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ABSTRACT

ADAPTIVE RESONANCE TUNING

By

Jeffrey Andrew Jeltema

Resonant systems arise in many areas of science and engineering. Some examples

include ultrasonic motors, piezoelectric transducers, induction heating loads, resonant

inverter loads, vibrational gyroscopes, cavity resonators and cyclotrons. For optimal

performance, these systems must be excited at their resonant frequencies. However,

even if resonant and excitation frequencies are initially matched, over time they can

drift due to disturbances such as environmental change, load variation, manufacturing

variability, fatigue damage, microphonics and electromagnetic detuning, resulting in

a loss of performance. This necessitates employment of a resonance tuning control

system that maintains lock between the excitation and resonant frequencies.

In this thesis, three resonance tuning methods for lightly damped second order

passive loads are investigated. Each method uses the error between the excitation

and resonant frequencies obtained by a phase detector to adaptively match these

frequencies. In the first method, the excitation to the load is provided by a voltage

controlled oscillator, the frequency of which is adaptively tuned. The second method

adaptively tunes the resonant frequency of the resonator by changing its structure

or element values. Finally, the third method uses proportional feedback around the

resonator and adaptively adjusts the feedback gain to tune the closed loop resonant

frequency to the excitation frequency. Using the frozen time approach, nonlinear

time-varying models that accurately predict the performance of these control systems

are developed, and subsequently linearized, to obtain linear time-invariant models

that facilitate both analysis and design. Furthermore, stability issues are considered

and design guidelines are provided. The results are illustrated through examples.



To my family, Thomas, Linda and Laura

iii



ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Cevat Gokgek, whose

expertise and guidance have added considerably to my graduate experience. I truly

appreciate the time and effort he has given to me as a research advisor and mentor.

I would also like to thank all of my friends and family for their constant support and

words of encouragement.

iv



TABLE OF CONTENTS

LIST OF FIGURES VII

1 Introduction 1

1.1Motivation.......................... ....... 1

1.2 Problem Formulation ........................... 2

1.3 Resonance Tuning Systems ........................ 3

1.3.1 RTSl ................................ 3

1.3.2 RTS2 ................................ 5

1.3.3 RTS3 ................................ 6

1.4 Thesis Overview .............................. 7

1.4.1 Organization ........................... 7

1.4.2 Original Contributions ...................... 7

2 Modeling 9

2.1 Introduction . .. .............................. 9

2.2 Resonator Model ............................. 10

2.2.1 Resonant Frequency ....................... 10

2.2.2 Effects of Detuning ........................ 14

2.3 Phase Detectors .............................. 17

2.3.1 Multiplication Phase Detector .................. 17

2.3.2 Exor Phase Detector ....................... 19

2.4 Resonance Tuning Systems ........................ 22

2.4.1 RTSl ................................ 22

2.4.2 RTS2 ................................ 24

2.4.3 RTS3 ................................ 25

3 Analysis 28

3.1 Introduction ................................ 28

3.2 Analysis .................................. 28

3.2.1 RTSl ................................ 29

3.2.2 RTS2 ................................ 32

3.2.3 RT83 ................................ 35

3.3 Stability .................................. 37

3.3.1 Linear Models ........................... 37



3.3.2 Nonlinear Models .........................

4 Design

4.1 Design ...................................

4.2 Simulation .................................

4.2.1 RTSl ................................

4.2.2 RTS2 ................................

4.2.3 RTS3 ................................

5 Extension - Adaptively‘ Enhanced PLL

5. 1 Introduction ................................

5.2 Modeling ..................................

5.3 Analysis and Design ...........................

5.4 Simulation .................................

6 Conclusions

6.1 Summary .................................

6.2 Future Work ................................

BIBLIOGRAPHY

vi

38

48

48

50

50

52

55

59

59

59

62

64

70

70

71

73



LIST OF FIGURES

1.1 Plasma ignition system. ......................... 5

2.1 Model of the RLC circuit. ........................ 11

2.2 Bode plot of the Hc(jw).......................... 13

2.3 Bode plot of the H3(jw).......................... 13

2.4 Bode plot of the HL(jw).......l ................... 14

2.5 Bode plot of RLC example. ....................... 15

2.6 Output of uncontrolled resonator excited at wn(t)............ 16

2.7 Output of uncontrolled resonator with 1 percent drop in capacitance. 16

2.8 Model of the multiplication phase detector................ 18

2.9 Multiplication phase comparator characteristic. ............ 19

2.10 Model of the exor phase detector. .................... 20

2.11 Exor phase comparator characteristic................... 21

2.12 Model of RTSl. .............................. 22

2.13 Model of the voltage controlled oscillator................. 23

2.14 Model of the RTS2............................. 24

2.15 Model of RTS3. .............................. 26

3.1 Linearized model of RTSl......................... 31

3.2 Linearized resonance tuning system.................... 35

3.3 Plot of arctangent and saturation functions. .............. 38

3.4 Feedback connection of linear system and nonlinear element. ..... 43

3.5 Sector bounded nonlinearity of RTS2 and RTS3 with exor PD..... 44

3.6 Sector bounded nonlinearity of RTS3 with multiplication PD. . . . . 46

3.7 RTSl nonlinearity crossing the sector bound near the origin. ..... 47

4.1 Simulation results of RTSl with can = 1005.04.............. 51

4.2 Simulation results of RTSl with w" = 1054.1. ............. 52

4.3 Simulation results with F(s) = 2.827/(3 + 1). ............. 54

4.4 Simulation results with F(s) = 1.571/s.................. 54

4.5 Simulation results with F(s) = 62.832/[s(s + 20)]............ 55

4.6 Simulation results of RTS3 for vibrational gyroscope example. . . . . 56

4.7 Simulation results of RTS3 with F(s) = figfoi ............ 58

5.1 Model of the enhanced PLL system.................... 60

vii



5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Model of the frequency estimator system................. 61

Simplified model of the resonance tuning system. ........... 63

Frequency-phase error results with small initial frequency difference. . 65

Input and output signals with small initial frequency difference. . . . 66

Frequency - phase error results with wo = 1100 rad/s.......... 67

Input and output signals with we = 1100 rad/s. ............ 67

Frequency - phase error result with tag = 4000 rad/s. ......... 68

Input and output signals with we = 4000 rad/s. ............ 69

viii



CHAPTER 1

Introduction

Resonant systems arise in many areas of science and engineering. In some cases,

these systems must be excited at their resonant frequencies to achieve optimal perfor-

mance (e.g. resonators) while in some others, excitation of their resonant frequencies

may be catastrophic and must be avoided (e.g. bridges). Control systems that achieve

the former objective will be referred to as resonance tuning systems in this thesis.

1 .1 Motivation

Ultrasonic motors, piezoelectric transducers, induction heating loads, some res-

onant inverter loads, microelectromechanical gyroscopes, cavity resonators and cy-

clotrons can be modeled as lightly damped second order passive loads [1]—[16]. In

order to maximize the average power delivered to such a load or maximize the res—

onant amplification, it is necessary to drive the load at its resonant frequency [1]—

[16]. However, disturbances such as temperature or humidity change, load variation,

manufacturing variability, fatigue damage, microphonics and electromagnetic detun-

ing [1]—[16] can cause the resonant frequency or excitation frequency of the load to

drift over time and significantly impair the achieved performance. This mandates

employment of a resonance tuning system that maintains lock between the excitation

frequency and the resonant frequency of the load.

The resonance tuning control problem has received significant attention recently

in the contexts of the specific applications listed above and many others. Several



useful analysis and design methods for such systems have been developed and many

such systems have been practically implemented [1]—[16]. Despite these encouraging

results, development of simple but accurate analysis methods as well as robust and

optimal design methods for resonance tuning systems are still needed.

The aim of this thesis is to provide effective tools for modeling, analysis and design

of resonance tuning systems. Specifically, resonant systems that can be modelled as

lightly damped second order loads will be studied. Since the phase of a second order

load takes a constant value (—1r/2, 0 or +1r/2 rad) at its resonant frequency, the main

idea in designing the resonance tuning system is to use a phase detector to extract

the phase information and use it for feedback purpose. This thesis will investigate

three separate resonance tuning methods.

1 .2 Problem Formulation

Based on the above motivation, the following three problems are formulated.

Modeling Problem: Given a resonator, develop an overall model that includes the

resonator and an appropriate resonance tuning system.

Analysis Problem: Given an overall model of a resonator and a resonance tuning

system, determine the performance of the feedback system (stability, robustness, dis-

turbance rejection, reference tracking, rise time, settling time, maximum overshoot,

etc.); also determine performance limitations and tradeoffs.

Design Problem: Given an overall model of a resonance tuning system, design the

parameters so that the system achieves certain desired performance objectives.

Although the resonators mentioned above can be similarly modeled, they differ

from each other as to what part of the system actuation is possible. In this the-

sis, resonance tuning systems will be classified into three groups based on actuation



possibilities.

Group 1: This group consists of those systems that allow actuation on the excita-

tion frequency. That is, these systems contain means to adaptively tune the excitation

frequency to the resonant frequency of the resonator. It should be noted that with

this case, actuation on the resonant frequency may or may not be possible.

Group 2: This group of systems consists of those that allow actuation on the

resonant frequency. This requires the ability to adjust a parameter or element value

of the resonator on which the resonant frequency is dependant. It should be noted

that with this case, actuation on the excitation frequency may or may not be possible.

Group 3: Finally, the last group consists of systems where actuation on neither

the excitation frequency, nor the resonant frequency is practical.

For each group of resonators, this thesis will present an appropriate resonance

tuning system and provide solutions to the three problems formulated above. The

resonance tuning systems will be demonstrated with simulations.

1.3 Resonance Tuning Systems

This section introduces the three resonance tuning systems considered in this

thesis. Some representative examples are also provided.

1.3.1 RTSl

The first resonance tuning system assumes the resonator fits into actuation group

1 above. That is, actuation on the excitation frequency is possible. In this resonance

tuning system, the source of excitation is a voltage controlled oscillator (VCO). A

phase detector is used to produce an error signal that is proportional to the error

between excitation and resonant frequencies. This error signal is then used to adap-
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tively tune the output frequency of the VCO in a direction to reduce the error between

excitation and resonant frequencies. The combination of a phase detector and a VCO

is known as a phase locked loop (PLL). The PLL is a common tool in many commu-

nication systems, however, use of the PLL for the purpose of resonance tuning is a

fairly recent idea.

Some physical systems where RTSl may be implemented include some fluorescent

lighting loads, induction heating loads, piezoelectric transducers or ultrasonic motors.

The exact frequency at which these systems resonate is not important, only that they

achieve resonance within a reasonable range. Thus RTSl is well suited for these

applications.

One physical system that currently implements RTSl is a plasma ignition system.

Although this ignition system is still being developed, early results have shown that

when RTSl is implemented, the system can maintain resonance despite changes in

its resonant frequency.

The basic principle of this plasma ignition system is to use resonance boosting

to achieve the required high voltage for the breakdown and sustain the plasma by

continuing RF excitation. This ignition system generates a strong RF plasma torch

for a prescribed duration and hence it is expected to achieve faster, more uniform

and more complete combustion. Prior to discharge, a spark plug is basically a very

small cylindrical capacitor. Connecting an inductor in series with the spark plug

forms a series resonant circuit. A model of the plasma ignition system is shown in

Figure 1.1. In this figure, the lightly damped second order load is the series RLC

circuit and the rest of the circuit provides the excitation. Driving this circuit with

a suitable RF generator exactly at its resonant frequency yields a very high RF

voltage across the spark plug and results in an RF plasma torch. However, due to

environmental changes, the resonant frequency may drift with time, thus impairing

the the performance of the system significantly. Hence a resonance tuning system is
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Figure 1.1. Plasma ignition system.

required. As the plasma ignition system fits into actuation group 1 above, RTSl is

implemented.

1.3.2 RTSZ

The second resonance tuning system considered assumes the resonator fits into

actuation group 2. That is, actuation is possible on a parameter of the resonator

that changes the resonant frequency. Again, a phase detector is used to determine

the error between excitation and resonant frequencies. This error is then used to

adaptively tune a parameter of the resonator so that the resonant frequency varies in

a direction that reduces the error between the resonant and excitation frequencies.

RTS2 is well suited for use in wireless communication devices. In these devices,

for instance cellular phones, the frequency of an incoming signal cannot be adjusted.

Hence, to achieve optimal performance, the center frequency of the bandpass filter

within the phone must be adjusted. This can be accomplished by implementing RTS2.

Another physical system well suited for RTSZ is a cavity resonator. The resonant



frequencies of these resonators are required to be precisely tuned to their excitation

frequencies as they typically have high quality factors. However, their resonant fre-

quencies can easily drift during operation due to factors such as temperature change,

humidity change or microphonics. The result is a large decrease in the performance of

these resonators. Thus, a resonance tuning system is required. RTS2 is well suited to

cavity resonators due to the fact that the resonant frequency of a cavity resonator de—

pends on the cavity dimensions. Thus, the resonant frequency of these systems can be

tuned by altering their physical dimensions. These adjustments can be accomplished,

for instance, with piezoelectric actuators [8]—[12].

1.3.3 RTS3

The third resonance tuning system considered assumes the resonator fits into

actuation group 3 above. That is, actuation is possible on neither the excitation

frequency nor the resonant frequency. Instead, a feedback loop is introduced around

the resonator to allow for the tuning of the closed loop resonant frequency. Similar to

RTSl and RTS2, a phase detector is used to determine the error between excitation

and closed loop resonant frequencies. This error is then used to adaptively tune the

feedback gain, and thus tune the closed loop resonant frequency, in a direction that

reduces the error between excitation and closed loop resonant frequencies.

An example of a physical system where this method is well suited is a vibrational

gyroscope. Vibrational gyroscopes measure the angular velocity of a rotating system

by sensing the Coriolis force on the system. They are basically a mass spring damper

system driven to vibrate in one direction. When the gyroscope rotates, the Coriolis

force causes the mass to move in a direction perpendicular to the drive axis and

rotation axis [6]. In order to obtain a large response, most gyroscopes must be driven

at their resonant frequency. However, due to manufacturing variability, temperature

and aging the resonance condition can easily be lost. Thus, a resonance tuning
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system is required. Typical MEMS gyroscopes utilize a PLL to tune the excitation

frequency to the resonant frequency of the gyroscope [6]. However, this method does

not allow for the operating frequency to be chosen by the designer, which means

this frequency cannot be used in the signal processing design. Instead RTSB, which

creates a feedback loop around the resonator and adaptively tunes the feedback gain

to bring the closed 100p resonant frequency to match the excitation frequency can be

utilized.

1 .4 Thesis Overview

1.4.1 Organization

This thesis is organized as follows: Chapter 2 provides the models of the three

resonance tuning systems considered in this work as well as the models of a generic

resonator and two types of phase detectors. Chapter 3 provides analysis of the three

resonance tuning systems including model simplification and stability results. Chap-

ter 4 discusses the issues surrounding the design of these resonance tuning systems

and provides simulation results of each resonance tuning system. Chapter 5 presents a

byproduct of this study, adaptively enhanced phase locked loops. Finally, in Chapter

6, conclusions are given as well as some future research directions.

1.4.2 Original Contributions

The main contribution of this thesis is the development of systematic analysis and

design methods for the adaptive resonance tuning systems described above. Specif-

ically, assuming that the parameters of a lightly damped second order passive load

(including its resonant frequency) and its excitation frequency vary slowly with time,

nonlinear time-varying models that accurately predict the performance of these res-



onance tuning systems are developed. These developed models are subsequently lin-

earized to obtain linear time-invariant models that predict the performance of these

systems. Furthermore, stability analysis of the nonlinear and linear models is car-

ried out. Finally, based on the developed linear time-invariant models, guidelines for

designing the resonance tuning systems are provided.

The research in this thesis has generated three published works [19]-[21]. Also,

another paper providing a summary of the research on adaptive resonance tuning

systems presented in this thesis is currently in preparation.



CHAPTER 2

Modeling

2.1 Introduction

In this chapter, models are presented for the three resonance tuning systems in-

troduced in Chapter 1. Also presented is a review of the phase detectors used in this

thesis and the model of a generic resonator.

As stated earlier, the resonance tuning systems considered in this thesis apply

to resonators that are lightly damped second order passive loads. Since any lightly

damped second order load can be modeled as a series RLC circuit, this thesis will

repeatedly use series RLC circuits for the purpose of illustration. It should be noted

that in most of the examples provided in this work, the nominal element values of

this circuit will not accurately represent any physical system. However, this fact does

not devalue the examples since time can be scaled without changing the qualitative

response of the resonance tuning systems. The response of these system is, however,

dependant on the quality factor of the resonator. Therefore, examples covering a

variety of quality factors will be considered throughout this work.

The remainder of this chapter is organized as follows. In Section 2.2, the model of

a resonator is considered. In Section 2.3, two types of phase detectors are discussed.

Finally, in Section 2.4, the three methods of resonance tuning are investigated.



2.2 Resonator Model

The dynamics of a lightly damped second order system are governed by the dif-

ferential equation

W) + 2C(t)wn(t)?)(t) + «fifth/(t) = 1990030110): (2-1)

where u(t) is the input, y(t) is the output, wn(t) is the resonant frequency, C(t) is the

damping ratio and kg is the input gain. The input to the system u(t) is assumed to

be in the form

u(t) = A cos [wot + 0(t)] , (2.2)

where A is the amplitude, we is the nominal angular frequency and 6(t) is the instan-

taneous phase of the input. It then follows that the instantaneous frequency of the

input is

w,(t) = we + 9(t). (2.3)

Thus, optimal performance requires w3(t) to be equal to the resonant frequency of

the resonator.

2.2. 1 Resonant Frequency

The way in which the resonant frequency of a lightly damped second order sys-

tem is defined varies throughout the different disciplines of science and engineering.

Certain applications consider a system in resonance when maximum power transfer

is achieved, while in others, maximum signal amplification defines resonance. In this

thesis, we will define the resonant frequency w, as the frequency at which maximum

power transfer occurs. For lightly damped second order systems, it follows that

w, = w... (2.4)

10



We will define the frequency at which maximum signal amplification occurs as the

peak frequency wp. For lightly damped second order systems, the value of top depends

on where the system output is taken.

To help illustrate this, consider a series RLC circuit as the resonator. This circuit

is as shown in Figure 2.1, where R, L and G are a resistor, inductor and capacitor,

respectively, and u(t) and y(t) are the input and output, respectively. In Figure 2.1,

 

Figure 2.1. Model of the RLC circuit.

the output y(t) is taken as the voltage across the capacitor. The resulting transfer

function 110(3) is

(.02

 

110(3) 2 52 + 2(wns + wfi’ (25)

where

1

n — 2.6w "_LC ( )

and

R C

C — -2— I. (2.7)

From the definition above, it follows that the peak frequency is the frequency at which

IHc(jw)| is a maximum. By taking the derivative of |H0(jw)| with respect to jw and

11



setting it equal to zero, it follows that the the peak frequency top is

(up = nun/1 — 26. (2.8)

However, the output can also be taken as the voltage across the resistor or inductor.

Taking y(t) as the voltage across the resistor results in the transfer function

 

2Cwns

H = . 2.9

MS) 32 + 2Cwns + (cg, ( )

Again defining the peak frequency as before, it follows that

top = w... (2.10)

Furthermore, taking 3; as the voltage across the inductor results in the transfer func-

 

tion

H 32= . 2.11

L(s) 32 + 2Cwns + w}: ( )

In this case, the peak frequency is

w — ——“’—"—- (2.12)
,,— ,/1—2(2'

To illustrate these transfer functions, consider the RLC circuit with values of R,

L and C as R=5 f2, L=10 mH and C=100 pF. Thus, wn=1000 rad/s and C = 0.25.

The bode plots of Hc(jw), HR(jw) and HL(jw) are shown in Figure 2.2, Figure 2.3

and Figure 2.4, respectively. As seen in these plots, it is evident that the phase at

which w, or to, occur, is dependant on where the system output is taken. This value

determines what type of phase detector may be used in the resonance tuning system.

More discussion of phase detectors is provided in Section 2.3.

12
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Despite the different definitions provided above, for all resonance tuning applica-

tions, this thesis assumes optimal performance always occurs when (2.4) is satisfied.

This is possible due the nature of the systems we will be considering. In these sys-

tems, the damping ratio is very small and therefore cur, wp and wn are all practically

equal. For the remainder of this work, we will refer to any of these three frequencies

simply as the resonant frequency.

2.2.2 Effects of Detuning

Depending on the quality factor of a resonator operating at resonance, a very

slight change in either the resonant or excitation frequency can cause a very large

decrease in the system output.

To illustrate this fact, consider a series RLC circuit and assume the nominal values

of R, L and C are R0 = 0.25 0, L0 = 0.1 H and Co = 10 HF, respectively, so that

14



the nominal values of can, C and Q are too = 1000 rad/s, Co = 0.00125 and Q0 = 400,

respectively. A Bode plot of this resonator is shown in Figure 2.5. Due to the
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Figure 2.5. Bode plot of RLC example.

sharpness of the peak in this figure, even slight detuning from the resonant frequency

is expected to cause a significant decrease in the resonator output. This can be seen

in Figures 2.6 and 2.7 which are plots of output voltage across the capacitor versus

time. In Figure 2.6 the resonator is excited at its resonant frequency which results

in a steady state output of 400 V across the capacitor. However, in Figure 2.7, the

value of C is decreased by 1 percent, so that the resonant frequency can (t) becomes

1005.04 rad/s, while the excitation frequency remains 1000 rad/3. These figures show

that a change of only 0.5 percent in the resonant frequency causes the steady state

output voltage to decrease by 75 percent from 400 V to 100 V.

15
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With such a decrease in output, the resonator is obviously far from optimal per-

formance. Therefore, a method is clearly needed to control the resonant or excitation

frequency.

2.3 Phase Detectors

The previous discussion necessitates employment of a resonance tuning system

that maintains w, (t) and wn(t) as close to each other as possible despite changes in

either frequency. In order to achieve this task, the controller must have means to

sense the error between these frequencies. As mentioned earlier, a phase detector can

be used to sense the error.

A phase detector compares the phases of two signals applied to its inputs and

generates an output signal whose average value is related to the phase difference

between these input signals [24, 25]. This output is also a measure of frequency

difference, as signals with differing frequencies cannot be locked in phase unless one

is a harmonic of the other.

There exist several types of phase detectors with different characteristics. The

phase detectors considered in this thesis are a multiplication type analog phase de-

tector and an exor type digital phase detector. Below, these two types of phase

detectors will be reviewed briefly.

2.3.1 Multiplication Phase Detector

A multiplication type phase detector uses an analog multiplier phase comparator

followed by a lowpass filter to extract the phase information at its inputs as shown

in Figure 2.8. In this figure, the signals u1(t) and u2(t) are the inputs, u(t) is the

output, F(s) is the transfer function of the lowpass filter and x is the multiplication

operation.

17



’Ul(t)

 

F(S) "—" ”(t)

   
v200

Figure 2.8. Model of the multiplication phase detector.

Assuming that v1(t) and u2(t) are in the forms

ul (t) = A1(t) cos [wot + 91(t)] (2.13)

and

’Ug(t) = A205) COS [wot + 6205)] , (2.14)

where A1(t) > 0 and A2(t) > 0 are the instantaneous amplitudes, 01(t) and 62(t) are

the instantaneous phases and too is the nominal angular frequency, it follows that

= Ara/art)
3(t) “—3—— cos [62(t) — 6105)] +M2 COS [2wot + 92(t) + 91(t)]. (2.15)

Assuming further that A1(t), A2(t), 61(t) and 02(t) vary slowly with time compared

to the time variation of wot (i.e., |A1(t)| << coo, |A2(t)| << wo, |91(t)| << we and

|92(t)| << too) and that the lowpass filter completely removes the high frequency term

around 2%, the phase detector output u(t) can be written as

”(t) : f0) * (pm [62“) — 610)] 1 (2'16)

where

from lgltll =
———-A1(t)2A2(t) cos [6(t)] , (2-17)

18



f (t) is the impulse response of the lowpass filter and * is the convolution operation.

Figure 2.9 shows gom [6(t)] as a function of 6(t) = 62(t) — 01(t), where the amplitude

[A1(t)A2(t)] /2 is normalized to A.

 

rm(0)

ll

+A

: 9
—21r —1r 0 —1r +27r

—A

 

Figure 2.9. Multiplication phase comparator characteristic.

The nonlinear equation (2.17) describes the operation of the multiplication type

phase detector very accurately provided that the assumptions made earlier are satis-

fied. Note that the amplitudes of both input signals affect the output of the phase

detector. This must be accounted for when designing. the gains in the system. As

will be shown next, the amplitudes of the input signals do not affect the output of

the exor type phase detector.

2.3.2 Exor Phase Detector

An exor type phase detector uses a digital exor phase comparator followed by a

lowpass filter to extract the phase information at its inputs as shown in Figure 2.10.

In this figure, the signals ul (t) and u2(t) are the inputs, u(t) is the output, F(s) is

the transfer function of the lowpass filter, 69 is the exor logic gate with logic 0 and 1
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levels being —V and +V, respectively, and HLs are hard limiters with limiting levels

:EV that convert the signals u1(t) and u2(t) at the input of phase detector into the

digital signals u1(t) and u2(t).

 

{u(t)

 

z(t)
 

 

   
U2(t) --—>‘ HL

“2“)   

Figure 2.10. Model of the exor phase detector.

Assuming that the inputs u1(t) and v2(t) are as before, the signals u1(t) and u2(t)

can be expressed as

u1(t) = ngn (cos [wot + 91(0)) (2.18)

and

um) = ngn (cos [wot + 02(2)]). (2.19)

Thus, it follows that

z(t) = ma) a; ma). (2.20)

Similar to the previous case, assuming that both 01 (t) and 02(t) vary slowly with time

compared to the time variation of wot (i.e., |91(t)| << we and |62(t)| << we), the signal

z(t) can be expressed as

2(t) = 9% [920) - 910)] + 7‘0), (2-21)

where cps [6(t)] as a function of 9(t) = 62(t) —- 01(t) is as shown in Figure 2.11 and the
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term r(t) includes the high frequency components that occur around 2am, 4w0, and

so on. Assuming further that the lowpass filter F(3) completely removes the high

 

 

906(0)

ll

+V

; l9
_27r —7r 0 +7l' +277

—V

Figure 2.11. Exor phase comparator characteristic.

frequency term r(t), the output of the phase detector u(t) is given by

’00?) = f(t) * Soc [920) - 910)]. (2-22)

where f(t) is the impulse response of the lowpass filter and at is the convolution

operation.

Like the previous case, this nonlinear equation governs the operation of the phase

detector very accurately provided that the assumptions stated above are satisfied.

Moreover, note that the output of phase detector u(t) is also a slowly time-varying

signal.
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2.4 Resonance Tuning Systems

The following subsections provide models of the three resonance tuning systems

introduced in Chapter 1.

2.4.1 RTSl

As discussed earlier, RTSl is a PLL based resonance tuning system. A block

diagram of RTSl is shown in Figure 2.12. In this figure, SYS is a resonator, PD is a

phase detector, VCO is a voltage controlled oscillator, u(t) is the VCO output, y(t)

is the resonator output and u(t) is the phase detector output.

  

VCO 7 SYS >

y(t)

  

      

    

   

  PD

  u(t)
 

Figure 2.12. Model of RTSl.

A model of the VCO is shown in Figure 2.13, where we is the center frequency

and kw is the angular frequency gain. Defining

910) = av“). (2-23)
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the signal u(t) may be written as

u(t) = V cos [wot + 61(t)] , (2.24)

where V is the amplitude. If a digital VCO is used, this signal becomes the Walsh

function

u(t) = ngn (cos [wot + 01(t)]). (2.25)

It should be noted that the narrow bandpass nature of a resonator will essentially

reject all but the first harmonic of the input signal. Thus, if a sinusoidal function or

Walsh function are input to a resonance tuning system, the response of the resonator

will remain generically the same.

u(t)——- k... —j9— s-l Vcos(°) L—-u(t)

wo

   

 

         

Figure 2.13. Model of the voltage controlled oscillator.

Assuming the resonator model described above, the output y(t) satisfies the dif-

ferential equation

f(t) + 2C(t)wn(t)3)(t) + w3.(t)y(t) = W3(t)u(t), (2-26)

where wn(t) is the natural frequency of the resonator and C(t) is the damping ratio.

Assuming the instantaneous frequency of the input is w,(t), the goal of RTSl is to

keep w5(t) as close to can (t) as possible despite disturbances due to environmental
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changes, by adaptively tuning w,(t).

2.4.2 RTSZ

As mentioned in Chapterl, RTS2 adaptively controls the resonant frequency of

a resonator by changing the structure of the resonator. To help illustrate RTS2, a

series RLC circuit is again considered as the resonator. A block diagram of RTSZ is

shown in Figure 2.14, where R(t), L(t) and D(t) form the tunable resonator and PD

is a phase detector.

 

’01“)

PD '00) 

 

 

  
’U2(t)r
 

R(t) L(t)

——vav—/mn—
+

r(t) i) y(t) 7‘ pm

  
 

 

 

Figure 2.14. Model of the RTS2.

The resonance tuning is achieved by adaptively controlling the resonant frequency

through the variable capacitor D(t) using the error between the excitation frequency

and resonant frequency. As stated before, the resonant frequency of a series RLC

circuit is

w..(t) = ——1— (2.27)
,/L(t)C(t)'

However, in the resonator being considered, it is assumed that the capacitance D(t)
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is controlled by the output of the phase detector u(t) about its uncontrolled value

C(t) according to the expression

C(t)

D(t) 2 1+ kwu(t)’
(2.28)

where kw is an appropriate constant. With this tunable capacitor, the new resonant

frequency of the resonator becomes

wc(t) = wn(t) \/1 + kwu(t). (2.29)

Similarly, the new damping ratio of the resonator becomes

_ ((0
{(t) _ m. (2.30)

Thus, assuming R(t), L(t) and D(t) vary slowly with time, the voltage y(t) across

 

the capacitor satisfies the differential equation

f(t) + 2C(0014090) + Math/(t) = w:(t)$(t)- (231)

Hence, the goal of the resonance tuning system is to keep wc(t) as close to w,(t) as

possible through u(t), despite disturbances due to environmental changes.

2.4.3 RTS3

As previously stated, RTS3 does not directly actuate on resonant or excitation

frequency. Instead, this system places the resonator in a feedback loop, and the

feedback gain is adaptively adjusted to bring the resonant frequency of the closed-loop

system to match the excitation frequency. A model of RTS3 is shown in Figure 2.15.
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Figure 2.15. Model of RTS3.

In this figure, SYS is the lightly damped second order system, PD is the phase

detector, kf is the feedback gain and z(t) is the external input to the system. It

follows from this figure that

W) = $05) - kr’v(t)y(t), (232)

where u(t) is the error signal generated by the phase detector. Thus, the differential

equation governing the closed-loop system inside the dashed box can be written as

f(t) + 2C(t)wn(t)3)(t) + l1 + krkgv(t)l w3.(t)y(t) = kgw3.(t)$(t)- (2-33)

The resonant frequency of this system is

wc(t) = wn(t)\/1 + kwu(t), (2.34)
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where kw = k1kg. Hence, the goal of the resonance tuning system is to keep wc(t) as

close to w,(t) as possible through u(t), despite changes in the excitation frequency or

resonant frequency of the resonator.

27



CHAPTER 3

Analysis

3.1 Introduction

In this section, the models developed in Chapter 2 are considered and analysis

methods are developed. For this purpose, the slow time-varying approach [26, 27, 28]

is adopted. Since it is assumed that the resonator parameters are slowly time-varying

compared to its excitation, this approach is justified.

For each resonance tuning system, a nonlinear time-varying model that accurately

predicts the performance of the resonance tuning system is developed. This devel-

oped model is subsequently linearized to obtain a linear time-invariant model that

facilitates both analysis and design of the resonance tuning system. Stability results

of the developed models are also provided.

The remainder of this chapter is organized as follows. In Section 3.2, the developed

models are simplified. In Section 3.3, stability issues are considered.

3.2 Analysis

In this section, models of the three resonance tuning systems are analyzed and

simplified. For each resonance tuning system, either a digital exor phase detector or

an analog multiplication phase detector is used. However, the methods presented in

this work can be easily extended if a phase detector other than the one illustrated

here is used.
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3.2.1 RTSl

Consider the resonance tuning system shown in Figure 2.12 and assume that PD

is an exor type phase detector. Assume further that the VCO output u(t) is in the

form of (2.25), where we is the angular frequency and 01(t) is the instantaneous phase.

The instantaneous frequency of the input is then

ws(t) = we + 91(t). (3.1)

Under these assumptions, the output y(t) satisfies the differential equation (2.26).

Since this equation is time varying, it is impossible to find the voltage y(t) analytically.

However, with the frozen time assumption, the parameters wn(t), C (t), and 61(t) can

be treated as constant but unknown, and the transfer function from u(t) to y(t) can

be expressed as

 

0120)
H = " . .2

(S) s2 + 2C(t)w,,(t)s + w3,(t) (3 )

The output y(t) can then be approximated at steady state as

y(t) = A2(t) cos [wot + 92(t)] + e(t), (3.3)

where A2(t) = 4V|H[jws (t)] I /7r, 02(t) = 61(t)+AH[jw,(t)] and e(t) includes the higher

order harmonics that occur at 3w,(t), 5w,(t) and so on. Assuming the quality factor

of the resonator is sufficiently high (greater than 10), these higher order harmonics

can be neglected, and y(t) can be approximated as

y(t) = A2(t) COS [wot + 620)] . (3.4)
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Thus, with u(t) and y(t) the inputs to the exor phase detector, it follows from (2.22)

that the output u(t) is

’00) = f(t) * welHliws(t)l, (3.5)

where f(t) is the impulse response of the lowpass filter and * is the convolution opera-

tion. Since —7r < [H[10250)] S 0, it follows from the phase comparator characteristic

that

’00) = f(t) * k9 (-4Hljws(t)l - 7r/2). (3-5)

where [679 = 2V/7r is the gain of the phase detector. Combining (2.23) with (3.6), and

using

 zHij,(t)] = — arctan [Zigilt‘g’ftlj’éil] , (3.7)

it follows that

 

 

' _ 023.0) - £030)
01(t) — wf(t) * k9 arctan [2C(t)wn(t)w,(t)] . (3.8)

Combining this equation with (3.1) results in

_ w3.(t) - u(f(t)
w,(t) — wo — kwf(t) * k9 arctan [2C(t)wn(t)w,(t)] . (3.9)

Although simulation shows that (3.9) characterizes the RTSl very accurately, it

is nonlinear and time-varying, and thus, it has limited value. Hence, this equation is

linearized below to obtain a more tractable linear time-invariant model.

Let 6wn(t) = 02,,(t) —wo and 6w,(t) = w,(t) -wo be the deviations of wn(t) and w,(t)

from the nominal natural frequency 020, respectively. Then, (3.9) can be linearized

about the nominal frequency 010 as

6ws(t) = 1.kaf(t) at 3515175 [6wn(t) — 50.0)]. (3.10)

Moreover, letting C0 be the nominal value of C(t), the system described by (3.25) can
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be further approximated by the linear time-invariant system

1

C0600

 (5018(t) = kwk9f(t) * [6wn(t) -— 6ws(t)]. (3.11)

Taking the Laplace transform of both sides of this equation, it follows that

 

_ kwkg

Cowo

A9,,(s) F(s) [Afln(s) —- A93(s)] , (3.12)

where A0,,(s) and Ail,(s) are the Laplace transforms of 6wn(t) and 6ws(t), respec-

tively. Thus, the transfer function from 6wn(t) to 602, (t) is

AQ,(s) _ kF(s)

A9,,(s) _ 1 + kF(s)’ (3'13)

where k = (mica/((0010).

The block diagram of (3.13) is shown in Figure 3.1. Having obtained this simplified

model, the performance of the RSTl can be analyzed using standard linear control

system analysis methods. It should be noted that this linear approximation is quite

accurate provided that

[dwn(t) — 6w,(t)| <

(0000 _

 1. (3.14)

This inequality arises from the approximation arctan[a:] z :2: around the origin.

Clearly this approximation is only accurate around a small region, as the arctan-

gent function is similar to the saturation function.

60),, (t)—§f——- kF(s) =6ws(t)

Figure 3.1. Linearized model of RTSl.
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3.2.2 RTSZ

Consider the resonance tuning system shown in Figure 2.14 and assume that PD

is an exor type phase detector. Further assume that the excitation source 22(t) is in

the form

$(t) = A1(t) COS [Wot 'I' 61(t)] , (3.15)

where A1(t) > 0 is the amplitude, 010 is the angular frequency and 01(t) is the instan-

taneous phase of the input a:(t). The amplitude A1(t) and the phase 01(t) are also

assumed to be slowly time-varying parameters. The instantaneous frequency ws(t) of

the input a:(t) is defined as in (3.1).

Under these assumptions, the voltage y(t) across the capacitor satisfies the differ-

ential equation (2.31). Since this equation is time varying, it is impossible to find the

voltage y(t) analytically. However, again using the frozen time approach, wc(t), wn(t),

C (t), A1(t) and 01 (t) can be treated as constant but unknown. Hence, the transfer

function from r(t) to y(t) is

 H(s) — ”f(t) (3 16)
" s2 + 2C(t)w,,(t)s + w3(t)' ‘

Thus, the voltage y(t) can be expressed approximately as

y(t) = A2(t) cos [wot + 62(t)] , (3.17)

where A2(t) = lHLiw,(t)]|A1(t) and 62(t) = 61(t) + AHij,(t)]. It then follows that

9.0) — 0.0) = 411100401. (3.18)
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Using this in (2.22), the output of the phase detector becomes

v0) = f(t) * we (111 liws(t)l) - (3-19)

Since —7r < AHLy'wsUII S 0, it follows from the phase comparator characteristic that

u(t) = -kgf(t) * (AHij3(t)] + 7r/2) , (3.20)

where kg = 2V/7r is the gain of the phase detector. Hence, using

 211mm] = — arctan [ffifi‘g’ftl‘jztgl] (3.21)

in (3.20) yields

 u(t) = kof(t) * arctan [zfigzjn—(SSJfiZJ . (3.22)

Moreover, it follows from (2.29) that

00.2.0) - 01.2.0)
 

  

1

u(t) = E 023, (t) (3.23)

Thus, combining (3.23) and (3.22) results in

0130) - 013.0) __ 01.20) - 0130)

aura) ‘ mm * ma“ l2c<t)w.<t)w.(t)l’ (3'24)

which describes the dynamics of the resonance tuning system.

Although several approximations are made to obtain (3.24), simulations indicate

that this equation characterizes the operation of the resonance tuning system very

accurately. However, since (3.24) is nonlinear and time-varying, it has limited value

in design. Thus, this equation is linearized about the nominal frequency 010 to obtain

a more tractable linear time-invariant model that facilitates both analysis and design.
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Toward this end, let 6w,(t) :2 w,(t) — we, 60),,(1?) = 0),,(t) —- 020 and 6wc(t) = wc(t) — we

be the deviations of w,(t), wn(t) and wc(t) from the nominal natural frequency mg,

respectively. Then, the Jacobian linearization of (3.24) about the nominal frequency

wo is

’6ka

6w.(t) — 501nm = 5565f“) * [50130) — (Sweltll - (3-25)

Moreover, letting (0 be the nominal value of C(t), the system in (3.25) can be further

approximated by the linear time-invariant system

1:ka

2C0

 6wc(t) — 6wn(t) = f(t) * [6ws(t) — 6wc(t)] . (3.26)

Finally, letting k = [twice/(2(0), the simplified linear time-invariant model of the

resonance tuning system becomes

6wc(t) — 602,,(t) = kf(t) * [6ws(t) — 6wc(t)] . (3.27)

Taking the Laplace transform of both sides of this equation yields

Aflc(s) — A9,,(s) = kF(s) [1303(3) - Aflc(s)] . (3.28)

where 1393(3), A9,,(s) and AQc(s) are the Laplace transforms of 6w,(t), 6wn(t) and

6wc(t), respectively. Thus, it follows that

A043) — ”(3)— mAILJS) +

The block diagram of the system described by (3.29) is shown in Figure 3.2.

Having obtained this simplified model, the performance of RTS2 can be analyzed

using standard linear control system analysis methods. As with RTSl, it should be
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6w..(t)

6w3(t)v——_T— kF(s) ——d>——>6wc(t)

Figure 3.2. Simplified model of the resonance tuning system.

 

   

 

noted that this approximation is quite accurate provided that

|6w3(t) — 6wc(t)|

Col-00

 < 1. (3.30)

3.2.3 RTS3

Consider the resonance tuning system shown in Figure 2.15 and assume that the

phase detector is a multiplication type. Again, assume that the input r(t) is in the

form of (3.15). The output y(t) satisfies the differential equation (2.33). As this

equation is time varying, it is impossible to find y(t) analytically, but again, with the

frozen time approach the transfer function from :1:(t) to y(t) can be written as

 

_ kgw,2,(t)

H“) " 32 + 2C(t)w,,(t)s + 030) (3'31)

The output y(t) can be approximated using its steady-state part as

y(t) = A2“) COS [wot + 020)] , (3.32)

where A2(t) = [HUw,(t)]|A1(t) and 02(t) = 01(t) + AHUws(t)]. It then follows that

92(t) - 010) = ZHUwsUH- (3-33)
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Using this in (2.17) yields

710) = f(t) * 90m (AHij,(t)]). (334)

Thus, the output of the phase detector becomes

«20) = f(t) * 511—,(t—llH0wrtm cos (41100401). (3.35)

Since

(Human (AHLiw.(t)l) = Re{H0w.(t)1}. (3.36)

the phase detector output can be rewritten as

Ai(t)kgw3.(t) [w3(t) - w3(t)l
 ’U = at: . 3.37

(t) f(t) 2 ([w§(t) — 013m]? + [2C(t)wn(t)w.(t)12) ( )

Next, solving (2.34) for u(t) and substituting into (3.37), it follows that

w§(t) -— w,2,(t) kwkgAi(t)w3.(t) [w3(t) - w§(t)] (3.33)  

wart) = f‘ l * 2 (twat) — «230012 + [2<(t)w.(t)w.<t)12)’

which describes the dynamics of the resonance tuning system with a multiplication

type phase detector.

Equation (3.38) is a nonlinear model of the resonance tuning system. Although

simulations show that it represents the actual resonance tuning system very accu-

rately, the nonlinear nature of this equation reduces its value from a design perspec-

tive. Therefore, this equation is linearized about the nominal angular frequency we.

For this purpose, let w,,(t) = we + 6w,(t), wc(t) = we + 6wc(t) and wn(t) = we + 6wn(t).

Assume further that C(t) and A1(t) are equal to their respective nominal values C0
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and Ae. Then, linearization yields

kwkg

602.0) - 5wn(t) = f (t) * 260
 

[56030) — 601605)] v (339)

where k9 = —kgAg/(4Ce). Finally, letting k = kwke/(2Ce), the simplified linear time-

invariant model of the resonance tuning system becomes

6wc(t) — 6wn(t) = kf(t) =1: [6w,,(t) — 6wc(t)] . (3.40)

Again, it should be noted that this approximation is quite accurate provided that

|6w,(t) — 6wc(t)|

C0010

 < 1. (3.41)

The block diagram of the system described by (3.40) is shown in Figure 3.2. It is

evident from this figure that the lowpass filter plays an important role in the resonance

tuning system.

3.3 Stability

3.3.1 Linear Models

Horn the linear models of RTSl (3.11), RTS2 (3.27) and RTS3 (3.40), it follows

that these systems are stable if all the roots of the characteristic equation 1+kF(s) =

0 have negative real parts. Under this condition, it can be concluded that the original

nonlinear and time-varying resonance tuning systems given in Figure 2.12, Figure 2.14

and Figure 2.15 are also stable provided that the rate of variations of the slowly

varying parameters are sufficiently small [30]. However, for completeness, nonlinear

stability analysis is required.
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3.3.2 Nonlinear Models

In this section, the stability properties of the resonance tuning systems are studied.

Saturation Like Nonlinearity

In [20], analysis of RTS3 with an exor phase detector is provided. From this anal-

ysis, it can be seen that the nonlinear model of RTSB is identical to the nonlinear

model of RTS2, which is given in this thesis by (3.24). In this model, the nonlinear-

ity has the nature of an arctangent function. As seen in Figure 3.3, the arctangent

function represented by the solid line is very similar to the saturation function rep-

resented by the dashed line. Due to this similarity, a theorem pertaining to systems
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Figure 3.3. Plot of arctangent and saturation functions.
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with a saturation nonlinearity in [17] is adapted to the arctangent nonlinearity in this

work. For this purpose, first let the output wc(t) equal its nominal value we plus some

perturbation term 6wc(t). Also, let ws(t) and wn(t) equal the nominal value we and

C (t) = (0 Thus (3.24) becomes

  

 

6w§(t) + 26wc(t)we —w§(t) — 26wcwe

wg — kwkef(t) * arctan[ 2(0013 (3.42)

Next, with the change of variable

2 2 tZ(t) = 6wc(t) 'I' 26wc( )we, (343)

“’0

equation (3.42) becomes

z(t) = kwkgf(t) :1: arctan [—§}C—z(t)]. (3.44)

0

Letting {A,B,C,0} be a minimal realization of kwkeF(s), where A 6 RM", B E Rn“

and C E R1“ this system can be represented by the state equations

f(t) = Ax(t) + Bcp(u(t))

z(t) = Cr(t) (3-45)

u(t) = Ka:(t),

where where K = —§2—OC and

(p [u(t)] = arctan[u(t)], (3.46)

Using the model (3.45), a theorem is provided below which states that, under very

mild conditions, the origin :2 = 0 is the only equilibrium point of this system.
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Theorem 3.1 Consider the system (3.45), and assume that A has no eigenvalues

with positive real parts. The origin 2:0 is the only equilibrium point of this system if

A + BK is Hurwitz.

Proof: By definition, any point r 6 IR" is the equilibrium point of (3.45) if

Ax + Bcp(K:r) = 0, (3.47)

or, equivalently,

(A + BK)x + B[<,0(Ka:) — Kr] = 0. (3.48)

Since A + BK is nonsingular, it follows that

:1: + (A + BK)‘IB[<p(Kx) -— Kr] = 0. (3.49)

Premultiplying both sides of this equation by K, we obtain

[1 — K(A+BK)’IB]K:I:+K(A+BK)‘1B<p(Kr)= 0. (3.50)

If K(A+BK)‘lB = 0, then this equation implies that Ka: = 0, and in turn, equation

(3.49) implies that a: = 0. If, on the other hand, K(A + BK)‘lB = 1, then equation

(3.50) implies that K:1: = 0, and then, equation (3.49) implies that :1: = 0. Hence,

assume that K(A + BK)’1B aé 0 and K(A + 82K)‘IB 7f 1, then we claim that

K(A + BK)“IB < 1. (3.51)

To see this, note that
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1— K(A + BK)'1B = det[I — (A + ram-13K] (3 52)

= det[(A + BK)‘1]det(A) 2 0, I

and by assumption K(A + BK)‘IB 75 1. Thus, under the above assumptions, it

follows from (3.51) that either

K(A + BK)-lB — 1

K(A + BK)-1B

 < 0, (3.53)

or

K(A + BK)-IB -1

K(A + BIO-132

 > 1. (3.54)

Hence, rewriting (3.50) as

_ K(A + BK)'1B — 1

“0(le _ K(A + Bro-13

 Kr, (3.55)

we see that 3: satisfies this equation only when Ka: = 0. Hence, once again equation

(3.49) implies that a: = 0, and this completes the proof. CI

Note that since standard control system design requires Re(A) _<_ O, the first

condition of theorem (3.45) is generally satisfied. Also note that the system (3.45)

may have either one isolated equilibrium (the origin), or three isolated equilibria (one

being the origin). Moreover, since the Jacobian linearization of (3.45) around the

origin is

61: = (A + BK)6$, (3.56)

it follows from the Lyapunov’s indirect method [30] that if A + BK is Hurwitz, then

the origin is asymptotically stable. Combining this result with that of Theorem 3.1,

we obtain the following
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Corollary 3.1 Under the assumptions of Theorem 3.1, the origin :1: = 0 is the unique

asymptotically stable equilibrium of the closed-loop system (3.45).

Proof: The proof of this corollary follows from the Lyapunov’s indirect method

and Theorem 3.1. D

Next, assuming A is Hurwitz, we show that the solution of (3.45) remains bounded

for all time.

Theorem 3.2 Consider the system (3.45), and assume that A is Hurwitz. Then,

33(t) is bounded for all time, i.e., there exists an m > 0 such that ||r(t)|| S m for all

t 2 0.

Proof: The solution of (3.45) starting from r(0) satisfies

6

r(t) = exp(At):1:(0) + / exp[A(t — r)]B<p[K:c(r)]dr. (3.57)

0

Hence,

um)” s IIeXP(At):v(0)l| + u / exp[A(t — T)lB<lex(T)ldTll- (3.58)

Then, it follows that

 

 

 

kwk 7r

llx(t)ll s apex/013(0)“ + ,j’ l1 — expel/01118“

3.59)
hem (

< B_. nae)” + ,1, u n.

where u is the real part of the rightmost eigenvalue of A. Thus, letting

kwkgfl’

m = ”116(0)” + 21/ “B“. (360)
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we see that ||x(t)|| S m for all t 2 0.

Circle Criterion

The previous discussion requires A to be Hurwitz for global asymptotic stability.

However, this may not be the case as F(s) can contain an integrator. For this purpose,

we consider the circle criterion to show asymptotic stability with a finite domain. To

use the circle criterion, we must first represent the system as a feedback connection

of a linear system and nonlinear element, as shown in Figure 3.4. Here, G(s) is the

linear system and \II [u(t)] is the nonlinear element.

 

 

   

 

    

   

Figure 3.4. Feedback connection of linear system and nonlinear element.

To illustrate this, first consider the nonlinear model of RTS2 and RST3 with an

exor phase detector given by (3.24). As seen earlier, this model can be represented

by the state equations (3.45). In order to transform this model into the form of
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Figure 3.4, let u(t) = (,0 [u(t)] and \Il [u(t)] = ~90 [u(t)]. Hence,

G(s) = K(sI — A)‘lB. (3.61)

Clearly, \II [u(t)] E [0, 723]. However, since G(s) is not assumed Hurwitz, in order

to apply the circle criterion, the nonlinearity must remain within the sector [(1, B],

where 0 < a < 6. The arctangent function will eventually leave this sector no matter

how small the value of a is, as seen in Figure 3.5. For this reason, we can only

conclude absolute stability with a finite domain [30]. Using the circle criterion, the

nu] ‘ / au/

 

 
Figure 3.5. Sector bounded nonlinearity of RTS2 and RTS3 with exor PD.

following theorem is stated.
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Theorem 3.3 The system in Figure 3.4 is absolutely stable with a finite domain if

0 < a < B and the Nyquist plot of G(jw) does not enter the disk D(a, ,3).

Proof: To satisfy theorem 3.3,

 

1 + £30610)
—— . . 2

e[1+aG(jw) >0 (36)

From equation 3.61,

G(s) = -—1—C(sI — 20-13, (3.63)
2C0

which can be rewritten as

G(s) = imam). (3.64)
2C0

Hence,

1 + fikFUw)

Re [1+ akF(jw)] > 0, (3.65)

where k = 2—20kwke. The remainder of the proof then clearly follows from the proof of

the circle criterion in [30], which uses the fact that that the storage function

V(:z:) = ézTPat (3.66)

for the linear dynamical system satisfies the Kalman-Yakubovich-Popov equations.

CI

Using a multiplication phase detector, and following the same process as before,

the nonlinear model of RST3 (3.38) can be written as

6w? t + 26wC t w

( l 2 ( ) ° = («wing/mm) *
“’0

6w§(t) + 26wc(t)we

(6w§(t) + 2564060)? + (261%)”

  (3.67)
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With the change of variables

2(t) = 6w3(t) + 26wc(t)we, (3.68)

this equation can be written

e(t)

220) + (2Cow3l

 z(t) = f(t) * K (3.69)

Again using the circle criterion with the requirement that a > 0, it follows that

(3.69) will only remain sector bounded in a finite domain. This can be seen from

Figure 3.6. Hence, the same method as above can be applied to show stability with

a finite domain.

 

 

 

Figure 3.6. Sector bounded nonlinearity of RTS3 with multiplication PD.

Finally, consider the nonlinear model of RTSI given by (3.11). Let the output

ws(t) equal its nominal value we plus some perturbation term 6ws. Also, let wn(t)

46



equal the nominal value we and C (t) = (0 Thus (3.24) becomes

6w, = kwkef(t) =1: arctan — 6% (6% _ 2%) ]. (3.70)
2Cow0 (6w, + we)

It should be noted that the nonlinearity of this equation is not bounded by a sector

with an upper bound equal to the slope of the arctangent function, as is the case with

RTSZ and RTS3. Instead, as 6w, moves away from the origin in the negative direction,

this nonlinearity will always start outside the sector. However, circle criterion may

still be applied to this case by simply increasing the value of 6 to include this portion

of the nonlinearity in the sector. For illustrative purposes, an exaggerated view of

this nonlinearity is shown in Figure 3.7.
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Figure 3.7. RTSl nonlinearity crossing the sector bound near the origin.
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CHAPTER 4

Design

In this chapter, the design problem formulated above is considered and some guide-

lines for designing the resonance tuning system are provided. Using these guidelines,

the actual resonance tuning systems, their nonlinear time-varying models and their

simplified linear time-invariant models are simulated using the parameters of the pre-

viously discussed applications. These simulation results illustrate the performance

of the resonance tuning systems and verify the accuracy of the pr0posed simplified

models. All simulations are carried out in MATLAB/Simulink.

4.1 Design

Based on the developed simplified linear time-invariant models, the resonance

tuning systems can be designed using standard control system design methods. For

RTSl, the goal of the design is to find the “controller” F(s) so that the “output”

6w,(t) tracks the “reference” 6w,,(t) satisfactorily. For RTS2 and RTS3, the goal of

the design is to find the “controller” F(s) so that the “output” 6wc(t) tracks the

“reference” 6w, (t) satisfactorily.

In designing the resonance tuning system, the following guidelines should be taken

into consideration. As a direct consequence of the internal model principle [29],

to achieve perfect asymptotic reference tracking the filter F(s) must contain the

model of the reference (6wn(t) for RTSl or 6w5(t) for RTS2 and RTS3). Similarly,

the filter F(s) must contain the model of the disturbance 6wn(t) to achieve perfect
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asymptotic disturbance rejection (RTS2 and RTS3). In particular, for the output to

asymptotically track any step change in the reference and asymptotically reject any

step change in the disturbance, the filter F(s) must contain at least one integrator.

Moreover, the bandwidth of the lowpass filter F(s) should be sufficiently small to

filter out the higher order harmonics at the output of the phase comparator. In

addition, the bandwidth of kF(s)/ [1 + kF(s)] should be sufficiently large for good

reference tracking whereas the gain of 1/ [1 + kF(s)] should be sufficiently small for

good disturbance rejection.

In most practical applications, a first order filter of the form

F(s) = 9, (4.1)
S

where B is a design parameter, usually gives adequate results. With this filter, the

settling time for 6w, (t) in RTSl or 6wc(t) in RTS2 and RTS3 calculated from the

linearized model is r = 4/ (k6). If the desired performance is not achievable by a first

order filter, a second order filter of the form

_ a
F(s) — 3(3 + a), (4.2) 

where or and 6 are design parameters, may be used. For this case, the settling time

for 6w,(t) or 6wc(t) calculated from the linearized model is r = 8/01 provided that

012 3 41:6.

These well established linear system design methods are generally suitable. How-

ever, in certain applications, for instance when (3.14), (3.30) and (3.41) are not satis-

fied, the linear system will not accurately represent the resonance tuning system. In

this instance, the linear system is still valuable in that it acts as a starting point for

the design process, however, some guidelines pertaining to the nonlinear system are
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helpful. Currently, more research is required to provide definite methods for determin-

ing parameters such as rise time and settling time for the nonlinear models. However,

using the theorems provided in Section 3.3, the resonance tuning systems can be eas-

ily designed so that stability is guaranteed even in the absence of an accurate linear

model.

4.2 Simulation

4.2.1 RTSl

In this section, the original RTSl, its nonlinear time-varying model and its sim-

plified linear time-invariant model are simulated. These simulation results illustrate

the performance of RTSl and verify the accuracy of the proposed simplified model.

Assume that the nominal values of the parameters R(t), L(t) and C(t) of this

system are Re = 0.25 {2, Le = 0.1 H and Ge = 10 HF, respectively, so that the nominal

values of wn(t), ((t) and Q(t) are we = 1000 rad/s, Co = 0.00125 and Qe = 400.

Assume further that V = 2.5 V so that kg = 1.592 V/rad. Let kw = 50 V‘1 and

assume the center frequency of the VCO is we = 1000 rad/s. Hence, the system is

tuned to its resonant frequency. However, as before assume the value of C(t) decreases

by 1 percent, so that the resonant frequency of the system becomes 1005.04 rad/s.

For the second order filter

(4.3)

the response of the actual RTSI shown in Figure 2.12, the nonlinear model (3.9) and

the linear model (3.11) to this input step change is shown in Figure 4.1. In this figure

the solid line is the response of the actual resonance tuning system, the dashed line

is the response of the nonlinear model, and the dashdot line is the response of the

linear model.
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It is evident from this figure that RTSl is working satisfactorily and that the

two simplified models are reasonably accurate approximations of the actual RTSl

system. However, to demonstrate the range of this resonance tuning system, a second

simulation is considered. Assume the same parameters as before, but now with a 10

percent decrease in C(t), so that the resonant frequency of the system becomes 1054.1

rad/s. The response is shown in Figure. 4.2. From this figure, it is clear that RTSl

successfully tunes w,(t) to wn (t). Hewever, it is also clear that the linear time-invariant

model is no longer an accurate representation of the actual RTSI. This is due to the

fact that (3.14) is not satisfied.
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Figure 4.1. Simulation results of RTSl with wn = 1005.04.
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Figure 4.2. Simulation results of RTSl with wn = 1054.1.

4.2.2 RTSZ

In this section, the original RTS2, its nonlinear time-varying model and its sim-

plified linear time-invariant model are simulated. These simulation results illustrate

the performance of RTS2 and verify the accuracy of the proposed simplified model.

Assume that the nominal values of R(t), L(t) and C(t) are Re = 0.5 9, Le = 0.01

H and Ge = 0.0001 F, respectively, so that the nominal values of wn(t), C(t) and Q(t)

are we = 1000 rad/s, C0 = 0.025 and Qe = 20, respectively. Assume also that V = 2.5

V so that k9 = 1.592 V/rad and let kw = 0.1 V“. Assume further that R(t) = Re,

L(t) = Le for all t, but C(t) varies with time as C(t) = 1.000x 10“ F for 0 s S t < 2 s

and 8.264 x 10‘5 F for 2 s S t so that the uncontrolled resonant frequency w" (t) of the

resonator undergoes a step change from 1000 rad/s to 1100 rad/s. Finally, assume

that the excitation frequency w,(t) also undergoes a step change at time t = 4 s from
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1000 rad/s to 900 rad/s.

For each of the following filters

2.827 F(s) : 1.571, F 62.832

F(S)=s+l’ s (3):.m,

  (4.4)

the original resonance tuning system shown in Fig. 2.14, its approximate nonlinear

timevarying model given in (3.24) and its simplified linear time-invariant model given

in (3.27) are simulated. The simulation results for the resonant frequency wc(t) are

shown in Figs. 4.3, 4.4 and 4.5, respectively. In each figure, the solid curve is for

the exact system, the dashed curve is for the approximate system and the dashdot

curve is for the simplified system. The uncontrolled resonant frequency wn(t) and

driving frequency w,(t) are also shown in each of these figures by the solid curves for

comparison. These figures indicate that both the approximate nonlinear time-varying

model and simplified linear time invariant model predict the behavior of exact system

quite accurately.

Since the first filter does not contain an integrator, the error between the resonant

frequency and driving frequency in the steady-state is not zero as predicted by the

previous analysis. This error, on the other hand, is practically zero for the second

and third filters as expected since they both contain an integrator. Note also that

since the second order filter has better selectivity compared to the other two, its

performance in the steady-state is superior to those of the first order filters.

These results show that the developed simplified model predicts the performance

of the resonant tuning system quite accurately. Therefore, the developed simplified

model can be used to facilitate both analysis and design of the resonance tuning

system.
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Figure 4.3. Simulation results with F(s) = 2.827/(s + 1).
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Figure 4.5. Simulation results with F(s) = 62.832/[s(s + 20)].

4.2.3 RTS3

In this section, the developed analysis and design methods of RTS3 are applied to

two examples. First, a vibrational gyroscope example from [6] is considered. Assume

that the parameters of this system are wn(t) = 63881.1 rad/s, C(t) = 0.0005, kg =

0.0666. Moreover, assume w,(t) = 65973.4 rad/s and A1(t) = 1. In the simulations

below, the feedback gain k; was selected as k; = 100, the nominal frequency we was

taken as we = 65973.4 rad/s and the logic voltage V was chosen as V = 2.5 V.

The first simulation of RTS3 uses a multiplication phase detector with the first

order low-pass filter

-925F(s) = S , (4.5)

The results of this simulation are shown in Figure 4.6. Here, the solid curve is for

the actual system shown in Figure 2.15 and the dotted curve is for the nonlinear
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time-varying model (3.38). The instantaneous input frequency w3(t) is also shown by

the solid horizontal line for convenience.
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Figure 4.6. Simulation results of RTSB for vibrational gyroscope example.

It should be noted that while the nonlinear model closely approximates the actual

system, the corresponding linear model is quite different, and thus not shown in

Figure 4.6. This is due to the fact that the deviation of wc(t) from the nominal

frequency we is quite large initially. In other words, the system in [6] does not satisfy

condition (3.41), and the nonlinearity in (3.38) behaves like saturation due to the

extremely small damping ratio. This discrepancy reduces the values of the developed

linear time invariant models since their predictions are no longer accurate. Therefore,

unless the system is altered to satisfy (3.41), a different design strategy based on the

develOped nonlinear time varying models should be used. However, it should also be
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pointed out that the developed linear model still provides some value in that it acts

as starting point in the design process.

In order to illustrate the accuracy of the developed linear time invariant model

when (3.41) is satisfied, a second example is considered. This simulation considers a

hypothetical lightly damped second order system. The parameters of the resonance

tuning system are as follows: wn(t) = 1000 rad/s, ((t) = 0.05, kg = 1, w,(t) = 1050

rad/s, A1(t) = 1, k, = 0.5, we = 1000 rad/s and the phase detector is a'multiplication'

type with second order filter

10

The results of this simulation are shown in Figure 4.7. Here, the solid, dashed

and dashdot curves are for the actual system shown in Figure 2.15, the nonlinear

time-varying model (3.38) and the simplified linear time-invariant model (3.40), re-

spectively. Again, the instantaneous input frequency w,(t) is shown by the solid

horizontal line for convenience.

It is evident from Figure 4.7 that the developed models accurately predict the

performance of the actual system, which was expected as (5.10) is satisfied in this

generic example. Hence, the developed model can be used for both analysis and

design of the resonance tuning system.
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CHAPTER 5

Extension - Adaptively Enhanced

PLL

5.1 Introduction

The following presents an extended use of RTS2 and RTS3, in which these reso-

nance tuning systems can be combined with a standard PLL to enhance the perfor-

mance of the standard PLL. Much of the derivation behind the equations has been

omitted as it is similar to the analysis presented earlier in this thesis. Initial results

of the adaptively enhanced PLL are promising, however, more research on this topic

still needs to be carried out.

5.2 Modeling

In this section, a model of the adaptively enhanced PLL is presented. This model

can be seen in Figure 5.1. Here the input to the system is x(t) and the output is

y(t). A standard PLL is represented by the components within the dashed box, where

PC is a phase comparator, F(s) is a lowpass filter and VCO is a voltage controlled

oscillator. FE is a frequency estimator system that provides an estimate, we(t), of the

instantaneous frequency of x(t) to the VCO. The purpose of the frequency estimator

is to provide the voltage controlled oscillator (VCO) of the PLL with an appropriate

free running angular frequency we(t) that closely matches the frequency of the input.
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Figure 5.1. Model of the enhanced PLL system.

For this task, a method similar to that of RTSZ is used. In this method, the resonant

frequency of a lightly damped second order system is changed using prOportional

feedback and the feedback gain is adaptively adjusted to tune the resonant frequency

of the resulting closed loop system to its excitation frequency. Hence, at steady state,

the resonant frequency of this closed loop system acts as an estimate of the excitation

frequency.

A block diagram of the frequency estimator system is shown in Figure 5.2. In this

figure, H(s) is the transfer function of the lightly damped second order system, PD

is a phase detector, ke is the feedback gain and we (t) is the frequency estimate. The

external input to the system a:(t) is assumed to be in the form

(D(t) = A1 COS [Wot + 61(t)] , (5.1)

where A1 > 0 is the amplitude and we is the nominal angular frequency, both of which

are assumed to be constant but unknown quantities. The instantaneous phase of :1:(t)
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Figure 5.2. Model of the frequency estimator system.

is 01 (t). Thus, the instantaneous frequency of the input is

w,(t) = we + 61(t). (5.2)

The transfer function of the lightly damped second order system can be expressed as

”'2‘ (5.3)
H(s) = 32 + 2(wns + wg’

where w,| is the natural frequency of this system and C is the damping ratio. The

dashed box represents the closed loop system, the resonant frequency of which is

adjusted to match the instantaneous frequency of the input. The signal ue(t) is the

error generated by the phase detector, which is assumed to be an exor type. Following

analysis similar to that developed earlier in this thesis, ve(t) is given by

730) = f.(t) * W [920) - 910)] 1 (5-4)
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where f (t) is the impulse response of the lowpass filter and at is the convolution

operation.

With ue(t) known, it then follows from Figure 5.2 that

u(t) = a:(t) — keve(t)u2(t). (5.5)

Thus, the closed loop system within the dashed box is governed by the differential

equation

62(t) + 2(wni22(t) + [1 + keue(t)] wiu2(t) = w§x(t), (5.6)

where the resonant frequency of this closed loop system is

we(t) = tin/1 + 8.64:). (5.7)

Hence, the closed loop resonant frequency we(t) can be easily computed from the

output of the phase detector ve(t), and provided to the PLL as an estimate of the

input frequency.

5.3 Analysis and Design

Consider the frequency estimator system shown in Figure 5.2. Here it can be

easily seen how the frequency estimate we(t) can be computed when provided the error

signal ve(t). However, as good performance of this system requires careful design of

the lowpass filter and lightly damped second order system, equations that describe the

dynamics of this system are necessary. Following analysis methods similar to those

provided earlier in this thesis, the nonlinear equation that describe the dynamics of
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the frequency estimator system with an exor type phase detector is

(.02 _ (1)2 (.02 _ 2

_iliijJ = fe(t)*kek9 arctan[ 82(Ctdinw:(:)t)]' (5.8)
 

Simulations show that (5.8) represents the actual frequency extimator system

very accurately. However, a simpler model is still desired for design purposes. After

linearization, the the simplified linear time-invariant model of the resonance tuning

system becomes

501.0) = fe(t) * k [5ws(t) - 6w.(t)] , (59)

where k = keke/(2C). The block diagram of the system described by this equation

is as shown in Figure 5.3. This linear model describes the actual system accurately,

 

 6w,(t) ~ 1.1618(3) > 6we(t)

   

  

Figure 5.3. Simplified model of the resonance tuning system.

provide that

|6w,(t) - aweltll

Cwn

 

1
< —. ._ 2 (510)

However, as the goal of the enhanced PLL is to achieve lock to an input with unknown

frequency, whether this condition is satisfied or not, will most likely remain unknown

as well. Despite this fact, (5.9) is still a valuable tool in that it provides a starting

point for design process.
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5.4 Simulation

In this section, the enhanced PLL system is simulated to demonstrate its lock

range capabilities. All simulations were performed in MATLAB/Simulink.

In order to determine whether the output signal y(t) has locked to the input signal

:c(t), the frequency-phase error between these two signals must be calculated. This

error is defined as

$0) = («2.0) —w.<t)1t — 1., / «8mm. (5.11)

where w, (t) is the instantaneous input frequency, w,3 (t) is the instantaneous estimator

frequency, 18,, is the PLL gain and up(t) is the PLL phase detector error. Thus, when

y(t) locks to :1:(t), ¢(t) approaches zero. Lock also occurs when ¢(t) = nrr, where

n = 1,2,3,

Using the methods described above, three simulations are performed. In the all

three simulations, the lightly damped second order system is assumed to have natural

frequency wn = 1000 rad/s and damping ratio C = 1. The gain of the frequency

estimator is chosen as ke = 25, while the gain of the PLL is kp = 50. The phase

detector of both the frequency estimator and PLL is an exor type, with logic level V

chosen as :E5V. The filter of the PLL is defined as

1

F = —— .12

while the filter of the frequency estimator is

F (s) — ——1—— (513)
e _ s(s + 25). '

For comparison purposes, a standard PLL is also included in the first two simulations,

with the same parameters as PLL portion of the enhanced PLL.
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In the first simulation, the input signal x(t) is given a nominal frequency of

we = 1010 rad/s and phase of 61(t) = 0. The results are shown in Figure 5.4 and

Figure 5.5, where Figure 5.4 is a plot of the frequency - phase error ¢(t) versus time

and Figure 5.5 is a plot of the actual input and output signals a:(t) and y(t). In both

figures, the enhanced PLL system and the standard PLL are represented by the solid

and dashed lines, respectively. In Figure 5.5, the dotted line represents the input

signal x(t). From these figures, it is clear that enhanced PLL locks both in frequency

and phase, while the standard PLL locks in frequency, but with some steady state
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Figure 5.5. Input and output signals with small initial frequency difference.

As is the case with most problems in engineering, increased performance of one

aspect of a problem usually requires a decrease in the performance of another aspect

of the problem. This tradeoff holds true for the enhanced PLL, as seen from the

steady state oscillations in Figure 5.4. However, it will be shown in the next two

simulations that the lock range of the enhanced PLL dramatically exceeds that of the

standard PLL.

In the second simulation, the input nominal frequency is increased to we = 1100

rad/s. The phase is still chosen as 01(t) = 0. The results are shown in Figure 5.6

and Figure 5.7. Again, the solid line and dashed lines represent the enhanced PLL

system and standard PLL, respectively, while in Figure 5.7, x(t) is represented by

the dotted line. From these figures it is clearly visible that the range of the standard

PLL is exceeded, while the enhanced PLL still achieves lock.
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Figure 5.7. Input and output signals with we = 1100 rad/s.
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To demonstrate the capabilities of the enhanced PLL, a third simulation is per-

formed with the input frequency chosen as we : 4000 rad/s, and the phase mm = 0.

The results are shown in Figure 5.8 and Figure 5.9. These figures show that the

extend PLL can achieve lock despite an input frequency four times as large as its

nominal frequency.
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Based on the simulations presented here, initial results of an adaptive method to

enhance the capabilities of the phase locked loop are promising.
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CHAPTER 6

Conclusions

6. 1 Summary

Resonant systems arise in many areas of science and engineering. Some examples

include ultrasonic motors, piezoelectric transducers, induction heating loads, some

resonant inverter loads, microelectromechanical gyroscopes, cavity resonators and

cyclotrons. For Optimal performance, these systems must be excited at their reso-

nant frequencies. However, even if resonant and excitation frequencies are initially

matched, over time these frequencies can shift due to disturbances such as temper-

ature or humidity change, load variation, manufacturing variability, fatigue damage,

microphonics and electromagnetic detuning, resulting in a loss of performance. This

mandates employment of a resonance tuning control system that maintains lock be-

tween the excitation frequency and the resonant frequency.

Three resonance tuning systems for lightly damped second order passive loads have

been investigated in this thesis. Each method uses the error between the excitation

and resonant frequencies to adaptively match these frequencies. This error is obtained

with a phase detector. In the first method, a voltage controlled oscillator provides

the excitation to the load. The excitation frequency is adaptively tuned by providing

the error signal from the phase detector to the voltage-controlled oscillator. The

second method adaptively tunes the resonant frequency of the resonator by changing

its structure, such as geometry or element values. Finally, the third method uses

proportional feedback around the resonator and adaptively adjusts the feedback gain
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to tune the closed loop resonant frequency to the excitation frequency.

Assuming that the parameters of the lightly damped second order system are

slowly time-varying, nonlinear timevarying models that accurately predict the per-

formance of each resonance tuning system have been deve10ped. These deve10ped

models were subsequently linearized to obtain linear time-invariant models that fa-

cilitate both analysis and design of the resonance tuning systems. Based on the

developed linear time-invariant models, guidelines for designing the resonance tuning

systems were also provided. The results were illustrated through simulations.

6.2 Future Work

Despite the research of resonance tuning systems with phase detectors presented

in this thesis, there still exist many unanswered questions and thus the need for future

research work on these systems. For instance, analysis of the effects of noise on these

systems is still required. Also, more work is needed toward developing solid nonlinear

design guidelines, for applications where the linear models do not provide an accurate

representation of the actual system. Also, research is required for the development of

these adaptive resonance tuning systems for higher order resonators.
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