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ABSTRACT

SEWER PIPELINE CONDITION PREDICTION USING

NEURAL NETWORK MODELS

By

Guruprakash Kulandaivel

With an aging underground infrastructure, ever-encroaching population areas and

increasing economic pressures, the burden on the municipal agencies to efficiently

prioritize and maintain the rapidly deteriorating underground utilities is increasing.

Accurate forecasting of pipeline performance is essential for prioritizing and risk

management of the underground infrastructure. The essential function of a pipeline asset

management system is to consider the pipeline maintenance and improvement needs and

to arrive at the program of optimal rehabilitation, replacement, and maintenance. Hence,

the development of a pipeline condition prediction model will be indispensable to the

concerned authorities in prioritizing the care and rehabilitation of pipelines, and in

pipeline asset planning and management. This research developed an Artificial Neural

Network (ANN) model for predicting the condition of sewer pipes based on the historic

condition assessment data. The neural network model was trained and tested with

acquired field data. The developed model is intended to aid in identifying the distressed

segments of the overall sewer pipeline network using a set of known input values. These

can then be directed toward assessing and prioritizing the maintenance measures needed

to prevent accelerated future distress and eventual failure of sewer pipes.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND OVERVIEW

The underground infrastructure systems span thousands of miles and form a significant

part of the total US infrastructure. Sewer systems form one of the most capital intensive

infrastructure systems in the US and they are aging, overused, mismanaged and

neglected. Many of these systems are deteriorating and becoming more vulnerable to

catastrophic failures often resulting in costly and disruptive replacements. In spite of

recent increases in public infrastructure investments, municipal infrastructure is

deteriorating faster than it is being renewed. Study after study from the US.

Environmental Protection Agency to the American Society of Civil Engineers to the

American Water Works Association and the Water Infrastructure Network are estimating

from $150 billion to $2 trillion is needed during the next 20 years. The American Society

of Civil Engineers’ 2003 Report Card for America ’s Infiastructure gave wastewater

infrastructure a “D,” estimating an annual $12 billion Shortfall in funding needs

nationally. According to the American Water Works Association (AWWA), by the year

2020 the average utility will spend three times as much on infrastructure replacement as it

does today. The sewer infrastructure of the US must be assessed and upgraded to meet

the requirements of the EPA Sanitary Sewer Overflow Policy and the guidelines of the

Government Accounting Standards Board Statement 34 (GASB 34).



Factors such as population growth, tighter health and environmental requirements,

poor quality control leading to inferior installations, inadequate inspection and

maintenance, and lack of consistency and uniformity in design, construction and

operation practices have impacted adversely on municipal infrastructure. North

America’s water and wastewater pipelines (some of which are more than a century old)

are under daily assault from corrosion damage, moving soils, changing temperatures,

rainfall/snowfall, in-service stress and the continuous process of structural deterioration.

At the same time, an increased burden on infrastructure due to significant growth in some

sectors tends to quicken the ageing process while increasing the social and monetary cost

of service disruptions due to pipeline failures. These environmental and operating stresses

inevitably lead to a number of pipeline failures throughout the year. Increasing concerns

over health, safety and the environment have contributed significantly to raising the

visibility of pipeline risk management. The rapidly deteriorating old pipes and the

expansion of present network due to increasing demands require the municipalities to

prioritize the renewal, replacement and new installations of pipelines. However,

predicting and monitoring the condition ofpipelines generally remains a difficult task.

Maintaining and even enhancing wastewater collection systems is crucial in order

to have dependable transfer of wastewater to treatment facilities. When sewer systems

deteriorate, water from excessive infiltration and inflow (I/I) enters the system, resulting

in a decreased capacity of the sewer system as well as treatment facilities, increased

hydraulic loading at collection and treatment facilities, and consequently increased

capital and operation/maintenance costs. Therefore, it is necessary to maintain the sewer

system in a healthy condition.



Traditionally, municipalities have addressed the maintenance and operation of

sewer systems with a crisis-based approach. This practice results in the inefficient use of

limited funds, causing more frequent sewer failures which end in difficult and costly

rehabilitation or renewal (WEF-ASCE 1994). The cost of sewer failure, i.e., replacement

costs, disruptions, adverse publicity, and health and safety problems, could be

significantly higher than the cost of rehabilitation and hydraulic upgrading. The major

reason for reactive approaches to sewer management is the sewer systems are most often

overlooked because they are underground infrastructure facilities whose existing

conditions are not readily visible to users. Thus, the actual problems caused by

deterioration are not evident until major failures occur. Another issue in sewer

management is the fact that the condition of these underground assets is generally not

fully documented. While condition assessment is very important in developing a

systematic procedure in effective sewer management, most cities do not have complete

documentation of sewer condition data in their management information systems. The

lack of data on the past and current condition of sewers hinders the system-wide

assessment of existing sewers, the development of prediction models, and the evaluation

of the effects of rehabilitation on sewer condition.

For underground sewer systems, without a predictive approach to

rehabilitation/renewal needs, condition assessment activities will be unfocussed and may

overlook high-risk assets. Some utilities try to avoid this by electing to conduct frequent

system-wide inspections at an unnecessarily high cost.

There have been efforts in the recent past years to develop a coordinated asset

management system to collect, analyze, and store massive quantities of pipeline related



data. Development of these new asset management systems open the door for many

advanced technologies and resources to be applied for state-of-the-art information

storage, retrieval, and management processes. The municipalities are looking beyond the

traditional reactive strategies to proactive maintenance of pipeline infrastructure, to

deliver the primary goals of a utility provider, which are reliable delivery of clean safe

water and wastewater services. Central to meeting these goals is the need for a robust

asset management plan that prioritizes the care, maintenance and improvement of

pipeline infrastructure, whilst taking into account the social and financial risk

consequences ofpoor pipeline performance and failures. Rather than relying on a reactive

approach to pipeline repair and rehabilitation, it is important that municipalities develop

procedures that anticipate the need for repair. A systematic approach for the

determination of deterioration and obsolescence Of sewer systems is necessary to fully

gauge the status of these underground systems. This involves routine and systematic

sewer Structural and hydraulic condition assessments, establishment of a standard

condition rating system, and developing and updating prediction models for sewer

condition. Predictive modeling permits effective budgeting of inspection and

rehabilitation costs. Figure 1.1 depicts a typical asset management structure.
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Figure 1.1 - Pipeline Asset Management Structure (McDonald et al. 2001)

In order to identify future improvement needs and perform technical-economic

analysis for each alternative, application of deterioration and/or condition prediction

models are required. Traditionally, age and material have been the only factors used in

prioritizing inspections. Infrastructure is widely distributed throughout a large

geographical area making it difficult to track and maintain, and resulting in significant

risks to the public and the environment in the event of failure. This traditional approach is

not sufficient and does not take into account a deeper understanding of the variables

leading to failure, or of the impact of failures on the community and the environment. TO

be fully effective, the pipeline asset management system must have performance models

that combine the rate of deterioration and change in the actual pipeline condition



influenced by local factors such as in-service loading, pipe-soil interactions, corrosion

damage, pipe strength and resistance to stresses, depth of cover, soil corrosivity,

temperature, etc. Two aspects of information on pipeline performance are used in asset

management decision-making process: information on current condition, which is

Obtained through field inspection, and information on future performance, which is

Obtained using deterioration models and forecasting tools. There are various types of

condition assessment tools available to evaluate the present state of pipelines. The

development of a model that can predict the condition of pipelines at any given time

could be beneficially used to identify the distressed sections of the network. This indeed

can help in prioritizing the pipeline sections for further scrutiny and to implement

performance improvement measures. Up to now, physical deterioration models and

statistical models have been used to identify probabilistic condition and performance of

pipelines.

1.2 PROBLEM STATEMENT

1.2.1 STATE OF THE SANITARY SEWER

A sewer is an underground conduit or duct formed of pipes or other structures used for

the conveyance of wastewater. Sanitary sewer collection systems are an extensive and

vital part of the national infrastructure. In the United States, the average age of sewers

was reported to be 47 years, and the maximum age of greater than 100 years (Malik et al.

1997). Although major part of the deterioration is attributed to aging, there are other

factors like structural defects, hydraulic overloading, corrosion, etc. that accelerate the

rate of deterioration of pipes. Current sewer-condition information available to the asset



manager is often subjective, resulting in handicapped financial justification of

rehabilitation work, except for gross defects (Campbell et al. 1995). The knowledge of

how long a sewer pipe from an intact condition would degrade to cracking with

infiltration, and then to a more severe distress condition such as collapse, will allow

utility managers to make optimum decisions (Kathula 2001).

A major problem in assessing the condition of sewers is the lack of detailed

knowledge about pipeline degradation process. Being covered with soil, the condition of

buried pipelines cannot be directly and easily monitored. Moreover, their overall

condition changes so slowly that it appears as if they do not change at all. Conditions

assessment is the principle objective of any pipeline system inspection program. Optical

assessment of the physical attribute of the pipe must be made to establish the best

strategy for maintaining and rehabilitating the underground infrastructure. These physical

attributes include (1) inventory data defining quantities, types, location of system

components, and (2) condition data describing the physical state of a facility or

component, e.g., cracking, deterioration, leakage, loss of strength, etc. (Iseley et al.

1997). Sewer system evaluation surveys (SSES) are the standard for gathering

information about the condition of sewers. These surveys include activities such as closed

circuit television (CCTV) filming, flow monitoring, and manhole inspections. Performing

an SSES for the entire sewer network is an expensive and time-consuming process. The

budget constraints of most utilities allow only a portion of their sewer systems to be

investigated. Therefore it is important to prioritize these inspections to those sewers that

are likely to be the candidates for rehabilitation or repair so that the system is efficiently

managed as illustrated in Figure 1.2.
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Figure 1.2 - Conceptual Sewer Management Plan

 



It has been estimated that only 30-40% of local authorities have reasonably

satisfactory records, and 15-30% of all public sewers are not recorded at all (Read and

Vickridge 1997). According to a survey conducted by Malik et al. 1997, only 45% of the

cities use some kind of subjective criteria for repairing sewers in poor condition, 21% of

the cities base their decisions for the future upon the historical data, and with only 24% of

the cities making an attempt to predict the fiiture condition of the different sections of the

system for the repair and maintenance of their sewer systems. So the municipal agencies

tend to wait until there is a failure to take care of the network, after the damage is done.

Moreover, the distressed segments of the pipelines exert hydraulic stress on other parts of

the system, resulting in an expanding web of failures. This is not an ideal situation and

results in various ill effects and damages to society and the environment. Therefore, there

exists a tremendous need for developing prediction models that can give optimized

solutions for the decision-makers in order to provide uninterrupted service and to extend

sewer life.

In order to predict when the sections of the pipeline network need to be inspected

and maintained, it is necessary to predict the rate of those measurers for which criteria

have been established. A pipeline condition prediction model will provide base inputs for

pipeline inspection, maintenance and rehabilitation planning. Knowledge of pipeline

condition and performance characteristics will serve helpful in the following:

0 To inspect and rehabilitate the right pipe at the right time,

0 Determination Of the action year in which a pipe section deteriorates to the

minimum acceptable level,



- Forecasting of the future funding requirement to maintain the pipeline network at

an acceptable level,

0 Preventing major failures and risks associated with it,

o Prioritizing the segments of the network and better allocation of budget and

rehabilitation project phasing strategies.

Traditionally, statistical and physical models have been used to assess pipeline

condition, but they have been limited in their application. The use of neural network

based models to complement current models can be beneficial to predict dynamically the

condition of sewers using historic data that is already available to the municipal agencies.

This type of information will enable the municipal authorities to make long-term strategic

decisions regarding pipeline maintenance, asset planning and operational management

using locally available data.

1.3 OBJECTIVES AND METHODOLOGY

Although there have been tremendous advancements in infrastructure management in the

past few years the impact of pipe degradation and failures on the financial and service

level requirements of utilities remains significant. To pre-empt these failures and reduce

their associated costs, planning models need to be developed to prioritize maintenance

and rehabilitation in pipeline networks (Burn et al. 2001).

The main objective of this research is to develop a pipeline condition prediction

model based on neural network algorithm, which can identify pipelines at risk of

degradation so that inspections can be prioritized. This model may aid the municipal

agencies in averting the inherent risks involved with pipeline failures by prioritizing the

10



parts Of the network that needs immediate action and optimize their limited inspection

and maintenance budget by applying resources where they are most effective. The

research is focused on developing a prediction model that will learn on historical

information to identify deterioration trends and predict future performance. The

developed model will provide adequate knowledge of condition of the assets to answer

the following questions that the municipal agencies often seek for:

I What will be the probable condition of a specific pipe — and the entire network?

I Which are the most vulnerable pipes in the network?

I How should the inspection projects be ranked?

I What is the future investments need?

I What is the optimal management of the underground sewer infrastructure asset?

An effective condition prediction model will allow the utility manager to optimize

the capital and maintenance budgets by identifying the parts of the network that are

critical and initiating further assessment of those segments that are potential candidates

for repair or renewal.

The expected cost of failure tends to increase with time due to the increase in the

probability of failure. On the other hand, the expected cost of intervention as well as

inspection and condition assessment tends to decrease over time due to discounting

(Kleiner 2001). The total cost thus typically forms a convex curve over time with t* being

the optimal rehabilitation time as illustrated in Figure 1.3.
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Figure 1.3 - Optimal Renewal of Sewer Pipe with Low Cost of Failure

(Makar et al. 2000)

For the purpose of this thesis, Sewer System Evaluation Survey (SSES) data from

the city of Atlanta is considered for model development. The City of Atlanta is faced with

the typical problem of rapidly deteriorating sewer systems like most other cities in the

US. The city has developed a comprehensive plan to inspect, repair and where necessary,

replace its sanitary sewers. The city is currently able to inspect about 304 miles of a

possible 2,200 miles of local sewers for cracks, collapses and blockages as a part of their

SSET efforts. After extensive investigation and documentation of defects is completed, a

rehabilitation plan will be developed, identifying necessary sewer repairs and

replacement.
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The specific objectives of this research are:

0 to review the existing models used to predict pipeline performance and failure

characteristics,

0 to review the City of Atlanta’s sewer pipeline condition assessment database to

identify useful pipeline performance data sources for deterioration model

development,

0 to develop a neural network model for condition prediction based on the

historical information, and

o to evaluate the performance of the neural network model with test data.

The research methodology for this thesis is represented in Figure 1.4.
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1.4 SCOPE OF THE THESIS

The scope of this thesis is limited to the use of data from the City of Atlanta to develop

prediction models for their sewer systems using artificial neural networks. The

development of this model and its accuracy will rely heavily on the quality and quantity

of their historical and recorded data, condition assessment records and the extent of

detailed records of their underground sewer assets.

1.5 ORGANIZATION OF THE THESIS

Chapter 1 presents the background, nature of the problem and the objectives of this

thesis. Chapters 2 and 3 present an elaborate review of the current prediction models,

pipe failure modes and failure mechanisms, pipeline condition assessment techniques and

condition ratings, overview of artificial neural networks and their application in pipeline

condition prediction and the proposed methodology of the thesis. Chapter 4 presents the

data collection, assimilation and the modeling methodology. Chapter 5 presents the

neural network model development and summary Of results. Chapter 6 presents the thesis

summary, conclusions and recommendations for future work. The bibliography chapter

contains all the references and other related resources.
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CHAPTER 2

LITERATURE REVIEW

This chapter presents the background of sewer systems and builds upon it to describe the

motivation for this thesis. A detailed literature review is presented in this chapter that

covers pipeline management trends, review of the modes of pipeline failure, deterioration

models for pipes and a comprehensive analysis of the parameters that affect the

performance of pipelines. The mode and frequency of failure is dependent on the type of

pipe and the effect of environmental conditions. Each of these variables is discussed in

detail. The following flow chart gives an outline for this chapter.
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2.1 TYPES OF PIPES FOR SEWER APPLICATIONS

There are several different pipe materials available for sewer systems, each with a unique

characteristic used in different conditions. Until 1850, sewers were generally constructed

using brickwork. Over time, because of aging, these sewers have suffered extensive

structural damage. Although some sewer systems still contain brick sewers, very few are

left. In the middle Of the nineteenth century, more and more clay pipes were used to build

the sewer systems. Concrete pipes were introduced during the early part of the twentieth



century. Modern sewers include polyvinyl chloride, fiberglass, high-density polyethylene,

ductile iron, steel and reinforced concrete. In general, pipe materials are grouped into

three categories:

- Metallics

. Cement-based

. Clay

. Plastics

The four different pipe materials that are most commonly used for sewer

applications are ductile iron, concrete, plastic, and vitrified clay. Pipe material selection

considerations include trench conditions (geologic conditions), corrosion, temperature,

safety requirements, and cost. Key pipe characteristics are corrosion resistance (interior

and exterior), the scouring factor, leak tightness, and the hydraulic characteristics.

The stability of deteriorated sewers depends on the materials used for the

construction of the sewer pipe. Rigid pipe materials are usually designed to resist vertical

loading on their own, while brick sewers and flexible pipe materials require side support

from the surrounding soil. Older sewers were typically constructed of vitrified clay,

brick, or concrete. Presently, new materials are used such as plastic, ductile iron, steel,

reinforced concrete, and reinforced fiberglass. As shown in the figures below, different

pipe materials will fail by different mechanisms.

2.1.1 METALLIC PIPES

The most common types of metallic pipes are cast iron, ductile iron and steel pipes. The

first official record of Cast Iron pipe installation was in 1455 in Siegerland, Germany.
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Cast Iron pipe was introduced to the United States as early as 1817, when it was installed

in the Philadelphia water system. Today, more than 565 utilities (in the United States and

Canada) have had Cast Iron mains in continuous service for more than 100 years.

Additionally, at least 16 utilities have had Cast Iron mains in continuous service for more

than 150 years.

Ductile iron pipe (DIP) is an outgrowth of the cast iron pipe industry.

Improvements in the metallurgy of cast iron in the 1940's increased the strength of cast

iron pipe and added ductility, an ability to slightly deform without cracking. Ductile Iron

not only retains all of Cast Iron's attractive qualities, such as machinability and corrosion

resistance, but also provides additional strength, toughness, and ductility. Although its

chemical properties are similar to those of Cast Iron, Ductile Iron incorporates significant

casting refinements, additional metallurgical processes, and superior quality control

(DIPRA 2004). Corrosion control is achieved by using polyethylene encasement.

Steelpipes are versatile and has economic advantages Since it is stronger and thus

lighter for a given strength. In circumstances in which they are commonly used, they may

be susceptible to failure due to high external pressure, since their relatively thin walls

buckle easily. Steel pipes may also be more likely to be structurally damaged by

corrosion than iron due to their relatively thin walls. Under favorable conditions, the life

of steel pipes may exceed 50 years (McGhee 1991).

The main cause of deterioration in buried metallic pipelines is galvanic corrosion.

Soils of varying physical and chemical composition create galvanic potential differences

between different areas of the pipe. Under suitable soil electrolytic conditions, anodic and

cathodic areas are created, which leads to galvanic corrosion. Buried iron pipes are
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vulnerable to anaerobic corrosion by sulfur-reducing bacteria under specific ground

conditions, whilst grey cast iron pipes are susceptible to a unique form of galvanic

corrosion, in which selective leaching of iron leaves a relatively weak graphitic network

in the pipe wall. This process is commonly referred to as graphitisation.

For example, in metallic pipes, failure can occur solely by corrosion (Figure 2.1),

or by corrosion combined with excessive loading (Figure 2.2).

 

Figure 2.1 - Single Corrosion Pit at the Outer Surface of Grey Cast Iron Pipe

 

Figure 2.2 - Combined Corrosion/Structural Failure of Grey Cast Iron Pipe: (left) Blown

Section; (right) Circumferential Fracture lhgtp://www.cmit.csiro.au/research>
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2.1.2 CEMENT-BASED PIPES

Concrete pipes are manufactured in the form of reinforced concrete pipe (RCP), pre-

stressed concrete cylinder pipe (PCCP) or asbestos cement pipe (ACP). Generally, they

are manufactured by wrapping reinforced wire (high-tensile-strength wire in the case of

prestressed concrete) about a steel cylinder which has been lined with centrifugally

placed cement mortar. For prestressed concrete pipes, the wire is wound tightly

(prestressed) to prestress the core and is covered with an outer layer of concrete. In the

case of non-prestressed concrete, a similar pipe is manufactured without prestressing the

wire. In rare cases, where leakage is not important, plain concrete pipe may be used. A

reasonable estimate of concrete pipe service life is 75 years (McGhee 1991).

Amongst the advantages of concrete pipes, the following may be included: low

cost of maintenance, less corrosion if buried in ordinary soil or transporting non-reactive

wastes, expansion joints not normally required, and no specially skilled labor force is

required for its installation. However, it exhibits a certain tendency to leak due to porosity

and shrinkage cracks, has a low corrosion resistance in the presence of acids or alkalis,

and is generally difficult to repair (Babbitt et al. 1962).

Asbestos cement pipe is a related product. It is composed of a mixture of Portland

cement and asbestos fiber which is built up on a rotating steel mandrel and then

compacted with steel pressure rollers into a dense homogenous structure in which a

strong bond is effected between the cement and the asbestos fibers (Babbit et al. 1962,

McGhee 1991). Amongst its advantages may be mentioned the good corrosion resistance,

its light weight, and ease for making connections. Some disadvantages are the low
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flexural resistance of the pipe as a whole, low chemical resistance against petroleum

products, and may be easily damaged by excavating machinery.

Similar failure modes occur in cement-based pipes like other pipe types, but the

mechanism of degradation clearly differs (Figures 2.3 and 2.4).

 

Figure 2.3 - Combined Degradation/Structural Failure of Asbestos Cement Pipe

(Longitudinal Fracture)

Asbestos-cement and concrete pipes are subject to deterioration due to various

chemical processes that either leach out the cement material or penetrate the concrete to

form products that weaken the cement matrix. Presence Of inorganic or organic acids,

alkalis or sulphates in the soil is directly responsible for concrete corrosion. In reinforced

and pre-stressed concrete, low pH values in the soil may lower the pH of the cement

mortar to a point where corrosion of the prestressing or reinforcing wire will occur,

resulting in substantial weakening of the pipe (Dom et al. 1996).
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Figure 2.4 - Combined Degradation/Structural Failure Of Asbestos Cement Pipe

(Complex Fracture) (http://www.cmit.csiro.au/researchi

2.1.3 CLAY PIPES

Vitrified clay pipes are composed of crushed and blended clay that are formed into pipes,

then dried and fired in a succession of temperatures. The final firing gives the pipes a

glassy finish. Vitrified clay pipes have been used for hundreds of years and are strong,

resistant to chemical corrosion, internal abrasion, and external chemical attack. They are

also heat resistant. These pipes have an increased risk of failure when mortar is used in

joints because mortar is more susceptible to chemical attack than the clay. Other types of

joints are more chemically stable. It has been shown that the thermal expansion of

vitrified clay pipes less than many other types (such as DIP and PVC).

 

Figure 2.5 - Cracked Vitrified Clay Pipe (NASSCO 1996)
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2.1.4 PLASTIC PIPES

Plastics are, in general, synthetic resins of high molecular weight, polymerized from

simple compounds by heat, pressure, and catalysis. Plastics used in the manufacture of

pipes belong principally to polyvinyl chloride (PVC) and cellulose acetate types.

Plastic pipes are cost effective and also have other advantages such as immunity

to corrosion due to chemicals commonly found in the vicinity of buried sewer systems,

freedom from damage due to freezing of fluids inside them, ease of bending and joining,

adequate strength, resistance to shock, resilience and flexibility. PVC pipes do not

deteriorate under attack from bacteria and do not serve as a nutrient to micro-organisms,

macro-organisms of fungi. Amongst their disadvantages are a low resistance to heat,

inability to conduct electrical current (which can constitute as an advantage too, by

making PVC pipes immune to electrolytic corrosion), high coefficient of expansion, and

diminishing tensile resistance with an increase of temperature (Uni-Bell 1984).

Plastic pipes function effectively at temperatures between 32° to 90° F. with an

extreme temperature drop (below freezing, for example) PVC pipes loose impact strength

and become more brittle. Conversely, with an increase in temperature, PVC pipes loose

tensile strength and stiffness (Uni-Bell 1984).

Polyethylene (PE) is a thermoplastic material produced from the polymerization

of ethylene. PE plastic pipe is manufactured by extrusion in sizes ranging from 2" to 63".

PE is available in rolled coils of various lengths or in straight lengths up to 40 feet.

Generally small diameters are coiled and large diameters (>6" OD) are in straight lengths.

Whilst plastic pipes (such as PVC, polyethylene, etc.) are relatively 'young', their

failure mechanisms must also be understood to forecast future performance. As shown in
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Figures 2.6 and 2.7, in the absence Of any obvious signs of degradation, fracture failure

can still occur in the field. In general, failures in plastic pipes can be split into three

categories; plastic collapse, buckling and brittle fracture. Since the design pressures for

plastic pipes are based on the yield strength Of the pipe material, plastic collapse is rarely

seen in practice. Buckling failures, which result in local inversion Of the pipe

circumference, occur under high external loads when the ratio between pipe wall

thickness and diameter is below a critical value. As with plastic collapse, good design

practice limits the number of buckling failures observed in service. The majority of

failures reported in plastic pipes occur by brittle fracture.

 

Figure 2.6 - Brittle Fracture of a PVC Pipe Figure 2.7 - Rupture Of a Polyethylene Pipe

TO account for these various failure modes, pipeline deterioration models have to

be developed to estimate future deterioration rates.

2.2 SEWER CONDITION ASSESSMENT

A reliable condition assessment of a sewer system is essential for its maintenance and for

decisions regarding its rehabilitation. The City Of Atlanta has currently inspected
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approximately about 304 miles of the total 2,200 miles of sewer system using various

condition assessment techniques. Considering the quantity and length of the sewer pipes,

inspection work is often intensive, requiring the collection of voluminous information. It

is therefore critical that the inspections are performed on the sections of sewer pipes that

are considered to be in the worst potential condition. The model developed in this

research will attempt to identify sewer groups in the network that are most vulnerable to

deterioration to facilitate prioritization for physical inspections. There are various

condition assessment techniques that are used for sewer inspection and can been

classified into three different groups (Makar 1999). The first group, including

conventional CCTV and advanced SSETTM examinations, are techniques that determine

the condition of the inside surface of the sewer. The second group exarrrines the overall

condition of the sewer wall and, in some cases, the soil around the pipe. Finally, the third

group detects specific problems within or behind the sewer wall. Table 2.1 summarizes

the different condition assessment techniques and their utilization.

Table 2.1 - Current Sewer Inspection Techniques — A Comparison (Makar 1999)

 

  

Technique Where to use What will be found

 

Inspection of the Inner Surface

 

Surface cracks, visible

Empty pipes, partially filled deformation, missing

Conventional CCTV pipes above the water bricks, some erosion, visual

surface indications of

exfiltration/infiltration

 

Pipes with less than 50 m.

 

 
Stationary CCTV distance between manholes As CCTV

. . Pipes where deformation is Better deformation

Light line CCTV measurements + CCTV
an issue

results  
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Technique Where to use What will be found

 

Computer Assisted CCTV

As CCTV, currently small

diameter pipes only

As CCTV, but with

quantitative measurements

of damage

 

SSETTM
Pipes of diameter ranging

from 8 - 24 inches

As CCTV, but with higher

sophistication and accuracy.

Can measure deformation

of pipes

 

Laser Scanning
Partially filled pipes, empty

pipes

Surface cracks,

deformations, missing

bricks, erosion losses

 

Ultrasound  Flooded pipes, partially

filled pipes, empty pipes  
Deformation measurements;

erosion losses; brick

damage

 

Inspection of Pipe Structure and Bedding Condition

 

Microdeflections Rigid sewer pipes Overall mechanical strength

 

Natural Vibrations Empty sewer pipes

Combined pipe and soil

condition, regions of

cracking, regions of

Exfiltration

 

Impact Echo

 
Larger diameter, rigid

sewers

 
Combined pipe and soil

condition, regions of wall

cracking, regions of

exfiltration

 

Inspection of Bedding

 

 Ground Penetrating Radar

 

Inside empty or partially

filled pipes

 

Voids and Objects behind

pipe walls, wall

delaminations, changes in

water content in bedding

material

 

2.3 STRUCTURAL CONDITION RATING OF SEWERS

The condition rating which follows sewer evaluation is used to objectively determine the

current condition of sewers. A rating system that minimizes subjective evaluation and is
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repeatable can be effectively used to predict future condition. It is acknowledged that it

does not make sense to develop a sophisticated condition rating system if the

deterioration process of a sewer structure is not fully understood, as is the case when new

methodologies or materials are involved. However, comprehensive and objective rating

systems can be developed for the most common sewer pipe materials and when adequate

historical performance records are available.

Most rating systems are based on assessment of structural conditions with little

consideration of hydraulics and Ill condition, because hydraulic and M conditions cannot

be easily evaluated. They require hydraulic modeling and Simulations (which include

comprehensive input data) and in-depth investigations of M, which can be expensive.

In the area of sewer management, there is no standard procedure to develop a

condition rating of sewer pipes. While a standard procedure for developing a

comprehensive sewer condition rating does not exist, several methods of sewer condition

rating (for brick and concrete/clay sewers) found in the literature have been reviewed in

order to gauge the status of condition assessment methodologies for sewer systems.

Water Research Center (WRc). The Sewer Rehabilitation Manual (WRc 1983) discusses

the development of the structural rating system for concrete and brick sewers in the UK.

The rating system involves three levels of structural condition. Each structural defect

found in a concrete pipe is numerically scored based on the severity of the defect and the

number of defects recorded in a pipe. These defects include: Open joint, displaced joint,

cracked, fractured, broken, deformed, and collapsed. For brick sewers, the defects are:

mortar loss, displaced bricks, missing bricks, surface damage, fractured, and dropped
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invert. The inspector is provided with pictorial descriptions to determine the type and

severity of each defect.

For example, each “circumferential crack” found in a sewer pipe is assigned a

score of 1. “Longitudinal” and “Multiple” cracks are given scores of 2 and 5 (per crack),

respectively. A Single collapsed pipe is scored 165, etc.

The scores of all defects found in a pipe are then compiled to calculate “the peak

score” accumulated in any one-meter (3.18-fi) length. Additionally, “the total score” and

“the mean score” for the entire length of sewer from upstream to downstream manholes

are calculated. Based on these three scores, sewers are rated as grade 1, 2, or 3, where

grade 3 represents the worst structural condition.

By considering the condition of the entire length of a sewer line from upstream to

downstream manholes, sewer lines Of different total lengths but similar scores are not

equally rated. Consequently, shorter lines with more serious defects will not be rated

below a longer line with less serious defects.

The pipeline assessment codes were developed in the United States by National

Association of Sewer Service Company (NASSCO) with the collaboration of Water

Research Center (WRc). Table 2.2 describes the various structural condition distress

terms proposed by NASSCO. Few of the types of defects encountered in sewer pipes are

shown in Figure 2.8 below.

Table 2.2 - Sewer Pipe Structural Condition Evaluation (NASSCO 1996)

 

Pipe Condition V Description

 

Complete loss of structural integrity of the pipe due to

Collapsed pipe fracturing and collapse of the pipe walls. Most of cross-

section area is lost to flow.
 

 
Structural cracking with

Deflection  Pipe wall displacement plus cracks described by:
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Pipe Condition Description

Longitudinal Defect runs approximately along axis of sewer.

Circumferential Defect runs approximately at right angles to the axis of sewer.

Multiple Combination of both longitudinal and circumferential defects.

Slab—out A large hole in the sewer wall with pieces missing.

Sag The pipeline invert drops below the downstream invert.

Structural cracking Sewer wall cracked longitudinally, circumferentially, or

without deflection multiple, but not displaced.

 

 

 

Cracked joints The spigot and /or bell of a pipe is cracked or broken

Open Joints Adjacent pipes are longitudinally displaced at the joint

Holes A piece of a pipe wall or joint is missing.
 

Root intrusion

Tree or plant roots have entered the sewer through an

opening in the pipe wall or joint
 

Protruding joint material
Joint sealing material or gasket is displaced into the sewer

from its original location
 

Corrosion

Condition 1

Condition 2

Condition 3

When the cementitious pipe material shows evidence Of

deterioration illustrated by the following stages:

The pipe wall surface shows irregular smoothness, i.e. wall

aggregate is exposed

The reinforcing steel is exposed.

The reinforcing steel is gone and /or the pipe wall is no longer

intact revealing the surrounding soil.
 

Pulled joint
Adjacent pipe joints are deflected beyond allowable

tolerances so that the joint is Open.
 

Protruding lateral
A service outlet or pipe section that protrudes or extends into

the sewer varying in magnitude.
 

Vertical displacement The spigot of the pipe has dropped below the normal joint

Closure
  Depth of cover  The amount of soil covering the top of the pipe.
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Figure 2.8 — Various Defects during the Life of Sewer Pipe (NASSCO 1996)
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Water Environment Federation - American Society of Civil Engineers. WEF-ASCE

(1994) suggests assigning an importance factor to each condition evaluation criteria for

the structural condition of brick and concrete/clay sewers. The structural condition of

brick sewers involves the following aspects: sags, vertical deflection and cracks, missing

bricks, lateral deflections, root intrusion, missing mortar, loose bricks, protruding lateral,

sofi mortar, and depth of cover. Concrete and clay sewer structural condition evaluation

criteria include: collapsed pipe, structural cracking with deflection (longitudinal,

circumferential, or both), slab-out sag, structural cracking without deflection, cracked

joints, Open joints, holes, root intrusion, protruding joint material, corrosion, pulled joint,

protruding lateral, vertical displacement, and depth of cover.

The sewer degradation is broadly classified into five degradation sequences. All

of the sequences started with an intact pipe and progressively degraded starting with the

distinct sequences of ( 1) cracks, (2) open joints, (3) displaced joints, (4) corrosion, and

(5) deformation, and ended in collapse. In each degradation sequence, there are various

severity levels of each distress before it reaches the collapse from the initial intact

condition. Table 2.3 contains a brief description of the degradation sequences.

Table 2.3 - Structural Distress Conditions Included in the Evaluation of Sewer Segments

 

 

 

 

 

 

(WEF 1994)

Structural Condition Description

Intact Best possible sewer condition

Separation of pipe materials that runs longitudinally
Crack . . .

or crrcumferentrally along of the sewer pipe

Open Joint Adjacent pipes are longitudinally displaced at the

jornts

Displaced Joint The pipe is not concentric with the adjacent pipe

. The cementious pipe material that shows evidence of
Corrosron    deterioration from chemical action. The pipe wall
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Structural Condition Description

surface shows irregular smoothness and aggregate on

the cementitious material in the pipe is exposed

 

 

Deformation Original cross-section ofthe sewer is altered

 

There is complete loss of structural integrity of the

Collapse pipe. Most Of the cross-sectional area is lost.     

Depending on the extent of the condition throughout a given sewer reach, a

“minor,” “moderate,” or “severe” multiplier factor, such as 1, 2, or 3, respectively, is

used. The overall numerical structural condition is then determined by calculating the

total score. Based on how likely it is the sewer will collapse, the internal condition rating

factor for overall structural condition can be determined. Sewers in rating 5 are in the

most serious condition. This rating can be adjusted based on external factors such as soil

types, surcharge, water table and fluctuation, and traffic condition.

Kathula (2000). Kathula (2000) proposed a structural condition rating system which

involves twenty levels of structural conditions. The various levels of sewer conditions are

based on the degree and the combination of structural defects commonly found in sewer

pipes. The structural defects considered in the evaluation include: intact (or no defects),

cracked, open joint, displaced joints, corrosion, holes, deformation, and collapse. Each

defect is then rated into three severity levels: low, medium, or high. The twenty

conditions of defects in rating structural conditions are listed in Table 2.4.
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Table 2.4 - Condition for Various Levels of Distress in Sewer Pipes (Kathula 2000)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Condition Distress and Level

Number

1 Intact

2 Tight Crack (TC)

3 Open Crack + Infiltration Light (OC+IL)

4 Open Joint Light + Infiltration Light (OJL+IL)

5 Multiple Open Crack + Infiltration Light (MOC+IL)

6 Open Joint Medium + Infiltration Light (OJM+IL)

7 Corrosion Light (CL)

8 Multiple Open Crack + Small number of Holes (MOC+H1)

9 Open Joint Medium + Infiltration Medium (OJM+IM)

10 Displaced Joint Medium + Infiltration Medium (DJM+IM)

11 Corrosion Medium (CM)

12 Open Joint Severe + Infiltration Medium (OJS+IM)

13 Displaced Joint Large + Infiltration Medium (DJL+IM)

14 Deformation Low (DL)

15 Corrosion Severe (CS)

16 Open Joint Severe + Infiltration Severe (OJS+IS)

l7 Displaced Joint Large + Infiltration Severe (DJL+IS)

18 Corrosion Severe + Large number of Holes (CS+H2)

19 Deformation Severe (DS)

20 Collapse (X)  
 

Each distress type has one, two, or three levels of severity, based upon the impact

that the defect has on the continued service of the sewer pipe. The three levels of severity

are I
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1. Low severity level: Functionality is slightly impaired. The defect produces

little or no effect on the surrounding environment. Preemptive work in these

sewers would not be cost effective unless numerous failures occur in a short

pipe length.

2. Medium severity level: Functionality is significantly impaired. Repair of these

failures has a significant but not critically high cost.

3. High severity level: Functionality is seriously impaired. The cost of failure

under this condition would be high and affect the surrounding environment to

a great extent.

The following Table 2.5 shows the five degradation sequences and their severity

levels used by Kathula 2001 based on the degree and the combination of structural

defects found commonly in sewer pipe segments.

Table 2.5 - Five Degradation Sequences and their Severity Levels with Abbreviations

 

 

 

(Kathula 2001)

Degradation Sequence Severity Levels with their abbreviations

Cracks Tight Crack (TC)

Open Crack (OC)

 

Multiple Open Crack (MOC)

 

Multiple Open Crack + Small no. of Holes (MOC+H1)

 

 

 

 

Open Joints Small Open Joints (SOJ)

Medium Open Joints (MOJ)

Large Open Joints (LOJ)

Displaced Joints Small Displaced Joints (SDJ)

 

Medium Displaced Joints (MDJ)

 

Large Displaced Joints (LDJ)

 

 
Corrosion Light Corrosion (LC)

 

Medium Corrosion (MC)

 

Severe Corrosion (SC) 
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Degradation Sequence Severity Levels with their abbreviations

 

Severe Corrosion + Large no. of Holes (SC+H2)

 

 

Deformation Light Deformation (LD)

 

Medium Deformation (MD) 
 

The defects can then be classified, for example as:

1 — Excellent condition, no defects present

2 — Good condition, only low risk defects present.

3 — Fair condition, pipe contains medium severity defects.

4 — Poor condition, pipe contains high severity defects and collapse is imminent.

A

I EXCELLENT

 

 

 

 

 

5 VERY POOR 

2 GOOD §\\\\\\\

3 FAHI i ?\\\

4 POOR i ?\\

-
-
-
-
-
-
h
-
-
-
-
d

 

 

V

0% Percentage Effective Life Elapsed 100%

Figure 2.9 — Typical Condition Deterioration Curve

Mehle et al. (2001) proposed a modified Vani Kathula condition coding system

incorporated with a condition rating system that is represented in Table 2.6.
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Table 2.6 - Condition Coding System Incorporating with a Condition Rating System

(Mehle et al. 2001)
 

 

 

 

 

 

 

 

Defects Excellent Good Fair Poor Failure

Cracks Intact TC, OC MOC MOC+H1 Collapse

Open Joints Intact SOJ MOJ LOJ Collapse

Displace Joints Intact SDJ MDJ LDJ Collapse

Corrosion Intact --------------- LC, MC SC, SC+H2 Collapse

Deformation Intact ------------------------------ LD, MD Collapse

Rating 1 2 3 4 5     
 

City of Atlanta Defect Coding System. The city of Atlanta has developed their own

defect coding and condition making system based on NASSCO and We standards. A

detailed list of the defect coding is given in Appendix A.

Once the condition rating has been assigned to a particular pipeline, the worst

defect present is used as an indication of the overall sewer condition rating. Although the

pipeline may not be in poor condition throughout its length, the worst condition along the

length dictates its risk of collapse.

2.4 PIPELINE DETERIORATION

Pipeline systems require constant maintenance and can become impaired for a number of

reasons. A comprehensive study performed by We (Serpente 1993) concludes that the

concept of measuring the “rate of deterioration” of sewers is unrealistic, but deterioration

is more influenced by random events in a sewer life span (a storm or an excavation

nearby) and severe defects do not always lead immediately to collapse. Sewer pipes are

37

 



prone to certain types of failures based on the type of material, physical design, age,

functionality and external and internal environment. Distress and collapse Of a sewer are

the result of the complex interactions of various mechanisms that occur within and

around the pipeline (Kathula 2000). The impact of the deterioration of the sewer system

depends upon its size, complexity, topography and service. While it is almost impossible

to predict when a sewer will collapse, it is feasible to estimate whether a sewer has

deteriorated sufficiently for collapse to be likely. The mechanisms of pipeline

deterioration are:

I Structural — cracks, fractures, breaks, etc.

I Hydraulic — insufficient capacity, flooding, debris, encrustation and grease

I Operational problems -— roots, blockages debris, maintenance procedures, etc.

Pipelines can have defects classified as built-in or long term (Najafi 1995). Built-

in defects are generated during pipeline construction and represent conditions that affect

the performance of pipes after installation. Long-term defects are caused as a result of the

deterioration process. Construction-related or built-in defects can be Offsets in alignment,

joints loosely fitted or loosened by vibrations, flattened or ovaled pipes, sags due to

settlement, stresses caused by dynamic loadings of backfill, removal of trench sheathing

and pilings, overburden compaction, etc. Joints can experience the construction defects,

such as pinching of rubber gaskets, misalignment of gaskets, and squeezing due to

“overshoving” of one pipe into another. A structural failure can be a crack, break, split,

cavitation of the pipe opening, or separation at a joint (Najafi 1995).

Examples of causes of long-term pipeline deterioration are sulfate corrosion due

to sewer gases, excessive hydraulic flows, structural failures, leaks and infiltrations, and
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erosions. Bacteria in the wastewater stream convert the sulfates to hydrogen sulfides

which, when released into the sewer air space, become oxidized into sulfuric acid. The

sulphuric acid is reactive to some pipe materials making it to corrode. Severe corrosion

can jeopardize the structural integrity of a pipe or manhole and lead to collapse. Any

condition of pipeline deterioration which occurs over an extended time period and is not a

result of construction practice is considered a long-term deterioration. Proper

maintenance of pipelines is essential to keep the pipeline in good health.

The state of the surrounding soil is of fundamental importance in assessing the

structural condition of a sewer. The main factors that affect the rate of ground loss

include sewer defect size, hydraulic conditions (water table, and frequency and

magnitude of surcharge), and soil properties (cohesive or non-cohesive soil). Severe

defects (larger than 4 inches), high water table (above sewer level), frequent and high

magnitude of hydraulic surcharge, and soil types (silts, silty fine sands, and fine sands)

can have serious effects on ground loss. Loss of Side support will allow the side of the

pipe to move outward when loaded vertically, and collapse will likely once the pipe

deformation exceeds 10%. Uneven loading of pipes due to joint displacement also

accelerates the pipe deterioration process.

2.4.1 MODES OF PIPELINE DETERIORATION

Pipeline deterioration is a complex process; many factors are responsible for their

deterioration and failure — structural, hydraulic, environmental, functional, age of the

sewer, quality of initial construction, etc. The intensity of structural failures depends on

the Size of the defect, soil type, interior hydraulic regime, ground-water level and
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fluctuation, corrosion, method of construction, and loading on the sewer. Hydraulic

failures are caused by infiltration and inflow (l/l) problems. These I/I problems reduce

the planned hydraulic capacity of sewers, increasing the potential for collapse. Figure

2.10 illustrates various kinds of internal and external forces acting on a pipe. The modes

of failure depend on the type Of environment and pipeline material.
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Figure 2.10 - Pipeline Interactions Leading to Failure (O’Day et al. 1986)

Pipe breakage is likely to occur when the environmental and operational stresses

act upon pipes whose structural integrity has been compromised by corrosion,

degradation, inadequate installation or manufacturing defects. Pipe breakage types were

classified by O’Day et al. (1986) into three categories: (1) circumferential breaks, caused

by longitudinal stresses; (2) longitudinal breaks, caused by transverse stresses (hoop

stresses); and (3) split bell, caused by transverse stresses on the pipe joint. This

classification may be complemented by an additional breakage type i.e., holes due to

corrosion. Circumferential breaks due to longitudinal stress are typically the result of one

or more of the following occurrences: (1) thermal contraction (due to low temperature of
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the sewage in the pipe and the pipe surroundings) acting on a restrained pipe, (2) bending

stress (beam failure) due to soil differential movement (especially clayey soils) or large

voids in the bedding near the pipe (resulting from leaks, I/I, etc.), (3) inadequate trench

and bedding practices, and (4) third party interference (e.g., accidental breaks, etc.).

Table 2.7 lists the most typical type of defects found in sewers.

Table 2.7 - Typical Defects in Sewers Pipes (Davies et al. 2001)

 

Defect Description

 

Longitudinal cracks May occur at springing level as well as at the crown and invert. A

and fractures result of excessive ‘crushing’ or ‘ring’ stress.

Cracks are diagonal and spread from the point of overload which

Tensron “ad‘s is Often a hard spot beneath the pipe.

Relative vertical movement of successive lengths of pipe causing

cracks and/or fractures due to excessive shear or bending stresses.

Most likely to occur near joints.

Circumferential

cracks and Fractures

Occurs when pieces of a cracked or fractures pipe visibly move

from their original position. Normally represents a further stage in

Broken prpes deterioration of a cracked or fractured pipe and is a very serious

defect.

. Excessive pressure inside the joint due to the expansion of the
Socket bursting . . . . . .

jomtmg material may cause a bursting failure of the socket.

Deformed pipes Occurs when a longitudinally cracked or fractured pipe loses the

support of the surrounding ground.
 

2.4.1.1 STRUCTURAL DEFECTS

Structural defects failure mechanisms include cracks and fractures in the pipeline

material that are caused by a change in the forces around a pipeline or a change in the

ability of the pipe material to resist existing forces (ASCE 1994, Serpente 1993). The

infiltration of groundwater through existing structural defects creates or increases the size

of voids as the infiltrating water carries particles from the soil into the pipeline (Delleur

1989). The weakening of this soil makes the land above the pipe vulnerable to surface
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collapse. The effects of infiltration on void formation are made worse by the process of

exfiltration. Exfiltration occurs when water leaves the sewer line through structural

defects during periods of hydraulic surcharge. Surcharge wastewater can scour or loosen

more fines at the perimeter of the voids (Delleur 1989, Stein et al. 1995).

Dynamic forces that cause structural defects are large one-time events or smaller

cyclic events that occur at a variety of frequencies (daily, seasonally, etc.). Large one-

time events include periods of heavy surface construction, in-ground utility construction,

or non-construction events such as earthquakes or landslides. These events are especially

significant when coupled with a weakened material or voids in the soil. Many surface

collapse failures are associated with degraded but functioning sewers that fail due to a

large one-time event (Delleur 1989, WRc 1986). Smaller cyclical dynamic loads include

load transfer from above ground activities, such as routine truck, machinery, and bus or

train traffic or in ground movements, such as those caused by expansive soils or frost

heave.

2.4.1.2 OPERATIONAL DEFECTS

Operational Defects failure mechanism originates from an increase in demand and a

decrease in capacity. Infiltration and inflow, often referred to as M, are the two types of

demand on a sewer system. Infiltration increases the demand as the number of structural

defects grows. Inflow is the demand on the system from service connections and storm

waters (ASCE 1994, EPA 1991). A decrease in capacity is the result of a decrease in the

effective diameter of the pipeline and an increase in the roughness coefficient. The
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effective diameter is reduced by structural defects such as Open joints, broken pipe

sections, root masses or collected debris.

2.5 PIPELINE DETERIORATION MECHANISMS

This section deals in detail about various mechanisms that would affect pipeline

deterioration. There are several theories that explain the deterioration mechanisms of

buried pipelines. Various pipe deterioration modes have been identified for different

types of pipelines, and the mechanisms thought to cause such defects have been studied.

Many sewer system deteriorations are attributable to the following predominant

mechanisms:

. Deterioration due to natural aging process - lack of maintenance exacerbates age-

related deterioration.

. Deterioration of pipes and joints due to soil-pipe interaction, operating conditions

and exposure to corrosive substances.

0 Freeze/thaw cycles, groundwater flow, and subsurface seismic activity that can

result in pipe movement, warping, brittleness, misalignment, and breakage.

2.5.1 AGE OF SEWER

Aging is a part of life. From the minute the sewer pipe is installed, it begins to age. A

classical survival function relating the age of the pipeline to the failure rate is denoted by

a bath tub curve as Shown in Figure 2.11. The early part of the curve shows “infantile

failure” which for pipes is representative of failure due to human factors in the actual

laying of the pipe (manufacturing faults, tend to appear during that part). A period of time
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follows in which failure rate is generally low. When failure does occur it may depend on

many factors, such as excessive loads not designed for, or settlement. As the pipes tend

towards the end of their useful life the failure rate increases exponentially. This classic

survival profile is known as the “Bath Tub” curve. The “Bath Tub” curve can be applied

to an individual pipe, a group of pipes with similar characteristics or the whole

population of a pipe network.
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Figure 2.11 - Bath Tub Curve of Sewer Pipe Performance with Age

(http://www.pir.gov.on.ca/userfiles_/HTML/nts 2 25528 l.html)

The factors thataccelerate the aging process of the sewers are discussed in detail

in the following sections.

2.5.2 SEWER SIZE

A number of authors have investigated the relationship between sewer size and structural

stability. Studies indicate that there is a decreasing trend in pipe failure rate with
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increasing diameter and is directly attributed to the increasing wall thickness and joint

reliability with increase in pipe diameter. Larger wall thickness gives the pipe better

structural integrity and improved resistance to corrosion failures (Kettler and Goulter

1985). Many other studies have also shown that a larger proportion of failures have

occurred on the smaller diameter pipes (Rajani et al. 1996).

Pipe size also affects the mode of failure (O’Day, 1982). Smaller diameter mains

(6 - 8 inches) often experience beam (flexural) failure because of poor bedding

conditions, however crushing failures (often longitudinal) are likely to occur due to the

relative length-to-diameter ratio. Conversely, larger mains (IO-inch or greater) are likely

to experience crushing failure, but are not likely to experience beam failure (O’Day

1982)

2.5.3 SEWER SECTION LENGTH

Generally, longer sewer runs are less likely to deteriorate at a faster rate than the Shorter

ones, which may be due to the fact that longer runs means less bends in the pipe to

accumulate debris, creating blockages or damage to the pipe from standing sewage.

Another possible reasoning is that the longer runs may be more of conveyance systems

rather than collection systems, thus having fewer laterals connected to the pipes which

can weaken a pipe system.

Other potential problem area is the length to diameter ratio. Although longitudinal

bending stresses increase with increasing pipe diameter, they do so at a slower rate than

the increase in the pipe’s section modulus, hence pipes which have high length to

diameter ratios may be more likely to suffer from excessive bending stresses (Young &
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O’Reilly 1983). Despite the fact that this issue is well documented within the literature,

there is little evidence of any numerical or statistical investigation of the effect of high

pipe length to diameter ratios having taken place.

2.5.4 SEWER GRADIENT

The slope of the pipe is found to have an impact of the condition of the pipe. For all

condition states, the steeper the slope is, the higher the possibility that pipe segments

deteriorate. This may be due to the fact that steeper pipe segments induce faster flow

rates, resulting in greater possibility for damage to the inside walls or joints of pipe

segments.

2.5.5 SEWER JOINT TYPE

The main fiinctions of a sewer joint are a follows (ASCE 1982):

a To be water tight;

0 To be durable;

c To be resistant to root intrusion

Joint failures are leak failures where pipe joints become separated. Joint type is an issue

since the type ofjoint will influence the susceptibility of the pipe to specific failures. A

large part of this may be owing to the amount of flexibility and lateral constraint the joint

provides, as well as the pipe joint’s actual strength and its ability to resist corrosion.
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2.5.6 SEWER DEPTH

In investigating the effect of depth on sewer structural condition, O’Reilly et al. (1989)

found a steady decreasing defect rate to a depth of 18 feet below which, the defect rate

began increasing with depth. It was suggested that the first occurrence probably reflected

the decreasing influence of surface factors such as road traffic and utility/surface

maintenance activity. The second occurrence or pattern was explained by the increasing

effect of overburden pressure. Jones (1984) suggested that, in shallow sewers, the effect

of seasonal moisture variations in the soil surround may be significant. In an analysis of

over 4400 sewer failures, Anderson and Cullen (1982) reported that 65% of all incidents

occurred at a depth of 6.5 feet or less and 25% from 6.5 to 13 feet deep, although no

indication is given of overall sewer depth distribution. Changes in cover depth may also

be important in determining a sewer’s structural stability.

2.5.7 SURFACE LOADING AND SURFACE TYPE

The location of a sewer will obviously affect the magnitude Of surface loading to which it

is subject; for sewers beneath roads the main component of such loading is likely to be

that from traffic. Pocock et al. (1980) monitored the bending strain developed in a

shallow buried pipeline due to static and rolling wheel loads. The measured bending

strains were found to increase linearly with axle load, the strains for any given load

tending to decrease with increasing vehicle speed. Maximum strains were always

associated with pipes that had been deliberately poorly bedded.
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158 FROSTHEAVE

Frost heave is defined as the vertical expansion of soils caused by freezing of the soil and

ice lens formation. All underground structures require the consideration of frost heave

effects as they are capable of displacing portions or the entire underground structure.

Differential heave causes sections of pipe to experience non—uniform

displacements, and this results in forceful flexural stresses. Uniform heaving may also

prove to be a problem under certain circumstances where pipe joints are not subject to

movement. Under this scenario, the pipe experiences stresses similar to a simple beam

loading, in which case the pipe will experience bending stresses. Failure of pipe joints

may be the result of the frost heave process. This may be a function of the type Of

connection, and the type of fill material used between joints.

The conditions for frost heave require the following:

1. The presence of a frost susceptible soil;

2. The presence of a sufficient water source, whether it is capillary or a ground

water source (for lens formation) and;

3. A ground temperature below freezing point.

With all of the above factors present, there is the potential for damage due to frost

heave. The propensity for heave of a soil under freezing conditions is affected by

properties such as grain size, rate of freezing, the availability of water, and by applied

loads.
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2.5.9 FROST LOAD

The failure of sewer pipes during winter could be attributed to increased earth loads on

the buried pipes, i.e., frost loads. In a trench, the frost load develops primarily as a

consequence of different frost susceptibilities of the backfill and the sidewalls of the

trench and the interaction at the trench backfill-sidewall interface. Trench width,

differences in frost susceptibilities of backfill and trench sidewall materials, stiffness of

the medium below the freezing front and shear stiffness at backfill-sidewall interface play

important roles in the generation of frost loads. Thus, it is preferable to use a backfill

material that has a matching or lower frost susceptibility than that of the sidewall in order

to mitigate against the development of excessive frost loads.

2.5.10 SEWAGE CHARACTERISTICS

Whilst domestic sewage is generally not aggressive to the fabric of sewer system, the

quality of the sewage varies from place to place and is dependent on several factors. It

can vary from relatively weak domestic sewage, perhaps diluted with large quantities of

stonnwater or infiltration, to strong and potentially aggressive sewage with a high

proportion of trade effluent.

2.5.11 SOIL-PIPE INTERACTION

Soil-pipe interactions are also a possible cause of pipe deterioration. The resistance of the

soil-to-pipe union is important because the shear strength of the interaction can affect the

degree of mobility of the pipeline and hence its ability to displace. In cold temperatures,

the bond between the soil and pipe indicates the amount of restraint the pipe is allowed to

49



shrink axially. A high soil-pipeline interaction will not allow the pipe to contact, and

consequently the axial stress in the pipe will increase. It is also possible that a strong

bond between the iron pipe and soil will cause excessive soil-pipe interface shear that

may cause abrasion of the pipe coating. This abrasion may lead to premature corrosion of

the pipe exterior (Yen et al. 1981).

2.5.12 PIPE-WALL TEMPERATURE GRADIENTS

For longitudinal failures, a suspected failure mechanism is the high temperature gradient

occurring across the pipe wall. If the temperature difference of the transported effluent

and surrounding soil is significant, this temperature gradient can lead to unusually high

hoop stresses, subsequently leading to failure (Habibian 1994). Longitudinal failures may

also occur in combination with the weakening of the pipe wall due to corrosion, at the

weakest portion of the main wall. Another possible cause of longitudinal failure is due to

a crushing load. This usually occurs in the large diameter pipes (O’Day 1982).

2.5.13 CORROSION

Corrosion in metallic pipes essentially occurs by an electrochemical reaction between the

outer surface of an exposed pipe and its surrounding soil environment. For corrosion to

occur, there must be a potential difference between two points that are electrically

connected in the presence of an electrolyte, in this case, the surrounding soil. With these

conditions satisfied, a current will flow from an anodic area, through the soil to a

cathodic area, and then back through the pipe wall to complete the circuit. The anodic

area becomes corroded by the loss of metal ions to the electrolyte (Romanoff 1964).
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Upon initiation, the corrosion process is self-sustaining (Rossum 1969), resulting in the

formation of “pits” at the outer surface of the pipe, with a range of depths and widths.

Different pipe materials have different characteristics in their reaction to corrosion.

Factors like soil acidity, resistivity, pH content, oxidation-reduction, sulphides, moisture

and aeration level have all been reported to influence corrosion rate (Romanoff 1964) and

correlations have been proposed between corrosion rates and soil electrochemical

properties (Rossum 1969).

The risk of Interior Corrosion of a pipe interior depends upon the susceptibility

of the pipe material to corrosion and the amount of corrosive chemicals in the

wastewater. Interior pipe corrosion typically occurs from the formation and release of

hydrogen sulfide. Hydrogen sulfide is formed in anaerobic conditions, such as those

found in force mains, continually surcharged gravity pipes, debris piles, or pools caused

by sagging lines. It is assumed that anaerobic conditions exists in open channel flow at

the wetted perimeter and therefore a small amount of hydrogen sulfide is generated and

some corrosion can occur if the conditions allow for release (ASCE 1994). Hydrogen

sulfide gas is released in turbulent conditions. Such conditions occur at siphon outlets,

drop structures greater than 2 feet, discharge of force mains, interceptor intersections, a

change in slope and during high wastewater velocities (Hahn et al. 2000).

Exterior Corrosion depends upon the susceptibility of the pipe material to acidic

ground substances and galvanic corrosion (Delleur 1989). Acidic soils or groundwater

attack unprotected cementious or metal pipe materials, whereas stray currents in the

ground cause a galvanic corrosion with metal or metal reinforced pipes.
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2.5.14 DIFFERENTIAL PIPE TEMPERATURE

Some literature speculates that a high differential temperature between the internal and

external pipe wall can produce high temperature gradients. Under such conditions the

inner and outer fibers will be subject to different temperature drops, resulting in

differential strains and circumferential stresses.

2.5.15 SOIL TYPE

The significance of the type of soil cannot be overlooked, as it is one of the most

important factors, having effects on almost all of the above mechanisms. Its effects on

frost heave, strength of soil-pipeline interaction, and external corrosion can be important

for many failure mechanisms.

Frost susceptibility is defined as the rate at which frost penetrates the ground. It is

generally regarded as one of the most important factors in characterizing frost heave

action. Frost susceptibility is ranked greatest to least for soil types in the following order:

silt, clay, sand, and then gravel. However, methods of further quantifying and thoroughly

characterizing soils in terms of fiost susceptibility are not consistent. Use of frost heave

rate (inch/day), total frost heave (inch), frost heave ratio (ratio of frost heave rate to total

frost heave) and segregation potential (to depict frost susceptibility) have been suggested

(Kujala 1993). However, these types of measures are Often difficult to find, or do not

translate accurately from laboratory to field values (Konrad and Nixon 1994). Therefore

characterization of frost susceptibility, and hence frost heaving is difficult using field

measurements.
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The type of soil the pipe is located in is also important for the aspect of

differential heaving and thaw settlement. If a pipe is located at the interface of two

different soil types, it has been shown that each soil will experience an uneven amount Of

frost heaving, and therefore have an influence on the amount of strain experienced by the

pipe (Nixon 1994). In the same manner, thaw settlement will lead to differential stress

distributions on the pipeline.

Soil corrosivity is a soil characteristic that must be considered for external

corrosion predictions. Physical characteristic (particle size, fiiability, uniformity, organic

content, color, etc.) have reflected corrosivity, based on observations and testing. Color

has also been linked to corrosivity. Soil uniformity is important because of the possible

development of localized corrosion cells. Corrosion cells may be caused by a difference

in potential between unlike soil types, with both soils being in contact with the pipe

(Smith 1968). If it can be assumed that for a particular soil classificatiOn the approximate

uniformity coefficient can be estimated, then the possibility of corrosion can be

estimated.

2.5.16 SOIL pH

In order to characterize external corrosion, it is necessary to find parameters which

indicate the corrosivity of the soil. Soil pH is a good indicator of external corrosion since

certain pH ranges allow for different corrosion mechanisms to occur. It has also been

found that resistivity is a function of pH [Morris Jr. 1967); (Jarvis and Hedges 1994)].

For that reason, only one of the two may be required for characterization.
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2.5.17 GROUNDWATER LEVEL

Use of the soil water content parameter is important from several aspects. As mentioned

earlier, the rate of frost heave is controlled by the availability of free water (McGaw

1972). It is also important for external corrosion.

From the perspective of frost heave, it has been stated that the availability of a

water source is one of the necessary elements required for ice lens growth. In the absence

of a nearby ground water table, focus then shifts to the availability of water present in the

soil itself, i.e., soil water content. In reality, the water content may be a possible surrogate

measure for water table depth, as water may enter the soil above by capillary suction.

From the perspective of external corrosion, soil corrosion aggressiveness has been

related to moisture content. Soils with moisture content above 20 percent (wet basis) are

thought to be particularly corrosive (Jarvis and Hedges 1994). Studies substantiate that

moisture content is a factor contributing to soil aggressiveness (Booth et al. 1967).

2.5.18 OVERBURDEN PRESSURE

Overburden pressure is thought to be important due to its ability to help characterize fi'ost

heaving and soil-pipeline resistance. It can be characterized by the depth of cover and soil

density. Literature indicates that the overburden pressure is important for the rate of

heaving [(Anderson et al. 1984); (Roy et al. 1992)].

Bury depth is an important factor. From the perspective of soil-pipeline

interaction, it has been demonstrated that the frictional soil resistance is affected by pipe

diameter and bury depth (Rajani et al. 1995). Also, from the perspective of mode of

failure, larger pipes are more susceptible than smaller pipes to crushing failure. This is
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due to bury depth, or the external loadings the pipe is subjected to (i.e. roadways, large

structures, etc.) (O’Day 1982).

2.5.19 TEMPERATURE

The effects of temperature on pipe breakage rates have been observed and reported by

many. Walski and Pelliccia (1982) suggested that pipe breakage rates might be correlated

to the maximum frost penetration in a given year. To account for the lack of frost

penetration data, they correlated annual breakage rates with air temperature of the coldest

month, using a multiple regression analysis with age and air temperature as the covariates

N (t, r) = N (weAl eBT

Where 1 = pipe age; N (to) = breaks per mile at to; T = average air temperature in the

coldest month; A, B = constants.

Newport (1981) analyzed circumferential pipe breakage data and found that

increased breakage rates coincided with cumulative degrees-frost (usually referred to as

freezing index in North America and expressed as degree-days) in the winter as well as

with very d1}I weather in the summer. He attributed the increase in winter breakage rates

to the increase in earth loads due to frost penetration, i.e., frost loads, and the summer

breakage rates to the increase in shear stress exerted on the pipe by soil shrinkage in a dry

summer. He also observed that when two consecutive cold periods occurred, the breakage

rates (in terms of breaks per degree-frost) in the first one exceeded those of the second

one. He rationalized that the early frost “purged” the system of its weakest pipes, causing

the later host to encounter a more robust system.
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2.5.20 PRECIPITATION (SNOW/RAIN)

Snow is indicative of the insulating effect on ground temperature, as the snow will allow

for the entrapment of heat into the ground. Rain precipitation coupled with the soil type

may be indicative of moisture content or hydraulic conductivity if these parameters are

not measured regularly. Some literature indicates that corrosion resistance is enhanced

during dry periods of the year (Smith 1968). Therefore, inclusion of this parameter may

be necessary to help characterize climatic changes as well as to infer adjustments to soil

parameters.

2.6 PIPELINE DETERIORATION MODELS

Incorporating historical condition data to develop deterioration patterns for a city’s sewer

system is pivotal in obtaining a realistic assessment of the city’s infrastructure.

Deterioration models are necessary because the determination of cost-effective

maintenance actions requires information on the current condition as well as the

anticipated future condition. While current conditions are assessed based on sewer

inspections, future conditions may only be estimated from the deterioration models.

Although pipelines are designed for a particular lifespan under standard operating

conditions, their deterioration never follows a set pattern. The process of deterioration of

pipelines is rather complex simply because there are many factors which interactively

contribute to such deterioration. Environmental interactions (soil corrosivity, ground

movement, etc.) plus exposure to transported waste quality variations and operating

abnormalities ensure that pipeline deterioration is never uniform. Eventually, through a

combination of internal and external stresses, the pipe fails. Sometimes this process is
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accelerated when defense measures such as protective coatings are damaged or not

repaired properly. The challenge for a condition prediction model is to analyze

information on the pipe and its environment to predict, as accurately as possible, its time

to failure or probability of reaching a certain condition state. Some of the factors that

contribute to deterioration are:

Construction features

Load transfer

Standard ofworkmanship

Sewer Size

Sewer depth

Sewer bedding

Sewer material

Sewer joint type and material

Sewer section length (Manhole to Manhole)

Sewer connections (Laterals)

Local external factors

Surface use

Surface loading and surface type

Ground disturbance

Groundwater level

Ground conditions

Soil/backfill type

Root interference
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Other factors

Age of sewer

Sewer characteristics

Maintenance methods/Frequency

The basic idea of life assessment models is to try to estimate a function for each

individual pipe that will provide the probability for that pipe surviving beyond a future

time period. Life assessment models assume that pipe lifetimes can be treated as

independently and identically distributed random variables. The objective of these

models is to estimate the probability Of failure of a pipe within a time horizon.

There are two main categories of such predictive models: Statistical and Physical.

The statistical model can further be classified into: Aggregate Type models, Multiple

Regression Type models, Probabilistic Predictive models, Counting Process models,

Non—Homogeneous Poison Process models and Events Dependent Renewal Process

models. Among the non-purely-statistical ones, physical models of corrosion are the most

applicable (Melina and Kalles 2000).

A statistical approach based on historical maintenance data and pipelines

inventory is a technique that requires an undertaking of vast amounts of pipe sampling or

condition assessments and measurement of long lengths of pipes. The physical approach

is based on the knowledge of underlying process, using engineering-based equations in

developing simulation models that can be applied in making maintenance decisions.
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2.7 AN OVERVIEW OF EXISTING DETERIORATION MODELS

2.7.1 STATISTICAL MODELS

Aggregate Type models group together pipes that have the same intrinsic properties and

then use linear regression to establish a relationship between the age of the pipe and the

number of failures. They describe the global evolution of failures on all the pipes in the

system (Walski 1986). Shamir and Howard (1979) proposed an exponential increase with

time of the form:

Mt) = i.(t0)e"““°’ .......... (2.1)

where Mt) is the number of failures/yr/1000 it at time t, to is the base year for analysis,

and A is the growth rate coefficient.

The advantage of these models lies in their case of implementation. Their

drawback is that pipe characteristics, previous break history and environmental variables

are not taken into account.

Counting Process models are slightly different from Aggregate Type models because

they establish the cumulated number of failures of each group of “identical” pipes as a

function of time (Andreou and Marks 1986). In counting process models the pipe failures

are assumed to occur along the time, and no assumption is made regarding the status of

the pipe afier the repair is completed. With counting process models one can see the

deteriorating (or improving) trend in time of a group of “identical” pipes and the rate of

occurrence of failure of a group of pipes.
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Multiple Regression Type models give a regression equation between the number of

years from installation to the first break (or the number of failures) and a set of

explanatory variables such as material, internal pressure, etc. to forecast the future

number of breaks. The advantage of this approach is that it enables explicit identification

of the categories of mains. This modeling seems better suited to the school of thought that

favors the short-time selection of individual components for maintenance operations.

According to Lawless (1982) and Kalbfleisch & Prentice (1980), two classes of

regression models may be distinguished, namely, proportional hazards models (PHM)

and accelerated lifetime models.

The Weibull distribution is a very flexible model for lifetime data. It has a hazard

rate, which either is monotone increasing, decreasing, or constant. It is the only

parametric regression model, which has both a proportional hazards representation and an

accelerated failure time representation.

Proportional Hazards Model (PHM) was originally developed for modeling

components, which can only fail once. In order to model a repairable system like pipeline

network, the lifetime is defined as the inter-arrival time (i.e. time between failures).

A Non-Homogenous Poisson Process models the recurrence of events, assuming the

number of them occurring in a given time interval to be Poisson distributed. For an

ordinary Poisson process, the mean of the Poisson distribution is the product of the

interval length by the intensity function, which remains constant in time.
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The Events Dependent Renewal Process is a generalization of the ordinary Renewal

Process, allowing the successive inter-arrival times to have different distribution

functions, which depend on the rank of the events. An ordinary renewal process models

the sequence of current events, occurring in a repairable system by assuming the delays

between events to be independent and identically distributed.

Probabilistic Predictive models estimate the probability that a break will occur at some

future time and/or the probability of a pipe to enter a particular state (e.g., severe

deterioration with multiple failures, Andreou 1986). This can then be used to calculate

the economic life of a pipe and therefore when it Should be replaced. Andreou et al.

(1987) proposed the use of a Cox proportional hazard model (Cox 1972) to relate the

hazard function to a set of explanatory variables. The basic form of this model is

represented in equation (2.2) below:

h(t : z) = home” .......... (2.2)

where, h(t : z) is the failure rate (termed hazard function), h0(t) is some unspecified

baseline hazard function, 2 is a vector of explanatory variables (diameter, soil, etc.), and b

is a vector of regression coefficients.

Whilst various mathematical distributions can be used, the Weibull and Herz

distributions appear to be most suited to pipe failure statistics (Herz 1998). Provided it is

available, pipe replacement data can be used directly to Obtain fitting parameters to these

distribution functions. For example, Herz, (1998) equated the fiaction of pipes that were

replaced in a given year to the ‘hazard’ (or failure rate) associated with pipes of that age.

The variation in hazard with pipe age was then used to obtain the lifetime probability
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density function (Crowder et al. 1991). It should be noted that lifetime distributions

determined by this technique are not based on recorded failure data, and merely reflect

the replacement strategy used by the utility agency at the time of analysis. Alternatively,

in the absence of pipe replacement data, breakage rates can be extrapolated from recorded

failure data and used to determine the mean value of a lifetime probability density

function. For example, time-exponential equations can be used to forecast future

breakage rates, allowing the discounted costs for future pipe replacement to be

determined. The mean economic life of a homogenous group of pipes (i.e. the average

time for replacement) is assumed to end when the total repair costs attain a minimum

(Kleiner et al. 1998). Further research using a proportional hazard approach includes Gat

and Eisenbeis (2000) and Lei and Saegrov (1998). Both these authors used a Weibull

hazard model to model the useful life of a pipe.

Among various techniques for deriving probabilistic predictive models, the

survival analysis has been widely used. The objective of survival analysis is to develop

lifetime models based on survival data (or failure data, or lifetime data).

The main shortcomings of the survival analysis approach is that it groups similar

pipes and relies heavily on estimating the lifetime of the groups, which may itself be

highly variable and dependent on the individual pipe characteristics.

Probability-Based Markovian Models provide a reliable mechanism for developing

prediction models. Markov chains can be employed to model stochastic processes, which

have the distinct property that probabilities involving how the process will evolve in the
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future depend only on the present state of the process and so are independent of events in

the past (Hillier and Liberman 1995).

The Markov process imposes a rational structure on the deterioration model

because it explains the rate of deterioration as uncertain, and it also ensures that the

projections beyond the limits of data will continue to have a worsening condition pattern

with time. This model has been successfully used in other types of infrastructure

deterioration modeling like bridges, pavements, etc.

To model the manner in which a sewer deteriorates with time, it iS necessary to

establish a Markov probability transition matrix. The transition matrix P is a square

matrix, m x m, where m is the number of possible states. Thus, if there are five categories

in sewer conditions, then five possible states will be involved in the matrix of size 5 x 5.

The components of P, namely pjj, are the probabilities of being in state i at time 0 and

transitioning to statej over a given period At. Kathula (2000) in her dissertation assumed

a time increment, At, of 5 yrs because sewer inspections Should generally be conducted

every 5 years. If the assumption is accepted that the sewer condition will not drop by

more than one state in any 5-yr period, then the condition will either stay in its current

state or move to the next lower state in 5 years. Therefore, the one-step transition matrix

can be represented as follows (Kathula 2000):

p11 p12 0 0 0

0 p22 P23 0 0

P: 0 0 P33 p34 0 """"" (2-3)

0 0 0 p44 p45

L_0 0 0 0 l -  

For each row of the transition matrix, 2; pi,- = l. The value of 1 in the last row

indicates an “absorbing” state corresponding to the fact that the sewer condition cannot

63



move from this state (the worst possible state) unless rehabilitation is performed. In this

particular transition matrix, the values of four unknown quantities (i.e., p11, p22, p33, and

p44) have to be determined. The application of the Markov process (Butt et al. 1994)

proposes a nonlinear programming approach to determine the probability values by

minimizing the sum of the absolute difference between actual data points and the

predicted condition for the corresponding time generated by the Markov chain.

The probability that the sewer is in state i at time t = t and will be in state j after it

periods is desired. Chapman-Kolmogorov equations provide a method for computing the

n-step transition probabilities, and the n-step transition probability matrix can be obtained

by computing the nth power of the one-step transition matrix (Hillier and Lieberman

1995). Thus, if the one-step transition matrix P corresponds to a 5-yr time period, then

the two-step (IO-yr time period) transition matrix Pm is represented by

Pm = P2 = P x P ---------- (2.4)

Besides the transition matrix P, the state matrix X representing the probability

distribution of being in m different states at time 0 (which is the fraction of sewer

network currently in each of the m possible states) is also required. X is a single-row

matrix (or state vector) where Z X; = 1 for i = 1,. . ., In. The state vector for any time cycle

t is obtained by multiplying the initial state vector by the transition matrix P raised to the

power of t. Thus, the prediction of sewer condition 10 yr from now is then represented by

x ‘2’.

[x ‘2’] = [X] x [P ‘2’] ---------- (2.5)

The use of the Markov chain prediction model is sufficient to formulate the

problem as a dynamic programming problem because the knowledge of the current state



of the system conveys all the information about its previous behavior necessary for

determining the optimal policy henceforth. This property is required in dynamic

programming formulation (Hillier and Lieberman 1995). The application of the Markov

chain prediction model in conjunction with dynamic programming has several

advantages. It uses objective condition measures and has computational efficiency in

handling a large number of rehabilitation strategies for each sewer classification/state

combination. However, the model development requires sufficient statistical data for

establishing sound transition probability matrices.
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2.1.1 PHYSICAL MODELS

Physical models of the degradation process employ engineering-based equations to derive

structurally based estimates of pipe conditions. The physical mechanisms of pipe failure

involve three principal aspects: (a) pipe structural properties, material type, pipe-soil

interaction, and quality of installation, (b) internal loads due to operational pressure and

external loads due to soil overburden, traffic loads, frost loads and third party

interference, and (c) material deterioration due largely to the external and internal

chemical, bio-chemical and electro-chemical environment. The existing physical models

can broadly be classified into deterministic and probabilistic, and most cannot

simultaneously address all three principal aspects listed above. Based on actual failure

mechanisms, physical failure models can also be used to estimate changes in pipe

condition and future failure rate. To develop these models for the full range of pipe

materials in use, expertise is needed to quantify corrosion rates in metallic pipes, rates of

degradation in cement-based pipes and the fracture mechanics of plastic pipes. Additional

expertise is required to understand the interactions between the electrochemical

properties of surrounding soils and degradation rates. Physical models rely on input from

accurate condition assessment techniques, and can provide performance indicators. It

appears that the physical mechanisms that lead to pipe breakage are often very complex

and not completely understood, and little data are available to validate models based on

these mechanisms.
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2.2 SEWER MANAGEMENT SYSTEM

For proper monitoring and maintenance of underground infrastructure, a thorough asset

management strategy is required to perform many fimctions including inventory,

condition assessment, condition forecasting, inspection, scheduling, budget forecasting,

localized maintenance programs, and annual and long-range maintenance and

rehabilitation planning. More municipalities are beginning to realize Of the obvious fact

that it is much more economical to repair or renew the sewers before they are fully

deteriorated. If maintenance and rehabilitation is performed during the early stages of

deterioration, substantial repair costs can be avoided in addition to avoiding service

disruption and other social costs. In today’s economic environment, as the sewer

infrastructure has aged, a more systematic approach to determine maintenance and

rehabilitation needs and priorities is necessary (Kathula 2001).

2.3 APPLICATION OF NEURAL NETWORKS IN PIPELINE

MANAGEMENT AND PREDICTION MODELING

In recent years, artificial neural networks have been advocated as an alternative to

traditional statistical models. Neural networks are application of an algorithm inspired by

research into human brain which can “learn” directly from the data. It can be defined as

“highly simplified models of human nervous system, exhibiting abilities such as learning,

generalization, and abstraction.” One of the advantages of a neural network model is that

a well-defined mathematical process is not required for algorithmically converting an

input into an output. A collection of representative examples of desired translation will

suffice. Once trained, a neural network can perform classification, clustering and
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forecasting tasks. Thus, the pipeline industry can harness this technology to model

dynamic deterioration of pipes using the historically available data. Once the pipeline

deterioration pattern is modeled, it is then possible to predict future condition and

deficiencies of the pipelines. Feasible strategies can then be synthesized to further

examine the actual condition of those pipelines.

Past Research in ANN Application for Pipeline Application. Sacluti (1999) in his

Master’s thesis applied an artificial neural network (ANN) to predict the pipe breaks in

the water distribution system of a sub-division in Edmonton, Canada. The ANN model

was applied to the entire network as a single entity (rather than to individual pipes) and

was trained with data that included temperature (water and ambient), rainfall, operating

pressure and historical data on break numbers. Since the model considered an entire

network as a single entity, variants such as pipe age, type and diameter could not be

considered, as well as geographical varieties such as soil properties. The network

consisted of spun-cast 6-inch water mains. His work focused on the frequency modeling

of water distribution pipe failure mechanisms'in cold weather climates.

The ANN model was applied to a relatively small network with water mains that

were relatively homogeneous with respect to type of pipe and operational and

environmental conditions. A more heterogeneous set of water mains would likely require

more data. The model predicted the number of water main breaks based on a 7-day

weather forecast. This requirement limited its ability to short term response than its use

for long term planning purposes. In its present form, the model can only be applied to

73



homogenous groups of water mains, for short-term planning of the maintenance work

force required during an anticipated cold Spell.

2.4 SUMMARY AND CONCLUSIONS

The literature review in this chapter indicates that research in pipeline deterioration and

forecasting model development has been in focus lately. Various modes and mechanisms

of pipeline deterioration were reviewed and the possibility of the application of neural

network in pipeline management and forecasting was discussed. Also, sewer condition

assessment techniques and structural condition rating of sewers were documented to

develop a broad-based understanding of the technology that are available in the market

for condition assessment and classification of distressed sewer pipes. The literature

review indicates that there is a good possibility to develop a successful neural network

based model if the critical parameters that contribute to the deterioration of pipelines are

obtained. A neural network model for predicting pipeline performance trends based on

historical condition assessment data will be developed in this effort.
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CHAPTER 3

NEURAL NETWORK METHODOLOGY AND APPLICATION

The previous chapter dealt with the literature review that gave the necessary background

for pursuing this thesis. This chapter presents the methodology used in this thesis for the

development of a sewer pipeline condition prediction model. The prediction model is

based on neural network modeling technique. A detailed description of neural networks is

presented in this chapter, along with the pragmatic method appropriate for modeling

sewer condition prediction.

3.1 ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS

The term artificial intelligence has be traditionally used to refer to the field of computer

science dedicated to producing programs that attempt to be as smart as humans. Expert

systems and neural networks are two forms of artificial intelligence, each with distinct

strengths and weaknesses. Most implementations of artificial intelligence are programs

that simulate either the deductive or inductive intelligence of human being. Deduction

reasons in steps to a conclusion based on given premises. Deductive systems, which can

be Simulated by expert systems, require rules or instructions executed one at a time to

arrive at the answer. By contrast, induction takes in a large amount of information all at

once and then draws a conclusion. Neural networks can be used to simulate the inductive

behavior of humans. Once trained, the neural network is able to look at input data and
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produce an appreciate answer. In a comparison to expert systems, Garrett (1992) presents

the following advantages to the use of neural networks:

I Neural networks have the ability to present a model for a situation where only

examples are presented.

I Expert systems require “certain factors” or “levels of belief” as means of

accounting for uncertainty, whereas neural networks are trained to deal with

uncertainty since training data is obtained from situations very close to the

situations in which the network will operate.

i Expert systems are very brittle in that all data must be complete and correct in

order for a system to be analyzed. On the other hand, neural networks have the

ability to allow for minor errors or omissions in the input data and also for slight

deviations from existing training cases.

Neural Networks can be used to:

I recognize patterns and images

I construct a decision tree to solve a problem

I classify data

I predict outcomes

I study thematic evolution of a process and construct cost effective models

A neural network is a massively parallel distributed processor that has a natural

propensity for storing experiential knowledge and making it available for use. It

resembles the human brain in two aspects:

0 knowledge is acquired by the network through a learning process, and
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0 connection strengths between neurons, which are known as synaptic weights, are

used to store the knowledge

In computing terms, neural networks have a unique set Of characteristics derived

through its massively parallel-distributed structure and its ability to learn and generalize.

These two information-processing capabilities make it possible for neural networks to

solve complex problems in the real world. The key characteristics of neural networks can

be summarized as follows (Lou et al 1999):

Learning from experience: Neural networks are particularly suited to solve problems

whose solution is complex and difficult to specify, but which provide an abundance of

observed data.

Generalizingfrom examples: An important attribute of neural networks is the ability to

learn from previous experiences and then give the correct response to the data that it has

not encountered.

Nonlinearity: Neural networks can be trained to generate nonlinear mappings, which

often give them an advantage for dealing with complex, real-world problems.

Nonlinearity is a particularly important property if the underlying physical mechanism is

inherently nonlinear.

Computational efficiency: Although the training of a neural network is computationally

intensive, the computational requirements of a fully trained neural network applied on
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test data are modest. For large problems, speed can be gained through parallel processing,

as neural networks are intrinsically parallel structures.

Adaptivity: Neural networks have a built-in capability to adapt their synaptic weights to

changes in the surrounding environment. In particular, a neural network trained to operate

in a specific environment can be easily retained to deal with minor changes in the

operating environmental conditions.

A neural network is an excellent candidate for any application requiring pattern

recognition. Neural networks are able to recognize patterns, which may consist of visual,

numeric, or symbolic data, even when the data is noisy, ambiguous, or distorted. In

general, neural network tasks may be divided into five types of distinct applications:

Classification: Deciding into which category an input pattern falls into.

Association: Acts as a content addressable memory that recalls an output with reduced

dimension. The opposite task, decoding, may also be of interest.

Simulation: The creation of a novel output for an input that acts as stimulus. The network

has been exposed to a sample of possible stimuli.

Modeling: The network mapping process involves nonlinear functions that can

consequently cover a greater range of problem complexity. Although other nonlinear
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techniques exist, the neural network is superior in its generality and practical ease in

implementation.

3.2 NEURAL NETWORKS AND STATISTICAL

MODELING: A COMPARISON

A neural network may be considered as a data processing technique that maps, or relates,

some type of input stream of information to an output stream of data. For example, the

input may be the pipeline condition data like pipe material, pipe age, diameter, slope,

environmental conditions, etc., and the output may produce an estimate of the probable

condition of the pipeline. On the other hand, the goal of statistical modeling is to find an

equation that captures the general pattern of a relationship, which is usually derived from

observed examples. Therefore, the fields of statistical modeling and neural networks are

closely related in the context of input-output mapping. The principal difference between

these two fields is that traditional statistical models typically need an equation to be

specified, which could be difficult in complicated nonlinear cases, while neural networks

have been mainly used to deal with nonlinear problems without requiring a pre-specified

function form. However, with the appearance of the backpropagation neural network

(BPNN), of which the learning paradigm is called supervised learning, these two fields

touch most closely in solving mathematical modeling problems. This technique solves

one of the central problems in neural networks, and it is a useful modeling tool as well.

Supervised learning involves the modification of the synaptic weights of a neural

network by applying a set of training examples. Each example consists of a unique input

Signal and the corresponding desired response. The network is presented an example
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picked at random fi'om the set, and the synaptic weights of the network are modified so as

to minimize the difference between the desired response and the actual response of the

network produced by the input signal in accordance with an appropriate statistical

criterion. The training of the network is repeated for many examples in the set until the

network reaches a steady state, where there are no further Significant changes in the

weights. Thus, the network learns from the examples by constructing an input-output

mapping for the problem at hand. The key characteristics of a neural network can be

' summarized as follows:

I a large number of attributes can be considered in parallel

I neural networks learn by example, therefore, knowledge acquisition is not

difficult

I quick response can be provided by a neural network model

I classification based on given inputs can be attained and, input classification

characteristics can be extracted

I an incomplete data set can be analyzed due to the neural network’s ability to

generalize

I a fault tolerant property allows for small errors in training data to have only a

slight effect on the processing elements

I only a small amount ofmemory is required as only network weights need to be

stored for recall programs

Statistical modeling techniques are used to derive relationships between variables

from examples as well. In the case of pipeline condition prediction, the examples are the

performance history in the last few years. To derive the equation from the examples, the
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values of the independent and dependent variables for each example need to be known. In

this case, the independent variables involve the performance history data and the other

pipeline descriptive information, and the dependent variable is the present condition of

the pipeline. During the running mode, a running file needs to be prepared, which

contains the independent variables of each new example for which an estimate of the

dependent variable is desired.

The prototypical example of a statistical modeling technique is linear regression.

The equation produced by a modeling method can be thought of as a mapping, because it

permits us to map any point in the space of the independent variables onto a point in the

space of dependent variables. The error of the mapping comes from two sources. The first

source of error is noise, which includes inaccuracies in the data introduced by measuring

instruments, and inaccuracies due to the fact that the independent variables do not contain

all the information needed to determine the dependent variables. The second source of

error is the fact that the mapping function may not have the same form as the target

function. The so-called target function could be an idealized and unknowable function

that expresses the “true” relationship between the independent and dependent variables.

The fact that linear regression imposes a linear form on the mapping function can

severely limit its accuracy. In cases where the problem domain is not a linear Space, it is

usually necessary to transform the variables so as to make the relationship linear. A better

approach is to automate the process of deciding what shape the mapping function should

have. What is needed, then, is a modeling technique based on a mapping function that is

complex enough to be flexible. Although some simple curves, such as polynomial

regression and exponential equation, have been used to simulate the real world condition,
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the Optimum solution is a technique that can take on any form the data requires. One of

these advanced modeling techniques is the backpropagation neural network (BPNN).

NeuralWare (1993) compares the abilities of neural networks to other means of

artificial intelligence. Table 3.1 presents a comparison of neural networks to other means

Of modeling problems.

Table 3.1 — NeuralWare Modeling Comparison

 

. Advantage-«irrieum
Technique Limrtation . Nemork

 

Neural networks are trained

and, therefore, can handle

unlimited numbers of

variations without additional

work.

The number of variations is

Traditional limited as each variation is

Programming required to be programmed

into the model.

 

Knowledge and explicit setting

Of rules is not necessary for

System requires that an expert neural networks since

Expert Systems knowledgeable in the topic set historical data is used for

rule basis for processing. training (knowledgeable

checks and input, however, are

still advisable).

 

 
There are fewer limitations,

such as the need for a sufficient

training data, to the number of

inputs that can be analyzed by

neural network.

Level of analysis is limited to a

Re ession Anal sis .

gr y certain number of parameters.    
3.3 THE NEURAL NETWORK ALGORITHM

There are many types of neural networks, but all have three things in common. A neural

network can be described in terms of its individual neurons, the connections between

them (topology), and its learning rule. Both biological and artificial neural networks

contain neurons, real or simulated. These neurons have many connections to each other

which transfer information. The knowledge of a network is distributed across the
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interconnections between the neurons. A typical neuron receives input, either excitation

or inhibition, from many other neurons. A neuron calculates its own output by finding the

weighted sum of its inputs, generating an activation level and passing that through an

output on transfer function. The point where two neurons communicate is called a

connection. The strength of the connection between two neurons is called a weight. The

collection of weights arranged in rows and columns is called the weight matrix. A neural

network learns by changing its response as the inputs change. Because the weights in the

network can change, the relationship of the network’s output to its inputs can be altered

as well. In this sense, the learning rule is the very heart of a neural network, which

determines the behavior of the network and how that behavior can change over time.

Input Layer Hidden Layer Output Layer

 
Figure 3.1 - Anatomy of a Neural Network

3.3.1 SINGLE NEURON

Artificial neurons as information processing devices were first proposed more than fifty

years ago. As shown in Figure 3.2, a neuron computes a weighted summation of its n

inputs, the result of which is then thresholded to give a binary output y which is either +1

or -1. The bias weight, 0, is introduced whose input is fixed at +1. This bias weight is

adaptive like the others and its use allows greater flexibility of the learning process.
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Input > y = f(Zw;x;)

/

Figure 3.2 - Schematic Diagram of an Artificial Neuron

 

For a classification problem, the neuron assigns input patterns, represented by the

vector of numbers x = (x1, xz, . ., xn), either to class A (for which y would be +1) or class

B (for which y would be -l). Thus:

1 when Zwixiw

y=f(:w.x.)= ------------- (3.1)

 - 1 when ZZWixi 2 0

i=1

In the above equation (3.1), y is the neuron output and f is a hard-limiting of

threshold function, sometimes known as the neuron’s transfer function, which gives an

output of +1 whenever Zwixi is greater than zero (the threshold value) or -1 whenever

Zwixi is less than (or equal to) zero.

The learning process is to adjust all the weights and let the output y approach the

desired output so that the neuron performs the classification task correctly. Multi-class

problems can also be solved by having a number of neurons operating in parallel.

3.4 BACKPROPAGATION NEURAL NETWORK (BPNN)

By far, the BPNN is the most popular one used for mathematical modeling.

Backpropagation is a supervised learning scheme by which a layered neural network with
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continuously valued neurons is trained to become a pattem-matching machine. It

provides a way of using examples of a target fimction to find the weights that make a

certain mapping function hidden in the neural network approximate the target function as

closely possible. As shown in Figure 3.3, the neurons of the networks are structured in

multiple layers: input, hidden, and output. Each hidden-layer neuron receives input from

all neurons in the input layer through weighted connections (w). In addition, each neuron

is associated with a bias term, called the threshold, 9. This bias term works as a horizontal

shift for the origin of the transfer function to accommodate the magnitude of incoming

signals to the neuron. Specific values of both w and O for a given neural network are

determined during the training phase.

          

    

   

__,. A

’ \b/ 0......
t N ——+

A AA
Vl“< Output Layer

.

Input Layer H

”A.
Hidden Layers

Figure 3.3 - A Three-Layer Backpropagation Neural Network
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3.4.1 BPNN MODELING

The BPNN network operates in two modes: mapping and training mode. In mapping

mode, information flows forward through the network, fi'om inputs to outputs. In the

training mode, the information flow alternates between forward and backward. In the

mapping mode, the network processes one example at a time, producing an estimate of

values of the dependent variables based on the values of the independent variables for the

given example. First, a set ofvalues for the independent variables is loaded onto the input

layer of the network. The input-layer neurons do no calculation — each neuron merely

sends a copy of its value to all the hidden-layer neurons. Each hidden neuron calculates

the weighted sum of the inputs using its unique connection strengths as weights. Next,

each hidden neuron computes a transfer function of its input sum and sends the result to

all the output-layer neurons. Then, each output-layer neuron performs a similar

calculation and outputs the resulting value as an estimate of the dependent variable it

represents.

The training mode refers to the process in which the network is exposed to

examples with correct output values known. The training algorithm consists of three

steps. In the first step, the training patterns obtained from the database are fed into the

input layer of the network. These inputs are propagated through the network until

reaching the output layer. The output of each neuron is calculated by the following

transfer function (Lou et al. 1999):

a = Zn wixi """"" (3-2)

i=1

1

He83

 o = f(a) = ---------- (3.3)
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where:

values

0 = neuron output,

a = input to the transfer function,

‘1‘ input,xi = i

W, = weight of connection i,

g = gain of sigmoid firnction, and

n = number of inputs to one neuron.

In the second step, the neural network outputs are subtracted from the desired

to obtain an error signal. This error signal is the basis for the coming

backpropagation step. The following equation (3.4) defines the error signal (Lou et al.

1999):

where:

 

 

N, N,

Z 2(Tjk'0jk)2

Ems= "' ---------- (3.4)
N.N.

Ems = root mean square error,

N0 = number of neurons in the output layer,

NC = total number of patterns in an epoch,

Tjk = target (desired) value of the jth neuron, and the kth pattern, and

Ojk = output of the j'h neuron, and the kth pattern.

In the third step, error is minimized by the backpropagation of the error signal

through the neural network. In this process, the respective contribution of each hidden

neuron is computed and corresponding weight adjustments needed to minimize the error

are derived.
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For each output neuron k, compute the 5 value, defined as follows:

5k = (H - 0k) f'(Xk) """"""" (35)

where:

6;, = adjusted error for output neuron k;

Tk = target value of output neuron k;

0k = output value of output neuron k; and

xk = input to output neuron k.

Backpropagate the 5 value through the network to the preceding hidden layer. For

each hidden layer neuron j connected to the output neurons k, compute the new 5 value

(Lou et al. 1999):

6]. = f‘ (xj)26,wj, .......... (3.6)

k

where:

Sj = adjusted error of hidden neuron j;

Xj = input to the hidden neuron j;

8k = adjusted error of output neuron k connected with hidden neuron j; and

ij = connection weight between neuron j and k.

The weight connecting any two neurons is updated by the following equation:

'P “" °q

qup = aqup ---------- (3.7)

Vwqp = adjustment of weight between preceding layer neuron p and proceeding

layer neuron q;

6., = adjusted error of proceeding layer neuron q;
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Op = output of preceding layer neuron p; and

a = learning coefficient (a positive constant).

The training process repeats steps 1 through 3 for all patterns in the training set

until the overall error is acceptably low based on a given criterion. If the network has not

converged then go back to the step 1, otherwise stop training. Once trained, the neural

network has the capability of adapting to changing input. If the trained network results in

good accuracy on the testing and validation data set, the development process is

completed.

Although theoretically complicated, the training process is typically implemented

by a computer program, within which the training algorithm has been incorporated.

Popular neural network development packages in the market include MATLABTM Neural

Network Toolbox, DataEngine, BrainMaker, NeuroSolutions, etc. These software

packages vary in terms of training speed, pre- and post- data processing utility, and

convenience of user interaction. Once trained, the BPNN can be incorporated into other

programs; the running of this model can be implemented through a user-fiiendly

interface. In this effort, BrainMaker is selected as the development tool, the detailed

training and testing process with BrainMaker is described in Chapter 4.

3.5 NEURAL NETWORKS AND ITS APPLICATION IN

PIPELINE CONDITION PREDICTION

The inherently nonlinear time series, such as that found in pipeline deterioration

process, are more suitable for analysis by the general nonlinear mapping provided by a

neural network, than by linear based statistical models. Neural networks are nonlinear
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models that can be trained to map past and future data of a time-series, thereby

uncovering the hidden relationships governing the data.

Primarily, two distinct types ofmodels can be developed for pipeline performance

forecasting similar to the pavement condition models proposed by Lou et al. (1999). The

first type is a static model and can be conceptually described by the following equation:

PC! = f (8,, 13,, Mt, t, L, etc.) ---------- (3.8)

Where:

PCt = pipe condition at age t,

S = pipe structural condition at age t,

E = environmental conditions at age t,

Mt = pipe material characteristics at age t,

L = external and internal load conditions.

The second type, a dynamic model, can be described by the following equation:

PC! = f (PCm, PCHZ. . .PCHN) ---------- (3.9)

Pipeline condition at age t, PCt, is forecast using historical condition data at ages t-xl, t-

xz,. . ., t-xN. This type of model is based on historical performance of pipeline

characteristics, which is difficult to obtain because of the lack of continuous monitoring

process by the municipal agencies.

The dynamic model requires historical data of continuous monitoring of the asset

which is not the common practice by the municipal agencies maintaining sewer pipelines.

A static model will be developed in this research effort due to the limited availability of

pipeline condition data. The association of different variables that contribute to the
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deterioration of the sewer system will be analyzed and modeled with actual data from the

city of Atlanta.

3.6 ' MODEL INPUT PARAMETERS

To identify the condition of a sewer pipe, the type of defect needs to be classified and

severity level assigned. Each distress condition will be assigned severity levels based on

the degree and the combination of structural defects found commonly in sewer pipe

segments. Typically this information needs to be documented by the municipal agencies

while performing condition assessment. This information will serve as the input

parameters for the neural network.

As an outcome of the literature review in Chapter 2, various parameters that affect

the condition of sewer pipes during their lifetime were identified. The parameters that are

determined to have substantial impact on sewer pipe deterioration are summarized in the

Table 3.2 below.

Table 3.2 — Ideal Input Parameters for Model Development

 

 

 

 

 

 

 

 

 

 

  
 

 

   

Pipe Material

Pipe Age

. Pipe Diameter

Pipe Data Length of Sections

Joint Type and Material

Wall Thickness

Zoning Residential/Commercial/Industrial

Typical depth — 8 to 15 feet

Depth of Cover Shallow — less than 8 feet + high live load

Deep - more than 15 ft

Gradient Slope of Pipe

Bedding Conditions '

Backfill Type Cohesrve Soil .

Non-Cohesrve (Granular) Sorl
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Soil Characteristics

Soil Type
 

Corrosivity
 

Resistivity
 

H Content
 

Sulfide Content
 

Moisture Level
 

High Groundwater table (pipe crown is below

GWT)
 

 

Groundwater Condition Low Groundwater table (pipe crown is above

GWT)

Ground Movement Due to expansive soils, etc.
 

Internal Service Loads Operating pressures, surcharges, etc.

 

External Loads

Soil Load
 

Traffic Loading
 

Other Surface Loads
  Frost Load Factor
 

Wastewater Characteristics
 

Maintenance Frequency
  Tree Root Problems

 

3.7 MODELING METHODOLOGY

The data once obtained will be analyzed for erroneous processing and reduction, after

which the original raw data will be transformed into a new format that is suitable for

firrther analysis.

To determine whether or not the database contains enough samples, two factors

will be considered important: (1) the form of the target function: to maintain a given

accuracy, sample size needs to increase as the target function becomes more complex,

and (2) the noise in the data: to maintain a given accuracy, sample size needs to increase

as noise increases. Given a target function of a certain complexity, and a certain amount

of noise in the data, there will be an absolute limit to the accuracy the model can achieve.

An infinite sample size would be needed to achieve the limit of accuracy. For neural
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network modeling, since the complexity of the target function is not a limit, noise alone

will determine the limit of accuracy. If the sample is large enough, the complexity of the

network’s mapping function could be increased to match the complexity of the target

function. Consequently, as sample size increases, neural network model’s accuracy will

be limited only by the noise in the data. Usually, neural network can benefit more from

large samples than regression can. Because larger samples allow us to use more hidden

neurons or to continue training longer, the accuracy can be improved by increasing

sample size. On the other hand, neural network model does not require a larger sample

than a regression model. As the sample size gets smaller, we can use fewer hidden

neurons or halt training sooner to avoid overfitting. The basic rule, therefore, is to use the

largest sample available.

The model development in this study will include training, testing and validation.

Training a neural network involves repeatedly presenting a set of examples to the

network. The network takes in each example, makes a response as the output, checks this

response against the correct answer, and makes corrections to the internal connections.

Testing the network is the same as training it, except that the network is shown with the

examples it has never seen before, and no weight adjustments are made during testing.

Validation occurs after the neural network has been developed. Validating a network

consists of presenting it with new input data and gathering the network outputs. Unlike

testing, there is no known output, only known inputs in the validation.
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3.7.1 NEURAL NETWORK DESIGN PROCESS - AN OVERVIEW

To design a neural network, the problem must be defined clearly. The user should decide

what tasks the network is to perform. These tasks could be forecasting, recognizing, or

classification. One cannot just throw all the spreadsheet data at the network and expect it

to figure out what to learn fi'om the data.

The user also needs to choose the information on which the neural network will

base its forecasting, recognition or classification. This should consist of whatever

information is available that is relevant in determining the desired output. Neural

networks learn by making associations between inputs and outputs. A network can

associate the inputs “red”, “medium”, “round”, and “fruit” with the output “apple”.

The user does not need to figure out procedures, rules, or formulas in the neural

network development. The user should think about what kinds of input data the neural

network can use to make an association with the desired output. Having a variety of data

types increases the chance that various significant correlations can be found within the

data. A network would probably not be able to accurately predict stock prices based

solely on a collection of daily stock prices. It is better to have one or two extra items of

data than not enough. The neural network will learn to pay attention to the items that are

important and to ignore the few that don’t matter.

Another important part of design process is preparing to train the network by

gathering examples for which correct answers are known. For example, to recognize a

face, a network would need to have seen a picture of that face before. The training data

were organized as facts (patterns) in a spreadsheet format. A fact is a collection of inputs

coupled with the correct output(s). Each fact can be thought of as flash card that is used
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to train the neural network. One side of the card contains the input information, and the

other side contains the known answer which the neural network will learn to output

during training. The deck of training cards is called the training set.

’ A random sampling of facts should be set aside from the training set of facts for

testing the network. Since the network generalization capability depends on its

performance on the testing data set, it is not as important for neural network to learn a

training set perfectly as it is for it to be able to provide correct answers for inputs it has

never seen before.

Once, trained, the neural network can be called from within some other program,

perhaps an integrated system. The network may also be downloaded onto a chip for fast

running. A trained neural network is considered intellectual property and may be

copyrighted in the United States.

3.8 SUMMARY AND CONCLUSIONS

The discussions in this chapter reinforced the suitability of using neural network

methodology for predicting the condition of pipelines. A comprehensive list of

parameters that affect the condition of the sewer pipes along with the modeling

methodology was presented. It was discussed previously that the availability of data from

the municipal agencies regarding the quantitative values for all the parameters is not a

reality, as such extensive documentation is not prevalent. The following chapter will

discuss the review of the data obtained from the City of Atlanta and preprocessing before

it is fed into the neural network software for modeling.
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CHAPTER 4

DATABASE REVIEW AND PROCESSING

This chapter describes the detailed efforts of database review and data reduction. The

physical attributes of sewer systems owned by the City of Atlanta were extracted from

their existing database. The data items in Atlanta’s database include Pipe ID, Pipe

Material, Age, Diameter, Length, Depth of Cover, etc. that was surveyed during their

SSES efforts. It was found that not all the parameters that were identified in the literature

as contributing factors to sewer deterioration are readily available in the database. Hence,

the model was developed using the available factors. After erroneous data processing and

reduction, the original data was transformed into a new format which would be suitable

for further analysis and modeling.

4.] DATA ACQUISITION

The dataset used for the development of the prediction model using artificial neural

network for sewer pipes is described in this section. This information includes the

background information of Atlanta’s SSES surveys, attributes of the data, condition

assessment and rating standards and condition summary of sewer group one.
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4.1.1 BACKGROUND INFORMATION ON

ATLANTA’S SSES EFFORTS

The dataset used in this thesis is acquired from the Department of Watershed

Management, City of Atlanta sewer asset database. The City of Atlanta’s Department of

Watershed Management manages approximately 2,200 miles of sanitary sewer lines.

Atlanta’s sewer system is comprised of 260 sewersheds, which are prioritized into six

separate ‘Sewer Groups’. The First Amended Consent Decree (FACD) defines

“sewershed” as a subdivision of a sewerbasin that typically consists of 10,000 to 50,000

linear feet of hydraulically linked sewers that are tributary to a point in the sewer system.

The formal definition of a Sewer Group is a group of sewersheds within a common level

‘ of priority for evaluation, rehabilitation and relief requirement.

The SSES work on sewer group one has been completed at the time of this study

and will provide the base data for the model development that may aid in prioritizing the

inspection work for other sewer groups. The total length of pipes within the Sewer Group

1 database is 304 miles, whilst the length of the entire sewer network is 2,200 miles —

providing a sample size of approximately 13.8%. The Sewer Group 1 study area is

illustrated in Figure 4.1 below. Total linear feet of sewer in 8G], i.e., inventory is

1,655,117 LF out of which 1,340,943 LF has been inspected by CCTV. The database that

was obtained for this study consisted of condition assessment data fi'om sewersheds

SRV10 and PTC19A of Sewer Group 1.
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Figure 4.1 - Map Showing the Project Study Area (Sewer Group 1)

4.1.2 CONDITION ASSESSMENT

The condition rating system used for the inspection consists of 119 criteria. The entire

rating system is composed of four sub-groups: Structural, Service, Construction, and

Miscellaneous. Each sub-group contains rating criteria describing both the characteristics
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and the severity of the defects (see Appendix A). The prioritization and rehabilitation

decisions are taken depending on the defect type and severity. The severity of defects is

classified as follows:

" l - Excellent condition, no defects present

2 — Good condition, only low risk defects present

3 — Fair condition, pipe contains medium severity defects

4 - Poor condition, pipe contains high severity defects and collapse is imminent

5 — Failure condition, pipe is no longer functioning and is not structurally intact

4.1.3 CONDITION SUMMARY OF SEWER GROUP 1

The results of the sewer group one inspections are summarized in this section. The

predominant sewer structural deficiencies observed from the SSES inspections of Sewer

GrOup 1 include (see Figure 4.2):

. Circumferential cracks

. Circumferential fractures

. Multiple fiactures

. Holes

. Displaced joints (medium)

. Defective junctions

. Open joints (medium)
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Holes

M ultiple fractures 6%

6%

Circumferential fractures

6%

      

   

Other

33%

Open joints (medium)

7%

Circumferential C racks

11%

Displaced joints

(medium)

6%

Defective junctio ns

15%

Figure 4.2 - Proportion of Structural Deficiencies Observed from SSES

Inspections of SGl

The predominant sewer service condition deficiencies observed from the SSES

inspections of 861 include (see Figure 4.3):

o Debris (general)

- Grease

. Light Encrustation

. Fine roots

. Fine Roots at joints

. Root masses
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Root masses

6%

  

   

Fine roots

8%

Fine roots at joints

23%

Debris (general)

14%

. . Other

Light Encrustatro n 8%

6%

Grease

15%

Figure 4.3 - Proportion of Service Condition Deficiencies Observed from SSES

Inspections of SGl

This research will focus on modeling the structural condition of the sewers and

will not account for the service and other defects. Table 4.1, following, gives the

percentage distribution of mainline sewer structural defects encountered during the SSES

inspection of SGl. See Appendix A for full list of the city of Atlanta’s sewer defects

coding system and abbreviations.

Table 4.1 — Mainline Structural Defect Summary (City of Atlanta)

 

 

 

 

 

       

Main Line Defect Summary

Condition Defect Code Number Percentage

of Total

Structural Pipe Broken B 2,136 4.9%

MH Cover Cracked or

Structural Broken BC 2 0.0%

Structural Crack Circumferential CC 4.672 10.7%

Structural Crack Lonjitudinal CL 1,848 4.2%
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Main Line Defect Summary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Condition Defect Code Number Percentage

of Total

- Structural Cracks Multiple CM 1,599 3.7%

Structural Connection lntruding CNI 234 0.5%

Structural Connection Defective CX 1,518 3.5%

Connection Defective '

Structural lntruding CXI 1 ,278 2.9%

Structural Deformed D 122 0.3%

Structural Brick Displaced DB 3 0.0%

Structural Deformation Horizontal DH 7 0.0%

Structural Dropped Invert D1 5 0.0%

Structural Deformation Vertical DV 4 0.0%

Structural Exposed Pipe EXP 13 0.0%

Structural Fracture Circumferential FC 2,658 6.1%

Structural Fracture Longitudinal FL 1,363 3.1%

Structural Fractures Multiple FM 2,542 5.8%

Structural Hole H 2,395 5.5%

Structural Soil Fissures HOL 177 0.4%

Structural Hole in Storm Ditch HSD 6 0.0%

Structural Joint Displaced Large JDL 990 2.3%

Structural Joint Displaced Medium JDM 7,239 16.6%

Structural Junction Defective JX 6,468 14.8%

Structural Liner Defect LN 175 0.4%

Structural Brick Missing MB 2 0.0%

Structural Multiple Soil Fissures MLK 77 0.2%

Structural Missing Mortar Surface MS 8 0.0%

Structural Open Joint Large OJL 644 1.5%

Structural Open Joint Medium OJM 2,909 6.7%

Structural Open Joint Slight OJS 9 0.0%

Surface Damage

Structural Corrosion Large SGL 23 0.1%

Surface Damage

Structural Corrosion Medium SGM 278 0.6%

Structural Storm Manhole SMH 5 0.0%

Surface Damage Spalling

Structural Large SSL 66 0.2%

Surface Damage Spalling

Structural Medium SSM 95 0.2%

Structural Surface Damage Wear SW 197 0.5%

Structural Surface Wear Large SWL 335 0.8%

Structural Surface Wear Medium SWM 871 2.0%
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Main Line Defect Summary

Condition Defect Code Number Percentage

of Total

. Structural Surface Wear SLight SWS 629 1.4%

Structural Collapsed X 57 0.1%

Structural Collapsed Manhole XM 1 0.0%

Structural

Total 43,660 100%      

4.2 DATA COLLECTION AND PREPROCESSING

The effectiveness of an ANN model depends on the availability of reliable input data.

Finding data that represents or corresponds to the possible factors reviewed was

important for representing the physical cause-effect relationships. The reliability of the

data is measured by the amount of “noise” inherent in the data (Sacluti 1999). Noise is

data patterns that contain inaccuracies and discrepancies, which does not allow the model

to make proper associations between input and output patterns. Use of data with little

apparent noise would result in a more accurate and precise model.

Data collection involves evaluating all available data based on accessibility,

relative ease of obtaining long-term relevant data, and the prospect of future availability

of the same type of data for future models. This data must have characteristics that are

significant for model convergence. If all the proposed model input parameters are used

for the model, the run times for model training will be exceedingly long, and hence

would result in insufficient use of time. Also, if insignificant (or inappropriate) data is not

eliminated initially, the redundant input parameters will be treated as “noise” by the ANN

model, and as such may decrease the likelihood of the model convergence.
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4.2.1 PARAMETER COLLECTION AND ANALYSIS

Because of the nature of pipeline deterioration, literature indicates that to fully predict

their condition, it is necessary to have a wide range of representative data parameters.

Due to limitations in the collection of input data, it became necessary to restrict the scope

of the output being predicted to the overall condition of the pipes rather than the

probability of specific type and magnitude of defects. To determine the entire

deterioration pattern, it was assumed that no improvement activities were performed over

the life of the sewer pipes. Investigations into available data indicated that a large number

of the suggested input parameters that met the requirements (reliable and available in

reasonable abundance) were difficult to collect. The database after initial screening and

preprocessing contains the following variables that are considered to have an impact on

pipe condition and for training the model:

Pipe Material

Pipe Age

Sewer Size (diameter)

Section Length (MH to MH)

Sewer Type (Sanitary, Storm. Combined)

Average Depth of Cover

Slope/Gradient

After the initial review of the information, it was observed that data was either

lacking or too general for application within the scope of this study: simplifying

assumptions had to be made. For example, it was assumed that the study area was a
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uniform soil type, had similar operating conditions. bedding conditions. loading factors.

etc.

Sewer pipeline sections were classified in the study to group sewer sections with

similar properties. After carefully sifting and comparing, pipe type (concrete. clay or

other) and size were selected as grouping factors. It should be noted that the grouping of

the pipes were done only to perform initial statistical analysis. It was found in this study

that data preprocessing is necessary for BPNN model development. This preprocessed

database was then used to train, test. and validate the BPNN model.

4.3 SOFTWARE SELECTION FOR DATA PREPROCESSING

The original data was stored in Microsoft Access database. Microsoft Excel was selected

as a data processing and analysis tool because of its versatility for spreadsheet analysis.

The amount of data in this study required an integrated statistics software package which

could provide complete control over data access, management, analysis and presentation.

The MiniTab statistical software package was selected for data processing because of its

power. flexibility. and ease of use.

4.4 DATA ANALYSIS

A total of seven variables were used in modeling process as shown in Table 4.2.

However, depending on the availability of data. other variables such as source of sewer

(industrial and residential), soils surrounding pipes. ground water level, traffic volume

above pipe segments, and frequencies of overflow, etc. identified in the literature review



can be included in future analysis. This information. however. was not available for this

 

 

 

 

 

 

study.

Table 4.2 - Variables used for Neural Network Modeling

Name of Variable Description of Variable

Length Length of pipe segments between manholes

rn feet

Size Diameter of pipe segments in inch

Type of material Concrete, Vitrified Clay. PVC. etc.

Age of Sewer Age of pipe grouped on a five year period

Depth of Cover The average buried depth of the pipe
 

Slope of pipe segments between manholes

Slope Slope = (Elevation of upstream invert -—

Elevation of downstream invert)/Length

 

 
Sanitary/Stormwater/Combined

Type of Sewer (The sewer database obtained for this

research consisted of only sanitary sewers)  
Data analysis involved the examination of all collected data as means of

determining preliminary factor influences on the sewer condition. Furthermore, the

analysis was used as means of exposing data inconsistencies and errors. Microsoft Excel

was used to perform statistical tests on the collected data. Minimum, maximum, mean.

mode. standard deviation and correlation values were developed for all factors. The

correlation of an input provides an indication of whether an input will properly. or

satisfactorily, train with a neural network. For instance. an input with a good correlation

(value close to either 1 or -1) will typically be more influential in a neural network than

an input with a poor correlation (value close to O). The correlation. however. can be

deceiving as it only accounts for the effect ofa single factor. The intent of this research is
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to develop the combined effect of different factors. To this end, correlations were

examined only as means of preliminary input influence determination and not used to

eliminate factors deemed unimportant. A histogram and a scatter plot were also

developed for each input factor. The purpose of the histogram is to provide a

representation of the range and consistency of the collected data. The histograms exposed

a number of gaps in the collected data. The scatter plots were primarily used to expose

data inconsistencies. Furthermore, the scatter plots provided preliminary input influences.

The following Figures 4.4 — 4.13 represent the various statistical analysis performed with

the data.

 

Pipe Material Distribution in Database
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Figure 4.4 — Representation of the Sewer Material Distribution

LEGEND

CO - Concrete Pipe

VC — Vitrified Clay Pipe

DI — Ductile Iron Pipe

PVC — Poly Vinyl Chloride
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Sewer Age Distribution in Database
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Figure 4.5 — Representation of the Sewer Age Group Distribution

 

 

Sewer Size Distribution in Database
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Figure 4.6 — Representation of Sewer Size Distribution
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Figure 4.7 — Representation of the Sewer Depth Distribution
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Figure 4.8 — Representation of the Sewer Condition Distribution
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Age - Condition Relationship (Concrete Pipe)
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Age - Condition Relationship (Vitrified Clay Pipe)
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Figure 4.9 (a & b) — Representation of Sewer Age — Condition Relationships for

CO and VC Pipes
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Figure 4.10 (a & b) - Representation of Sewer Depth — Condition Relationships for

CO and VC Pipes

lll
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Figure 4.11 (b)

Figure 4.11 (a & b) — Representation of Sewer Size — Condition Relationships for

CO and VC Pipes
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Figure 4.12 (a & b) - Representation of Sewer Length — Condition Relationships for
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i Slope - Condition Relationship (CO Pipe)
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Figure 4.13 (a & b) — Representation of Sewer Gradient — Condition Relationships for

CO and VC Pipes

4.4.1 INTERPRETATION OF RESULTS

The signs of the parameter estimates are consistent over the estimation results.

Figure 4.4 represents the histogram representing the different classes of materials in the
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sewershed database in consideration. It can be seen that the majority of the sewers were

concrete pipes constituting about 75% of the sample with vitrified clay pipes being the

second highest number followed by PVC and ductile iron pipes. The DI and PVC pipes

will be excluded from the model due to the insufficient number of samples.

Figure 4.5 represents the distribution of the sewer age groups of the samples in

the database. It can be observed that the age of pipes in sewersheds in this study ranges

between 31 years and up. This might pose a setback as the model being developed will

not have learned the behavior of younger pipes.

Figure 4.6 represents the sewer size distribution obtained from the database. It can

be seen that the majority of sewer pipes are in the 8-inch category. Figure 4.7 shows the

distribution of the depth of cover within the group and Figure 4.8 shows the condition

ranking of sewers indicating that the average condition of sewers in these sewersheds are

in condition level 3.

Figures 4.9 to 4.13 show the plots of the present condition of the sewer with age,

depth, size, length and gradient of sewers. A few of the observations from the above

graphs are summarized in the following paragraph.

The relationship between the age and sewer condition ranking as observed in

Figure 4.9 indicates a slight correlation between the two. The condition of the sewers

tends to worsen as it ages. The relationship between the sewer depth and condition in

Figure 4.10 shows a slight pattern of increase in condition ranking with the depth. This

may be attributed to high overburden pressures acting on the pipe conforming to the

literature. The relation between size of the sewer and condition does not show any

correlation within this sample. The relationship between sewer length and condition
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ranking is illustrated in Figure 4.12. It can be visually observed that the condition ranking

of the sewer has a higher value with the increase in length of the sewer. This scenario

may be related to the facts presented in the literature review. As per Figure 4.13, the

condition ranking increases as the slope or the gradient of the pipe increases.

Although there is slight relationships observed from the plots, there is no

substantial correlation seen with the condition of the sewer and the individual parameters.

This gives a strong case for adopting neural network modeling methodology as it is

capable of capturing such subtle global relationships with ease.

4.5 DATABASE TRANSFORMATION

After necessary parameters have been identified, the original database was

transformed to a new format that can be used for BPNN model development and analysis.

Table 4.3 represents the database that will be used for further analysis and modeling. This

database will then be fed first to NetMaker, a preprocessing utility provided by

Brainmaker in order to assign the input-output parameters and then convert into files that

can be utilized by BrainMaker for training, testing and validation.
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4.1 SUMMARY AND CONCLUSIONS

This chapter presented a detailed discussion about the data acquisition, preprocessing and

analysis. The raw database was transformed into a standardized format is ready for neural

network model development. The available parameters for the model development were

identified and their relevance examined through statistical analysis. Although certain

variables have a low amount of correlation to the condition of sewers and deterioration, it

is important to include such parameters as neural network is capable of capturing even

subtle relationships.
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CHAPTER 5

MODEL DEVELOPMENT

The previous chapter described the preprocessing and statistical analysis of the acquired

data. This chapter deals with the detailed account of the model development process. The

model development in this thesis includes training and testing. Training a neural network

involves repeatedly presenting a set of examples to the network. The network takes in

each example, makes a response as the output, checks this response against the correct

answer, and makes corrections to the internal connections. Testing the network is the

same as training it, except that the network is shown with the examples it has never seen

before, and no weight adjustments are made during testing. Validation occurs after the

neural network has been developed. Validating a network consists of presenting it with

new input data and gathering the network outputs. Unlike testing, there is no known

output, only known inputs in the validation. Due to time and resource constraints

validation was not performed for the model developed in this thesis. The following

sections provide a detailed discussion about the model development process. Figure 5.2

represents the neural network design structure used in this thesis.

'5.1 DATA SUBDIVISION

In this research, the purpose of preprocessing the data was to establish a database which

can be directly used for further model development. The processed data set was further

divided into three sub data sets. As shown in Figure 5.], approximately 85 percent of data
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were used for network training and 15 percent of data were used to test the generalization

ability of the network when facing data unseen in the training period.

15%

I—.‘.—
I a Training

I Testing

 

85%

Figure 5.1 - Database Subdivision

5.2 SOFTWARE SELECTION

A developmental platform is usually a requirement to train neural network. Often referred

to as neural network simulators, these platforms are commercially available. Some

factors worth considering when choosing a suitable neural network simulator are required

level of expertise, complexity, and the pre- and post-processing facilities. In this study,

BrainMaker, a commercially available neural network simulator distributed by California

Scientific Software, was used for the development of the proposed neural network model.

The BrainMaker neural network simulator uses popular backpropagation training

algorithm for network training. BrainMaker reads three kinds of neural network files:

definition files, fact files, and network files. BrainMaker also creates different types of

statistics and output files. They are all human-readable and editable. A definition file

describes everything there is to know about the network to BrainMaker, such as the

number of neurons in each layer, the type of data, and what is going to be displayed on

the screen. BrainMaker uses the definition file to create the neural network. The default

extension for the definition file is “.def”. A fact file gets the data into BrainMaker. There
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are fact files for training, testing, and running. The default extension for the training fact

file is “.fct”, for testing it is “.tst”, and for running it is “.in”. A network file is created by

BrainMaker during training using the data in the training fact file and the instructions in

the definition file. The network file contains the actual connection information as well as

training parameter information. The default extension for a network file is “.net”. The

network file plus the testing fact file are used for testing. When the answers are not

known, the training network file plus the running fact file are used for running.
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Figure 5.2 - Neural Network Design
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5.3 NEURAL NETWORK DESIGN, TRAINING AND TESTING

To develop a neural network model, one must decide precisely what the neural network is

expected to forecast, generalize, or recognize. The original database needs some

preprOcessing before it can be used for training and testing. Then the neural network

needs to be trained and tested with some certain rules. Finally, a new data set is used to

validate the neural network.

5.3.1 FRAMEWORK FOR NEURAL NETWORK DEVELOPMENT

In this research, the BPNN model was developed through a procedure presented in Figure

5.3. Each developing stage shown in Figure 5.3 is discussed as follows:

> Database Review — Database investigations was performed to ensure that the

database contained sufficient information for neural network development and for

pipeline condition prediction.

Data Preprocessing - The database was processed and reorganized to form a new

database ready for model development. The new database was divided into

subsets to create a training data set and testing data set.

Network Design and Training - Several different architectures of the neural

network were designed and trained in order to obtain the best architecture

resulting in the best testing performance.

Network Testing and Error Analysis - Each of the architectures were tested

independently using the testing data set. Assessments were made for

generalization ability and accuracy.
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1 Network Implementation - The best network architecture was then chosen and

proposed to be embedded in the working environment.

Network Develonment Procedure

 

Database review

  
 

 

Data analysis and

preprocessing

 

 

Network design

training  
 

 

Network testing,

error analysis

  
 

 

 
Implementation

 
 

(22>

f—————:>

Documentation Produced

Data sources

 

Identifying

parameters
 

 

Architecture and

parameter settings

Performance

analysis results

 

Validation

 I
1
3
3
)

U

Figure 5.3 - The Procedure for Neural Network Development

It must be kept in mind that the model being developed will be able to predict the

probability of sewer pipe being in a certain severity level, but is not meant to predict the

probability for individual pipe defects. The main purpose of this model study is to

demonstrate the possibility of using ANN modeling for predicting the sewer condition so

that physical inspections can be prioritized. As such, further research and model

development will likely be necessary.

5.3.2 NEURAL NETWORK TRAINING AND TESTING

The specification of input and output for the BPNN is presented in Table 5.1. The BPNN

is designed to predict the condition of sewer pipes given the variables that are identified
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to affect its deterioration process. Training a neural network involves repeatedly

presenting a set of examples (facts) to the network. The network takes each input, makes

a guess as to the output, checks this guess against the output (correct answer), and makes

correCtions to the initial connections (weights) if its guess is incorrect. This process is

repeated for each fact in turn until the network learns the facts well enough to be useful.

Table 5.1 - BPNN Architecture

 

 

 

 

 

 

 

 

 

Neuron Type Neuron Number Description Range of Variables

Inputs 1 Pipe Material CO, VC, PVC, etc.

2 Pipe Age Age of Sewer rn 5-yr

1ncrements

3 Pipe Diameter 8- inches and up

4 Section Length Manhole to Manhole Length

in feet

5 Depth Average Depth

6 Slope Gradient of Pipe

7 Sewer Type Outfall/Lateral

Output 1 Condition 1-5      
As described in Chapter 4, the above inputs are first fed into NetMaker for

labeling the inputs and the outputs. The proportion of training and testing facts are

assigned before saving the file as BrainMaker readable and executable files. Now the

database is ready to be modeled using the BrainMaker software. Figure 5.4 depicts the

typical structure of the neural network with the given set of input parameters.
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Figure 5.4 — Schematic Architecture of the Neural Network

The training file created using NetMaker is accessed through BrainMaker for

modeling analysis. Histograms and the Network Progress Display, two useful tools

provided by BrainMaker, can help determine whether the network is making progress in
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training and still has capacity to learn. Figure 5.5 (a) shows the training histogram of a

neural network (19 hidden neurons, 83 epochs) with the horizontal axis representing the

values of connection weights. This bell-shaped histogram indicates the network is healthy

and still has the capacity to learn. Another tool is the Network Progress Display, as

shown in Figure 5.5 (b). The top part of the screen shows a histogram of the errors over a

training run. It gives a quick snapshot of the distribution of errors, making it easy to see

how close the network is to achieving the pre-specified tolerance level. The bottom part

shows the progress of the Root Mean Square (RMS) error, which is defined in Chapter 3,

during training. This graph shows how well training is progressing over runs. Figure 5.6

illustrates the step by step process of neural network model development for sewer

condition prediction.
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Figure 5.5 (a & b) — Connection Weights Histogram and Network Progress in Training
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5.3.3 DETAILED OVERVIEW OF MODEL DEVELOPMENT

The first step in creating a neural network model using BrainMaker is to

preprocess the data using NetMaker tool provided in the software bundle. NetMaker has a

number of utilities useful for manipulating the data to present the best possible data

structure for model development. It is here that Inputs and Outputs of the model are

assigned. The dataset is split randomly into training (85%) and testing (15%) facts using

the NetMaker preferences. Figure 5.7 shows the typical NetMaker window.
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Figure 5.7 — View of the NetMaker Data Processing

After the completion of data preprocessing, the file is saved to a BrainMaker file.

NetMaker creates three files, namely, definition (.def), training (.fct) and testing (.tst).

The data is now ready to be operated with BrainMaker for modeling.
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5.3.4 SELECTION OF OPTIMAL NUMBER OF HIDDEN NEURONS

Selection of optimal number of hidden neurons is an important issue in the neural

network training process. The goal of training is to obtain a neural network with best

generalization capability. Generalization is defined as the ability of a neural network to

store in its weights general characteristics which are common to a group of examples.

Usually, a neural network with too few hidden neurons will not be able to learn

sufficiently from the training data set, whereas a neural network with too many hidden

neurons will allow the network to memorize the training set instead of generalizing the

acquired knowledge for future unseen examples. Unfortunately, there is no precise

formula for determining the ideal number of hidden neurons for a given application.

There are several ways to determine a good number of hidden neurons. One solution is to

train the neural networks with the number of hidden neurons calculated using the

  

formula:

Number of Hidden Neurons = of Datasets — Outputs ---------- (5.1)

C (# Input + # Output + 1)

Where, C = 2 — 5.

Therefore the # ofNeurons = (167 — 1) / 3 * (15 +1+1): 4 Neurons

The second equation suggested in BrainMaker manual is:

Number of Hidden Neurons = (# Inputs + # Outputs)/2 ---------- (5.2)

= (15 +1)/2 : 8 Neurons

The third solution is to begin with a small number of hidden neurons and add

more while training if the network is not learning. In this research, the first method (4

Hidden Neurons) was used to train initially and gradually more neurons are added to train

several neural networks with varying number of hidden neurons. The neural network that

129



resulted in the least testing error was selected, resulting in the best generalization

capability. The “testing while training” method was used to trace the testing errors

(generalization ability) of the neural network during training process. After training, it

was convenient to find the best network with the least testing errors.

In order to identify the best BPNN model for pipelinecondition prediction, a

variety of neural network architectures were experimented in this study. Table 5.2

presents the training and testing errors resulting from typical BPNN architectures that

were tested in this effort. Since the generalization capability of the neural network is

typically represented by the testing errors, the testing RMS error was selected as the

major criterion to evaluate the BPNN performance. It can be seen that Model #7

presented in Table 5.2 with 10 hidden neurons resulted in the best BPNN model with

lowest testing error.

Different network architectures were tried with the same facts to examine which

architecture best suites the problem in hand. In all the models experimented, 85% of the

total facts were used for training and 15% of the facts were set aside for testing. The

number of hidden layers used for all the models was one and the training and testing

tolerances were set at 0.3 and 0.3 respectively. It is assumed that these tolerances were

acceptable based on the fact that values for all the parameters that contributed to the

pipeline deterioration were not factored in the model due to the unavailability of data

attributed to the lack of monitoring of such data. After the model with optimal number of

hidden neurons was selected from this prescreening process, it will undergo further

processing in order to enhance the tolerance and accuracy levels.
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Table 5.2 — Training and Testing Errors of Different BPNN Architectures
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Model Architecture RMS-[mums RMSTEanG

1 15-4-1 0.2412 0.1881

2 15-5-1 0.2644 0.2115

3 15-6-1 0.2422 0.1882

4 15-7-1 0.2499 0.1769

5 15-8-1 0.2458 0.1795

6 15-9-1 0.2378 0.1760

7 15-10-1 0.2386 0.1478*

8 15-11-1 0.2411 0.1746

9 15-12-1 0.2713 0.1971
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Figure 5.8 — Graphical Representation of Training and Testing Errors for different

 

 



Figure 5.8 presents the RMS error and average error of the neural networks with

different number of hidden neurons. It can be seen that the network with 10 neurons in

the hidden layer resulted in the least RMS error and average error. Hence, Model #7 is

chosen as the best architecture and will be used in further analysis and model

development using BrainMaker.

From the BrainMaker interface, the number of hidden neurons is set to 10 and the

necessary values for the training and testing tolerances are made before the model is

ready for training. The training and testing statistics files were activated to capture the

network progress statistics that would be helpful in identifying the best run. Figure 5.9

shows the network during the beginning of the training. Figures 5.10 and 5.11 show the

network after training and testing processes with tolerances of 0.3 and 0.3 respectively.
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Figure 5.9 - Neural Network Training Progress
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Table 5.3 — Network Architecture and Specifications of Model #7

 

 

 

Inputs Hidden Layers No. of No. of Training Testing

Neurons Training Testing Tolerance Tolerance

Facts Facts

15 10 1 142 (85%) 25 (15%) 0.3 0.3      
 

 

Figures 5.10 and 5.11 shows the training and testing results of the model #7 configuration

(15-10-1).
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Figure 5.10 - Training Results of Model #7

The training is stopped when the neural network settles at the lowest possible

training and testing errors and there is no visible convergence in the training statistics.

The summary of training and testing statistics is given in Table 5.4 below.
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Figure 5.11 — Testing Results of Model #7

Table 5.4 - Summary of Training and Testing Results (Model #7)

 

 

 

 

Training (156 Facts) Testing (27 Facts)

Bad Good Bad Good

20 (14%) 122 (86%) 3 (12%) 22 (88%)

   
 

Although the model learned 86% of the facts presented to it and predicted 88% of

the testing facts right, the tolerances are on the higher side. Figure 5.12 shows the plot of

the predicted condition versus the actual condition. It can be observed that the model

almost always under predicted the sewers in condition rating level 3. This indicates that

the model will have to be further fine tuned to pick up the condition rating 3 scenario.
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Figure 5.12 -— Plot showing the Predicted and the Actual Condition of the

Testing Sample (Model #7)

5.4 MODEL PERFORMANCE ENHANCEMENT

There are some tools available in BrainMaker that help in enhancing the performance of

the models. The application of these utilities to get better results with a lower tolerance is

explained in this section. The main objective of this effort is to converge the neural

network training as much as possible with the lowest tolerances so that the network learns

most number of facts presented. This model will then be tested with a lower testing

tolerance of 0.25 as compared to the tolerance of the initial model which was set at 0.3.

The network was set to test and save every 20 runs automatically to enable the best

network configuration to be selected after training.

Model #7 had previously learned 86% of the facts presented with a testing

tolerance of 0.3 and it had tested successfully 88% of the facts with testing tolerance of

0.3. First, the model 7 is opened in BrainMaker to be retrained and tested with a tolerance

of 0.25. One of the techniques available in the software is to randomize the network
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connections and to add some noise to the network. This helps the network to learn some

hard to learn facts which it has difficulty learning. The connections were randomized

with a constant of 5 (default) and a noise value of 0.15 is set. The network was then

retrained until it learns the most number of facts and also tests successfully. The

reconfigured network was able to learn maximum of 92% of the training facts. The

training is stopped at this point and the facts are ready to be tested. Figure 5.13 shows the

trained model with 131 of the total 142 facts learned by the network.

 

f \lullt‘ul Hi annIkm' MM): {turn-1.11mi[i-‘llNi‘i'MLI Hi I I

mmmuPcmmm

.200

          

  

mun It's. Pun: PIMLJII lam: 0.- l'elemee: 0 , - - * _~~ -~—--» ~ ‘ ~ .

Feet: 5 heel: 1032193 I“: 11 lane: 10 Good: 131 use: 122 M1: 19945 *w‘g‘gtbg‘ruqu"- r‘g

wt, L" are: 1.50;; 50 oi'iidden Connection

mm 812! III: 2.“

ii .

3.." 0.”.

0.- 1.-

31-35 36-40

I." .

41-45 “*5.

-0.0 0.0

Hidden - Connection
  I.” 0.7030 10

DOPE

  

 

1.0000

 

  
 

Figure 5.13 —The Model after Training Maximum Facts

The neural network file was initially programmed to test the allocated data

automatically for every 5 runs while training progresses. The testing statistics file that

tracks the network configuration was pulled to select the best network that has the least

testing as well as training RMS errors. Figure 5.14 shows the snapshot of the testing

phase. This model tested 21 out of the total 25 facts set aside for testing with a tolerance

of0.25.
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Figure 5.14 —The Trained Model while Testing

The network information for this model can then be accessed from the training

statistics file as shown in Figure 5.15. The testing configuration of this network is given

 

      
 

 

      
 

 

in Table 5.5.

Table 5.5 — Testing and Training Network Statistics

1%.?! :33: Good Bad “agate“ A331? Ell-“oi

Training Configuration

19945 142 131 11 0.25 0.1770 0.1966

Testing Configuration

19945 25 21 4 0.25 0.1649 0.1979        
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Figure 5.15 —Network Training Statistics for Model
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Figure 5.16 - Plot showing the Predicted and the Actual Condition of the

Testing Sample after 19945 Runs
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The model automatically tests 15% or 25 facts that were set aside initially with a

testing tolerance of 0.25. The model tested 21 out of 25 facts as good or 84% successfully

within the 0.25 testing tolerance. Figure 5.16 shows a comparative plot of the predicted

condition versus the actual condition of sewers. This graph indicates a better trend than

the earlier results represented in Figure 5.12.

Finally, the network is again calibrated to a lower testing tolerance level of 0.2

and then trained longer. The network in this mode could test only 15 out of 25 facts, but

with higher accuracy level. Figure 5.17 represents the plot of the predicted and the actual

condition. This plot has more accurate facts than the previous models because of the

stringent tolerance levels. It is assumed that a testing tolerance of 0.2 is acceptable and

will be able to give a fair judgment as to what the condition ranking of the pipe will likely

be, given the combination of input parameters. The model’s accuracy can be increased as

more input parameters identified to affect the sewer condition are available for modeling.

Table 5.5 — Testing and Training Network Statistics

 

      
 

 

      
 

 

 

11131? $223 Good Bad “3111521216“ A33?“ SMS

Training Configuration

40995 142 126 16 0.2 0.1568 0.1868

Testing Configuration

40995 25 15 10 0.2 0.1367 0.1792
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Figure 5.17 — Plot showing the Predicted and the Actual Condition of the

Testing Sample (40995 Runs)

The neural network automatically configures the weights of the hidden neurons

based on the training. Figure 5.18 represents the weight matrices for the hidden neurons.

There are two blocks (input to hidden and hidden to output) in the Figure 5.18. The first

block has 16 numbers per row (15 inputs plus the threshold) and there are 10 rows (for

the 10 hidden neurons). The second block has 11 numbers per row (10 hidden plus the

threshold) and there is only 1 row (for 1 output). Weights from threshold neurons always

go at the end of the row.

140



 

F Untitled Notepad

Fl: Ed Format M Heb

[77315—31:577'-3.ffs'6”57..370775.333-"2.3390 6.053? 1.5676 4.95“ -6.7076 7.302 4.“): 7.9994 2.9154 0.23“

 

1.8444 o7.9942 -7.9972 6.3362 6.3512 -3.3596 -7.9472 -6.I616 0.9140 1.7350 -7.9912 '2.0114 -7.9994 -4.0554 7.9994

9663226 -7.I710 -2.6436 7.9994 5.9916 5.0076 7.7606 2.0234 3.7532 -2.6934 4.2506 7.7026 -7.9994 7.9946 7.0052

:::§g;g -7.3360 7.9904 -7.0396 -7.9904 -7.7404 -7.0630 -4.6536 -7-2972 1.3790 6.2400 -7.9060 -7.9994 -7.9994 7.9994

:6::25: ~6.5206 7.9002 7.9994 -7.0642 7.9994 7.9994 -6.4144 -6.6236 -7.9556 5.5924 -7.9994 7.9994 7.6512 '7.9994

-;.:37i -7.6944 3.5726 -3.2510 -5.4204 -5.5066 3.1232 5.0212 5.9252 7.4010 7.0020 1.3434 -7.9994 4.3602 -0.6764

:6.;::: -1.1070 4.0990 '1.9056 7.0134 7.3092 7.1116 1.2374 1.9104 5.9500 '2.3922 *1.9196 7.9994 -3.0744 3.6246

:;:2:26 -1.9524 -7.9972 -5.3796 6.3400 4.7752 6.7322 2.5992 2.4502 '0.1556 7.6540 2.7520 '7.9994 2.5994 -7.9044

:;:;z:0 -7.6100 7.9736 -7.0320 3.9760 7.1664 7.9994 7.2646 2.5400 7.9994 6.0556 6.5160 '7.9994 -7.9916 7.9994

-E.E§§g -7.1016 '7.9044 7.9724 6.0676 6.9376 -4.7162 6.6074 -3.5026 4.5716 '0.2064 5.1110 '7.9994 -7.9960 2.0432

3.6404 ‘3.0214 -3.4246 7.9994 1.5390 '3.6392 -4.6164 -4.5762 -1.1206 '1.6092 5.4094

  
 

Figure 5.18 — Network Weight Matrices (40995 Runs)

5.5 WEIGHTAGE OF INDIVIDUAL PARAMETERS

In order to determine the importance of each of the parameters, different models were

trained with the targeted parameter excluded during training. The corresponding

parameter that is excluded in the model with the highest RMS Error will be the most

important parameter followed by the other parameters ranked descending based on the

RMS error value. The following table lists the parameters in descending order of their

importance based on the Average and RMS errors resulting from the elimination of the

particular parameter.

Table 5.6 - Excluded Parameters and the Resulting Errors Generated by the Model

 

Excluded No. of Runs Training Average

. RMS Error

Parameter Tolerance Error

 

Size 19945 0.25 0.2481 0.2733

 

Type 19945 0.25 0.2311 0.2646

 

Length 19945 0.25 0.2093 0.2376

 

Age 19945 0.25 0.1961 0.2188       
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Depth 19945 0.25 0.1884 0.2045

Material 19945 0.25 0.1706 0.1968

Slope 19945 0.25 0.1612 0.1844

       

5.6 RESULTS OF THE ANN MODELING EFFORT

Although the data obtained was noisy and inadequate for a thorough statistical analysis, it

was demonstrated that the neural network was adept in capturing the subtle relationships

that gives an indication of the pipeline condition state. This experiment indicates that the

neural network is capable of learning the deterioration trends and relates it to the

condition ranking of sewers during training. But the fact that it could learn only 70% with

ease indicates that additional parameters identified in the literature review are needed to

account for the full deterioration pattern to predict the actual condition of sewer pipes. As

access to more detailed information identified in the literature is available, the network

can perform at a better rate and the tolerances can be set at a lower value to result in a

more accurate model.

This model is essentially designed to be able to predict the condition probability

of the sewer pipes. If the pipe attributes are known, such as pipe age, average depth of

cover, manhole to manhole length, pipe diameter, pipe material, the deficiency

probability can be predicted from the trained neural network model. The output of the

model ranges from 1 to 5, 1 being the best and 5 being the worst possible condition. High

priority should be placed on the pipe with high deficiency probability. If the resulting

condition predicted by the model is higher than a set threshold (usually determined by the
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municipal agency), the recommended action is to perform a physical inspection to those

sewer sections to determine the condition state of that pipe.

The model developed in this thesis effort was intended to generate the deficiency

probability that will aid the decision-maker along with other factors like expert judgment.

location importance factors, etc. to prioritize “at risk” sewers. Physical inspections can

then be scheduled to these prioritized sewers to optimize the inspection resources and to

carry out any appropriate performance improvement measures in a proactive manner.

5.7 SUMMARY AND CONCLUSIONS

This chapter presented the detailed overview of the development of the neural network

model. Various configurations were experimented and the best architecture among them

was chosen for further description and development. It was observed that the model

exhibited a good learning tendency towards the facts presented, but there were problems

due to noise in the data because of the fewer number of available facts, outliers and the

missing parameters that account for rest 0f the deterioration process. It is concluded that

the application of neural network to solve the problem of condition prediction of sewers

is feasible and the accuracy of the model depends on acquiring a larger and more

inclusive sample size.
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CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY

According to the literature review results, many researchers have developed regression

models for pipeline deterioration and condition forecasting. Although widely used and

easy to understand, these models are less accurate due to the complexity of deterioration

mechanism involved in pipeline deterioration models. On the other hand, development of

the traditional models needs a function form to be pre-specified. This could be difficult in

the presence of a huge pipeline condition data because of the multitude of variables

associated with pipeline deterioration. As an alternative, this thesis attempted to develop

a sewer pipeline condition prediction model using artificial neural networks, which does

not require a pre-specified function form. The outcome of this thesis demonstrates the

ability to develop neural network based condition prediction models for sewer pipes

using the available condition assessment data. Although complicated in the neural

network training algorithm, the development of neural network is usually implemented

by commercially available software packages. In this research, the BPNN model was

developed with the City of Atlanta’s sewer condition assessment database by using

BrainMaker, a popular neural network training platform. After the training process is

completed, the BPNN model can remember all the necessary information in its weight

matrix and can be drawn to validate new datasets.
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There are several factors involved in determining the threshold of the pipe

condition. If the predicted pipe condition exceeds the threshold, inspection to that pipe

section must be performed to prevent worsening of the condition. If the predicted pipe

condition is lower than the threshold, low priority is placed in the inspection of that pipe

section. Budget availability, historical record and experience will play important role in

determining the threshold.

The predicted pipe condition using this model‘is essential in sewer rehabilitation

scheduling as it provides the decision-maker with a priority based inspection ranking

system. At project level, the model can help identify the maintenance needs and strategies

for sewers. A higher priority should be placed on the higher deficiency prediction of the

sewer system. Physical inspections can be scheduled to optimize inspection so that

necessary‘repairs can be performed in a proactive manner prior to sewer collapse or other

adverse effects and to rehabilitate the pipe at the most optimal time. At the network level,’

the decision-makers can propose the annual budget and maintenance plans by using the

above information.

6.2 LIMITATIONS OF THE RESEARCH

As indicated previously, this research is undertaken mainly to demonstrate the possibility

of using neural network models as a screening tool to prioritize inspections. The

availability of fewer numbers of deterioration parameters and limited data availability

posed the primary drawback to effective neural network training and caused the main

limitation to this thesis.

3.
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Environmental parameters affecting the pipe, such as overburden pressure, soil

type and properties, soil pH, soil water content and other factors identified in the

literature were omitted due to lack of monitoring of the data. Review of literature showed

these parameters to be appropriate measures of corrosion and soil-pipe interaction. Hence

the largest limiting factor for modeling ease and accuracy was the unavailability of all

encompassing and comprehensive data.

6.3 CONCLUSIONS

Due to their low visibility, rehabilitation of underground sewer system is often

neglected until a catastrophic failure occurs. This, more often than not, results in costly

and difficult rehabilitation due to the urgent nature of ensuring that the sewer system is

operational. A majority of sewer repair projects are executed on a “reactionary” basis,

rather than adopting a “proactive” approach. There are two main reasons for this: the first

is the unavailability of adequate information regarding the condition of the sewer system;

and the second is the ineffectiveness of predicting sewer deficiency prior to failure or an

adverse condition so that inspection and repairs could be performed prior to failure of the

system that might lead to a costly fix and other risks.

The main contribution of this thesis is the development of a neural network model

to assess the probable condition of sewers to prioritize inspection requirements. This

prediction model is developed to improve the objectivity of proactive management of

sewer systems.

The neural network model was developed utilizing the City of Atlanta’s condition

assessment survey database. Since all the parameters that were identified to affect the
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sewer deterioration, as identified in the literature were not readily available to be

incorporated in this model, it is recommended that the model be expanded to encompass

those parameters and retrained. Through this process the neural network will keep

learning the updated information and adjust its hidden weights to ensure the forecasting

accuracy.

To accurately quantify the effect of certain input parameters for sewer

deterioration, it will be useful to develop a neural network model, as demonstrated in this

thesis as an initial starting base. However, subsequent models with more descriptive

parameters will enhance the understanding of the effects of influencing input parameters

on sewer systems.

6.4 RECOMMENDATIONS FOR FUTURE WORK

Since the developed model does not include a number of parameters thought to be

important to sewer deterioration, the model developed in this exercise is not complete.

While it demonstrates the utility of using Artificial Neural Networks for predicting sewer

condition, further work for data collection and model development is required to ensure

that the model is more accurate and reliable for future applications.

Having made the above conclusions, it is clear more work is required to facilitate

future use of the model. This thesis illustrates the need for the following actions, to

facilitate ease, and more comprehensive development of Artificial Neural Network

models for sewer condition prediction:

7 Inclusion of more descriptive data.
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7 Collection technique improvements of present data. Advances in embedded

sensor technology can be used to get more information on the deterioration trends

in the sewer pipes, and information obtained from this can be used to enhance the

' prediction capabilities of the model.

7 Exploration of input parameter importance, and other factors affecting sewer

deterioration.

To further the development of neural network models that are accurate and

flexible, inclusion of more descriptive data is needed. The model developed in this

research required making assumptions that were scope limiting since it required values

from some factors that may affect the sewer deterioration process. The availability of

detailed soils parameters, physical pipe characteristics, and in-situ pipe conditions would

be assets to fully understand and model the deterioration of sewers and accurately predict

their condition. A list of possible parameters that can be factored into the model is listed

below.

Table 6.1 — Recommended List of Parameters that needs to be incorporated in

 

 

 

 

 

 

 

 

Future ANN Models

Parameter Range of Variables

Surface Loads High (1)/Low (0)

Groundwater Level High (1)/Low (0)

Frost Heave Factor High (1)/Low (0)

Bedding Condition Good (1)/Poor (O)

Backfill Soil Type Cohesive (1 )/Non-Cohesive (0)

Soil Aggressivity High (1)/Low (0)

Soil Stability Factor High (1)/Low (0)    
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Parameter Range of Variables

Sewerage Characteristics Corossivity, pH, etc.

Number of Laterals Number

1 Tree Root Problem High (1)/Low (0)

Sewer Location Residential/Commercial/Industrial

Construction Quality Expert Factor (O-l)

Ground Movement High (1)/Low (O)    
 

The neural network based sewer condition prediction model can then be

integrated with a comprehensive infrastructure asset management system to aid the

municipal agencies in better planning and spending of their limited available budget.

Figure 6.1 illustrates a flow chart of the proposed integrated model to make decisions for

inspection prioritization using the built neural network model.
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Factor    
 

Prioritize and Inspect

Figure 6.1 — Conceptual Integration ofANN Model
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INTERNAL SEWER CONDITION GRADES OF DEFECTS - CITY OF

ATLANTA

       

 

CN 7 Connection 1 7 77 onstruction

_CNA Connection Abandoned _ ,1_. _ _, , __an§_trp£ti9r,l_-_ . - -

DC Dimension Change 17 7 7 7 7 Construction

JN Junction 7 7 7 7 7 1 Construction

JNA7 Junction Abandoned 1 7 Construction

LC Liner Changes 7 7 17 77 7 Construction

LD7 Line Deviates Down 7 1 Construction 7

LL Line Deviates Left 1 7 7 7 Construction

LR7 Line Deviates Right 7 7 7 1 _ 77 Construction _

LU 7 Line Deviates Up 1 77 Construction

MC Material Change 71 7 Construction

MH Manhole-_ -. , . _ - - L ,_ ._iC_0.n8,t_r.u<.=ti_on - ,,

SC Sewer Shape Changes 1 Construction

CU Camera Underwater 1 7 Miscellaneous

FH Finish Survey 1 77 Miscellaneous

GO General Observation 1 Miscellaneous

GOA General Observation Abandon 1 Miscellaneous

SA Survey Abandoned 1 Miscellaneous

ST Start Survey 1 Miscellaneous

WL Water Level 1 Miscellaneous

ABS Abandon Service 1 Service

DE Deposit 2 7 Service

DEG Deposit Grease 2 Service

DEJ Debris at Joint 2 Service

DEP Defective Plumbing in Bldg 1 Service

DES Deposit Silt 2 Service

EH Encrustation Heavy 4 Service

EHJ Encrustation Heavy at Joint 4 Service

EL Encrustation Light 2 Service

ELJ Encrustation Light at Joint 2 Service

EM Encrustation Medium 3 Service

EMJ Encrustation Medium at Joint 3 Service

ESH Scale Heavy 4 Service

ESL Scale Light 1 Service

ESM Scale Medium 3 Service

HI MH Below Grade 1 Service

ID Infiltration Dripper 2 Service  
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RTJ

EXP

7 Missing Cleanout Cover—

.Fine Roots- - -

 
Infiltration Dripper at Joint _

Infiltration Gusher

Infiltration Runner

Infiltration Runner 7at7J70int 7 77 7

Infiltration Seeper

Infiltration Seeper at Joint

MH Above Grade 7 7

Obstruction 7

Roots Fine at Joint 7

Mass Roots 7 7

Roots Medium at7J7oin7t _ 77

Tap Root

Roots Tap at Joint

Surface Spalling 7 77 7 _ 7

Surface Damage Spalling Slight

Vermin — Rats

Area Drain

Pipe Broken

MH Cover Cracked or Broken

Broken Cleanout

MH Frame Cracked or Broken

Sewer Broken at Joint

Catch Basin

Crack Circumferential 7

Crack Circumferential _at Joint

Crack Longitudinal

Crack Longitudinal at Joint

Cracks Multiple

Crack Multiple at Joint

Connection lntruding

Connection Defective

Connection Defective lntruding

Deformed

Brick Displaced

Deformation Horizontal

Dropped Invert

Deformation Vertical

Driveway Drain

Exposed Pipe
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l
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Structural

Structural

Structural

Structural

7 Structural

Structural

Structural

.. -.Stru¢tural.

‘ Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

Structural

_ _‘ $833931- ._ _

 

  

 



 

  

OJM

OJS

SGL

SGM

SMH

SSL

SSM

SW

SWD

SWL

SWM

SWS

Fracture Circumferential

Fracture Circumferential at Joint

Frame/Cover Leaks

Foundation Drain

Fracture Longitudinal

Fracture Longitudinal at Joint

Fractures Multiple

Fracture Multiple at Joint

Hole

Soil Fissures _7 7

.Hole in Storm Ditch M

Joint Displaced Large

Joint Displaced Medium 7

Joint Displaced Slight

Junction Defective

Liner Defect77 7

Brick Missing

Manhole Frame/Cover

Manhole Structure

Multiple Soil Fissures

Missing Mortar Medium

Missing Mortar Surface

Missing Mortar Total

Open Joint Large

Open Joint Medium

Open Joint Slight

Roof Leader Connected

Surface Damage Corrosion Large

Surface Damage Corrosion

Medium

Storm Manhole

Surface Damage Spalling Large

Surface Damage Spalling

Medium

Surface Damage Wear

Stairwell Drain

Surface Wear Large

Surface Wear Medium

Surface Wear Slight

Windowwell Drain
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DATA SAMPLES USED FOR MODELING

TRAINING FACTS

OUTF LAT LENGTH SIZE CO VC 31-35 36—40 41-45 46-50 51-55 56-60 >60

DEPTH SLOPE OUTPUT

F: ........ 1
5.4

l O 215 18 l 0 0 O 0 0 l 0 0 15.9 0.001

10350181000001001850013

fl ________ 3

l 0 273 15 l 0 0 0 0 0 1 0 0 9.7 0.005

3

Li -------- 4

l 0 416 30 l 0 O 0 0 O 1 0 0 11.4 0.011

3

U -------- 5

l 0 166 30 l 0 0 O O 0 1 0 0 9.2 0

1 0 241 15 1 0 0 O 0 0 l 0 0 12.6 0.023

l; -------- 7

l 0 494 30 1 0 0 0 0 O 1 0 0 13.5 0.027

3

L1 -------- 8

l 0 489 30 l 0 0 0 0 0 l O 0 9 0.001

3

U -------- 9

1 0 324 15 l 0 0 0 0 0 1 0 0 14.3 0.007

3

Li -------- 10

l O 367 15 l 0 0 0 0 0 1 0 0 10.1 0.01

3

L1 -------- 11

l 0 404 15 1 0 0 0 0 0 l 0 0 9.3 0.004

Ll -------- 12

0 1 238 8 l 0 0 0 0 l 0 0 0 9.6 0.015

3

U -------- 13

O l 293 8 1 0 0 0 0 1 0 0 O 10.3 0.008
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-------- 15

1 332

-------- 16

1 205

1 245

1 240

1 254

1 267

-------- 23

1 112

-------- 24

1 170

-------- 25

1 249

l 148
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8.6 0.01

8.9 0.009

9.8 0.009

8.3 0.003

8 0.016

8.4 0.006

10 0.019

12.5 0.008

11.3 0.012

10.4 0.004

7.9 0.012

9.7 0.002

9.3 0.008

12 0

8.7 0.005



0 1 114

2

D -------- 30

0 1 122

3

L -------- 31

0 1 256

1

13 -------- 32

0 1 202

3

Li -------- 33

0 1 401

3

U -------- 34

0 1 126

3

L: -------- 35

0 1 487

3

L3 -------- 36

0 1 144

2

L1 -------- 37

0 1 290

3

u -------- 38

0 1 130

1

u -------- 39

0 1 84

2

U -------- 40

0 1 258

3

L: -------- 41

0 1 139

3

Li -------- 42

0 1 226

3

L1 -------- 43

0 1 316

3

1.1 -------- 44
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0 0 8

0 0 9 3

0 0 9.7

0 0 9.3

0 0 8.7

0 0 14

0 0 8.9

O 0 8.3

0.001

0.003

0.018

0.001

0.002

0.031

0.006

0.004

0 0 10.9 0.015

0 0 9

0 0 8.5

0.002

0.014

O 0 11.4 0.005

O 0 11.8 0.001

0 0 9.2

O 0 9.3

0.004

0.002



0 l 177

2

Li -------- 45

0 1 183

2

L1 -------- 46

O 1 440

3

U -------- 47

O l 375

3

U -------- 48

0 1 394

3

L1 -------- 49

0 1 158

3

D -------- 50

0 1 372

3

L1 -------- 51

0 1 397

3

U -------- 52

0 l 345

2

LI -------- 53

1 0 259

2

L1 -------- 54

l 0 232

L1 -------- 55

l 0 437

1

L1 -------- 56

1 0 142

3

U -------- 57

l 0 247

U -------- 58

l 0 212

2

U -------- 59

1 0 128

10

10

10

10
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0

0

9.4 0.005

12.2 0.002

11 0.004

9.9 0.001

12 0.002

11.3 0.005

9.9 0.004

9.5 0.004

10 0.002

12.2 0.017

19.9 0.057

12.1 0.013

8.1 0.013

11.1 0.01

11.8 0.006

11.6 0.005



0 230

0 255

-------- 64

0 500

‘- -------- 65

1 139

‘ ........ 66

0 263

-------- 67

0 256

0 312

0 331

0 190

10

10

10

10

15

18

18

18

18

18

18

0 0 1 O O 0 0 11.3 0.004

0 O 1 0 0 O 0 9.3 0.001

0 0 1 0 0 0 0 9.2 0.004

0 0 1 0 0 0 0 9.9 0.007

0 0 0 0 1 0 0 13.9 0.011

0 0 1 0 0 0 0 10.5 0.022

0 0 0 0 1 0 0 14 0.053

0 l 0 0 0 0 0 9.1 0.001

0 0 0 0 1 0 0 13.5 0.023

0 0 0 0 1 O 0 17.4 0.019

0 0 0 0 1 0 0 12 0.009

0 0 0 0 1 0 0 11.9 0.009

0 0 0 0 1 0 0 10.7 0.002

0 0 0 l 0 0 0 10.5 0.001

0 0 0 l 0 0 0 8.4 0.002
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0 1 202
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0 1 232

3
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1
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2
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3
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1
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1
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3
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8.2

12.5

6.8

7.2

6.8

13.2

10.4

7.8

8.7

6.7

5.8

10

6

0.011

0.045

0.001

0.014

0.006

0.018

0.012

0.009

0.003

0.003

0.013

0.003

0.014

0.003



1 311

-------- 95

1 291

-------- 96

1 121

-------- 97

1 267

-------- 98

1 281

1 129

-------- 103

1 321

' -------- 104

l 197

-------- 105

1 216
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8.4

9.6

6.5

9.7

11

6.5

6.5

9

0.007

0.001

0.007

0.006

0.003

0.002

0.03

0.026

10.3 0.002
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9.6
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3
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0 1 200

3
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0 l 290

l
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0 1 428

1

U -------- 109

0 1 419

3
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0 l 217

3
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0 1 378
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U -------- 112
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3
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0 l 135

2
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0 l 77

2
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0 l 311

1
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0 l 200

2
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0 1 133

3
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0 1 331

3
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0 l 169

3
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0 1 282

3

15

10
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12 0.029

11.9 0.026

18.7 0.038

7.3 0.006

10 0.008

9.2 0.013

8.6 0.002

10.9 0.06

4.9 0.037

6 0.007

5.65 0

9 0.011
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0 8.8

0 9.5

0 9.4

0 7.6

0 6.6

0 9.8

0 10.4

0 12.1

0 3.8

0 14.2

0 9.4

0 7.4

0 7.4

0 7.5

0 19.7

0.003

0.012

0.01

0.006

0.002

0.007

0.016

0.004

0.079

0.005

0.014

0.002
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1 0 139 8 0 l l 0 0 0 0 0 0 8.1 0.016

3

U -------- 137

1 0 149 8 0 l 1 0 0 0 0 O 0 6.9 0.002

3

U -------- 138

1 0 146 8 0 1 l 0 0 0 0 0 0 6.7 0.003

3

U -------- 139

1 0 298 8 0 l 1 0 0 0 0 0 0 10.7 0.007

U -------- 140

0 l 60 8 0 1 0 0 0 0 O l 0 6.8 0.004

2

U -------- 141

0 l 65 8 0 l 0 0 0 0 0 1 0 5 0.004

2

U -------- 142

0 l 109 8 0 1 0 0 0 0 0 1 0 5 0.007

2

TESTING FACTS

OUTF LAT LENGTH SIZE CO VC 31-35 36-40 41-45 46-50 51-55 56-60 >60

DEPTH SLOPE OUTPUT(DESIRED)

10362301000001001250003

3

U -------- 2

10259151000001001030

3

L -------- 3

0120881000100008.80.02

3

U‘ -------- 4

01255810001000010.70.013

3

U -------- 5

0120481000010001020002

2

U -------- 6

0113481000010008.70.002

2
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0 1 184 8 l 0 0 0 0 l 0 0 0 11.9 0.003

U

0 1 117 8 1 0 0 0 l 0 0 0 0 9.2 0.006

2

L -------- 9

0122781000100009.50.004

2

L -------- 10

102928100010000120019
3 .

U -------- 11

0 253 8 1 0 0 0 1 0 O 0 0 8.3 0.0091

3

U

0 l 200 8 1 0 0 0 l 0 0 0 0 9.9 0.009

3

U

01968100100000930

2

L-------- 14

0118681000010008.60.044

2

L-------- 15

011538100000001930002

3

L -------- 16

0120181000010006.30.002

1

L -------- 17

0124781000000106.10.004

2

L -------- 18

01125810000001010.10.005

3

L -------- 19

01175810000001080011

2

L-------- 20

0134481000000011050012

3

L -------- 21

011978010010000110.008

3
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0 1 154 8 0 1 0 0 l 0 0 0 0 9.6 0.021

0 l 235 8 0 1 0 0 1 0 O O 0 10.6 0.001

3

'0 253 8 0 1 1 0 0 0 0 0 0 6.9 0.019

0 l 300 8 0 1 0 0 0 1 0 0 0 8.7 0.004

2

TESTING OUTPUT (@ 40995 RUNS)

OUTF LAT LENGTH SIZE CO VC 31-35 36-40 41-45 46-50 51-55 56-60 >60

DEPTH SLOPE OUTPUT(PREDICTED)

U -------- 1

1.0000 0.0000 362.00 30.002 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 12.500 0.0029

2.8144

L] -------- 2

1.0000 0.0000 259.09 15.000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 10.302 0.0000

3.2861

U -------- 3

0.0000 1.0000 208.06 8.0020 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 8.8012 0.0200

2.7632

L] -------- 4

0.0000 1.0000 255.01 8.0020 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 10.699 0.0130

0.0000 1.0000 204.09 8.0020 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 10.200 0.0020

2.5039

U -------- 6

0.0000 1.0000 134.05 8.0020 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 8.7030 0.0020
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0.0000 1.0000 184.00 8.0020

0.0000 0.0000 11.902 0.0029

2.7097

U -------- 8

0.0000 1.0000 117.08 8.0020

0.0000 0.0000 9.2022 0.0060

2.1201

U -------- 9

0.0000 1.0000 227.08 8.0020

0.0000 0.0000 9.5009 0.0040

2.8489

U -------- 10

1.0000 0.0000 292.07 8.0020

0.0000 0.0000 12.000 0.0190

1.7839

U -------- 11

1.0000 0.0000 253.07 8.0020

0.0000 0.0000 8.3020 0.0090

2.3120

U -------- 12

0.0000 1.0000 200.01 8.0020

0.0000 0.0000 9.9018 0.0090

2.7588

U -------- 13

0.0000 1.0000 96.026 8.0020

0.0000 0.0000 9.3004 0.0000

1.3906

U -------- 14

0.0000 1.0000 186.04 8.0020

0.0000 0.0000 8.6008 0.0440

1.3657

U -------- 15

0.0000 1.0000 153.06 8.0020

0.0000 1.0000 9.3004 0.0020

2.9873

U -------- 16

0.0000 1.0000 201.08 8.0020

0.0000 0.0000 6.3013 0.0020

1.9158

U -------- 17

0.0000 1.0000 247.06 8.0020

1.0000 0.0000 6.1009 0.0040

3.0840

U -------- 18

0.0000 1.0000 125.03 8.0020

1.0000 0.0000 10.102 0.0050

1 .0000

1.0000

1.0000

1 .0000

1.0000

1 .0000

l .0000

1 .0000

1.0000

1.0000

1.0000

1 .0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
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0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1 .0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

1 .0000

l .0000

1 .0000

1 .0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

0.0000

1.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000  



2.4826

U -------- 19

0.0000 1.0000 175.08 8.0020 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0000 0.0000 8.0033 0.0109 '

2.8503

U -------- 20

0.0000 1.0000 344.06 8.0020 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 10.503 0.0120

2.9880

U -------- 21

0.0000 1.0000 197.00 8.0020 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 11.002 0.0080

2.8533

U -------- 22

0.0000 1.0000 154.03 8.0020 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 9.6031 0.0210

2.7178

U -------- 23

0.0000 1.0000 235.03 8.0020 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 10.601 0.0010

2.9038

U -------- 24

1.0000 0.0000 253.07 8.0020 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 6.9027 0.0190

2.9997

U -------- 25

0.0000 1.0000 300.02 8.0020 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 8.7030 0.0040

2.1377
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