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ABSTRACT

Scattering from a Coated Curved Surface of

Varying Thickness with Application to

Nondestructive Evaluation

By

Jonathan F. Wierzba

The extinction pulse (E—pulse) has been used to diagnose changes in the elect ro-

magnetic parameters of a coated surface. The E—pulse technique has been successfully

applied to a flat surface and constant curve surface with a constant thickness. An

important extension is to apply the E-pulse technique to a surface with a varying

thickness and curvature.

The coated surface investigated in this thesis is an elliptical metallic cylinder with

a circular dielectric coating. An incident plane wave with TEz and TMz polarization.

is reflected off the coated cylinder having either a vertical or a horizontal major axis.

The monostatic results generated in the frequency domain are transformed using an

FFT, providing the time domain data for convolution with the E—pulse.

The E~pulse for a planar coated surface is applied to the data obtain for the ellip—

tical metallic core with a circular dielectric coating. The placement of the major axis

and the type of polarization chosen has a greater impact on the E-pulse. Discrimina-

tion Number (EDN) as the radius decreases in size.
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CHAPTER 1

Introduction

In this thesis the field scattered from an elliptic cylinder coated with a. circular

dielectric material is computed. This provides a test case for the E~pulse technique,

which can be used to diagnose changes to the coating parameters (thickness and

dielectric constant). The coated elliptical presents a case with a varying surface

curvature and thickness, which approaches the planar case studied in detail in [9]

when the radius becomes large. The goal is to determine whether the E-pulse

technique remains valid when the surface curvature and coating thickness is \~'arying.

The background of this thesis is covered in Chapter two. The E—pulse technique

origins show how the technique was first applied to coated surfaces. Also, the

origins of the equations that are used to derive the scattered electric field equation

and the calculation of the echo width of the elliptical cylinder are covered.

The equations for the scattered field are derived in Chapter three for both

transverse electric. and transverse magnetic incident plane-wave fields. The

derivations for the two polarizations start by describing the incident, scattered. and

dielectric region electromagnetic fields and then apply the boundary conditions at

the conductor and dielectric interfaces to determine the scattered electric field. Use.

of the point-matching method leads to a matrix equation for the expansion

coefficients used to compute the scattered field. These coefficients are compared



against the coefficients for the circular case derived in [10].

Chapter four contains the computation method for the computer code and the

results of the flat case, circular case. and the calculation of the echo width of the

uncoated elliptical cylinder. In the computation section, the logic and layout that is

used in writing the computer code is shown. For the flat. case. the results are shown

for the standard that will be used against the elliptical case. The circular case

shows a matching of the data when the ellipse becomes a circle. The echo width of

the elliptical cylinder is calculated as a check to see if the equations are derived

correctly.

In Chapter five, the scattered field data is plotted in the frequency and time

domains. The frequency domain plots show the effects of the various size of the

radii and the polarization on the scattered electric. field. The time. domain plots.

which are obtained using the FFT show the amplitude of the reflections of the

electromagnetic wave from the various cylinder configurations. Also, the time

domain plots are used to compare and contrast the effects of different geometries

and polarizations on the multiple reflections of the waves trapped within the

dielectric layer.

In Chapter six, the E—pulse for the planar coated surface is convolved with the

time domain scattered field waveforms, to determine the effectiveness of the E-pulse

technique on a coated surface with varying curvature and thickness. The various

shapes of the convolution are shown and compared to the flat case. The E-pulse

Discrimination Number (EDN) is calculated and compared for (,lifl'crcnt. sizcd radii

of the coated cylinder.

Finally, Chapter seven provides a summary and some concluding remarks.



CHAPTER 2

3‘

Background !

i

The E—pulse technique was first developed to identify radar targets based on g

their temporal scattered-field responses [6]. When a radar target. is illuminated by a is.

short electromagnetic pulse, the induced currents will oscillate in the natural

resonance of the target. Since the resonant frequencies are unique to the target. the

time-domain scattered field set up by the induced currents can be used for

identification. An E—pulse is a time domain waveform that is constructed based on a

specific set of natural frequencies. When the E-pulse is convolved with a natural

mode series containing these same natural frequencies a zero late-time waveform is

produced. When the same E—pulse is convolved with a natural mode series

consisting of different natural frequencies, a non-zero late—time response is produced.

allowing an identification decision to be made. The decision is quantified using the

E-pulse discrimination number (EDN) [3].

Recently, the E—pulse technique has been applied to layered media. When an

electromagnetic pulse is reflected by a layered medium, the time domain response

consists of a number of peaks produces by the multiple reflections within the layers.

This response may be written as a natural mode series, with resonant frequencies

dependent on the electromagnetic properties and thickness of the layers. Thus the

E—pulse technique may be used to determine when layer properties have changed [9].



For any given surface, there is a unique E—pulse that is created and if the surface

parameters change in anyway, the E-pulse will no longer match the reference and a

change is detected. The greater the difference in surface parameters, the larger EDN

value from the application E-pulse technique.

An important extension of the E-pulse technique is to apply it to a coated

curved surface with a constant thickness and curvature. This was investigated in

[11], where it was shown that under certain circumstances, the E-pulse technique

may be used successfully with curved layered surfaces.

In this thesis, the E-pulse technique is applied to a curved coated surface with a

varying curvature and thickness, by examining the time-domain response of an

elliptic cylinder coated with circular dielectric. The equations that describe the

scattered electric field with a circular outer region with arbitrary metallic core.

cross-section were derived by Yee using the point-matching method in the 1960‘s

[13]. To provide a varying thickness and curvature of the coating, an elliptical

cross-section was chosen. The varying thickness is chosen since it provides a more

realistic model of a curved coated surface where a constant coating thickness is not.

always possible.

The point-matching method has also been used to compute the field scattered

by an uncoated elliptical cylinder [5]. There, the echo width of an elliptical cylinder

was computed for various illumination conditions. In this thesis, the echo width of

the elliptical metallic cylinder is used as a check to see if the equations are derived

correctly, since high-frequency the limit of the echo width is merely 7r times the

radius of curvature at the contact contract point of the incident wave.



CHAPTER 3

Equations for Scattering

3.1 TMz Case

The electric field scattering equation is needed for finding the frequency

response. With the frequency response, applying the Fast Fourier Transform to the

data, a time domain plot can be obtained to see how the electromagnetic wave is

scattered off the cylinder. The plane electromagnetic excitation wave is chosen to be

incident on the cylinder along the -x axis for the derivations. With the elliptical

shape of the metallic core there are two choices for the major axis, the x—axis or the

y-axis. Figure 3.1 shows the cross section of the circular dielectric layer around the

elliptical metallic core with the x-axis being the major axis. In Figure 3.2, the

y-axis is the major axis. The placement of the major axis has no impact on the

derivation of the electric scattered field equation. However, the major axis

placement greatly affects the numerical calculations as shown later.

The incident plane electric field in region 2 is represented using the last

expression in the sequence from [2, eq. 11-81b]:

00

E; = Eoejkoa: = Eoejkorcosqb = E0 2: j"Jn..(f\"o7')(i"fm'§. (3.1)

n.=—oo
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Figure 3.1. Orientation of the elliptical metallic core with the x—axis being the major

axis.
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Figure 3.2. Orientation of the elliptical metallic core with the y-axis being the major

axis.



Since the electric field will be calculated in a numerical form, breaking up the

equation into summation of terms is the next step. The desired end result for this

equation is to combine the positive and negative indexed terms in order to reduce

the size of resulting the matrix by half. So the next equation shown is the breaking

of the summation into positive, zero, and negative terms:

0 —1 . m .

E: 2 E0 2 jan(z.-0r)ef"¢’ + Jofko’r) + Z j"Jn(A'(,r)eJ”f) . (3.2)

n = —OC n z 1

The following equation has the modification to the summation that contains the

negative terms by replacing ”n” with ”-n”. Also, the J—n is replaced by (—-1)an,

as found in [2, eq. IV—8]:

oo 00

E; = E0 2 j""(—1)"Jn(k0r)e‘1"¢ + Jo(ke7‘) + Z j"‘.1,,(/.~,,,')c.7"'0’

n = 1 n = 1

(3.3)

The j_n(—1)n product is equal to j". The next step is to combine the two positive

summations:

m . .

E: 2 El) J0(k07‘) + Z jan(k0T)(C‘]n(‘D + e—JNO) . (3.4)

n = 1

The final equation below is created by combining the exponentials into a cosine

function:

00
. 1

E: = EU 2 jnean(k0r)cos(n¢) 5n = - (3-5)

n = 0 2 n % O

The incident magnetic field is calculated by taking the curl of the electric field:

1 1 E’; . -

JW/ie Jwflo 7

Hi: VxE§=— 

Substituting the derivatives of the electric field (3.5) gives:

1 E 00 . 00

12—0- : anan(k07‘)-nsin(n¢)) — (onko Z jlnentlhtkor)cos(n.(.‘))

'- . r

Jig/‘0 =0 n:0

 

(3.7)

 



The 7‘“ term is not needed when the boundary conditions are. applied, leaving only

the (5 term. Also, k0 and 1 / (jay/10) combine to form 1/170:

H7275-=j7f§97720571jnl1nfk0fl(105("(5l- (3.8)

The scattered electric field in region 2 is given by:

°° (2)
E2 = E0 2 Can (1.:0r)cos(n¢) (3.9)

To find the scattered magnetic field in region 2, the curl of electric field needs to

calculated. As before, only the (2) component of the magnetic field needs to be

calculated:

  H8: 07135: E0
(2 ) .. . .. ,

a 9'pr z- Mmn§0(6MCan (k07)cos(n¢))). (3.10)

After taking the curl of the electric field, the scattered magnetic field is:

E .

Hg): -J—0Ion: CnHH792) (k()7‘)cos(nq)). (3.11)

=0

The. electric field in region l (dielectric region) is givcn by:

00

13:;! = E0 2: [Aan(kr) + Bur/nan) cos(n(.>). (3.12)

n = O

The magnetic field in this region is calculated by taking the curl of the electric field.

As above, only the ((3 component is needed:

d __ rid ‘

H¢—— j:.u'aTWE“_ julflEonzoar([Aan(
ICT) +Bnl’n(k7‘)](OS(n

(5)). (3.13)

The magnetic field (5 component is:

d_ J___E0

11¢- ’7 Z [AnJ’(A7)+Bnl77(l.7)]cos(no) (3.14)

n=0

Now that the electric and magnetic fields have been calculated in the various

regions, the next step is to apply the boundary conditions on the tangent electric

field which is continuous at r = a:



oo 00

E0 2 jnean(/€ga)cos(n¢) +E0 Z CnH7(12)(k0a)cos(na>) :

n, = 0 n = 0

00

E0 2 [An.]n(ka) + BnYn(/m)] ('()S(n(;)). (3.1.5)

72 = 0

By multiplying the equation by cos 7729‘) and integrating the result is eliminating the

summations to isolate An, Bn, and Cn terms through the orthogonality relation:

/cos(n¢) cos(m(/))d(,-‘) = WEmdmn. (3.16)

The Em, term is created when the integral is evaluated, with the result of two when

m equals zero and one when m is not equal to zero. The 6m" term is the Kronicker

delta given by:

2 m = O - 1 m = n. 7 _

077m = . (3.11)

1 m 75 O O m # 71

m
l

3

Multiplying (3.15) by cos(m<f>) and applying the integral gives:

00

[(E0 2 jnean(k0a)cos(nq§)cos(mq’))+

7120

00 2
E0 2 CnH7(l )(koa)cos(n¢)cos(-m(p))d() =

n. = 0

00

/(E0 2: [Aan(ka.) + Bn,Yn(ka)]cos(nt/))cos(7no))dq). (3.18)

n = 0

After evaluating the integral, the summations drop out, leaving the ft.)ll(:)wing

equation:

.' 2 7 I

ananUCOG.) + CnH7(l )(kga) = AanUCtL) + 8,11,7(A‘U). (“319)

To create another equation to use to eliminate a variable, the boundary condition

for the tangent magnetic field being continuous at r = a is applied. giving:

9



Ebnzo571.77llil(fi00)(08( IIQ)‘ $1220Can
Z)((100,))(TOS(IIC)) :

7/0

E .

~J0 Z [AnJ77 (ku)+Bn1"'77((ka )](()s( 11(5)) (3.2.0)

77 n—— O

Repeating the same process above that eliminated the summation results in:

7' I 2 I 7. .

annJ77(koa) +0511), ) (Icon) :1"Hunt,Ira) + 8,7177(Au)] (3.21)

With the two equations above, (3.19) and (3.21), the next step is to solve for

An, and En in terms of Cn. The first step is to find to An in terms of Em and Cu

using (3.21):

7 ,, 2 ' .
AnJhUCG) = ‘L EnjnJh,(k0a) + Canl ) (130(1) — B711'7’77(k(l).

[)0

A

w I
Q

I
v

‘
V

After solving for An, the next step is to solve the other equation, (3.19) for Bn in

terms of An and Cn:

1
B :

n Yn (Ira)

 
2 . .

[anan,(kQa) + CTLH7(1, )(kua) - Aan(k(1)] . (325)

After having An and En isolated, substituting Bn into (3.22) gives An in terms of

just Cn:

fin-"MW = % [Enf‘Jttkoo + Can) (koa)[ ..

mam) In A (2) .. 7 7 7
YnUCG.) [.7 €an(I\)Oa) + (3an (It-00.) — An.]n(A(l)] . (3.2-1)
 

The next step is to combine all the like terms and factor out An:

An [n,,(kr)J;,(ka) — Y,’,(ka)Jn(k-a)] = 57,7" [lvn(ka.)J;,(/.-.,a) — 17',(1a).),,(1.-.,uj)[

71 (2) _ ('3) . - ...-
+Cn n—OYn(ka)H77 (koa) 177(A(1)H77 (Ami) . (32.))

10



The following equation from [2, eq. 11-95], reduces the expression multiplying A" to

a constant:

2

Yneawttka) — seamen) = —— (3.26.)
aka. .

Thus An is now in terms of just Cn:

 

E.

aka , 7 ,

An = ——2— [ffnjn [U—IY71(ka)J;7(koa) — Yn(k(L)Jn(k()(l):l [

0

I r

+Cn [3Yn(ka)H7(72) (koa) — Y7'7(A:(1)H7(72)(/~'(7(1)H . (3.27,)

e .

After solving for An, the same equation can be solved for B77: .

[r

Bnlfn(k(l.) Z jnean(k0a) + CnH7g2)(k0(l)

J (ka) 7) . I 2

— infka) i— [Enjn'lnfk0“) + (771.1178,
710

I

)(kna)[ - Bnl’7’7(ka)[ . (3.28) 

Combining like terms gives:

B" ll’ilfka'wfdk“) _ Jnfkalyvifkall 2 anIt [Jffkallrszoal — #Jnfffalelidffnflfl

e

+ Cn [J77(ka)H7(72)(k0a) — %Jn(ka)H7(72) We‘ll] . (3.29)

Replacing the Bessel function expression with the constant from [2. eq. 11—95] gives

Bn 2

B5,. = — [can [aneawteoe — Jh<ka):’"("‘°“)i +0

0n, [%J7l(ka)HT(L2)I(A'()Q.) — J;7(fi'(l.)H,(72)(fi'()(l):l] . (3.30)

11



Since there are three unknowns and two equations so far, another equation is

needed to solve for C77,. The last equation comes from setting the tangent electric

field equal to zero where the dielectric material interfaces with the metallic core:

00

155? = E0 2 (47,17,037) + smear-)1 (5030.3) = 0. (3.31)

n = 0

Define the expressions fn, 777, gn, and fin to represent parts of the equations that

describe An and Bn:

(n = — [%Yn(ka>Ht2)'(koa) — s’.(ka)H5?)(A-ou>[ (3.322)

in = %Jn(ka)H7(22)I(koa) — Jakthzmw) (3.33)

971 = —€njn [%Y71(ka)‘]fl(k0a) — Kifkaflnfknafl (3-34)

:93. = Enjn [%J77(ka)J77(k0a) — .I;..<ka)Jn.<Aw)[ (3.3.3)

Then An and Ben can be simplified using the fn, f77, gin, and ’g'77 expressions.

aka aka

An = ”72,011. + 9n) ‘2— Bn = [777,071. + .572) —2__ (33(3)

Substituting these into (3.31) gives:

(1 aka 00 —

E3 : EDT 2 [lCnfn + 9n] Jnfkr) + [Cnfn + fin] 1320”” 0050165) Z 0-

n = O

(3.37)

The boundary condition on the conducting cylinder is satisfied at a finite number of

points (rm, (6777) with m = O,l,2,...,M (point matching)

(1 aka 00

E2 : EDT 2: [lCnfn + 9n] Jnfkrm) + [Cnfn + fin] Yn(k'l‘m)] c0s(n(,’),717) : O

n = 0

(3.38)

The next step is to combine like terms, starting with fn, and 7.77.

12
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__ .7 2 I

fanUC'rm) + fund/Wm) = —;]’—H7(7, ) (koal)Ynfka)Jn(k7‘m)+

0

(2). ,. _ (2),. .k 11,, (2),,
H” (lt-()0.)Yn(fta).]n(k7‘m) HT). (.oa)J77( (l)Yn,(ft-Inl)+ T) J”( .(l.)H77 ( ()(l)

0

(3.39)

Factoring the Hankel functions out of the equations gives:

__ 7 2 ’

fnerk’rm) + fnY7L(k7"m.) = #Hfz ) (kea) [Jn(ka)Yn(k7‘m) — Yr:(k(1)Jn(k7'm)l ‘

0

H7g2)(k()a) [J77(ka)Yn(krm) —— Y7'7(ka).ln,(krm)] . (3.40)

Define Fmn and Emn to simplify the equations:

Fnzn = Jn(k(L)Yn(kT7n) — Yn(ka).]n(k7’7n) (3.41)

an = Jh(l€(l)Yn(/€Trn) — Y;l(ka).]n(fi77‘yn) (3.42)

J k — Y k —_77_H(2)’ k —H(2) .. ‘1 ..

fn nf Tm)+fn n( Tm) — 7)0 n (ea)an n (Ariafl'mn- (34-3)

After finishing the rearrangement of the fn and fn expressions, the next step is to

combine the gn and 577 expressions:

7
. 7 ,

QanfkTm) + gnYnfkT‘m) = Ean [—#OynfkaflnfkrmflnfA700) +

Y/dkaflnfkrmfln((900) + EEJnfkaankTmWM/Voa) — Jiszn)Yn(kI'm)sz(11‘0“) -

(3.44)

Next factor out the terms from the Bessel functions with koa as the argument:

gn.]n(ki7‘m) +§nYn(kTm) = Enjn n10[Jn(ka)Yn(kTm) — l%,(f£(l.)Jn(/ifl'n))[.];7(111700.)—

[Yfi(ka)Jn(kT7n) — J;7l(ka))zn,(ffl7‘7n[Jn,(f{()(l.) . (3.45)

13



Replace the term that multiply Jn(k0a) and J’n(k0a) with an and Fm":

.(J-an(kT'm) + gnYnUCTm) = Enjn [ganJMkoal — anJnU‘UG) - (346)

0

Substitute in the expressions for fn, fn: gn, and En with new expressions that. have

been simplified:

7rlca 0° 7; (2y — (2)
E21 : En—é—l Z [Cn [Ty—H” (I)?0(l)Frnn — F7nan (k()(1)] ('OS(II(,J)]”) 'l”

n = O 0

. 7 , — . ..

<5an [Egjrdkoalan — anJnUt‘nal] C05(719”m)] —_— 0° (34")

This can be written as:

00 7/ (2)’ — (2)
Z Cn lTHn (1160(1)an — anHn Meal] (705(7199m) =

n = O 0

00 . 7 . —. . , . .-

— 2571]” lJ‘Jhwoaflnm — 1“ nmJnUVuall FOSU'Om ). (345)

":0 L00

By truncating the sum at n=N, and choosing M=N matching points. this ("an be.

written as a matrix equation of the form 2 AmnCn = Bm which can be solved for

Cn. Then C", can be plugged into (3.9), to give the scattered field:

0° (2)
E; = E0 2 Can (ko'r)cos(vn.d)). (3.49)

n = 0

For k0r>>1 The Hankel function can be approximated using the following equation:

HT(12)(k07‘) : ___2_€_j(kor — ”/4 "' 'ILW/Q) r350)

Wkor

Substituting this into (3.49) gives:

 

oo

Eg = E0 2 63—30%“ — 7r/4) E C” ('os(lzg§)()_3"7r/2 (3.51)

WkOT' 0 ‘ ‘
n 2

14



3.2 TMz Case Comparison

The TMz case comparison is to check the derivation for the elliptical case with

the circular case that was derived in Heike Vollmer’s thesis [10]. The comparison

starts with the equation that describes the metallic core interfacing with the

dielectric layer and then having tangential electrical field going to zero at the

interface. To simplify the comparison, only the nth term in the summation is used.
‘4

Also, krm is now a constant value, with rm = b forming a circle. Beginning with

(3.48) and substituting for an and fmn gives:

!

Z Cn[—[Jn(ka)Yn(ka)— Yn(ka)Jn((mm))]Hn2) (koa) !_ 
n—- 0

—[J;1(ka)Yn(krm)— Yfl(ka).ln(krm)]H,(22)(1:00)] cos('n(:>m) :

00

1.0:mint—lJn((ka)Yn(k-rm)— Yuk-m.(trusty.(to...)

- [Jh(ka)Yn(k7‘m) — Yfi<ka)Jn(kT1n)]]n(k0(l)) COS(IICJ))7)). (3.52)

The orthogonality of the cosine functions can now be applied since rm 2 b is a

constant. This gives:

C7),[%[.In(ka)Yn(ka)— Yn(ka)Jn(krm))lHn(2) (Icon)

I I ‘2

_ l']n(k“)Yn(k7'm) _ Yn(ka')JTl(krnl)lH7(L )(kn‘m

= —€njn[1]10[Jn(k(l)Yn(k7m) — Yn(k(L)Jn(kl‘7n)]J;l(k0(l)

— [Jh(ka)Yn(kTm) — Y7,21(k(l).]n(k7"7n)]Jn(lx‘()(l)]. (3.5-3)

Define D and L to simplify the fractions:

JnUCa) YnfkalJn (k'rm)

D = ——

Jn(koa) YTL(kT77L)J72-(k()a)

  (3.5.4)

15



  

L— fiUca) _ YT’L(ka)Jn(an1)

_ , , 37.3)

This expression matches with the expression for On from Heike Vollmer‘s thesis (in

[10, p. 21] with minor corrections, since radii are named by different methods.

Solving for Cn then gives:

. J k—
€an [D — «an ——(’-‘2()—°i’—

an H” “7”") . (3.56) 

 

(2)’ a . a
DHTEZ) (k0 )Jntko ) _ ,/—L

Hn (koa)J;l(k0a)

16



3.3 TEz Case

Using the same figures in section 3.1, the incident magnetic field assumed to be

z-directed and is incident on the cylinder along the -x axis. The incident magnetic-

field in region 2 is represented as a summation from negative infinity to positive

infinity, so the magnetic field can be calculated numerically. Using the expression

from [2. eq. ll-8lb], the incident field can be written as:

00

H2, = €261,901? = f’flcjkor COSW) = .110 Z jTLJn/(ko.,.)ejne (3.57)

’20 770 770 _
n — —00

The summation is broken up into negative and positive terms to simplify the.

summation:

. E ‘1 . 00 .

H2 = —‘3 Z j‘"Jn(kovr>eJ"¢ + J0(k0r) + Z JianMOTVJm/D - (3.58)
7/0

n = —00 n = 1

Now take the negative indexed terms and replace “n” with “-11” to gives:

H: = 7—9 Jan—Mktfl'k—Jnd) + J()(k'0r) + Z J'an.“0")“me - (3'59)

,0 n = 1 n = 1

The J_n(k0r) term is equivalent to (_1)n JnUmr) [2, eq. IV-8], giving:

- E 0° . 00 .

H; = _9 Z: j_"'(——1)an(/€07‘)€_Jn(:) + J()(k()r) + Z jnJ”(A‘U'I'hi-lm’)

")0
n = 1 n. = 1

(3.00)

Combining the summations gives:

H3 = ——° 2 janUcor) [ca-9’“? HMO] + .I(,(Ar.,r) . (3.51)

710
n = 1

The exponentials can be combined into a cosine function and En is needed since.

there is a two factored out of the exponentials for n greater than zero. For n equal

to zero, there is only one exponential, so only one is factored out. This gives:
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1' E0 .71 1 'n : 0 . _:

Hz 2 — an] Jn(k0r)cos(no) an 2 . (3.02)

710n=0 2 n # 0

The electric field is calculated by taking the curl of the magnetic field:

_)'. 1 . 1 . A . ,

E2 = , 5 [23 X th2] = —_—]E [7'1;0(DH; + (,DarHé (3.0”
 

Applying the derivatives gives:

—+' 1,:_E__0

El 2 ———;—— Z Enj"Jn(k07)nsin(n¢) +

JWE r770?
n: 0

E 00

(AS—”3 E:enjnkoJMkor)cos(ng§) (3.0.4)

0
n=0

The f“ part of the electric field is not needed in the calculation for the tangential

electrical field in the boundary conditions. Simplifying gives:

J—E0’90

UouJEn

15?: 20snjnJ,’,(k0r)cos(n¢)= jEO Z enj’1’n(km‘)cos(m;i) (3.0.5)

n=0

The magnetic scattered field in region two is given by the equation:

E

Hg—— ——07707120CnH A07)cos(na)) (3.06)

The electric scattered field is calculated by taking the curl of the magnetic scattered

field. As before, only the <13 component is needed:

E 2 ._,
Egg: ——67~Hz ———w—-—6r7’Oon: CnHHr(z )(k‘(,7)(os(m")) . (3.01,)

=0

Taking the derivative and simplifying gives:

'kE 00 (2) ’Es _ _J_2 2 Can (1W) COSW,)—on Z: CnHI1,2(,f)(A0r)ros(no) (3.68)

0
(1) 7700.150

n = n—— O

The magnetic field in region one (dielectric region) is given by the following

equafion:
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E 00

Hd = 7,9 Z [Aan(kr) + Bur/Mm] cos(nq5). (3.60)

n = 0

The electric field in the dielectric region is calculated by taking the curl of the

magnetic field equation in the dielectric material. As in the pervious cases, only the

as component is needed:

 

 

E

Ed = —_—0er—_ ———ar—9n: [Aan(kr) + BnYn(A1)](os(nd)) (3.70)
99 Jane 3w: 3

=0 i

Applying the derivative gives:

. kE 00

Ed = 7 gm" 2 [AnJ,’,(kr) + BnJ;,(Ar)]cos(nqs) (3.71)

nvn=0

After the derivative is applied, the constants in front of the summation are y

simplified to give:

00

Egg = jEO Z [AnJ;,(Ar) + BnJ;l(lt:r)]cos(m;)). (3.72)

n = 0

After finding the electric and magnetic fields in the various regions, the next:

step is to apply the boundary conditions. The first boundary condition that is

applied is that the tangential electric field is continuous at r = a.

jEO Z Enjn Mime) cos(nq>))+jE0 Z CanZ) (k0a)cos(n(,6) :

n-— 0 n—— 0

(X3

”30 Z [An'Jiz(’*'ti‘l')+BnYy’ztka‘Hcostw) (3.73)
n = 0

Applying orthogonality Of the 0050“?) functions gives:

I

ggenjnJMkoa) + gCnHTSQ) (koa) = [AnJfi(ka) + B‘N-Yr’ilktlfl . (3.74)

o

The next boundary conditions that is applied is the continuity of tangent. Illi‘lgllt‘lit‘

field being at r = a:
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—"it): EnJTMJTI(A()O)COS("¢))+E—AER: CnHH(2n)(A‘Ua)cos(mf2) =

0—72— 0 -—()00

E

0”Z {/1an(110) + Bnyn((An)](os(m2) (3.75)

"72:0

Usmg the same process described above, the summation is remm ed leax mg the An

B", and On terms:

1 ,. 'I 2
'

TIL€anJ7z.(/foa) +
n—ICTLHAL )ikoa) = AanAk”) + BRA/"(kw

o 0

Since there are two equations, (3.74) and (3.76) two of the variables (an be

elmnnated by solving for them in terms of the third variable The first stt p is to

solve for An from equation (3.76):

 

 

1 n 7] (2) . . ..
A» = —€ nJ A a +—C H A‘ a cos no — 8-)", An. 3.”n Jn(A'a.) 770 nJ n(0)+ 770 n n (0) (9) nn( ) (H)

Next, substitute in place An into (3.74) to give:

-n I . (2), _ 2 ,.
5n] Jn(Ana) + (7an (koa) — BnYn(Aa)

' J’ A'.

+ [I—IEOEnjnJMkOa) + ECnH£2)(Afoa) — BnYn(A‘a) n( ‘0). (3.78)

770 n0 Jn,(A(I)

Next factor the common terms:

, 7

£5an [J;l(k0(l).]n(ka) — é];z(ka).]n(k0(l)

I

Cu [71,?) (koa)Jn(ka)— 7’—H.§,2)(A(,a,).1;,(Au,) =
’00

Bn [Y,Q(k(i).ln,(A:(1) — Y,,(A:(1,)J;,(Ara)] (3.7.0)

The term that multiplies Bn is equivalent to the following equation [2 tq 11 92]

Y7’1(ka)JTl(ka
) —' Yn(k(l)J;l(ka

) = . (3.80)

’ITA’YI. ’
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Finally, solving for Bn gives:

7rA‘a. , ,

Bn 2 T [571]" [J,,,(k0a)Jn(ka) — 3Jn(k0a).];l(ka)] +

0

I , ‘)

on (Hf?) (k(,a)Jn(Aca) - #115,“)(A~1,u).1,’,(A-a)]] . (3.31)

()

After solving for B”, the next step is to solve for An in terms of C". First solve

for B", from equation (3.76):

_ II -n . n (2). , . .
Bin — ———_—)’ FER] Jn(A0a) + 7(7an (A100) (0510“,?) — xln,Jn(Ax(l) . (3.52)

‘ o o

Equating this with the Eu in equation (3.74) gives:

I

. I 2 I

EanJnfk-oa) + CnHA ) (kW) = Aan(A'a)+

Yr [(3 . ‘ .

n( a) [7111572,jan(/c0a)+#CHHA2)(A‘M)
*AanAft'”) - (3-83)

0 0WWW)

Factoring out the common terms gives:

- I 7 /I

Enjn [Jn(k()(l)Yn(k(l) — #Jn(k0a)ln(Aa)] +

0

on (HA2)'(Aoa>Yn<ka>-7:1HA2)<koa>YA<ka> =
To

An [.];L(A"(L)Yn(k(l) ‘— )7,(k(l).]n(lf(l)] . (3.84)

Using equation (3.80) to simplify the expression multiplying A n gives:

—77ka , , 7 ,,

An = 2 [577]” [Jn(k()a)Yn(k(l) - n—IJ71I(k0(l)}n(k(l.):l

0

 

I

+ [H£?)I(koa)Yn,(ka.) — %H,(12)(A‘Al)l",’l(A'ti)]] . (3.85)
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The derivatives of the magnetic field are needed for various equations later in

the derivation. The derivative of the magnetic field with respect to {/2 is:

1 1 E 0° . ..

72:0

01'

00

$63ng = —% 5% Z [Aan(kr) + BnYn(A1-r)] nsin(n<p) . (3.87)

n = 0

Also needed is the derivative with respect to r:

00

(9ng = 6T @770 Z [Aan(kr) + BnY-n(kr)] cos(n¢2) (3.88)

n = O

or

d ED 00
(9er = k [37— ZOMnJhUC'I‘) + BnY73(k7')]cos(n¢) . (3.89)

n :-

The last boundary condition to be applied is that of zero tangential electric

field at the metallic surface. Finding the tangent to the ellipse is necessary because

the tangential electric field is not the 2 component. The tangent vector is calculated

by taking the derivative of the position vector describing the points on the ellipse

divided by the magnitude of the same vector. Let 7”((,'2) describe the posititm

vector to points on the ellipse. Then the tangent. vector is:

 

 

—> 7"(75) ‘ ,
T = _, 3.90

(‘1’) Ir «(2)1 ‘ )

Where

?(¢) = ital cos(¢) + gag sin(<,b) (3,91)

and

7”(¢>) = (1:15),,» (3.92)

The derivative of the position vector and its magnitude are:
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7"(11) = 41111 5111(1) + 171.2 cos(¢2)) (77(3)) = \flz,‘f(sin(3))2 + age-011(0))2

Thus

-a1 sin(¢) + l/ (12 cos(c2)

‘ \flz¥(sin(q2))2 + a%(cos(qb))2 \/a¥(sin(cx2))2 + (13(1“os(¢2))2

z 1,1+1,,1. 13.94)

  
  

By the. boundary condition the dot product of the. electric field vector and the

tangent vector is equal to zero on surface of the conductor. Also, the electric field is

equal to the. curl of the magnetic field, so

A _(1 A A A1 d A A A r d a F'

t' E '3 (tlfl‘ + tyy) ' r—BCsz +(t1‘1' + tyy) : (3%)er = 0. (3.90)

7‘ . ‘

Since the curl of the magnetic field is in cylindrical coordinates and the tangent

vector is in rectangular coordinates, the cylindrical coordinate unit vectors need to

be converted to rectangular coordinates [7, eqs. D44, D45]:

. . . . . 1

(112 +111) - (1111(1) + ysm<¢>>;a¢H§+

(115: + tyg) - (——1‘.~.sin(¢) + 3)cos(d2))07'H:i = . (3.90)

Multiplying out the unit vectors gives:

1

(tr cosh-D) + ty sin((p));0¢H§ + (—t;p sin(o) + 1y cos(o))0,-Hg = 0. (3.97)

The derivatives of the magnetic field are inserted to the equation from equations

(3.87) and (3.89) to give:
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(a —a )sin(¢2 cos(¢
2 110“;

Tn [Aan(ffI') +BnYn(A'I))II 5111(71(1))

)+ 77

 

 

 

 

 

 

(/1,(111(1)2+1g(101(.i»2: =

(11(sin(d2))2 + (12(cos()E000

— :0 [Aan((AT) + Bnin((A7))]A.(os( 77(12)—— O.

\/a%(sin(nd2))2 + a%(cos(9)5))2 "n =

(3.93.)

Define C(92) and 5(9)) to simplify the previous equation:

C(05) : (a2 — a1)sin(¢)cos(9t2) ' (3.99.)

(Memes)? + a3<cos<c>>>2

— (11(sin(92))2 + (12(cos((D))2

0(7)) = ‘ ‘ (3.100)

\/a%(sin(nq$))2 + c13(cos(92))2

Also define {7111 7,11, gnl, and gm as:

2 ’ 7 2 ., _ _
fnl : —H7(1 ) (k()a)Yn(ka) + #Hfl )(A:0(1)Y,,(A'u) (3.101)

0

— 2 ’ 7 2 , , ,
fnl = HTS ) (k00)Jn(ka) —' 5271172 )(AC()(I.)J7II(A7(I) (3.10.2)

977.1 : —enjn [Jh(A'0a)Yn(ka) + r;—’J;;(A'0(A)Y,',(A'u,)) (3.103)

0

' I I .

ynl : 571]" [.]h(Atoa.)Jn(/€a) + éJn(A'Oa)Jn(A'u)) . (3.104)

Using these, An and En can be written as:

aka rka ._

An = —2lCnfnl + 9711i 371—— *iC’nfnl + 9721] (3'10”)

Equation (3.96) becomes
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27'

n =

— 7rka 00 —

G(9’>)—§—k Z [(071nt + gn1)J,'1(k7) + (Cnfnl + §n1)Y,’7l(kr)] cos(n(;'>) =0.

n = 0

(3.106)

The common terms drop out and the point matching technique used in section 3.1 is

used to give: E

G(¢>m,) Cnfnl + gn1)Jn(kr) + (anf—nl + §n1)lr'}z(kr)] vn.sin(n9)m)+

‘
S
I
H

 
€(¢m)k [(Cnfnl + gn1)Jh(kT) + (0717711 + §n.1)Y7,2.(k7')] (305010777) 2 0.

oo

2 [(

n=0

00

2
n=0

(3.107)

The terms of the fnlv 7711, gnl, and am are combined separate the Cu terms and

non Cn terms. The first expression in the first summation can be written as:

fnlJnUCTm) "l" THIYn(kTm) =

— H7(z2)'(koa)Yn(ka)Jn(kTm) + #211792)(k00)Y7’l(A‘a)Jn(A‘I‘7n)+

’10

Combining like terms gives:

fnlJn(k'rm) + 7n1Yn(k7'm) = H192) (koa) [Yn(k7m)o]n(k0) ~— yin(k(l).]n([17"];)1 '—

%H7(z2)(koa) [Yd/«mitten - Y7<ka>Jn<A~rm>1. (3.10!»

The last step is to simplify the equation by using an and Fm,” defined in (3.11)
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and (3.42), since the terms appear in multiple expressions allowing a simplification

of the expression:

In,1Jn(krm) + fn1Yn(krm) — anHn (koa) - TanH" (7.0a) (3.110)

0

Simplifying the second expression in first summation gives:

977,1 Janffm) + En
iYnWm) =

Enjn — Jh(k0(l)yn(ka)Jn(kTm) + g—Jn(koa)Y;L(k(l.).]n(Af’I‘-7n)‘i‘

0

J;1(k0a)Yn(kTm)Jn(ka) — E.]n(f€0(l)lfn(k7777)IfiUia) . (3.111)

770

Combining like terms gives:

gnljnlkrm) +
§n1Yn(krm) :

572.7” szlkoa) [YnfkT7n)J77(ka) “’ Ynlk‘llhdlfrin)1 —

"EOJnf/COG) [Yn(kTm)Jfi(ka) — Y'zli.(k”)']n(k7‘=7n)l ]' (3112)

The last step is to simplify the expression by using Fmn and Fm":

_ . 7 —: , . .

gnlJnfkrm) + 9n1Yn(k7'm) = 571]” szfkoa)an — #Jnmuflif 77m] - (3113)

0

The next expression to be simplified is the first expression of the second suininat ion,

giving

fnlJfi(k'rm) + 7711177027771) =

_ (2), I 77 (2) . ,, . I ,. .
Hn (koa)Yn(ka)Jn(kT7n) + ’0an (koa)Yn(Aa,)Jn(A7m)+

2 I f 2 I I 7

H5. ) (koa)Yn(k7"m)Jn(ka) — 71,3115. ’seamlsrmiln(kn). (5.114)
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Combining the like terms gives

’ — ’ 2 I I f I

fnlJn(k7'rn) + fn1Yn(kTm) = Hg ) (koa) [Yn(krm).]n(ka) — T71,(AT(I)J"(A'I‘77))] -

1H,?)(koa) [Wl(k7'm).],’1(ka) — Y5(7a)1;,.(tr,,,,)] . (3.11.5)
"I0

The last step is to simplify the equation by defining Flmn and Flmnz

 

.1;

ntJfiAkT'm-I + Tnlyfiwrm) = Flman7(72),(koa) _ %F177777H7(f2)(k00) (3-115) ’

Flmn = K3(krnL)Jn,(ka) ‘ Yn,(A‘a).I;,A(A‘7‘m) (3-117)

Flmn = YMkrmNMka) — Yfi(fi’(lv)t]7"z(k7‘7n) (3.118) L

The last expression to be simplified is the second expression of the second

summation:

9711 Jfi (k-I'm) + .6771 Hz (krm) =

. 7 I I

Enjn —Jh(Atoa)Yn(ka)J;l(k7‘n-L) + n—IJn (Aroa)Yn(A'u.)J,L(A:7'm )+

0

Jh(k()(l)Y7’l(kTm)Jn/(ka) '— l.]n(k()(l)y'7ll(A'I'nl).l;l(kn) . (3.11.0)

7I0 ' ’

Combining like terms gives

911,1J71.(I‘7Tm)+§n_lyrli(krm) 2 571]” [JhUVoCU [lesz‘r7nlln(k0) — yhlkfll-Ih (AT/72)] *—

”lanUcoa.) [Yr’sz'IVnWfiUYU ‘- l/7I1(A3(1,)J;I(A‘I’7n)JJ . (3.120)

Simplifying the equation using Flmn and 7177177 gives

. _ , 7 —, ,

gnlJi-dm‘m) + 9n,1Yri(k7‘m) = €an [Jilkoawmn — #1710770” 177m) - (3.131)
0
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Using each of these expressions, equation (3.105) becomes

)1 :00 l— (2)
C71, III) -— [I‘WmnH(’((kofl)— 77—FTIlan (1:00)] 7‘1811‘1(IIC))73)

0

(
a

72:0

00 7— (‘2) . . .
(7195",)sz 171",an2)(zcoa)— 37,771",an (7.00,) 004,799,”) =

00

. . 1 7 — . ,

— E0677)" GW'm); E [anJhlk-oa) '7 afianJnUfnllfl "811101997721

77 = 0

oo

+5(9bm)k Z [Flmnjfz(k0“)—%Flnin,J71/(k'0”)] cos(77957-n) . (3.122)

n = O

Truncating the sum at n=N and using N+1 matching points, (3.122) can be written

as a matrix equation of the form 2 AmnCn = Bm, which can be solved for C”.

After finding On, the last step is to insert the value of Can into elrwtric scattered

field (3.68):

I00

E3 =jE0 Z CnHT?) (11:07:) cos(n<,a) (3.123)

For k0r>>1 The Hankel function can be approximated using the following equation:

(2), _ _ 2j n+1(3—Jk0, 7

Hn (Is-or) — (Ark—0T7 (3.124)

Substituting this into (3.123) gives:

Eg = E0(/ #1607”: Cnj611‘0" cos(7m) (3.12:3)

=0
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3.4 TEz Case Comparison

The TEz case comparison is to check the derivation for the elliptical case wit 11

the circular case that was derived in Heike Vollmer’s thesis [10]. The ellipse is now a

circle with constant radius rm = b. As done in the TMz case, only the nth term will

be used in the comparison for simplicity. Since the metallic core is now a circle. and

the coating has radius a1 = a2, the C(96) expression now gives:

(a1 — a1) sin(9b) cos(96)
 
 

 
 

C(99) = = 0. (3.126)

(Meme)? + a¥<cos<¢>>2

For C(95), letting a1 equal to a2, gives:

m) 2 “1(Sin(¢))2 + a1<cose>>2 = __1__ = 1. (3.12,,

Va? (sin(7791)))2 + a%(cos(9’9))2 0.112

Starting with the tangent electric field equal to zero at the dielectric material

interface with the metallic core and solving for Cn, gives:

710

’71, ((0); Z EanHn (1600,) — anHn (Aoa) Tl SlIl(II-(,f)7n)

n = 0

w I

+5(e)k Z [‘n—OFlmanz?) (koa) — FlmnH£2)(k0a)] cos(n(pm) =

n = O 7)

- 1 00 710 —1 -

— E0577]n C(72); : [ganJMkoW “ 1‘77272Jn(k0")] "7 5111("(757771

n = 0

00

+a(¢)k Z [ngFlanh(k0a) —‘ Flann(/€()a):l COS(II(,-1)'fn) . (3.128)

n = 0

Simplifying the equation using (3.126) and (3.127) gives:
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oo
' . 2 ’ — 2

Cn ’6 2 [2911771an ) (koa) — F1mnH7g )(koa)] cos(m,’)m):| =

 

n = O 77

00 "I _

_ Eoenjn k E [ToFianWW — Flann(k0a)] coswm) . (3.129)

n = 0 I

Orthogonality of the cosine function can be applied since rm 2 l) is a constant.

Also, substituting for Flmn and flmn from equations (3.41) and (3.42) with the E

original Bessel functions for the comparison gives: 7‘

|

. <2)’ ’
on :—:)[Y,’l(krm)Jn(/ca) — Yn(ka)J,’1(krm)]Hn (kw)

— [Y7’1(krm)J;z(ka) — misting/«mu H722)(koa)] =

. 7 I I I

— EDEan [% [Yn(]€7‘nl).]n(ka) — Yn(k(l)Jn(k7'7n)] Jn(/~?0a)

— l}?g(krm)J;l(ka) — Y};(ATCI)J;I(kT'IIL)] J-nUE'MOJ (3.131))

1

Define D and L to simplify the fraction:

 
 

JRUW) Yn(ka)J;L(k7'm
)

‘

D =
—

.

Jn(koa) Yfi(k1'm)Jn(k0a)
(3 131)

— JWW) YMkakarm)
(3.132) 

 

L _ — .

#10900) Yr'i(k7'm)Jh(koal

Solving for Cn gives:

 

 

 

—E0€njn [D -— 1 L] __J7;(koa)

C “5 Hfl )(koa) .
,n = (2), . (3.1.33)

H72, (koa).]n(koa) 1

D (2) - fl]

Hn (koalJMkoa) ”r

This expression matches with the expression for Cu in Heike Vollmer’s thesis on [10,

p. 18] with minor corrections, since the radii are named by different methods.
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CHAPTER 4

Computational Considerations

4. 1 Computation Method

 
The computer code written to calculate the frequency domain data for the T122

and TMz scattered electric field has the following structure: placement of the ellipse

matching points, calculation of the values of the Bessel functions, normalization of

the matrix entries, and evaluation of the matrix. Appropriate placement of the

points on the ellipse is necessary so that the matrix is not singular. Placement. of

the points on the ellipse is done using the following formula:

afifiiH-fiVZ—l), -i=0,1,...,N (4.1)

After the ellipse is set up and the step size and number of the frequency points

is chosen, the wave numbers are calculated. The Bessel functions for the matrix are

calculated using a routine provided by Dr. Edward Rothwell based on the formulas

in Abramowtiz [1]. The results from the Bessel functions are scaled down by

applying a natural logarithm to the calculated values to prevent a numerical

overflow when the actual value of the Bessel functions are used. For the TMy. case.

. 2 ’ . . .
equation (3.48) has H79, ) (koa) factored from the expansion coefficient as shown:
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00 (2)
I

—-.; H

2 CR (1an ' I‘mn—fi-YM 0050299,”) 2:

n. = 0 770 Hn (koa)

OO

. 7 —w ‘

‘- Z 5.an [#Jh(k0a)an — I‘mn,.]n,(k()a) (TOS(‘I'I(§))n) (4.2)

n - 0 0

where as

2
4, = 6‘an Vega). (4.3)

And equation (3.51) becomes:

 

oo , _

E; 2 E0 2 e—JUW ‘ 71/4) ——C:"—— c()s(n¢>)e“J"7‘/2 (4.4)
7rk07‘ n = 0H7?) (koa)

This normalization allows the usage of larger arguments and orders of the Hankel

function without overflowing the variable in FORTRAN. Two other methods for

I

normalization that were explored are dividing through by H52) (1:00.) and dividing

I

through by H’max(k0a). Dividing equation (3.48) by H572) (13.00.) gives:

00 (2)
r — H k

2 Cn —,an an n2 ,( 0 ) COS("¢m) =

n = O 7’0 H’EL ) ((900)

00

_ J' k a — J , k. a ,

— Z enjn 1%an—an—(gérfl— cost/Wm.)- (4-5)

71 = O 710 Hn (koa) H72, (koa)

I

The division by H792) (koa) was rejected because the results did not always match

the case without normalization. Dividing equation (3.48) by H’,,m_.r(k(,a) gives:

00 (2) .

2 Cu gan —anHTg),(flg)-

Tl = 0 O Hmaa:(koa)

C05(’"¢m) :

°° -n n thkoa) —. Jn(k0(l)
— E 677,] n—W—Fnln—Pmn—TQT—

'71 = 0 0 HmaacUCOG) Hmaflkoa)

cos(nom ). (415)
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. . . 2 ’ . .
The d1v1sion by Hgnzlflkoa) created zeros for all pomts 111 the data range.

After the matrix is set up, the next step is to solve matrix using an LC

decomposition routine. Lastly the On term is inserted into equation (3.51) or

equation (3.125) to get the scattered electric field value. For the TMz case. the

FORTRAN code is in Appendix A, and for the TEz case, the FORTRAN code is in

Appendix B.
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4.2 Flat Case

The coated planar surface or the flat case is the standard reference for the

comparison in the time domain using the E—pulse technique. The equation that is

used to create the scattered electric field for the flat case is [9]:

71— 170 _ e—ijd

 R = ’7 _ _ (4.!)

11+ 7m

Here d is the coating thickness and 17 = Mpg/(574m). To compare to the coated

ellipse, values of d = .1 m and 5r = 9 are used. The equation is coded in FORTRAN

and is shown in Appendix C. Magnitude and phase plots of R from (4.6) are shown

in figures 4.1 and 4.2, respectably. The magnitude of the flat case is always 1

because the incident electromagnetic wave is entirely reflected back from the flat

surface. The phase plot shows the typical pattern of variation between 180 to 480

degrees. Applying a 32768 point FFT to the frequency domain data gives the time

domain data shown in 4.3. The series of pulses represents the multiple reflection

within the planar coating. Note that the waveform is zero in between the pulses.
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4.3 Circular Case

One way to check to see if the equations for the scattered electric field are.

derived correctly is to compare the On terms of the elliptical case to the circular

case. The circular special case occurs when the major axis and minor axis are. equal

in length. Since in Heike Vollmer’s thesis [10], the circular case data was already

calculated, the elliptical case formulas can be setup to match those of the circular

case. The equations (3.56) and (3.133) for the TMz case and the T1112 case.

respectively are used for comparison with the On term from Heike Vollmer‘s thesis.

As shown in sections 3.2 and 3.4, the On are the same. Data is calculated using the

elliptical case with the major and minor axes set to the chosen radius of the circular

case are found to be identical to the data shown in Heike Vollmer’s thesis.
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4.4 Echo Width of Elliptical Metallic Core

Another way to check that the scattered electric field equations are derived

correctly is to calculate the two dimensional radar cross section or echo width of the

uncoated elliptical cylinder [5]. At high frequencies, the echo width of a curved

surface approaches 7r times the radius of curvature at the plane-wave contact point.

Let x((;b) and y(qb) describe points on the surface parameterized by the variable 0‘.

Then the radius of curvature is given by the following [12]:

((202 + (y’)2)3/2
 R = W, _ 31,513,, (4.8)

The x,y coordinates, the first derivative. and the second derivative of x.y

coordinates are:

1: = a1 cos6 y = a2 sin6 (4.9)

a:' = —a1sin6 y' = a2 cos6 (4.10)

:23” = —a1cos6 y” = —a2 sin 6. (4.11)

Substituting into equation (4.7) the formulas for x, y and their derivatives gives:

((—a1 Sin a)? + (a2 0086)?)3/2

 

 

R = . . . (4.12.)

(—a]L srn6)(-a2 Sin 6) — (—a1 cos 6)(a2 cos 6) '

Simplifying the equation for the radius of curvature at any angle yields:

((al sin 6)2 + (a2 cos 6)?)3/2

R = . (4.13)

“1‘12

Along the x—axis where 6 = 00, the radius of curvature is:

3 2
a a,

R = —2— = ——2-. (4.14)
alag a1

Along the y-axis where 6 = 900, the radius of curvature is:
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R z .—= — (4.1.3)
0.102 (1.2

 

The echo width 0 of the metallic cylinder can be calculated using the FORTRAN

program in Appendices A and B to find the value of B: using 5r 2 1 and

substituting the value into the definition [2, 11-102]:

r|E§|2

2
E0

a=27r
 (4.10)

  

Figure 4.4 shows the echo width found using a1 = 1.4 111 and a? = 1.3 m, with

x as the major axis. The radius of curvature with x as the major axis using

equation (4.13) is 1.21 m, giving a high-frequency limit to the echo width of 3.79 111.

The value of the echo width for k = 4.0 l/m from Figure 4.4 is 3.89 111. Figure 4.5

shows the echo width found using a1 = 1.4 m and a2 = 1.45 m, with y as the major

axis. The radius of curvature with y as the major axis found using equation (4.14)

is 1.51 In, giving a high-frequency limit to the echo width of 4.72 m. The value of

the echo width for k = 4.0 l/m from Figure 4.5 is 4.79 m.
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CHAPTER 5

Results for the Elliptical Case

5.1 Frequency Response

The frequency domain plots of the TMz and the TEz cases are created using

either the x axis or the y axis as the major axis. The major axis that is chosen

greatly affects the results of the numerical calculations as shown in the plots. The

TMz and the TEz cases with the same major axis produce a similar result with the

largest difference occurring at the lower frequencies. After the results are calculated.

magnitudes are normalized by multiplying the data by \/r/_a/E0, for a normalized

field magnitude. The various sizes that are chosen shows the variance of the

different cases with a small, medium, and a large radius of the cylinders.

The frequency domain for the TMz cases uses equation (3.51) for the scattered

electric field. The On term is found by solving the matrix equation(3.48). The

FORTRAN software used to calculate the frequency domain data in appendix A.

For the TEz case, the scattered electric field is given by equation (3.125). The Cu

term for the T132 case is the matrix equation (3.122). The FORTRAN software used

calculating the frequency domain data is in appendix B. The dielectric thickness on

the x axis is 0.1 m and the dielectric constant, Er = 9. The number of points on the

ellipse is chosen to be 275, since the TMz cases at a = 2 m needs that. 111any points
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to converge the data. The number of steps for the frequency domain data affects the

time needed in the time domain data. The x major axis uses 500 steps for the.

frequency domain since the wrap around in time domain does not occur. However,

with y as the major axis cases, the window in the time domain is not. big enough

with 500 steps, 2000 steps are needed to have the creeping wave decay out.

The magnitude of the TMz scattered electric field with x as the major axis, in

the frequency domain becomes less oscillatory as the radius increases as shown in

Figures 5.1, 5.2. and 5.3. Another characteristic shown in all the TMz scattering

electric field plots is when the frequency approaches DC, the magnitude goes toward

infinity. For the TMz scattered electric field plots with y as the major axis. Figures

5.4, 5.5, and 5.6 shows an increased rate of oscillations as the radius of the cylinder

increases. In Figures 5.7, 5.8, and 5.9, the T137. scattered electric field having x as

the major axis has a similar shape to the TMz with the same major axis, but the

lowest frequencies now approach zero instead of infinity. For the. T132 scattered

electric field with y as the major axis, the oscillations are occurring at a higher rate

than the TMz case as shown in Figures 5.10, 5.11, and 5.12. The phase plot shown

in Figure 5.17 is typical of all the phase plots with the major difference being that.

the slope of the phase is steeper for a larger cylinder radius.

The field scattered by a conducting elliptical cylinder without a dielectric

coating is needed to construct difference data. The difference data is created by

subtracting the field scattered by the uncoated cylinder from the field sct—rttcrctl by

the coated cylinder, and is used for comparison of the results of the E-pulse

technique. The two elliptical metallic core plots are shown as typical results for the

TMz and the TEz cases in Figures 5.13 and 5.15. In each of these plots, 5, was set.

to 1.01 to achieve zero coating. The TEZ scattered electric field inagnit udc from the

elliptical metallic core have the lowest frequencies approaching zero and at higher

frequencies approaching a constant. For the TMz scattered electric field from the
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metallic core, the field at the lowest frequencies approaches infinity and the higher

frequencies approaching a constant. The magnitude difference shown in Figures 5.14

and 5.16 is typical of the difference data. The TMZ difference data no longer goes to

infinity as the frequency approaches zero. This result produces a time-domain

waveform that is closer to zero between reflections than is the original data. The

result of the difference data is converted to the time domain and the time domain

data has the E-pulse technique applied. The results of using difference data wit 11

the E—pulse technique are explored in the next chapter.
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Figure 5.1. TMz normalized field magnitude vs. frequency, a = .9 1n, a1 = .8 m, 212

= .7 m, with x as the major axis.
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Figure 5.7. TEz normalized field magnitude vs. frequency, a = .9 m, a1 = .8 m, ag

= .7 m, with x as the major axis.
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a2 = 1.3 m, with x as the major axis.
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Figure 5.15. TMz normalized field magnitude metallic elliptical cylinder vs. fre-
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5.2 Time Domain Results

Once the frequency domain data has been created, the FFT is applied to get

time domain data. The program WaveCalc developed by John Ross

(www.johnross.com) has the FFT needed to calculate time domain data. The first

step is to apply a gaussian-modulated cosine of 'r : 0.5 and centered at zero

frequency to weight the frequency domain data properly. The FFT is applied using

zero padding to 32768 points and the time domain data is calculated. The next step

is to normalize the data with the amplitude of the initial reflection set. equal to one,

and to time-shift the waveform so that the initial reflections occur at. the same time.

With this setup, the relative values of the various amplitudes can be compared. and

the time origin is set to be at the point where the incident wave is contacting the

dielectric material. The succession of pulses seen in the time domain data. is

explained as a series of multiple reflection as shown in Figures 5.18 and 5.19.

In Figures 5.20, 5.21, 5.22, and 5.23, the data shows the full ranges of time

obtain from the FFT for four combinations of orientation and polarization. The.

TMz case of Figure 5.20 with x as the major axis has the smallest amplitude of the

creeping wave for the configurations considered. The TMz case with y as the major

axis has a creeping wave that is larger than with x as the major axis. The creeping

wave arrives earlier and has a strong repetition lasting longer than the case where x

is the major axis. This requires that the data be computed to 800 nanoseconds in

order to avoid wrap-around in the FFT. Changing the polarization results in a

larger creeping wave for TEz with the x axis as the major axis compared with TMz

case with the same major axis. The largest creeping wave occurs with TEz

polarization with y as the major axis, as shown in Figure 5.23.

The next set of plots shows the effects of cylinder size on the reflection of the.

pulse. The TMz case with x as the major axis has the most similar time waveforms
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with the two larger outer radii cases almost matching, as shown in Figure 5.24.

Note that the creeping wave for the smallest arise returns earliest, and can be seen

in the plot. With y as the major axis for the TMz case, the curves are not. a. similar

as when x is major axis. For the TEz case with x as the major axis, the curves are

closer than in the TMz case with the same major axis; however, the creeping wave

starts to show up sooner in the smaller outer radii cases as shown in Figure 5.26.

The TEz case with y as the major axis shown in Figure 5.27, has a much greater

variance among various outer radii cases, comparably to the TMz case with the

same major axis. The creeping wave for the T132 cases arrives earlier in time than

for the TMz cases.

The planar surface case is the standard that is used in the E—pulse technique for

comparison with the various configurations of the cylinder. The field scattered

normally from a planar coated conductor with a dielectric thickness of 0.1 m and a.

dielectric constant of ET = 9 is computed using equation (4.1) and compared to the

field scattered from the coated cylinder as shown in Figures 5.28 to 5.39. The

amplitude of the flat case is normalized so that the amplitude of the initial reflection

is the same as in the cylinder case. With a = .9 111, all the plots have the creeping

wave appearing, since the time needed to travel around the cylinder is less than 40

nanoseconds. The TMz case with a = .9 m and x as the major axis has a smaller

relative amplitude compared with the flat case as shown in Figure 5.28. The TEz

case with x as the major axis and a = .9 m, as shown in Figure 5.34, is similar to

the TMz case, but the creeping wave is larger in amplitude. For the TMz and T137.-

cases with y as the major axis and a = .9 m relative amplitude of successive pulse is

larger than that of flat case as seen in Figures 5.31 and 5.37. For the TEz case, the

creeping wave is larger than that of TMz case. With a = 1.5 m, the creeping wave is

only appearing in the TEz case, since the traversal time needed for the TMz cz'tse is

longer than 40 nanoseconds. In Figures 5.29 and 5.35, the TEz and TMz cases with
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x as the major axis and a = 1.5 m, the relative amplitude is still smaller than that

of the flat case. For the T132 and TMz with y as the major axis and a 2: 1.5 m,

relative amplitude is larger than that of the flat case but smaller than when a. = .9

m as seen in Figures 5.32 and 5.38. When a = 2 m, the creeping wave takes longer

than 40 nanoseconds, so no creeping wave appears in the plot. For Figures 5.30 and

5.36. the TEz and TMz cases have a relative amplitude that is smaller than the [lat

case, but getting closer to the flat case than with the smaller radii. The TMz and

T1532 case with a = 2 m and y as the major axis is larger in amplitude than the flat.

case as shown in Figures 5.33 and 5.39. In all of these plots it is seen that as the

radius of curvature gets bigger, the field scattered from the cylinder gets closer to

the field reflected from the planar coated conductor. This suggests that it might be

possible to use the E—pulse for the flat case with cylinders of large radius.

A comparison of the difference between the placement of the major axis, as

shown in Figures 5.40 and 5.41, shows that the relative amplitude of the field with y

as the major axis is greater than that with x as the major axis. This occurs because

the y major axis has a greater radius of curvature than that of the x major axis. For

the TEz case, the creeping wave occurs simultaneously, with the y major axis

having a larger amplitude than the x major axis as shown in Figure 5.41. The

subtraction of the metallic core data from the frequency data results in the time

domain having a flatter response at the cost of adding a false peak as shown in

Figures 5.42, 5.43, 5.44, and 5.45. With both TMz cases, the subtracted case is

closer to the flat case than that non-subtracted case. For the TEz cases, subtracting

off the metallic core does result in the time domain waveform being flatter than the

non—subtracted case. However, the subtracted case results in a larger EDN number

than the non-subtracted case, with the results being explored in the next chapter.
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Figure 5.18. The electromagnetic pulse multiple reflections, x is the major axis of the
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Figure 5.34. TEz normalized amplitude vs. time comparison of flat with a = .9 1n

and with x as the major axis.
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and with y as the major axis.
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CHAPTER 6

E-pulse Results

In this chapter the E-pulse technique is used to measure the difference between

the field scattered by a coated elliptical conductor and a coated planar surface. The

E-pulse for the flat case calculated using the technique of Garrett Stenhohn‘s thesis

[8] is shown in Figure 6.1. The E—pulse of Figure 6.1 is convolved with data in

Figure 4.3 to calculate the waveform shown in Figure 6.2. As expected, after a time

TL, which is the sum of the E—pulse duration and the two-way transit time through

the coating, the convolution is almost zero. After the flat case waveform is

convolved with the E—pulse, the coated cylinder’s time domain data is convolved

with the E—pulse and the results are compared.

Figures 6.3 - 6.5 and 6.9 - 6.11 show the convolutions of the planar surface

E-pulse with the scattered field waveforms for coated ellipses with x as the major

axis. It is seen that the convolutions are in the late time, but not as flat as the.

convolution with the planar waveform. For the TMz and TEz cases with x as the.

major axis and a = .9 In, the response is small for the last 16 nanoseconds as seen in

Figures 6.3 and 6.9. As the outer radius increases to a = 1.5 in. the T137. and the

T.\=’Iz response become closer the flat case as seen in Figures 6.4 and 6.10. When a -:

2 in, the difference between the flat case and the TEz and Thlz cases with x as the.

major axis is even smaller as shown in Figures 6.5 and 6.11. Figures 6.6 - 6.8 and

93

 



6.12 - 6.14 shows similar results for the case where y is the major axis. When the y

axis is the major axis, the difference is sizable between the large and small cylinder

radii. For the TEz and TMz cases with y as the major axis and a = .9 In, the last

16 nanoseconds show large oscillations as seen in Figures 6.6 and 6.12. As the outer

radius increases to a = 1.5, the T132 and TMz cases become flatter, as seen in

Figures 6.7 and 6.13. When a = 2 m, the T1532 and the TMz cases in Figures (3.8 and

6.14 have only small oscillations occurring in the last 16 nanoseconds. As expected,

the convolution data becomes more flat as the cylinder radius increases, since larger

cylimler radii producing data that is closer to the flat case.

It was shown in Heike Vollmer’s thesis that subtracting the response of the

uncoated cylinder produces a smaller convolved waveform in the late time. The

convolution using subtracted cases shown in Figurcs 6.15 and 6.16 differ mostly in

the initial oscillation of the convolved plot. The standard convolution plot. has two

maximum and two minimums. while the difference convolution plot has four

maximums and three minimums. The last 15 nanoseconds have only a small

difference between the standard convolution plot and the difference convolution

plot. The reason that the difference is small compared to the difference in Heike

Vollmer’s thesis is that the E—pulse in Figure 6.1 is a DC E—pulse, while the li—pulse

used in Heike Vollmer’s thesis is a standard E—pulse. The DC E-pulse eliminates the

“tail” that is present in the fields scattered by the cylinders.

It is useful to quantify the value of the non-zero late-time convolved signal

using the signal energy. This done using the E—pulse discrimination number (EDN)

which is calculated from [11] using:

fi%+”¥aau
EDN: ((3.1)

T W ‘

foTee2(I(t)TLdtfL“ 1‘(t2()tdt

 

Here e(t) is the E-pulse waveform, r(t) is the time domain scattered field signal. and
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CC is the convolution of e(t) and r(t). Also, T6 is the E—pulse duration, TL is the

start of the convolution late—time, and W is the window width of the energy

calculation. The EDN that is calculated using data with different major axes is

plotted in Figures 6.17 and 6.18. To the find the EDN value, TL was set to 8.7

nanoseconds. The ending time, TL + W, is chosen at the point where the

oscillations fade out, but before the convolution with the creeping wave arrives. For

the x as the major axis, the EDN value of the non-subtracted TEz case is closest to

the flat case. However, for TMz case, the subtracted case is closer that the

non—subtracted case to the flat case. The y major axis case is also like the x major

axis case having the T132 non-subtracted case closest. to the flat. case. For the TMz y

major axis case, the subtracted and non-subtracted cases are very close to the. same.

value for each size of the outer radius. In all cases, the EDN becomes lI'Iwer as the

radius of the cylinder increases, since the response becomes closer to that of the

planar case.

Table 6.] shows the EDN values for the different polarizations and plact-‘ment‘ of

the major axis. Since the E—pulse used for this data is different than what was used

in [11], the results are not comparable.
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Figure 6.1. E—pulse for the planar coated conductor vs time.
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Figure 6.11. TEz convolved E—pulse vs. time, a = 2 m, a1 = 1.9 m, a2 = 1.8 m, with

x as the major axis.
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Figure 6.14. TEz convolved E—pulse vs. time, a = 2 m, a1 = 1.9 m, a2 = 1.8 m, with
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Table 6.1. EDN values calculated for flat case and for cylinders of various radii in

meters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

a= Flat TMz X TMz Y TEz X TEz Y

9.71E-07

0.5 3.42E-03 9.64E-03 7.69E-04 1.03E-02

0.7 1.77E-03 5.83E-03 5.23E-04 5.33E-03

0.9 1.00E-03 3.44E-03 3.59E-04 3.05E-03

1.1 6.45E-04 1.99E-03 3.00E-04 1.62E-03

1.3 4.61E-04 1.14E-03 2.38E-04 8.96E-04

1.5 3.46E-04 6.40E-04 1.98E-04 4.86E-04

1.7 2.74E-04 3.65E-04 1.67E-04 2.77E-04

2 2.01E-04 1.65E-04 1.33E-04 1.31E-04

a= TMz XD TMz YD TEz XD TEz YD

0.5 4.56E-03 9.50E-03 1.47E-03 1.09E-02

0.7 1.65E-03 5.70E-03 1.02E-03 5.88E-03

0.9 9.04E-04 3.37E-03 5.76E-04 3.44E-03

1.1 5.87E-04 1.94E-03 4.48E-04 1.86E-03

1.3 4.26E-04 1.11E-03 3.34E-04 1.11E-03

1.5 3.23E-04 6.26E-04 2.71E-04 5.64E-04

1.7 2.60E-04 3.58E-04 2.20E-04 4.60E-04

2 1.93E-04 1.63E-04 1.70E-04 1.52E-04   
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CHAPTER 7

Conclusion

This thesis has demonstrated that the E-pulse technique can be successfully

applied to a coated curve surface with a varying thickness and curvature using the

E-pulse of the coated planar surface. The E—pulse technique is applied to various

size radii of coated elliptic cylinders and the reflection from the surface is shown to

be a summation of damped sinusoids, which is the early—time natural response for

the coated curved surface. As the radius of the cylinder increases, the EDN value

from the cylinder become closer to the value of the coated planar surface. Amther

aspect of the increasing radius of the cylinder is the reduction of the effect of

changing the placement of the major axis or which polarization applied, TEz or

TMz; for the largest cylinder radius, the EDN values are similar for the four

different combinations of the polarization and placement of the major axis, since the

largest radius cylinders are closet to the planar case.

The variation of the scattered electric field for the various configurations of

polarization and the placement of the major axis has the largest effect. in the

frequency domain when the placement of the major axis is changed. In the time

domain data, changing y as the major axis produces larger multiple reflections than

in the planar case, while choosing x as the major axis produces smaller multiple

reflections. Thus, whether the thickness increases or decreases away from the
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contact point has a large effect on the time domain response. EDN values for the.

various configurations of polarization and major axis placement are larger for

smaller cylinder radii and become smaller as the cylinder radius increases. This is

because larger radius cylinders have surface curvature closer to the flat case.

The methods that check whether the scattered electric field equations have

been derived correctly, are matching of the expansion coefficients of the elliptical

case to the circular case and computing the echo width of the elliptical metallic  
core. The matching of the TEz and TMz expansion coefficients of the elliptical case

to the circular case shows that for the major and minor axes being equal, the

derived equations match a known equation. The echo width calculation shows that ”I

 M “
H
m
-
”
a
n
“
.

-.

the point matching technique is valid. y

Future work in applying the E—pulse technique to various surfaces includes

changing the shapes of the metallic core and the dielectric coating. Shapes may be

chosen that will be more realistic than the coated planar surface, a constant coated

curved surface, or the varying coated curved surface examined in this thesis.
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APPENDIX A

TMZ Case Source Code II

! TMZIQO

! FUNCTIONS: J 
! TMZ

l****************************************************************************

! PROGRAM: TMZ

! PURPOSE: Calculating Scattering Electric Field

I****************************************************************************

program TMZ

parameter (pi=3.14159265358979,e0=8.85418781762e—12, u0=1.25663706144e-6, 8:

nsize=10000, nf = 2000, er = 1.01, ur = 1, a = 2., nmax 2: 275, ul 2 20,nbig=1000)

implicit real*8 (a—h,o—z)

integer ipvt(1:nbig),flag,isecho,nf1,i,m,n,l

real*8 e,n0,phi,phi0,u,n1,n2,en,Xn(0:nmax), Yn(0:nmax),ka1, ka‘2,k(1:nf)

real*8 k0(lznf),f(1:nf),Rm(O:nmax),Phim(0:nmax)

complex*16 arg,an,Fpmn,r,e_jk0p,a2, diag(1:nbig),j

(romplex*16 bjka(0:nsize),byka(0:nsize),bjpka(0:nsize), bypka(0:nsize)

complex*16 bhka(0:nsize),bhpka(0:nsize),bjk0a(0:nsize), byk0a(01nsize)

complex*16 bjpk0a(0:nsize),bypkOa(O:nsize),bhk0a(0:nsize), bhpk0a(():nsize)
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complex*16 bjkrm(0:nsize),bykrm(0:nsize),bjpkrm(0:nsize), bypkrm(0:nsize)

complex*16 bhkrm(0:nsize),bhpkrm(0:nsize),A1(1:nbig,1:nbig),B1(1:nbig). Es('1:nf)

complex*16 Cn(1:nbig),W(1:nf)

j = (0.D0,1.D0)

phi = 0

u :2 ur * 110

e = er * e0

n0 2: sqrt(uO/eO)

111 = sqrt(u/e)

ka1=1.4 lX Axis

ka2=1.3 lY Axis

r = 1

e_jk0p == 1

n2 = n1 / n0

flag 2 1

isecho = 0

!Open the data file

open (ul, FILE=’temp10.txt’, STATUS=’OLD’)

!Creates N+1 points on an ellipse with axis lengths kal, ka2 in rectanglar and polar

lforms

dphi = pi/(nmax+1)

do i=0,nmax

phiO = i*dphi+dphi/2.

Xn(i) = kal * cos(phi0)

Yn(i) = ka2 * sin(phi0)

R1n(i) = sqrt(Xn(i) * Xn(i) + Yn(i) * Yn(i))

Phim(i) = atan2(Yn(i), Xn(i))
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enddo

if(isecho 2: 1) then lNumber of data

nfl = 153

elseif(ise('-ho 2: 2) then

nfl = 191

else

nfl : nf

endif lcreating the range of frequencies

do i=1,nf1

if(nf 2: 500) then

f(i) = i * 5.e6

elseif(nf :2 1000) then

f(i) = i * 2.5e6

elscif(nf =2 2000) then

f(i) = i * 1.25e6

endif

enddo

lcreating the wave numbers

do i=1, nfl

k(i) = 2 * pi * f(i) * sqrt(u*e)

k0(i) = 2 * pi * f(i) * sqrt(u0*e0)

enddo

do i=1, nfl

Es(i) = 0

lCreating the arguement of the bessel functions and calling the

lfunction that creates the In of the bessel function

arg = k(i) * a
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call logbjyh(arg,nmax,bjka,byka,bjpka,bypka,bhka,bhpka)

arg = k0(i) * a

call logbjyh(arg,nmax,bjk0a,byk0a,bjpkOa,bypk0a,bhk0a,bhpk0a)

lCreating the m x 11 matrix

do m=0, nmax

if(flag z: 4) then

arg = k0(i) * Rm(m) r.

else

arg = k(i) * Rm(m)

 
endif

I

call logbjyh(arg,nmax,bjkrm,bykrm,bjpkrm,bypkrm,bhkrm,bhpkrm) I:

Bl(m+1) = 0

do n=0, nmax

if(n == 0) then

en = 1

else

en 2 2

endif

an = exp(bjka(n) + bykrm(n)) - exp(bjkrm(n) + byka(n))

Fpmn = exp(bjpka(n) + bykrm(n)) - exp(bypka(n) + bjkrm(n))

if(fiag == 0) then ldivide by H2p(n) normalization

A1(m+1,n+1) = (n2 * an - Fpmn * exp(bhk0a(n) - bhpk0a.(n)))

* cos(Phim(m) * n)

B1(m+1) = B1(m+1) - en * (j ** (n)) * (n2 * an * exp(b_j}')k0a(n) &

- bhpk0a(n)) - Fpmn * exp(bjk0a(n) - bhpk0a(n))) * cos(Phim(m)* n)

else if(flag 2: 1) then ! Factor H2p(n) Normalization

A1(m+1,n+1) 2 (n2 * an - Fpmn * exp(bhk0a(n) - bhpkOa(n)))
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* cos(Phim(m) * n)

Bl(m+1) = Bl(m+1) - en * (j ** (n)) * (n2 * Frnn * 8;

exp(bjpk0a(n)) - Fpmn * exp(bjk0a(n))) * cos(Phim(m) * 11)

else if(flag == 2) then ldivide by H2p(nmax) normalization

A1(m+1,n+1) = (n2 * an * exp(bhpk0a(n) - bhpk0a(nmax)) - Fpmn * (Ki

exp(bhk0a(n) - bhpk0a(nmax)))*cos(Phim(m)*n)

Bl(m+1) = Bl(m+1)- en * (j ** (n)) * (n2 * an * exp(bjpk0a(n) 8;

— bhpk0a(nmax)) - Fpmn * exp(bjk0a(n) - bhpk0a(nmax))) * 85

cos(Phim(m) * 11)

else if(flag == 3) then 3110 normalization

A1(n1+l,n+1) = (n2 * an * exp(bhpk0a(n)) - Fpmn * exp(bhk0a(n)l)) kt

* cos(Phim(m) * n)

Bl(m+1) = Bl(m+l) - en * (j ** (n)) * (n2 * an * exp(bj};)k0e1(ll)) 8:.

- Fpmn * exp(bjk0a(n))) * cos(Phim(m) * 11)

else if(flag :2: 4) then lno normalization, no dielectric

A1(m+1,n+1) = exp(bhkrm(n)) * cos(Phim(m)*n)

B1(m+1) = Bl(m) - en * (j ** (n)) * exp(bjkrm(n))

* cos(Phim(m) * n)

endif

enddo

enddo

do 1:1, nmax+1

Cn(1) = 131(1)

end do

call DCOMPC (nbig,nma.x+1,A1,IPVT,DIAG)

call SOLVEC (nbig,nmax+1,A1,IPVT,Cn)

a2 = sqrt(2/(pi * k0(i) * r)) * e_jk0p * exp(pi *j / 4)
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do 120, nmax

if(flag :2 1) then

Es(i) = Es(i) + Cn(l—+—1) * exp(0 - bhpk0a(l)) * cos (1 * phi) * &

exp(l *j * Pi / 2)

else

Es(i) = Es(i) + Cn(l+1) * cos (1 * phi) * exp(l *j * Pi / 2)

endif

enddo

Es(i) = Es(i) * a2

if(isecho :2 1) then

VV(i) = 2 * pi * Es(i) * conjg(Es(i))

write(ul,*) real(k0(i)),real(W(i)),a.imag(W(i))

write(*,*) i,real(W(i)),aimag(W(i))

elseif(isecho 2: 2) then

W(i) = 2 * pi * Es(i) * conjg(Es(i)) / (pi * Rm(1))

write(u1,*) real(k0(i) * Rm(1)),real(W(i)),aimag(VV(i))

write(*,*) i,real(W(i)),aimag(W(i))

else

lwrite(u1,*) f(i)*1.d-9,real(Es(i)),airnag(Es(i))

write(u1,*) real(Es(i)),aimag(Es(i))

write(*,*) i,real(Es(i)),aimag(Es(i))

endif

enddo

!prints out the points on the ellipse

ldo i=0,nmax

lwrite(u1,*) Xn(i),Yn(i),Rm(i), Phim(i)

lwrite(*,*) Xn(i),Yn(i)
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lend do

close(u1)

end program TMZ

lCalculating the In of the bessel functions subroutine

logbjyh(arg,n,blogj,blogy,blogjp,blogyp,blogh,bloghp)

implicit real*8 (a-h,o—z)

parameter (nsize-—-10000,tcst=1.d-10,gamma=0.57721566490153, S;

pi=3.14159265358979)

complex* 16 arg,resn,res,prod,zsum,zsum1,zj0,zy0

complex* 16 blogj (02nsize) ,blogy(0:nsize) ,ratio(0:nsize)

complex*16 blogjp(0:nsize),blogyp(0:nsize)

complex* 16 blogh(0:nsize) ,bloghp(0:nsize)

complex*16 ysum,ysum1

complex*16 zj,yj1,yj

lcomputes the log of J0-Jn for complex arguments

lfirst compute J0 using ratios Jn-l/Jn and

lequation 9.1.44 from Abramowitz

lalso compute Y0 using ratios Jn—l/Jn and

lequation 9.1.89 from Abramowitz

zj = dcmplx(0.d0,1.d0)

zsum = 1.d0

ysum = 2.d0*(zlog(arg)+dlog(0.5d0)+gamma) /pi

prod = 1.d0

iyflag = 1

izflag = 1 i z u

10 i = i + 2

zsuml = zsum
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ysuml = ysum

call bratio(arg,i-1,rcs)

prod = prod*res

ratio(i—l) = res

call bratio(arg,i,res)

prod = prod*res

ratio(i) = res

i = i/2

if (izflag .cq. 1) then

zsum -—- zsum + 2.d0*(-1)**j/prod

if (abs(zsuml—zsum) /abs(zsum1) .lt. test) then

izflag=0

end if

end if

if (iyflag .eq. 1) then

ysum = ysum — 4.d0*(-1)**j/(prod*pi*j)

if (abs(ysuml-ysum)/abs(ysum1) .lt. test) then

iyflag=0

end if

end if

if ((izflag .eq. 0) .and. (izflag .eq. 0)) go to 20

zsum] = zsum

ysuml = ysum

go to 10

20 zj0 = cos(arg)/zsurn

zy0 = ysum*zj0

! finish computing ratios
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if (i .lt. n) then

do j==i+l,n

call bratio(arg.j.res)

ratio(j) = res

end do

end if

! now compute log(Jn)

blogj(0) : zlog(zj0)

do i=1,n

blogj(i) = blogj(i-1)-zlog(ratio(i))

end do

1 now compute JnYn and then log(Yn)

! using Wronskian 9.1.16 from Abramowitz

yjl = zj0*zy0

blogy(0) = zlog(zy0)

do i=1,n

yj = yj1/(ratio(i)*ratio(i))-(2.d0/(pi*arg))/ratio(i)

blogyfi) = zlog(yj)-b10si(i)

yil = yi

end do

! next compute log(Jn’) from recursion formula

blogjp(0) = dcmplx(0.d0,pi)+blogj(l)

do i=1,n

blogjp(i) = blogj(i)+zlog(ratio(i)-i/arg)

end do

! next compute log(Yn’) from recursion formula

blogyp(0) = dcmp1x(0.d0,pi)+blogy( 1)
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do i=1,n

blogyp(i) = -blogj(i)+zlog(exp(blogy(i-1)+ &

b10gj(i))-(i/arg)*eXP(b10gj(i)+b10gY(i)))

end do

! next compute log(Hn(2)) from cross product

blogh(O) = zlog(zj0-zj*zy0)

do i=1,n

blogh(i) = zlog(exp(blogj(i)+blogh(i—1))- &

2.d0/(zj*pi*arg)) - blogj(i-1)

end do

! lastly compute log(Hn(2)’) from cross product

bloghp(O) = zlog(exp(b10sip(0))-2i*eXI)(b10gyp(0)))

do i=1,n

bloghp(i) = zlog(exp(blogjp(i)+blogh(i))- &

(2-d0*zj)/(pi*ars)) - blosifi)

end do

! reduce phase by increments of 2pi

do i=0,n

call reducepi(blogj(i))

call reducepi(blogy(i))

call reducepi(blogjp(i))

call reducepi(blogyp(i))

call reducepi(blogh(i))

call reducepi(bloghp(i))

end do

return

end
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subroutine bratio(arg,n,res)

! computes the ratio of Jn-1(arg)/Jn(arg)

l to relative accuracy of test using

! continued fraction expansion of Lentz

! Reference: IEEE Trans on AP, vol. 48,

! no. 10, pp. 1528—1532, October 2000

! parameter (nmax=10000,test=1.d-14)

implicit real*8 (a-h,o-z)

complex* 16 arg,res,resl ,zvec(nmax)

nterms = 2

ii = -2

do i=1,nterms

ii 2 -ii

zvec(i) = ii*(n+i—1)/arg

end do

res = zvec(nterms)

do j=nterms-1,1,-1

res = 1.d0/res + zvec(j)

end do

resl = res

do k=nterms+1,nmax

ii 2 -ii

zvec(k) = ii*(n+k—1)/arg

res = zvec(k)

do j=k—1,1,—1

res = 1.d0/res + zvec(j)

end do
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diff = abs(res-res1) /abs(res1)

if (diff .lt. test) go to 100

resl = res

end do

write (*,*) ’ERROR*** maximum number of terms exceeded’

write (*,*) ’ in subroutine bratio’

100 return

end

subroutine reducepi(z)

! reduces imaginary part of complex number

implicit real*8 (a—h,o—z)

parameter (tpi=6.283185307179586477)

complex*16 z

x = dreal(z)

y = dimag(z)

10 if (y .gt. tpi) then

yzy-tpi

go to 10

end if

20 if (y .lt. -tpi) then

y=y+qn

go to 20

end if

z=dcmplx(x,y)

return

end

subroutine DCOMPC (nbig,N,A,IPVT,DIAG)
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! Decomposes matrix a to triangular form

! **** COMPLEX VERSION ****

! FROM: LINEAR ALGEBRA BY GILBERT STRANG

! parameter(nbig=101)

integer N,lPVT(nbig)

integer Nh~11,I,J,K,KP1,l\/l

complex*16 A(nbig,nbig),DIAG(nbig)

complex*16 P,T

IPVT(N) = 1

if (N :2 )GO TO 70

NMl = N-l

do 60 K=1,NMl

KPl = K+1

! find pivot p

M = K

do 10 I=KP1,N

10 if (abs(A(l,K)) g, abs(A(M,K))) M=I

IPVT(K) = M

if (M /= K) IPVT(N) = -IPVT(N)

P = A(M,K)

A(M,K) = A(K,K)

A(K,K) = P

DIAG(K) = P

if ( == 0.D0) go to 60

! compute multipliers

20 do 30 I=KP1,N 30 A(I,K) = -A(I,K)/P

l interchange rows and columns
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do 50 J=KP1,N

T = A(M,J)

A(M,Il) = A(K,.l)

A(K,J) = T

if (T :2 0.D0) go to 50

do 40 I=KP1,N

A(I,J) = A(I,J) + A(I,K)*T

40 continue

50 continue

60 continue

70 DIAG(N) = A(N,N)*IPVT(N)

return end

subroutine SOLVEC (nbig,N,A,IPVT,B)

! Solves matrix eqn AX=B with a decomposed by dcompc

! parameter(nbig=101)

integer N,lPVT(nbig)

integer NM1,K,KB,KP1,KM1,M,I

complex*16 A(nbig,nbig),B(nbig)

complex*16 S

! forward elimination

if (N =2 1) go to 30

NMl = N—l

do 10 K=1,Nl\/Il

KPl = K+1

M = IPVT(K)

S = B(M)

B(M) = B(K)
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B(K) = S

do 10 I=KP1,N

10 B(I) = B(I) + A(I,K)*S

! back substitution

do 20 KB=1,NMl

KMl = N-KB

K = KM1+1

B(K) = B(K)/A(KIK)

S = -B(K)

do 20 I=1,KMl

20 B(I) = B(I) + A(I,K)*S

30 8(1) = B(1)/A(1,1)

return

end
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APPENDIX B

TEZ Case Source Code

E
L
F
-
1
-
I
“
.
H
i
.
.
.

! TEZ.f90

j****************************************************************************  

I
m
_
.

! PROGRAM: TEZ

! PURPOSE: Calculating the scattered electric field of TEZ case

!****************************************************************************

program TEZ

parameter (pi=3.14159265358979,e0=8.85418781762e-12, 11021.256637061440-6, 8;

nsize=10000, nf = 2000, er = 9., ur = 1, a = 2., nmax = 275, 111 = 20.nbig21000)

implicit real*8 (a—h,o—z)

integer ipvt(lznbig),flag,isccho,nf1,i,m,n,1

real*8 e,n0,phi,phi0,u,n1,n2,en,Xn(0:nmax),Yn(0:nmax),kal,ka2,k(1:nf)

real*8 k0(1:nf),f(1:nf),Rm(0:nmax),Phim(0:nmax)

complex*16 arg,an,Fpmn,r,e_jk0p,a2,diag(1:nbig),j,W(1:nf)

complex*16 bjka(0:nsize),byka(0:nsize),bjpka(0:nsize),bypka(0:nsize)

complex* 16 bhka(0:nsize) ,bhpka(0:nsize) ,bjk0a(0:nsize), byk0a(0:nsize)

complex*16 bjpk0a(0:nsize),bypk0a(0:nsize),bhk0a(0:nsize), bhpk0a(0znsize)

complex*16 bjkrm(0:nsize),bykrm(0:nsize),bjpkrm(0:nsize), bypkrm(0:nsize)

complex*16 bhkrm(0:nsize),bhpkrm(0:nsize),A1(1:nbig.1:nbig), Bl(l:nbig),Es(1:nf)
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complex*16 F1mn,F1pmn,G,Gp, one, two, three, four,Cn(1:nbig)

j : (O.D0.1.D0)

phi :'0

u = ur * 110

e = er * 90

110 = sqrt(uO/eO)

111 = sqrt(u/c) r-

kal=1.9 lX Axis

k212=1.95 lY Axis

r = 1

e_jk0p = 1  !r_
-

—
-
r
-
"

.
“
l
'

112 = 110 / n1

flag = 1

isecho = 0

! Open the data file

open (111, FILE=’ten1p10.txt’, STATUS=’OLD’)

lCreates N+1 points on an ellipse with axis lengths kal, ka2 in rcctanglar and polar

lforms

dphi 2 pi/(nmax+1)

do i=0,nmax

phiO = i*dphi+dphi/2.

Xn(i) = kal * cos(phiO)

Yn(i) = ka2 * sin(phi0)

Rm(i) = sqrt(Xn(i) * Xn(i) + Yn(i) * Yn(i))

Phim(i) = atan2(Yn(i), Xn(i))

enddo

if(isecho :2 ) then lNumber of data
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nfl = 153

elseif(isecho :2 ) then

nfl = 191

else

nfl = nf

endif !creating the range of frequencies

do i=1,nf1

if(nf == 500) then

f(i) = i * 5.e6

elseif(nf :2 1000) then

f(i) = i * 2.5e6

elseif(nf == 2000) then

f(i) = i * 1.25e6

endif

enddo ! creating the wave numbers

do i=1, nfl

k(i) = 2 * pi * f(i) * sqrt(u*e)

k0(i) = 2 * pi * f(i) * sqrt(u0*e0)

enddo

do i=1, nfl

Es(i) = O

! Creating the argument of the bessel functions and calling the

! function that creates the In of the bessel function

arg = k(i) * a

call logbjyh(arg,nmax,bjka,byka,bjpka,bypka,bhka,bhpka)

arg = k0(i) * a

call logbjyh(arg,nmax,bjk0a,byk0a,bjpkOa,bypk0a,bhk0a,bhpkl)a)
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! Creating the m x n matrix

do m=0, nmax

if(flag == ' ) then

arg = k0(i) * Rm(m)

else

arg = k(i) * Rm(m)

endif

call logl)jyh(arg,nmax,bjkrm,bykrm,bjpkrnnbypkrm,bhkrm,hhpkrni)

B1(m+1) = 0

do 1120, nmax

if(n =2 ) then

en 2 1

else

en 2 2

endif

an = exp(bjka(n) + bykrm(n)) - exp(bjkrm(n) + byka(n))

Fmm = exp(bjpka(n) + bykrm(n)) - exp(bypka(n) + bjkrm(n))

Flinn = exp(bjka(n) + bypkrm(n)) - exp(bjpkrm(n) + byka(n))

F1mm = exp(bjpka(n) + bypkrm(n)) - exp(bjpkrm(n) + hyphen)

G = (kaZ-kal) * cos(Phim(m)) * sin(Phim(m)) / sqrt(kal**‘2 * &.

(sin(Phim(m)))**2 + ka2**2 * (cos(Phim(m)))**2)

Gp = (kal * sin(Phim(m))*sin(Phim(m)) + ka‘2 * cos(Phim(m))* &

cos(Phim(m))) /sqrt(ka1**2 * (sin(Phim(m)))**2 + ka2**2 *&

(008(Phim(m)))**2)

if(flag == 0) then ldividc by H2p(n) normalization

lNot done because the TMZ version did not work.

else if(flag 2: ) then ! Factor H2p(n) Normalization
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one = (G/r)*(112*an - Fpmn*exp(bhk0a(n) - bhpk0a(n)))*n*

sin(n*Phim(m))

two = Gp*k(i)*(n2*F1mn - F1pmn*exp(bhk0a(n) - 1:)hpk0a(n)))*

cos(n*Phim(m))

three 2 (G/r)*(n2*an*exp(bjpkOa(n)) - Fpmn*exp(bjk0a(n)))*n*

sin(Phim(m)*n)

four 2 Gp*k(i)*(n2*F1mn*exp(bjpk0a(n)) - F1pmn*exp(bjk()a(n)))*

cos(Phim(m)*n)

A1(m+1,n+1) = one + two

Bl(m+1) = Bl(m+1) - en * (j ** (n)) * (four + three)

else if(flag 2: 2) then ldivide by H2p(nmax) normalization

!Not done because the TMz version did not work.

else if(flag == 3) then lno normalization

one = (G/r)*(n2*an*exp(bhpkOa(n)) - Fpmn*exp(bhk0a(n)))*n*

sin(n*Phim(m))

two = Gp*k(i)*(n2*F1mn*exp(bhpk0a(n)) - F1pmn*exp(blil<()a(n)))*

cos(n*Phim(m))

three = (G/r)*(n2*an*exp(bjpk0a(n)) - Fpmn*exp(bjk0a(n)))*n*

sin(Phim(m)*n)

four = Gp*k(i)*(n2*F1mn*exp(bjpkOa(n)) - Flpmn*exp(bjk()a(n)))*

cos(Phim(m)*n)

A1(m+1,n+l) = one + two

Bl(m+1) = Bl(m+1) - en * (j ** (n)) * (four + three)

else if(flag :2 4) then lno normalization, no dielectric

lNot done because comparison was not needed.

endif

enddo
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enddo

do 1:1, nmax—H

Cn(l) = Bl(l)

end do

call DCOMPC (nbig,nmax+1,A1,IPVT,DIAG)

call SOLVEC (nbig,nmax+1,A1,IPVT,Cn)

a2 = sqrt(2/(pi * k0(i) * r)) * e_jk0p * exp(pi *j / 4)

do 120, nmax

if([lag :: 1) then

Es(i) = Es(i) + Cn(l+1) * exp(O - bhpkOa(l)) * cos (I * phi) * exp(l*j*pi/2)

else

Es(i) = Es(i) + Cn(l+1) * cos (1 * phi) * exp(l *j * pi / 2)

endif

end do

Es(i) = Es(i) * a2

if(isecho :2 ) then

W(i) :- 2 * pi * Es(i) * conjg(Es(i))

write(u1,*) real(k0(i)),real(W(i)),aimag(W(i))

write(*,*) i,real(W(i)),aimag(W(i))

elseif(isecho == ) then

W(i) = 2 * pi * Es(i) * conjg(Es(i)) / (pi * Rm(1))

write(u1,*) real(k0(i) * Rm(1)),real(W(i)),aimag(W(i))

write(*,*) i,real(W(i)),aimag(W(i))

else

lwrite(nl,*) f(i)*1.d—9,real(Es(i)),aimag(Es(i))

write(u1,*) real(Es(i)),aimag(Es(i))

write(*,*) i,real(Es(i)),aimag(Es(i))
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endif

enddo

!prints out the points on the ellipse

!(lo i=0,nmax

! write(ul,*) Xn(i),Yn(i),Rm(i), Phim(i)

! write(*,*) Xn(i),Yn(i)

lend do

close( u 1)

end program TEZ

! Calculating the In of the bessel functions

subroutine logbjyh(arg,n,blogj,blogy,blogjp,blogyp,blogh,bloghp)

implicit real*8 (a—h,o—z)

parameter (nsize=10000,test=1.d-10,gamma=0.57721566490153, &

pi=3.14159265358979)

complex*16 arg,resn,res,prod,zsum,zsum1,zj0,zy0

complex* 16 blogj (O:nsize) ,blogy(0:nsize) ,ratio(0:nsize)

complex* 16 blogj p(0:nsize) ,blogyp(0:nsize)

complex* 16 blogh(0:nsize) ,bloghp(0:nsize)

complex*16 ysum,ysum1

complex*16 zj,yj1,yj

lcomputes the log of JO-Jn for complex arguments

llirst compute J0 using ratios Jn-l/Jn and

lequation 9.1.44 from Abramowitz

!also compute YO using ratios Jn-l/Jn and

lequation 9.1.89 from Abramowitz

zj = dcmplx(0.d0,1.d0)

zsum == 1.d0
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ysum = 2.d0*(zlog(arg)+dlog(0.5d0)+gamma) /pi

prod = 1.dO

iyflag=1

izflagzl

i=0

10i=i+2

zsuml = zsum

ysuml = ysum

call bratio(arg,i—1,res)

prod = prod*res

ratio(i—l) = res

call bratio(arg,i,res)

prod = prod*res

ratio(i) = res

j = i/2

if (izflag .eq. 1) then

zsum = zsum + 2.d0*(-1)**j /prod

if (abs(zsuml-zsum)/abs(zsum1) .lt. test) then

izflag=0

end if

end if

if (iyflag .eq. 1) then

ysum = ysum - 4.d0*(—1)**j/(prod*pi*j)

if (abs(ysuml-ysum)/abs(ysum1) .lt. test) then

iyflagzO

end if

end if
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if ((izflag .eq. 0) .and. (izflag .eq. 0)) go to 20

zsuml = zsum

ysuml = ysum

go to 10

2O sz = cos(arg)/zsum

zyO = ysum’ksz

! finish computing ratios

if (i .lt. n) then

do j=i+1.n

call bratio(arg,j,res)

ratio(j) = res

end do

end if

! now compute log(Jn)

blogi(0) = zlog(zj0)

(lo i=1,n

blogj(i) = blogj(i-1)—zlog(ratio(i))

end (10

! now compute JnYn and then log(Yn)

! using Wronskian 9.1.16 from Abramowitz

yjl = zj0*zy0

blogy(0) = zlog(zy0)

do i=1,n

yj = yj1/(ratio(i)*ratio(i))-(2.d0/(pi*arg))/ratio(i)

blogyfi) = 7log(yjtbloai(i)

.le = yj

end do
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! next compute log(Jn’) from recursion formula

blogjp(0) = dcmplx(0.d0,pi)+blogj(1)

do i=1,n

blogjp(i) = blogj(i)+zlog(ratio(i)-i/arg)

end do

! next compute log(Yn’) from recursion formula

blogyp(O) = dcmplx(0.d0,pi)+blogy(1)

do i=1.n

blogyp(i) = -blogj(i)+zlog(exp(blogy(i-1)+ &

bloai(i))-(i/arg)*exp(b10sj(i)+b10gy(i)))

end do

! next compute log(Hn(2)) from cross product

blogh(O) = zlog(zj0-zj*zy0)

do i=1,n

blogh(i) = zlog(exp(blogj(i)+blogh(i-1))- &

2.dO/(zj*pi*arg)) - blogj(i-1)

end do

! lastly compute log(Hn(2)’) from cross product

bloghp(O) = zlog(exp(b10gip(0))-2i*exp(b10gyp(0)))

do i=1,n

bloghp(i) = zlog(exp(blogjp(i)+blogh(i))- &

(2-d0*zj)/(pi*arg)) - b10gi(i)

end do

! reduce phase by increments of 2pi

do i=0,n

call reducepi(blogj(i))

call reducepi(blogy(i))
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call reducepi ( blogj p(i))

call reducepi(blogyp( i) )

call reducepi(blogh(i))

call reducepi(bloghp(i))

end do

return

end

subroutine bratio(arg,n,res)

! computes the ratio of Jn-1(arg) /Jn(arg)

! to relative accuracy of test using

! continued fraction expansion of Lentz

! Reference: IEEE Trans on AP, vol. 48,

! no. 10, pp. 1528-1532, October 2000

parameter (nmax=10000,test=1.d-14)

implicit real*8 (a-h,o—z)

complex* 16 arg,res,res1,zvec(nmax)

nterms = 2

ii = —2

do i=1,nterms

ii =2 -ii

zvec(i) = ii*(n+i~1)/arg

end do

res : zvec(nterms)

do j=nterms-1,1,-1

res = 1.d0/res + zvec(j)

end do

resl :2 res
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do k=nter1ns+1,nmax

ii 2 -ii

zvec(k) = ii*(n+k—1)/arg

res = zvec(k)

do j=k-l,1,—1

res = 1.d()/res + zvec(j)

end do

diff = abs(res—resl ) / abs(res 1)

if (dill .lt. test) go to 100

resl = res

end do

write (*,*) ’ERROR*** maximum number of terms exceeded’

write (*,*) ’ in subroutine bratio’

100 return

end

subroutine reducepi(z)

! reduces imaginary part of complex number

implicit real*8 (a-h,o—z)

parameter (tpi=6.28318530717958647?)

complex*16 z

x = dreal(z)

y = dimag(z)

10 if (y .gt. tpi) then y=y-tpi go to 10 end if 20 if (y .lt. -tpi) then

y=y+tpi

go to 20

end if

z=dcmplx(x,y)
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return

end

subroutine DCOMPC (nbig,N,A,IPVT,DIAG)

lDecomposes matrix a to triangular form

!**** COMPLEX VERSION ****

!FROM: LINEAR ALGEBRA BY GILBERT STRANG

!paramcter(nbig=101)

integer N,IPVT(nbig)

integer NMl,I,J,K,KPl,M

complex*16 A(nbig,nbig),DIAG(nbig)

complex*16 P,T

IPVT(N) = 1

if (N =2 )GO TO 70

NMl = N-l

do 60 K=1,NMl

KPI = K+1

! find pivot p

M = K

do 10 I=KP1,N

10 if (abs(A(I,K)) > abs(A(M,K))) M=I

IPVT(K) = M

if (M /= K) IPVT(N) = -IPVT(N)

P = A(M,K)

A(M,K) = A(K,K)

A(K,K) = P

DIAG(K) = P

if (P 2: ODO) go to 60
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! compute multipliers

20 do 30 I=KP1,N

30 A(I,K) = -A(I,K)/P

! interchange rows and columns

do 50 J=KP1,N

T = A(M,J)

A(M,J) = A(K.J)

A(K,J) = T

if (T 2: ODO) go to 50

do 40 I=KP1,N

A(I,J) = A(I,J) + A(I,K)*T

40 continue

50 continue

60 continue

70 DIAG(N) = A(N,N)*IPVT(N)

return

end

subroutine SOLVEC (nbig,N,A,IPVT,B)

!Solves matrix eqn AX=B with a decomposed by dcompc

!parameter(nbig=101)

integer N,lPVT(nbig)

integer NM1,K,KB,KP1,Kl\/II,M,I

complex*16 A(nbig,nbig),B(nbig)

complex*16 S

!forward elimination

if (N == 1) go to 30

NMl = N-l
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do 10 K=l,NMl

KPl = K+1

M = IPVT(K)

S = B(M)

B(M) = B(K)

B(K) = S

do 10 I=KP1,N

10 B(I) = B(I) + A(I,K)*S

!back substitution

do 20 KB=1,NM1

KMl = N-KB

K = KMl+1

B(K) = B(K)/A(KaK)

S = —B(K)

do 20 I=1,KMl

20 B(I) = B(I) + A(I,K)*S

30 B(1) 2 B(l)/A(1,1)

return

end
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APPENDIX C

Flat Case Source Code

! FLAT.f90

! FUNCTIONS:

! FLAT

|****************************************************************************

! PROGRAM: FLAT ! PURPOSE: Calculate the scattering field of the flat case

!****************************************************************************

program FLAT

parameter (pi=3.14159265358979, eO=8.85418781762e—12, u0=1.256637()6144e-6, 8;

nsize=10000, nf = 2000, er = 9., ur = 1, a = 1.1, nmax = 275, ul 2 20,nbig:1()t)0)

complex*16 P, R(1:nf), j, Gamma

real*8 e,u, d, f(lznf), k(l:nf),n0,n1

d = .1

j = (0.D0,1.DO)

u 2 ur * uO

e 2 er * e0

n0 2 sqrt(uO/eO) HI = sqrt(u/e)

lOpen the data file open (ul, FILE=’te1np10.txt’, STA'FUSz’OLD')

nfl = nf
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!creating the range of frequencies

do i=1,nf1

if(nf 2: 500) then

f(i) = i * 5.e6

elseif(nf == 2000) then

f(i) = i * 1.25e6

elseif(nf =2 2500) then

f(i) = i * 1.e6

endif

enddo

!creating the wave numbers do i=1, nfl

k(i) = 2 * pi * f(i) * sqrt(u*e)

enddo

do i=1, nfl

P = exp(-j*k(i)*d)

Gamma = (n1 - n0) / (n1 + n0)

R(i) = (Gamma - P ** 2)/(1 - Gamma * (P) ** 2)

write(u1,*) f(i)*l.d-9,real(R(i)),aimag(R(i))

!write(u1,*) real(R(i)),aimag(R(i))

write(*,*) i,real(R(i)),aimag(R(i))

enddo

close(u1)

end program FLAT
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