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ABSTRACT

PROTECTING NETWORKS FROM SINGLE-PACKET WORMS

By

Larry Granger Irwin II

Can a network be protected from single-packet Warhol worms [14]? This paper

generates and simulates random network environments to answer that question. The

research assumes a perfect detection algorithm and varies the time required to perform

the identification. Perfect detection alone is not sufficient; it must also be swift in

recognizing threats as some cases presented here Show that perfect detection offers no

noticeable protection. The impact of other network factors on worm propagation and

prevention are investigated as well, including: router participation in the prevention

scheme, the percentage of routers involved in the traffic passing, and the ability for

participating routers to communicate. The results are promising: realistic simulations

without communication can protect over 50% of the network. The addition of

communication increases that protection to over 80%. The key result is that emerging

identification technologies such as LeBrea [31] can be leveraged into viable automated

network protection systems against single-packet worms.
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CHAPTER 1 - INTRODUCTION

Self-propagating code, more commonly referred to as a “worm”, is a computer

program engineered to place copies of itself on a remote machine without the express

consent of any of the machines involved. The specifics of how a worm works is outside

the scope of this document and the interested reader is directed to [2, 4, 13] for further

information. Programs of this nature have existed publicly as far back as 1988 [4, 13];

however, worm epidemics have recently grown in both scope and severity [14].

Factors contributing to the rise in worm activity range from the number of devices

attached to the Internet, to the Skill of those who author the worm software. Further,

despite the fact that many of the more prolific worms have been engineered to be

relatively harmless; there is no definitive means to stop someOne from creating and

releasing malicious self-propagating code into the wild. Finally, it has been theorized that

a worst-case worm could reasonably cause upwards of US$50 million dollars as a result

of various types of damage and downtime [32]. It is paramount that effective defense

mechanisms be deployed to limit the severity of said “worst-case worms”. This paper

examines and devises a first generation defense system that is capable of providing

automatic protection from the spread of a single packet worm.

There have been multiple strategies investigated as possible methods for

combating the spread of worms. These methods include address blacklisting and content

filtering [9], selective Shutdown [10] and traffic throttling [11] (which at one time had

been planned for commercial release).

Address blacklisting [9] involves recording the IP address of a machine that is

believed infected and disallowing any traffic from that machine to be forwarded.



Selective shutdown [10] takes the removal of the machine one step further and actually

initiates a power-down procedure for machines that are infected. These two approaches,

if implemented as detailed in the literature, would reduce the throughput of the machines

to zero. Subsequently, this paper investigates possible solutions involving content

filtering and throttling [9, 11]; two approaches that allow the compromised machine to be

used despite it succumbing to the worm.

The difficulties associated with constructing physical labs to conduct experiments

on a grand scale (as well as the threat of releasing malicious code into the wild) have

forced many researchers to rely on various simulation models to conduct experiments.

Chen and Robert discuss how the simple epidemic model taken from biological

epidemiology is a good estimate to the behavior of worms in high-speed networks [2].

Further, they take the results of the mathematical models to underscore the importance of

real-time detection and accuracy that would be required for any successful prevention

scheme. Weaver, et a1. uses a similar mathematical models and an abstract simulator to

demonstrate how worms could theoretically reach astronomical infection rates [14]. They

describe two types of potentially harmful worms: the Warhol or flash worm and the

surreptitious worm. These are worms that threaten the health of networks by either

spreading so fast that no counter-measures are futile, or spreading so slow as to make

detection practically impossible, respectfully. The single-packet Slammer worm is used

as real life evidence regarding the speeds that worms may exhibit currently as well as

possible speeds that could be reached in the future. Again, Weaver and company argues

for a central defense organization likened to a digital center for disease control.



Others have focused on the simulation and examination of worms that were

successful in reality. Moore, et a1. take an in-depth Study of the Sapphire/Slammer worm

in [27]; discussing its strengths and weaknesses while emphasizing that no human

administrators could possibly have prevented the outbreak. Chen, Gao and Kwait extend

the simple epidemic model in [26] to account for observed behaviors in reality that does

not coincide with established models. Code Red v2 is simulated using the new model and

results are offered that more closely resemble those observed in reality than that which

has been produced by previous models. The model is finally used as a tool to evaluate the

effectiveness of the LeBrea defense system [31] on various levels of monitored address

space. Zou et al. also investigate the Code Red worm and its variants in [25] and develop

their own model to account for the observed behavior. The authors of [25] dispute rather

accepted values regarding the overall infection of Code Red and use a connected model

such that “there is no topology issue in our simulator”. Despite the lack of topology, the

model produces results that are similar to other models and can account for various

factors that cause a drop in infection during the final stages of the worm’s progression.

There is also another set of work from those who have examined possible

counter-measures to defend against the spread of malicious self-propagating code. Wang,

Knight and Elder explore the effect of immunization on various topologies in [29]. The

work was to simulate the environments of large organizations and immune nodes would

not allow infections to pass through. Thus all nodes acted as routers; unfortunately, the

hierarchical model was a tree of nodes and thus all non-leaf nodes were cut-nodes and

immunization effectively segmented the network. However, the work utilized a count of

infection attempts to gain a measure of the efficiency of the worm as well as gain an idea



as to which portions of the network were most valuable in protecting. Perhaps the work

most similar to that, which is presented here, is the work of Moore, Shannon, Voelkner

and Savage [9]. The aforementioned authors utilize mathematical and proprietary

simulations to investigate the effectiveness of containment strategies, reaction time and

blocking location. The work concludes with recommendations regarding each of those

three aspects and warns that creating such an automated system will be “very

challenging”. The work presented in this research differs from [9] in many ways: the

simulation software is open-source, the networks are randomly generated, and the

percentage of the network that is utilized in packet forwarding is a parameter to the

simulation.

The complete spectrum of worm variants and techniques are vast and

consequently are outside the scope of this research. This paper selects to focus on one

particular type of worm: a single-packet Warhol type worm as described in [14]. Single-

packet worms are limited only by the available bandwidth since no data management

overhead is needed because the exploit only requires one data packet. The simulation

software is also custom-built as well with the specifics of this research in mind. This

custom software is not a unique occurrence as none of the previously mentioned research

utilizes identical frameworks.

The remainder of this paper is organized as follows. First, section 2 describes in

detail how the simulation is structured and operates. It details the logical and physical

components of a network and how they are represented in this simulation software. A

base case using this simulation is compared against published accounts of worm

propagation to support the simulation’s accuracy. Then, Section 3 describes the results



for the various traffic throttling and content filtering experiments using various levels of

routers participating as reactionary routers. Section 3 also introduces the difference

between the realistic and extreme simulation parameters and examines various types of

methods to distribute knowledge amongst the reacting routers. Section 4 summarizes the

results obtained from the experimentation and explains the observed behavior. Finally,

Section 5 discusses some weaknesses of the current software and examines some topics

and extensions to this paper that the author believes worthy of additional attention.



CHAPTER 2 - SIMULATION SOFTWARE

Various methods exist that allow one to simulate the behavior of a network as

well as worms. These simulation packages include N82 [22], SSFNet [23] and various

academic packages [24, 28]. All simulations are close approximations to the true

behavior of the actual Internet, but the web’s large size and dynamic nature make it an

open question as to how to correctly simulate the environment. Worm simulations are

debated as well [25,26,27] with models ranging from the biological epidemic model [2]

based on how disease spreads within a population to the two-factor worm model [25]

where technical aspects are considered including link utilization, system death and

patching. However, these simulations are not easily modified to account for routers that

have varying behavior; a modification to alter the basic elements of N82 and SSFNet

appeared to require intimate knowledge of the simulation and as such was not a viable

option for this research. Other models were mathematical and would have been simpler to

include modified behaviors, however the existing model was without any topology [25].

Therefore, the existing research serves as a guide and basis on which to judge the

accuracy of the simulation developed for this research.

2.1 Implementation

The simulation software is completely written in C++. The source compiles under

both Visual Studio 2003 and GNU gcc version 3.4.1.

The system is comprised of four main components intended to represent basic

elements of a network: autonomous system (AS), router, node and packet. An AS is

defined as a collection of IP networks under control of a single entity, typically and

Internet service provider [30]. Each component is an object and the relationships between



these Objects as well as their interactions are described in more detail within the

following sections.

2.2 Design

The network simulator was designed to accurately model the majority of Internet

traffic, yet be simple enough to allow for many changes with little effort. Such a

simulation is far from trivial [21] and the current implementation makes no claims to be

an exact simulation engine. The software has been named NetSim and that name will be

used within this paper to refer to the software utilized for this research. The pseudo

networks within a NetSim simulation are based on the various tiers that exist in the

current Internet and are internally represented by a tree of autonomous system objects

(AS), similar to the topology implemented in [29]. The specific parameters that determine

the shape of the tree are defined by a set of simulation constants. This structure is

influenced by the current general construction of the commercial Internet: tier-l Internet

service providers (ISPS) that lease access to regional ISPs, which in turn further offer

access to local ISP providers [7]. Instances do arise in the Internet where ISPs (which one

may also consider an AS in this context) develop an agreement with another ISP that it is

not directly connected with to set up a link to allow each other’s traffic to pass through.

These links (sometimes referred to as peer connections) are not currently included in the

model is one area of improvement listed in Section 5. Such a tree of AS objects may be

used to simulate the Internet because of the “significant degree of hierarchy” [20].

Furthermore, others have used similar techniques of using trees to model the behavior of

large networks [19].



Anecdotal evidence towards the validity of the structure used in NetSim comes

from traceroute. When one performs a traceroute to various locations around the country

(or the world, in most cases) the beginning of the route will almost always contain many

of the same hops. This consistency in hops is a result of the tier structure and the

relatively low frequency of peer agreements [7]. Despite whatever downfalls that may

exist in the design and implementation of the network, the pitfalls will equally affect the

worm as well as the countermeasures that are examined. It is the hope of the author to

create a virtual environment close enough to warrant a more thorough and exhaustive

examination of the theories introduced here. The simulation paradigm implemented is a

step-based simulation. There is no direct correlation between steps and time to allow for

the timing and experiments to be abstracted out in relation to the amount of steps needed

for certain operations to be completed. This will allow for the response time for the

routers to be directly scaled to the speed at which a simulated worm propagates.

2.2.1 Physical Entities

The basic organization of objects that represent the physical components of the

pseudo-network is a tree at the highest level of abstraction (see Figure 1). Notice that it is

possible to set up the parameters such that an AS object generates zero child objects. The

tree starts with the root AS and then a random number of child objects are added to each

AS in a depth-first traversal until a maximum threshold is reached. This threshold could

relate to the total number of AS, node or router objects created thus far, or the depth of

the AS objects within the network structure. All of these simulation parameters are

located in a constants file and appear in Appendix A.
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Figure 1: Example AS Tree Structure The above k-ary tree is an example

of how a collection of autonomous systems may be arranged internally to

represent a virtual network.

2.2.1.] AS Description

Each AS object has a randomly generated set of children as long as certain

thresholds regarding the number of existing AS objects, routers, nodes and current AS

depth have not been met. A random number of routers are created within each AS object.

Furthermore, there are two different types of routers that exist within an AS: internal

routers and gateway routers (for a detailed description, see Router Description). Each set

of routers is randomly generated in separate steps during network creation. Two pairs of

simulation constants limit how many of both types of routers are generated.

These constants that restrict router creation are not always true constant values.

Another simulation constant determines if the pair of aforementioned constants act as

definite values or definite factors. For the purpose of this research, the constants have

been arranged such that the restrictions on routers are based on the current depth of the

AS within the network simulation tree. These factors allow for more routers and fewer

nodes in the upper level AS objects; vice versa as the AS objects are placed lower in the

[ICC .



2.2. 1.2 Router Description

The routers within the AS are very similar; in fact they are represented with the

same source code object. However, gateway routers have an empty pointer to a vector,

while the internal nodes populate its vector with a random number of nodes. Each

internal router is initialized separately from any other internal router and thus may have

any number of nodes associated with it. As with the previous objects, the number of node

objects associated with each internal router is governed by a pair of simulation constants.

The scaling factor that was mentioned above in AS Description also applies to the

number of nodes. However, in this instance the effect of the scaling is reverse; the AS

objects closer to the leaves will likely have more nodes than those AS object closer to the

root.

Routers are randomly marked as “reactionary”, which indicates that the router is

allowed to perform the special set of functions and abilities that are the focus of this

research. This marking is performed by randomly selecting offsets into the global array of

routers. If the randomly selected router is already marked as reactionary or it does not fall

within the acceptable depths of the network, the selected router is not marked. This

marking process is continued until enough routers have been marked to satisfy the

simulation constant regulating the percentage of routers that are to be granted the special

reactionary abilities.

If a router is not marked as reactionary, then it will simply forward all packets that

it encounters and drop all packets once its queues are full. Reactionary routers will take

different courses of action based on the specifics of this investigation. The number of

routers that are marked as reactionary as well as the range of levels within the network

10



structure that they may exist is determined by network simulation constants (see

APPENDIX — CONSTANTS FILE). A reactionary router will refrain from exercising its

special abilities until a specific number of malicious packets have been forwarded. After

having forwarded the requisite number of packets, the router is then assumed to have

“learned” the specific pattern of the threat. The terms signature and pattern are used

throughout this research interchangeably despite the difference between signature that

exist in data and behavioral patterns. The association of the previous terms is part of the

assumption that a perfect system exists in which the presence of a worm can be detected.

The research within this paper has set the number of malicious packets to 5. Thus, once a

reactionary router has forwarded 5 malicious packets, the router will immediately begin

invoking its special countermeasures. These special actions may start in the middle of a

time step; the router may exhibit two different behaviors during the same time step. The

selected number of malicious packets that must be processed before reacting to the threat

(5) may appear to be a small number; however, assumptions used in the creation of the

simulation should be revisited. The simulation only creates and processes packets

destined for valid nodes. Therefore, routers will react after having seen 5 valid packets,

not 5 packets in general. Based on the behavior of the worm that is depicted in this

research, the actual number of packets processed by the router would be a great deal more

than the 5 required here before any sort of additional actions would be allowed.

2.2.1.3 Node Description

Nodes exist in a list within an internal router and typically represent the

vulnerable machines that exist in a network. There is an option that allows for a certain

number of nodes to be flagged as invulnerable to infection, but that node does not

11



contribute to the simulation as it will never create or accept packets that are being

simulated. The frequency with which an infested machine attempts to infest a valid

machine is another simulation parameter that is discussed in below in Worm Propagation.

A pair of simulation constants determines the rate at which a compromised node attempts

to spread. This range of values holds constant regardless of what level the node exists at

within the network hierarchy.

When a node that was once clean becomes infected, there is a simulation constant

that determines how many time-steps the machine remains clean. This additional optional

delay is to allow for the modeling of such worms that are not instantaneous when

compromising a host.

Nodes are randomly infected after the network is complete. There is a simulation

constant that determines the absolute number of nodes that should be infected within the

network at time step zero. After the network has been completely built and all

relationships between physical entities have been established, nodes are selected at

random from an array that contains all the nodes in the simulation. If the selected node is

already infected, another selection is made. If the node is not infected, then a counter is

incremented and the loop continues until the simulation parameter is satisfied. The

selection is not governed by any simulation constants; initially infected nodes may exist

at any level within the network.

2.2.1.4 Physical Entity Summary

The physical entities and their relationships were designed to allow for the

broadest possible range of applications, models and interpretations. A straight

hierarchical approach to network design applies to both corporate intranets [7] as well as

12



a general description of the modern Internet [16]. Simulation parameters can be tweaked

to simulate a small business organization as easily as that of a large network. Much larger

applications could also be obtained if one interprets node objects as also representing an

infected internal AS that contains at least one infected machine. Such generalizations and

adaptability allows for a general simulation of grand proportions.

A sample diagram of how one AS object may be randomly generated is shown

below in Figure 2.

 

Figure 2: AS Example A sample AS object with

gateway routers (G), internal routers (I) and nodes (N).

2.2.2 Logical Entities

The logical entities are similarly designed with simplicity and the ability to

abstract in mind. The elements discussed in this section are the worm and the packets that

traverse the network simulation (including packet routing).

l3



2.2.2.1 Worm Propagation

After the initialization of the physical entities, nodes are randomly marked as

infected. The total number of randomly selected nodes depends on a simulation constant

that represents an absolute value, not a percentage.

All node objects consist of a set of variables that act as timers for various events,

one of which dictates the rate at which the infected node will attempt to spread to another

machine. The timer value is determined by a set of simulation constants and specifies the

number of time steps that the node will remain dormant until it attempts to infect another

machine within the simulation. Once the timer reaches zero, the node chooses a

destination at random. The arbitrary destination is determined by a random number

selected between zero and some multiple of the total nodes within the virtual network. If

this random number corresponds to a valid node that was created during system

generation, then an attempt is made to infect the randomly selected node. After the

random destination has been made, it is considered an attempt to further propagate and

the internal node timer is reset; failed attempts are not allowed to try again.

If the node successfully selects a peer to infest (the target), the node creates a

packet destined for that target and passes the packet to its parent router to have the packet

delivered. The details regarding the construction of the packet and how it is routed

through the simulation is detailed below in Packet and Routing Description. For example,

if the total number of nodes is 10 and the scaling factor is 2, the random number will be

between 0 and 19 inclusive. This effectively results in a 50% success rate per infected

node.

14



When a node receives a packet there is another timer that is started that represents

the time it takes for the node to be compromised once contact has been made. After this

timer expires, the node is marked as infected and its own internal timer is set that

determines the rate at which this newly infested node will attempt to spread. At this point

the node will behave exactly as described earlier in this section. This cycle repeats ad

infinitum until the simulation is halted or completes all time steps.

2.2.2.2 Packet and Routing Description

Packets are container objects that consist of source and destination node offsets

and a list of intermediate routers. Packets are created when a node successfully targets a

peer. The source node populates the source and destination offsets and places its parent

router first in the list of routers. The packet is then passed to the parent AS for further

route building.

The parent AS, and all subsequent AS objects, use a simulation constant that

determines the number of intermediate routers that will be added to the routing list. The

source AS adds random internal routers to the routing list until the simulation route

length requirement is satisfied. The AS then adds a single gateway router if required (the

destination AS is different than the current AS).

AS objects maintain a routing table that uses the strict hierarchical structure of the

network to determine which AS should receive the forwarded packet. When a gateway

router encounters a packet that has no more routers in the routing path, it forwards the

packet to the next AS. When an AS receives a packet, the packet first has a gateway

router added to its list (the entry router). A set of random internal routers is then added,

and if the current AS is the destination AS, the parent router is added to the end of the

15



list; otherwise, an exit gateway router is added. If the parent router is the final destination

on the path list then that parent will forward the packet to the appropriate node when it

processes the packet. If the final location in the list is a gateway router, the above process

of forwarding the packet to different AS objects is repeated until the destination AS

receives the packet and it is successfully delivered to the target node.

During the generation of the packet’s path, a simulation constant governs how

many intermediate routers in the AS will be involved in transporting the packet. This

constant determines the percentage of internal routers that will be added to the path. The

percentage is based on the total number of internal routers within the AS and the routers

are selected at random. In the experiments that follow, the percentages used are 20% and

2% for the extreme and realistic scenarios, respectively. In other words, for the realistic

simulations (2% involvement), when an AS that contains 100 routers receives a packet, it

will add on the entry gateway then randomly select 2 more nodes to append to the list,

then finalize the path by adding either the parent router of the destination node or a

different gateway router (exit router). After the route is completed for the current AS, the

packet is then queued within the entry router and allowed to pass through the AS. When

it reaches the final router on the routing path, it will either be forwarded to another AS

where this routing protocol will be repeated or it will arrive at the intended destination

and terminate its journey. When the packet reaches the destination AS, the routing

algorithm removes the parent router for the destination node if it exists in the route and

adds that parent to the end to ensure that the packet’s last intermediate hop is correct.

There are logical checks throughout the route building process to guarantee that any

single router exists at most once within the list.

16



Figure 3 provides an example of a packets path under the realistic set of

parameters. Further, the example assumes that each AS contains 100 internal routers. The

realistic parameter set dictates that the percentage of router involvement in the

transportation of a packet is set at 2% (see above for explanation). The infected node

exists in the source AS and randomly selects a peer to infect; the shaded node in the

destination AS. All other nodes (except for the two directly involved in this example) are

assumed not to be compromised in order to simplify the example. The packet is created

an handed off to its parent internal router which in turns adds a number of other internal

routers to the path of the packet. This amount is directly related to the total number of

internal routers within this AS and the percentage that the simulation specifies regarding

router involvement. In this example since there are 100 internal routers in each AS, an

additional 2 routers are selected at random. Finally, the AS selects a random gateway

router to complete this portion of the packet’s path. An identical algorithm is followed at

each intermediate AS and at the destination AS. There is one exception, however, that

may occur at the destination AS: the parent of the destination node is selected at random

and is included in the involvement path. In this case, the parent router is removed from

the path and added to the end of the path. Figure 3 shows the other case where the parent

router is not selected because there are 2%+1 internal routers that transfer the packet.

This occurs because the parent was not selected during the random involvement selection

and is simply added to the end of the existing path. Also note that this exception always

occurs at the source AS: the parent is added to the list first and then the percentage of

internal routers is added at random. Thus, if the numerical representation of the

17



percentage of routers to be added to the path is k (k=2 in Figure 3), the source AS will

always have k+1 internal routers added to the packet’s path.

    
   

Source AS Destination AS

Intermediate AS

Figure 3: Example packet route Example path taken by a packet originating in

the “Source AS”, passing through an “Intermediate AS” and infecting a node in the

“Destination AS”. This example assumes there are 100 internal routers in each AS and

uses the realistic simulation parameter of 2% involvement; 2% of the internal routers are

involved in transporting each packet.

2.2.2.3 Logical Entity Summary

The simulation concerns itself strictly with malicious packets, failing to account

for the normal traffic that one would expect within an actual network. This decision was

made for several reasons. First, the focus of the research is directed at how to manage and

ultimately stop the spread of a worm and there is no approach presented that would

benefit from the inclusion of normal traffic. Second, including the normal traffic would

only increase the amount of memory and resources needed to simulate any given
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network. Finally, valid traffic, while it experiences surges from time to time is basically

consistent from day-to-day [5]. This consistency allows for an assumption of constant

valid traffic, which in turn results in router queues only having to model the unused

portions of the queue. Analogous to mathematics, this constant valid traffic may be

removed without loss of generality. Ultimately, since there is no methodology presented

that would benefit from the inclusion of normal traffic and because the simulation

assumes a perfect detection rate, there is no foreseen benefit from the adding of benign

traffic and it is therefore not considered.

As alluded to in the previous paragraph, there are some assumptions made by the

simulation software. First, the simulation assumes a perfect detection rate. That is to say

that a router that has been marked as reactionary will always detect and perform the

necessary reaction. This assumption is made to simplify the problem as detection is a

non-trivial issue [14, 17, 1] and is outside the scope of this research. Secondly, the

simulation does not simulate any protocols; infestations are achieved via a single packet.

Assuming a single packet to allow a node to succumb to the threat is a valid assumption

for some worms such as Slammer or sapphire [18], but may not suffice for other worms

such as Code Red [9]. Despite the direct relationship between packets and infestation,

one could also extend the existing abstraction and have the single packet within the

simulation represent the final packet in a series required to deliver the entire payload.

Third, the network does not drop packets unless the next router in the packet’s route has a

full queue. This assumption is not accurate for real-word networks; however, increasing

the success of packet transmissions generates a worst-case scenario in regards to worm

propagation. This serves only to strengthen the findings presented here — if the methods
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examined here can combat the Spread in a perfect transmission setting, it can do no worse

in a real-life situation.

The final piece of the logical system that needs mentioning is the routing scheme.

The decision to place the routing algorithm at the AS level was based on many factors.

First and foremost, having the AS determine the path lets one easily simulate the

asymmetry of the Internet. Second, there exists a wide variety of routing protocols and

schemes (RIP, IGRP, RON, OSPF, MPLS, etc) for both inter- and intra-network

communications [7]. Selecting one intra-network protocol is difficult as this decision is

left to the appropriate administrator. Further, limiting the simulation to one specific

algorithm would not allow the simulation to alter the level of network exposure to traffic.

In reality, routes change as nodes go up and down and alternate paths must be created.

However, despite the small constant changes in individual nodes, the general path

remains relatively unchanged as a result of the basic hierarchical structure of most

networks and ISP policy that prohibits handling traffic that is not their responsibility [7].

As a result, the author feels that the current random path is an adequate and appropriate

means to properly simulate network traffic while not specifically attempting to model one

particular protocol.

The simulated logical components of the network are not completely true to their

physical counter parts, but this is not the intention of the software. The software is to

model as closely as possible the network and the interactions of the propagation of the

worm and the various routers that it encounters on its journey. Therefore, the simulation

need be exactly that - a simulation, not emulation.
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CHAPTER 3 - EXPERIMENTATION

All experimentation was conducted on the authors home PC, a 2.8 GHz Pentium

IV Win XP Pro with 512 MB RAM. The software was written and compiled under

Microsoft Visual Studio .NET 2003 (version 7.1.3088) in C++. Repeated runs of the

application were achieved through a Perl script running under Cygwin [3].

Unless otherwise stated, all results presented are the averages of 1000 runs of the

simulation performed with the exact same simulation constants but with different seed

values. Specifically, the seed values are the numbers 1 through 1000, inclusive. The

standard deviation for the extreme simulations regarding network infection percentage

averaged roughly 3.5%. Standard deviations for network infection percentages ran under

the extreme scenario averaged 3.2%. There is also set of milestones that are recorded for

each averaged set of results that provide a set of criteria on which each set of experiments

can be measured.

Further, unless otherwise stated, all experiments were conducted with as many

identical simulation constants as possible; only factors governing the modified behavior

and total simulation time were altered between sets of experiments. The maximum

number of AS and router entities were 256 and 1024 respectively. The actual number of

nodes created in the simulation was about 9,000 on average. The k-ary tree of AS objects

was limited to a depth of 5 and actual simulations exhibited AS objects reaching

maximum depths of 4 or 5 [16]. These maximum depths correspond to the various layers

discussed in [16]: dense core, transit core, outer core, regional ISPs and customers. The

parameters to create the tree directed each A8 to randomly generate child AS objects over

the range [8,12] with numbers of routers being reduced as depth in the tree increases and
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vice versa regarding nodes [19]. Infected nodes attempted to propagate every 5th time

step and routers required 2 time steps to process a single packet. Simulations were ran for

a maximum of 1,000,000 time steps and were shortened when possible to increase the

granularity of the recorded statistics.

3.1 Base Case

The model developed for the purpose of this research was used to simulate a

completely unprotected network of computers to establish a base case. This base case,

along with common milestones, will be used to help quantitatively measure the effects of

the various techniques investigated later in the paper. The base case also serves as a

basic, unmodified network of components that accurately portrays the majority of the

current infrastructure of the Internet. Therefore, the results of the base case can be

compared against actual measurements regarding the spread of past worm epidemics in

addition to theoretical models of worm behavior. Figure 4 presents the theoretical results

using the biological epidemic model discussed in [2] and Figure 5 shows the statistics

resulting from simulations of a Code Red like worm [9]. Lastly, Figure 6 is the average

result obtained from 1000 simulations using the simulation software created for this

research under both the realistic and extreme parameter settings. There is a slight

difference in the when the behavior of the infection is exhibited because the extreme case

utilizes more routers in each path and thus it takes the worm slightly more time to

traverse all the intermediate hops on its path.
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Figure 4: Theoretical Results from [2] The spread of a worm as

predicted by the biological model discussed by Chen, et a1.

Comparison between the theoretical and previously simulated results implies that

there are slight differences in the transition from the “early” to “later” phases. The

theoretical model results in a smoother transition between phases where the simulated

measurements reveal a sharper increase in infestation once the epidemic gains

momentum. Observing the average results measured from NetSim shows that the

simulation also shows a rather sharp increase in infestation once the worm gains

momentum, more closely resembling the results obtained in previous simulations. Thus,

Netsim is considered to successfully model the propagation of malicious code because it

exhibits the same general behavior observed in both models. Additionally, NetSim

arguably models the real world simulation more closely then the theoretical model and

may be a better tool than the mathematical approach.
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Figure 5: Results from Code Red like simulations from [9] The simulations

performed by Moore et. al. modeled the behavior similar to Code Red. The three lines

represent the 5th, average and 95th percentile of 100 simulations.
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Figure 6: Base case results from NetSim The results from running

NetSim under the extreme and realistic parameters settings.
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The milestones that are applied to the results of each simulation are presented

below for the base case in Table l. The complete simulation is divided and statistics are

recorded every X time steps and is denoted in the table by the number in parenthesis after

the short description on the experiment. At each time step designated as one that should

result in a statistical measurement, a set of values are recorded to a flat file regarding

various aspects of the current state of the simulation. These aspects include the number of

nodes that have been infected, the number of routers that have become aware of the

invasion, and the total number of worm packets in the system to name a few.

Homeostasis (indicated by ‘H’ in the table below) is computed by converting those raw

numbers into percentages. For example, if there are 1000 routers total in the simulation,

but there are only 500 routers that have been granted the ability to react to the threat, then

all the statistics regarding the number of routers that have become aware of the worm are

taken with respect to 500. That denominator is used because 500 represents the total

number of routers that could possibly become aware of the problem The value for

homeostasis is determined by calculating the relative difference in the corresponding

percentage from one recorded time step to the next. The third consecutive time step

where the relative difference between values is less than one-half of one percent is

considered the point at which homeostasis is achieved. It should also be noted that

limitations in the graphing software placed a limit of 250 time steps on which values

could be recorded. This is important because as the various methods reduce the spread of

the malicious code, the total running time is increased, and as a result, the difference

between recorded time steps increases proportionately. Finally, the percentages (33%,

67% and 99%) contain the recorded time steps in which the simulation first either met or
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exceeded that percentage. These values will be basis upon which all future experiments

will be measured against. Later data sets will present the raw data as well as the relative

value to those observed for the base case.

Table 1: Base case milestones This table shows the time steps at which the

milestones were first observed to meet or surpass. The number in parenthesis in the

column header indicates the intervals (in time steps) that data was collected.

MilestOne—s I Ease-cars;l4ll
 

 

   

 

Infected

Nodes

 

3.2 Traffic Throttling

The first set of experiments focus on the effects of slowing down the malicious

packets as they traverse the network. The slowdown is accomplished by altering the

length of time that the router requires to process a packet. This alteration may only exist

within a router that has randomly been designated as a reacting router. When routers are

first created during the random creation of the network, the router is given a base

processing delay according to the following rule (‘this’ refers to a router object):

this->base_proc_delay =

ROUTER_PROC_DELAY *

(this->depth + l);
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Immediately after this line of code, a member variable denoting the actual

processing delay is assigned the value of the base processing delay. This ‘actual’

processing delay is copied to all incoming packets. Therefore, there is an element of

scaling based on the depth of the router within the network. The routers near the top of

the hierarchy do not need as much time to process packets as do those routers nearer the

leaves. When a reacting router encounters the prerequisite number of malicious packets

such that it “learns” the signature of this particular intruder, the actual processing delay is

altered based on the simulation constant as shown below:

this->actual_proc_delay =

this->base_proc_delay *

ROUTER_THROTTLE_DELAY_FACTOR ;

In the experiments conducted for this research, the value of

ROUTER_THRO'ITLE_DELAY_FACTOR was set at 2 and 20, thus routers would

hold on to malicious packets for twice as long as their peers after having “learned” the

signature of the worm when set to 2.
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Figure 7: Throttling defenses with base case The graph shows the two levels of

throttling along with the base case. All were simulated under the extreme set of

simulation parameters. The legend first describes the level of throttling (either 2 or 20)

then indicates how many of the routers were allowed to react to the threat.

The throttling scenario was repeated three times varying the percentage of routers

that were randomly marked as reactionary and those results graphed against the results

observed from the base case, see Figure 7. The graph clearly shows that the worm

achieves complete infestation regardless of how many reactors exist in the network.

Despite the inability to prevent the complete domination, throttling does delay the

apparent inevitable. There is a direct correlation between th number of reacting routers

and the degree to which the worm progresses throughout the network. The correlation is

directly related to the number of reacting routers within the simulation and results in a

shifting the time for infestation in the positive X direction while not impacting the

ultimate degree of infestation at all. Throttling will give additional time for some other

means of countermeasures, but will not provide any automatic protection.
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Additional measurements identical to those recorded for the base case were

performed to validate the linear assumption made above. These values were taken for the

set of simulations where the delay factor was equal to 2 and are presented below in Table

2. The integer values listed for the “Learned Routers” are the time steps in which that

corresponding percentage of objects reached the milestone in the column on the left hand

side. The integer within the parenthesis in the column heading indicates the frequency

with which statistics about the simulation were recorded. The percentages in the body of

the table show the difference in reaching the identical milestone in the base case

simulation. Relative change is computed with respect to infected nodes for the

reactionary routers because no such routers existed in the base case.

The values observed for the throttling experiments strengthen ones beliefs based

on examination of the graph. The milestones are consistently reached with about 10%

additional time when 33% of the routers react, approximately 20% additional time for

67% reactionary routers and roughly 30% more time when all routers in the network are

reactors. Similar consistent shifts were exhibited from the spread of router learning in

comparison to the spread of infected nodes.

It is worth noting here that the percentage increase in the spread of knowledge

versus the spread of the worm holds at approximately 20%; the same percentage

specified in the simulation constants that determine the number of internal routers that

constitute any path that must travel through an AS. The author makes no claims regarding

this possible correlation and recommends further testing to isolate this parameter and its

effect on worm progression. Such experimentation is outside the scope of this research

and is left to the initiated.
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As interesting as the results may be — this technique fails to stop the worm from

achieving reaching complete infestation of the network. The result is not unexpected

because the reacting routers do not actively remove malicious code from the network.

Therefore, all intended targets can and will be reached if given enough extra time.

Unfortunately, the time afforded by this technique does not provide enough benefit to

protect any portion of the network. Using time scales in the most extreme cases, worms

spread through out the Internet in as a little as 20 minutes [13, 14]. Thus, a delay of 32%

equates to approximately 7 additional minutes to respond — not enough time to allow for

administrators to deploy (let alone develop) a patch for basic routers to stop the spread of

the worm.

The result does demonstrate that knowledge of the outbreak can spread

throughout the sub-network of reacting routers more quickly than the infestation of

nodes. The increased speed in the dissemination of knowledge is a direct result from how

a reacting router may “learn” a signature and it is worth repeating here. A reacting router

learns from not only the packets that it delivers and initially accepts from its children but

also from the traffic it processes. This creates a situation where a packet that interacts

with two nodes now interacts with many nodes along the packet’s path. The experiment

shows that taking advantage of this paradigm proves useful in that many routers are

repeatedly encountered as the worm spreads throughout the network. Thus, if reactionary

routers could eliminate the suspect traffic rather than just slowing its progress, then

perhaps what was once considered the inevitable may become preventable. A useful

approach must permit network devices to remove traffic on behalf of the network.
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Table 2: Throttling Milestones The values compare the times at which milestones

were achieved in the various simulations with respect to when those same

milestones were achieved in the base case simulation. The percentages

indicate the percent change from the base case.
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3.3 Content Filtering (Packet Dropping)

Observing that the malicious packets are not actually removed from the active

packets within the network leads one to develop a means that eliminates these packets.

The first method that is examined in this research was a basic form of content filtering. In

this approach, once a router has learned the signature of the worm (as before this occurs

after having forwarded five malicious packets) it simply discards the packet. The packet

that got forwarded to the next appropriate hop is completely removed from the network

and all consideration. The router has no other special abilities and does not make any

attempt to communicate its acquired knowledge with any other entities in the network.

The milestone data collected from the experiments (Table 3) shows an obvious

result from removing the packets from the network: certain levels of infestation are never

reached. The average number of nodes infected only exceeds 33% with only one-third of

the routers reacting. The length of the time required to obtain homeostasis also greatly
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increased to approximately 10 and 100 times the base case for one-third and two—third

reacting routers, respectfully. This linear relationship relating reacting routers to time

required to achieve homeostasis does not maintain through out the experiments — a

complete network of reactors converges in nearly half the time than that of the base case.

One more interesting observation from the comparative data is the level of

involvement amongst the reacting routers. The relative percentage of routers that learned

the signature of the worm during the outbreak consistently decreased as the number of

reacting routers in the network increased. On average, with one-third of the reactors

available as reactors, less than 98% of those entities become involved enough such that

they learn the signature. This level of involvement lessens such that it reaches only 33%

with two-thirds of the routers reacting and does not reach any milestones at all when the

network is completely comprised of reacting routers.

Further examination of the current experiment was conducted to get a more

accurate account of both the infestation as well as the required involvement of the

reacting routers. To achieve this additional insight, the maximum values of infected and

learned router counts were collected and are presented in Table 4, below. The values in

parenthesis represent the actual percentage of routers within the network that had learned

the signature, as opposed to the percentage outside the parenthesis which is a value taken

with respect to the reacting router population. Focusing on this particular fact, it can be

seen that despite the fact that the two-thirds reactors approach never reached 67%

involvement, it actually utilized approximately the same number of routers with respect

to the entire network. Additionally, the latter approach limited the infection from the

worm to less than 20% of the total number of nodes.
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Table 3: Drop Milestones These values are determined and represented in

exactly the same manner as those values in Table 2. The single hyphen

indicates that the milestone was not reached and therefore no value was

obtained and thus no percentage to compute.

Drop - VT Ibese-ceSe(4)l drop-33(27) _l drop-67 (445)_| 7 063-100(4) TI
 

i H 456 4725 936 % 45835 9952 °/o 236 -48 %

Infected ' 7° ' 7

m...————
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Learned
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Table 4: Drop Maximum Values The maximum values observed relating to the

percentage of nodes in the network that were infected as well as the percentage

of routers that had became aware of the worm under the extreme parameter

set. The first percentage is with respect to the subset of reactionary routers;

the valuein parenthesisis with respect to all routers inthe entire network.

FT _ Infected Learned

Nodes Routers

drop-67 19.5% 57.6% (38.6%)

   

   

  

      

  

Maximums

The saturated simulation produces results that are remarkable in comparison to

the others. The 33% and 67% reacting router simulations create an environment such that

paths exist of entirely normal routers between an infected node and one that has yet to be

infected. These paths that have no reacting routers constitute a hole in the security of the

network. When there exists a sufficient number of compromised nodes in the network,

these vulnerable holes are exploited, resulting in the further spread of the worm.

33



The aforementioned theory regarding the exploitation of vulnerable paths can be

seen in Figure 8. The curve that is expected as a result of the infestation (as demonstrated

by the base case) is flattened greatly, nearly to a point that it is unrecognizable. The

percentage of routers that learn the signature increases dramatically. However, the worm

continues to spread further throughout the network after the set of reacting routers nearly

completely becomes aware of the problem. The outbreak actually exhibits its steepest

increase in penetration while the number of learned routers is near its highest point. The

maximum infestation percent presented in Table 4 closely resembles the number of nodes

within the network that are located directly under a reactionary router. The percentages of

nodes that are direct children of reactionary routers when one-third of the router

population is altered to be a reacting router is 32.9%; when there are two-thirds of the

routers reacting, the percentage of nodes that are direct children rises to 66.99%. Thus,

the protection appears to be limited to those nodes that are directly connected to routers

capable of offering protection from the threat. The configuration where two-thirds of the

routers are reactionary provides additional protection to those nodes that are not directly

under reactionary routers because less than 20% of the nodes in the network are infected

at the end of the simulation yet over 30% of the nodes were not directly under a

reactionary router.

The previous result in conjunction with the data in Table 3 and Table 4 implies

that it is not the actual number of routers that may react to malicious traffic as much as it

is the location with respect to the source(s) of the outbreak. The simulation that allowed

two-thirds of the network routers to react provided a wider range of points on which the

network could fight back. The network had fewer “holes” and as a result fewer nodes
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were initially infected. This reduction in numbers reduced the power of the brute force

behind the attack, and the level of infestation converges are slightly under 20% of

possible nodes.
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Figure 8: 33% Reacting Routers Filtering Content The graph is obtained

under the extreme parameter set and shows that routers become aware of the

invasion very quickly. However, even after nearly all possible routers are

reacting, the worm continues to spread throughout the network.

The saturated simulation effectively stops the outbreak, but it is surprising how

little of the network was utilized to achieve such an effect. With only about 2.5% of all

the routers in the network acquiring the signature information of the worm, the incident

was contained to one-fifth of one percent. This scenario provides a best-case analysis

where by all machines can react and demonstrates that a complete solution could be

accomplished with as little as less than 3% of routers involved in the counter-measures.

The results from the experiment seem exceptional; that such a remarkably high

percent of the network was effectively quarantined as a result of reacting routers. This

incredibly successful performance is a direct result of the assumptions made regarding

35



the hypothetical defense system. The defense system assumes that network traffic

contacts (or at least shares information about its payload) with 20% of each AS it

encounters and that routers may positively identify (without exception) threats by being

exposed to 5 malicious packets. These two assumptions are not typical of a modern

system [7] and to simulate a situation that more closely resembles today’s practices and

technology, simulation parameters were changed as follows:

0 Routers must forward 500 packets before it is assumed that the signature

has been learned

0 The percentage of routers in an AS that are involved in transporting

packets is reduced from 20% to only 2%.

The adjustment made to the percentage of the AS that is involved in the

transportation of packets is more indicative of today’s networks where speed and

throughput is typically the focus [7]. Worm recognition, however is still an open question

and placing any sort of bounds is technically inaccurate, yet 500 packets is a much more

realistic estimate of technology that may exist in the near future than the previous value

of5.

Figure 9 shows the results of the model in which the parameters were more

realistic along with a new base case under the same realistic parameters. The worm

manages to invade nearly the entire network; achieving a final infestation of 97%. The

worm exhibits a rate of infestation that is close to the base case with slight abnormalities

in the ending stages as a result of enough routers learning so that they may make an

impact on the worm’s proliferation.
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Figure 9: 33% Reacting routers with a more realistic set of parameters

The network is not sufficiently defended as the worm swells to nearly

100%. The reactors first respond to the initial source, but it is too

late to avoid a massive outbreak.

Figure 10 shows all six infection curves for both simulation parameter sets and

reactionary participation in addition to the realistic base case. The realistic simulations all

conclude within the time frame but 33% and 67% extreme simulation results extend

beyond the limits of the graph. The 100% extreme case barely exhibits any infection at all

and thus converges very early on. The graph clearly shows how all three realistic

simulations diverge from the base case curve at the same point (divergence point) and

have varying degrees of growth dependent upon the amount of routers that are actively

trying to stop the infection. The more routers there are dropping malicious packets, the

flatter the curve after the divergence point.
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Figure 10: Collection of Infection Curves for Drop Simulations The graph combines

the realistic base case curve with the six simulations regarding basic dropping: the two

simulation parameters and the three levels of router participation. The realistic

simulations follow the base case to a point, the divergence point, and then they

start to exhibit the influence of the defense; more routers fighting back result

in a flatter infection curve after that point.

In the early stages of the outbreak, shortly after the worm begins its rapid ascent

into the network, the number of routers that are aware of the worm’s presence jumps. The

increase, however, is short-lived and levels off for a period of time. The increase occurs

near the source of infection as a result of the node that is continuously emitting packets

into that region of the network. That initial source is sending its malicious code to all

comers of the network and successfully disperses itself so that the other regions are not

exposed to enough traffic to be able to recognize and prevent the threat from continuing.

In the previous simulations, the accuracy and efficiency with which the routers could

successfully identify and eliminate the malicious traffic condensed the routers response
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curve so far as to eliminate this behavior. Conversely, under the parameter set that is

currently more realistic, the routers are not able to gather enough clues from the sporadic

nature of the worm to mount any defense.

It remains to be tested if disseminating the information amongst the reacting

routers more quickly will result in a better prevention plan. In other words, is there an

advantage gained by dispersing information about the intrusion to all reactionary routers

more quickly? Or is the locality and density of the routers more important in mounting a

defense?

3.3.] Fire with Fire

From the previous experiment, it is obvious that eliminating the malicious code

provides an obvious benefit. The specific numbers of reactionary routers throughout a

given simulation remains constant, thus the focus of the experimentation becomes to

facilitate the knowledge of the breach as quickly as possible to all appropriate routers.

The previous simulations utilized a defensive theory whereby the router only learned of

the threat once it had encountered it several times (5 for the purpose of this research, but

this value is a user defined simulation constant). This simulation introduces inter-router

communication henceforth referred to as “signal” or “signaling”. This additional

communication provides the infrastructure for a revolutionary approach to combating the

spread of a worm; fire with fire.

As the name implies, the router acts in a manner similar to an infected node. Once

a router learns the signature of the worm, it sends out a signal to a random router within

the network. This learned router continues to send signals to random destinations for the

duration of the simulation. When a reactionary router that has not yet learned the

39



signature receives a signal, the router instantly acquires knowledge of the threat and can

defend against it. Further, the delays of the signaling packets are proportional to the delay

of the worm packets at that particular router. These delays are computed when the

signaling packet is received based on the current delay for the worm traffic. This

proportional value is determined by a simulation constant and for the purpose of this

research is held constant at 1.

The milestone information is presented below in Table 5. The data shows

relatively little change in the maximum progression of the worm as compared to the

previous milestones obtained when a purely defensive packet filtering technique was

used. The one-third reactionary router allotment is the only configuration where the

percentage of infected nodes exceeds 33%. An additional point of interest to take from

the data is that homeostasis of the infected nodes occurs at relatively the same time

despite including the ability of routers to communicate amongst each other.

Unfortunately, the increase in network traffic and inter-communication does not provide

any real benefits with respect to the percentage of nodes fallen to the worm invasion.

Actual maximum values and more precise measurements concerning infestation and

convergence are discussed later.

While the progress of the worm was not greatly altered by the addition of inter-

router communication, the dissemination of knowledge between routers flourished. In

comparison to the previous experiment where routers stop learning once the invasion was

contained, this approach continues to share knowledge and quickly reaches 100% router

awareness very quickly. The table does a poor job of distinguishing milestones between
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time steps because the routers acquired the knowledge so quickly with regard to the

spread of the worm that the intervals were too large to show any distinction.

Table 5: Fire with Fire Milestones
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The results are impressive despite the lack of granularity. The router network

successfully propagates its knowledge about the intruder much more quickly than the

intruder itself spreads throughout the network. The experiments were run a second time

over a shorter time period to explicitly examine the rate at which the routers learn about

the intruder. The results of this additional experimentation are shown below in Figure 11.

The x-axis corresponds to time steps while the y-axis represents the percentage of

reacting routers that have learned the worm’s signature. The base is included as well on

the graph for reference. The increase in the flow of information amongst routers as

opposed to that of nodes is obvious. The routers learn of the signature in approximately

half the time. Adding more routers as reactors does not add to the amount of time

required for the routers to become aware of the outbreak, in fact, the more reactors there

are, the less time it takes for all of them to learn. Further, it appears that there is not a

direct relationship between the percentage of routers and the rate at which they all learn;
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the difference between one-third and two-thirds reactors is much larger than the

difference between two-thirds and complete participation amongst the routers.

The results presented in this section are important for at least two reasons: 1) this

demonstrates that it is possible to disseminate information about a worm faster than the

worm can penetrate the network (regardless of the percentage of routers participating as

reactors) and 2) despite having nearly all possible reacting routers aware of the signature,

the worm can still successfully exploit the small existing holes in network paths and

continue to propagate.

The speed at which this paradigm disseminates knowledge about the worm

outbreak is impressive. This approach successfully spreads knowledge at all participation

levels much faster than the worm itself spread in the base case. Further, the

experimentation shows that increasing the number of routers that may react to sensing the

threat allows the information to be shared more quickly. This is a result of having a

proportionately higher number of sources throughout the simulation as well as a higher

probability that the packet will encounter a reacting router. That coupled with the

mathematical fact that all routers have the ability to react, and the network’s defense

mechanism achieves remarkably well. It is conceded that such a situation is purely

hypothetical as complete cooperation and universal standards within the hardware

community and service providers is far from a reality.
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Figure 11: Reactor Knowledge Propagation The knowledge about the infestation

spreads much faster than the actual infestation. The negative shift in the X component

here is considered an improvement because we are measuring the percentage of routers

that have recognized the worm. Reacting routers learn of the threat faster than the worm

could have spread without any obstacles or defense.

The continuing spread of the worm after the sub-network of reactors had basically

achieved its peak might be a concern. The worm successfully spread and achieved similar

levels of infestation to that of the previous experiment where the routers were purely

defensive in nature. The maximum levels of infestation achieved for this simulation as

well as the previous experiment are shown below in Table 6.
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Table 6: Drop & Fire with Fire Maximum Infestation These values were

obtained using the extreme parameter set and present the maximum levels

of infestation achieved during the simulation
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The results are bit concerning because there is no noticeable benefit from creating

routers that add a significant amount of traffic to the network. The reacting routers must

consume time and resources locally to properly execute whichever algorithm is

implemented to correctly identify malicious code. It must then consume network

resources and further local resources when it crafts a signaling packet destined for some

other location that may or may not benefit from this additional work (the signal may or

may not even be destined for a reacting router). The experiment does not provide

conclusive evidence of any kind that leads one to believe that the additional work was a

sufficient trade off between resource consumption and worm prevention. The worm

successfully discovers and abuses the paths that exist between nodes that do not contain

reacting routers that can proactively defend against its proliferation.

There may be a slight improvement in defense when the reactionary routers

rnirrric the behavior of an infected node. However, it is the opinion of the author that the

slight increase in preventing the circulation of the malicious code is not worth the

additional burdens placed on the network. Furthermore, the routers are without any

intelligence and theoretically could be sending signals for various types of worms ad



infinitum. A model that addresses the concerns about network utilization and bases its

response off the presence of the worm is described and simulation below in section 3.3.2.

This experiment was repeated for more realistic parameters just as the basic

content filtering scheme was repeated in Section 3.3. The realistic parameters pertaining

to the router reaction time and path length within an AS are identical to the values used in

the previously: 500 malicious packets and 2%, respectively. Additionally, there have

been adjustments made to the frequency with which the router can fight back. In the

extreme case examined above the router would signal on every time step while the worm

was restricted to signaling at most every 5 steps. Such a policy in actuality would result

in large amounts of traffic and additional network strain, not to mention a router would be

occupied with sending out signaling packets and not efficiently route normal traffic.

There would be an unacceptable reduction in network usage. This round of simulations

reduces the burden on the router and introduces another simulation constant that

determines the frequency that the router will send signals to other randomly selected

routers. This experiment sets both the rate at which the router and the rate at which an

infected node will spread at 5 time steps.

Figure 12 shows the more realistic fire-with-fire simulation along with the more

the realistic base case for having one-third of the routers participate in the defense. It can

be seen that the initial stages of the worm’s infestation closely mimics that of the base

case as the number of routers that have learned of the invader is practically zero.

However, as the worm gains portions of the network it also increases the amount of

traffic that allows reacting routers to learn of the activity. This additional data need only

result in a few routers to become aware because each router behaves much like an
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infected node; only the routers disseminate countermeasures. Figure 12 shows the point

at which the worm deviates from the base case coincides with the rapid spread of router

awareness. The routers quickly share the information about the worm effectively

quarantine about 21% of the network. This is a slight decrease from the levels observed

in Table 6, which is to be expected because information is not dispersed throughout the

network as much during packets transmittal and the routers require lOO-fold more time to

recognize the malicious packets.
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Figure 12: Plausible Fire With Fire simulation with 33% reacting routers Reacting

routers quickly respond to the worm and significantly altersthe worm’s progress

The more realistic model exhibits the benefits of sharing information between

reactionary routers. In the extreme case examined earlier in Figure 11 and Figure 8 the

information amongst the routers spread much more quickly than the worm, and as a

result, the routers had quarantined just about all that they could before the worm started

its aggressive progression into the network. The more realistic models, on the other hand
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(Figure 9 and Figure 12), show how communication between routers can alleviate the

delay in the reactionary curve (Figure 9; time 300 through 450). While this approach does

successfully increase the preventative abilities of the reacting routers, it does so at the

possible expense of network resources and has no means with which to stop signaling

their peers. A model that allows reactionary routers to successfully signal its peers and

has a mechanism to control the number of signals being generated is needed. A possible

defense schema that attempts to resolve those issues is discussed and simulated in section

3.3.2, below.

3.3.2 Intelligent Signaling

To help alleviate the additional stresses placed on the network, the concept of

“intelligent signaling” is introduced. This concept is based on another non-trivial

assumption: the router is aware of all other reacting routers that exist. The other routers

know not of their peers current condition (whether or not they have learned of the current

signature), they know only that the reactor exists and its address. Assuming that a single

machine would keep track of all other reacting routers through the world is highly

unlikely. However, there do exist protocols and overlay networks that allow for many

machines to maintain communications and for peers to drop and come back without

degrading the performance of the overlay network. These networks are commonly

referred to as peer-to-peer (P2P) networks. Examples and further information regarding

such networks can be found in [15, 6]. P2P networks are highly scalable and easily

accommodate members who drop out and rejoin the group. While this is not necessarily a

constant issue (that routers go up and down), it is definitely an event that cannot be
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prevented. The overlay network should be capable of adapting and functioning in such an

environment.

This experiment utilizes intelligent signaling and attempts to limit the traffic on

the network by only sending a signaling packet when the router processes a packet of

malicious code. This technique has the advantage that it scales directly with the spread of

the worm. As the worm acquires more and more nodes and thus creates more and more

traffic, the reacting routers respond in turn. Each reactor checks each packet and if it has

learned of the signature, it will send out a signal to a random router and drop the

malicious packet. The solution scales precisely with the worm and prevents routers from

unnecessarily flooding the network with signaling packets.

As before, the signaling packets instantly change the receiving reacting router into

a router that has learned of the current signature and will drop malicious packets the next

time it processes its traffic queue. The knowledge of the signature will be retained

throughout the simulation.

The milestones collected for this set of experiments are presented below in Table

7. The number of time steps to reach corresponding milestones relating to the spread of

the malicious code is relatively equal compared to those values obtained from the ‘Fire

with Fire” simulations. Both scenarios had the number of infested nodes converge in

about 1000% more time than the base case with reacting routers accounting for about

one-third of all routers.
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Table 7: Intelligent Signaling Milestones
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The length of time required for the routers to reach their respective milestones has

grown considerably. For instance, the situation where one-third of all routers are

reactionary achieves 99% learned saturation at time 270 when fighting “fire with fire”;

however, 99% saturation is not obtained until time step 630 with the intelligent signaling.

This is an increase of 233%. Further, when the network is constructed of entirely of

reacting routers, intelligent signaling does not reach the 66% learned milestone within the

maximum number of time steps (100,000). The only milestone achieved for this

configuration is 33%, which occurs at time step 452 — an increase of 276% from the

corresponding milestone results from the “fire with fire” simulations.

The increase in time required to distribute knowledge about the worm delays the

sub-network of reactionary routers from completely becoming aware of the attack — but

does this directly effect the quality of the response offered by this sub-network? Table 8

shows the maximum levels of infestation achieved on average for the three configurations

of reacting routers and the two primary strategies for disseminating information. The

degree to which the malicious code successfully penetrates into the network is virtually

identical in either situation
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The protection offered to the network is not noticeably improved because

unprotected paths between nodes still exist. These paths ere first observed and

hypothesized in Figure 8. However, these results do answer the question posed previously

regarding the faster dissemination of information and its impact on the degree to which

the worm spreads. Under the scales presented here, there is no sizable advantage gained

or lost as a result of router communication.

Table 8: Maximum Infestations for extreme scenario These values represent

the maximum infestation percentages obtained under the extreme scenario.

Refer to Table 9 for results pertaining to the realistic scenario.
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As a result of the “Fire with Fire” strategy, learned routers continually send

signals regardless of whether or not a malicious packet is processed. This creates a

burden on network resources as the routers become just as responsible for a decrease in

network throughput as do the worms. The intelligent signaling does not place additional

network resources in peril. When a learned router processes a packet that is considered

malicious code, the packet is dropped and a signal is generated. The net change in

network usage is zero.

Again, the simulation was repeated under more realistic simulations parameters.

The parameters were modified similarly to how they were altered for the realistic

simulations conducted in section 3.2.1; the network utilizes only 2% of the routers in an
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AS to transport packets and reacting routers require 500 malicious packets to be

forwarded before learning the about the worm. The result of having one—third of the

routers reacting to the worm under the plausible simulation settings is shown below in

Figure 13.
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Figure 13: Realistic Intelligent Signaling simulation With 33% of the routers as

reactionary, the dissemination of information amongst routers is focused, and thus

spreads more quickly; resulting in a greater percentage of the network quarantined.

In the more realistic simulation the impact of the focused signaling is pronounced

as the sub-network of routers quickly learns of the worm. In comparison to Figure 12, the

sharp increase in the number of learned routers both occurs shortly after time 200.

However, the intelligent signaling in the most recent simulation results in the set of

reacting routers spreading this knowledge slightly faster than in the fire-with-fire

approach.
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The improvement in the share of the network that was successfully quarantined

underscores the importance of speed. The only difference between the two realistic

simulations in Figure 12 and Figure 13 is the means by which the routers communicate.

The more efficient communication resulted in roughly a 7% increase in network

protection (see Table 9). Furthermore, this paradigm incorporated an attempt at avoiding

the routers acting blindly and continually sending signals by only sending responses to

malicious code. Thus, the routers will stop attempting to alert others when the threats stop

occurring. Additional improvements to such a signaling scheme may include observing

the number of signals received to assume how long the invasion has been going on and

whether or not sending additional signals would be beneficial.

Table 9: Maximum infestation percentages for the realistic simulations
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The most important trend in Table 9 data is the relationship between the number

of reacting routers and the portion of the network that was successfully quarantined. A

measure of the efficiency of the participation levels can be quantified by a ratio of the

percentage of responding routers over the percent of the network that had been

successfully quarantined (note that this is not the value portrayed in Table 9; infection

percent was presented above). The ratios for one-third, two-third and complete

reactionary routers are: 83.33%, 84.48% and 82.7%, respectively. Thus, adding
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additional reacting routers increases the overall level of quarantine that may be achieved,

but there appear to be diminishing returns on the investment. The exact relationship

between reacting routers and the efficiency ratios are outside the scope of this research

and is left for further study. Despite the lack of information regarding the best percentage

of reactionary routers that are needed to achieve the highest ratio of efficiency, it should

be noted that a complete network of reactionary routers under the realistic simulation

parameter set was successful in quarantining over 84% of the network.

Signaling has shown to be one possible solution to actively alert peer routers of

the presence of malicious code. Quite surprisingly, the speed at which signaling is sent

through out the network is not as important as one might suspect when the speed of the

routers recognition is sufficiently fast. On the contrary, if the recognition is not that

quick, then signaling allows for the set of first responding routers to alert the group.

However, even after all routers have been alerted, there will exist unprotected paths so

long as there are non-reacting routers present in the network. Lastly, the intelligent

signaling has shown promise by focusing the signals to known reactors and gaining an

additional 7% of network protection. The proportion of the network that may be

quarantined is directly related to the number of reacting routers. The goal is to find a way

to get ahead of the worm’s progression and allow other locations to prepare a defense

when the recognition is not sufficiently faster than the worm.
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CHAPTER 4 - SUMMARY & CONCLUSIONS

This paper has evaluated some possible means to defend against an attack by way

of self-propagating code. The two primary categories of defense investigated were traffic

throttling and content filtering. Traffic throttling was shown to be effective only in

delaying the amount of time before the network succumbs to the intruder. Content

filtering assumes that recognition is possible (among other assumptions) and then

attempts to determine if such a system is capable of stopping an invasion and what degree

of participation is required to do so.

Initial tests involved basic content filtering that did not attempt to share or spread

information gained by the routers. These experiments successfully reduced the level of

infestation achieved by the worm and greatly increased the time required for the network

to fall victim to the code. Homeostasis was delayed by nearly 10,000% with less than

20% of the nodes becoming infected when two-thirds of the routers in the network were

allowed to react. A complete network of reacting routers was shown to be incredibly

resilient to an invasion with the worm maximizing its penetration at about one—quarter of

one percent near time—step 236 (roughly half the time required for the base case to

converge).

Then a slightly more reasonable set of simulations parameters were used to better

estimate the performance of technology in the near future. These simulations showed that

the routers attempted to stop the spread, but just were not fast enough. There was an early

jump in the number of routers that were aware, then it leveled off as the worm had

hopped to the far reaches of the network. It was in these initial outstretches that the worm

mounted an offensive that the routers were simply not fast enough to stop.
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The extreme basic content filtering test also revealed information regarding the

minimum level of involvement from the reactionary routers needed to suppress or

manage the invasion. The one-third and two-thirds router participation needed 98% and

58% of its pool of reactionary routers in order to achieve its level of protection. These

percentages equate respectively to 38% and 39% of the total routers within the network.

However, when the network is comprised of nothing but reactionary routers, the actual

number of routers that are actively involved in the defense (those routers that learn of the

worm) falls dramatically to about 2'/2%. This implies that the actual number of

participating routers is not as important as where the reactionary routers are in respect to

the source and the initial population of infected nodes. The luxury that is gained by

having an entire network of reactionary nodes is that the network may defend itself

appropriately at any point. The network does not contain an unprotected path between

any two nodes.

Observations regarding location importance and the lack of the defense system to

stop the worm in the more realistic setting resulted in attempts to spread information

about the attack as quickly as possible throughout the reacting routers. The goal being to

get a defense activated as quickly as possible by having protection in the right place at the

right time.

In an attempt to quickly disseminate information amongst the routers about the

threat, a system of signaling was based on the adage: fight fire with fire. The routers’

signaling was completely random and directed at any other router in the network

regardless of its abilities. The extreme simulations allowed the router to signal on every

time step once it became learned while the realistic simulations placed a frequency
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restriction on the router (equal to the worm for these experiments). The extreme scenarios

saw some improvements in the ability to quarantine portions of the network and the

realistic situations were able to stop some of the worm for the first time. Signaling

Showed promise, but the current system had obvious errors: it did not focus its work on

known reactionary routers and the routers would send out signals for infinity. Both points

result in a less network utilization because there are many useless packets and wasted

time and effort as a result of the signaling policy. To alleviate a portion of this burden, a

better signaling system was designed and Simulated.

Intelligent signaling was devised in an attempt to mitigate the drain on network

resources without impacting the increase in defense. This system had two important

changes from the first iteration of signaling, fire-with-fire. In this new approach, the

router only sends signals to other routers in the network that are known to be reactionary,

thus eliminating wasting signals destined for routers that have no way of using the

signaling information productively. Secondly, the routers only produce signals at the time

that it drops a packet, ensuring that network resources are not further strained than in the

event of a defenseless network. Further, this mechanism scales well with the invasion of

the worm: as the worm infects more nodes and there are accordingly more malicious

packets, the routers will produce more signals that help to prevent the outbreak.

The streamlined signaling yielded comparable results as those obtained when the

network was effectively flooded with signals for the extreme case and offered a 7%

increase in quarantined nodes in the realistic situation. Thus, there is a benefit from

actively sharing information between routers. However, the sharing has a limited value
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when the router alone can recognize the attack quickly. The relationship between the

speed of recognition and signaling was not addressed and is left as further research.

This research concludes that there is a theoretical point at which recognition and

information sharing can successfully stop a worm from completely occupying a network.

The level of protection is obviously directly related to percentage of routers that are

capable of providing protection and if there are holes in the network, the worm will

eventually find them. The goal is to provide information as quickly and efficiently as

possible so that those areas with the option of quarantine can take appropriate action and

set up defenses. A focused distribution of knowledge does provide some additional level

of security and results can be obtained with as little as one-third participation. For when

the time comes technology has advanced to the point that malicious data can be positively

identified, there should be a reliable system of defense to utilize the technology as

efficiently as possible.
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CHAPTER 5 - FUTURE WORK & ATTACKING THE SIMULATION

The work performed for this paper has been enlightening and with merit, but that

is not to say that it is complete. There are areas in which the effect and nature of the

network architecture and proliferation of malicious code are not completely understood.

Some of these aspects have been mentioned throughout the paper and are repeated here

with a bit more clarification, as well additional possible avenues of research that have yet

to be discussed.

The structure used by the simulation is a strict tree structure such that all nodes

have exactly one parent. There is, of course, an exception for the root node that has zero

parents. This structure is not a true representation of the Internet, and it is impossible to

properly characterize all private networks around the world in a single design. However,

this basic structure does provide a reasonable approximation to the topology and basic

functionality of the Internet. Examples of improvements that could be added to the

simulation include the addition of peer connections and to vary the number of routers that

are involved in transporting packets through the network. Further, specific routing

protocols could be integrated as well. Nonetheless, the basic workings of the Internet are

currently present and serve as a valid simulation and whatever pitfalls the worm

encounters are also encountered by the signals; it is a fair simulation.

The current simulation only models worms similar to Slammer (single UDP

packets that propagate at completely random destinations) [9,18]. Simulating the

behavior of other worms and other infection strategies would help to strengthen the

model and its claims.

58



Appendix A lists all the Simulation parameters that can be tweaked to customize

the simulation. Only a subset of these parameters were used in this research and further

investigation on structure, speed, reaction, network utilization in transportation, etc. may

be the focus of future studies.

The signaling system incorporated in the final set of experiments was better than

the first iteration, but there is room for improvement. Knowledge about the number of

worm packets that have been seen, the source of the malicious packets as well as the

number of peer signals received and their sources could provide clues as to how to best

alert other reactionary routers. Finally, one could base the signal destination from the

information within the packet. It is possible that the source may be falsified, but the

destination must be true since that is all the routers have to guide them. In such an

instance, the simulation parameters allowing for priority channels for the signals could be

utilized to add another factor of complexity to the problem.
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APPENDIX - CONSTANTS FILE

#pragma once

using namespace std;

#define VERBOSE 1

#define EXCEL_DELIM "\t"

#define ADDR_DEFAULT "DEFAULT"

/**'1:*******************************************************

Overall Simulation Constants

— MAX_AS_DEPTH : Maximum to which the tree may grow.

root is depth zero

— TOTAL_ASES : Total AS objects possible within the

simulation

TOTAL_ROUTERS : Total Router Objects that may exist

in the simulation

- TOTAL_NODES : Total Node objects that may exist in

the simulation

- MAX_TIMER : Total time steps that that simulation

runs

TIMER_RECORD_INTERVAL : The approximate number of

measurements that will be taken over

the course of the simulation

**************************‘k'k'k'k****************************/

#define MAX_AS_DEPTH 5

#define TOTAL_ASES 256

#define TOTAL_ROUTERS 1024

#define TOTAL_NODES 16384

#define MAX_TIMER 2000

#define TIMER_RECORD_INTERVAL 225

/*****‘1’****************************************************

Node Restrictions

— PERCENT_INVULNERABLE : The percentage of nodes

that are invulnerable to infection

— INITIAL_INFECTED : The number of nodes to be

randomly infected at time zero

*'k********************************************************/

#define PERCENT_INVULNERABLE .0
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#define INITIAL_INFECTED l

/********~k*************~k******~k****************~k***********

Router Restrictions

- ROUTER__SCALING : The number of routers may be

inversely proportional to the depth ofthe AS.

Nodes may have a direct relationship. This value

determines the scaling factor in that

relationship

— ROUTER__PROC_DELAY: The base number of steps that a

packet remains in the router queue. This delay is

also scaled directly with the depth of the AS.

- ROUTER__QUEUE_CAPACITY : The maximum number of

packets that a router may have in its queue

- ROUTER_REACTION_TIME_CONSTANT : The number of

malicious packets that must be processed before

the router "learns" of the signature. Expressed

as an integer of packets

- ROUTER—REACTION_TIME_PERCENT : The number of

malicious packets that must be processed before

the router "learns" of the signature. Expressed

as a decimal greater than zero. Determines the

number of packets with respect to the number of

children. This number is directly multiplied by

the number of children to obtain that value.

Percentage takes precedence over absolute value.

Enter 0 or a negative number to use absolute

numbers of packets.

- ROUTER_THROTTLE_DELAY_FACTOR: Factor by whiCh the a

reating router will hold worm packets. IE: 2

results in holding worm packets twice as long as

regular packets

- ROUTER_RESPOND_MIN_DEPTH : The minimum depth that

routers will be able to respond

- ROUTER_RESPOND_MAX_DEPTH: The maximum depth that

routers will be able to respond

- PERCENT_ROUTER_RESPOND : The percentage of routers

within the allowed reacting range (see previous
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- SIGNAL__DELAY_FACTOR

two values) that will participate by being

allowed to react to the invasion

Decrease the queuing time

for signal packets with respect to worm packets.

IE: 2 would result in signals being queued for

half the time as worm packets

Boolean values determining how a router will respond:

— ROUTER__TRAFFIC_THROTTLE

- ROUTER__DROP_PACKETS

- ROUTER__SIGNAL__RESPONSE

— ROUTER__SIGNAL__FIRE_WITH_FIRE

manner similar to a worm

- SIGNAL_PROPAGATION_RATE

— SIGNAL__RANDOM

network

- SIGNAL__RANDOM;INTELLIGENT

Signal in response to

a forwarded worm packet

Signal in a

How often should the

router send signals ?

Signal to random routers in the

Signal only within the

reactionary routers

**3%*******************************************************/

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

ROUTER__SCALING l

ROUTER__PROC_DELAY 2

ROUTER__QUEUE_CAPACITY 1000

ROUTER__REACTION_TIME_CONSTANT 500

ROUTER__REACTION_TIME_PERCENT 0

ROUTER_THROTTLE__DELAY_FACTOR 2

ROUTER_RESPOND_MIN_DEPTH O

ROUTER_RESPOND_MAX_DEPTH MAX_AS_DEPTH

PERCENT_ROUTER_RESPOND .33

SIGNAL__DELAY_FACTOR l

ROUTER__TRAFFIC_THROTTLE O

ROUTER__DROP_PACKETS l

ROUTER__SIGNAL__RESPONSE l

SIGNAL_PROPAGATION_RATE 5

ROUTER__SIGNAL__FIRE_WITH_FIRE O

SIGNAL__RANDOM O
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#define SIGNAL__RANDOM_INTELLIGENT 1

/it*********************************************************

Worm restrictions

- WORM_VALIDITY_FACTOR : This is multiplied by the

total number of nodes to restrict the frequency

of finding a valid destination on the network

— WORM_PROPAGATION_RATE : The number of time step

between each attempt by infected nodes to spread

to another node

**********************************************************/

#define WORM_VALIDITY_FACTOR 2

#define WORM;PROPAGATION_RATE 5

/**********************************************************

AS Restrictions

- MIN_XXX : The minimum number of objects that are

generated for object XXX

- MAX_XXX : The value used to determine the maximum

number of XXX objects. The range over which

objects will be created is [MIN, MIN+RANGE]

- PATH_INTERNAL_PERCENT : Percentage of internal

routers that will be process a packet when it

reaches the AS

**********************************‘1:***********************/

#define MIN_AS_CHILDREN 8

#define MAX_AS_CHILDREN_RANGE 4

#define MIN_GATEWAY 5

#define MAX_GATEWAY_RANGE 3

#define MIN_INTERNAL 5

#define MAX_INTERNAL_RANGE 3

#define MIN_NODE 8

#define MAX_NODE_RANGE 4

#define PATH_INTERNAL_PERCENT 0.02

/**********************~k********~k*************~k**********~k*

Packet restrictions

- MSG_ADDR_DELIMITER : The character used to separate

sections of the address

— PACKET__LIST_EMPTY : The value returned when the list
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of hops is empty

****************************************************~k*****/

#define MSG_ADDR_DELIMITER '.'

#define PACKET_LIST_EMPTY —1
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