can be either

true or virtual. In a true multimodal database (e.g., XM2VTS database [40]), different

biometric cues are collected from the same individual. Virtual multimodal databases con-

tain records which are created by consistently pairing a user from one unimodal database

with a user from another database. The creation of virtual users is based on the assump-

tion that different biometric traits of the same person are independent. This assumption of

independence of the various modalities has not been explicitly investigated till date. How-

ever, Indovina et al. [41] attempted to validate the use of virtual subjects. They randomly

created 1, 000 sets of virtual users and showed that the variation in performance among

these sets was not statistically significant. Recently, NIST has released a true multimodal

database [42] containing the face and fingerprint matching scores of 517 individuals.

2.6 Summary

We have presented a detailed discussion on the various approaches that have been pro-

posed for integrating evidence obtained from multiple cues in a biometric system. Figure

2.4 presents a high-level summary of these information fusion techniques. Most of research

work on fusion in multimodal biometric systems has focused on fusion at the matching

score level. In particular, the combination approach to score level fusion has received con-

siderable attention. However, there are still many open questions that have been left unan-

swered. There is no standard technique either for converting the scores into probabilities

or for normalizing the scores obtained from multiple matching algorithms. A systematic
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evaluation of the different normalization techniques is not available. Further, most of the

score level fusion techniques can be applied only when the individual modalities can pro-

vide a reasonably good recognition performance. They cannot handle less reliable (soft)

biometric identifiers that can provide some amount of discriminatory information, but are

not sufficient for recognition of individuals. For example, the height of a user gives some

indication on who the user could be. However, it is impossible to identify a user just based

on his height. Currently, there is no mechanism to deal with such soft information.

30



CHAPTER 3

Score Normalization in Multimodal Biometric Systems

Consider a multimodal biometric verification system that follows the combination ap-

proach to fusion at the matching score level. The theoretical framework developed by

Kittler et al. in [36] can be applied to this system only if the output of each modality is of

the form P(genuine|X) i.e., the posteriori probability of user being “genuine” given the

input biometric sample X. In practice, most biometric systems output a matching score 3.

Verlinde et al. [43] have proposed that the matching score 3 is related to P(genuine|X) as

follows:

8 = f (P(genuine|X)) + 17(X), (3.1)

where f is a monotonic function and r] is the error made by the biometric system that

depends on the input biometric sample X. This error could be due to the noise intro-

duced by the sensor during the acquisition of the biometric signal and the errors made

by the feature extraction and matching processes. If we assume that n is zero, it is rea-

sonable to approximate P(genuine|X) by P(genuz’ne|s). In this case, the problem re-

duces to computing P(genuine|s) and this requires estimating the conditional densities

P(s|genuine) and P(s|impostor). Snelick et al. [44] assumed a normal distribution for

the conditional densities of the matching scores (p(8Igenuine) ~ N(#9, 0'9) and

p(s|imp03t0r) ~ N01,, 00), and used the training data to estimate the parameters

#9, 0’9, [15, and 02-. The posteriori probability of the score being that of a genuine user was

then computed as,
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p(s|genuine)
 P ' = .

(genuznels) p(s|genuine) + p(s|z'mpostor)

The above approach has two main drawbacks. The assumption of a normal distribution

for the scores may not be true in many cases. For example, the scores of the fingerprint

and hand-geometry matchers used in our experiments do not follow a normal distribution.

Secondly, the approach does not make use of the prior probabilities of the genuine and

impostor users that may be available to the system. Due to these reasons, we have proposed

the use of a non-parametric technique, viz., Parzen window density estimation method

[25], to estimate the actual conditional density of the genuine and impostor scores. After

estimating the conditional densities, the Bayes formula can be applied to calculate the

posteriori probability of the score being that of a genuine user. Thus,

p(s|genuine) * P(g)

p(8)

 P(genuine|s) =
7

where p(s) = @(sIgenuine) * P(g) + p(s|impost0r) * P(i)) and P(g) and P(i) are the

prior probabilities of a genuine user and an impostor, respectively.

Although the Parzen window density estimation technique significantly reduces the

error in the estimation of P(genuine|s) (especially when the conditional densities are non-

Gaussian), the density estimation still has inaccuracies non-zero due to the finite training

set and the problems in choosing the optimum window width during the density estimation

process. Further, the assumption that the value of n in equation (3.1) is zero is not valid in

most practical biometric systems. Since 1) depends on the input biometric sample X, it is

possible to estimate 77 only if the biometric system outputs a confidence measure (that takes

into account the nature of the input X) on the matching score along with the matching score

itself. In the absence of this confidence measure, the calculated value of P(genuz’ne|s) is

not a good estimate of P(genuine|X) and this can lead to poor recognition performance
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of the multimodal system. Hence, when the outputs of individual modalities are matching

scores without any measures quantifying the confidence on those scores, it would be better

to combine the matching scores directly without converting them into probabilities.

3.1 Need for Score Normalization

The following issues need to be considered prior to combining the scores of the match-

ers into a single score. The matching scores at the output of the individual matchers may

not be homogeneous. For example, one matcher may output a distance (dissimilarity) mea-

sure while another may output a proximity (similarity) measure. Further, the outputs of the

individual matchers need not be on the same numerical scale (range). Finally, the match-

ing scores at the output of the matchers mayfollow different statistical distributions. Due

to these reasons, score normalization is essential to transform the scores of the individual

matchers into a common domain prior to combining them. Score normalization is a critical

part in the design of a combination scheme for matching score level fusion.

Figure 3.1 shows the conditional distributions of the face, fingerprint and hand-geometry

matching scores used in our experiments. The scores obtained from the face and hand-

geometry matchers are distance scores and those obtained from the fingerprint matcher are

similarity scores. One can easily observe the non-homogeneity in these scores and the need

for normalization prior to any meaningful combination.

3.2 Challenges in Score Normalization

Score normalization refers to changing the location and scale parameters of the match-

ing score distributions at the outputs of the individual matchers, so that the matching scores

of different matchers are transformed into a common domain. When the parameters used

for normalization are determined using a fixed training set, it is referred to as fixed score
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normalization [45]. In such a case, the matching score distribution of the training set is

examined and a suitable model is chosen to fit the distribution. Based on the model, the

normalization parameters are determined. In adaptive score normalization, the normaliza-

tion parameters are estimated based on the current feature vector. This approach has the

ability to adapt to variations in the input data such as the change in the length of the speech

signal in speaker recognition systems.

The problem of score normalization in multimodal biometric systems is identical to the

problem of score normalization in metasearch. Metasearch is a technique for combining the

relevance scores of documents produced by different search engines, in order to improve

the performance of document retrieval systems [46]. Min-max normalization and z-score

normalization are some of the popular techniques used for relevance score normalization in

metasearch. In metasearch literature [47], the distribution of scores of relevant documents

is generally approximated as a Gaussian distribution with a large standard deviation while

that of non-relevant documents is approximated as an exponential distribution. In our ex—

periments, the distributions of the genuine and impostor fingerprint scores closely follow

the distributions of relevant and non-relevant documents in metasearch. However, the face

and hand-geometry scores do not exhibit this behavior.

For a good normalization scheme, the estimates of the location and scale parameters

of the matching score distribution must be robust and efficient. Robustness refers to in-

sensitivity to the presence of outliers. Efficiency refers to the proximity of the obtained

estimate to the optimal estimate when the distribution of the data is known. Huber [48] ex-

plains the concepts of robustness and efficiency of statistical procedures. He also explains

the need for statistical procedures that have both these desirable characteristics. Although

many techniques can be used for score normalization, the challenge lies in identifying a

technique that is both robust and efficient.
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3.3 Normalization Techniques

The simplest normalization technique is the Min-max normalization. Min-max normal-

ization is best suited for the case where the bounds (maximum and minimum values) of the

scores produced by a matcher are known. In this case, we can easily shift the minimum

and maximum scores to O and 1, respectively. However, even if the matching scores are

not bounded, we can estimate the minimum and maximum values for a set of matching

scores and then apply the min-max normalization. Let sij denote the 3"" matching score

output by the i“ modality, wherei = 1,2, - -- ,R andj = 1,2, - -- ,M (R is the number

of modalities and M is the number of matching scores available in the training set). The

min-max normalized score for the test score 35,, is given by

, sik — min ({3,})

3““ _ max ({Si.}) _ min ({si'D,

 

where {3,} = {3,1, 3,2, - - - , 3iM}- When the minimum and maximum values are estimated

from the given set of matching scores, this method is not robust (i.e., the method is highly

sensitive to outliers in the data used for estimation). Min-max normalization retains the

original distribution of scores except for a scaling factor and transforms all the scores into

a common range [0,1]. Distance scores can be transformed into similarity scores by sub-

tracting the normalized score from 1. Figure 3.2 shows the distributions of face, fingerprint

and hand-geometry scores after min-max normalization.

Decimal scaling can be applied when the scores of different matchers are on a loga-

rithmic scale. For example, if one matcher has scores in the range [0,1] and the other has

scores in the range [0, 100], the following normalization could be applied.

I _ Sik

31* _ 10n’
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Figure 3.2: Distributions of genuine and impostor scores after min-max normalization; (a)

Face, (b) Fingerprint and (c) Hand-geometry.
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where n = log10 max ({5}; }). The problems with this approach are the lack of robustness

and the assumption that the scores of different matchers vary by a logarithmic factor. In our

experiments, the matching scores of the three modalities are not distributed on a logarithmic

scale and hence, this normalization technique cannot be applied.

The most commonly used score normalization technique is the z-score that uses the

arithmetic mean and standard deviation of the given data. This scheme can be expected

to perform well if prior knowledge about the average score and the score variations of

the matcher is available. If we do not have any prior knowledge about the nature of the

matching algorithm, then we need to estimate the mean and standard deviation of the scores

from a given set of matching scores. The normalized scores are given by

8:]: : Sik — H,

0

where p. is the arithmetic mean and o is the standard deviation of the given data. However,

both mean and standard deviation are sensitive to outliers and hence, this method is not

robust. Z-score normalization does not guarantee a common numerical range for the nor-

malized scores of the different matchers. If the distribution of the scores is not Gaussian,

z-score normalization does not retain the input distribution at the output. This is due to the

fact that mean and standard deviation are the optimal location and scale parameters only

for a Gaussian distribution. For an arbitrary distribution, mean and standard deviation are

reasonable estimates of location and scale, respectively, but are not optimal.

The distributions of the matching scores of the three modalities after z-score normal-

ization are shown in Figure 3.3. The face and hand-geometry scores are converted into

similarity scores by subtracting the scores from a large number (300 for face and 1000 for
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hand-geometry in our experiments) before applying the z-score transformation. Figure 3.3

shows that z-score normalization fails to transform the scores of the different modalities

into a common numerical range and also does not retain the original distribution of scores

in the case of fingerprint modality.

The median and median absolute deviation (MAD) are insensitive to outliers and the

points in the extreme tails of the distribution. Hence, a normalization scheme using median

and MAD would be robust and is given by

, 3,7, — median

Sik— MAD 7

 

where MAD = median ({lsi, — median ({s,.}) |}). However, the median and

the MAD estimators have a low efficiency compared to the mean and the standard deviation

estimators, i.e., when the score distribution is not Gaussian, median and MAD are poor

estimates of the location and scale parameters. Therefore, this normalization technique

does not retain the input distribution and does not transform the scores into a common

numerical range. This is illustrated by the distributions of the normalized face, fingerprint,

and hand-geometry scores in Figure 3.4.

Cappelli et al. [49] have used a double sigmoid function for score normalization in a

multimodal biometric system that combines different fingerprint matchers. The normalized

score is given by

1

s- —t

1+exp(—2(-1§l—

 

)) ifsk < t,

 

. _ otherwise

1+eXP(-2(-”S—sr2‘)) ’
where t is the reference operating point and TI and r2 denote the left and right edges of

the region in which the function is linear, i.e., the double sigmoid function exhibits linear
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characteristics in the interval (t — r1, t — r2). Figure 3.5 shows an example of the double

sigmoid normalization, where the scores in the [0, 300] range are mapped to the [0, 1] range

usingt = 200, r, = 20 and r2 = 30.
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Figure 3.5: Double sigmoid normalization (t = 200, r1 = 20, and r2 = 30).

This scheme transforms the scores into the [0, 1] interval. But, it requires careful tuning

of the parameters t, 1'1 and r2 to obtain good efficiency. Generally, t is chosen to be some

value falling in the region of overlap between the genuine and impostor score distribution,

and r1 and r2 are set so that they correspond to the extent of overlap between the two dis-

tributions toward the left and right of t, respectively. This normalization scheme provides

a linear transformation of the scores in the region of overlap, while the scores outside this

region are transformed non-linearly. The double sigmoid normalization is very similar to

the min-max normalization followed by the application of a two-quadrics (QQ) or a logistic
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(LG) function as suggested by Snelick et al. [18]. When n and T2 are large, the double sig-

moid normalization closely resembles the QQ-min-max normalization. On the other hand,

we can make the double sigmoid normalization tend toward LG-min-max normalization by

assigning small values to 7'1 and r2.

Figure 3.6 shows the face, fingerprint and hand-geometry score distributions after dou-

ble sigmoid normalization. The face and hand-geometry scores are converted into simi—

larity scores by subtracting the normalized scores from 1. The parameters of the double

sigmoid normalization were chosen as follows: t is chosen to be the center of the overlap-

ping regions between the genuine and impostor score distributions, and 7‘1 and r2 are set so

that they correspond to the minimum genuine similarity score and maximum impostor sim-

ilarity score, respectively. A matching score that is equally likely to be from a genuine user

and an impostor is chosen as the center (t) of the region of overlap. Then, TI is the differ-

ence between t and the minimum of the genuine scores, while r2 is the difference between

the maximum of the impostor scores and t. In order to make this normalization robust,

approximately 2% of the scores at the extreme tails of the genuine and impostor distribu-

tions were omitted when calculating r1 and r2. It must be noted that this scheme cannot

be applied as described here if there are multiple intervals of overlap between genuine and

impostor distributions. Although this normalization scheme transforms all the scores to a

common numerical range [0, 1], it does not retain the shape of the original distribution of

the fingerprint scores.

The tanh-estimators introduced by Hampel et al. [50] are robust and highly efficient.

The normalization is given by

1 ,- —

32k = — {tanh (0.01 (w)) + 1},

2 00H
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where pay and 00” are the mean and standard deviation estimates, respectively, of the

genuine score distribution as given by Hampel estimators ‘. Hampel estimators are based

on the following influence (rm-function:

u 0 S In] < a,

a =1: sign(u) a S M < b,

Wu) = a :1: sign(u) =1: (Sell-11:1) b _<_ |u| < c,

0 In] _>_ c.

A plot of the Hampel influence function is shown in Figure 3.7. The Hampel influence

function reduces the influence of the points at the tails of the distribution (identified by a,

b, and c) during the estimation of the location and scale parameters. Hence, this method

is not sensitive to outliers. If many of the points that constitute the tail of the distributions

are discarded, the estimate is robust but not efficient (optimal). On the other hand, if all the

points that constitute the tail of the distributions are considered, the estimate is not robust

but the efficiency increases. Therefore, the parameters a, b, and c must be carefully chosen

depending on the amount of robustness required which in turn depends on the estimate of

the amount of noise in the available training data.

In our experiments, the values of a, b and c were chosen such that 70% of the scores

were in the interval (m — a, m + a), 85% of the scores were in the interval (m — b, m + b),

and 95% of the scores were in the interval (m - c, m + c), where m is the median score. The

distributions of the scores of the three modalities after tanh normalization are shown in Fig-

ure 3.8. The distance to similarity transformation is achieved by subtracting the normalized

scores from 1. The nature of the tanh distribution is such that the genuine score distribution

in the transformed domain has a mean of 0.5 and a standard deviation of approximately

0.01. The constant 0.01 in the expression for tanh normalization determines the spread

lIn [44,45], the mean and standard deviation of all the training scores (both genuine and impostor) were

used for tanh normalization. However, we observed that considering the mean and standard deviation of only

the genuine scores results in a better recognition performance.
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of the normalized genuine scores. In our experiments, the standard deviation of genuine

scores of face, fingerprint and hand-geometry modalities are 16.7, 202.1, and 38.9, respec-

tively. We observe that the genuine fingerprint scores have a standard deviation that is ap-

proximately 10 times the standard deviation of the genuine face and hand-geometry scores.

Hence, using the same constant, 0.01, for the fingerprint modality is not inappropriate. To

avoid this problem, the constant factor in the tanh normalization for fingerprint modality

was set to 0.1. Therefore, the standard deviation of the tanh normalized genuine fingerprint

scores is roughly 0.1, which is about 10 times that of the face and hand-geometry modali-

ties. This modification retains the inforrnation contained in the fingerprint scores even after

the normalization, resulting in better performance.

Mosteller and Tukey [51] introduced the biweight location and scale estimators that are

robust and efficient. But, the biweight estimators are iterative in nature (an initial estimate

of the biweight location and scale parameters is chosen, and this estimate is updated based
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on the training scores), and are applicable only for Gaussian data. The biweight location

and scale estimates of the data used in our experiments were very close to the mean and

standard deviation. Hence, the results of this scheme were quite similar to those produced

by the z-score normalization. Therefore, we have not considered biweight normalization

in our experiments. The characteristics of the different normalization techniques have been

tabulated in Table 3.1.

Table 3.1: Summary of Normalization Techniques

 

 

 

 

 

 

 

  

Normalization Technique Robustness Efficiency

Min-max No N/A

Decimal scaling No N/A

z-score No High (optimal for Gaussian data)

Median and MAD Yes Moderate

Double sigmoid Yes High

tanh-estimators Yes High

Biweight estimators Yes High    

3.4 Experimental Results

Snelick et al. [18] have developed a general testing framework that allows system

designers to evaluate multimodal biometric systems by varying different factors like the

biometric traits, matching algorithms, normalization schemes, fusion methods and sam-

ple databases. To illustrate this testing methodology, they evaluated the performance of

a multimodal biometric system that used face and fingerprint classifiers. Normalization

techniques like min-max, z-score, median and MAD, and tanh estimators were used to

transform the scores into a common domain. The transformed scores were then combined

using fusion methods like simple sum of scores, maximum score, minimum score, sum of
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posteriori probabilities (sum rule), and product of posteriori probabilities (product rule).

Their experiments conducted on a database of more than 1, 000 users showed that the min-

max normalization followed by the sum of scores fusion method generally provided better

recognition performance than other schemes. However, the reasons for such a behavior

have not been presented by these authors. In this work, we have tried to analyze the rea-

sons for the differences in the performance of the different normalization schemes. We

have tried to systematically study the different normalization techniques to ascertain their

role in the performance of a multimodal biometric system consisting of face, fingerprint

and hand-geometry modalities. In addition to the four normalization techniques employed

in [18], we have also analyzed the double sigmoid method of normalization.

3.4.1 Generation of the Multimodal Database

The multimodal database used in our experiments was constructed by merging two sep-

arate databases (of 50 users each) collected using different sensors and over different time

periods. The first database (described in [16]) was constructed as follows: Five face images

and five fingerprint impressions (of the same finger) were obtained from a set of 50 users.

Face images were acquired using a Panasonic CCD camera (640 x 480) and fingerprint

impressions were obtained using a Digital Biometrics sensor (500 dpi, 640 x 480). Five

hand-geometry images were obtained from a set of 50 users (some users were present in

both the sets) and captured using a Pulnix TMC-7EX camera. The mutual independence

assumption of the biometric traits allows us to randomly pair the users from the two sets.

In this way, a multimodal database consisting of 50 virtual users was constructed, each user

having five biometric templates for each modality. The biometric data captured from every

user is compared with that of all the users in the database leading to one genuine score

vector and 49 impostor score vectors for each distinct input. Thus, 500 (50 x 10) genuine
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score vectors and 24, 500 (50 x 10 x 49) impostor score vectors were obtained from this

database. The second database also consisted of 50 users whose face images were cap-

tured using a Sony video camera (256 x 384) and fingerprint images were acquired using

an Identix sensor (500 dpi, 255 x 256). The Pulnix TMC-7EX camera was used to obtain

hand-geometry images. This database also gave rise to 500 genuine and 24,500 impostor

score vectors. Merging the scores from the two databases resulted in a database of 100

users with 1, 000 genuine score vectors and 49, 000 impostor score vectors. A score vector

8;, is a 3-tuple {31h 32k, 831:}, where 81k, 32k. and 83k correspond to the kth matching

scores obtained from the face, fingerprint and hand-geometry matchers, respectively. Of

the 10 genuine and 10 x 49 impostor score vectors available for each user, 6 genuine and

6 impostor score vectors were randomly selected and used for training (for calculating the

parameters of each normalization technique or for density estimation by the Parzen win-

dow method). The remaining 4 genuine and 4 x 49 impostor score vectors of each user

were used for testing the performance of the system. Again assurrring the independence of

the three modalities, we create 43 “yirtual” users from each real user, by considering all

possible combinations of scores of the three modalities. Thus, we have 64, 000 (100 x 43)

genuine score vectors and 313, 600 (100 x 43 x 49) impostor score vectors to analyze the

system performance. This separation of the database into training and test sets was repeated

40 times and we have reported the average performance results. Fingerprint matching was

done using the minutiae features [52] and the output of the fingerprint matcher was a simi-

larity score. Eigenface coefficients were used to represent features of the face image [53].

The Euclidean distance between the eigenface coefficients of the face template and that

of the input face was used as the matching score. The hand-geometry images were repre-

sented by a l4-dimensional feature vector [54] and the matching score was computed as

the Euclidean distance between the input feature vector and the template feature vector.
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The recognition performance of the face, fingerprint, and hand-geometry systems when

operated as unimodal systems is shown in Figure 3.9. From Figure 3.1(a), we observe that

there is a significant overlap between the genuine and impostor distributions of the raw

face scores, and this explains the poor recognition performance of the face module. Fig-

ure 3.1(b) shows that most of the impostor fingerprint scores are close to zero and that the

genuine fingerprint scores are spread over a wide range of values. Moreover, the overlap

between the two conditional densities is small and, hence, the fingerprint system performs

better than the face and hand-geometry modules. The overlap between the genuine and im-

postor distributions of the hand-geometry system is the highest among all the three modal-

ities as shown in Figure 3.1(c). Hence, the hand geometry based recognition performance

is low compared to the fingerprint and face matchers.
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Figure 3.9: ROC curves for individual modalities.
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3.4.2 Impact of Normalization on Fusion Performance

The performance of the multimodal biometric system has been studied under differ-

ent normalization and fusion techniques. The simple sum of scores, the max-score, and

the min-score fusion methods described in [18] were applied on the normalized scores.

The normalized scores were obtained by using one of the following techniques: simple

distance-to-similarity transformation with no change in scale (STrans), min-max normal-

ization (Minmax), z-score normalization (ZScore), median-MAD normalization (Median),

double sigmoid normalization (Sigmoid), tanh normalization (Tanh), and Parzen normal-

ization (Parzen)? Table 3.2 summarizes the average (over 40 trials) Genuine Acceptance

Rate (GAR) of the multimodal system along with the standard deviation of the GAR (shown

in parentheses) for different normalization and fusion schemes, at a False Acceptance Rate

(FAR) of0.1%.

Table 3.2: Genuine Acceptance Rate (GAR) (%) of different normalization and fusion

techniques at the 0.1% False Acceptance Rate (FAR). Note that the values in the table

represent average GAR, and the values indicated in parentheses correspond to the standard

deviation of GAR.
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Normalization Fusion Techniques

Techniques Sum of scores Max-score Min-score

STrans 98.3 (0.4) 46.7 (2.3) 83.9 (1.6)

Minmax 97.8 (0.6) 67.0 (2.5) 83.9 (1.6)

Zscore 98.6 (0.4) 92.1 (1.1) 84.8 (1.6)

Median 84.5 (1.3) 83.7 (1.6) 68.8 (2.2)

Sigmoid 96.5 (1.3) 83.7 (1.6) 83.1 (1.8)

Tanh 98.5 (0.4) 86.9 (1.8) 85.6 (1.5)

Parzen 95.7 (0.9) 93.6 (2.0) 83.9 (1.9)   
2Conversion of matching scores into posteriori probabilities by the Parzen window method is really not a

nomralization technique. However, for the sake of convenience we refer to this method as Parzen normaliza-

tion. In the case of this method, the simple sum of scores, max score, and min score fusion schemes, reduce

to the sum rule, max rule, and rrrin rule described in [36], respectively.
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Figure 3.10 shows the recognition performance of the system when the scores are com-

bined using the sum of scores method. We observe that a multimodal system employing

the sum of scores method provides better performance than the best unimodal system (fin-

gerprint in this case) for all normalization techniques except median-MAD normalization.

For example, at a FAR of 0.1%, the GAR of the fingerprint module is about 83.6%, while

that of the multimodal system is high as 98.6% when z-score normalization is used. This

improvement in performance is significant and it underscores the benefit of multimodal

systems.
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Figure 3.10: ROC curves for sum of scores fusion method under different normalization

schemes.
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Among the various normalization techniques, we observe that the tanh and min-max

normalization techniques outperform other techniques at low FARs. At higher FARs,

z-score normalization provides slightly better performance than tanh and min-max nor-

malization. In a multimodal system using the sum of scores fusion method, the com-

bined score (81;) is just a linear transformation of the score vector {811“ 82k, 83k}, i.e.,

8],; = (alslk - 01) + (0232;, - 02) + (a383k - 03), where 81k, 321:, and 83k cor-

respond to the 10‘" matching scores obtained from the face, fingerprint and hand-geometry

matchers, respectively. The effect of different normalization techniques is to deterrrrine the

weights a1, a2, and a3, and the biases bl, 02, and b3. Since the MAD of the fingerprint

scores is very small compared to that of face and hand-geometry scores, the median-MAD

normalization assigns a much larger weight to the fingerprint score (a2 >> a1, (13). This

is a direct consequence of the moderate efficiency of the median-MAD estimator. The dis-

tribution of the fingerprint scores deviates drastically from the Gaussian assumption and,

hence, median and MAD are not the right measures of location and scale, respectively.

In this case, the combined score is approximately equal to the fingerprint score and the

performance of the multimodal system is close to that of the fingerprint module. On the

other hand, min-max normalization, z-score normalization, tanh and distance-to-similarity

transformation assign nearly optimal weights to the three scores. Therefore, the recognition

performance of the multimodal system when using one of these techniques along with the

sum of scores fusion method is significantly better than that of the fingerprint matcher. The

difference in performance between the min-max, z-score, tanh and distance-to-similarity

transformation is relatively small. However, it should be noted that the raw scores of the

three modalities used in our experiments are comparable and, hence, a simple distance-

to-sinrilarity conversion works reasonably well. If the scores of the three modalities are

significantly different, then this method will not work.
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The performance of the multimodal system using max-score fusion is shown in Figure

3.11. Here, z-score and Parzen normalization provide better recognition performance com-

pared to that of the fingerprint matcher. In a max-score fusion method that uses only the

distance-to-similarity transformation, the hand-geometry scores begin to dominate. There-

fore, the performance is only slightly better than the hand-geometry module. For min-max

normalization, the face and hand-geometry scores are comparable and they dominate the

fingerprint score. This explains why the performance of the multimodal system is close

to that of the face recognition system. When median-MAD, tanh, and double sigmoid

normalization are used, the fingerprint scores are much higher compared to the face and

hand-geometry scores. This limits the performance of the system close to that of the fin-

gerprint module. In z-score normalization, the scores of the three modules are comparable

and, hence, the combined score depends on all the three scores and not just the score of

one modality. This improves the relative performance of the max-score fusion method

compared to other normalization methods. Finally, Parzen normalization followed by max-

score fusion accepts the user even if one of the three modalities produces a high estimate of

the posteriori probability and rejects the user only if all the three modalities make errors in

the probability estimation process. Hence, this method has a high genuine acceptance rate.

Figure 3.12 shows the performance of the multimodal system when min-score fusion

method is employed. For median-MAD normalization, most of the face scores have smaller

values compared to the fingerprint and hand-geometry scores. Therefore, for median-MAD

normalization the performance of the min-score method is close to the performance of the

face-recognition system. On the other hand, the fingerprint scores have smaller values for

all other normalization schemes and, hence, their performance is very close to that of the

fingerprint matcher.
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Figure 3.11: ROC curves for max-score fusion method under different normalization

schemes.
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Figure 3.12: ROC curves for min-score fusion method under different normalization

schemes.
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3.4.3 Robustness Analysis of Normalization Schemes

For sum of scores fusion, we see that the performance of a robust normalization tech-

nique like tanh is almost the same as that of the non-robust techniques like min-max and

z-score normalization. However, the performance of such non-robust techniques is highly

dependent on the accuracy of the estimates of the location and scale parameters. The scores

produced by the matchers in our experiments are unbounded and, hence, can theoretically

produce any value. Also, the statistics of the scores (like average or deviation from the av-

erage) produced by these matchers is not known. Therefore, parameters like the minimum

and maximum scores in min-max normalization, and the average and standard deviation

of scores in z-score normalization have to be estimated from the available data. The data

used in our experiments does not contain any outliers and, hence, the performance of the

non-robust normalization techniques were not affected. In order to demonstrate the sensi-

tivity of the min-max and z-score normalization techniques in the presence of outliers, we

artificially introduced outliers in the fingerprint scores.

For min-max normalization, a single large score whose value is 125%, 150%, 175% or

200% of the original maximum score is introduced into the fingerprint data. Figure 3.13

shows the recognition performance of the multimodal system after the introduction of the

outlier. We can clearly see that the performance is highly sensitive to the maximum score.

A single large score that is twice the original maximum score can reduce the recognition

rate by 3-5% depending on the operating point of the system. The performance degradation

is more severe at lower values of FAR.

In the case of z-score normalization, a few large scores were introduced in the fin-

gerprint data so that the standard deviation of the fingerprint score is increased by 125%,

150%, 175% or 200% of the original standard deviation. In one trial, some large scores

were reduced to decrease the standard deviation to 75% of the original value. In the case
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Figure 3.13: Robustness analysis of min-max normalization.

59

 



of an increase in standard deviation, the performance improves after the introduction of

outliers as indicated in Figure 3.14. Since the initial standard deviation was small, fin-

gerprint scores were assigned a higher weight compared to the other modalities. As the

standard deviation is increased, the donrination 0f the fingerprint scores was reduced and

this resulted in improved recognition rates. However, the goal of this experiment is to show

the sensitivity of the system to those estimated parameters that can be easily affected by

outliers. A similar experiment was done for tanh-normalization technique and, as shown

in Figure 3.15, there is no significant variation in the performance after the introduction of

outliers. This result highlights the robustness of the tanh normalization method.
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Figure 3.14: Robustness analysis of z-score normalization.
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Figure 3.15: Robustness analysis of tanh normalization.
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3.5 Summary

Score normalization is an important issue to be dealt with in score level fusion and it

has significant impact on the performance of a multibiometric system. We have examined

the effect of different score normalization techniques on the performance of a multimodal

biometric system. We have demonstrated that the normalization of scores prior to combin-

ing them improves the recognition performance of a multimodal biometric system that uses

the face, fingerprint and hand-geometry traits for user authentication. Min-max, z-score,

and tanh normalization techniques followed by a simple sum of scores fusion method re-

sult in a superior GAR than all the other normalization and fusion techniques. We have

shown that both min-max and z-score methods are sensitive to outliers. On the other hand,

tanh normalization method is both robust and eflicient. If the location and scale parameters

of the matching scores (minimum and maximum values for min-max, or mean and stan-

dard deviation for z-score) of the individual modalities are known in advance, then simple

normalization techniques like min-max and z—score would suffice. If these parameters are

to be estimated using some training scores, and if the training scores are noisy, then one

should choose a robust normalization technique like the tanh normalization. We have also

explored the use of non-parametric approaches like the Parzen window density estimation

method to convert the matching scores into posteriori probabilities and combining the prob-

abilities using fusion rules. The advantage of this method is that it avoids the need for any

knowledge about the distribution of matching scores. However, the performance of this

method is dependent on the type and width of the kernel used for the estimation of density.
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CHAPTER 4

Soft Biometrics

Current biometric systems are not perfect (do not have zero error rates) and problems

like noise in the sensed biometric data, non-universality and lack of distinctiveness of the

chosen biometric trait lead to unacceptable error rates in recognizing a person. Using a

combination of biometric identifiers like face, fingerprint, hand-geometry and iris makes

the resulting multibiometric system more robust to noise and can alleviate problems such as

non-universality and lack of distinctiveness, thereby reducing the error rates significantly.

However, using multiple traits will increase the enrollment and verification times, cause

more inconvenience to the users and increase the overall cost of the system. Therefore, we

propose another solution to reduce the error rates of the biometric system without caus-

ing any additional inconvenience to the user. Our solution is based on incorporating soft

identifiers of human identity like gender, ethnicity, height, eye color, etc. into a (primary)

biometric identification system. Figure 4.1 shows a sample application (ATM kiosk) where

both primary (fingerprint) and soft (gender, ethnicity, height estimated using a camera)

biometric information are utilized to verify the account holder’s identity.

4.1 Motivation and Challenges

The usefulness of soft biometric traits in improving the performance of the primary

biometric system can be illustrated by the following example. Consider three users A

(1.8m tall, male), B (1.7m tall, female), and C (1.6m tall, male) enrolled in a fingerprint

system that works in the identification mode. When user A presents his fingerprint sample

X to the system, it is compared to the templates of all the three users stored in the database
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Figure 4.1: An ATM kiosk equipped with a fingerprint (primary biometric) sensor and a

camera to obtain soft attributes (gender, ethnicity and height).

and the posteriori matching probabilities of all the three users given the template X is

calculated. Let us assume that the output of the fingerprint matcher is P(A|X) = 0.42,

P(B|X) = 0.43, and P(CIX ) = 0.15. In this case, the test user will either be rejected due

to the proximity of the posteriori matching probabilities for users A and B, or be falsely

identified as user B. On the other hand, let us assume that there exists a secondary system

that automatically identifies the gender of the user as male and measures the user’s height

as 1.78m. If we have this information in addition to the posteriori matching probabilities

given by the fingerprint matcher, then a proper combination of these sources of information

will lead to a correct identification of the test user as user A.

The first biometric system developed by Alphonse M. Bertillon in 1883 used anthro-

pometric features such as the length and breadth of the head and the ear, length of the

middle finger and foot, height, etc. along with attributes like eye color, scars. and tatoo

marks for ascertaining a person’s identity [55]. Although each individual measurement in

the Bertillon system may exhibit some variability, a combination of all these measurements

 



was sufficient to manually identify a person with reasonable accuracy. The Bertillon sys-

tem was dropped in favor of the Henry’s system of fingerprint identification due to three

main reasons: (i) lack of persistence - the anthropometric features can vary significantly

over a period of time; (ii) lack of distinctiveness - features such as skin color or eye color

cannot be used for distinguishing between individuals coming from a sirrrilar background;

and (iii) the time, effort, training, and cooperation required to get reliable measurements.

Similar to the Bertillon system, Heckathom et al. [56] used attributes like gender, race, eye

color, height, and other visible marks like scars and tattoos to recognize individuals for the

purpose of welfare distribution. More recently, Ailisto et al. [57] showed that unobtrusive

user identification can be performed in non-security applications such as health clubs using

a combination of “light” biometric identifiers like height, weight, and body fat percentage.

However, it is obvious that the features used in the above mentioned systems provide some

identity information, but are not sufficient for accurate person recognition. Hence, these

attributes can be referred to as “soft biometric traits”. The soft biometric information com—

plements the identity information provided by traditional (primary) biometric identifiers

such as fingerprint, iris, and voice. Therefore, utilizing soft biometric traits can improve

the recognition accuracy of primary biometric systems.

Wayman [58] proposed the use of soft biometric traits like gender and age, for filtering

a large biometric database. Filtering refers to limiting the number of entries in a database

to be searched, based on characteristics of the interacting user. For example, if the user

can somehow be identified as a middle-aged male, the search can be restricted only to the

subjects with this profile enrolled in the database. This greatly improves the speed or the

search efficiency of the biometric system. In addition to filtering, the soft biometric traits

can also be used for tuning the parameters of the biometric system. Studies [59, 60] have

shown that factors such as age, gender, race, and occupation can affect the performance of
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a biometric system. For example, a young female Asian mine-worker is considered as one

of the most difficult subjects for a fingerprint system [60]. This provides the motivation for

tuning the system parameters like threshold on the matching score in a unimodal biometric

system, and thresholds and weights of the different modalities in a multimodal biometric

system to obtain the optimum performance for a particular user or a class of users. How-

ever, filtering and system parameter tuning require soft biometric feature extractors that are

highly accurate.

Based on the above observations, the first challenge in utilizing soft biometrics is the

automatic and reliable extraction of soft biometric information in a non-intrusive manner

without causing any inconvenience to the users. It must be noted that the unreliability and

inconvenience caused by the manual extraction of these features is one of the primary rea-

sons for the failure of Bertillon-like systems. In this thesis, we have analyzed the various

techniques that have been proposed for automatic extraction of characteristics like gender,

ethnicity, eye color, age, and height. We also briefly describe the vision system that was

implemented to accomplish the task of identifying the gender, ethnicity, height, and eye

color of a person from real-time video sequences. Once the soft biometric information is

extracted, the challenge is to optimally combine this information with the primary biomet-

ric identifier so that the overall recognition accuracy is enhanced. We have developed a

Bayesian framework for integrating the primary and soft biometric features.

4.2 Soft Biometric Feature Extraction

Any trait that provides some information about the identity of a person, but does not

provide sufficient evidence to exactly deternrine the identity can be referred to as soft bio-

metric trait. Figure 4.2 shows some examples of soft biometric traits. Soft biometric traits
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are available and can be extracted in a number of practical biometric applications. For ex-

ample, demographic attributes like gender, ethnicity, age, eye color, skin color, and other

distinguishing physical marks such as scars can be extracted from the face images used in

a face recognition system. The pattern class of fingerprint images (right loop, left loop,

whorl, arch, etc.) is another example of soft trait. Gender, accent, and perceptual age of

the speaker can be inferred in a voice recognition system. Eye color can be easily found

from iris images. However, automatic and reliable extraction of soft biometric traits is a

difficult task. In this section, we present a survey of the techniques that have been proposed

in the literature for extracting soft biometric information and briefly describe our system

for determining height, gender, ethnicity, and eye color.

Several researchers have attempted to derive gender, ethnicity, and pose information

about the users from their face images. Gutta et al. [61] proposed a mixture of experts

consisting of ensembles of radial basis functions for the classification of gender, ethnic

origin, and pose of human faces. Their gender classifier (male vs female) had an accuracy

of 96%, while their ethnicity classifier (Caucasian, South Asian, East Asian, and African)

had an accuracy of 92%. These results were reported on good quality face images from

the FERET database that had very little expression or pose changes. Based on the same

database, Moghaddam and Yang [62] showed that the error rate for gender classification

can be reduced to 3.4% by using an appearance-based gender classifier that uses non-linear

support vector machines. Shakhnarovich et al. [63] developed a demographic classification

scheme that extracts faces from unconstrained video sequences and classifies them based

on gender and ethnicity. The learning and feature selection modules used a variant of the

AdaBoost algorithm. Even under unconstrained environments, they showed that a classi-

fication accuracy of more than 75% can be achieved for both gender and ethnicity (Asian

vs non-Asian) classification. For this data, the SVM classifier of Moghaddam and Yang

67

 



 

'Gender Skin Color. Hair color

nA-Ilnrnar

0 Core! Carporation, Ottawa Canadamm

 

Weight

hhp1Mww.laurel -and—hardy.com/

goodies/homeehtml 0 CCA

 

Height

httnllwww altnnwnh " L

(D Alton Museum of History and Art 

 

Eye color

http'J/ology.eamnh.org/genetics/longdetinition/ndexa.html

ncan Museum 01 Natural History200

Figure 4.2: Examples of soft biometric traits.

also had a similar performance and there was also a noticeable bias towards males in the

gender classification (females had an error rate of 28%). Balci and Atalay [64] reported

a classification accuracy of more than 86% for a gender classifier that uses PCA for fea-

ture extraction and a multilayer perceptron for classification. Jain and Lu [65] proposed

a Linear Discriminant Analysis (LDA) based scheme to address the problem of ethnicity

identification from facial images. The users were identified as either Asian or non-Asian by

applying multiscale analysis to the input facial images. An ensemble framework based on

the product rule was used for integrating the LDA analysis at different scales. This scheme

had an accuracy of 96.3% on a database of 263 users (with approximately equal number of

males and females). Hayashi et al. [66] suggested the use of features like wrinkle texture

and color for estimating the age and gender of a person from the face image. However, they

did not report the accuracy of their technique.

Automatic age determination is a more difficult problem than gender and ethnicity clas-

sification. Buchanan et al. [67] have studied the differences in the chemical composition
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of fingerprints that could be used to distinguish children from adults. Kwon and Lobo [68]

presented an algorithm for age classification from facial images based on cranio-facial

changes in feature-position ratios and skin wrinkle analysis. They attempted to classify

users as “babies”, “young adults”, or “senior adults”. However, they did not provide any

classification accuracy. More recently, Lanitis et al. [69] performed a quantitative evalua-

tion of the performance of three classifiers developed for the task of automatic age estima-

tion from face images. These classifiers used eigenfaces obtained using Principal Compo-

nent Analysis (PCA) as the input features. Quadratic models, shortest distance classifier,

neural network classifiers, and hierarchical age estimators were used for estimating the

age. The best hierarchical age estimation algorithm had an average absolute error of 3.82

years which was comparable to the error made by humans (3.64 years) in performing the

same task. Minematsu et al. [70] showed that the perceptual age of a speaker can be auto-

matically estimated from voice samples. All these results indicate that the automatic age

estimation is possible (though the current technology is not very reliable).

The weight of a user can be measured by asking him to stand on a weight sensor while

providing the primary biometric. The height of a person can be estimated from a sequence

of real-time images. For example, Su-Kim et al. [71] used geometric features like vanishing

points and vanishing lines to compute the height of an object. With the rapid growth of

technology, especially in the field of computer vision, we believe that the techniques for

soft biometric feature extraction would become more reliable and commonplace in the near

future.

4.2.1 A Vision System for Soft Biometric Feature Extraction

We have implemented a real-time vision system for automatic extraction of gender, eth-

nicity, height, and eye color. The system is designed to extract the soft biometric attributes
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as the person approaches the primary biometric system to present his primary biometric

identifier (face and fingerprint in our case). The soft biometric system is equipped with two

Sony EVI-D30 color pan/tilt/zoom cameras. Camera I monitors the scene for any human

presence based on the motion segmentation image. Once camera I detects an approach-

ing person, it measures the height of the person and then guides camera H to focus on the

person’s face. More details about this system can be found in [72].

4.3 Fusion of Soft and Primary Biometric Information

4.3.1 Identification Mode

For a biometric system operating in the identification mode, the framework for integrat-

ing primary and soft biometric information is shown in Figure 4.3. The primary biometric

system is based on m (m 2 1) traditional biometric identifiers like fingerprint, face, iris and

hand-geometry. The soft biometric system is based on n (n 2 1) soft attributes like age,

gender, ethnicity, eye color and height. Let 021, (oz, - - - , wR represent the R users enrolled

in the database. Let x = [x1 , x2, - - - , xm] be the collection of primary biometric feature

vectors. For example, if the primary biometric system is a multimodal system with face and

fingerprint modalities (m = 2), then X] represents the face feature vector and X2 represents

the fingerprint feature vector. Let p(xj I04) be the likelihood of observing the primary bio—

metric feature vector xj given the user is 0),. If the output of each individual modality in

the primary biometric system is a set of matching scores (S = [81, 82, - ° ° , 8m]), one

 
can approximate p(xj [02,) by p(sj 01,-), provided the genuine matching score distribution

of each modality is known.

Let y = [311,312, . ° . , yn] be the soft biometric feature vector, where, for example,

yl could be gender, yz could be eye color, etc. We require an estimate of the posteriori
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Figure 4.3: Framework for fusion of primary and soft biometric information. Here x is the

fingerprint feature vector and y is the soft biometric feature vector.
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probability of user w,- given both x and y. This posteriori probability can be calculated by

applying the Bayes rule as follows:

 

P(w.~lx,y) = p0"$133“). (4.1)

If all the users are equally likely to access the system, then P(0),) = %, V i. Further,

if we assume that all the primary biometric feature vectors (x1, x2, - ' . ,xm) and all the

soft biometric variables (y1, y2, - - - , 3],) are independent ofeach other given the user’s

identity w,, the discriminant function g, (x, y) for user 0),- can be written as,

92(x, y) = Z 108 29(lewr) + Z 108p(yklwi)- (4.2)

j=1 k=1

4.3.2 Verification Mode

A biometric system operating in the verification mode classifies each authentication

attempt as either a “genuine claim” or an “impostor attempt”. In the case of verification,

the Bayes decision rule can be expressed as

P(genuine|x, y) _ p(x,y|genuine)P(genuine) r

P(impostor|x, y) _ p(x,y|impostor)P(impostor) — ’

  

(4.3)

where 7' is the threshold parameter. Increasing r reduces the false acceptance rate and

simultaneously increases the false reject rate and vice versa. If the prior probabilities of

the genuine and impostor classes are equal and if we assume that all the primary biometric

feature vectors and all the soft biometric attributes are independent of each other given the

class, the discriminant function can be written as,
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Em p(x,~|genuine) Zn p(yk|genuine)

9(X, y) 0g (p(leimpostor)) + 0g (p(yk|impostor)
j=1 k=1

(4.4)

If the output of each individual modality in the primary biometric system is a set of

matching scores (S = [81, 82, - - - ,Sm]), one can approximate p(xj|genuine) and

p(x,- Iimpostor) by p(s,- | genuine) and p(sj limpostor), respectively, provided the

genuine and impostor matching score distributions of each modality are known.

4.3.3 Computation of Soft Biometric Likelihoods

A simple method for computing the soft biometric likelihoods p(yk Iw,), k = 1, 2,- - .

is to estimate them based on the accuracy of the soft biometric feature extractors on a train-

ing database. For example, if the accuracy of the gender classifier on a training database is

a, then

I. P(observed gender is male I true gender of the user is male) = a,

2. P(observed gender is female | true gender of the user is female) = a,

3. P(observed gender is male I true gender of the user is female) 2 1 — a,

4. P(observed gender is female | true gender of the user is male) = 1 — 0.

Similarly, if the average error made by the system in measuring the height of a person

is lie and the standard deviation of the error is 08, then it is reasonable to assume that

p(0bserved heightlwi) follows a Gaussian distribution with mean (h(w,-) + [18) and

standard deviation 0,, where h(w,-) is the true height of user 0),. However, there is a

potential problem when the likelihoods are estimated only based on the accuracy of the soft
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biometric feature extractors. The discriminant function in equation (4.2) is dominated by

the soft biometric terms due to the large dynamic range of the soft biometric log-likelihood

values. For example, if the gender classifier is 98% accurate (or = 0.98), the log-likelihood

for the gender term in equation (3) is —0.02 if the classification is correct and —3.91 in

the case of a misclassification. This large difference in the log-likelihood values is due to

the large variance of the soft biometric features. To offset this phenomenon, we introduce

a scaling factor [3, 0 g ,6 S 1, to flatten the likelihood distribution of each soft biometric

trait. If qk, is an estimate of the likelihood p(yklw,-) based on the accuracy of the feature

extractor, the weighted likelihood 13(3)), Iw,) is computed as,

13(yilwi) = —— (4.5)

where Y], is the set of all possible values of the discrete variable y), and Bk is the weight

assigned to the kth soft biometric feature. If the feature 3}), is continuous with standard

deviation 0],, the likelihood can be scaled by replacing 0k with 95:1. This weighted like-

lihood approach is commonly used in the speech recognition community in the context of

estimating the word posterior probabilities using both acoustic and language models. In

this scenario, weights are generally used to scale down the probabilities obtained from the

acoustic model [73].

This method of likelihood computation also has other implicit advantages. An impostor

can easily circumvent the soft biometric feature extraction because it is relatively easy

to modify/hide one’s soft biometric attributes by applying cosmetics and wearing other

accessories (like a mask, shoes with high heels, etc.). In this scenario, the scaling factor

51: can act as the measure of the reliability of the soft biometric feature and its value can

be set depending on the environment in which the system operates. If the environment is
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hostile (many users are likely to circumvent the system), the value of 0), must be closer

to 0. Finally, the discriminant functions given in equations (4.2) and (4.4) are optimal

only if the assumption of independence between all the biometric traits is true. If there

is any dependence between the features, the discriminant function is sub—optimal. In this

case, appropriate selection of the weights ,6], during training can result in better recognition

rates.

4.4 Experimental Results

Our experiments demonstrate the benefits of utilizing the gender, ethnicity, and height

information of the user in addition to the face and fingerprint biometric identifiers. A subset

of the “Joint Multibiometric Database” (JMD) collected at West Virginia University has

been used in our experiments. The selected subset contains 4 face images and 4 impressions

of the left index index finger obtained from 263 users over a period of six months. The

Identix FaceIt® SDK [74] is used for face matching. Fingerprint matching is based on the

algorithm in [52].

The ethnicity classifier proposed in [65] was used in our experiments. This classifier

identifies the ethnicity of a test user as either Asian or non-Asian with an accuracy of

82.3%. If a “reject” option is introduced, the probability of making an incorrect classifica-

tion is reduced to less than 2%, at the expense of rejecting 25% of the test images. A gender

classifier was built following the same methodology used in [65] for ethnicity classification

and the performance of the two classifiers were similar. The reject rate was fixed at 25%

and in cases where the ethnicity or the gender classifier made a reject decision, the corre-

sponding information is not utilized for updating the discriminant function, i.e., if the label

assigned to kth soft biometric trait is “reject”, then the log-likelihood term corresponding

to the kth feature in equations (4.2) and (4.4) is set to zero. During the collection of the
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WVU multimodal database, the approximate height of each user was also recorded. How-

ever, our real-time height measurement system was not applied to measure the height of the

user during each biometric data acquisition. Hence, we simulated values for the measured

height of user 0),- from a normal distribution with mean h(w,) + [16 and standard deviation

O’e, where h(0J,-) is the true height of user 02,-, [1,, = 2 cm and 08 = 5 cm.

4.4.1 Identification Performance

To evaluate the performance of the biometric system in the identification mode, one

face image and one fingerprint impression of each user are randomly selected to be the

template (gallery) images and the remaining three samples are used as probe images. The

separation of the face and fingerprint databases into gallery and probe sets, is repeated 50

times and the results reported are the averages for the 50 trials. The weights (,Bk) used for

the soft biometric likelihood computation are obtained by exhaustive search over an inde-

pendent training database. The multimodal database described in [72] is used for weight

estimation. For each soft biometric trait (gender, ethnicity and height), fl], is increased in

steps of 0.05 and the value of file that maximizes the average rank-one recognition rate of

the biometric system (utilizing face, fingerprint, and the corresponding soft information)

is chosen. Following this procedure, values of 0.1, 0.1 and 0.5 are obtained as the best

weights for gender, ethnicity, and height, respectively.

The effects of soft biometric identifiers on the performance of three primary biometric

systems, namely, fingerprint, face, and a multimodal system using face and fingerprint as

the modalities are studied. Figure 4.4 shows the Cumulative Match Characteristic (CMC)

of the fingerprint biometric system and the improvement in performance achieved after

the utilization of soft biometric information. The use of ethnicity and gender information

along with the fingerprint leads to an improvement of 1.3% in the rank one performance
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as shown in Figure 4.4(a). From Figure 4.4(b), we can observe that the height information

also results in z 1% improvement in the rank one performance. The combined use of all

the three soft biometric traits results in an improvement of approximately 2.5% over the

primary biometric system, as shown in Figure 4.4(c).

Ethnicity and gender information do not provide any statistically significant improve-

ment in the performance of a face recognition system. One of the reasons for this observed

effect could be that the FaceIt® algorithm already takes into account some of the features

containing the gender and ethnicity information. This hypothesis is supported by the ob-

servation that more than 90% of the faces that are incorrectly matched at the rank-one level

belong to either the same gender or ethnicity or both. On the other hand, we observe that

the height information which is independent of the facial features, leads to an improvement

of 0.5%-.1% in the face recognition performance (see Figure 4.5). The failure of the eth-

nicity and gender information in improving the face recognition performance demonstrates

that soft biometric traits would help in recognition only if the identity information provided

by them is complementary to that of the primary biometric identifier.

Figure 4.6 depicts the performance gain obtained when the soft biometric identifiers are

used along with both face and fingerprint modalities. Although the multimodal system con-

taining face and fingerprint modalities is highly accurate with a rank-one recognition rate

of 97%, we still get a performance gain of more than 1% by the addition of soft biometric

information.

4.4.2 Verification Performance

Genuine and impostor scores are obtained by computing the similarity between all dis-

tinct pairs of samples. The scores are then converted into log-likelihood ratios using the
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Figure 4.4: Improvement in identification performance of a fingerprint system after utiliza—

tion of soft biometric traits. 3) Fingerprint with gender and ethnicity, b) Fingerprint with
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Figure 4.5: Improvement in identification performance of face recognition system after

utilization of the height of the user.
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procedure outlined in [75]. This method involves the non-parametric estimation of gen-

eralized densities of the genuine and impostor matching scores of each modality. The

weights (6),) used for the soft biometric likelihood computation are estimated using a tech—

nique sinrilar to the identification case, except that the weights are chosen to maximize the

Genuine Acceptance Rate (GAR) at 8 False Acceptance Rate (FAR) of 0.01%. The best

set of weights for the verification scenario are 0.5, 0.5 and 0.75 for gender, ethnicity, and

height, respectively. This difference in the weights between the identification and verifica-

tion modes can be attributed to the different discriminant functions used for fusion as given

by equations (4.2) and (4.4), respectively.

Figure 4.7 shows the Receiver Operating Characteristic (ROC) curves when fingerprint

is used as the primary biometric identifier. At lower FAR values, the performance of the

fingerprint modality is rather p00r. This is due to the large similarity scores for a few impos-

tor fingerprint pairs that have very similar ridge structures. The addition of soft biometric

information helps to alleviate this problem, resulting in a substantial improvement (> 20%

increase in GAR at 0.001% FAR) in the performance at lower FAR values (see Figure 4.7).

In the case of face modality and the multimodal system using both face and fingerprint,

the improvement in GAR is about 2% at 0.001% FAR (see Figures 4.8 and 4.9). This

improvement is still quite significant given that the GAR of the primary biometric systems

at this operating point is already very high.

4.5 Summary

The objective of this chapter is to demonstrate that soft biometric identifiers such as

gender, height, and ethnicity can be useful in person recognition even when they cannot

be automatically extracted with 100% accuracy. To achieve this goal, we have developed a

Bayesian framework that can combine information from the primary biometric identifiers
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Figure 4.7: Improvement in verification performance of a fingerprint system after utiliza—

tion of soft biometric traits. a) Fingerprint with gender and ethnicity, b) Fingerprint with
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height, and c) Fingerprint with gender, ethnicity and height.

81

 IF?



100
 

95"

G
e
n
u
i
n
e
A
c
c
e
p
t
R
a
t
e
(
G
A
R
)
%

 
  

f vvrvv—‘r *7 vv—vv

 

  

--0- Face

  
  
 

80w . 1
~*- Face 4» HeIght

75 A A A AAAAAA A A AAAAAAA . A AAAAAI A AAAA .

10‘3 10‘2 10“ 10° 101

False Accept Rate (FAR) %

Figure 4.8: Improvement in verification performance of face recognition system after uti-

lization of the height of the user.

 

 
    

 

 
 

10° " WW
. . -t't-

,\° *.*—*11* o-~°-'*'°""“

E 95. *X",& c..III V .

< .i’ J " I

Q *r‘
o 1A" A’

ii 90» I

t: .A’

‘5

§ 85-
<

o .

.E "

g 30. 3.’ --o-- Fingerprint

8 e' -A-Face+ Fp

_; -+- Face + Fp + Soft Biometrics

75-3‘ ‘Aum-ZAAHUU-
lAAHUUO

A in“; 1

10 10 10 10 10

False Accept Rate (FAR) %

Figure 4.9: Improvement in verification performance of (face + fingerprint) multimodal

system after the addition of soft biometric traits.

82

 



(face, fingerprint, etc.) and the soft biometric information such that it leads to higher accu-

racy in establishing the user’s identity. Our experiments indicate that soft biometric traits

can indeed substantially enhance the biometric system performance if they are complemen-

tary to the primary biometric traits. We have also presented a survey of the techniques that

have been developed for automatically extracting soft biometric features and described our

own implementation of a system that can identify soft biometric traits from real-time video

sequences.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

Although biometrics is becorrring an integral part of the identity management systems,

current biometric systems do not have 100% accuracy. Some of the factors that impact

the accuracy of biometric systems include noisy input, non-universality, lack of invariant

representation and non-distinctiveness. Further, biometric systems are also vulnerable to

security attacks. A biometric system that integrates multiple cues can overcome some of

these limitations and achieve better performance. Extensive research work has been done

to identify better methods to combine the information obtained from multiple sources. It is

difficult to perform information fusion at the early stages of processing (sensor and feature

levels). In some cases, fusion at the sensor and feature levels may not even be possible. Fu-

sion at the decision level is too simplistic due to the limited information content available at

this level. Therefore, researchers have generally preferred integration at the matching score

level which offers the best compromise between information content and ease in fusion.

One of the problems in score level fusion is that the matching scores generated by different

biometric matchers are not always comparable. These scores can have different charac-

teristics and some normalization technique is required to make the combination of scores

meaningful. Another limitation of the existing fusion techniques is their inability to handle

soft biometric information, especially when the soft information is not very accurate. In

this thesis, we have addressed these two important problems in a systematic manner.
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We have carried out a detailed evaluation of the various score normalization techniques

that have been proposed in literature in terms of their efficiency and robustness. First, we

studied the impact of the different normalization schemes on the performance of the multi-

modal biometric system consisting of face, fingerprint, and hand-geometry modalities. Our

analysis shows that min-max, z-score and tanh techniques are efficient and provide a good

recognition performance. However, we also observed that the min-max and z-score nor—

malization schemes are not robust if the training data used for estimating the normalization

parameters contains outliers. The tanh method is more robust to outliers due to the applica-

tion of influence functions to reduce the effect of noise. But careful selection of parameters

is required for the tanh normalization scheme to work efficiently. Although, non-parametric

density estimation is a theoretically sound method of normalizing the matching scores, it

does not work well in practice due to limited availability of training scores and problems

with choosing the appropriate kernel.

One of the major contributions of this thesis has been the development of a framework

for utilizing ancillary information about the user (also known as soft biometric traits) like

gender and height to improve the performance of traditional biometric systems. Although

the ancillary information by itself is not sufficient for person recognition, it certainly pro-

vides some cues about the individual, which can be highly beneficial when used appropri-

ately. We have developed a model based on Bayesian decision theory that can incorporate

the soft biometric information into the traditional biometric framework. Experiments on a

reasonably large multimodal database validate our claim about the utility of soft biometric

identifiers. We have also built a prototype system that can extract soft biometric traits from

individuals during the process of primary biometric acquisition.
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5.2 Future Work

Some normalization schemes work well if the scores follow a specific distribution. For

example, z-score normalization is optimal if the scores of all the modalities follow a Gaus-

sian distribution. Therefore, we need to develop rules that would allow a practitioner to

choose a normalization scheme after analyzing the genuine and impostor score distribu-

tions of the individual matchers. The possibility of applying different normalization tech-

niques to the scores of different modalities must be explored. Guidelines for choosing the

design parameters of some normalization techniques (e.g., the values of the constants a, b,

and c in tanh normalization) need to be developed.

We believe that existing score level fusion techniques are quite ad-hoc and do not con-

sider the underlying mathematical/statistical rigor. A more principled approach would be

the computation of likelihood ratios based on the estimates of genuine and impostor score

distributions. Automatic bandwidth selection techniques can be utilized to find the width

of the kernels to be employed in non-parametric density estimation. The use of general-

ized likelihoods that model the score distributions as a mixture of discrete and continuous

components must be explored. This method can also take into account possible correlation

between the multiple sources of information. Finally, such a method has the capability to

act as a black-box and can be used without any knowledge about the biometric matcher.

However, the major obstacle in following the likelihood ratio approach is the scarcity of

multimodal biometric data. If the method has to work effectively, then a large number of

matching scores would be required to estimate the densities accurately.

With regards to our prototype soft biometric system, performance improvement can be

achieved by incorporating more accurate mechanisms for soft biometric feature extraction.

The method of carrying out an exhaustive search for the weights of the soft biometric

identifiers is computationally inefficient and requires a large training database. Since the
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weights are used mainly for reducing the dynamic range of the log-likelihood values, it is

possible to develop simple heuristics for computing the weights efficiently. The Bayesian

framework in its current form cannot handle time-varying soft biometric identifiers such as

age and weight. We will investigate methods to incorporate such identifiers into the soft

biometric framework.
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