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ABSTRACT
THREE ESSAYS ON ECONOMETRICS
By

Myungsup Kim

Consider a simple stochastic frontier model explaining the output of a firm by
y = 2/ + v — u. While v represents random shocks outside the control of producers,
u represents technical inefficiency in the production process.

In the first chapter, we wish to test whether technical inefficiency depends on
observable characteristics of the firm. It is well known that two-step procedures, in
which the second step is the regression of an inefficiency measure on firm character-
istics, do not properly estimate the effects of firm characteristics on inefficiency. In
this chapter we show that this regression also does not lead to a valid test of the
hypothesis of no effect. A valid test of the hypothesis of no effect can be constructed
by using an adjustment to the variance matrix of the estimated coefficients in the
second step regression. Unfortunately the form of this adjustment is not distribution
free. We show that this test is the LM test in the specific case that technical inef-
ficiency is exponential and the alternative is a scaled exponential distribution. We
also consider tests based on nonlinear least squares. These tests do not depend on
a distributional assumption. There are some technical complications involved due
to the non-identification of some of the parameters under the null. We perform an
extensive set of simulations to compare the size and power characteristics of these
tests and other similar tests, including the Wald test based on a one-step estimate of
the entire model.

In the second chapter, we study the construction of confidence intervals for effi-
ciency levels of individual firms in stochastic frontier models with panel data. The
focus is on bootstrapping and related methods. We start with a survey of various

versions of the bootstrap. Then we offer some simple alternatives based on standard



methods when one acts as if the identity of the best firm is known. Monte Carlo
simulations indicate that these simple alternatives work better than the percentile
bootstrap but perhaps not as well as the bias-adjusted and accelerated bootstrap.
None of the methods yields very accurate confidence intervals except when the time-
series sample size is large enough, or the error variance is small enough, that the
identity of the best firm is clear. We also present empirical results for two well-known
data sets.

In the last chapter, we consider the problem of testing the null hypothesis that
a series is stationary against the unit root alternative. A standard test for this null
hypothesis is the KPSS test, which is based on cumulations of deviations from the
means of the series. A paper by de Jong, Amsler, and Schmidt (2002) constructs a
“robust” version of the KPSS test by using an indicator of whether the observation
is above or below the sample median. This test, called the indicator KPSS test, is
robust in that it does not require existence of moments of the series, yet the asymptotic
distribution of the indicator KPSS statistic is the same as that of the KPSS statistic.
However, in this chapter we allow a non-zero level for the series under consideration,
but not a deterministic trend. The purpose of this chapter is to extend the indicator
KPSS statistic to the case of a deterministic trend. The relevant indicator in this
setting is whether the residual is positive or negative in a least absolute deviations
regression of the series on a time trend. This chapter shows that, under the null
of trend-stationarity, the indicator KPSS statistic with a time trend has the same

limiting distribution as the KPSS statistic with a time trend.



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Peter Schmidt,
who taught my first Econometrics course with passion. His willingness to motivate
and support my work has made it possible for me to develop my skills as a researcher.
Needless to say, his wise advice and continuing counsel have been essential for the
course of my studies. Also, I am enormously grateful to Professor Robert M. de
Jong for his patient support and extraordinary encouragement of my learning of
methodological tools. I owe special thanks to Professor Jeffrey M. Wooldridge for
invaluable comments. I would like to thank the other members of my committee:
Professor Christine E. Amsler and Professor Robert J. Myers. I greatly appreciate
their input and time to this dissertation.

I want to thank my wife, Jiyoung, for being my partner and best friend with her
unending love, sacrifice and support. I am also greatly indebted to my parents and
my parents-in-law who have always been very supportive of my pursuit of education.

My special thanks also go to my fellow graduate students for their friendships and
the staff in the Department of Economics for their jovial smile and helpful nature

that have always greeted any problem or deadline.

v



TABLE OF CONTENTS

LISTOF TABLES . . . . . .. ittt ittt it

1 Valid Tests of Whether Technical Inefficiency Depends on Firm
Characteristics . . . . ... .. ... i i i it i ittt enwenn
1.1 Imtroduction . . . . . . ... .. ... ... ...
1.2 Two-Step Procedures . . . . .. .. ... ... ... .. ........
1.3 The Scaled Exponential Case . . ... ... ... ...........
1.4 A Test Based on Nonlinear Least Squares . . . . . . ... .......
1.5 Simulations: Experimental Design . . . . . .. ... ... .......
1.6 Simulation Results: Size . . . . ... ... ... ... ... ......

1.6.1 Basecase .. .. ....... .. .. ... .. ...,
1.6.2 Effects of changingaorg . ... ... ... .. ... ....
1.6.3 Effectsof changing N. . . . ... ... ... ... . ......
1.64 Effectsofchangingp . ... ... ... ... ... ... ....
1.6.5 Effectsof changing A . . . .. ... ... ... ... . .....
1.6.6 Effects of changing 03 ......................
1.7 Simulation Results: Power . . . . . .. .. ... ... .........
1.8 Simulation Results: Robustness . . . . . . ... ... .........
1.8.1 Normal-truncated normal . . ... .. ... ..........
1.82 Normal-gamma . . ... .....................
1.9 Concluding Remarks . . .. ... ... ... ... ... ........
1.10 Output Tables . . . . . . . . ... ... .. .. .. .. ... ... ..
1.11 Appendix: LM Test for the Scaled Exponential Case . . ... .. ..
1.12 Appendix: Supplementary Tables . . . . ... ... ... .......

2 On the Accuracy of Bootstrap Confidence Intervals for Efficiency
Levels in Stochastic Frontier Models with Panel Data . ... ...
2.1 Introduction . . . . . . . . . .. ...
2.2 Fixed-Effects Estimation of the Model . . . . . .. ... ... ... ..
2.3 Construction of Confidence Intervals by Bootstrapping . . . . . . ..
2.4 A Simple Alternative to the Bootstrap . . . . . ... ... ... ...
2.5 Simulations . . . ... ... ...
2.6 Empirical Results . . . . ... ... ... . L o

2.6.1 Indonesian Rice Farms . . . . . .. ... ... ... ......
26.2 Texas Utilities. . . . . . . ... .. ... ... ... .....
2.7 Conclusions . . . . . . . . . . . ...
28 Output Tables. . . . . .. ... ... ... ... ...



3 Indicator KPSS witha Time Trend .. ... ............. 98

3.1 Imtroduction . . . . ... ... ... .. ... ... ... 98
3.2 Asymptotic Theory . . . . . . . ... ... ... ... ... ... 99
321 Assumptions. . . . ... ... ... ... 99

3.2.2 Indicator KPSS statistic . . . . ... .. ... .. ....... 101

323 Conjectures . . . . . . .. ... .. e 102

3.2.4 The Asymptotic Distributions of the Indicator KPSS Statistic 103

3.3 Concludingremarks. . . . ... ... ... ... ... .. ... 105
3.4 Appendix: Mathematical Proof . . . ... ... ... ......... 106
BIBLIOGRAPHY . . . . . i i i ittt it ittt et n e 135

vi



LIST OF TABLES

11 (BASECASE) a =8 =6=0,02=X=1,p =05 N = 200
[E(exp(—u)) =0.5232] . . . ... ... ... ...

12 (Change of N) N =500, a = 8 =6 =0,02=X=1,p =05
[E(exp(—u))=05232] . . ... ... ... ... ... .. ......

1.3 (Change of N) N = 1000, a = 8 =6 =0,02 =X =1,p =05
[E(exp(—u)) =0.5232] . . ... .. ... ...

14 (Change of p) p = —05, a =8 =86=0,02=X=1 N = 200
[E(exp(—u)) =0.5232] . . . ... .. .. .. ..

1.5 (Changeofp) p=0,a=8=6=0,02=A=1, N =200 [E(exp(—u)) =
0.5232] « . o o e

16 (Change of p) p =09, a =8 =6 =0,02=X=1 N = 200
[E(exp(—u)) =05232] . ... ... ... .. .. .. .. .. .. ...

17 (Changeof ) A =3, a=8=6=0,02=1,p =05 N =200
[E(exp(—u)) =0.1095] . . . ... ... .. ...

18 (Change of 02) 02 =9, a =f=6=0,A=1,p =05 N = 200
[E(exp(—u)) =0.5100] . . . ... ... ... .. ...

1.9 (Change of §) 6 = 0.05,a =8 =0,02=X=1,p =05 N = 1000
[E(exp(—u)) =05232] . . ... ... ... . ... ... ...

1.10 (Change of §) § = 0.1, a =8 =0,02 =X =1, p =05 N = 1000
[E(exp(—u)) =05232] . .. ... ... ... ... ... .. .. ...

1.11 (Change of §) § = 0.15,a =8 =0,02 =X =1, p = 0.5, N = 1000
[E(exp(—u)) =0.5232] . ... ... ... ... ...

1.12 (Change of § and p) § =0.1, p=0.9,a = =0,02 =X =1, N = 1000
[E(exp(—u)) =05232] .. ... ... ... ...............

1.13 (Change of scaling functions to ¢(dz;)/(1 — ®(z;))) 6 =0.1, a = 8 =0,
02=X=1,p=05 N =1000 [E(exp(—u)) =0.5232] . . . ... ...

1.14 (Change of the distribution of u? to N(0,7/2)*) a=8=06=0, 02 =
A=1p=05 N=1000 [E(exp(—u)) =0.5232] . . . .. .......

vii

28

37

40



1.15 (Change of the distribution of u to gamma(0.5,2)) o = 8 = é§ = 0,
02=X1=1,p=05 N =1000 [E(exp(—u)) =0.5232] . . . .. ....

1.16 (Change of the distribution of u to gamma(2,0.5)) a = 8 = § = 0,
02=X=1,p=05 N =1000 [E(exp(—u)) =0.5232] . . . . ... ..

1.17(Changeofp)p=0.25,a=B=6=O,a,2,=A=1,N=200
[E(exp(—u)) =05232] . ... ... .. ... ... ..

1.18 (Change of p) p = 075, a = 8 =8 = 0,02 = A =1, N = 200
[E(exp(—u)) =0.5232] . .. ... ... ... ... ...

1.19 (Change of § and p) 6 =0.05, p=09,a=8=0,02 =X =1, N = 1000
[E(exp(—u)) =0.5232] . ... ... ... .. ...

1.20 (Change of § and p) 6 =0.15, p=0.9, 2 =3 =0, 02 = A =1, N = 1000
[E(exp(—u)) =0.5232] . . ... ... .

1.21 (Change of the distribution of u to N(0,1)*) a =8 =46 =0, o2=x=1,
p=0.5, N =1000 [E(exp(—u)) =0.5232] . . . . ... .........

1.22 (Change of the distribution of u{ to N(0,7/(r —2))¥*) a =8 =46 =0,
02=X=1,p=05 N =1000 [E(exp(-u)) =0.5232] . . . ... ...

1.23 (Change of the distribution of u to N(1,1)*) a =8 =6 =0, 02=X=1,
p=0.5, N =1000 [E(exp(—u)) =0.5232] . . . . ... .........

1.24 (Change of the distribution of u to gamma(0.5,v2)) a = 8 = § = 0,
02=X=1,p=05 N =1000 [E(exp(-u)) =0.5232] . . . ... ...

1.25 (Change of the distribution of u; to gamma(2, 1/V2)a=8=4 =0,
02=X=1,p=05 N =1000 [E(exp(—u)) =0.5232] . . . ... ...

2.1 Biases of Fixed Effects Estimates . . . . . . ... ... ... .......
2.2 90% Confidence Intervals for Relative Efficiency () ... ... ... ..
2.3 90% Confidence Intervals for Relative Efficiency () . . ... ... ...
2.4 Bias Correction in the BC,; Bootstrap Intervals . . . . . ... ... ...

2.5 90% Confidence Intervals for Relative Efficiency (rf) . .. ... ... ..

42

43

51

2.6 Biases of Fixed Effects Estimates (Case that u; are fixed over replications) 92

viii



2.7 90% Confidence Intervals for Relative Efficiency (r}) (Case that u; are
fixed across replications) . . ... ... ... ... ... ... 93

2.8 Estimated Efficiencies and 90% Confidence Intervals: Indonesian Rice Farms 94

2.9 90% Confidence Intervals: Indonesian Rice Farms . . . . . ... .. ... 95
2.10 Estimated Efficiencies and 90% Confidence Intervals: Texas Utilities. . . 96
2.11 90% Confidence Intervals: Texas Utilities . . . . . . . . . . .. ... ... 97

ix



Chapter 1

Valid Tests of Whether Technical
Inefficiency Depends on Firm

Characteristics

1.1 Introduction

In this chapter we consider the stochastic frontier model
yi =B+ v —uj, u; >0. (1.1)

The frontier is y; = x;ﬂ + v; and u, represents technical inefficiency. We follow the
literature in assuming that the z; are “fixed” and the v; are i.i.d. normal. Now we
ask whether u; depends on some variables z;, which could be characteristics of the
firm or measures of the environment in which it operates. Specifically, we wish to
test the hypothesis that u; does not depend on z;.

One way to do this is to assume a specific model of the alternative hypothesis that



shows how the 2; affect the u;. For example, we could assume:
u; = exp(z}6) - ug, (1.2)

where the u; arei.i.d. according to some specific distribution, like exponential or half-
normal. Now we can estimate § by MLE and do a Wald test of the hypothesis that
0 = 0, which corresponds to the hypothesis that z; does not affect u;. In the frontiers
literature this would correspond to what is called a “one-step” procedure (e.g., see
Wang and Schmidt (2002)). Models of the form of (1.2) have been considered by Reif-
schneider and Stevenson (1991), Caudill and Ford (1993), Caudill, Ford, and Gropper
(1995), Wang and Schmidt (2002) and Alvarez, Amsler, Orea, and Schmidt (2005),
among others. We will follow the literature and call the multiplicative decomposition
of u; (as a function of z; times a random variable that does not depend on z;) the
“scaling property.”

An objection to this type of procedure is that it depends fundamentally on the
alternative chosen. Under the null the scaling function exp(z}8) really does not exist
and so there are many more or less equally plausible alternatives. Partly for this
reason, one could consider a “two-step procedure” in which Step 1 would be to es-
timate the model ignoring the z; to obtain efficiency measures 4;, and Step 2 would
be a regression of i; on 2; (or some function of z;). It is well known (Wang and
Schmidt (2002)) that when z; does affect u;, there are serious biases in both steps, so
two-step procedures are not recommended. However, under the null that z; does not
affect u;, these biases do not arise, and it is not known whether a two-step procedure
provides a valid test of this null hypothesis. One contribution of this chapter is to
show that a two-step procedure that uses a standard t or F test in the second step
does not yield an asymptotically valid test. However, the test becomes valid if we use

a corrected variance matrix for the second-step coefficients. Unfortunately, the form



of this correction is distribution-specific.

This raises the question of whether a test based on such a corrected two-step
procedure entails a loss of power. We do not have a full answer to this question. We
do show that, in the case that the alternative is the scaled exponential distribution,
the LM test of 4 = 0 is asymptotically equivalent to the corrected version of the
two-step procedure. Therefore at least in this case the two-step procedure entails no
loss in asymptotic local power.

If we assume the scaling property, as in (1.2) above, the stochastic frontier model
can also be estimated by nonlinear least squares. Testing whether § = 0 based on
nonlinear least squares involves some technical difficulties, because the mean of v is
identified separately from the overall intercept under the alternative but not under
the null. We show how to deal with these difficulties and obtain an asymptotically
valid test.

In the last section of the chapter, we report the results of an extensive set of

simulations that investigate the size and power of these tests.

1.2 Two-Step Procedures

We consider the stochastic frontier model (1.1). As stated in the Introduction, we
treat the z; as fixed and we assume that the v; areii.d. N(0,02). We also assume that
the u; are i.i.d. with some specific distribution, such as exponential or half-normal,
that is known up to some parameters. Finally, the z; variables whose influence on
u; we wish to test are independent of v; and u. For the purposes of this section,
these assumptions could be weakened somewhat, but we would need the stronger set
subsequently, so we simply make them here.

To motivate the tests considered here, suppose that u; were observed. Then we

could regress u; on z; and test the hypothesis that the coefficients equal zero by



standard methods. More precisely, the regression would have to include an intercept
because E(u;) is not equal to zero, and we would do an F-test on the coefficients other
than the intercept.

Now let 3 equal the unknown parameters of the problem. These would be 3, 03
and whatever parameters there are in the distribution of u;. Step 1 of the two-step
procedure results in an estimate i which should be consistent and asymptotically
normal (subject to the usual regularity conditions). We then obtain an estimate of u;,
say ﬁ,(¢) In the stochastic frontier model, #; is the expected value of u; conditional
on ¢; = v; — u;, evaluated at the sample estimates, as suggested by Jondrow, Lovell,
Materov, and Schmidt (1982). It should be noted that, even if ¢ were known, ;(%)
would be E(u;|¢;) which is different from u;. However, 4;(¢) is a function of ¢;, which
is i.i.d. and independent of z;. So, if we regressed u;(¢) on intercept and z;, an F-
test of the significance of the coefficients of z; should be asymptotically valid. The

~

question is whether this is still true when u;(%) is replaced by u;(¢). Unfortunately,

the answer is no. A valid test must account for the estimation error in .

To show this, we could consider a regression of ﬁi(z/;) on intercept and z;. However,
it is simpler to demean the 4; by switching our attention to b;(¢) = E(u;le;) — E(w;),
with b; = b;(¥)) being the corresponding estimate evaluated at the first-step estimates

-

1. So now we simply wish to test whether v = 0 in the regression:

~

b; = Z£’7 + v;. (1.3)

Our test statistic will be 4/ [\Er(\’y)]_lf‘y, where 4 is the least squares estimate from
(1.3), and this should be asymptotically x?2, if Var(4) is properly calculated.
This is a “generated dependent variable” problem that can be analyzed by meth-

ods similar to those used for the “generated regressor” problem (e.g., Wooldridge

(2002)[pp. 139-141]). We have b; = b;(4) = f(vi,z;, %) and b; = b;(¥)) = f(y;, i, ¥).



By the Mean Value Theorem,

bi = b + Vy f(yi, 73, ¥) (¥ — %) (1.4)

where 1) is between 1 and . Therefore

N
> 5V f(yi i, %) VN - w)] (1.5)

From the last line of equation (1.5), we can see immediately that the term involv-
ing the estimation error in ¢ will be relevant unless E[z;Vy, f(y;, z;,%)] = 0. (In
this exceptional case, N~1 vaﬂ 2V f(yi, i, V) 2 0 and the last term vanishes.
Otherwise it does not.)

To proceed further, we use the same device as in Wooldridge (2002), and assume

that

VN -

éﬂ

N
Z ) +0p(1 (1.6)



where E 7;(1) = 0. We will be more specific about the form of r;(¢), below. Then

1 N &
VN4 = —Zziz,'- [—Zzib,-
N vN i=1 (1.7)
1Y 1 O
+ =3 5V f(vi i) —= Ti(ll))] + 0p(1).
N i=1 m i=1
It follows from a central limit theorem applied to (1.7) that
VN4 = N(0,B~1AB™1) (1.8)
where
B =Ez, (1.9a)
A = E|[(z;b; + Grj)(z;b; + Gri)'], (1.9b)
G =E zVy f(yi, =i, ¥, (1.9¢)

Also, all of these quantities can be consistently estimated by the corresponding sample
quantities: B = N~1 Z,Ail ziz;, A=N"1 Zﬁ;l[(ziai + G‘f",-)(z,-i),- + C’f‘,-)’], G =
N-IYN . 29y f(yi,zi, 9).

The remaining detail is an expansion for ;. The first-step MLE 4 satisfies
Z,-N=1 3i()) = 0, where s;(3) is the score function for observation i. (That is, s;(%)
is the derivative with respect to 3 of the it® observation’s contribution to the log

likelihood). Then another Mean Value Theorem expansion yields

N . N N L
0= si(h) =D si(W)+ D Vysi(¥)(® - ), (1.10)
1=1

i=1 1=1



where ¥ is between ¥ and . So

) N -1 N
\/N(w [ N vasz(¢ ] Z si(¥) + Op
1=1 1=1
(1.11)
- fjf Lss() + op(1)
= — - + op(1
\/J_V— i=1 ’
where
1
I° =Es;(¥)si(¥) = —EVysi(¥) = A}TOO T (1.12)
and
T = E(Vy InL)(Vy InL)' = —E V3 InL. (1.13)

T is the information matrix for the first-step MLE problem with a log-likelihood
of InL, and Z° is the limiting information matrix. In terms of the score, T =
2ﬁ1Esi(¢)si(¢)' = - Zfil EVysi(¥). Therefore, in (1.6) and the subsequent
expressions above, r;(¥) = I° 1s;(1). In terms of sample quantities, 7; = Z7°~1s;(¢)
where 7° = N1 Zf\;l si(¥)si ().

We note two things. First, the standard (naive) test of 4 = 0 that ignores the
effect of estimation error in 5,- corresponds to omitting the terms corresponding to
Gr; in (1.9b). This test will be invalid unless G = 0. Since G = E 2;Vy, f(y;, i, ¥),
this condition will hold if z; is independent of z; as well as of v; and u;. However, it
will generally fail if z; and z; are correlated. Second, the “correct” test is not difficult.
However, unsurprisingly, the form of the correction depends on the distribution of w;,
since that influences the nature of the first-step MLE problem. There is no simple,

distribution-free correction.



1.3 The Scaled Exponential Case

In this section we consider the special case that u; follows a scaled exponential distri-
bution. That is, u; = exp(2d) - uf, as in (1.2), where v} is distributed as exponential
with parameter A. We will derive the LM test of the hypothesis § = 0, and show that
it is asymptotically equivalent to the (corrected) two-step procedure of the last sec-
tion. This shows that there is at least one case in which the two-step procedure does
not entail any loss of (local) power, compared to the usual Wald-likelihood ratio-LM
trinity of tests.

For the normal-scaled exponential model we consider, the pdf of the composite

error (e; = v; — u;) is:

1 € ag € Ov
N = . (1-e(S 4 Tv
f&) A exp(z}6) exP(/\exp(zéé) 2/\2exp(2z'6)) ( (av + /\exp(zéé)))
(1.14)

where ® is the cumulative distribution function of the standard normal distribution.
Note that under the null of § = 0, E(¢;) = — E(u;) = —A and Var(¢;) = 02+ 2. Also,
the distribution of u; given €; is N(—¢; — 2 /(A exp(z}6)), 02)* where “+” represents
truncation on the left at zero.

From (1.14), it follows that the log-likelihood function InL(é, 3,02, A2) = InL(6)

is given by:
N
—_— , ——————
InL(6) = zl n(Aexp(2;6)) +Z/\exp(z’6)
1=1
N (1.15)

+Z 2/\2exp 22’6) +Zln (1 B (— #’E"s)))



The generic form of the LM statistic is
LM = VgInL(6)' - T71(6) - V4 InL(). (1.16)

Here 6 is the MLE subject to the restriction § = 0; Z(6) is the information matrix
evaluated at 6 = 6; and Vg InL(f) is the score function, Vg InL(6), evaluated at 8 = .
If we partition 8 = (§', '), where ¢ = (8, 02, A2)/, then

V5 InL(6 Tss T
VotnL(@) = | VO | gy o T8 Tv

V,p lnL(G) I¢5 I¢w

(1.17)

It is a standard result that V4 InL(8) is equal to zero for those elements of 8 that are

unrestricted. That is, V,, InL(8) = 0. Therefore

LM = VsInL(8)' - [Z71()]s5 - V5 InL(d)

) (1.18)
= Vs InL(8)’ | Zs5 — 15¢Iw¢1¢5] - Vs 1nL(6)
where Z.. stands for the *,* block of Z, evaluated at 8 = 4.
A straightforward calculation reveals that
N (a& & &2
VsinL(®) =Y 2z | =2 -2 -2 -1 1.19

where & = (¢(€;/Fy +0u/N))(1—®(€;/dy +Fy/A)) "L and ¢ is the pdf of the standard

normal distribution. Note that

1 52 1L .
Vs InL(8 =3 ; (avE, -3 ) =3 z_: 2;b;, (1.20)
= 1=1
where b; = (6y€; — € — 52/A — X) is (E(u;l¢;) — E(u;)) = b; evaluated at 8. (This

follows because E(u;le;) = 0y(& — (€;/0v + 0v/A)) while E(u;) = A.) Note that apart



from the scalar 1/}, Vs1nL(f) equals the numerator of VN4 = (N1 Zﬁl zz})71
N-1/2 Zfil z,-5,-. So the LM test must be asymptotically equivalent to a properly
constructed test based on the two-step estimator 4. Some further algebraic details of
this equivalence are given in the Appendix. Basically, the naive test that ignores the
effects of estimation error in b; would correspond to omitting the terms i&pit;l})id’é
in (1.18). These terms correspond to the same correction as was created by the terms
Gr; in (1.9b) above.

This section’s result (that the LM test is asymptotically equivalent to a properly
constructed test based on a two-step procedure) holds for the case that u; is expo-
nential with a scaling factor of the form exp(2]d). So far as we can determine, it does
not hold for the scaled half-normal case. If it does not, then in the half-normal we
would expect the LM test to be better (in the sense of asymptotic local power) than
the two-step test of the last section. An interesting question for further research is
whether we can identify a class of distributions for which a result like the present one

holds.

1.4 A Test Based on Nonlinear Least Squares

In this section we continue to assume that the stochastic frontier model (1.1) is
correct. We further assume that the scaling property (1.2), with an exponential
o

scaling function, holds, so u; = exp(z}d) - u.

;- However, now we do not make any

specific distributional assumption about the u;. We simply assume that they are
i.i.d. and independent of z;, z; and v;.

Let 4 = E(u]) = E(u]|z;, ;). Then

E(y;|zi, 2;) = 7,8 — p - exp(z}0), (1.21)
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or equivalently
yi = 7,8 — pu - exp(2}6) + w; (1.22)

where E(w;|z;, 2;) = 0. This model can be estimated consistently by nonlinear least
squares, as has been noted by Simar, Lovell, and Vanden Eeckaut (1994), Wang and
Schmidt (2002) and others. This raises the question of whether we can test the
hypothesis § = 0 based on the nonlinear least squares regression.

There is a non-trivial problem because the parameter p is not identified (separately
from the intercept in the regression) when § = 0. To see this clearly, we explicitly
distinguish the intercept from the rest of z;: z} = (1,z}), 8’ = (a, 8*') so that (1.22)

becomes

y; = a+ ;' B* — u-exp(zi6) + w;. (1.23)
Alternatively we can write this as

yi = (@ — p) + z}'B* + u(1 - exp(2]6)) + w;. (1.24)

From (1.24) it is clear that (a — ) is identified, but p is identified only when § # 0.

In cases such as this, in which some parameters (“nuisance parameters”) are not
identified under the null hypothesis, standard tests like the Wald test or the likelihood
ratio test are not asymptotically valid. A standard reference on this problem is
Hansen (1996). A Wald test in this context would consist of estimating § and then
testing whether it is significantly different from zero, using a statistic of the form
8'[Var(8)] =14, where § is the NLLS estimate and Var(é) is the asymptotic variance
matrix of 5. Such a test is not valid in this context because the usual Var(é) that

would be valid when § # 0 is not valid when § = 0, because of the non-identification
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of u.

It is interesting that for our problem (though not for general problems) an asymp-
totically valid test can be derived from the LM (or score) test principle. We follow
the discussion in Wooldridge (2002)[pp. 363-369]. Let the NLLS criterion function
be

Qn(0) = NZQM NZ(% ziB + pexp(216))?, (1.25)

i=1

where 6 represents 3, p and 4, and w; represents y;, z; and z;. Then the LM or
score test is based on the quantity V5Qx (), that is, on the derivative of Qx(8) with
respect to 8, evaluated at the restricted estimates §. We might expect this approach
to fail here because i is not well defined. However, this turns out not to matter.

Doing the appropriate calculation,

VsQn(6) = 5 'Z;(yz 238 + pexp(2i6)) (uexp(26)2) (1.26)

and therefore (since § = 0):
3 9 N 2 N
VsQn(0) = > (i — (& - i) — 2B (iz) = v z—; Wi (fz;)- (1.27)

Here 8 = ((@ — fz), B*')’ is just the coefficient in a regression of y on X, and @; =
y; — 2. In matrix form, the sum in (1.27) is equal to y’Mx(iZ), where Mx =
I — X(X'X)~1X' is the projection orthogonal to X. Note that if we regressed y on
[X, 1Z], the coefficients of 1Z would be [(22) Mx (22)]~1(i4Z)' Mxy, so that the sum
in (1.27) is equal to the random (numerator) portion of this coefficient. Therefore the

LM statistic will be equivalent to an F-statistic for the significance of the coefficients
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(say, €) of (fiz;) in the regression
yi = 7,8 + (fz;)'¢ + error;. (1.28)

Now, the essential point is that this F-statistic is invariant to any non-zero value
of i. That is, /i is just a scale factor for z;, and changing /i is like changing the units
of measurements of z;. It does not affect the value of the F-statistic. (If we double f,
this will cause ¢ to be divided by two, and Var(¢) to be divided by four, so the scale
factor “two” cancels from the test statistic.) So we can just set 4 = 1, and calculate
the LM statistic as the F-statistic for the significance of the coefficients of z; in a
regression of y; on [z;, z;].

This is an intuitively reasonable result because, under the null hypothesis being
tested, E(y|X, Z) does not depend on Z.

An interesting and relevant fact is that the same test statistic would result if
we replaced the exponential scaling function exp(zf&) by any scaling function g(z}6),
where g is monotonic and differentiable at zero. The same derivation as above leads
us to a regression of y; on z; and ug’(0)z;, or equivalently a regression of y; on r; and
z;. This is relevant because it suggests that the OLS-based test may have reasonable
power against a variety of alternatives (different scaling functions), whereas the power
properties of the MLE-based tests when the scaling function is misspecified are not
at all clear.

We note that, if v; and u; are i.i.d., the error in (1.27) is homoskedastic under
the null hypothesis. Nevertheless it is possible to consider a heteroskedasticity-robust
test. We simply have to use the heteroskedasticity-robust variance matrix of White
(1980). See Wooldridge (2002)[pp. 55-58] for details.

Another thing to note is the following. The test above is the F-test for the

significance of the coefficients of z in a regression of y on z and z. This is the
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same as the F-test for the significance of the coefficients of z in a regression of W on
z and z, where as in (1.27) above w = y — zf. It is essential that z be included in
this regression, even though z is orthogonal to w. If we regressed @ on z only and

did an F-test, this test would not be valid, even asymptotically.

1.5 Simulations: Experimental Design

We wish to perform simulations to investigate the size and power properties of the
tests derived in the previous sections. The data generating process for our simulations
will be as follows:

yi = a + Bz + v; — exp(z;) - u

(1.29)
=a+ fz; — Aexp(dz;) +w;, i=1,--- N,

where w; = v; — exp(dz;)(u; — A). All random draws are independent over i. The
explanatory variables z; and z; are both scalars, and (z;, 2;)’ is standard bivariate
normal with correlation p. The v; are distributed as N(0,02) and the u; are distrib-
uted as exponential with parameter A. The random variables (z;, z;)’, v; and u; are
mutually independent.

The set of parameters is therefore o, 3, 4, 03, A, pand N. We chose a “base case”

set of parameters as follows:
a=08=08=002=1,A=1p=05N = 200. (1.30)

We will then change these parameter values, as described below, in our experiments.
We consider the following tests.

WALD. For the WALD test we estimate (1.29) by MLE and then test whether §
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is significantly different from zero. Specifically, the WALD statistic is given by
WALD = [82 (.'255 - i&goi(;q}itp&)] (1.31)

where the notation is the same as in Section 1.3. Two different versions of the WALD
statistic are computed. WALD-OPG uses the OPG (outer product of the gradient)
estimate of the information matrix, while WALD-HES uses the negative Hessian
estimate of the information matrix.

LM. This is the LM statistic discussed in Section 1.3. The statistic is given by

1 L.
LM = = biz; | . 1.32
/\E 124 ( )

S| =

N —_—
Z l;i Z; (155 - i&goi;éi-tpé)
i=1

Once again we have different versions, depending on how the information matrix is

estimated. LM-OPG and LM-HES are analogous to WALD-OPG and WALD-HES.
GDYV. This is the “generated dependent variable” test discussed in Section 1.2.

More specifically,

———

GDV = VN4[Var(vN3)]"1VN4

N ) B AN '
= me (biZi+GI_18i(¢)) Zbizi
i=1 i=1

(1.33)

oE

1=1

Here 7 is the negative Hessian form of the information matrix for the first-step MLE,
as in (1.11) above. We also consider the test BADGDV, which is the invalid test
based on regression (1.3) above and which ignores the estimation error in .

OLS. This is the set of tests discussed in Section 1.4. OLS refers to the standard
F-test for significance of the coefficients of 2; in a regression of y; on (1, z;, 2;). This
reduces to a t-test in the present case since z; is scalar. We use the critical values

based on the standard normal distribution rather than the t-distribution but for our
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values of N this makes essentially no difference. OLS-H is the heteroskedasticity-
robust version of the test. BADOLS is the invalid test based on the t-statistic for
the significance of the coefficient of z; when b; is regressed on z; (without intercept
or z; in the regression), as discussed at the end of Section 1.4. BADOLS-H is the
heteroskedasticity-robust version of BADOLS.

The number of replications in the experiment was 10,000, except for a few cases
noted below.

The outputs of the experiments are as follows. For each of the parameter estimates,
we calculated their mean, standard deviation, and MSE. For the MLE of the full model
(needed for the WALD test calculations), the parameters estimated are a, 3, 4, 03
and A. For the MLE of the model subject to the restriction § = 0 (needed for the
LM and GDV test calculations), the parameters estimated are a, 3, o?, and ). Note
that, in the output tables, we report the mean, standard deviation, and MSE of the
estimates of A2, not ), for an easier comparison with the estimates of 0,2,. For the
NLLS estimates under the restriction that § = 0 (which is just OLS of y; on z;, and
is needed for the OLS test calculations), the parameters estimated are n = a — A, B
and 02 = 02 + A2,

We also calculated the mean, standard deviation and MSE of the technical effi-
ciency estimates for the MLE and the restricted MLE. The technical efficiency of firm
i is TE; = exp(—u;) and the technical efficiency estimate (Battese and Coelli (1988))

is

TE; = E(exp(—u;)|€;)

_ 8 (=0v — €i/oy — 0v/(Aexp(3%))) ‘0 (02 2 ) | (1.34)

® (—¢€; /oy —op/(Aexp(dz;))) 70 et /\exptéézi)

Here ¢; = v; —u; = y;—a—fz; and ﬁ,— is the expression (1.34) evaluated at the MLE

estimates. By the law of iterated expectations, E(TE;) = E exp(—wu;). However, for

16



the calculation of MSE we average the squared deviations of ﬁi for TE; = exp(—u;),
not from E exp(—u;). The mean, standard deviation and MSE for ﬁ,- are calculated
by averaging across observations (¢ = 1,---,N) as well as across replications. We
also report the correlation of ﬁ; and TE;. The is the average across replications of
the correlation coefficient for a given replication.

For the tests, we calculated the proportion of rejections, which is interpreted
as size (if § = 0) or power (if § # 0). The size (or power) is calculated in four
ways. Sizel uses all 10,000 replications. Size2 drops replications in which there was a
numerical failure in the calculation of the WALD or LM statistics, due to outliers in
the estimates. Outliers are defined as || > 16, 6, < 107 or &, > 37, and A < 10~7
or A > 37. Size3 drops observations with negative LM statistics. These may occur
when the maximization algorithm fails to reach the global maximum. Finally, Size4
drops any replication dropped by either the Size2 or the Size3 calculation.

We also report the mean and standard deviations of the test statistics. This
calculation was done over the same set of replications used to calculated Size4.

Many of the replications discarded in Size2 and Size4 are ones in which the variance
parameters (ag and A\?) and § are poorly estimated. Very small values of A2 tended
to go with very large values of 4, as the likelihood calculation seemed to try to
accommodate the presence of the one-sided error exp(dz;) - u; by balancing a small
variance of u] with a large value of exp(dz;). In these cases the variance of 4 is also
hard to calculate, and it is just not clear whether or not they constitute evidence
against the null that § = 0. Dropping these cases primarily reduces the number of
rejections for the WALD tests. However, except for a few parameter values (e.g. very

large 03 ), not enough replications were dropped to make much difference.
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1.6 Simulation Results: Size

In this section, we investigate the size of the tests. Therefore all of the cases considered
have 6 = 0 so that the null hypothesis is true. All of the tests except BADGDV,
BADOLS and BADOLS-H (which we will call the BAD tests for short) are valid
asymptotically but we are interested in how substantial their size distortions may be

in finite samples.

1.6.1 Base case

We first consider the base case: a = =6 =0, atz, =A=1,p=0.5,and N = 200.
The results are given in Table 1.1.

The results for the point estimates are fairly unremarkable. There is little or no
evidence of finite-sample bias. The restricted MLE’s are better than the unrestricted
MLE'’s, in terms of standard deviation and MSE, but the differences are quite small.

The sizes of the various tests differ fairly substantially from each other. All of the
BAD tests are indeed bad, in the sense of size substantially less than 5%. However,
some of the asymptotically valid tests also have sizes that are substantially different
from 5%. The WALD tests are substantially undersized. Conversely, the LM-OPG
test rejects too often. The LM-HES, GDV and OLS tests have size fairly close to 5%,
and the OLS-H test is only slightly worse than those three.

1.6.2 Effects of changing o or 3

Changes in a or 8 would not be expected to change the results, and this is true in
the following sense. We did one simulation with the same parameters as in the base
case except that o = 1, and another simulation with the same parameters except that
B = 1. These changes did not change the size of any of the tests, and the only effect

on the point estimates was to change the mean value of & or 3 by one.
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1.6.3 Effects of changing N

Next we considered parameter values that were the same as in the base case, except
that we changed N to N = 500 (Table 1.2) and N = 1000 (Table 1.3).

When we increase N, we reduce the standard deviation and MSE of the various
parameter estimates, as expected. However, it is notable that we do not increase the
precision of the technical efficiency estimates except perhaps trivially. To understand
why, recall that the technical efficiency estimate is the expectation of exp(—u) condi-
tional on (v — u), evaluated at the estimated values of the parameters. The variance
of this estimate depends on (i) “intrinsic variability,” by which we mean the variance
of exp(—u) conditional on (v — u), which does not depend on N, and (ii) “sampling
error,” by which we mean the variance of the parameter estimates, which does depend
on N. Apparently even for N = 200 sampling error is quite small relative to intrinsic
variability.

As would be expected, increasing N does not reduce the size distortions of the
BAD tests, but it does improve the asymptotically valid tests. For N = 500 we have
the same pattern of size distortions as we observed for N = 200, but they are much
smaller. Also the various types of numerical failures that distinguish Sizel from Size2,
Size3 and Size4 have largely disappeared. For N = 1000 all of the asymptotically valid
tests have reasonably accurate size; the worst is LM-OPG with size of 5.77%. The
good news in this statement is that the tests behave as they should asymptotically.
The bad news is that N = 1000 would be a very large sample size indeed for the type

of efficiency measurement exercise that is considered here.

1.6.4 Effects of changing p

Now we consider changes in p, the correlation between z and 2. The question of
interest is whether strong correlation between z and z creates difficulties (akin to

multicollinearity) in estimation and whether this affects the tests. In the base case
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we had p = 0.5, and now we keep the rest of the base case parameters but consider
p = —0.5 (Table 1.4), p = 0 (Table 1.5) and p = 0.9 (Table 1.6). We also considered
p =0.25 and p = 0.75, and those results are in a supplementary set of tables.

In terms of the point estimates based on MLE, the value of p makes little difference.
When p = 0.9 the standard deviation and MSE of 8 and 4 do increase, but not by
very much. The value of p does not matter very much for any of the asymptotically
valid tests, and in fact the results for the OLS and OLS-H tests do not change at all.
For the BAD tests, it makes more difference, as asymptotic theory would suggest. For
p = 0 the BAD tests are asymptotically valid, and they have approximately correct

size, while for p = 0.9 the BAD tests have size of nearly zero.

1.6.5 Effects of changing A

Next we consider a change in A, the parameter of exponential distribution of the
one-sided error u°. In Table 1.7 we report the results for A = 3, whereas the base
case had A = 1.

Since the overall error in the model is v — u, where v is normal noise, increasing A
effectively decreases the relative importance of the noise, and should make inference
about u or about the effect of z on u more reliable. Comparing Table 1.7 to Table 1.1,
we see that this is true. With the larger value of A, the sizes of the asymptotically
valid tests (other than GDV) all become closer to 5%. The effects of this change
on the point estimates were less clear, in part because when A = 3 there were more

outliers.

1.6.6 Effects of changing o2

Now we change 03 to 9, as opposed to its base case value of 1, holding the other
parameters the same. The results are in Table 1.8. This is a pure increase in statistical

noise and it should make all of the estimates and tests worse. Comparing Table 1.8
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to Table 1.1, that turns out to be true for all of the estimates, and for most of the
tests. Among the asymptotically valid tests, the WALD tests and the GDV test are
very seriously affected. They give very few rejections. There is relatively little effect
of this change on the size of the LM-OPG and LM-HES tests or the OLS and OLS-H
tests, however.

It is also notable that the number of replications dropped in the size calculations
is very large with the higher value of 02. The data are close enough to normal that
the maximization process was difficult. As a curiosity we ran the Schmidt and Lin
(1984) test of the hypothesis of no one-sided error, and we could reject this hypothesis
(at the 5% level) only 1,086 times out of 10,000.

1.7 Simulation Results: Power

In this section we investigate the power of the various tests. We therefore set § to
some non-zero value. An immediate problem that arises is that it is not meaningful
to compare the power of tests if their sizes are very different. One possibility is to
consider size-adjusted power, but this has the disadvantage that then we are no longer
investigating the power of a procedure that is feasible outside the simulation setting.
An alternative possibility, which we follow, is to investigate power using a sample size
sufficiently large that size distortions are not a serious problem. Therefore for all of
our simulations in this section we will set N = 1000. Our “base case” is therefore
the set of parameters for the simulations reported in Table 1.3, and we now change
0 from 0 to 0.05, 0.10 and 0.15, where these values were chosen to yield power that
moved through a reasonable part of the range between zero and one. These results
are given in Tables 1.9, 1.10 and 1.11.

Changing é has very little effect on any of the point estimates, other than the

mean of & , and we will not discuss the estimation results further.
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Power increases as 4 increases, for obvious reasons. If we compare the WALD,
LM and GDV tests their powers are quite similar. Fine distinctions are hard to make
because even with N = 1000 their sizes were slightly different in Table 1.3. These
tests are all asymptotically valid, and they all have the same asymptotic local power,
so it is not surprising that their powers should be similar for N = 1000. A more
interesting comparison is between their power and the power of the OLS-based tests
(OLS and OLS-H). The OLS-based tests do not make use of the assumption that
the u; are exponential, and the failure to exploit this fact ought to make them less
powerful than the WALD, LM and GDV tests. This turns out to be true, with the
difference in power being non-trivial but not huge. For example, for § = 0.1, compare
0.51 for OLS to 0.64 for LM-HES.

We also did some additional simulations with p = 0.9, so that the variables z and
z are more highly correlated than in the cases just considered (which had p = 0.5).
Table 1.12 gives the results for § = 0.1 and p = 0.9, and the results for § = 0.05
and 0.15 are in our supplemental set of tables. Comparing Table 1.12 to Table 1.10,
we can see that the higher value of p results in substantially lower powers for all of
the tests. Among the asymptotically valid tests, the loss in power is much larger for
the OLS-based tests than for the WALD, LM or GDV tests. These differences are
certainly non-trivial. For example, the power of the LM-HES test changes from 0.64
to 0.48 when p changes from 0.5 to 0.9, while the power of the OLS test changes from
0.51 to 0.17.

The low power of the OLS-based tests occurs because of multicollinearity in the
OLS regression when = and 2 are highly correlated. The coefficient of z is poorly
estimated and it is hard to reject the hypothesis that it is zero. The MLE-based tests
do a better job of exploiting the nonlinearity of the relationship between y, z and 2
and suffer less when = and z are highly correlated. How much this matters, in an

empirical setting, obviously will depend on how different the variables in 2z are from
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those in z.

Finally, we did some simulations in which the tests are exactly as above, and
are therefore based on the assumption that the true scaling function is exp(dz;),
when in fact this is not the true scaling function. For these simulations, we have
u; = ¢(6z,-)(1—<1>(6z,'))‘1u§, where ¢ is the standard normal density, ® is the standard
normal cdf, and u] is exponential with parameter A = 1. So, in the data generating
process, the scaling function is the inverse Mill’s ratio, ¢(6z;)(1 — ®(6z;)) L.

Under the null, § = 0 and u; is exponential with parameter \/m So our tests
based on the exponential scaling function correctly encompass the null, and the only
question is power. For the MLE-based tests, their power properties when the scaling
function is misspecified are certainly not clear. For the OLS-based tests, however, we
saw that the same statistic resulted from the score test principle for any monotonic
differentiable scaling function g(éz;). As a result, we might expect our OLS test to
have better power properties relative to the MLE-based tests when the MLE-based
tests are based on the wrong scaling function.

Table 1.13 gives the simulation results with § = 0.1. These simulations have N =
1000, and are based on 2000 replications. The surprising aspect of these results is the
good performance of the MLE-based methods. The parameter estimates look quite
reasonable, despite the misspecification of the model. Similarly the MLE-based tests
are more powerful than the OLS-based tests, despite the arguments of the previous

paragraph. These optimistic results deserve attention in future research.

1.8 Simulation Results: Robustness

In this section we investigate the effects of misspecification of the distribution of the
one-sided error term. Specifically, we will consider the properties of the tests based

on the MLE that assumes an exponential error, when in fact the distribution of u° is
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either truncated normal or gamma.

We note at the outset that this issue does not arise with our OLS-based tests.
These do not rely on any distributional assumptions on the errors, and they are
asymptotically valid for any error distribution with finite variance (so that the central
limit theorem applies).

The MLE-based tests, on the other hand, will generally be invalid when the error
distribution is misspecified. Fundamentally this is simply because the likelihood is
then misspecified. To be more specific, consider the LM test or the GDV test based
on the normal-exponential model, as discussed in Sections 1.2 and 1.3 above. These
fundamentally depend on the quantity szil z;b; where b; is an estimate of b =
E(u;le;) — E(u;), with ¢; = v; — u;. The precise form of b; depends on the assumption
that v; is normal and u; is exponential. If in fact u{ is not exponential, then E(;) # 0
and we cannot expect the test to be valid. A secondary but still relevant issue is that
the asymptotic variance of Eﬁl z;b;, which also figures into the test statistic, also
depends on the distributional assumption for u being correct. See Section 1.2 above.

We emphasize that the lack of robustness of the MLE-based tests to distribu-
tional misspecification is not just a finite-sample issue. This problem persists even
asymptotically.

The lack of validity of the MLE-based tests should show up in simulations as
incorrect size when the null hypothesis is true. The question then is how serious this
problem is. Greene (1990) has argued that the rankings of estimated inefficiencies
are often not sensitive to distributional assumptions on the one-sided error. Also, the
exponential distribution shares same features with other one-sided distributions. The
half-normal distribution, like the exponential, has a mode at zero. The gamma(g, g2)
distribution with g; = 1 is exponential, and for 0 < g; < 1 it has a shape similar to
the exponential.

In the simulations of this section we have a = 8 = § = 0, 62 = 1 and N = 1000.

24



The number of replication is 2000.

1.8.1 Normal-truncated normal

Here the distribution of u; is N(u, 02)*, that is, truncated normal. Table 1.14 gives
our results for the case that u = 0 and 02 = 7 /2. This is the half-normal distribution
with mean equal to one. This choice makes the distribution somewhat comparable
to the exponential distribution with parameter one, as in Table 1.3 above. However,
the truncated normal with ¢ = 0 and 62 = n/2 has variance equal to 0.57. (A
truncated normal, unlike an exponential does not have its mean equal to its standard
deviation.) We also considered three other cases: (i) u = 0, 62 = n/(m — 2), for which
the variance equals one but the mean equals 1.32; (ii) g = 0, 0% = 1; (iii) p = 1,
02 = 1. The results for these three cases are in our supplemental set of tables.

In Table 1.14 we see that the OLS-based tests appear to have proper size, while the
MLE-based tests exhibit significant size distortions. For MLE there are also consid-
erable biases in the parameter estimates. The WALD and GDV tests are undersized,
while the LM-OPG test rejects too often. This same pattern occurs for all four cases
that we considered but the extent of the size distortions varied considerably over
choices of 4 and o2.

Comparing Table 1.14 to Table 1.3, we also see that there are many more repli-
cations dropped when the distribution is misspecified. Obviously the data do not

always fit the likelihood well and numerical problems occur.

1.8.2 Normal-gamma

Now the distribution of u; is gamma(gj, g2). The results in Table 1.15 and Table
1.16 are similar to those in Table 1.14 for the normal-truncated normal case. The
OLS-based tests have more or less proper size, while the MLE-based tests do not. The

LM-OPG test rejects too often, and this is true across all of our (g1, g2) values. The
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WALD, LM-HES and GDV tests also show significant size distortions, and sometimes
reject too seldom and sometimes too often, depending the value of (g1, g2). The MLE
parameter estimates show clear biases. However, unlike the truncated normal case,
not many replications were dropped here. The exponential model fits the data better
in the normal-gamma case than in the normal-truncated normal case. Interestingly,
that does not mean that it leads to more robust inference in the former case than in

the latter.

1.9 Concluding Remarks

In this chapter we have considered tests of the hypothesis that observable firm char-
acteristics do not affect technical efficiency. We do this in the context of a specific
model in which the one-sided errors are exponential. Under the null they are i.i.d.
while under the alternative they are scaled by a function exp(zz’-é), where z; are the
firm characteristics whose influence we are testing.

In this context we can estimate the model by MLE and test whether § = 0, which
is the WALD test. We can also use an LM test. We show that a simple two-step test
is not valid. (Here step one is to estimate technical efficiency for each firm. Step two
is to regress these estimates on 2; and test whether the coefficients are zero.) This
test can be made valid by correcting the asymptotic variance matrix for the second-
step estimates. This correction is distribution-specific. When technical efficiency is
exponential, we show that the corrected two-step test is asymptotically equivalent to
the LM test.

We can also derive a valid test from the score test principle applied to the nonlinear
least squares problem. This takes the form of an F-test of the significance of the
coefficients of z; in an OLS regression of output on 2; and the inputs. This test does

not require a distributional assumption and it would be the same for any scaling
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function of the form g(2}d), where g is monotonic and differentiable at zero. The
OLS-based test therefore has good robustness properties, but it may be expected to
have lower power than the MLE-based tests when the model for MLE is correctly
specified.

We perform a number of simulations to investigate the size and power properties of
the tests we have suggested. The OLS-based tests do turn out to have good robustness
properties and the MLE-based tests do turn out to be more powerful when the model
is correctly specified. The loss in power for the OLS-based tests is especially large
when the inputs and the firm characteristics 2; are highly correlated. The MLE-based
tests show significant differences among themselves when the sample size is not very
large. The WALD tests reject too seldom and the LM-OPG test rejects too often.
The LM test using the Hessian (LM-HES) and the corrected two-step test (GDV)
are generally most reliable. The MLE-based tests perform reasonably well if the
scaling function is misspecified but they do not have proper size if the distribution of
inefficiency is misspecified.

These results provide some guidance for empirical work. If the researcher’s interest
is not in the inefficiencies themselves, but just in testing whether they depend on firm
characteristics (like firm size, state versus private ownership, etc.) then the OLS-based
tests would be natural, unless these firm characteristics are very strongly correlated
with the inputs. However, if the researcher is going to estimate firm-level efficiencies
in any case, then a distributional assumption will ultimately be needed, and MLE-
based tests may as well be used. Among these tests the LM test using the Hessian or

the corrected two-step test would be preferred.
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1.10 Output Tables

Table 1.1: (BASECASE) a = 8 =6 =0,02 =X =1,p = 05 N = 200

[E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE 0.0001 0.1157 0.0134

-0.0342 0.1874 0.0363

0.0000 0.1004 0.0101

1.0072 0.2279 0.0520

0.9594 0.3524 0.1258

0.5148 0.1769 0.0555 0.6131

-0.0214 0.1817 0.0335

0.0001 0.0932 0.0087

0.9985 0.2240 0.0502

0.9919 0.3461 0.1199

0.5099 0.1767 0.0547 0.6194

-1.0004 0.0994 0.0099

(OLS on y; = n + Bz; + w;: 0.0007 0.1004 0.0101

n=-1,8=0,02 =2) 2.0019 0.2691 0.0724
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0211 | 0.0213 | 0.0214 | 0.0215 | -0.0027 0.8669
WALD-HES | 0.0298 | 0.0300 | 0.0296 | 0.0297 | -0.0045 0.9345
LM-OPG 0.0788 | 0.0783 | 0.0766 | 0.0763 | 1.2115 1.7972

Restricted MLE (6 = 0)

Restricted NLLS

gqt:fmaéa ;12 >;;§,L,‘m: QA t'?j) >;;¢ L, Q0 O

LM-HES 0.0523 | 0.0518 | 0.0515 | 0.0509 | 1.0561 3.3408*
GDV 0.0466 | 0.0467 | 0.0471 | 0.0471 | 1.0067 1.3462
BADGDV 0.0363 | 0.0355 | 0.0350 | 0.0344 | 0.8564 1.2163
OLS 0.0495 | 0.0490 | 0.0481 | 0.0475 | -0.0011 0.9973
OLS-H 0.0575 | 0.0572 | 0.0561 | 0.0558 | -0.0003 1.0216

BADOLS 0.0237 | 0.0235 | 0.0233 | 0.0230 | -0.0010 0.8634
BADOLS-H | 0.0266 | 0.0265 | 0.0262 | 0.0260 | -0.0014 0.8806
Rep. dropped 0 73 121 171
* due to outliers
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Table 1.2: (Change of N) N =500, a = 8 =6 =0,02=XA=1,p =05

[E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE ) 0.0000 0.0649 0.0042

-0.0125 0.1108 0.0124

-0.0005 0.0627 0.0039

1.0024 0.1405 0.0197

0.9849 0.2171 0.0473

0.5050 0.1790 0.0522 0.6215

-0.0074 0.1089 0.0119

-0.0005 0.0583 0.0034

0.9986 0.1390 0.0193

0.9985 0.2146 0.0461

0.5032 0.1792 0.0520 0.6227

-1.0007 0.0632 0.0040

(OLS on y; = n+ Bz; + w;: -0.0005 0.0629 0.0040

n=-1,8= 0,0?0 =2) 2.0023 0.1681 0.0283
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0361 | 0.0361 | 0.0361 | 0.0361 | -0.0005 0.9386
WALD-HES | 0.0434 | 0.0434 | 0.0434 | 0.0434 | 0.0003 0.9741
LM-OPG 0.0611 | 0.0611 | 0.0611 | 0.0612 | 1.0967 1.5831

Restricted MLE (4 = 0)

Restricted NLLS

S J Nt el ) B e -

LM-HES 0.0503 | 0.0503 | 0.0502 | 0.0502 | 0.9876 1.4005
GDV 0.0502 | 0.0502 | 0.0502 | 0.0502 | 1.0127 1.3969
BADGDV 0.0355 | 0.0355 | 0.0355 | 0.0355 | 0.8613 1.2250
OLS 0.0513 | 0.0513 | 0.0513 | 0.0513 | 0.0005 0.9941
OLS-H 0.0538 | 0.0538 | 0.0538 | 0.0538 | 0.0008 1.0043

BADOLS 0.0245 | 0.0245 | 0.0245 | 0.0245 | 0.0003 0.8604
BADOLS-H | 0.0254 | 0.0254 | 0.0254 | 0.0254 | 0.0005 0.8681
Rep.dropped 0 2 8 9
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Table 1.3: (Change of N) N = 1000, a = 8 =6 = 0,02 = A =1,p =05
[E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE 6 0.0006 0.0450 0.0020
& -0.0070 0.0757 0.0058
B 0.0007 0.0447 0.0020
&2 1.0023 0.0965 0.0093
22 0.9907 0.1509 0.0228
TE 0.5026 0.1796 0.0514 0.6230
Restricted MLE (6 = 0) & -0.0046 0.0750 0.0057
B 0.0005 0.0419 0.0018
52 1.0006 0.0961 0.0092
22 0.9971 0.1499 0.0225
TE 0.5018 0.1796 0.0514 0.6235
Restricted NLLS 7 -1.0004 0.0448 0.0020
(OLS on y; = n + Bz; + w;: B 0.0005 0.0449 0.0020
n=-1,8=0,02 =2) 52 2.0001 0.1196 0.0143
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0448 | 0.0448 | 0.0448 | 0.0448 | 0.0141 0.9748
WALD-HES | 0.0485 | 0.0485 | 0.0485 | 0.0485 | 0.0146 0.9916
LM-OPG 0.0577 | 0.0577 | 0.0577 | 0.0577 | 1.0545 1.5021
LM-HES 0.0513 | 0.0513 | 0.0513 | 0.0513 | 1.0006 1.4092
GDV 0.0522 | 0.0522 | 0.0522 | 0.0522 | 1.0136 1.4101
BADGDV 0.0377 | 0.0377 | 0.0377 | 0.0377 | 0.8789 1.2469
OLS 0.0490 | 0.0490 | 0.0490 | 0.0490 | -0.0143 0.9970
OLS-H 0.0488 | 0.0488 | 0.0488 | 0.0488 | -0.0145 1.0008
BADOLS 0.0243 | 0.0243 | 0.0243 | 0.0243 | -0.0124 0.8636
BADOLS-H | 0.0253 | 0.0253 | 0.0253 | 0.0253 | -0.0123 0.8661
Rep. dropped 0 0 1
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Table 1.4: (Change of p) p = —0.5, «

[E(exp(—u)) = 0.5232]

ESTIMATION METHODS | Estimates | Mean  s.d.  MSE  Corr
MLE 6 0.0012 0.1157 0.0134
& -0.0338 0.1859 0.0357
B -0.0003 0.0994 0.0099
52 1.0071 0.2273 0.0517
22 0.9596 0.3518 0.1254
TE 0.5147 0.1769 0.0554 0.6133
Restricted MLE (§ = 0) & -0.0210 0.1808 0.0331
B 0.0001 0.0933 0.0087
52 0.9984 0.2244 0.0504
22 0.9922 0.3458 0.1196
TE 0.5098 0.1767 0.0546 0.6194
NLLS under the null 7l  -1.0002 0.0995 0.0099
(OLS on y; = n + Bz; + w;: B 0.0008 0.1004 0.0101
n=-1,8=002 =2) 52 2.0023 0.2689 0.0723
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0175 | 0.0176 | 0.0177 | 0.0178 | 0.0092 0.8595
WALD-HES | 0.0302 | 0.0304 | 0.0302 | 0.0304 | 0.0093 0.9313
LM-OPG 0.0776 | 0.0773 | 0.0758 | 0.0756 | 1.2179 1.7921
LM-HES 0.0515 | 0.0503 | 0.0515 | 0.0502 | 1.0036 1.4506
GDV 0.0467 | 0.0470 | 0.0472 | 0.0474 | 1.0081 1.3418
BADGDV 0.0367 | 0.0360 | 0.0355 | 0.0349 | 0.8546 1.2196
OLS 0.0495 | 0.0490 | 0.0481 [ 0.0477 | -0.0007 0.9973
OLS-H 0.0575 | 0.0571 | 0.0560 | 0.0557 | 0.0003 1.0217
BADOLS 0.0239 | 0.0236 | 0.0234 | 0.0231 | -0.0002 0.8629
BADOLS-H | 0.0283 | 0.0282 | 0.0276 | 0.0275 | 0.0013 0.8808
Rep. dropped 0 82 133 184
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Table 1.5: (Change of p) p=0,a=8=6=0,02=A=1, N =200 [E(exp(—u)) =
0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE ) 0.0007 0.1062 0.0113
-0.0339 0.1858 0.0357
0.0001 0.0934 0.0087
1.0072 0.2271 0.0516
0.9605 0.3509 0.1247
0.5145 0.1767 0.0556 0.6150
-0.0214 0.1812 0.0333
0.0001 0.0933 0.0087
0.9987 0.2243 0.0503
0.9916 0.3459 0.1197
0.5099 0.1767 0.0546 0.6194
Restricted NLLS -1.0003 0.0994 0.0099
(OLS on y; = n + Bz; + w;: 0.0008 0.1004 0.0101
n=-1,8=0,02 =2) 52 2.0020 0.2690 0.0723
STATISTICS | Sizel | Size2 | Size3 | Sized | Mean s.d.
WALD-OPG | 0.0207 | 0.0208 | 0.0209 | 0.0210 | 0.0034 0.8710
WALD-HES | 0.0293 | 0.0295 | 0.0293 | 0.0295 | 0.0019 0.9376

Restricted MLE (§ = 0)

i Ejz XL Rt ;]’) X R o

LM-OPG 0.0770 | 0.0763 | 0.0754 | 0.0748 | 1.2030 1.7534
LM-HES 0.0515 | 0.0502 | 0.0514 | 0.0500 | 1.0164 1.6641
GDV 0.0452 | 0.0453 | 0.0455 | 0.0455 | 1.0128 1.3481
BADGDV 0.0517 | 0.0507 | 0.0502 | 0.0492 | 0.9824 1.3752
OLS 0.0495 | 0.0485 | 0.0483 | 0.0474 | -0.0013 0.9963
OLS-H 0.0575 | 0.0568 | 0.0563 | 0.0556 | -0.0002 1.0211

BADOLS 0.0499 | 0.0489 | 0.0487 | 0.0478 | -0.0013 0.9963
BADOLS-H | 0.0557 | 0.0550 | 0.0545 | 0.0539 | -0.0002 1.0159
Rep. dropped 0 70 118 162
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Table 1.6: (Changeof p) p=0.9,a=8=6=0,02 = A =1, N = 200 [E(exp(-u)) =
0.5232]

ESTIMATION METHODS | Estimates [ Mean s.d. MSE  Corr
MLE 4 -0.0012 0.1414 0.0200

& -0.0321 0.1876 0.0362

B -0.0008 0.1217 0.0148

52 1.0051 0.2280 0.0520

A2 0.9593 0.3544 0.1272

TE 0.5149 0.1781 0.0560 0.6079
Restricted MLE (4 = 0) & -0.0200 0.1812 0.0332

B 0.0000 0.0934 0.0087

52 0.9970 0.2234 0.0499

22 0.9946 0.3459 0.1196

TE 0.5094 0.1769 0.0546 0.6195
Restricted NLLS ] -1.0004 0.0995 0.0099
(OLS on y; = n + Bz; + w;: B 0.0007 0.1005 0.0101
n=-1,8=0,0% =2) 52 2.0030 0.2695 0.0726

STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.

WALD-OPG | 0.0188 | 0.0191 | 0.0192 | 0.0195 | -0.0132 0.8417
WALD-HES | 0.0314 | 0.0319 | 0.0316 | 0.0320 | -0.0149 0.9290
LM-OPG 0.0820 | 0.0815 | 0.0807 | 0.0803 | 1.2490 1.8683

LM-HES 0.0561 | 0.0558 | 0.0558 | 0.0552 | 1.0876 6.7456*
GDV 0.0405 | 0.0408 | 0.0414 | 0.0415 | 0.9791  1.2808
BADGDV 0.0108 | 0.0106 | 0.0109 | 0.0108 | 0.5739  0.8467
OLS 0.0495 | 0.0491 | 0.0486 | 0.0484 | 0.0027 0.9991
OLS-H 0.0575 | 0.0571 | 0.0565 | 0.0562 | 0.0037 1.0230

BADOLS 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0015 0.4345
BADOLS-H | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0008 0.4441
Rep. dropped 0 171 217 346
* due to outliers
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Table 1.7: (Change of ) A =3, a =8 =8 =0,02 =1, p = 05 N = 200

[E(exp(—u)) = 0.1095]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE 0.0000 0.0768 0.0059

-0.0183 0.2100 0.0445

-0.0010 0.1462 0.0214

0.9873 0.3385 0.1147

8.9144 1.7316 3.0054

0.2531 0.2234 0.0330 0.7736

-0.0122 0.2502 0.0627

-0.0010 0.1411 0.0199

0.9884 0.9388 0.8814

9.0074 1.7342 3.0072

0.2521 0.2234 0.0337 0.7740

-2.9982 0.2227 0.0496

on y; = n+ fz; + w;: 0.0003 0.2224 0.0495

n=-3,8=002 =10 9.9914 1.8539 3.4365
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0397 | 0.0402 | 0.0397 | 0.0402 | 0.0001 0.9366
WALD-HES | 0.0422 | 0.0427 | 0.0422 | 0.0427 | -0.0002 0.9757

Restricted MLE (6 = 0)

Restricted NLLS

SQ.:;’Qan ;]z >;,'§,L,m. Q Ej) >;;eq.:>‘m> Q> O

LM-OPG 0.0629 | 0.0580 | 0.0629 | 0.0580 | 1.0675 1.4782
LM-HES 0.0493 | 0.0440 | 0.0493 | 0.0441 | 0.9573 1.3053
GDV 0.0545 | 0.0499 | 0.0545 | 0.0499 | 1.0083 1.3753
BADGDV 0.0443 | 0.0386 | 0.0443 | 0.0386 | 0.8949 1.2349
OLS 0.0503 | 0.0440 | 0.0503 | 0.0441 | -0.0041 0.9753
OLS-H 0.0565 | 0.0513 | 0.0565 | 0.0513 | -0.0027 1.0011

BADOLS 0.0226 | 0.0183 | 0.0226 | 0.0183 | -0.0034 0.8449
BADOLS-H | 0.0259 | 0.0228 | 0.0259 | 0.0228 | -0.0030 0.8664
Rep. dropped 0 124 1 125
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Table 1.8: (Change of 0,2,) a,z, =9 a=0=6d=0,A=1p=05 N =200

[E(exp(—u)) = 0.5100]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE ) 0.0012 0.2333 0.0544

0.0486 0.5434 0.2977

0.0035 0.2494 0.0622

85074 1.3725 2.1263

1.3239 1.1434 1.4120

0.5221 0.0982 0.1002 0.2302

0.0713 0.5544 0.3124

0.0036 0.2262 0.0512

8.5207 1.4162 2.2351

1.4226 1.1787 1.5676

0.5138 0.0819 0.0965 0.2771

-1.0015 0.2221 0.0493

(OLS on y; = n + Bz; + w;: 0.0040 0.2254 0.0508

n=-1,8=0, 012” = 10) 10.0157 1.0331 1.0675
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0011 | 0.0014 | 0.0021 | 0.0024 | -0.0040 0.5877
WALD-HES | 0.0041 | 0.0054 | 0.0040 | 0.0045 | -0.0067 0.7009

Restricted MLE (6 = 0)

Restricted NLLS

b T3 gzx;&,m. R g) X, R >

LM-OPG 0.0792 | 0.0834 | 0.0506 | 0.0531 | 0.9325 1.4464
LM-HES 0.0506 | 0.0530 | 0.0674 | 0.0634 | 1.4862 21.7190*
GDV 0.0177 | 0.0160 | 0.0107 { 0.0114 | 0.6292  0.8579
BADGDV 0.0317 | 0.0305 | 0.0143 | 0.0133 | 0.5772  0.8821
OLS 0.0520 | 0.0503 | 0.0326 { 0.0323 | 0.0122  0.8829
OLS-H 0.0576 | 0.0558 | 0.0369 | 0.0363 | 0.0148  0.9078

BADOLS 0.0241 | 0.0234 | 0.0128 { 0.0123 | 0.0107 0.7641
BADOLS-H | 0.0287 | 0.0286 | 0.0162 | 0.0163 | 0.0115  0.7844
Rep. dropped 0 2352 | 4689 | 5349
* due to outliers
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Table 1.9: (Change of §) § = 0.05, a = 8 = 0, 173 =A=1, p=05 N = 1000
[E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates | Mean s.d. MSE  Corr
MLE 5 0.0520 0.0450 0.0020
& -0.0048 0.0753 0.0057
B 0.0023 0.0442 0.0020
52 1.0004 0.0979 0.0096
A2 0.9935 0.1507 0.0227
TE 0.5023 0.1802 0.0514 0.6240
Restricted MLE (6 = 0) & 0.0006 0.0743  0.0055
B -0.0156 0.0413 0.0020
52 0.9964 0.0971 0.0094
A2 1.0087 0.1497 0.0225
TE 0.5001 0.1803 0.0514 0.6240
Restricted NLLS (OLS on 7i -1.0009 0.0466 0.0022
yi = n+ Bz + w;: n=—1.0013, B -0.0238 0.0447 0.0020
B = —0.0250, 02 = 2.0075) 52 2.0091 0.1197 0.0143
STATISTICS |Power1 Power2 | Power3 | Power4 | Mean s.d.
WALD-OPG | 0.1960 | 0.1960 | 0.1962 | 0.1962 | 1.1269 0.9574
WALD-HES | 0.2035 | 0.2035 | 0.2037 | 0.2037 | 1.1489 0.9714
LM-OPG 0.2270 | 0.2270 | 0.2272 | 0.2272 | 2.4506 2.7265
LM-HES 0.2090 | 0.2090 | 0.2092 | 0.2092 | 2.3278 2.5553
GDV 0.2115 | 0.2115 | 0.2117 | 0.2117 | 2.3049 2.4668
BADGDV 0.1710 | 0.1710 | 0.1712 | 0.1712 | 2.0401 2.2455
OLS 0.1690 | 0.1690 | 0.1687 | 0.1687 | -0.9800 1.0053
OLS-H 0.1670 | 0.1670 | 0.1672 | 0.1672 | -0.9824 1.0085
BADOLS 0.1000 | 0.1000 | 0.1001 | 0.1001 |-0.8492 0.8713
BADOLS-H | 0.0985 | 0.0985 | 0.0986 | 0.0986 | -0.8496 0.8727
Rep. dropped 0 0 2 2

The number of replication is 2000.
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Table 1.10: (Change of §) § = 0.1, a = 8 =0, 03 =A=1,p=05 N = 1000
[E(exp(—u)) = 0.5232]
ESTIMATION METHODS Estimates | Mean s.d. MSE  Corr
MLE 0.1024 0.0456 0.0021

-0.0047 0.0754 0.0057

0.0022 0.0441 0.0020

1.0003 0.0979 0.0096

0.9935 0.1517 0.0230

0.5023 0.1814 0.0513 0.6268

0.0092 0.0739 0.0055

-0.0329 0.0414 0.0028

0.9901 0.0970 0.0095

1.0336 0.1515 0.0241

0.4973 0.1817 0.0515 0.6251

Restricted NLLS (OLS on -1.0047 0.0467 0.0022

yi = n+ Bz; + w;: n = —1.0050, -0.0490 0.0449 0.0020

B = —0.0503, 02, = 2.0304) 52 2.0305 0.1228 0.0151
STATISTICS | Powerl | Power2 | Power3 | Power4 | Mean s.d.
WALD-OPG | 0.6115 | 0.6118 | 0.6115 | 0.6118 | 2.1879 0.9419
WALD-HES | 0.6350 | 0.6353 | 0.6350 | 0.6353 | 2.2309 0.9407

Restricted MLE (6 = 0)

e ;2 ST R g)&g&,m. i

LM-OPG 0.6580 | 0.6578 | 0.6580 | 0.6578 | 6.4945 4.8214
LM-HES 0.6410 | 0.6408 | 0.6410 | 0.6408 | 6.1642 4.5083
GDV 0.6425 | 0.6423 | 0.6425 | 0.6423 | 5.8979 4.1321
BADGDV 0.5915 | 0.5913 | 0.5915 | 0.5913 | 5.4355 4.0116
OLS 0.5105 | 0.5103 | 0.5105 | 0.5103 |-1.9417 1.0116
OLS-H 0.5060 | 0.5058 | 0.5060 | 0.5058 |-1.9357 1.0040

BADOLS 0.3770 | 0.3767 | 0.3770 | 0.3767 |-1.6816 0.8769
BADOLS-H | 0.3685 | 0.3682 | 0.3685 | 0.3682 |-1.6696 0.8681
Rep. dropped 0 1 0 1

The number of replication is 2000.
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Table 1.11: (Change of §) § = 0.15, a = 8 =0, 02 = A = 1, p = 0.5, N = 1000
[E(exp(—u)) = 0.5232]
ESTIMATION METHODS Estimates | Mean s.d. MSE  Corr
MLE 0.1528 0.0465 0.0022
-0.0046 0.0756 0.0057
0.0021 0.0440 0.0019
1.0000 0.0979 0.0096
0.9936 0.1532 0.0235
0.5023 0.1834 0.0511 0.6314
0.0228 0.0739 0.0060
-0.0498 0.0415 0.0042
0.9802 0.0968 0.0098
1.0744 0.1556 0.0297
0.4925 0.1837 0.0516 0.6269
Restricted NLLS (OLS on -1.0110 0.0471 0.0022
i =+ Bzi +wi: n=—1.0113, 20.0746 0.0454 0.0021
B = —0.0758, 02 = 2.0693) 52 | 20666 0.1282 0.0164

Restricted MLE (6 = 0)

e ;3]] S, ;) 3R, @ o

STATISTICS | Powerl | Power2 [ Power3 [ Power4 [ Mean s.d.
WALD-OPG | 0.9100 | 0.9114 | 0.9104 | 0.9118 | 3.1972 0.9177
WALD-HES | 0.9255 | 0.9269 | 0.9259 | 0.9273 | 3.2605 0.8930
LM-OPG 0.9350 | 0.9349 | 0.9354 | 0.9353 | 13.1080 7.0740
LM-HES 0.9310 | 0.9309 | 0.9314 | 0.9313 | 12.4001 6.5219
GDV 0.9280 | 0.9279 | 0.9284 | 0.9283 | 11.3511 5.6386
BADGDV 0.9065 | 0.9064 | 0.9069 | 0.9068 | 11.0093 5.9053
OLS 0.8220 | 0.8217 | 0.8228 | 0.8226 | -2.9061 1.0167
OLS-H 0.8230 | 0.8227 | 0.8238 | 0.8236 | -2.8711 0.9920
BADOLS 0.7425 | 0.7421 | 0.7432 | 0.7429 | -2.5151 0.8813
BADOLS-H | 0.7300 | 0.7296 | 0.7307 | 0.7303 | -2.4673 0.8566
Rep. dropped 0 3 2 5

The number of replication is 2000.
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Table 1.12: (Change of § and p) 6 =0.1, p=0.9,a = =0, 02 = A =1, N = 1000
[E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates | Mean s.d. MSE  Corr
MLE 5 0.1032 0.0541 0.0029
& -0.0048 0.0757 0.0058
B 0.0032 0.0531 0.0028
52 1.0007  0.0980 0.0096
A2 0.9926 0.1525 0.0233
TE 0.5024 0.1815 0.0514 0.6261
Restricted MLE (3 = 0) & 0.0052  0.0747 0.0056
B -0.0607 0.0416 0.0054
52 0.9932  0.0975 0.0095
A2 1.0257 0.1520 0.0238
TE 0.4983 0.1811 0.0516 0.6235
Restricted NLLS (OLS on 7 -1.0047 0.0468 0.0022
vi =1+ Bx; +win = —1.0050, 8 -0.0890 0.0452 0.0020
B = —0.0905, 02, = 2.0304 ) 52, 2.0252  0.1220 0.0149
STATISTICS | Powerl | Power2 | Power3 | Powerd | Mean s.d.
WALD-OPG | 0.4405 | 0.4429 | 0.4405 | 0.4420 | 1.8212 0.9378
WALD-HES | 0.4655 | 0.4681 | 0.4655 | 0.4681 | 1.8627 0.9343
LM-OPG 0.4915 | 0.4902 | 0.4915 | 0.4902 | 4.8166 4.0995
LM-HES 0.4835 | 0.4816 | 0.4835 | 0.4816 | 4.5987 3.8783
GDV 0.4670 | 0.4656 | 0.4670 | 0.4656 | 4.2959 3.4242
BADGDV 0.2675 | 0.2680 | 0.2675 | 0.2680 | 2.7913 2.3952
OLS 0.1715 | 0.1699 | 0.1715 | 0.1699 | -0.9813 1.0056
OLS-H 0.1705 | 0.1689 | 0.1705 | 0.1689 |-0.9835 1.0083
BADOLS 0.0000 | 0.0000 | 0.0000 | 0.0000 |-0.4280 0.4382
BADOLS-H | 0.0000 | 0.0000 | 0.0000 | 0.0000 |-0.4247 0.4355
Rep. dropped 0 11 0 11

The number of replication is 2000.
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Table 1.13: (Change of scaling functions to ¢(d2;)/(1 — ®(62;))) 6 =0.1, a =5 =0,
62=XA=1,p=05 N = 1000 [E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE  Corr
MLE 0.0827 0.0514 0.0029
-0.0065 0.0783 0.0062
0.0021 0.0418 0.0018
1.0012 0.0938 0.0088
0.6278 0.1206 0.1531
0.5600 0.1574 0.0627 0.5509
0.0043 0.0764 0.0059
-0.0230 0.0389 0.0020
0.9939 0.0928 0.0086
0.6503 0.1187 0.1364
0.5557 0.1577 0.0623 0.5485
Restricted NLLS -0.7987 0.0420 0.0423
(OLS on y; = 9+ Bz; + w;: -0.0305 0.0406 0.0026
n=-1,8=0,02=2) 52 1.6471 0.0897 0.1550
STATISTICS | Power4 | Mean s.d.
WALD-OPG | 0.3255 | 1.5395 0.9178
WALD-HES | 0.3540 | 1.5824 0.9317

Restricted MLE (6 = 0)

w3 ] B w2 ) R o

LM-OPG 0.4045 | 3.8867 3.6256
LM-HES 0.3740 | 3.6723 3.6913
GDV 0.3745 | 3.4652 3.0224
BADGDV 0.3170 | 3.1357 2.9020
OLS 0.2825 | -1.3685 1.0079
OLS-H 0.2855 | -1.3710 1.0093
BADOLS 0.1855 |-1.1856 0.8737

BADOLS-H 0.1885 |-1.1848 0.8731
Rep. dropped 0
The number of replication is 2000.
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Table 1.14: (Change of the distribution of u{ to N(0,7/2)*) a = 8 = 4§ =
02=X=1,p=05 N =1000 [E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean sd.  MSE  Corr
MLE é -0.0001 0.0746 0.0056
G -0.4192 0.1093 0.1876
B 0.0015 0.0423 0.0018
b2 1.2244 0.1108 0.0626
22 0.3455 0.1110 0.4407
TE 0.6359 0.1128 0.0834 0.5383
Restricted MLE (6 = 0) a -0.4106 0.1087 0.1804
A 0.0013 0.0383 0.0015
52 1.2185 0.1118 0.0602
A2 0.3569 0.1148 0.4268
TE 0.6320 0.1131 0.0815 0.5465
Restricted NLLS 7 -0.9993 0.0396 0.0016
(OLS on y; = n + Br; + w;: B 0.0015 0.0386 0.0015
n=-1,=0,02=2) 52, 1.5730 0.0717 0.1874
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0210 | 0.0213 | 0.0221 | 0.0223 | -0.0005 0.8788
WALD-HES | 0.0270 | 0.0274 | 0.0285 | 0.0287 | -0.0003 0.9174
LM-OPG 0.0635 | 0.0635 | 0.0622 | 0.0622 | 1.0649 1.5782
LM-HES 0.0635 | 0.0620 | 0.0611 | 0.0595 | 1.0941 2.0656
GDV 0.0370 | 0.0371 | 0.0390 | 0.0388 | 0.9229 1.2642
BADGDV 0.0320 | 0.0320 | 0.0311 | 0.0308 | 0.8265 1.2130
OLS 0.0500 | 0.0503 | 0.0496 | 0.0494 | 0.0159 0.9915
OLS-H 0.0515 | 0.0518 | 0.0506 | 0.0505 | 0.0163 0.9963
BADOLS 0.0250 | 0.0249 | 0.0253 | 0.0250 | 0.0142 0.8591
BADOLS-H | 0.0250 | 0.0249 | 0.0248 | 0.0244 | 0.0145 0.8626
Rep. dropped 0 32 103 118

The number of replication is 2000.
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Table 1.15: (Change of the distribution of u] to gamma(0.5,2)) a = f = § = 0,

02=)=1,p=05 N = 1000 [E(exp(—u)) = 0.5232]

ESTIMATION METHODS [ Estimates | Mean sd.  MSE  Corr
MLE 6 0.0003 0.0413 0.0017
& 0.4262 0.0651 0.1859
B 0.0010 0.0444 0.0020
b2 0.7906 0.0825 0.0507
A2 2.0376 0.2222 1.1259
TE 0.4149 0.2146 0.0886 0.6763
Restricted MLE (6 = 0) F? 0.4276 0.0658 0.1871
B 0.0010 0.0422 0.0018
52 0.7897 0.0831 0.0511
A2 2.0450 0.2243 1.1424
TE 0.4144 0.2146 0.0888 0.6763
Restricted NLLS ] -1.0003 0.0550 0.0030
(OLS on y; = n + Bz; + w;: B 0.0013 0.0541 0.0029
n=-1,8=0,02=2) 52 2.9983 0.2504 1.0594
STATISTICS | Size4 | Mean s.d.
WALD-OPG | 0.0860 | 0.0059 1.1330
WALD-HES | 0.0765 | 0.0069 1.0860
LM-OPG 0.0630 | 1.1103 1.5402
LM-HES 0.0765 | 1.1829 1.6295
GDV 0.0585 | 1.0788 1.4734
BADGDV 0.0495 | 0.9787 1.3557
OLS 0.0560 | -0.0140 1.0078
OLS-H 0.0540 | -0.0143 1.0091
BADOLS 0.0235 | -0.0120 0.8725
BADOLS-H | 0.0230 | -0.0122 0.8722
Rep. dropped 0

The number of replication is 2000.
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Table 1.16: (Change of the distribution of u] to gamma(2,0.5)) a = § = ¢
02=X=1, p=05 N =1000 [E(exp(—u)) = 0.5232]

ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE 5 0.0013 0.0639 0.0041
& -0.3772 0.0976 0.1518
B 0.0006 0.0413 0.0017
&2 1.1015 0.1041 0.0211
22 0.3945 0.1088 0.3785
TE 0.6187 0.1250 0.0703 0.5223
Restricted MLE (6 = 0) & -0.3695 0.0984 0.1462
B 0.0003 0.0379 0.0014
G2 1.0959 0.1050 0.0202
22 0.4058 0.1132 0.3659
TE 0.6154 0.1255 0.0690 0.5263
Restricted NLLS 7 -0.9997 0.0392 0.0015
(OLS on y; = n + Bz; + w;: B 0.0001 0.0385 0.0015
n=-1,8=0,02=2) 52 1.5002 0.0708 0.2548
STATISTICS | Sizel | Size2 | Size3d | Sized Mean s.d.
WALD-OPG | 0.0300 | 0.0301 | 0.0304 | 0.0304 | 0.0204 0.9101
WALD-HES | 0.0320 | 0.0321 | 0.0324 | 0.0325 | 0.0178 0.9430
LM-OPG 0.0640 | 0.0637 | 0.0633 | 0.0634 | 1.0674 1.4957
LM-HES 0.0600 | 0.0591 | 0.0592 | 0.0588 | 1.0155 1.4688
GDV 0.0415 | 0.0411 | 0.0415 | 0.0416 | 0.9545 1.2671
BADGDV 0.0335 | 0.0331 | 0.0329 | 0.0330 | 0.8294 1.1569
OLS 0.0480 | 0.0476 | 0.0471 | 0.0472 | -0.0240 0.9990
OLS-H 0.0500 | 0.0496 | 0.0491 | 0.0492 | -0.0236 1.0057
BADOLS 0.0235 | 0.0231 | 0.0228 | 0.0228 | -0.0211 0.8648
BADOLS-H | 0.0245 | 0.0241 | 0.0238 | 0.0238 | -0.0206 0.8694
Rep. dropped 0 5 25 28

The number of replication is 2000.
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1.11 Appendix: LM Test for the Scaled Exponen-
tial Case

Recall that the LM statistic of (1.18) is:
LM = V;1nL(8)'[Z55 — ZsyZ ;5 Zys] ™' Vs InL(6)
1 Y ’ 1 &
== bz | [Zss — T tTys) | = biz
,\; izi | [Lss — Ty yyLys) /\; i (1.35)

1 N . ! /\2 - = =_1s -
- ﬁ;b,-zi [ﬁ (Iaa—IéwIJwIW)]

Now we compare LM with v/ N4/(Var(v/N4))~1v/N4 where the asymptotic dis-
tribution of v/N# is derived in (1.8):

2~
.

2
NI

VNY (Var(VN#)) "1V N4

1 ¥ (1 & - 1 & .
={ — biz — 22! BAT'B | — 22 — biz

\/-Nmzl 141 Ntzzl 1% N; 1 1) \/_J-V-; 1~1

LAY 1 X
= —ng,-zi Al ——ﬁ;b,z, + o0p(1)

i=1 1=1

1 i (1 ﬁ’: , -
= — b;z; — (zib; + Gr;) (2;b; + Gry)

\/]_Vi=1 Ni=l

(1.36)

In the following we prove LM and vN4'(Var(v/N4))~1v/N#% have the same as-
ymptotic distribution by showing that the probability limit of (N~! Z?I:l(z,-b,- +

Gr;)(zib; + Gr;)') is [N¥( 55— §¢I§};11’;5)] where Z° is the limiting information
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matrix as defined in (1.12).

From (1.15), the gradient of the log-likelihood, Vg InL(8) is:

InL
(Qa%‘\ ( TN si6) )
dInL,
5 _ iL1si(8) (1.3
S| [ Zhisied
v
dInL N ()2
\2k ] \ZEis09)
Specifically,
N N X
, ovéi _ € _ Oy _ )
;31(6 ; (/\exp(zfé) Aexp(2[8) A2 exp(2z!6) 1) “
N

M= iR

Zsz(ﬁ) =

(ﬁ _ ;> r
7 i
= : oy Aexp(z;6)

N
Zs.(a2) — Z ( 1 §i " €i
= v K2 A2 exp(22]6) ~ 2xexp(d)ay 203 )’

)

M=k

2
S si(3?) = ( ot « o 1 )
— : Pt 23 exp(3z}6) 2/\3exp(3z£5) 2% exp(42l6)  2X2exp(2:16) )’
(1.38)

where

8 (¢i/0 + 0o/ (A exp(28)))
1 - @ (ej/oy + 0u/(Aexp(2]6)))

&= (1.39)

Let H(0) denote the Hessian, Vg InL(#) = 62 InL(6)/3606', and H denote H(f)
evaluated at § = 8 = (0, 3’, 52, A\2)". We partition H conformably to (1.17) as

. [ Hss Hgy

H= (1.40)

Hys; Hyy
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where H,. stands for the * ,* block of H, evaluated at the estimates, and P =

(A, Uv, )\2)' Specifically, each element of H is:
-~ N -~
Hgs = Z (Var(u,ltsz /\2) 2z},

i=1

Hgs = (Aa2)7! Zvar(uiki)xizz{’
i= 1

= (2262)7! Z ((—— - —) Var(u,le,) + A)
TR (Var(uiles) - 32) 2,
i=1
) N
Hpg =6, (Var(uz'léi) - 5’3) A
i=1

9, = (25%)" IZ ((——§) Var(ufe) - & ) 2

Hyg = (23352)7! Zvar(“ilfi)xg,

ovoy £ oy
i=1
N z
3-2y-1 1
H,o o = (4X°5y) ; 1 ((&—3 - —) Var(u,le,) + /\)

where we use

€ Oy
E(u;le;) = oy <§i - (0_ + W)) )

Var(u;le;) = oy (1 + < + ﬁ{'f)) & — E?) .
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Lemma 1. Let G be defined as in (1.9c). Then, with 6 =0,

1 g A1
=N§ Vud iz y) + ol NXZ:; Vi bir i, )+ 0p(1)
1 Y \
(XZ_: )+o,, ) = 5V (VsInL |5_o) + op(1) 143

A A
= =V25InL |5 _o + op(1) = < Hpy,5=0 + op(1)
N N

1
= —A <_NH6¢’6:0) + Op(l) = _/\131,/),(5:0 + Op(l).

Lemma 2. With § =0,

) 1 Yo 1 r 1 N
E bizizl = — E <bizi | { <bizi ) = =) si(6)si(6)'|5—
2 i < ] 1) ( ) 1) 1 1 6=0
AN &~ Nz,:1 A A N o (1.44)

Lemma 3. Consider Z{il si(y) = (Z{il si(B)', Zﬁl si(02), Zﬁl s,-(/\2))' as given
in (1.38). Then, with § =0, N~1 Zfil si(¥)bizl = 126,6=0 + 0p(1).

Proof. Note that N~1 szil si(¥)bi2] is equal to:

N
-1
/azN ZV& (uilei)ziz \
vV =1
Nox1 g, 1
+;(7V—(X - U_v) - W(Eu,k, Eu,))z,z‘
-1 i((—e—’— - l) Var(u;|e;) — € )z
202N ~ o2 v )
N
A 1 §i €&
- N§1<'2T— o+ 303)
1 al 2 1
— s b; 2
\ o 2 )
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( 7N - ZVar uile;) T2
v

a 0‘26 3
03 ;(2ov+ ) (/\ + )f,)z,
il € ’
= 200 ; ———)Varu,|61) )zi
A N 1 €€
Nz_:(w 2§;,, 2;6,%)25
1 s 2.1
| 2w 24
i=1

(1.45)

Now, the second terms in the first two elements of the above vector converge in

probability to zero:

N

1 ), S o3

U?,N 121 (200 X P (/\Uv + -:\2 & x,-z; = op(l),
N

A 1 & €&\

Z = op(1).

N ; (2,\2 Doy T 203) %= W)

This is because, first,

(1.46)

(1.47)

where, with § = 0, ¢; and &; are functions of only the error terms, v; and u; which
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are assumed to be independent of z; and z;. Note that E(¢;) = 0/ since

A = E(y;) = E[E(u;l¢;)] = E [U” (& B (—Ei * ﬁ))]

oy A

(1.48)
_ ) A Oy
—ou (E6) + 2 - %),
which we solve for E(§;). Secondly,
1 & &b _ (2 _
/\E<2/\2 Do + 23 = AEs;(07)|s=0=0 (1.49)
where s;(02) is as defined in (1.38). Then (1.45) is equal to:
—(02N)~1 Z{Y_—l Var(u;|€;)ziz} + op(1)
03N N (/03 - 1/2) Var(usles) — ) 2] + 0p(1)
| 1.50
(23°N)7 L 6] -
A 1
= —NHW;,&:O + Op(l) = (—NH,/}J’&:O) + Op(].) = AI:;,&,&:O + Op(].).
O

Recall that r; = r;(v) = I°1s;(¢) = I;Z;’lézosi(t/;) = I:;);lsi as shown in (1.11).

Now we are ready to evaluate our main expression:

i=1
1 N
=N Zb?zizf (1.51a)
i=1
1 N
+ 5 Z GririG' (1.51b)
i=1
1 N
+ % > zbiriG’ (1.51c)
i=1
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N
1
+ > Gribz. (1.51d)
We will evaluate these term by term. By Lemma 2,

N

1

5 > " b2ziz] = NI + op(1). (1.52)
~

Next, we evaluate (1.51b):
N
;Gm 6=+ ;( NI (3550 (T ) (= XE3g) + 0p(1)

N
N
= N3, 10 (N_X;Sz ) Tow Tys + 0p(1) (1.53)
1=

Finally, we evaluate (1.51c):

N
z;z,b T’G’ N Zl z ¢¢ ( /\I:Z(s) + Op(l)
1= =
1.54
= (A Ty )I;Z;) (=AZys) + 0p(1) (using Lemma 3) (1.54)
-N13 Lo I;/);é +0p(1).

And term (1.51d) is exactly the same as this term.
Inserting (1.52), (1.53) and (1.54) into (1.51), we obtain

hd Z (23b; + Gr;) (2ib; + Gr;) = A2 (135 - zng;;,;lz;;,é) +op(l).  (1.55)
‘l 1

Therefore the expressions inside the inverse in equations (1.35) and (1.36), for the

LM test and the GDV test respectively, have the same probability limit.
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1.12 Appendix: Supplementary Tables

Supplemental Table 1.17: (Change of p) p = 0.25, a = 8 = 4§ = 0, a?, =A=1

N =200 [E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE ) 0.0003 0.1084 0.0118

-0.0338 0.1859 0.0357

0.0001 0.0951 0.0090

1.0069 0.2271 0.0516

0.9606 0.3510 0.1247

0.5145 0.1767 0.0553 0.6145

-0.0213 0.1811 0.0333

0.0001 0.0933 0.0087

0.9985 0.2241 0.0502

0.9918 0.3459 0.1197

0.5098 0.1767 0.0546 0.6194

-1.0003 0.0994 0.0099

(OLS on y; = n + Bz; + w;: 0.0008 0.1004 0.0101

n=-1,8= 0,03, =2) 2.0020 0.2691 0.0724
STATISTICS | Sizel | Size2 | Size3 | Sized | Mean s.d.
WALD-OPG | 0.0212 | 0.0214 | 0.0215 | 0.0216 | -0.0005 0.8719
WALD-HES | 0.0303 | 0.0305 | 0.0305 | 0.0306 | -0.0019 0.9385

Restricted MLE (§ = 0)

Restricted NLLS

sémtﬁl ge >;;c°§,m- QA g) >;_.;e .:,Tb» D o

LM-OPG 0.0787 | 0.0780 | 0.0769 | 0.0762 | 1.2060 1.7718
LM-HES 0.0516 | 0.0507 | 0.0512 | 0.0503 | 1.0830 6.7671*
GDV 0.0465 | 0.0465 | 0.0471 | 0.0470 | 1.0121  1.3502
BADGDV 0.0484 | 0.0475 | 0.0469 | 0.0461 | 0.9524 1.3354
OLS 0.0495 | 0.0487 | 0.0483 | 0.0475 | 0.0008 0.9966
OLS-H 0.0575 | 0.0569 | 0.0563 | 0.0558 | 0.0016 1.0212

BADOLS 0.0432 | 0.0425 | 0.0420 | 0.0413 | 0.0007 0.9650
BADOLS-H | 0.0490 | 0.0484 | 0.0479 | 0.0473 | 0.0009 0.9839
Rep. dropped 0 73 124 172
* due to outliers
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Supplemental Table 1.18: (Change of p) p = 0.75, a = 8 =8 = 0, 02 = A = 1,

N = 200 [E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE ) -0.0006 0.1280 0.0164

-0.0327 0.1869 0.0360

-0.0003 0.1109 0.0123

1.0055 0.2272 0.0516

0.9601 0.3527 0.1260

0.5147 0.1776 0.0557 0.6107

-0.0199 0.1804 0.0329

0.0001 0.0933 0.0087

0.9968 0.2228 0.0496

0.9944 0.3455 0.1194

0.5094 0.1769 0.0546 0.6195

-1.0004 0.0995 0.0099

(OLS on y; = n + Bz; + w;: 0.0007 0.1005 0.0101

n=-1,8=0,02 =2) 2.0025 0.2692 0.0725
STATISTICS | Sizel | Size2 | Size3 | Sized | Mean s.d.
WALD-OPG | 0.0213 | 0.0216 | 0.0215 | 0.0217 | -0.0060 0.8548
WALD-HES | 0.0308 | 0.0312 | 0.0309 | 0.0312 | -0.0072 0.9304

Restricted MLE (6 = 0)

Restricted NLLS

qupmzdt gz XIQL @ & g) X, R o

LM-OPG 0.0794 | 0.0790 | 0.0775 | 0.0775 | 1.2305 1.8417
LM-HES 0.0529 | 0.0527 | 0.0524 | 0.0523 | 1.0285 2.1901
GDV 0.0442 | 0.0446 | 0.0445 | 0.0448 | 0.9949 1.3236
BADGDV 0.0226 | 0.0224 | 0.0222 | 0.0220 | 0.6994 1.0175
OLS 0.0495 | 0.0491 | 0.0483 | 0.0480 | -0.0003 0.9993
OLS-H 0.0575 | 0.0574 | 0.0563 | 0.0563 | 0.0005 1.0234

BADOLS 0.0027 | 0.0027 | 0.0027 | 0.0028 | 0.0000 0.6601
BADOLS-H | 0.0052 | 0.0053 | 0.0052 | 0.0052 | -0.0008 0.6740
Rep. dropped 0 123 161 244
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Supplemental Table 1.19: (Change of § and p) § = 0.05, p = 0.9, = 8 = 0,
02 =X=1, N =1000 [E(exp(—u)) = 0.5232]
ESTIMATION METHODS Estimates | Mean s.d. MSE Corr
MLE 5 0.0527 0.0534 0.0029
-0.0045 0.0751 0.0057
0.0033 0.0530 0.0028
1.0004 0.0979 0.0096
0.9932 0.1506 0.0227
0.5023 0.1803 0.0515 0.6234
-0.0003 0.0744 0.0055
-0.0295 0.0414 0.0026
0.9971 0.0975 0.0095
1.0069 0.1498 0.0225
0.5006 0.1802 0.0515 0.6236
-1.0009 0.0466 0.0022
-0.0438 0.0448 0.0020
2.0081 0.1194 0.0143

Restricted MLE (4 = 0)

Restricted NLLS (OLS on
yi =0+ Bz + w;: n=—-1.0013,
B = —0.0451, 02 = 2.0075)

gé‘tbadl Ejz XIQL @ g) Xl R o

STATISTICS | Powerl | Power2 | Power3 | Powerd | Mean s.d.
WALD-OPG | 0.1380 | 0.1384 | 0.1381 | 0.1385 | 0.9407 0.9431
WALD-HES 0.1520 | 0.1525 | 0.1521 | 0.1525 | 0.9617 0.9560
LM-OPG 0.1795 | 0.1795 | 0.1796 | 0.1796 | 2.0105 2.4353
LM-HES 0.1610 | 0.1610 | 0.1611 | 0.1611 | 1.9042 2.2712
GDV 0.1650 | 0.1650 | 0.1651 | 0.1651 | 1.8615 2.1505
BADGDV 0.0560 | 0.0562 | 0.0560 | 0.0562 | 1.1487 1.3851
OLS 0.0750 | 0.0747 | 0.0750 | 0.0748 | -0.4981 1.0049
OLS-H 0.0750 | 0.0747 | 0.0750 | 0.0748 | -0.5001 1.0104
BADOLS 0.0000 | 0.0000 | 0.0000 | 0.0000 |-0.2175 0.4377
BADOLS-H 0.0000 | 0.0000 | 0.0000 | 0.0000 |-0.2174 0.4383
Rep. dropped 0 6 1 7

The number of replication is 2000.
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Supplemental Table 1.20: (Change of § and p) § = 0.15, p = 09, a = 8 =
02 =X=1, N = 1000 [E(exp(—u)) = 0.5232]
ESTIMATION METHODS Estimates | Mean s.d. MSE Corr
MLE 6 0.1536 0.0549 0.0030
& -0.0045 0.0758 0.0058
B 0.0029 0.0530 0.0028
52 0.9999 0.0980 0.0096
22 0.9931 0.1536 0.0236
TE 0.5023 0.1836 0.0512 0.6308
Restricted MLE (6 = 0) a 0.0147 0.0746 0.0058
B -0.0917 0.0419 0.0102
2 0.9856 0.0977 0.0097
A2 1.0580 0.1548 0.0273
TE 0.4945 0.1828 0.0520 0.6232
Restricted NLLS (OLS on 7 -1.0110 0.0470 0.0022
v = 1+ Bz; +w;: 1= —1.0113, B -0.1353 0.0459 0.0021
B = —0.1365, 02 = 2.0693) 52 2.0542 0.1264 0.0162
STATISTICS | Powerl | Power2 | Power3 | Power4d | Mean s.d.
WALD-OPG | 0.7830 | 0.7865 | 0.7829 | 0.7864 | 2.6717 0.9268
WALD-HES | 0.8140 | 0.8177 | 0.8139 | 0.8176 | 2.7330 0.8988
LM-OPG 0.8360 | 0.8358 | 0.8359 | 0.8357 | 9.3681 5.8643
LM-HES 0.8260 | 0.8262 | 0.8259 | 0.8261 | 9.0193 5.6024
GDV 0.8125 | 0.8122 | 0.8124 | 0.8121 | 7.9604 4.5539
BADGDV 0.6310 | 0.6308 | 0.6308 | 0.6307 | 5.5233 3.5299
OLS 0.3155 | 0.3154 | 0.3157 | 0.3156 | -1.4680 1.0098
OLS-H 0.3155 | 0.3149 | 0.3157 | 0.3151 | -1.4676 1.0078
BADOLS 0.0005 | 0.0005 | 0.0005 | 0.0005 | -0.6396 0.4401
BADOLS-H | 0.0000 | 0.0000 | 0.0000 | 0.0000 |-0.6271 0.4319
Rep. dropped 0o ' 9 1 10

The number of replication is 2000.
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Supplemental Table 1.21: (Change of the distribution of u{ to N(0,1)*) a =

6=0,02=X=1,p=0.5 N =1000 [E(exp(—u)) = 0.5232]
ESTIMATION METHODS | Estimates | Mean s.d. MSE  Corr
MLE 6 0.0010 0.0984 0.0097
& -0.3498 0.1193 0.1366
B 0.0014 0.0396 0.0016
52 1.1488 0.0995 0.0321
22 0.2119 0.0933 0.6298
TE 0.6958 0.0885 0.0835 0.4635
Restricted MLE (8 = 0) & -0.3395 0.1159 0.1286
B 0.0011 0.0356 0.0013
G2 1.1434 0.0996 0.0305
22 0.2218 0.0955 0.6147
TE 0.6901 0.0881 0.0807 0.4832
Restricted NLLS 7] -0.7972 0.0365 0.0425
(OLS on y; = n+ Bz; + w;: B 0.0012 0.0357 0.0013
n=-1,8=0,02 =2) 52 1.3658 0.0612 0.4060
STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.
WALD-OPG | 0.0125 | 0.0132 | 0.0149 | 0.0153 | 0.0178  0.8294
WALD-HES | 0.0205 | 0.0217 | 0.0217 | 0.0223 | 0.0183  0.8670
LM-OPG 0.0560 | 0.0565 | 0.0490 | 0.0491 | 1.0036  1.5132
LM-HES 0.0725 | 0.0713 | 0.0657 | 0.0637 | 2.0072 34.9627*
GDV 0.0255 | 0.0269 | 0.0291 | 0.0300 | 0.8246 1.1256
BADGDV 0.0320 | 0.0328 | 0.0291 | 0.0293 | 0.7639  1.1324
OLS 0.0510 | 0.0486 | 0.0434 | 0.0427 | -0.0098  0.9697
OLS-H 0.0540 | 0.0502 | 0.0453 | 0.0446 | -0.0093  0.9744
BADOLS 0.0260 | 0.0254 | 0.0229 | 0.0229 | -0.0082  0.8404
BADOLS-H | 0.0240 | 0.0232 | 0.0205 | 0.0204 | -0.0079  0.8439
Rep. dropped 0 107 387 431

* due to outliers. The number of replication is 2000.
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Supplemental Table 1.22: (Change of the distribution of u{ to N(0,/(r — 2))%)
a=B=68=0,02=A=1,p=0.5 N =1000 [E(exp(—u)) = 0.5232]

ESTIMATION METHODS | Estimates | Mean  sd.  MSE _ Corr
MLE 6 -0.0002 0.0548 0.0030

& -0.5135 0.1031 0.2744

B 0.0016 0.0460 0.0021

52 1.3480 0.1296 0.1379

22 0.6616 0.1488 0.1366

TE 0.5541 0.1456 0.0774 0.6116
Restricted MLE (4 = 0) & -0.5069 0.1047 0.2679

B 0.0017 0.0423 0.0018

2 1.3420 0.1311 0.1342

a2 0.6744 0.1533 0.1295

TE 0.5518 0.1460 0.0764 0.6140
Restricted NLLS ] -1.3225 0.0448 0.1060
(OLS on y; = n + Bz; + w;: B 0.0019 0.0433 0.0019
n=-1,=0,02 =2) 52 2.0018 0.0938 0.0088

STATISTICS | Sizel | Size2 | Size3 | Size4 | Mean s.d.

WALD-OPG | 0.0295 ! 0.0296 | 0.0296 | 0.0297 | -0.0025 0.9065
WALD-HES | 0.0395 | 0.0396 | 0.0396 | 0.0397 | -0.0009 0.9490
LM-OPG 0.0605 | 0.0607 | 0.0607 | 0.0608 | 1.0705 1.5630

LM-HES 0.0535 | 0.0536 | 0.0532 | 0.0533 | 0.9746 1.4373
GDV 0.0510 | 0.0511 | 0.0512 | 0.0513 | 0.9959 1.3894
BADGDV 0.0390 | 0.0391 | 0.0391 | 0.0392 | 0.8596 1.2448
OLS 0.0480 | 0.0481 { 0.0481 | 0.0483 | 0.0098 1.0040
OLS-H 0.0500 | 0.0501 | 0.0502 | 0.0503 | 0.0099 1.0085

BADOLS 0.0260 | 0.0261 | 0.0261 | 0.0261 | 0.0089 0.8698
BADOLS-H | 0.0270 | 0.0271 | 0.0271 | 0.0271 | 0.0091 0.8730
Rep. dropped 0 5 6 11
The number of replication is 2000.
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Supplemental Table 1.23: (Change of the distribution of u{ to N(1,1)*) a =
§=0,02=X=1,p=0.5 N =1000 [E(exp(—u)) = 0.5232)
ESTIMATION METHODS | Estimates | Mean s.d. MSE Corr
MLE é 0.0000 0.0992 0.0098
& -0.8053 0.1340 0.6665
B 0.0015 0.0431 0.0019
&2 1.3787 0.1197 0.1577
A2 0.2470 0.1141 0.5800
TE 0.6807 0.0910 0.1564 0.5174
Restricted MLE (6 = 0) & -0.7959 0.1294 0.6502
B 0.0015 0.0391 0.0015
2 1.3738 0.1193 0.1539
22 0.2565 0.1144 0.5658
TE 0.6755 0.0884 0.1471 0.5412
Restricted NLLS i -1.2871 0.0405 0.0840
(OLS on y; = n + Bz; + w;: B 0.0015 0.0392 0.0015
n=-1,8=0,02 =2) 52 1.6312 0.0736 0.1414
STATISTICS | Sizel | Size2 | Sized | Sized |<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>