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ABSTRACT

THREE ESSAYS ON ECONOMETRICS

By

Myungsup Kim

Consider a simple stochastic frontier model explaining the output of a firm by

y = x’fi + v — u. While 1) represents random shocks outside the control of producers,

u represents technical inefficiency in the production process.

In the first chapter, we wish to test whether technical inefficiency depends on

observable characteristics of the firm. It is well known that two-step procedures, in

which the second step is the regression of an inefficiency measure on firm character-

istics, do not properly estimate the effects of firm characteristics on inefficiency. In

this chapter we show that this regression also does not lead to a valid test of the

hypothesis of no effect. A valid test of the hypothesis of no effect can be constructed

by using an adjustment to the variance matrix of the estimated coefficients in the

second step regression. Unfortunately the form of this adjustment is not distribution

free. We show that this test is the LM test in the specific case that technical inef-

ficiency is exponential and the alternative is a scaled exponential distribution. We

also consider tests based on nonlinear least squares. These tests do not depend on

a distributional assumption. There are some technical complications involved due

to the non-identification of some of the parameters under the null. We perform an

extensive set of simulations to compare the size and power characteristics of these

tests and other similar tests, including the Wald test based on a one-step estimate of

the entire model.

In the second chapter, we study the construction of confidence intervals for effi-

ciency levels of individual firms in stochastic frontier models with panel data. The

focus is on bootstrapping and related methods. We start with a survey of various

versions of the bootstrap. Then we offer some simple alternatives based on standard



methods when one acts as if the identity of the best firm is known. Monte Carlo

simulations indicate that these simple alternatives work better than the percentile

bootstrap but perhaps not as well as the bias-adjusted and accelerated bootstrap.

None of the methods yields very accurate confidence intervals except when the time-

series sample size is large enough, or the error variance is small enough, that the

identity of the best firm is clear. We also present empirical results for two well-known

data sets.

In the last chapter, we consider the problem of testing the null hypothesis that

a series is stationary against the unit root alternative. A standard test for this null

hypothesis is the KPSS test, which is based on cumulations of deviations from the

means of the series. A paper by de Jong, Amsler, and Schmidt (2002) constructs a

“robust” version of the KPSS test by using an indicator of whether the observation

is above or below the sample median. This test, called the indicator KPSS test, is

robust in that it does not require existence of moments of the series, yet the asymptotic

distribution of the indicator KPSS statistic is the same as that of the KPSS statistic.

However, in this chapter we allow a non-zero level for the series under consideration,

but not a deterministic trend. The purpose of this chapter is to extend the indicator

KPSS statistic to the case of a deterministic trend. The relevant indicator in this

setting is whether the residual is positive or negative in a least absolute deviations

regression of the series on a time trend. This chapter shows that, under the null

of trend-stationarity, the indicator KPSS statistic with a time trend has the same

limiting distribution as the KPSS statistic with a time trend.
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Chapter 1

Valid Tests of Whether Technical

Inefficiency Depends on Firm

Characteristics

1 . 1 Introduction

In this chapter we consider the stochastic frontier model

316 = $23 + '01” - Hi, “2' Z 0- (1-1)

The frontier is y: = xi-fl + vi and 11,- represents technical inefficiency. We follow the

literature in assuming that the x,- are “fixed” and the v,- are i.i.d. normal. Now we

ask whether u,- depends on some variables 2,, which could be characteristics of the

firm or measures of the environment in which it operates. Specifically, we wish to

test the hypothesis that 21,- does not depend on zi.

One way to do this is to assume a specific model of the alternative hypothesis that



shows how the z,- affect the 11,-. For example, we could assume:

u,- = exp(z,’-6) - uf, (1.2)

where the u: are i.i.d. according to some specific distribution, like exponential or half-

normal. Now we can estimate 6 by MLE and do a Wald test of the hypothesis that

6 = 0, which corresponds to the hypothesis that 2,- does not affect ui. In the frontiers

literature this would correspond to what is called a “one-step” procedure (e.g., see

Wang and Schmidt (2002)). Models of the form of (1.2) have been considered by Reif-

schneider and Stevenson (1991), Caudill and Ford (1993), Caudill, Ford, and Cropper

(1995), Wang and Schmidt (2002) and Alvarez, Amsler, Orea, and Schmidt (2005),

among others. We will follow the literature and call the multiplicative decomposition

of u, (as a function of 2,- times a random variable that does not depend on 2i) the

“scaling property.”

An objection to this type of procedure is that it depends fundamentally on the

alternative chosen. Under the null the scaling function exp(z£6) really does not exist

and so there are many more or less equally plausible alternatives. Partly for this

reason, one could consider a “two-step procedure” in which Step 1 would be to es-

timate the model ignoring the 2) to obtain efficiency measures 111', and Step 2 would

be a regression of fr,- on 2,- (or some function of z,). It is well known (Wang and

Schmidt (2002)) that when 2,- does affect 11,-, there are serious biases in both steps, so

two-step procedures are not recommended. However, under the null that 2,- does not

affect 21,, these biases do not arise, and it is not known whether a two-step procedure

provides a valid test of this null hypothesis. One contribution of this chapter is to

show that a two-step procedure that uses a standard t or F test in the second step

does not yield an asymptotically valid test. However, the test becomes valid if we use

a corrected variance matrix for the second-step coefficients. Unfortunately, the form



of this correction is distribution-specific.

This raises the question of whether a test based on such a corrected two-step

procedure entails a loss of power. We do not have a full answer to this question. We

do show that, in the case that the alternative is the scaled exponential distribution,

the LM test of 6 = 0 is asymptotically equivalent to the corrected version of the

two-step procedure. Therefore at least in this case the two-step procedure entails no

loss in asymptotic local power.

If we assume the scaling property, as in (1.2) above, the stochastic frontier model

can also be estimated by nonlinear least squares. Testing whether 6 = 0 based on

nonlinear least squares involves some technical difficulties, because the mean of u? is

identified separately from the overall intercept under the alternative but not under

the null. We show how to deal with these difficulties and obtain an asymptotically

valid test.

In the last section of the chapter, we report the results of an extensive set of

simulations that investigate the size and power of these tests.

1 .2 Two-Step Procedures

We consider the stochastic frontier model (1.1). As stated in the Introduction, we

treat the 1:, as fixed and we assume that the U, are i.i.d. N(0, 0,2,). We also assume that

the u: are i.i.d. with some specific distribution, such as exponential or half-normal,

that is known up to some parameters. Finally, the zi variables whose influence on

u,- we wish to test are independent of v; and uf. For the purposes of this section,

these assumptions could be weakened somewhat, but we would need the stronger set

subsequently, so we simply make them here.

To motivate the tests considered here, suppose that uz- were observed. Then we

could regress u,- on 2, and test the hypothesis that the coefficients equal zero by



standard methods. More precisely, the regression would have to include an intercept

because E(u,-) is not equal to zero, and we would do an F-test on the coefficients other

than the intercept.

Now let 1,6 equal the unknown parameters of the problem. These would be [3, 03

and whatever parameters there are in the distribution of uf. Step 1 of the two-step

procedure results in an estimate 1/3 which should be consistent and asymptotically

normal (subject to the usual regularity conditions). We then obtain an estimate of 11,-,

say fez-(26). In the stochastic frontier model, fl,- is the expected value of u, conditional

on e,- E v, — 21,-, evaluated at the sample estimates, as suggested by Jondrow, Lovell,

Materov, and Schmidt (1982). It should be noted that, even if 26 were known, 21,-(16)

would be E(u,~|e,-) which is different from 11,-. However, 6,0,6) is a function of 6,, which

is i.i.d. and independent of 25,-. So, if we regressed 16,-(16) on intercept and 21-, an F-

test of the significance of the coefficients of 2,- should be asymptotically valid. The

A

question is whether this is still true when ui(¢) is replaced by ugh/2). Unfortunately,

the answer is no. A valid test must account for the estimation error in 1]).

To show this, we could consider a regression of 0,-(2/3) on intercept and zi. However,

it is simpler to demean the 0,- by switching our attention to (MW) = E(u,-|c,-) -— E(u,-),

with 6,- : 65(6) being the corresponding estimate evaluated at the first-step estimates

A

1,6. So now we simply wish to test whether 7 = 0 in the regression:

A

b,- = 2:7 + Vi. (1.3)

Our test statistic will be ’7’[WM-1'), where ’7 is the least squares estimate from

(1.3), and this should be asymptotically x2, if Varfi) is properly calculated.

This is a “generated dependent variable” problem that can be analyzed by meth-

ods similar to those used for the “generated regressor” problem (e.g., Wooldridge

(2002)lpp- 139-14ll)- We have bi = bill/J) = f (yr, 132', 111) and 56 = 56017) = f (315, xi, 16).



By the Mean Value Theorem,

bi—— bi. + V16f(yii$ia AZYQH— 11)) (14)

where 16 is between 16 and 16. Therefore

WeVa:

1

N

2: ZiV¢f(yi,xe,16)'\/1V(16 — 10)] 05)

From the last line of equation (1.5), we can see immediately that the term involv-

ing the estimation error in 16 will be relevant unless E[z,-V¢f (yi,:r,',16)] = O. (In

this exceptional case, N'1 29;] 22V.)f (yi,:c,-,16) A 0 and the last term vanishes.

Otherwise it does not.)

To proceed further, we use the same device as in Wooldridge (2002), and assume

that

N

x/N(16— N;ri(16)+op(1(1.6)

E
l
”



where Evy-(1,6) = 0. We will be more specific about the form of ”(16), below. Then

‘=1 (1.7)

It follows from a central limit theorem applied to (1.7) that

x/N’y —-> N(0,B‘1AB“1) (1.8)

where

B = Ezizg, (1.9a)

A = E[(zibi + GTiXZibz' + Guy], (1.91))

G = EziV¢f(y,-,xi,16)’. (1.9c)

Also, all of these quantities can be consistently estimated by the corresponding sample

quantities: B: N“1 2?:12,2;,A= N—1 2,1: 1[(z,-b +Gr¢)(z,-bi +Gr,)'], G =

N71 217:1 ZiV¢f(yi,$i,¢) .

The remaining detail is an expansion for ri. The first-step MLE 16 satisfies

2:”:1 31(16) = 0, where 3,-(16) is the score function for observation 1'. (That is, 5,-(16)

is the derivative with respect to 1,6 of the ith observation’s contribution to the log

likelihood). Then another Mean Value Theorem expansion yields

N A N N u A

= 2 3,16): 23.06 + ZWSMW — 6), (1.10)

i=1 i=1



where 16 is between 16 and 16. So

i-l W i-l

N- - (1.11)

1

= —— I°‘1s.(1b)+ o (1)
x/TV' Z3, ”

where

, 1

1° = E86(¢)86(¢)' = —EV1686(¢) = ngnoo NI’ (1-12)

and

I = E(V,), lnL)(V¢ lnL)’ = — E vi}, 1nL. (1.13)

I is the information matrix for the first-step MLE problem with a log-likelihood

of lnL, and 1° is the limiting information matrix. In terms of the score, I =

Z£1E3i(16)si(16)’ = — zglvapSin Therefore, in (1.6) and the subsequent

expressions above, 13(16) 2 I°’ls,;(16). In terms of sample quantities, 1",- = T°’lsi(16)

where 1° 2 N’1 2:11:132-(16)si(16)’.

We note two things. First, the standard (naive) test of 7 = 0 that ignores the

effect of estimation error in 6,: corresponds to omitting the terms corresponding to

Gri in (1.9b). This test will be invalid unless G = 0. Since G = EziV¢f(y¢,x,-, 16),

this condition will hold if z,- is independent of x,- as well as of v,- and 11,6. However, it

will generally fail if z, and x,- are correlated. Second, the “correct” test is not difficult.

However, unsurprisingly, the form of the correction depends on the distribution of 11,-,

since that influences the nature of the first-step MLE problem. There is no simple,

distribution-free correction.



1.3 The Scaled Exponential Case

In this section we consider the special case that ui follows a scaled exponential distri-

bution. That is, u; = exp(zz'-6) - 11?, as in (1.2), where u? is distributed as exponential

with parameter A. We will derive the LM test of the hypothesis 6 = 0, and Show that

it is asymptotically equivalent to the (corrected) two-step procedure of the last sec-

tion. This shows that there is at least one case in which the two-step procedure does

not entail any loss of (local) power, compared to the usual Wald-likelihood ratio-LM

trinity of tests.

For the normal-scaled exponential model we consider, the pdf of the composite

error (e,- = v,- — 11,-) is:

 
1 6i 012, 51 0v

. = ____. __ . 1-11) _ __

“61) Aexp(z£6) exp(Aexp(zz’.6) + 2A2 exp(2z,’-6)) ( (av + Aexp(zz’-6)))

(1.14)

where <I> is the cumulative distribution function of the standard normal distribution.

Note that under the null of 6 = 0, E(e,~) = — E(u,-) = —A and Var(e,-) = 03+A2. Also,

the distribution of u,- given q is N(—c,- — 0,,/(A exp(z’-6)),a2+) where “+” represents

truncation on the left at zero.

From (1.14), it follows that the log-likelihood function lnL(6, 5,03, A2) = lnL(O)

is given by:

lnL(l9 =2—Zln(A exp(26))+ Z_______.lAexp(z’6)

Z2261:8110- (-#5))

(1.15)

 



The generic form of the LM statistic is

LM = v9 lnL(6)’ 14(6) . v9 lnL(6). (1.15)

Here 6 is the MLE subject to the restriction 6 = 0; 1(6) is the information matrix

evaluated at 6 = 6; and V9 lnL(6) is the score function, V9 lnL(6), evaluated at 6 - 6

If we partition 6 = (6’,16’), where 16 = (6’, av, Az)’, then

‘7‘“an l’(6)- 1‘” I” . (1.17)V0 lnL(6) = 1

V1), lnL(6) L)“; I¢¢

It IS a standard result that V9 lnL(6) is equal to zero for those elements of 6 that are

unrestricted. That is, V9, lnL(6) = 0. Therefore

' ° [I—1(6)l66 ' V6 1111467)
(1.18)

LM = V5 lnL(6)

= V51DL(6)’ - [i155 — 1.616112161166l—1 - V5 lnL(6)

where Z... stands for the *,* block of I, evaluated at 6 = 6.

A straightforward calculation reveals that

N ~v* ~ ~2

V5lnL(6) =22: (1%:1___§%_1) (1.19)

where g,- = (<6(€,~/cfv +cfv/A))(1 - <I>(€,-/cfv +0"v/A))"1 and <6 is the pdf of the standard

normal distribution. Note that

1 N , ~ ~ 63 1 N
V6 lnL(6)= :\-Z 2,; Uvéi — 62' — T — 2; 221:5; (1.20)

i=1

where f),- = (01,51- - é; — fig/A — A) is (E(ui|e,-) — E(u,-)) E 6,- evaluated at 6. (This

follows because E(u,-|c,~) = 09(6) — (cg/av + av/A)) while E(u,-) = A.) Note that apart



from the scalar l/A, V5 lnL(6) equals the numerator of W6 2 (N‘1 26.1.1 ziz£)-1

N’1/2 2,1:1 2,6,. So the LM test must be asymptotically equivalent to a properly

constructed test based on the two-step estimator &. Some further algebraic details of

this equivalence are given in the Appendix. Basically, the naive test that ignores the

effects of estimation error in 61' would correspond to omitting the terms 15162691,1695

in (1.18). These terms correspond to the same correction as was created by the terms

Gr,- in (1.9b) above.

This section’s result (that the LM test is asymptotically equivalent to a prOperly

constructed test based on a two-step procedure) holds for the case that u,- is expo-

nential with a scaling factor of the form exp(zz'6). So far as we can determine, it does

not hold for the scaled half-normal case. If it does not, then in the half-normal we

would expect the LM test to be better (in the sense of asymptotic local power) than

the two-step test of the last section. An interesting question for further research is

whether we can identify a class of distributions for which a result like the present one

holds.

1.4 A Test Based on Nonlinear Least Squares

In this section we continue to assume that the stochastic frontier model (1.1) is

correct. We further assume that the scaling property (1.2), with an exponential

O

scaling function, holds, so u,- = exp(zt’6) - 11,-. However, now we do not make any

specific distributional assumption about the uf. We simply assume that they are

i.i.d. and independent of mi, 23,- and vi.

Let p E E(u:’) = E(u;-’|:ci, 21-). Then

E(y,-|x,-, 21-) = 3:26 — p - exp(z,'-6), (1.21)
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or equivalently

1.11 = $26 - u - exp(zfié) + wi (1.22)

where E(w,-|:r,-, 2i) = 0. This model can be estimated consistently by nonlinear least

squares, as has been noted by Simar, Lovell, and Vanden Eeckaut (1994), Wang and

Schmidt (2002) and others. This raises the question of whether we can test the

hypothesis 6 = 0 based on the nonlinear least squares regression.

There is a non-trivial problem because the parameter p is not identified (separately

from the intercept in the regression) when 6 = 0. To see this clearly, we explicitly

distinguish the intercept from the rest of 23,-: 2:; = (1,122"), 6’ = (a, 6"") so that (1.22)

becomes

*I

y, = a + x, 6* — p - exp(zg6) + 103'. (1.23)

Alternatively we can write this as

111 = (a -u) +1166“ +u(1-exp(z£5))+wi. (124)

From (1.24) it is clear that (oz —— p) is identified, but 6 is identified only when 6 ¢ 0.

In cases such as this, in which some parameters (“nuisance parameters”) are not

identified under the null hypothesis, standard tests like the Wald test or the likelihood

ratio test are not asymptotically valid. A standard reference on this problem is

Hansen (1996). A Wald test in this context would consist of estimating 6 and then

testing whether it is significantly different from zero, using a statistic of the form

6’[Var(6)]—16, where 6 is the NLLS estimate and Var(6) is the asymptotic variance

matrix of 6. Such a test is not valid in this context because the usual Var(6) that

would be valid when 6 79 0 is not valid when 6 = 0, because of the non-identification

11



of 11.

It is interesting that for our problem (though not for general problems) an asymp-

totically valid test can be derived from the LM (or score) test principle. We follow

the discussion in Wooldridge (2002)[pp. 363-369]. Let the NLLS criterion function

be

1 N 1 N
= NZ q(wi,0) -—-fi 2(2 — xlfl + uexp(2£5))2, (1-25)

where 6 represents 6, p and 6, and 10,- represents yi, mi and 25. Then the LM or

score test is based on the quantity V5QN(6), that is, on the derivative of QN(6) with

respect to 6, evaluated at the restricted estimates 6. We might expect this approach

to fail here because [a is not well defined. However, this turns out not to matter.

Doing the apprOpriate calculation,

View): % (yr-132/3+uexp(zl5))(uexp(z¢'-5)2z') 1126)

E
M
?

and therefore (since 6 = 0):

N N

wen/(é) = N .2207.- — (a— 6)— mm“)>022.) = 92921212zit-(621). (1.27)

z: =

Here 6 = ((6: — ii), 6*’)’ is just the coefficient in a regression of y on X, and 11),: 2

22:6. In matrix form, the sum in (1.27) is equal to y'MX(flZ), where MX =

I — X(X’X)‘1X’ is the projection orthogonal to X. Note that if we regressed y on

[X, fiZ], the coefficients of iiZ would be [(112)'MX ([22)]'I ([12)'MXy, so that the sum

in (1.27) is equal to the random (numerator) portion of this coefficient. Therefore the

LM statistic will be equivalent to an F-statistic for the significance of the coefficients
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(say, C) of (fizz) in the regression

y2- = .1326 -l- (fizz-)2 + error,. (1.28)

Now, the essential point is that this F-statistic is invariant to any non-zero value

of ii. That is, ii is just a scale factor for 21-, and changing fl is like changing the units

of measurements of 2,. It does not affect the value of the F-statistic. (If we double iii,

this will cause 6 to be divided by two, and Var(é) to be divided by four, so the scale

factor “two” cancels from the test statistic.) So we can just set [1 = 1, and calculate

the LM statistic as the F-statistic for the significance of the coefficients of z,- in a

regression of yi on [$23 z,].

This is an intuitively reasonable result because, under the null hypothesis being

tested, E(y|X, Z) does not depend on Z.

An interesting and relevant fact is that the same test statistic would result if

we replaced the exponential scaling function exp(z,'-6) by any scaling function g(z,’-6),

where g is monotonic and differentiable at zero. The same derivation as above leads

us to a regression of 11,- on x,- and pg’(0)z,t, or equivalently a regression of y,- on 1:,- and

2;. This is relevant because it suggests that the OLS-based test may have reasonable

power against a variety of alternatives (different scaling functions), whereas the power

properties of the MLE-based tests when the scaling function is misspecified are not

at all clear.

We note that, if v,- and 113° are i.i.d., the error in (1.27) is homoskedastic under

the null hypothesis. Nevertheless it is possible to consider a heteroskedasticity-robust

test. We simply have to use the heteroskedasticity—robust variance matrix of White

(1980). See Wooldridge (2002)[pp. 55-58] for details.

Another thing to note is the following. The test above is the F-test for the

significance of the coefficients of z in a regression of y on a: and z. This is the
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same as the F-test for the significance of the coefficients of z in a regression of 11; on

:r and z, where as in (1.27) above 171 = y -— 126. It is essential that a: be included in

this regression, even though a: is orthogonal to 17). If we regressed ti) on z only and

did an F-test, this test would not be valid, even asymptotically.

1.5 Simulations: Experimental Design

We wish to perform simulations to investigate the size and power properties of the

tests derived in the previous sections. The data generating process for our simulations

will be as follows:

3;,- = a + 6x, + 11,-- exp(6zi) - u: (129)

=a+6xi—Aexp(6zi)+wi, 1': 1,--- ,N,

where w; _—_-. v,- -— exp(6z,)(ui — A). All random draws are independent over 1'. The

explanatory variables 2:,- and z,- are both scalars, and (15,-, z,)' is standard bivariate

normal with correlation p. The 12,- are distributed as N(0, 0,2,) and the u: are distrib-

uted as exponential with parameter A. The random variables (xi, zi)’, vi and u: are

mutually independent.

The set of parameters is therefore a, 6, 6, 0,2,, A, p and N. We chose a “base case”

set of parameters as follows:

5:0,6=0,6=0,63=1,A=1,p=0.5,N=200. (1.30)

We will then change these parameter values, as described below, in our experiments.

We consider the following tests.

WALD. For the WALD test we estimate (1.29) by MLE and then test whether 6
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is significantly different from zero. Specifically, the WALD statistic is given by

WALD = [62 (I55 —I5,,I;91Ig)] (1.31)

where the notation is the same as in Section 1.3. Two different versions of the WALD

statistic are computed. WALD-OPG uses the OPG (outer product of the gradient)

estimate of the information matrix, while WALD-HES uses the negative Hessian

estimate of the information matrix.

LM. This is the LM statistic discussed in Section 1.3. The statistic is given by

N' NP

LM= £21),2, (155—15¢1;W) 26,2, . (1.32)

Air-1 i=1>
"
H
:

Once again we have different versions, depending on how the information matrix is

estimated. LM-OPG and LM-HES are analogous to WALD-OPG and WALD-HES.

GDV. This is the “generated dependent variable” test discussed in Section 1.2.

More specifically,

GDV= \/_7[Var(\/—)]1\/_7

=2:b,z,

‘1 (1.33)

M
2

5
7
1

3
?(b.z.+GI3.61))2

i=1 i=1I
'
[
:
]
2

Here If is the negative Hessian form of the information matrix for the first-step MLE,

as in (1.11) above. We also consider the test BADGDV, which is the invalid test

based on regression (1.3) above and which ignores the estimation error in 16.

OLS. This is the set of tests discussed in Section 1.4. OLS refers to the standard

F-test for significance of the coefficients of z,- in a regression of y,- on (1, x,, 2,). This

reduces to a t-test in the present case since 2, is scalar. We use the critical values

based on the standard normal distribution rather than the t-distribution but for our
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values of N this makes essentially no difference. OLS-H is the heteroskedasticity-

robust version of the test. BADOLS is the invalid test based on the t-statistic for

the significance of the coefficient of I, when (3,- is regressed on 2,- (without intercept

or x,- in the regression), as discussed at the end of Section 1.4. BADOLS-H is the

heteroskedasticity-robust version of BADOLS.

The number of replications in the experiment was 10,000, except for a few cases

noted below.

The outputs of the experiments are as follows. For each of the parameter estimates,

we calculated their mean, standard deviation, and MSE. For the MLE of the full model

(needed for the WALD test calculations), the parameters estimated are a, fi, 6, 0,2,

and A. For the MLE of the model subject to the restriction 6 = 0 (needed for the

LM and GDV test calculations), the parameters estimated are 0, fl, 0,2, and A. Note

that, in the output tables, we report the mean, standard deviation, and MSE of the

estimates of A2, not A, for an easier comparison with the estimates of 0,2,. For the

NLLS estimates under the restriction that 6 = 0 (which is just OLS of y,- on 17,, and

is needed for the OLS test calculations), the parameters estimated are 17 = a — A, fl

and 0,2,, = 03 + A2.

We also calculated the mean, standard deviation and MSE of the technical effi-

ciency estimates for the MLE and the restricted MLE. The technical efficiency of firm

2' is TE,- = exp(—11,) and the technical efficiency estimate (Battese and Coelli (1988))

is

TEz' = E(eXP(-uz')lfi)

_ <I> (—av — ei/av — cry/(A exp(52,))) 1122 ' 03 (1.34)

— “*1/01; — av/(A exp(ézi») exP ( 2 + 6‘ + 133mm,») °
 

Here 6, = v,- —u, = y, —a — fix, and TE,- is the expression (1.34) evaluated at the MLE

estimates. By the law of iterated expectations, E(TE,) = Eexp(—u,-). However, for
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the calculation of MSE we average the squared deviations of TE,- for TE,- = exp(—11,),

not from E exp(—11,). The mean, standard deviation and MSE for TE,- are calculated

by averaging across observations (1' = 1, - -- ,N) as well as across replications. We

also report the correlation of TE, and TE,-. The is the average across replications of

the correlation coefficient for a given replication.

For the tests, we calculated the proportion of rejections, which is interpreted

as size (if 6 = 0) or power (if 6 79 0). The size (or power) is calculated in four

ways. Sizel uses all 10,000 replications. Size2 drops replications in which there was a

numerical failure in the calculation of the WALD or LM statistics, due to outliers in

the estimates. Outliers are defined as |6| _>_ 16, 6,, g 10'7 or 6,, 2 37, and A g 10‘7

or A 2 37. Size3 drops observations with negative LM statistics. These may occur

when the maximization algorithm fails to reach the global maximum. Finally, Size4

drops any replication dropped by either the Size2 or the Size3 calculation.

We also report the mean and standard deviations of the test statistics. This

calculation was done over the same set of replications used to calculated Size4.

Many of the replications discarded in Size2 and Size4 are ones in which the variance

parameters (03 and A2) and 6 are poorly estimated. Very small values of A2 tended

to go with very large values of 5, as the likelihood calculation seemed to try to

accommodate the presence of the one-sided error exp(6z,-) - 11;? by balancing a small

variance of u: with a large value of exp(6zi). In these cases the variance of cf is also

hard to calculate, and it is just not clear whether or not they constitute evidence

against the null that 6 = 0. Dropping these cases primarily reduces the number of

rejections for the WALD tests. However, except for a few parameter values (e. g. very

large 0,2,), not enough replications were dropped to make much difference.
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1.6 Simulation Results: Size

In this section, we investigate the size of the tests. Therefore all of the cases considered

have 6 = 0 so that the null hypothesis is true. All of the tests except BADGDV,

BADOLS and BADOLS-H (which we will call the BAD tests for short) are valid

asymptotically but we are interested in how substantial their size distortions may be

in finite samples.

1.6.1 Base case

We first consider the base case: a = fl = 6 = 0, 0,2, = A = 1, p = 0.5, and N = 200.

The results are given in Table 1.1.

The results for the point estimates are fairly unremarkable. There is little or no

evidence of finite-sample bias. The restricted MLE’s are better than the unrestricted

MLE’s, in terms of standard deviation and MSE, but the differences are quite small.

The sizes of the various tests differ fairly substantially from each other. All of the

BAD tests are indeed bad, in the sense of size substantially less than 5%. However,

some of the asymptotically valid tests also have sizes that are substantially different

from 5%. The WALD tests are substantially undersized. Conversely, the LM-OPG

test rejects too often. The LM-HES, GDV and OLS tests have size fairly close to 5%,

and the OLS-H test is only slightly worse than those three.

1.6.2 Effects of changing a or 5

Changes in a or B would not be expected to change the results, and this is true in

the following sense. We did one simulation with the same parameters as in the base

case except that a = 1, and another simulation with the same parameters except that

[3 = 1. These changes did not change the size of any of the tests, and the only effect

on the point estimates was to change the mean value of 6: or B by one.
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1.6.3 Effects of changing N

Next we considered parameter values that were the same as in the base case, except

that we changed N to N = 500 (Table 1.2) and N = 1000 (Table 1.3).

When we increase N, we reduce the standard deviation and MSE of the various

parameter estimates, as expected. However, it is notable that we do not increase the

precision of the technical efficiency estimates except perhaps trivially. To understand

why, recall that the technical efficiency estimate is the expectation of exp(-u) condi-

tional on (v — 11), evaluated at the estimated values of the parameters. The variance

of this estimate depends on (i)“intrinsic variability,” by which we mean the variance

of exp(—u) conditional on (v - u), which does not depend on N, and (ii) “sampling

error,” by which we mean the variance of the parameter estimates, which does depend

on N. Apparently even for N = 200 sampling error is quite small relative to intrinsic

variability.

As would be expected, increasing N does not reduce the size distortions of the

BAD tests, but it does improve the asymptotically valid tests. For N = 500 we have

the same pattern of size distortions as we observed for N = 200, but they are much

smaller. Also the various types of numerical failures that distinguish Sizel from Size2,

Size3 and Size4 have largely disappeared. For N = 1000 all of the asymptotically valid

tests have reasonably accurate size; the worst is LM-OPG with size of 5.77%. The

good news in this statement is that the tests behave as they should asymptotically.

The bad news is that N = 1000 would be a very large sample size indeed for the type

of efficiency measurement exercise that is considered here.

1.6.4 Effects of changing p

Now we consider changes in p, the correlation between a: and z. The question of

interest is whether strong correlation between a: and 2 creates difficulties (akin to

multicollinearity) in estimation and whether this affects the tests. In the base case
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we had p = 0.5, and now we keep the rest of the base case parameters but consider

p = —0.5 (Table 1.4), p = 0 (Table 1.5) and p = 0.9 (Table 1.6). We also considered

p = 0.25 and p = 0.75, and those results are in a supplementary set of tables.

In terms of the point estimates based on MLE, the value of p makes little difference.

When p = 0.9 the standard deviation and MSE of fl and 6 do increase, but not by

very much. The value of p does not matter very much for any of the asymptotically

valid tests, and in fact the results for the OLS and OLS-H tests do not change at all.

For the BAD tests, it makes more difference, as asymptotic theory would suggest. For

p = 0 the BAD tests are asymptotically valid, and they have approximately correct

size, while for p = 0.9 the BAD tests have size of nearly zero.

1.6.5 Effects of changing A

Next we consider a change in A, the parameter of exponential distribution of the

one-sided error 11°. In Table 1.7 we report the results for A = 3, whereas the base

case had A = 1.

Since the overall error in the model is 1) — u, where v is normal noise, increasing A

effectively decreases the relative importance of the noise, and should make inference

about u or about the effect of 2 on u more reliable. Comparing Table 1.7 to Table 1.1,

we see that this is true. With the larger value of A, the sizes of the asymptotically

valid tests (other than GDV) all become closer to 5%. The effects of this change

on the point estimates were less clear, in part because when A = 3 there were more

outliers.

1.6.6 Effects of changing of,

Now we change 0,2, to 9, as opposed to its base case value of 1, holding the other

parameters the same. The results are in Table 1.8. This is a pure increase in statistical

noise and it should make all of the estimates and tests worse. Comparing Table 1.8
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to Table 1.1, that turns out to be true for all of the estimates, and for most of the

tests. Among the asymptotically valid tests, the WALD tests and the GDV test are

very seriously affected. They give very few rejections. There is relatively little effect

of this change on the size of the LM-OPG and LM-HES tests or the OLS and OLS-H

tests, however.

It is also notable that the number of replications dropped in the size calculations

is very large with the higher value of 03. The data are close enough to normal that

the maximization process was difficult. As a curiosity we ran the Schmidt and Lin

(1984) test of the hypothesis of no one-sided error, and we could reject this hypothesis

(at the 5% level) only 1,086 times out of 10,000.

1.7 Simulation Results: Power

In this section we investigate the power of the various tests. We therefore set 6 to

some non-zero value. An immediate problem that arises is that it is not meaningful

to compare the power of tests if their sizes are very different. One possibility is to

consider size-adjusted power, but this has the disadvantage that then we are no longer

investigating the power of a procedure that is feasible outside the simulation setting.

An alternative possibility, which we follow, is to investigate power using a sample size

sufficiently large that size distortions are not a serious problem. Therefore for all of

our simulations in this section we will set N = 1000. Our “base case” is therefore

the set of parameters for the simulations reported in Table 1.3, and we now change

6 from 0 to 0.05, 0.10 and 0.15, where these values were chosen to yield power that

moved through a reasonable part of the range between zero and one. These results

are given in Tables 1.9, 1.10 and 1.11.

Changing 6 has very little effect on any of the point estimates, other than the

mean of 6 , and we will not discuss the estimation results further.
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Power increases as 6 increases, for obvious reasons. If we compare the WALD,

LM and GDV tests their powers are quite similar. Fine distinctions are hard to make

because even with N = 1000 their sizes were slightly different in Table 1.3. These

tests are all asymptotically valid, and they all have the same asymptotic local power,

so it is not surprising that their powers should be similar for N = 1000. A more

interesting comparison is between their power and the power of the OLS-based tests

(OLS and OLS-H). The OLS-based tests do not make use of the assumption that

the u: are exponential, and the failure to exploit this fact ought to make them less

powerful than the WALD, LM and GDV tests. This turns out to be true, with the

difference in power being non-trivial but not huge. For example, for 6 = 0.1, compare

0.51 for OLS to 0.64 for LM-HES.

We also did some additional simulations with p = 0.9, so that the variables I and

z are more highly correlated than in the cases just considered (which had p = 0.5).

Table 1.12 gives the results for 6 = 0.1 and p = 0.9, and the results for 6 = 0.05

and 0.15 are in our supplemental set of tables. Comparing Table 1.12 to Table 1.10,

we can see that the higher value of p results in substantially lower powers for all of

the tests. Among the asymptotically valid tests, the loss in power is much larger for

the OLS-based tests than for the WALD, LM or GDV tests. These differences are

certainly non-trivial. For example, the power of the LM-HES test changes from 0.64

to 0.48 when p changes from 0.5 to 0.9, while the power of the OLS test changes from

0.51 to 0.17.

The low power of the OLS-based tests occurs because of multicollinearity in the

OLS regression when I and z are highly correlated. The coefficient of z is poorly

estimated and it is hard to reject the hypothesis that it is zero. The MLE-based tests

do a better job of exploiting the nonlinearity of the relationship between y, I and z

and suffer less when I and z are highly correlated. How much this matters, in an

empirical setting, obviously will depend on how different the variables in z are from
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those in I.

Finally, we did some simulations in which the tests are exactly as above, and

are therefore based on the assumption that the true scaling function is exp(6z,-),

when in fact this is not the true scaling function. For these simulations, we have

u,- = ¢(6z,-)(1—<I>(6z,~))'1u,‘-’, where 11) is the standard normal density, <I> is the standard

normal cdf, and 11;? is exponential with parameter A = 1. So, in the data generating

process, the scaling function is the inverse Mill’s ratio, ¢(6z,t)(1 — <I>(6z,))’1.

Under the null, 6 = 0 and u, is exponential with parameter m. So our tests

based on the exponential scaling function correctly encompass the null, and the only

question is power. For the MLE-based tests, their power properties when the scaling

function is misspecified are certainly not clear. For the OLS-based tests, however, we

saw that the same statistic resulted from the score test principle for any monotonic

differentiable scaling function g(6z,-). As a result, we might expect our OLS test to

have better power properties relative to the MLE-based tests when the MLE-based

tests are based on the wrong scaling function.

Table 1.13 gives the simulation results with 6 = 0.1. These simulations have N =

1000, and are based on 2000 replications. The surprising aspect of these results is the

good performance of the MLE-based methods. The parameter estimates look quite

reasonable, despite the misspecification of the model. Similarly the MLE-based tests

are more powerful than the OLS-based tests, despite the arguments of the previous

paragraph. These optimistic results deserve attention in future research.

1.8 Simulation Results: Robustness

In this section we investigate the effects of misspecification of the distribution of the

one-sided error term. Specifically, we will consider the properties of the tests based

on the MLE that assumes an exponential error, when in fact the distribution of 11° is
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either truncated normal or gamma.

We note at the outset that this issue does not arise with our OLS-based tests.

These do not rely on any distributional assumptions on the errors, and they are

asymptotically valid for any error distribution with finite variance (so that the central

limit theorem applies).

The MLE-based tests, on the other hand, will generally be invalid when the error

distribution is misspecified. Fundamentally this is simply because the likelihood is

then misspecified. To be more specific, consider the LM test or the GDV test based

on the normal-exponential model, as discussed in Sections 1.2 and 1.3 above. These

fundamentally depend on the quantity 29;, 2,6,: where f),- is an estimate of b,- :-

E(u,|e,-) — E(ui), with e,- = v,- — 11,. The precise form of b, depends on the assumption

that v, is normal and U? is exponential. If in fact 11;? is not exponential, then E(b,) ¢ 0

and we cannot expect the test to be valid. A secondary but still relevant issue is that

the asymptotic variance of 2:1:17'1’91': which also figures into the test statistic, also

depends on the distributional assumption for 11? being correct. See Section 1.2 above.

We emphasize that the lack of robustness of the MLE-based tests to distribu-

tional misspecification is not just a finite-sample issue. This problem persists even

asymptotically.

The lack of validity of the MLE-based tests should show up in simulations as

incorrect size when the null hypothesis is true. The question then is how serious this

problem is. Greene (1990) has argued that the rankings of estimated inefficiencies

are often not sensitive to distributional assumptions on the one-sided error. Also, the

exponential distribution shares same features with other one-sided distributions. The

half-normal distribution, like the exponential, has a mode at zero. The gamma(gl, 92)

distribution with 91 = 1 is exponential, and for 0 < gl < 1 it has a shape similar to

the exponential.

In the simulations of this section we have a = B = 6 = 0, 03 = 1 and N = 1000.
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The number of replication is 2000.

1.8.1 Normal-truncated normal

Here the distribution of u: is N(p, a2)+, that is, truncated normal. Table 1.14 gives

our results for the case that u = 0 and a2 = 7r/2. This is the half-normal distribution

with mean equal to one. This choice makes the distribution somewhat comparable

to the exponential distribution with parameter one, as in Table 1.3 above. However,

the truncated normal with p = 0 and 02 = 1r/2 has variance equal to 0.57. (A

truncated normal, unlike an exponential does not have its mean equal to its standard

deviation.) We also considered three other cases: (i) p = 0, 02 = 7r/ (7r — 2), for which

the variance equals one but the mean equals 1.32; (ii) p = 0, a2 = 1; (iii) [.1 = 1,

02 = 1. The results for these three cases are in our supplemental set of tables.

In Table 1.14 we see that the OLS-based tests appear to have proper size, while the

MLE-based tests exhibit significant size distortions. For MLE there are also consid-

erable biases in the parameter estimates. The WALD and GDV tests are undersized,

while the LM-OPG test rejects too often. This same pattern occurs for all four cases

that we considered but the extent of the size distortions varied considerably over

choices of p and 03.

Comparing Table 1.14 to Table 1.3, we also see that there are many more repli-

cations dropped when the distribution is misspecified. Obviously the data do not

always fit the likelihood well and numerical problems occur.

1.8.2 Normal—gamma

Now the distribution of u: is gamma(gl, 92). The results in Table 1.15 and Table

1.16 are similar to those in Table 1.14 for the normal-truncated normal case. The

OLS-based tests have more or less proper size, while the MLE-based tests do not. The

LM-OPG test rejects too often, and this is true across all of our (91, gg) values. The
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WALD, LM-HES and GDV tests also show significant size distortions, and sometimes

reject too seldom and sometimes too often, depending the value of (91, 92). The MLE

parameter estimates show clear biases. However, unlike the truncated normal case,

not many replications were dropped here. The exponential model fits the data better

in the normal-gamma case than in the normal-truncated normal case. Interestingly,

that does not mean that it leads to more robust inference in the former case than in

the latter.

1.9 Concluding Remarks

In this chapter we have considered tests of the hypothesis that observable firm char-

acteristics do not affect technical efficiency. We do this in the context of a specific

model in which the one-sided errors are exponential. Under the null they are i.i.d.

while under the alternative they are scaled by a function exp(zz’.6), where z,- are the

firm characteristics whose influence we are testing.

In this context we can estimate the model by MLE and test whether 6 = 0, which

is the WALD test. We can also use an LM test. We show that a simple two-step test

is not valid. (Here step one is to estimate technical efficiency for each firm. Step two

is to regress these estimates on 2,- and test whether the coefficients are zero.) This

test can be made valid by correcting the asymptotic variance matrix for the second-

step estimates. This correction is distribution—specific. When technical efficiency is

exponential, we show that the corrected two-step test is asymptotically equivalent to

the LM test.

We can also derive a valid test from the score test principle applied to the nonlinear

least squares problem. This takes the form of an F-test of the significance of the

coefiicients of z,- in an OLS regression of output on 2,- and the inputs. This test does

not require a distributional assumption and it would be the same for any scaling
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function of the form g(z,’-6), where g is monotonic and differentiable at zero. The

OLS-based test therefore has good robustness properties, but it may be expected to

have lower power than the MLE—based tests when the model for MLE is correctly

specified.

We perform a number of simulations to investigate the size and power properties of

the tests we have suggested. The OLS-based tests do turn out to have good robustness

properties and the MLE-based tests do turn out to be more powerful when the model

is correctly specified. The loss in power for the OLS-based tests is especially large

when the inputs and the firm characteristics 2,- are highly correlated. The MLE—based

tests show significant differences among themselves when the sample size is not very

large. The WALD tests reject too seldom and the LM-OPG test rejects too often.

The LM test using the Hessian (LM-HES) and the corrected two—step test (GDV)

are generally most reliable. The MLE-based tests perform reasonably well if the

scaling function is misspecified but they do not have proper size if the distribution of

inefficiency is misspecified.

These results provide some guidance for empirical work. If the researcher’s interest

is not in the inefficiencies themselves, but just in testing whether they depend on firm

characteristics (like firm size, state versus private ownership, etc.) then the OLS-based

tests would be natural, unless these firm characteristics are very strongly correlated

with the inputs. However, if the researcher is going to estimate firm-level efficiencies

in any case, then a distributional assumption will ultimately be needed, and MLE-

based tests may as well be used. Among these tests the LM test using the Hessian or

the corrected two-step test would be preferred.
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1.10 Output Tables

Table 1.1: (BASE CASE) 0 = fl = 6 = 0, 03 =

[E(exp(—u)) = 0.5232]

A=1,p=0.5,N=200

 

 

 

 

   
 

 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0001 0.1157 0.0134

6 -00342 0.1874 0.0363

8 0.0000 0.1004 0.0101

63 1.0072 0.2279 0.0520

12 0.9594 0.3524 0.1258

IE 0.5148 0.1769 0.0555 0.6131

Restricted MLE(6=0) 5: -0.0214 0.1817 0.0335

,6 0.0001 0.0932 0.0087

53 0.9985 0.2240 0.0502

12 0.9919 0.3461 0.1199

IE 0.5099 0.1767 0.0547 0.6194

Restricted NLLS 1'7 -1.0004 0.0994 0.0099

(OLS on y,=n+6x,-+w,-: 6" 0.0007 0.1004 0.0101

n=—1,p=0,fi,=2) 53,, 2.0019 0.2691 0.0724

STATISTICS; Sizel Size2 Size3 Size4 Mean s.d.

WALD-OPG 0.0211 0.0213 0.0214 0.0215 —0.0027 0.8669

WALD-HES 0.0298 0.0300 0.0296 0.0297 .0.0045 0.9345

LM-OPG 0.0788 0.0783 0.0766 0.0763 1.2115 1.7972

LM-HES 0.0523 0.0518 0.0515 0.0509 1.0561 3.3408*

GDV 0.0466 0.0467 0.0471 0.0471 1.0067 1.3462

BADGDV 0.0363 0.0355 0.0350 0.0344 0.8564 1.2163

OLS 0.0495 0.0490 0.0481 0.0475 -0.0011 0.9973

OLS-H 0.0575 0.0572 0.0561 0.0558 -0.0003 1.0216

BADOLS 0.0237 0.0235 0.0233 0.0230 .0.0010 0.8634

BADOLS-H 0.0266 0.0265 0.0262 0.0260 .0.0014 0.8806

Rep. dropped 0 73 121 171     
 

* due to outliers
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Table 1.2: (Change of N) N = 500, a = 6 = 6 = 0, 0,2, = A = 1, p = 0.5

[E(exp(-u)) = 0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 25‘ 0.0000 0.0649 0.0042

6. -00125 0.1108 0.0124

B 00005 0.0627 0.0039

63 1.0024 0.1405 0.0197

12 0.9849 0.2171 0.0473

IE 0.5050 0.1790 0.0522 0.6215

Restricted MLE(6=0) 6 -0.0074 0.1089 0.0119

[3' -0.0005 0.0583 0.0034

63 0.9986 0.1390 0.0193

12 0.9985 0.2146 0.0461

C’P‘E‘ 0.5032 0.1792 0.0520 0.6227

Restricted NLLS 1'? -10007 0.0632 0.0040

(OLS on y,=n+flI,t+w,-: 6 -00005 0.0629 0.0040

n=—1,B=0.03,=2) 53,, 2.0023 0.1681 0.0283

STATISTICS Sizel Size2_ Size3 Size4 Mean s.d.

WALD-OPG 0.0361 0.0361 0.0361 0.0361 .0.0005 0.9386

WALD-HES 0.0434 0.0434 0.0434 0.0434 0.0003 0.9741

LM-OPG 0.0611 0.0611 0.0611 0.0612 1.0967 1.5831

LM-HES 0.0503 0.0503 0.0502 0.0502 0.9876 1.4005

GDV 0.0502 0.0502 0.0502 0.0502 1.0127 1.3969

BADGDV 0.0355 0.0355 0.0355 0.0355 0.8613 1.2250

OLS 0.0513 0.0513 0.0513 0.0513 0.0005 0.9941

OLS-H 0.0538 0.0538 0.0538 0.0538 0.0008 1.0043

BADOLS 0.0245 0.0245 0.0245 0.0245 0.0003 0.8604

BADOLS-H 0.0254 0.0254 0.0254 0.0254 0.0005 0.8681

Rep.dropped 0 2 8 9     
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Table 1.3: (Change of N) N = 1000, a = fl = 6 = 0, 0,2, = A = 1, p = 0.5

[E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 8 0.0006 0.0450 0.0020

6 -00070 0.0757 0.0058

6 0.0007 0.0447 0.0020

63 1.0023 0.0965 0.0093

512 0.9907 0.1509 0.0228

TE 0.5026 0.1796 0.0514 0.6230

Restricted MLE (6: 0) 6 -0.0046 0.0750 0.0057

8' 0.0005 0.0419 0.0018

63 1.0006 0.0961 0.0092

312 0.9971 0.1499 0.0225

TE" 0.5018 0.1796 0.0514 0.6235

Restricted NLLS 77 -1.0004 0.0448 0.0020

(OLS on y,=n+ 66,415,: 6" 0.0005 0.0449 0.0020

n=—1,,6=0,63=2) 63, 2.0001 0.1196 0.0143

STATISTICS Sizel Sizez' Size3 Size4 Mean s.d.

WALD-OPG 0.0448 0.0448 0.0448 0.0448 0.0141 0.9748

WALD-HES 0.0485 0.0485 0.0485 0.0485 0.0146 0.9916

LM-OPG 0.0577 0.0577 0.0577 0.0577 1.0545 1.5021

LM-HES 0.0513 0.0513 0.0513 0.0513 1.0006 1.4092

GDV 0.0522 0.0522 0.0522 0.0522 1.0136 1.4101

BADGDV 0.0377 0.0377 0.0377 0.0377 0.8789 1.2469

OLS 0.0490 0.0490 0.0490 0.0490 .0.0143 0.9970

OLS-H 0.0488 0.0488 0.0488 0.0488 -0.0145 1.0008

BADOLS 0.0243 0.0243 0.0243 0.0243 -0.0124 0.8636

BADOLS-H 0.0253 0.0253 0.0253 0.0253 -0.0123 0.8661

Rep. dropped 0 0 1 1      
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Table 1.4: (Change of p) p = —0.5, a = 6 = 6 = 0, 63 = A = 1, N = 200

[E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0012 0.1157 0.0134

6 -0.0338 0.1859 0.0357

3 -0.0003 0.0994 0.0099

63 1.0071 0.2273 0.0517

512 0.9596 0.3518 0.1254

TE 0.5147 0.1769 0.0554 0.6133

Restricted MLE (6:0) 6 -00210 0.1808 0.0331

6 0.0001 0.0933 0.0087

63 0.9984 0.2244 0.0504

12 0.9922 0.3458 0.1196

TE 0.5098 0.1767 0.0546 0.6194

NLLS under the null 77' -1.0002 0.0995 0.0099

(OLS on y,=n+ 66,416,: ,6 0.0008 0.1004 0.0101

n=—1,6=0,63,=2) 63, 2.0023 0.2689 0.0723

STATISTKTS Sizel Sizez’ Size3 Size4 Mean s.d.

WALD-OPG 0.0175 0.0176 0.0177 0.0178 0.0092 0.8595

WALD-HES 0.0302 0.0304 0.0302 0.0304 0.0093 0.9313

LM-OPG 0.0776 0.0773 0.0758 0.0756 1.2179 1.7921

LM-HES 0.0515 0.0503 0.0515 0.0502 1.0036 1.4506

GDV 0.0467 0.0470 0.0472 0.0474 1.0081 1.3418

BADGDV 0.0367 0.0360 0.0355 0.0349 0.8546 1.2196

OLS 0.0495 0.0490 0.0481 0.0477 -0.0007 0.9973

OLS-H 0.0575 0.0571 0.0560 0.0557 0.0003 1.0217

BADOLS 0.0239 0.0236 0.0234 0.0231 -0.0002 0.8629

BADOLS-H 0.0283 0.0282 0.0276 0.0275 0.0013 0.8808

Rep. dropped 0 82 133 184       
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Table 1.5: (Change of p) p = 0,01 = 6 = 6 = 0, 03 = A = 1, N = 200 [E(exp(—u)) =

 

 

 

 

   

0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0007 0.1062 0.0113

6 —0.0339 0.1858 0.0357

B 0.0001 0.0934 0.0087

63 1.0072 0.2271 0.0516

.12 0.9605 0.3509 0.1247

TE 0.5145 0.1767 0.0556 0.6150

Restricted MLE(6=0) 64 -0.0214 0.1812 0.0333

6 0.0001 0.0933 0.0087

63 0.9987 0.2243 0.0503

Li? 0.9916 0.3459 0.1197

T‘E’ 0.5099 0.1767 0.0546 0.6194

Restricted NLLS 17 -10003 0.0994 0.0099

(OLS on y,=77+ 66,316,: 6 0.0008 0.1004 0.0101

n=—1,6=0,63,=2) ”3, 2.0020 0.2690 0.0723

STATISTICS Sizel Size2_ Size3 Size4 Mean s.d.

WALD-OPG 0.0207 0.0208 0.0209 0.0210 0.0034 0.8710

WALD-HES 0.0293 0.0295 0.0293 0.0295 0.0019 0.9376

LM-OPG 0.0770 0.0763 0.0754 0.0748 1.2030 1.7534

LM-HES 0.0515 0.0502 0.0514 0.0500 1.0164 1.6641

GDV 0.0452 0.0453 0.0455 0.0455 1.0128 1.3481

BADGDV 0.0517 0.0507 0.0502 0.0492 0.9824 1.3752

OLS 0.0495 0.0485 0.0483 0.0474 .0.0013 0.9963

OLS-H 0.0575 0.0568 0.0563 0.0556 .0.0002 1.0211

BADOLS 0.0499 0.0489 0.0487 0.0478 —0.0013 0.9963

BADOLS-H 0.0557 0.0550 0.0545 0.0539 .0.0002 1.0159

Rep. dropped 0 70 118 162
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Table 1.6: (Change ofp) p = 0.9, a = )6 = 6 = 0, 0,2, = ,\ = 1, N = 200 [E(exp(-U)) =

 

 

 

 

   
 

 

 

 

 

0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 -00012 0.1414 0.0200

6 -00321 0.1876 0.0362

6” -0.0008 0.1217 0.0148

*3 1.0051 0.2280 0.0520

12 0.9593 0.3544 0.1272

{FE 0.5149 0.1781 0.0560 0.6079

Restricted MLE(6=0) 6 -00200 0.1812 0.0332

6 0.0000 0.0934 0.0087

63 0.9970 0.2234 0.0499

12 0.9946 0.3459 0.1196

TE 0.5094 0.1769 0.0546 0.6195

Restricted NLLS 6 -1.0004 0.0995 0.0099

(OLS on y,=n+6r,e+w,-: 6 0.0007 0.1005 0.0101

n=—1,6=0,63,=2) 63, 2.0030 0.2695 0.0726

STATISTICS Sizel Size2- Size3 Size4 Mean s.d.

WALD-OPG 0.0188 0.0191 0.0192 0.0195 -0.0132 0.8417

WALD-HES 0.0314 0.0319 0.0316 0.0320 -0.0149 0.9290

LM-OPG 0.0820 0.0815 0.0807 0.0803 1.2490 1.8683

LM—HES 0.0561 0.0558 0.0558 0.0552 1.0876 6.7456*

GDV 0.0405 0.0408 0.0414 0.0415 0.9791 1.2808

BADGDV 0.0108 0.0106 0.0109 0.0108 0.5739 0.8467

OLS 0.0495 0.0491 0.0486 0.0484 0.0027 0.9991

OLS-H 0.0575 0.0571 0.0565 0.0562 0.0037 1.0230

BADOLS 0.0000 0.0000 0.0000 0.0000 0.0015 0.4345

BADOLS-H 0.0000 0.0000 0.0000 0.0000 0.0008 0.4441

Rep. dropped 0 171 217 346     
 

* due to outliers

33



Table 1.7: (Change of A) A = 3, a = 6 = 6 = 0, 03 = 1, p = 0.5, N = 200

[E(exp(-u)) = 0.1095]
 

 

 

 

   
 

 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0000 0.0768 0.0059

6 -0.0183 0.2100 0.0445

6 -0.0010 0.1462 0.0214

63 0.9873 0.3385 0.1147

,1? 8.9144 1.7316 3.0054

TE 0.2531 0.2234 0.0330 0.7736

Restricted MLE(6=0) (1 -0.0122 0.2502 0.0627

6 -0.0010 0.1411 0.0199

63 0.9884 0.9388 0.8814

12 9.0074 1.7342 3.0072

”FE 0.2521 0.2234 0.0337 0.7740

Restricted NLLS 6 -2.9982 0.2227 0.0496

on y,=n+6r,-+w,-: 6 0.0003 0.2224 0.0495

n=—3,6=0,63,=10 63, 9.9914 1.8539 3.4365

STATISTICS Sizel Size2_ Size3 Size4 Mean s.d.

WALD-OPG 0.0397 0.0402 0.0397 0.0402 0.0001 0.9366

WALD-HES 0.0422 0.0427 0.0422 0.0427 .0.0002 0.9757

LM-OPG 0.0629 0.0580 0.0629 0.0580 1.0675 1.4782

LM-HES 0.0493 0.0440 0.0493 0.0441 0.9573 1.3053

GDV 0.0545 0.0499 0.0545 0.0499 1.0083 1.3753

BADGDV 0.0443 0.0386 0.0443 0.0386 0.8949 1.2349

OLS 0.0503 0.0440 0.0503 0.0441 .0.0041 0.9753

OLS-H 0.0565 0.0513 0.0565 0.0513 -0.0027 1.0011

BADOLS 0.0226 0.0183 0.0226 0.0183 .0.0034 0.8449

BADOLS-H 0.0259 0.0228 0.0259 0.0228 -0.0030 0.8664

Rep. dropped 0 124 1 125     
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Table 1.8: (Change of 63) 63 = 9, 6 = = 6 = 0, A = 1, p = 0.5, N = 200

[E(exp(—u)) = 0.5100]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0012 0.2333 0.0544

6 0.0486 0.5434 0.2977

6 0.0035 0.2494 0.0622

63 8.5074 1.3725 2.1263

12 1.3239 1.1434 1.4120

TE 0.5221 0.0982 0.1002 0.2302

Restricted MLE(6=O) 6 0.0713 0.5544 0.3124

6 0.0036 0.2262 0.0512

63 8.5207 1.4162 2.2351

12 1.4226 1.1787 1.5676

TE 0.5138 0.0819 0.0965 0.2771

Restricted NLLS 6 -10015 0.2221 0.0493

(OLS on y,-_-6+ 66,416,: 6 0.0040 0.2254 0.0508

6=—1,6=0,63,=10) 63, 10.0157 1.0331 1.0675

STATISTICS Sizel Size2 f Size3 Size4 Mean s.d.

WALD-OPG 0.0011 0.0014 0.0021 0.0024 .0.0040 0.5877

WALD-HES 0.0041 0.0054 0.0040 0.0045 -0.0067 0.7009

LM-OPG 0.0792 0.0834 0.0506 0.0531 0.9325 1.4464

LM-HES 0.0506 0.0530 0.0674 0.0634 1.4862 21.7190*

GDV 0.0177 0.0160 0.0107 0.0114 0.6292 0.8579

BADGDV 0.0317 0.0305 0.0143 0.0133 0.5772 0.8821

OLS 0.0520 0.0503 0.0326 0.0323 0.0122 0.8829

OLS-H 0.0576 0.0558 0.0369 0.0363 0.0148 0.9078

BADOLS 0.0241 0.0234 0.0128 0.0123 0.0107 0.7641

BADOLS-H 0.0287 0.0286 0.0162 0.0163 0.0115 0.7844

Rep. dropped 0 2352 4689 5349      
* due to outliers
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Table 1.9: (Change of 6) 6 = 0.05, a = 6 = 0, 0,2, = A = 1, p = 0.5, N = 1000

[E(exp(-u)) = 0.5232]
 

 

 

 

   
 

 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0520 0.0450 0.0020

6 -0.0048 0.0753 0.0057

6 0.0023 0.0442 0.0020

*3 1.0004 0.0979 0.0096

.12 0.9935 0.1507 0.0227

TE 0.5023 0.1802 0.0514 0.6240

Restricted MLE(6=0) 6 0.0006 0.0743 0.0055

6 -0.0156 0.0413 0.0020

63 0.9964 0.0971 0.0094

Z\2 1.0087 0.1497 0.0225

TE 0.5001 0.1803 0.0514 0.6240

Restricted NLLS (OLS on 77 -1.0009 0.0466 0.0022

yi=n+BI,-+w,-:n=—1.0013, 6 -0.0238 0.0447 0.0020

6=—0.0250,63,=2.0075) 63, 2.0091 0.1197 0.0143

STATISTICS [Powerl Power2 Power3 Power4 Mean s.d.

WALD-OPG l0.1960 0.1960 0.1962 0.1962 1.1269 0.9574

WALD-HES 0.2035 0.2035 0.2037 0.2037 1.1489 0.9714

LM—OPG 0.2270 0.2270 0.2272 0.2272 2.4506 2.7265

LM-HES 0.2090 0.2090 0.2092 0.2092 2.3278 2.5553

GDV 0.2115 0.2115 0.2117 0.2117 2.3049 2.4668

BADGDV 0.1710 0.1710 0.1712 0.1712 2.0401 2.2455

OLS 0.1690 0.1690 0.1687 0.1687 -0.9800 1.0053

OLS-H 0.1670 0.1670 0.1672 0.1672 —0.9824 1.0085

BADOLS 0.1000 0.1000 0.1001 0.1001 -0.8492 0.8713

BADOLS-H 0.0985 0.0985 0.0986 0.0986 -0.8496 0.8727

Rep. dropped 0 0 2 2    
  
The number of replication is 2000.
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Table 1.10; (Change of 6) 6 : 0.1, a : 6 : 0, 63 : ,\ : 1, p : 0.5, N : 1000

[E(exp(——u)) = 0.5232]
 

 

 

 

   
 

 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.1024 0.0456 0.0021

6 -00047 0.0754 0.0057

6 0.0022 0.0441 0.0020

63 1.0003 0.0979 0.0096

62 0.9935 0.1517 0.0230

TE 0.5023 0.1814 0.0513 0.6268

Restricted MLE (6:0) 6 0.0092 0.0739 0.0055

6 -00329 0.0414 0.0028

63 0.9901 0.0970 0.0095

12 1.0336 0.1515 0.0241

TE 0.4973 0.1817 0.0515 0.6251

Restricted NLLS (OLS on 77 -1.0047 0.0467 0.0022

y,:6+6x,-+w,~:6:—1.0050, 6 —0.0490 0.0449 0.0020

6:—0.0503,e3,:2.0304) 63, 2.0305 0.1228 0.0151

STATISTICS Powerl Power2 Power3 Power4 Mean s.d.

WALD-OPG 0.6115 0.6118 0.6115 0.6118 2.1879 0.9419

WALD-HES 0.6350 0.6353 0.6350 0.6353 2.2309 0.9407

LM—OPG 0.6580 0.6578 0.6580 0.6578 6.4945 4.8214

LM-HES 0.6410 0.6408 0.6410 0.6408 6.1642 4.5083

GDV 0.6425 0.6423 0.6425 0.6423 5.8979 4.1321

BADGDV 0.5915 0.5913 0.5915 0.5913 5.4355 4.0116

OLS 0.5105 0.5103 0.5105 0.5103 —1.9417 1.0116

OLS-H 0.5060 0.5058 0.5060 0.5058 -1.9357 1.0040

BADOLS 0.3770 0.3767 0.3770 0.3767 -1.6816 0.8769

BADOLS-H 0.3685 0.3682 0.3685 0.3682 -1.6696 0.8681

Rep. dropped 0 1 0 1      
The number of replication is 2000.
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Table 1.11: (Change of 6) 6 : 0.15, a : 6 : 0, e3 : A : 1, p : 0.5, N : 1000

[E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE ” 0.1528 0.0465 0.0022

0mw 0mm 0mm

0.0021 0.0440 0.0019

63 10000 00979 00096

A2 0%% 0mm 0mn

awn 0mm 0mm 0mm

0mn 0mm 0mm

-0M% 0mm 0mg

0%m 0mm 0W%

10744 01556 00297

0.4925 0.1837 0.0516 0.6269

-1mm 0mm 0mm

0mm 0mm 0mm

2mm 0mm 0mm

 

 

7
%
)

Q
)

0
'
1

)

 

Restricted MLE (6 = 0)

 

Restricted NLLS (OLS on

31; = 7) + 61‘; + 11),: 7) = —1.0113,

6 : —0.0758, 63, : 2.0693)   q
u
m
q
.

g
)

$
3
1
,
7
5
1
.
.
Q
:
g
)

 

 

 

 

 

 

STATISTICS l Powerl Power2 Power3 Power4 Mean s.d.

WALD-OPG 0.9100 0.9114 0.9104 0.9118 3.1972 0.9177

WALD-HES 0.9255 0.9269 0.9259 0.9273 3.2605 0.8930

LM-OPG 0.9350 0.9349 0.9354 0.9353 13.1080 7.0740

LM-HES 0.9310 0.9309 0.9314 0.9313 12.4001 6.5219

GDV 0.9280 0.9279 0.9284 0.9283 11.3511 5.6386

BADGDV 0.9065 0.9064 0.9069 0.9068 11.0093 5.9053

OLS 0.8220 0.8217 0.8228 0.8226 -2.9061 1.0167

OLS-H 0.8230 0.8227 0.8238 0.8236 -2.8711 0.9920

BADOLS 0.7425 0.7421 0.7432 0.7429 -2.5151 0.8813

BADOLS-H 0.7300 0.7296 0.7307 0.7303 -2.4673 0.8566

Rep. dropped 0 3 2 5    
  
The number of replication is 2000.
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Table 1.12: (Change of6 and p) 6 = 0.1, p = 0.9, a = 6 = 0, 03 = A = 1, N = 1000

[E(exp(—u)) = 0.5232]
 

 

 

 

   
 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.1032 0.0541 0.0029

6 -0.0048 0.0757 0.0058

6 0.0032 0.0531 0.0028

63 1.0007 0.0980 0.0096

62 0.9926 0.1525 0.0233

TE 0.5024 0.1815 0.0514 0.6261

Restricted MLE (6:0) 6 0.0052 0.0747 0.0056

6 -0.0607 0.0416 0.0054

63 0.9932 0.0975 0.0095

.12 1.0257 0.1520 0.0238

TE 0.4983 0.1811 0.0516 0.6235

Restricted NLLS (OLS on 6 -10047 0.0468 0.0022

y,:n+6c,-+w,-:6:—1.0050, 6 -0.0890 0.0452 0.0020

6:—0.0905,63,:2.0304) 63, 2.0252 0.1220 0.0149

STATISTICS Powerl Power2 Power3 Power4 Mean s.d.

WALD-OPG 0.4405 0.4429 0.4405 0.4429 1.8212 0.9378

WALD-HES 0.4655 0.4681 0.4655 0.4681 1.8627 0.9343

LM—OPG 0.4915 0.4902 0.4915 0.4902 4.8166 4.0995

LM-HES 0.4835 0.4816 0.4835 0.4816 4.5987 3.8783

GDV 0.4670 0.4656 0.4670 0.4656 4.2959 3.4242

BADGDV 0.2675 0.2680 0.2675 0.2680 2.7913 2.3952

OLS 0.1715 0.1699 0.1715 0.1699 -0.9813 1.0056

OLS-H 0.1705 0.1689 0.1705 0.1689 -0.9835 1.0083

BADOLS 0.0000 0.0000 0.0000 0.0000 -0.4280 0.4382

BADOLS-H 0.0000 0.0000 0.0000 0.0000 -0.4247 0.4355

Rep. dropped 0 11 0 11      
The number of replication is 2000.
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Table 1.13: (Change of scaling functions to ¢(6z,-)/(1 — <I>(6z,-))) 6 = 0.1, a = 6 = 0,

63 : A : 1, p : 0.5, N : 1000 [E(exp(—u)) : 0.5232]
 

 

 

 

   
 

 

 

 

    
The number of replication is 2000.
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ESTIMATION METHODS Estimates Mean s.d. MSE Corr

6 0.0827 0.0514 0.0029

6 -0.0065 0.0783 0.0062

6 0.0021 0.0418 0.0018

63 1.0012 0.0938 0.0088

12 0.6278 0.1206 0.1531

TE 0.5600 0.1574 0.0627 0.5509

Restricted MLE (6 : 0) 6 0.0043 0.0764 0.0059

6 -0.0230 0.0389 0.0020

63 0.9939 0.0928 0.0086

Li? 0.6503 0.1187 0.1364

TE 0.5557 0.1577 0.0623 0.5485

Restricted NLLS 77 -0.7987 0.0420 0.0423

(OLS on 6,:6+6s,-+w,:: 6 -00305 0.0406 0.0026

6:—1,6:0,63,:2) 63 1.6471 0.0897 0.1550

—STATISTICS P6wer4 Mean s.d.

WALD-OPG 0.3255 1.5395 0.9178

WALD-HES 0.3540 1.5824 0.9317

LM-OPG 0.4045 3.8867 73.6256

LM-HES 0.3740 3.6723 3.6913

GDV 0.3745 3.4652 3.0224

BADGDV 0.3170 3.1357 2.9020

OLS 0.2825 -1.3685 1.0079

OLS-H 0.2855 .1.3710 1.0093

BADOLS 0.1855 -1.1856 0.8737

BADOLS-H 0.1885 -1.1848 0.8731

Rep. dropped 0



 

 

 

 

   
 

 

 

 

 

Table 1.14: (Change of the distribution of u: to N(0,7r/2)+) a = 6 = 6 =

0,2,=A=1,p=0.5,N=1000[E(exp(-—u))=0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 -0.0001 0.0746 0.0056

6 -04192 0.1093 0.1876

6 0.0015 0.0423 0.0018

63 1.2244 0.1108 0.0626

62 0.3455 0.1110 0.4407

TE 0.6359 0.1128 0.0834 0.5383

Restricted MLE (6:0) 61 -0.4106 0.1087 0.1804

6 0.0013 0.0383 0.0015

63 1.2185 0.1118 0.0602

.12 0.3569 0.1148 0.4268

TE 0.6320 0.1131 0.0815 0.5465

Restricted NLLS 6 -09993 0.0396 0.0016

(OLS on y,:6+6r,-+w,-: 6 0.0015 0.0386 0.0015

6:—1,6:0,63,:2) 63, 1.5730 0.0717 0.1874

STATISTICS Sizel Size2: Size3 Size4 Mean s.d.

WALD-OPG 0.0210 0.0213 0.0221 0.0223 -0.0005 0.8788

WALD-HES 0.0270 0.0274 0.0285 0.0287 .0.0003 0.9174

LM-OPG 0.0635 0.0635 0.0622 0.0622 1.0649 1.5782

LM-HES 0.0635 0.0620 0.0611 0.0595 1.0941 2.0656

GDV 0.0370 0.0371 0.0390 0.0388 0.9229 1.2642

BADGDV 0.0320 0.0320 0.0311 0.0308 0.8265 1.2130

OLS 0.0500 0.0503 0.0496 0.0494 0.0159 0.9915

OLS-H 0.0515 0.0518 0.0506 0.0505 0.0163 0.9963

BADOLS 0.0250 0.0249 0.0253 0.0250 0.0142 0.8591

BADOLS-H 0.0250 0.0249 0.0248 0.0244 0.0145 0.8626

Rep. dropped 0 32 103 118     
 

The number of replication is 2000.
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Table 1.15: (Change of the distribution of 11;? to gamma(0.5,2)) a = 6 =

0,2,=A=1,p=0.5,N=1000[E(exp(—u))=0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0003 0.0413 0.0017

6 0.4262 0.0651 0.1859

6 0.0010 0.0444 0.0020

63 0.7906 0.0825 0.0507

.12 2.0376 0.2222 1.1259

TE 0.4149 0.2146 0.0886 0.6763

Restricted MLE (6:0) 6 0.4276 0.0658 0.1871

6 0.0010 0.0422 0.0018

63 0.7897 0.0831 0.0511

12 2.0450 0.2243 1.1424

TE 0.4144 0.2146 0.0888 0.6763

Restricted NLLS 17 -1.0003 0.0550 0.0030

(OLS on y,=n+6I,-+w,-: 6 0.0013 0.0541 0.0029

6:—1,6:0,.r3,:2) 63, 2.9983 0.2504 1.0594

—STATISTICS S-ize4 Mean s.d.

WALD-OPG 0.0860 0.0059 1.1330

WALD-HES 0.0765 0.0069 1.0860

LM-OPG 0.0630 1.1103 1.5402

LM-HES 0.0765 1.1829 1.6295

GDV 0.0585 1.0788 1.4734

BADGDV 0.0495 0.9787 1.3557

OLS 0.0560 .0.0140 1.0078

OLS-H 0.0540 -0.0143 1.0091

BADOLS 0.0235 -0.0120 0.8725

BADOLS-H 0.0230 -0.0122 0.8722

Rep. dropped 0   
The number of replication is 2000.
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Table 1.16: (Change of the distribution of 11;? to gamma(2,0.5)) 01 = 6 =

0,2,=A=1,p=0.5,N=1000[E(exp(—u))=0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0013 0.0639 0.0041

6 -0.3772 0.0976 0.1518

6 0.0006 0.0413 0.0017

63 1.1015 0.1041 0.0211

12 0.3945 0.1088 0.3785

TE 0.6187 0.1250 0.0703 0.5223

Restricted MLE (6:0) 6 -0.3695 0.0984 0.1462

6 0.0003 0.0379 0.0014

63 1.0959 0.1050 0.0202

X2 0.4058 0.1132 0.3659

fi 0.6154 0.1255 0.0690 0.5263

Restricted NLLS 6 -0.9997 0.0392 0.0015

(OLS on y,:6+6.r,-+w,-: 6 0.0001 0.0385 0.0015

6:—1,6:0,63,:2) 63, 1.5002 0.0708 0.2548

STATISTICS Sizel Size2_ Size3 Size4 Mean s.d.

WALD-OPG 0.0300 0.0301 0.0304 0.0304 0.0204 0.9101

WALD-HES 0.0320 0.0321 0.0324 0.0325 0.0178 0.9430

LM-OPG 0.0640 0.0637 0.0633 0.0634 1.0674 1.4957

LM-HES 0.0600 0.0591 0.0592 0.0588 1.0155 1.4688

GDV 0.0415 0.0411 0.0415 0.0416 0.9545 1.2671

BADGDV 0.0335 0.0331 0.0329 0.0330 0.8294 1.1569

OLS 0.0480 0.0476 0.0471 0.0472 .0.0240 0.9990

OLS—H 0.0500 0.0496 0.0491 0.0492 -0.0236 1.0057

BADOLS 0.0235 0.0231 0.0228 0.0228 -0.0211 0.8648

BADOLS-H 0.0245 0.0241 0.0238 0.0238 -0.0206 0.8694

Rep. dropped 0 5 25 28     
 

The number of replication is 2000.
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1.11 Appendix: LM Test for the Scaled Exponen-

tial Case

Recall that the LM statistic of (1.18) is:

LM : V5 lnL(6)’[i'55 — I53I33I351-1v51nu6)

1 N I 1 N
_ __ ”.. " _“ ”-1“ -1 _ ”..
— A E; b: 2, [I66 I6¢I¢¢I¢6l :\ 2 0,2,

1 N~ ’62- ~-_1~ '1 1 N~
= fizbizi [N (1756—1-61pr$1.35)] “fizbizi .

i=1

Now we compare LM with x/N’y’ (Var(\/N’y))’1\/N’y where the asymptotic dis-

tribution of x/Nfi is derived in (1.8):

WI'WarN—IVID’IWI

1 N ~ I 1 N —1 1 1 N \_1 1 N ~
: (figbili) (Ngzzzz) BA B (Ngzizz) (figb'z')

_ Lisz- ’A—l J—fié +0 (1)__ mizl , , mi=1 121 P

1 N ~ I 1 N I -1
= (76,233) N§(Zibi +GTi)(Zibi +070)

(1.36)

In the following we prove LM and x/I—V’y’ (Var(\/N’y))‘1\/N'jr have the same as-

ymptotic distribution by showing that the probability limit of (N'1 23:1(233, +

Gr,)(z,-b,~ + Gr,)') is [A2(I§5 — 1,3301%;11;6)] where 1° is the limiting information
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matrix as defined in (1.12).

From (1.15), the gradient of the log-likelihood, V9 lnL(6) is

    

  

  

    

l L

(£661 (26:13:15) A

61 L

79%— : 2914835)
(137)

01 L —
-

(Tang 26:1 31106)

61 L N . 2

(fir) (2.: 50 ))

Specifically,

N N 2

, __ 0v62' 52' _ 0,, _ .

2381(6) — g (Aexp(z’6) Aexp(z£6) A2 exp(22,’-6) 1) 2,,

N N

{i 1 >
3' 5 = (— -—— I ,

g 1( ) rzzl 0v Aexp(2:6) 1

N N

2 _ ( 1 _ 5i fig;

E5310“) — Z; \2A2 exp(2zg6) 2A exp(zf6)av + 203) ’

N N

2:302) = :1( avg, 6‘ _ <73 _ 1 )

i=1 1 6— 2A3 exp(3z’-6) 2A3 exp(3zg6) 2A4 exp(4z,’-6) 2A2 exp(Zzgé)

(1.38)

where

' A 652' Z (Mg/av + 012/( exp(z’- ))) (1.39)
 

1 — @(ei/av + ov/(A exp(z;6)))

Let H(6) denote the Hessian, vglan) _=_ 62 lnL(0)/6066', and If denote H(6)

evaluated at 19 = 6 = (0’, 6’, 63, Az)’. We partition If conformably to (1.17) as

.. F155 H611»

H : (1.40)

6,), H66
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where 17...... stands for the *,* block of H, evaluated at the estimates, and 16 =

(6’, 03, A2)’. Specifically, each element of If is:

N N

H55 = A—2 Z (Var(u,|c,-) -— A2) 232;,

H56—— (A011))IZVar(u,-|6,-))x,‘2it

1': 1N

H036 : (2A63)‘121((—— — —) Vmeo + A)z,’.,

6,2, = (269-12 (Var(u.-lei) — i2) 2;,
1:1

N

H66 — a. 4 Z (Var(ut'let) — a.) 4.4;,
i=1

N E-

' 2 1 J— — s v — ’,H v5 ( 0 ) g ((53 ) ar(u1l€1) 51) $1

a. N N

HA26 = (2A 03)'12Var(u,|e,-)I,,

i=1

" — 45-1 _i___"l .._~2_ 7H0303 — (4011) 12:; ((6,, A ) Var(u,|6,) 6, 200) ,

a. N C 1 N

HA202 = (4A363)_1 Z ((732- — —) Var(u,|c,-) + A),

” i=1 a” ’\

~ ~ N N ~

HA2A2 = (466)—1 Z (Var(ui|€i) — 62) .

i=1

where we use

56.1..) = a. (a — (.3— . m3W»,

Var(u,|e,-)-— 0,,2(1 +((:: + Egg-(2767) 5,- - £3).
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Lemma 1. Let G be defined as in (1.9c). Then, with 6 = 0,

1 N
)1 1 N

GZNZZzwa(yi,:z:,',1f)16) +0p(1)=1—V'Xzziv1pf(yiixiiw)’ +0130)

i=1
=1

1WW

fi
M
z A

(1.43)

A 2 /\
= NVW lnL I5=0 + 0p(1) = I—V-H5¢,6:0 + 013(1)

1

= -A (-1—V-H6¢,6:0) + 012(1) = ‘6166,6:0 + 010(1)-

Lemma 2. With 6 = 0,

I 1 N

2 _ . . ’

ATl‘NEb 2'4:N12(1b'2') (132') _ 623866666) [5:0 (144)

: 166,6:0 + 019(1)-

Lemma 3. Consider 221:1 5,-(1p) = (211:1 s,(6)', 2,111 3,-(03), 221:1 s,(A2))' as given

in (1.38). Then, with 6 : 0, N-1 23:, 5,-(1616,-)6 2’- -A1365:0 + 6,,(1).

Proof. Note that N‘1 21:1 s,(1,/2)b,-zz'- is equal to:

 

 

 

N

(012:; ZEVar(u,|e,)I,z
\

N /\ . 1

+ ;(N(§ _. 5%) — W(Eu,lei - Emu-”1'21

—1 i (EL_1)V ( I )_ ) I
20.3N i=1( 03 A 31' U1, 61; 51, zi

N

A 1 6 66

‘N§('2T_2A6v 26;) '

1 ib2 I

1—28 /
  

47



          

  

 

 

  

—1

(012)1( ' dwizi \

1 N 2 03 035i ‘73
+:‘3Ni:=;(2av+x\—2+ A —()\o + (1)503);

= ’1 iv: (fi— l)Var(u |e)— e-zg)
203Ni=1 0,2, /\ 1 1

N

/\ 1 5 e 6

_ N236? - 2):» + 2117:)”,i

1 N

(513—334 )

(1.45)

Now, the second terms in the first two elements of the above vector converge in

probability to zero:

1 N 04 026' 03 I

0v2N (202 +—— A — (Adv + T) €1)$1'Z¢' = 013(1),

1:1

N

/\ 1 £1 6161' I
— — — . = 1 .
N 21(2A2 2m, + 203 z* 0P( )

1:

  

   

 

This is because, first,

1 o4 026‘ o3

E [32 (203+ A7 + :2- (Am) + 3%) 6i) 2:21;]

104 3 I

=00—(203"+ 73 +9; E(ei) — (m + ”7) Boss) E(m)

 

1 2 o4 02 03 0v I
= 3 (20,, + Kg + 7W4) - (My + 3(- 7 E03121): 0,

U

(1.46)

(1.47)

where, with 6 = 0, e,- and 45,- are functions of only the error terms, 12,- and 11;” which
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are assumed to be independent of x,- and 2,. Note that E(g,) = (Iv/A since

/\ = E(uz’) = E[E(u1|61)l= E [01: (£1 — (:1. + if)»

A a v (1.48)

= 01) (E(éi) + 0—v " f):

which we solve for E(fi). Secondly,

1 £1 6161' _ , 2 _

E(2A2 2on 20,3 ”AE31(0v)l6=0—0

 (1.49)

where 3,-(03) is as defined in (1.38). Then (1.45) is equal to:

-—(03N)"1 25:1 Var(u,'|e,')xiz,'- + op(1)

—(203N>-1 21:1 ((4103 — 1/A)Var(uilez-> - e1) 2: + 0,41)
_ N (1.50)

(243M 1212151? 31"

l

= WWW+ 0pm = A (--1\7H¢6,6=0) + opal) = Hinze + 0pm.

Cl

Recall that 1‘,- = r,(16) = I°_ls,-(16) = 112d16=03i(¢) = Izglsi as shown in (1.11).

Now we are ready to evaluate our main expression:

i=1

l N

= N bezzz; (1.51a)

i=1

1 N , ,
+ ’N 2amp (1511))

1:1

1 N , ,
+ 7V- 2 ZzszzG (1'51C)

1'21
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N

1

+ Egon-5,2,5. (1.51d)

We will evaluate these term by term. By Lemma 2,

bfz,z-gz _—A21°, + 0,,(1). (1.52)

2
|
~

"
S
L
'
M
2

Next, we evaluate (1.51b):

N
N

52:0We13—AI§1><11115><11115>'<—4116>+0p<1>i=1

2 1 1 N 1_ I _.

= A 134131 “N232“ 131 11715 +0100) (1.53)
z:

_ 2 —1 —

— ’\ 13111741 13113111745 + 019(1)

= 421311111115 + 05(1)

Finally, we evaluate (1.51c):

N N
1 1 _
N E zibz-rgG’ = N E :ZibiS;I;¢l(“’\Izc66) + 013(1)

i=1 i=1

1.54

: (W¢)I;;1(“AI;5) + 013(1) (using Lemma 3) ( )

= —AZI§¢I;;1117}6 + 0p(1).

And term (1.51d) is exactly the same as this term.

Inserting (1.52), (1.53) and (1.54) into (1.51), we obtain

N

1 o _
N 21:(z,b + on) (5,5,- + Gr,)’ = A2 (13’, -— 1,5,13,11,35) + 0p(1)- (1-55)

Therefore the expressions inside the inverse in equations (1.35) and (1.36), for the

LM test and the GDV test respectively, have the same probability limit.
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1.12 Appendix: Supplementary Tables

Supplemental Table 1.17: (Change of p) p = 0.25, a = 5 = 6 = 0, 0,2, = A = 1,

N = 200 [E(exp(—u)) = 0.5232]
 

 

 

 

   
 

 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 8 0.0003 0.1084 0.0118

6 -0.0338 0.1859 0.0357

6 0.0001 0.0951 0.0090

63 1.0069 0.2271 0.0516

12 0.9606 0.3510 0.1247

TE 0.5145 0.1767 0.0553 0.6145

Restricted MLE(6=O) 6! -0.0213 0.1811 0.0333

3 0.0001 0.0933 0.0087

63 0.9985 0.2241 0.0502

12 0.9918 0.3459 0.1197

CFE 0.5098 0.1767 0.0546 0.6194

Restricted NLLS 5 4.0003 0.0994 0.0099

(OLS on y,=n+6x,-+w,-: B 0.0008 0.1004 0.0101

n=—1,6=0,a§,=2) 6,3, 2.0020 0.2691 0.0724

STATISTICS; Sizel Size2 ' Size3 Size4 Mean s.d.

WALD-OPG 0.0212 0.0214 0.0215 0.0216 .0.0005 0.8719

WALD-HES 0.0303 0.0305 0.0305 0.0306 .0.0019 0.9385

LM-OPG 0.0787 0.0780 0.0769 0.0762 1.2060 1.7718

LM-HES 0.0516 0.0507 0.0512 0.0503 1.0830 6.7671*

GDV 0.0465 0.0465 0.0471 0.0470 1.0121 1.3502

BADGDV 0.0484 0.0475 0.0469 0.0461 0.9524 1.3354

OLS 0.0495 0.0487 0.0483 0.0475 0.0008 0.9966

OLS-H 0.0575 0.0569 0.0563 0.0558 0.0016 1.0212

BADOLS 0.0432 0.0425 0.0420 0.0413 0.0007 0.9650

BADOLS-H 0.0490 0.0484 0.0479 0.0473 0.0009 0.9839

Rep. dropped 0 73 124 172      
* due to outliers
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Supplemental Table 1.18: (Change of p) p = 0.75, a = fl = 6 = 0, 0,2, = A = 1,

N = 200 [E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 8 -0.0006 0.1280 0.0164

6 -00327 0.1869 0.0360

6‘ -00003 0.1109 0.0123

63 1.0055 0.2272 0.0516

12 0.9601 0.3527 0.1260

"TE 0.5147 0.1776 0.0557 0.6107

Restricted MLE(6=O) a -00199 0.1804 0.0329

6 0.0001 0.0933 0.0087

53 0.9968 0.2228 0.0496

12 0.9944 0.3455 0.1194

TE 0.5094 0.1769 0.0546 0.6195

Restricted NLLS 77 -1.0004 0.0995 0.0099

(OLS on y,=n+Bx,-+w,-: B 0.0007 0.1005 0.0101

17=—1,/3=0,0,2U=2) 63,, 2.0025 0.2692 0.0725

STATISTICS Sizel Size2 Size3 Size4 Mean s.d.

WALD-OPG 0.0213 0.0216 0.0215 0.0217 -0.006O 0.8548

WALD-HES 0.0308 0.0312 0.0309 0.0312 -0.0072 0.9304

LM-OPG 0.0794 0.0790 0.0775 0.0775 1.2305 1.8417

LM-HES 0.0529 0.0527 0.0524 0.0523 1.0285 2.1901

GDV 0.0442 0.0446 0.0445 0.0448 0.9949 1.3236

BADGDV 0.0226 0.0224 0.0222 0.0220 0.6994 1.0175

OLS 0.0495 0.0491 0.0483 0.0480 -0.0003 0.9993

OLS-H 0.0575 0.0574 0.0563 0.0563 0.0005 1.0234

BADOLS 0.0027 0.0027 0.0027 0.0028 0.0000 0.6601

BADOLS-H 0.0052 0.0053 0.0052 0.0052 -0.0008 0.6740

Rep. dropped 0 123 161 244      
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Supplemental Table 1.19: (Change of 6 and p) 6 = 0.05, p = 0.9, a fi = 0,

03 = A = 1, N = 1000 [E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 5 0.0527 0.0534 0.0029

6 -00045 0.0751 0.0057

3 0.0033 0.0530 0.0028

63 1.0004 0.0979 0.0096

12 0.9932 0.1506 0.0227

TE 0.5023 0.1803 0.0515 0.6234

Restricted MLE (6 = 0) 61 -0.0003 0.0744 0.0055

1? -0.0295 0.0414 0.0026

6?, 0.9971 0.0975 0.0095

12 1.0069 0.1498 0.0225

:7“? 0.5006 0.1802 0.0515 0.6236

Restricted NLLS (OLS on 7'] -1.0009 0.0466 0.0022

yi=n+flxi+wiz n=—1.0013, [3' -0.0438 0.0448 0.0020

6=-0.0451,e§,=2.0075) 53,, 2.0081 0.1194 0.0143

STATISTICS Powerl Power2 _Power3 Power4 Mean s.d.

WALD-OPG 0.1380 0.1384 0.1381 0.1385 0.9407 0.9431

WALD-HES 0.1520 0.1525 0.1521 0.1525 0.9617 0.9560

LM-OPG 0.1795 0.1795 0.1796 0.1796 2.0105 2.4353

LM-HES 0.1610 0.1610 0.1611 0.1611 1.9042 2.2712

GDV 0.1650 0.1650 0.1651 0.1651 1.8615 2.1505

BADGDV 0.0560 0.0562 0.0560 0.0562 1.1487 1.3851

OLS 0.0750 0.0747 0.0750 0.0748 -O.4981 1.0049

OLS-H 0.0750 0.0747 0.0750 0.0748 -0.5001 1.0104

BADOLS 0.0000 0.0000 0.0000 0.0000 -0.2175 0.4377

BADOLS-H 0.0000 0.0000 0.0000 0.0000 -0.2174 0.4383

Rep. dropped 0 6 l 7     
 

The number of replication is 2000.
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Supplemental Table 1.20: (Change of 6 and p) 6 = 0.15, p = 0.9, a = fl =

0,2, = /\ = 1, N = 1000 [E(exp(—u)) = 0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 8 0.1536 0.0549 0.0030

6 -00045 0.0758 0.0058

6 0.0029 0.0530 0.0028

63 0.9999 0.0980 0.0096

12 0.9931 0.1536 0.0236

TE 0.5023 0.1836 0.0512 0.6308

Restricted MLE (6:0) 6 0.0147 0.0746 0.0058

3 -0.0917 0.0419 0.0102

63 0.9856 0.0977 0.0097

312 1.0580 0.1548 0.0273

2717: 0.4945 0.1828 0.0520 0.6232

Restricted NLLS (OLS on 17 -1.0110 0.0470 0.0022

yi=n+flxi+wizn=—1.0113, 6 -0.1353 0.0459 0.0021

6=—0.1365,63_,,=2.0693) 63, 2.0542 0.1264 0.0162

STATISTI-CS Powerl Power2 "Power3 Power4 Mean s.d.

WALD-OPG 0.7830 0.7865 0.7829 0.7864 2.6717 0.9268

WALD-HES 0.8140 0.8177 0.8139 0.8176 2.7330 0.8988

LM-OPG 0.8360 0.8358 0.8359 0.8357 9.3681 5.8643

LM-HES 0.8260 0.8262 0.8259 0.8261 9.0193 5.6024

GDV 0.8125 0.8122 0.8124 0.8121 7.9604 4.5539

BADGDV 0.6310 0.6308 0.6308 0.6307 5.5233 3.5299

OLS 0.3155 0.3154 0.3157 0.3156 -1.4680 1.0098

OLS-H 0.3155 0.3149 0.3157 0.3151 -1.4676 1.0078

BADOLS 0.0005 0.0005 0.0005 0.0005 -O.6396 0.4401

BADOLS-H 0.0000 0.0000 0.0000 0.0000 -O.6271 0.4319

Rep. dropped 0 1 9 1 10      
The number of replication is 2000.
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Supplemental Table 1.21: (Change of the distribution of u: to N(0, 1)+) a = B

6=0,a3=)t=1,p=0.5,N=1000[E(exp(—u))=0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 3 0.0010 0.0984 0.0097

6 -O.3498 0.1193 0.1366

6 0.0014 0.0396 0.0016

63 1.1488 0.0995 0.0321

:12 0.2119 0.0933 0.6298

TE 0.6958 0.0885 0.0835 0.4635

Restricted MLE (6 =0) 6: -0.3395 0.1159 0.1286

3 0.0011 0.0356 0.0013

63 1.1434 0.0996 0.0305

12 0.2218 0.0955 0.6147

1713‘ 0.6901 0.0881 0.0807 0.4832

Restricted NLLS 77 -0.7972 0.0365 0.0425

(OLS on y,=n+6x,-+w,-: 6" 0.0012 0.0357 0.0013

n=—1,6=0,63,=2) 63, 1.3658 0.0612 0.4060

STATISTICS; Sizel Size2 — Size3 Size4 Mean s.d.

WALD-OPG 0.0125 0.0132 0.0149 0.0153 0.0178 0.8294

WALD-HES 0.0205 0.0217 0.0217 0.0223 0.0183 0.8670

LM-OPG 0.0560 0.0565 0.0490 0.0491 1.0036 1.5132

LM—HES 0.0725 0.0713 0.0657 0.0637 2.0072 34.9627*

GDV 0.0255 0.0269 0.0291 0.0300 0.8246 1.1256

BADGDV 0.0320 0.0328 0.0291 0.0293 0.7639 1.1324

OLS 0.0510 0.0486 0.0434 0.0427 -0.0098 0.9697

OLS-H 0.0540 0.0502 0.0453 0.0446 -0.0093 0.9744

BADOLS 0.0260 0.0254 0.0229 0.0229 -0.0082 0.8404

BADOLS-H 0.0240 0.0232 0.0205 0.0204 6.0079 0.8439

Rep. dropped 0 107 387 431      
 

* due to outliers. The number of replication is 2000.
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Supplemental Table 1.22: (Change of the distribution of u: to N(0,1r/ (7r — 2))+)

a = 6 = 6 = 0, 63 = ,\ = 1, p = 0.5, N = 1000 [E(exp(—u)) = 0.5232]
 

 

 

 

   
 

 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 3 -00002 0.0548 0.0030

6 -05135 0.1031 0.2744

8 0.0016 0.0460 0.0021

63 1.3480 0.1296 0.1379

R? 0.6616 0.1488 0.1366

{FE 0.5541 0.1456 0.0774 0.6116

Restricted MLE (6 =0) 52 -0.5069 0.1047 0.2679

6 0.0017 0.0423 0.0018

63 1.3420 0.1311 0.1342

12 0.6744 0.1533 0.1295

T177 0.5518 0.1460 0.0764 0.6140

Restricted NLLS 6 -13225 0.0448 0.1060

(OLS on y,=n+6:r,:+w,-: 6 0.0019 0.0433 0.0019

n=—1,6=0,63,=2) 63, 2.0018 0.0938 0.0088

STATISTICS Sizel Size2! Size3 Size4 Mean s.d.

WALD-OPG 0.0295 0.0296 0.0296 0.0297 .0.0025 0.9065

WALD-HES 0.0395 0.0396 0.0396 0.0397 .0.0009 0.9490

LM-OPG 0.0605 0.0607 0.0607 0.0608 1.0705 1.5630

LM-HES 0.0535 0.0536 0.0532 0.0533 0.9746 1.4373

GDV 0.0510 0.0511 0.0512 0.0513 0.9959 1.3894

BADGDV 0.0390 0.0391 0.0391 0.0392 0.8596 1.2448

OLS 0.0480 0.0481 0.0481 0.0483 0.0098 1.0040

OLS-H 0.0500 0.0501 0.0502 0.0503 0.0099 1.0085

BADOLS 0.0260 0.0261 0.0261 0.0261 0.0089 0.8698

BADOLS-H 0.0270 0.0271 0.0271 0.0271 0.0091 0.8730

Rep. dropped 0 5 6 11     
 

The number of replication is 2000.
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Supplemental Table 1.23: (Change of the distribution of u: to N(1, 1)+) a = B

6:0,63=A=1,p=0.5,N=1000[E(exp(—u))=0.5232]

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 8 0.0000 0.0992 0.0098

6 -0.8053 0.1340 0.6665

6 0.0015 0.0431 0.0019

63 1.3787 0.1197 0.1577

X2 0.2470 0.1141 0.5800

fi 0.6807 0.0910 0.1564 0.5174

Restricted MLE (6:0) 6 0.7959 0.1294 0.6502

6 0.0015 0.0391 0.0015

63 1.3738 0.1193 0.1539

12 0.2565 0.1144 0.5658

27:5 0.6755 0.0884 0.1471 0.5412

Restricted NLLS 0 -1.2871 0.0405 0.0840

(OLS on yi=n+flxi+wiz 6 0.0015 0.0392 0.0015

n=—1,6=0,63,=2) 63, 1.6312 0.0736 0.1414

STATISTICS Sizel Size2_ Size3 Size4 Mean s.d.

WALD-OPG 0.0055 0.0058 0.0069 0.0070 0.0118 0.7864

WALD-HES 0.0120 0.0127 0.0119 0.0122 0.0148 0.8308

LM-OPG 0.0605 0.0602 0.0469 0.0480 0.9462 1.3146

LM-HES 0.0745 0.0755 0.0695 0.0698 1.2467 4.0045*

GDV 0.0195 0.0195 0.0188 0.0192 0.7776 0.9973

BADGDV 0.0285 0.0280 0.0200 0.0205 0.7140 0.9702

OLS 0.0540 0.0512 0.0438 0.0423 .0.0224 0.9365

OLS-H 0.0550 0.0517 0.0444 0.0423 -0.0228 0.9407

BADOLS 0.0215 0.0211 0.0144 0.0141 -0.0196 0.8114

BADOLS-H 0.0215 0.0211 0.0138 0.0135 .0.0202 0.8146

Rep. dropped 0 106 402 439     
 

* due to outliers. The number of replication is 2000.
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Supplemental Table 1.24: (Change of the distribution of u: to gamma(0.5, x/2))

a = 6 = 6 = 0, 63 = A = 1, p = 0.5, N = 1000 [E(exp(—u)) = 0.5232]
 

 

 

 

  
 

 

 

 

 

  

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 8 0.0004 0.0446 0.0020

6 0.3384 0.0667 0.1190

6 0.0009 0.0412 0.0017

63 0.8493 0.0812 0.0293

12 1.0968 0.1470 0.0309

TE 0.4905 0.1903 0.0837 0.6173

Restricted MLE (6:0) 61 0.3389 0.0660 0.1192

6” 0.0008 0.0389 0.0015

63 0.8494 0.0810 0.0292

512 1.0996 0.1452 0.0310

TE 0.4902 0.1902 0.0838 0.6175

Restricted NLLS 6 -0.7075 0.0449 0.0876

(OLS on yi=n+ 66,461,: B 0.0009 0.0440 0.0019

6=—1,6=0,63,=2) 63, 1.9974 0.1367 0.0187

—STATISTICS Size4 Mean s.d.

WALD-OPG 0.0710 0.0081 1.0704

WALD-HES 0.0620 0.0089 1.0491

LM-OPG 0.0630 1.0989 1.5310

LM-HES 0.0655 1.1158 1.5362

GDV 0.0525 1.0550 1.4346

BADGDV 0.0425 0.9360 1.3003

OLS 0.0495 -0.0156 0.9961

OLS-H 0.0520 -0.0155 0.9984

BADOLS 0.0225 -0.0132 0.8622

BADOLS-H 0.0215 .0.0132 0.8623

Rep. dropped 0 
 

The number of replication is 2000.
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Supplemental Table 1.25: (Change of the distribution of u? to gamma(2,1/\/2))

a = 6 = 6 = 0, 63 = ,\ = 1, p = 0.5, N =1000[E(exp(-u))= 0.5232]
 

 

 

 

   

 

 

 

 

 

ESTIMATION METHODS Estimates Mean s.d. MSE Corr

MLE 6 0.0007 0.0488 0.0024

6 -O.5069 0.0880 0.2647

6 0.0009 0.0452 0.0020

63 1.1766 0.1170 0.0449

J\2 0.8278 0.1491 0.0519

TE 0.5253 0.1637 0.0684 0.6072

Restricted MLE(6=0) 61 -0.5013 0.0901 0.2594

6 0.0007 0.0422 0.0018

63 1.1716 0.1179 0.0433

12 0.8403 0.1540 0.0492

TE 0.5235 0.1641 0.0677 0.6084

Restricted NLLS 6 -1.4140 0.0452 0.1735

(OLS on yi=6+66,+w,-: 6 0.0005 0.0445 0.0020

6=—1,6=0,63,=2) 63, 2.0009 0.1020 0.0104

—STATISTICS Size4 Mean s.d.

WALD-OPG 0.0395 0.0161 0.9434

WALD-HES 0.0415 0.0153 0.9745

LM-OPG 0.0610 1.0617 1.4787

LM-HES 0.0475 0.9753 1.3569

GDV 0.0535 1.0122 1.3750

BADGDV 0.0335 0.8640 1.2086

OLS 0.0465 -0.0230 1.0065

OLS-H 0.0500 -0.0225 1.0130

BADOLS 0.0235 -0.0202 0.8711

BADOLS-H 0.0240 -0.0197 0.8754

Rep. dropped 0   
The number of replication is 2000.
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Chapter 2

On the Accuracy of Bootstrap

Confidence Intervals for Efficiency

Levels in Stochastic Frontier

Models with Panel Data

2.1 Introduction

This chapter is concerned with the construction of confidence intervals for efficiency

levels of individual firms in stochastic frontier models with panel data. A number

of different techniques have been proposed in this literature to address this problem.

Given a distributional assumption for technical inefficiency, maximum likelihood esti-

mation was proposed by Pitt and Lee (1981). Battese and Coelli (1988) showed how

to construct point estimates of technical efficiency for each firm, and Horrace and

Schmidt (1996) showed how to construct confidence intervals for these efficiency lev-

els. Without a distributional assumption for technical efficiency, Schmidt and Sickles

(1984) proposed fixed effects estimation, and the point estimation problem for effi-
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ciency levels was discussed by Schmidt and Sickles (1984) and Park and Simar (1994).

Simar (1992) and Hall, Hardle, and Simar (1993) suggested using bootstrapping to

conduct inference on the efficiency levels. Horrace and Schmidt (1996) and Horrace

and Schmidt (2000) constructed confidence intervals using the theory of multiple

comparisons with the best, and Kim and Schmidt (1999) suggested a univariate ver-

sion of comparisons with the best. Bayesian methods have been suggested by Koop,

Osiewalski, and Steel (1997) and Osiewalski and Steel (1998).

In this chapter we will focus on bootstrapping and some related procedures. We

provide a survey of various versions of the bootstrap, for construction of confidence

intervals for efficiency levels. We also propose a simple alternative to the bootstrap

that uses standard parametric methods, acting as if the identity of the best firm

is known with certainty, and we propose some new resampling methods that corre-

spond to this parametric procedure. We present Monte Carlo simulation evidence on

the accuracy of the bootstrap and our simple alternative. Finally, we present some

empirical results to indicate how these methods work in practice.

2.2 Fixed-Effects Estimation of the Model

Consider the basic panel data stochastic frontier model of Pitt and Lee (1981) and

Schmidt and Sickles (1984),

yit=a+x2tfl+vit—u,~, i=1,---,N, t=1,--- ,T, (2.1)

where i indexes firms or productive units and t indexes time periods. y“ is the scalar

dependent variable representing the logarithm of output for the 2th firm in period t, a

is a scalar intercept, zit is a K x 1 column vector of inputs (e.g., in logarithms for the

Cobb-Douglas specification), 6 is a K x 1 vector of coefficients, and ”it is an i.i.d. error

term with zero mean and finite variance. The time-invariant 11,- satisfy 11,- 2 0, and
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11, > 0 is an indication of technical inefficiency. For a logarithmic specification such

as Cobb-Douglas, the technical efficiency of the 1th firm is defined as r, = exp(—11,),

so technical inefficiency is 1 — 7,. For small values of 11,, 11, is approximately equal to

1 — exp(—11,) = 1 — 1“,, so that 11, itself is sometimes used as a measure of technical

inefficiency.

Now define a, = oz -— 11,. With this definition, (2.1) becomes the standard panel

data model with time-invariant individual effects:

I

3111 = 01 + $115 + ”it (2-2)

Obviously we have 11, = a — 01, and a, S 01 since 11, 2 0. The previous discussion

regards zero as the minimal possible value of 11, and a as the maximal possible value

of a, over any possible sample; that is, essentially, as N —+ 00. It is also useful

to consider the following representation in a given sample size of N. We write the

intercepts a, in ranked order, as:

0(1) S 0(2) S. S a(N) (2-3)

so that in particular (N) is the index of the firm with largest value of 01, among

N firms. It is convenient to write the values of 11, in the opposite ranked order, as

“(N) _<_ S 11(2) 3 11(1), so that am 2 oz — um. Then obviously 0W) = 01 — “(N),

and firm (N) has the largest value of a, or equivalently the smallest value of 11,

among N firms. We will call this firm the best firm in the sample. In some methods

we measure inefficiency relative to the best firm in the sample, and this corresponds

to considering the relative efficiency measures:

:1:

11,- = 11, — "(N) 2 am) -— 61,, 7;" = exp(—11;). (2.4)
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Fixed effects estimation refers to the estimation of the panel data regression model

(2.2), treating a, as fixed parameters. Because the a, are treated as parameters, we

do not need to make any distributional assumption about the inefficiencies; nor do we

need to assume that they are uncorrelated with the 1,, or the 11,, We assume strict

exogeneity of the regressors x,t, in the sense that (1,1, 13,2, - - - ,x,T) are independent

of (“1711'”in - -« ,11,T). We also assume that the 11,-, are i.i.d. with zero mean and

constant variance 0,2,. We do not need to assume a distribution for the v,,.

The fixed effects estimates 6, also called the within estimates, may be calculated

by regressing (31,, — 17,) on (10,, - 13,-), or equivalently by regressing 31,, on 13,, and a set

of N dummy variables for firms. We then obtain 51, = g,- — 5:6, or equivalently the

61 are the estimated coefficients of the dummy variables. This leads to the following

expression for 61,:

6,- = a, + 17,— am“ — 3). (2.5)

The fixed effects estimate 6 is consistent as NT -—> co, and its variance is of order

(N(T — 1))‘1. For a given firm 1', the estimated intercept 61, is a consistent estimate

of a, as T —-> 00. Large T is needed for the term 17, in (2.5) to become negligible.

Schmidt and Sickles (1984) suggested the following estimates of technical ineffi-

ciency, based on the fixed effects estimates:

2‘ = 61 — 61,-. (2.6)

Since these estimates clearly measure inefficiency relative to the firm estimated to be

the best in the sample, they are naturally viewed as estimates of a(N) and 112‘, that

is, of relative rather than absolute inefficiency.

We define some further notation. Suppose we write the estimates 61, in ranked
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order, as follows:

511 S 512 S S 51[N]- (2-7)

So [N] is the index of the firm with the largest 131,, whereas (N) was the index of the

firm with the largest 01,. These may not be the same; for example, firm 129 could be

the true best firm (that is, the one with the biggest 01,), so that (N) = 129, but firm

71 could be the estimated best firm (that is, the one with the biggest 61,), so that

[N] = 71. Note also that d as defined in (2.6) above is the same as 07”,], but it may

not be the same as am), the estimated a for the unknown best firm.

As T —+ 00 with N fixed, 61 is a consistent estimate of a(N) and 112' is a consistent

estimate of 11;“. However, it is important to note that in finite samples (for small T)

61 is likely to be biased upward, since 61 2 61(N) and E(&(N)) 2 am). That is, the

“max” operator in (2.6) induces upward bias, since the largest d, is more likely to

contain positive estimation error than negative error. This bias is larger when N is

larger and when the 61,- are estimated less precisely. The upward bias in ii induces

an upward bias in the 11;“ and a downward bias in 1"; = exp(—1‘12“); we underestimate

efficiency because we overestimate the level of the frontier.

Schmidt and Sickles (1984) argued that 51 and 11'; are consistent estimates of a and

11, if both N and T approach 00; that is, if both N and T are large, we can regard the

11'; as estimates of absolute and not just relative inefficiency. The argument is simple.

As T ——> oo, 61 and 112‘ are consistent estimates of a(N) and 11;", as noted above. As

N —-> oo, 11(N) should converge to 0 so that 01(N) converges to a and the 11: should

converge to the corresponding 11,. A more rigorous treatment of the asymptotics for

this model is given by Park and Simar (1994), who show that, in addition to N —+ co

and T —> 00, we need to require T"1/2 In N ——> 0 in order to ensure the consistency of

d as an estimate of a. This latter requirement limits the rate at which N can grow
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relative to T in order to ensure that the upward bias induced by the max operation

disappears asymptotically.

2.3 Construction of Confidence Intervals by Boot-

strapping

We can use bootstrapping to construct confidence intervals for functions of the fixed

effects estimates. The inefficiency measures 11;? and the efficiency measures 1* =

a:

exp(—1‘1-,) are functions of the fixed effects estimates and so bootstrapping can be

used for inference on these measures.

We begin with a very brief discussion of bootstrapping in the general setting in

which we have a parameter 6, and there is an estimate 6 based on a sample 21, - - - ,2”

of i.i.d. random variables. The estimator 6 is assumed to be regular enough so

that n1/2(6 — 6) is asymptotically normal. The following bootstrap procedure will

be repeated many times, say for b = 1, - -- ,B where B is large. For iteration 0,

construct pseudo data 2?) , - -- ,ng) by sampling randomly with replacement from

the original data 21, - -- ,2". From the pseudo data, construct the estimate 6“”.

The basic result of the bootstrap is that, under fairly general circumstances, the

asymptotic (large 11) distribution of n1/2(6(b) — 6) conditional on the sample is the

same as the (unconditional) asymptotic distribution of n1/2(6 — 6). Thus for large n

the distribution of 6 around the unknown 6 is the same as the bootstrap distribution

of 6“” around 6, which is revealed by a large number (B) of draws.

We now consider the application of the bootstrap to the specific case of the fixed

effects estimates. Our discussion follows Simar (1992). Let the fixed effects estimates

be ,6 and 61,, from which we calculate 1‘1; and 1“: (1' = 1, - - - ,N). Let the residuals be

13,, = y,, — d, — 13,6 (1' = 1, - ~- ,N, t = 1, - -- ,T). The bootstrap samples will be

drawn by resampling these residuals, because the 11,, are the quantities analogous to
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the 2’s in the previous paragraph, in the sense that they are assumed to be i.i.d., and

the 17,, are the observable versions of the 11,, (The sample size 71 above corresponds

to NT). So, for bootstrap iteration b (= 1, -- . ,B) we calculate the bootstrap sample

11(5) and the pseudo data 311(1)“_ ai+$115“”,(5)
.From these data we get the bootstrap

estimates 3(5), dgb,) 11:“) ,andr,(b) ,and the bootstrap distribution of these estimates

is used to make inferences about the parameters.

We note that the estimates 1‘1: and 1“: depend on the quantity max, 61,. Since

“max” is not a smooth function, it is not immediately apparent that this quantity

is asymptotically normal, and if it were not the validity of the bootstrap would be

in doubt. A rigorous proof of the validity of the bootstrap for this problem is given

by Hall, Héirdle, and Simar (1995). They prove the equivalence of the following

three statements: (i) max, 61]- is asymptotically normal. (ii) The bootstrap is valid

as T —) 00 with N fixed. (iii) There are no ties for max]- ozj: that is, there are a

unique index (N) such that a(N) = max, 01,. There are two important implications

of this result. First, the bootstrap will not be reliable unless T is large. Second, this

is especially true if there are near ties for max, 61,, in other words, when there is

substantial uncertainty about which firm is best.

We now turn to specific bootstrapping procedures, which differ in the way they

draw inferences based on the bootstrap estimates. In each case, suppose that we are

trying to construct a confidence interval for 11’; = max]- a, — 01,. That is, for a given

confidence level c, we seek lower and upper bounds L,, U, such that P(L, 5 11: s

U,) = 1 -- c.

The simplest version of the bootstrap is the percentile bootstrap. Here we simply

take L, and U, to be the upper and lower c/2 fractiles of the bootstrap distribution

of the 11:“). More formally, let F be the cumulative distribution function (cdf) for 11;“

so that E(s) = P(fi:(b) S s) = the fraction of the B bootstrap replications in which

11:0,) 3 3. Then, we take L, = F‘1(c/2) and U, = F’1(1 — c/2).
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The percentile bootstrap intervals are accurate for large T but may be inaccurate

for small to moderate T. This is a general statement, but in the present context there

is a specific reason to be worried, which is the finite sample upward bias in max, 61, as

an estimate of max]- ozj. This will be reflected in improper centering of the intervals

and therefore inaccurate coverage probabilities. Simulation evidence on the severity

of this problem is given by Hall, Hardle, and Simar (1993) and in Section 2.5 of this

chapter.

Several more sophisticated versions of the bootstrap have been suggested to con-

struct confidence intervals with higher coverage probabilities. Hall, Héirdle, and Simar

(1993) and Hall, HérdIe, and Simar (1995) suggested the iterated bootstrap, also called

the double bootstrap, which consists of two stages. The first stage is the usual per—

centile bootstrap which constructs, for any given c, a confidence interval that is in-

tended to hold with probability of 1 — c. We will call these “nominal” 1 — c confidence

intervals. The second stage of the bootstrap is used to estimate the true coverage

probability of the nominal 1 — c confidence intervals, as a function of c. That is, if

we define the function 7r(c) = true coverage probability level of the nominal 1 — c

level confidence interval from the percentile bootstrap, then we attempt to evaluate

the function 7r(c). When we have done so, we find c*, say, such that 1r(c*) = 1 — c,

and then we use as our confidence interval from the first stage percentile bootstrap,

which we “expect” to have a true coverage probability of 1 — c.

The mechanics of the iterated bootstrap are uncomplicated but time-consuming.

For each of the original (first stage) bootstrap iterations B, the second stage involves

a set of 32 draws from the bootstrap residuals, construction of pseudo data, and

construction of percentile confidence intervals, which then either do or do not cover

the original estimate 6. The coverage probability function 7r(c), which is the actual

rate at which a nominal c—level interval based on the bootstrap estimates covers the

true parameter 6, is estimated by the rate at which a nominal c-level interval based on
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the iterated bootstrap estimates covers the original estimate 6. To understand this,

note that data generated from the true 6 yield 6; bootstrap data generated based

on 6 yield the bootstrap estimates 60’); and data based on 60’) yield the iterated

bootstrap estimates, say 6(b’b1). So the iterated bootstrap estimates 6(b’bl) have the

same relationship to 6 as the bootstrap estimates 60’) have to 6.

Generally we take B2 = B, so that the total number of draws has increased from

B to B2. by going to the iterated bootstrap. Theoretically, the error in the percentile

—1/2 1
bootstrap is of order 11 while the error in the iterated bootstrap is of order n“ .

There is no clear connection between this statement and the question of how well

finite sample bias is handled.

An objection to the iterated bootstrap is that it does not explicitly handle bias.

For example, if the nominal 90% confidence intervals only cover 75% of the bootstrap

estimate in the first stage, it simply insists on a higher nominal confidence level, like

98%, so as to get 90% coverage. That is, it just makes the intervals wider when

bias might more reasonably be handled by recentering the intervals. A technique

that does recenter the intervals is the bias-adjusted bootstrap of Efron (1982) and

Efron (1985). As above, let 6 be the parameter of interest, 6 the sample estimate

and 60’) the bootstrap estimate (for b = 1, - -- ,B), and F the bootstrap cdf. For

11 large enough that the bootstrap is accurate, we should expect F(6) = 0.5, and

failure of this to occur is a suggestion of bias. Now define 20 = <I>‘1(F(6)) where (I)

is a standard normal cdf, and where F(6) = 0.5 would imply 20 = 0. Let 26/2 be

the usual normal critical value; e.g. for c = 0.1, 26/2 = 20.05 = 1.645. Then, the

bias-adjusted bootstrap confidence interval is [L,, U,] with:

A A

L. = F‘1(<I>(2zo — 262)). U.- = F‘1(<I>(2zo + 262)) (2.8)

For example, suppose that there is an upward bias, reflected by the fact that 60%

68



of the bootstrap draws are larger than 6, so that 6(6) = 0.4. Then .20 = —0.253, and

for c = 0.1 we have <I>(2zo — 26/2) = <I>(-—2.152) = 0.016 and <I>(220 + zc/2) = 0.873.

Thus our confidence interval comes from the lower tail 0.016 fractile and the upper

tail 0.127 fractile, and we have compensated for upward bias by moving the interval

left. This seems intuitively reasonable.

The assumption that justifies the bias-adjusted bootstrap is that, for some monotone

increasing function 9, (9(6) — 9(6)) is distributed as N(—zoa, 02) and (g(6(b)) — 9(6))

is also distributed as N(—200, 02) for some 20, 02. (The first distribution is from

the probability law of the sample, and the second is the bootstrap distribution in-

duced by resampling from the given sample.) Thus we have normality, and also equal

biases and variances, for some transformation of 6. The transformation function 9

need not be known. This is an advantage in implementation, but a disadvantage in

trying to decide whether the assumption holds. It is not known whether the bias-

adjusted bootstrap is valid for our specific problem, but it performs relatively well in

the simulations reported in Section 2.5.

The final version of the bootstrap that we will consider is the bias-adjusted and

accelerated bootstrap of Efron and Tibshirani (1993). This is intended to allow for a

possibility that the variances of 6 depends on 6, so that a bias-adjustment also requires

a change in variance. This correction depends on some quantities defined in terms of

the so-called jackknife values of 6. For i = 1, - - - ,n, let 6“) be the value of the estimate

based on all observations other than observation 1; and let é(°) = 11’1 £3le 6(,-) be

the average of these values. Then the “acceleration” factor a is defined by:

?=1 (90) 7 5(1))3
1.5

6 (26:1 (69) - 6“(1))2)

 a = (2.9)

69



With 20 and 26/2 defined as above, define

(20 + 20/2)

(10 “ Zen)
1 _ Gui (20 + 26/») (2.10)

(1—6, (zo—zc/,))'

Then the confidence interval is [L,, U,] with L, = 13"1 (@(b,1)) and U, = F‘1 (<I>(b,2)).

 

b11=20+( 1 b12=Zo+

More discussion can be found in Efron and Tibshirani (1993, chapter 14).

It is important to note that there are cases in which the acceleration factor fails to

be defined. This happens when all the jackknifed estimates are the same, which yields

zero both for the numerator and for the denominator of the acceleration factor. For

example, one firm could be so dominantly efficient in the industry that jackknifing the

best firm (in our case, dropping one time dimensional observation) would not change

the efficiency rank for the best firm. Also, with large T, the firms’ efficiency ranking

would not be affected by taking out one time period observation, so that it is more

likely for the acceleration factor not to be defined. However, as N gets large, it is less

likely for the acceleration factor not to be defined since it would be harder to have one

specific firm uniformly as the best estimated firm with more firms in sample. In the

following sections, when the acceleration factor is not defined, we do not accelerate

the bias-adjusted bootstrap. After all, the bias-adjusted bootstrap is a special case

of the bias-adjusted and accelerated bootstrap with the acceleration factor of zero.

2.4 A Simple Alternative to the Bootstrap

In this section we propose a simple parametric alternative to the bootstrap, and some

related resampling procedures. We begin with the following simple observation. We

wish to construct a confidence interval for 11’: = a(N) — 61,, or r: = exp(—113‘). If we

knew which firm was best - that is, if we knew the index (N) - we could construct a

70



parametric confidence interval of the form:

(61(N) — 61,) i (critical value) :1: (standard error), (2.11)

where “critical value” would be the apprOpriate c/2 level critical value of the standard

normal distribution, and “standard error” would be the square root of the quantity:

estimated variance of 61m) + estimated variance of (31, - 2*estimated covariance of

(61(N),€1,). This interval would be valid asymptotically as T —> 00 with N fixed.

In fact, if the 1),, are i.i.d. normal and we use the critical value from the student-t

distribution, this interval would be valid in finite samples as well.

The confidence interval (2.11) is infeasible because the identity of the best firm is

unknown. However, we can construct the confidence interval:

(61[N] — 61,) :1: (critical value) =1 (standard error), (2.12)

where as before max, 61, 2 am]. That is, we use a confidence interval that would

be apprOpriate if (N) were known, and we simply pretend that [N] = (N). That

is, we pretend that we do know the identity of the best firm. This is our “simple

parametric” confidence interval.

Two details should be noted. First, in calculating the standard error in (2.12),

we evaluate Var(61[N]) and Cov(d[N], 61,) using the standard formulas that ignore the

fact that the index [N] is data-determined. That is, again we pretend that [N] = (N)

is known. Second, although 01(N) — a, Z 0, the lower bound of the confidence interval

in (2.12) can be negative. If it is, set it to zero. This corresponds to setting the upper

bound of the relative efficiency measure 11;“ to one.

The asymptotic (T —-+ 00 with N fixed) validity of this procedure follows from

the same argument that Hall, Hiirdle, and Simar (1995) used to show that max]- 61,

is asymptotically normal. If there are no ties for max]- ozj, then as T —> 00, P( [N] =
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(N)) —-> 1. That is, with no ties, in the limit there is no uncertainty about the identity

of the best firm.

An obvious implication of this argument is the following. For data sets in which

there is substantial uncertainty about the identity of the best firm, the accuracy of

either bootstrap intervals or our simple parametric intervals is doubtful.

The simple parametric intervals differ from bootstrap intervals in an important

way that goes beyond parametric versus resampling methods. Consider the following

resampling scheme, which could also be used to create a confidence interval for 11'; =

a(N) — 01,, treating (N) = [N] as known. Create bootstrap samples b = 1, - -- ,B as

above. For sample b, calculate

a:,(71b'1)az—best = ($33] - alb) (2°13)

where [N] is still the index such that lel = max, 61, in the original sample. Then

create a percentile-interval from these quantities.

110)
umam_best differ from the bootstrap quantitiesNote that the quantities 11

{,TU’) = max 61gb) — (31(1)), (2.14)

as defined in Section 2.3. For the bootstrap quantities, there is a “max” in the original

data to get 61[N] and then there is another “max” in each bootstrap sample. That

is, the bootstrap samples are deliberately analyzed in exactly the same way as the

original sample was. In (2.13), there is still a “max” in the original sample, but in

the bootstrap samples we maintain the identity of the “best” firm in the original

samples. We will call this the “max-best bootstrap,” although actually it is not

really a bootstrap procedure at all. It is just a resampling scheme. Semantic issues

aside, it is the “max-best” bootstrap that should be similar to our simple parametric

procedure. Our motivation for discussing the “max-best” procedure is mostly to make
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clear why our simple parametric intervals may be expected to be rather different from

percentile bootstrap intervals, when the identity of the best firms is in doubt.

As noted above, the “max” operator causes c31(N) to be biased upward as an

estimate of am), and this causes an upward bias in 112‘ and a downward bias in 1": =

exp(—112‘). The second “max” in (2.14) in the bootstrap samples causes additional

bias. For this reason the percentile bootstrap intervals will tend to be seriously

miscentered. Our simple parametric intervals, or “max-best” bootstrap intervals, do

not contain the second source of bias and may be expected to be more accurate than

percentile bootstrap intervals. Of course, precisely because they do not contain the

second source of bias, the parametric or “max-best” intervals cannot be bias-adjusted.

The bias-adjusted (or bias-adjusted and accelerated) bootstrap intervals described in

the previous section use the bias at the bootstrap stage to correct the bias in the

original estimates. The ability to do this is a potentially significant advantage of

bootstrap methods.

2.5 Simulations

In this section we conduct Monte Carlo simulations to investigate the reliability of

confidence intervals based on bootstrapping and on the alternative procedures de-

scribed in the last section. We are interested in the coverage rates of the confidence

intervals and the way that they are related to bias in estimation of efficiency levels.

Results for other methods including the MLE can be found in Kim (1999).

The model is the basic panel data stochastic frontier model given in (2.1) above.

However, we consider the model with no regressors so that we can concentrate our

interest on the estimation of efficiencies without having to be concerned about the

nature of the regressors. In practical cases, the regression parameters [3 are likely to

be estimated so much more efficiently than the other parameters that treating them
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as known is not likely to make much difference.

Our data generating process is:

11,, =a+v,, —11, =c1,+11,,, i: 1,--- ,N, t: 1,--- ,T, (2.15)

in which the 11,, are i.i.d. N(0, 03) and the 11, are i.i.d. half-normal: that is, let

11, = |u,| where u, ~ N(0, 03). Since our point estimates and confidence intervals

are based on the fixed effects estimates of 611,- - - ,aN, the distributional assumptions

on 11,, and 11, do not enter into the estimation procedure. They just define the data

generation mechanism.

The parameter space is (01, 03, 03, N, T), but this can be reduced. Without loss

of generality, we can fix a to any number, since a change in the constant term only

shifts the estimated constant term by the same amount, without any effect on the

bias and variance of any of the estimates. For simplicity, we fix the constant term

equal to one.

We need two parameters to characterize the variance structure of model. It is

natural to think in terms of 03 and 03. Alternatively, recognizing that 03 is the

variance of the untruncated normal from which 11 is derived, not the variance of 11, we

can think instead in terms of 03 and Var(11), where Var(11) = 03(71 — 2)/71. However,

we obtain more readily interpretable results if we think instead in terms of the size of

total variance and the relative allocation of total variance between 11 and 11. The total

variance is defined as a? = 03 + Var(11). Olson, Schmidt, and Waldman (1980) used

A = (Ia/0,, to represent the relative variance structure, so that their parametrization

was in terms of a? and A. Coelli (1995) used 062 and either 7 = 03/(03 + 0,2,) or

7* = Var(11)/(0,2, + Var(11)). The choice between these two parameters is a matter of

convenience. We decided to use 7* due to its ease of interpretation, so that we use the

parameters 0,2 and 7*. The reason this is a convenient parametrization (compared to
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the “obvious” choice of 013 and 0,2,) is that, following Olson, Schmidt, and Waldman

(1980), one can show that comparisons among the various estimators are not affected

by 0:2- The effect of multiplying or? by a factor of k holding 7* constant, is as follows.

1. constant term: bias change by a factor of x/l; and variance changes by a factor

of k,

2. 03 and 0,2,: bias changes by a factor of k and variance changes by a factor of 162,

3. 7* (or 7 or A): bias and variance are unaffected.

We set a? at 0.25 arbitrarily, so that the only parameters left to consider are (7*, N, T).

We consider three values for 7*, to include a case in which the variance of 11 dom-

inates, a case in which the variance of 11 dominates, and an intermediate case. We

take 7* = 0.1, 0.5, and 0.9 to represent the above three cases. With a? = 0.25, 03,

Var(11), and 0,2, are determined as follows for each value of 7*.

1. 7* = 0.1; 63 = 0.225, Var(11) = 0.025, 63 = 0.069,

2. 7* = 0.5: 63 = 0.125, Var(11) = 0.125, 63 = 0.344,

3. 7* = 0.9: 63 = 0.025, Var(11) = 0.225, 63 = 0.619.

Four values of N and T are considered. In order to investigate the effect of changing

N, we fix T = 10 and consider N =10, 20, 50, and 100. Similarly, T is assigned the

values of 10, 20, 50, and 100 while fixing N = 10. This is done for each different value

of 7*.

For each parameter configuration (7*, N, T), we perform R = 300 replications of

the experiment. For each replication, we calculate the following:

1. The estimate of a, 61 = max]- (31]- = 5‘[N]-

2. The infeasible estimate of a, o1(N)-
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3. The relative efficiency estimate, 112‘ = 61 — 61,, for each i = 1, 2, . - - ,N.

4. The percentile bootstrap confidence interval for 112‘, for each i.

5. The BCa bootstrap confidence interval for 112‘, for each 1'.

6. The simple parametric confidence interval (of Section 2.4) for 112‘, for each i.

7. The “max-best” bootstrap confidence interval for 112‘, for each i.

8. The infeasible parametric confidence interval (of Section 2.4) for 112‘, for each i.

The bootstrap results were based on B = 1000 replications. Note that we did not

consider the iterated bootstrap due to its computational demands.

We are primarily interested in the biases of the point estimates and the coverage

rates of the confidence intervals. These biases and coverage rates are reported as

averages over both the N firms (where relevant) and the R replications. In particular,

the coverage rate of the confidence intervals is just the fraction of times that coverage

occurs.

We begin the discussion of our results with Table 2.1. Three measures of biases are

considered. biasl = E(d — a) is the bias in the overall constant, bias2 = E(112‘ — 11,)

is the bias of the estimated relative inefficiency compared to true inefficiency, and

bias3 = E(112‘ — 112‘) is the bias of the estimated relative inefficiency compared to true

relative inefficiency.

There are two different sources of biasl. These are easily understood in terms of

the identity:

51—0: (d—a(N))-(a—a(N)). (2.16)

biasl is E(é — oz). The first (and generally most important) source of this bias is

E(& — a(N))1 which is positive. That is, d is biased upward as an estimate of O’UV)’
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because of the “max” operation that defines 61 = max, 131,. This bias increases with

N, but decreases when T and/or 7* increase. It disappears as T —> 00 or 7* ——> 1.

The second source of bias is that E(a(N)) < a, resulting in downward bias for 61. This

reflects the fact that a - a(N) = min, 11, 2 0. This bias disappears as N —) 00. More

generally, it decreases as N increases, and increases with 7*, but does not depend on

T. We see examples of both positive and negative bias in column (1) of Table 2.1. As

expected, the largest positive bias occurs for large N and small T and 7*, whereas

negative bias (absolute value) increases for larger 7* and T and smaller N.

The bias of 112‘ as an estimate of 11, is given in column (2) of Table 2.1. It is

essentially the same as the bias of the overall constant term:

bias2 = E(112‘ — 11,) = E ((01 —- 61,) — (c1 — c1,)) = E(é — a) — E((f1,- 01,)

(2.17)

= biasl — E(d, — 61,)

and E(ciz, — 01,) = 0.

The estimate 112‘ is perhaps more naturally viewed as an estimate of 112‘. Column

(3) gives the bias of 112 as an estimate of 112‘:

biasB = E(112‘ — 112‘) 2: E ((61 — 61,) -(01(N) — 011)) = E(ét - “(N)) " E(éi — 01')

= E(d — 0(N)) > O

(2.18)

since E(d, — a) = 0. Note that bias3 is the first source of biasl, as described above

and is always positive. In other words, 112‘ can overestimate or underestimate the

absolute efficiency 11,, but (on average) it overestimates the relative efficiency 112‘.

We now turn our attention to question of the accuracy of the various types of

confidence intervals we have discussed. We present results for 90% confidence inter-

vals for r2 : exp(—112‘), but the coverage rates would be exactly the same for the
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corresponding confidence‘intervals for 112‘. We are primarily interested in the coverage

rates of the intervals, and the proportions of observations that fall below the lower

bound and above the upper bound. The reason we present intervals for r2 (rather

than 112‘) is that it is bounded between zero and one, and so the average width of the

intervals is easier to interpret.

Table 2.2 gives the results for the infeasible parametric intervals based on equation

(2.11) of Section 2.4. The coverage rates of these intervals are very close to 0.90, as

they should be. These intervals are infeasible in practice, since they depend on

knowledge of the identity of the best firm, but they illustrate two points. First, for

obvious reasons, the intervals are narrower when T is large and when 7* is large (that

is, when the variance of inefficiency is large relative to the variance of noise). The

number of firms, N, is not really relevant if we know which one is best. Second,

and more fundamentally, there is no difficulty in constructing accurate confidence

intervals for technical efficiency if we know which firm is best. All of the problems

that we will see with the accuracy of feasible intervals are due to not knowing with

certainty which firm is best.

Table 2.3 gives the results for the percentile bootstrap and ECG bootstrap confi-

dence intervals. Consider first the percentile bootstrap. Its coverage rate is virtually

always less than the nominal level of 90%. The problem is that the intervals are not

centered on the true values, due to the bias problem discussed above. (The upward

bias of 61 as an estimate of c1(N) corresponds to an upward bias in 112‘ and a downward

bias in 12. Thus too many r2‘ lie above the upper bound of the confidence intervals.)

Theoretically, the intervals should be accurate in the limit (as T —+ 00 with N fixed),

if there are no ties for max, 01,, and so the validity of the percentile bootstrap depends

on large T. The bias problem is small when we have large T and 7* and small N, and

the coverage probability reaches almost 0.9 for these cases, but it falls in the opposite

cases where the bias is big. The width of the intervals decreases as T or 7* increases.
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However, the intervals get narrower with larger N, while the bias increases as N in-

creases. This explains why the coverage probabilities of the percentile intervals fall

rapidly as N increases.

The results in Table 2.3 indicate that the 300 intervals provide better coverage

rates than the uncorrected percentile intervals, but with the same pattern. They are

more accurate when T and 7* are large and when N is small. When T and 7* is

small or N is large, there are very considerable improvements over the uncorrected

percentile intervals, even though the 80,, intervals do not succeed entirely in yielding

correct coverage rates.

The bias corrected confidence intervals are obtained by shifting the bootstrap

distribution by approximately twice the estimated bias in the bootstrapping stage. If

on average (max, 62“) —

expect a properly centered interval with a coverage rate of approximately 0.9 after

max, 01,) were the same as (max, 6, — max, 6,), we would

the bias is corrected. In our simulations, however, only some part of the bias gets

corrected. Some evidence on this point is given in Table 2.4, which shows the average

of max, 01,, max, 6,, and max, 62.“) over different values of N, T, and 7*. The fourth

column in the table shows the average bias in the fixed effects estimates of max, 6,,

and the last column shows the average bias in the bootstrap estimates. We see that

(.b) _
1

is substantial when 7* is small and N is large. As a result, the bias correction is

(max, 6 max, 6,) is always smaller than (max, 6, — max, 6,) and the difference

incomplete especially when 7* is small and N is large. However, the bias correction

is always in the right direction, and this explains why BCa intervals are better than

the percentile intervals.

Table 2.5 gives the results for the feasible parametric intervals based on equation

(2.12) of Section 2.4, and for the “max-best” bootstrap. We expect the feasible

parametric intervals and those from the “max-best” bootstrap to give similar results,

and they do. The parametric intervals have slightly better coverage rates, because
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they are wider, but the differences are quite small. As a result we will limit our

further discussion to the feasible parametric intervals.

The feasible parametric intervals are clearly more accurate than the percentile

bootstrap intervals. This is especially true in the worst cases. For example, for

N = 100, T = 10 and 7* = 0.1, compare coverage rates of 0.195 for the percentile

bootstrap and 0.663 for the parametric intervals. The parametric intervals are wider

and they are better centered, both of which imply higher coverage rates. To under-

stand the point about better centering, recall the discussion of bias in Section 2.4. The

parametric intervals have one level of bias (6 is a biased estimate of 0‘(N)) whereas

the percentile bootstrap has two (6 is a biased estimate of a(N)1 and max, 62“) is a

biased “estimator” of 6).

A more interesting comparison is the feasible parametric intervals versus the B00

intervals. The feasible parametric intervals generally but not always have better

coverage rates than the ECG intervals. This is because they are wider. The cases in

which the ECG intervals have better coverage rates than the parametric intervals are

cases in which T, N and 7* are all small. These are cases of considerable bias but

not the cases with the most bias (see Table 2.4), which would be cases in which T

and 7* are small but N is big. Overall, it is hard to say whether the parametric or

BCa intervals are better, because there is a conflict between our desire for confidence

intervals to cover with correct probability and our desire for them not to be wide.

Our last set of simulations is designed to consider cases in which the identity of

the best firm is clear. Here we set out one 11, at the 0.05 quantile of the half normal

distribution, while the other (N — 1) are set at equally spaced points between the 0.75

and 0.95 quantiles, inclusive. These 11, are then held fixed across replications of the

experiment. The only randomness therefore comes from the stochastic error 11. Since

the identity of the best firm should be clear, the bias caused by the max operator

should be minimal. Table 2.6 gives the bias of the fixed effects estimate, and is of the

80



same format as Table 2.1. Recall that bias3 is the component of the bias caused by

the max operator (see equation (2.18) above) and should be small when the identity

of the best firm is clear. We can see that bias3 in Table 2.6 is indeed much smaller

than in Table 2.1.

Correspondingly, we expect the various bootstrap and parametric intervals to be

more accurate in the current cases than in the previous ones. Table 2.7 gives the

results for the percentile bootstrap, the BCC, bootstrap, and the feasible parametric

intervals. Clearly the intervals are much more reliable now than they were in the pre-

vious cases for which results were reported in Tables 2.3 and 2.5. Note in particular

that the percentile bootstrap now does pretty well in all cases except the least favor-

able (small T and 7*, and large N). The 300 bootstrap is now usually worse than

the percentile bootstrap. It is counterproductive to try to correct for bias when there

is little or no bias. The parametric intervals often cover too often, rather than too

seldom, and again this is a reflection of the intervals being wider than the bootstrap

intervals.

The overall conclusions we draw from our simulations are straightforward. If it is

clear from the data which firm is best, all of the methods of constructing confidence

intervals work fairly well. There is no need to consider more complicated procedures

than the percentile bootstrap. The parametric intervals are also reliable, but they

may be wider than necessary. Conversely, if it is not clear from the data which firm

is best, none of the methods of constructing confidence intervals are very reliable.

The percentile bootstrap is particularly bad. The 800 bootstrap intervals or the

parametric intervals are probably preferred.

81



2.6 Empirical Results

We now apply the procedures described above to two well-known data sets. These

data sets were chosen to have rather different characteristics. The first data set

consists of N = 171 Indonesian rice farms observed for T = 6 growing seasons. For

this data set, the variance of stochastic noise (11) is large relative to the variability

in 11 (Var(11)): that is, 7* = 0.222 with 6? = 0.138. Inference on inefficiencies will

* is small and N is large. The second databe very imprecise because T is small, 7

set consists of N = 10 Texas utilities observed for T = 18 years. For this data

set, 03 is small relative to Var(11): 7* = 0.700 with 6? = 0.010. In this case we

can estimate inefliciencies much more precisely because T and 7* are larger, and N

is smaller. We will see that the precision of the estimates will differ across these

data sets, and that choice of technique matters more where precision is low. A more

detailed analysis of these data, including Bayesian results and results for multiple and

marginal comparisons with the best, can be found in Kim and Schmidt (1999).

2.6.1 Indonesian Rice Farms

These data are due to Erwidodo (1990) and have been analyzed subsequently by Lee

(1991), Lee and Schmidt (1993), Horrace and Schmidt (1996), Horrace and Schmidt

(2000) and others. There are N = 171 rice farms and T = 6 six-month growing

seasons. Output is rice in kilograms and inputs are land in hectares, labor in hours,

seed in kilograms and two types of fertilizer (urea in kilograms and phosphate in

kilograms). The functional form is Cobb-Douglas with some dummy variables added

for region, seasonality for dry or wet season, the use of pesticide and seed types for

high yield or traditional or mixed. For a complete discussion of the data, see Erwidodo

(1990).

The estimated regression parameters are given in Horrace and Schmidt (1996) and
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we will not repeat them here. Instead we will give point estimates of efficiencies and

90% confidence intervals for these efficiencies. There are 171 firms and so we report

results for the three firms (164, 118, and 163) that are most efficient; for the firms

at the 75““ percentile (31), 50““) percentile (15) and 25(th) percentile (16) of the

efficiency distribution; and for the two worst firms (117, 45). All of these rankings

are according to fixed effects estimates.

We begin with Table 2.8. It gives the fixed effects point estimates and the lower

and upper bounds of the 90% parametric confidence intervals. For the purpose of

comparison we also give the point estimates and the lower and upper bound of the 90%

confidence intervals for the MLE based on the assumption that inefficiency has a half-

normal distribution. See Horrace and Schmidt (1996) for the details of calculations

for the MLE.

The estimated efficiency levels based on the fixed effects estimates are rather low.

They are certainly much smaller than the MLE estimates. This is presumably due

to bias in the fixed effects estimates, as discussed previously. This data set has

characteristics that should make the bias problem severe: N is large; the a, are

estimated imprecisely because 0,2, is large and T is small; and there are near ties for

max, 6, because 0?, is small.

Table 2.9 gives 90% confidence intervals based on the percentile bootstrap, the

ECG bootstrap, and the iterated bootstrap, as well as the (feasible) parametric inter-

vals and the “max-best” bootstrap intervals. The bootstrap results are based on 1000

replications, and in the case of the iterated bootstrap each second-level bootstrap is

also based on 1000 replications.

There is some similarity between the intervals from different methods, but there

are also some interesting comparisons to make. The percentile bootstrap intervals are

clearly closest to zero (i.e. they would indicate the lowest levels of efficiency). This

is presumably a reflection of bias. Note, for example, that the midpoints of these
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intervals are clearly less than the fixed effects estimate (which is itself biased toward

zero). For the reasons given above, we do not regard these intervals as trustworthy for

this data set. The iterated bootstrap intervals are centered similarly to the percentile

bootstrap but are wider. The BCa intervals are an upward shift (in the direction

of higher efficiency) of the percentile intervals and might be a good choice for this

data set. The parametric intervals are also an upward shift of the percentile intervals,

though not by as much as the ECG intervals. They are wider than the ECG intervals,

and in fact they are about as wide as the iterated bootstrap intervals. They are

another possible good choice for this data set; in a sense they are conservative choice.

The “max-best” bootstrap intervals are similar to the parametric intervals and are

therefore another possible good choice.

2.6.2 Texas Utilities

In this section, we consider the Texas utility data of Kumbhakar (1996), which was

also analyzed by Horrace and Schmidt (1996) and Horrace and Schmidt (2000). As in

the previous section, we will estimate a Cobb-Douglas production function, whereas

Kumbhakar (1996) estimated a cost function. The data contain information on output

and inputs of 10 privately owned Texas electric utilities for 18 years from 1966 to 1983.

Output is electric power generated, and input measures on labor, capital and fuel are

derived from dividing expenditures on each input by its price. For more details on

the data see Kumbhakar (1996).

Table 2.10 gives the fixed effects point estimates, the 90% parametric intervals,

and the MLE point estimates and 90% confidence intervals. The format is the same

as that of Table 2.8, except that now we can report the results for all of the firms.

Table 2.11 gives the 90% confidence intervals for the same set of procedures as before,

and it is of the same format as Table 2.9, except that results are given for all firms.

Compared to the previous data set, we estimate the intercepts a, much more
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precisely, because T is larger and 0,2, is smaller. For this reason, and also because N

is smaller, we expect there not to be a severe finite sample bias problem in the fixed

effects estimates, and we expect that the choice of technique will not matter as much.

The MLE estimated efficiencies are larger than those based on fixed effects (except

for the “best” firm), but the difference is not nearly as large as for the previous

data set. Similarly, the MLE confidence intervals are narrower than the parametric

intervals, but not by nearly as much as in Table 2.8. A distributional assumption is

much less valuable in the present case. In fact, the accuracy of the MLE intervals is

now suspect, because we have only 10 firms, and the asymptotic justification for the

MLE requires large N.

In Table 2.11, we can see that the parametric intervals and all of the bootstrapping

intervals are quite similar. The bias problem is apparently negligible for this data set,

and correspondingly our faith in the accuracy of these intervals is relatively strong.

We can compare the features of this data set with the setup of our simulation.

One of the parametric configurations in our simulation had N = 10, T = 20, and

7* = 0.5, which matches these data quite well. In that case the coverage rates of

the various confidence intervals were in the range of 0.87 to 0.88, which are obviously

close to 0.90.

A technical detail worth noting is that the acceleration factor in the ECG bootstrap

was undefined and was therefore set equal to zero. This is further evidence that there

was very little bias in estimation.

2.7 Conclusions

In this chapter we have provided a survey of the use of bootstrapping to construct

confidence intervals for efficiency measures. We discussed several versions of the

bootstrap, including the percentile bootstrap, the iterated bootstrap, and the bias-
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adjusted and accelerated bootstrap. In stochastic frontier models, these methods

can be applied to the fixed effects estimates, yielding inferences that are correct

asymptotically as T —) 00 with N fixed.

We have proposed a simple parametric method of constructing confidence inter-

vals. It uses standard methods and simply acts as if the identity of the best firm

is known. We also proposed a resampling scheme, the “max-best” bootstrap, which

ought to yield confidence intervals similar to the parametric intervals. These pro-

cedures are valid under the same conditions that the bootstrap methods are valid,

namely, as T —> 00 with N fixed, and provided that there is a unique best firm.

The main problem that we encounter is the upward bias in the fixed effects esti-

mate of the frontier, which translates into a downward bias for the estimated efficien-

cies. The bias is large when T is small, N is large, and/or statistical noise is large

relative to the variation in the frontier. These are exactly the same circumstances in

which the identity of the best firm is uncertain, and so it is fair to say that bias is a

problem when the identity of the best firm is in question.

Our simulation results show that the percentile bootstrap is seriously inaccurate

when the bias problem exists, that is, when the identity of the best firm is not

clear. The percentile bootstrap intervals are miscentered because the bias in the

original estimates is compounded by similar “bias” in the bootstrap estimates. Our

parametric intervals, or our “max-best” bootstrap intervals, avoid the second source

of bias, are more reliable than the percentile bootstrap intervals. The bias corrected

and accelerated (BCa) bootstrap makes a bias correction based on the “bias” in the

second round, and these intervals are also more reliable than the percentile bootstrap

intervals. Comparing the parametric intervals and the ECG intervals, neither clearly

dominates the other. The parametric intervals are more conservative.

A negative conclusion of the simulations is that none of the methods of construct-

ing confidence intervals based on the fixed effects estimates is very reliable if the
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identity of the best firm is in serious doubt. In such cases it may be worthwhile to

consider assuming a distribution for technical inefficiency and using MLE.

We performed an empirical analysis of two data sets, one of which had charac-

teristics very unfavorable to the bootstrap (large N, small T, and large variance of

noise). In this case there was evidence of bias, and the bootstrap intervals were both

unreliable and too wide to be informative. Our other data set had more favorable

characteristics, and the empirical analysis yielded results that were quite precise and

seemingly sensible. Hence, as in the simulations, a major lesson is that the reliability

of inference on efficiencies can be judged based on observable features of the data.
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2.8 Output Tables

Table 2.1: Biases of Fixed Effects Estimates

 

 

 

biasl bias2 bias3

E(6 — a) E(112‘ — 11,) E(112‘ — 112‘)

T 7* N (1) (2) (3)

10 0.1 10 0.103 0.105 0.133

10 0.1 20 0.153 0.155 0.169

10 0.1 50 0.234 0.235 0.241

10 0.1 100 0.276 0.274 0.277

10 0.5 10 -0.009 -0.008 0.055

10 0.5 20 0.045 0.046 0.078

10 0.5 50 0.119 0.119 0.132

10 0.5 100 0.153 0.152 0.159

10 0.9 10 -0.076 -0.075 0.010

10 0.9 20 -0.028 -0.028 0.016

10 0.9 50 0.018 0.018 0.035

10 0.9 100 0.039 0.039 0.049

10 0.1 10 0.103 0.105 0.133

20 0.1 10 0.049 0.046 0.078

50 0.1 10 0.006 0.005 0.035

100 0.1 10 -0.007 -0.007 0.021

10 0.5 10 -0.009 -0.008 0.055

20 0.5 10 -0.038 -0.041 0.030

50 0.5 10 -0.054 -0.054 0.013

100 0.5 10 ~0.058 -0.058 0.004

10 0.9 10 -0.076 -0.075 0.010

20 0.9 10 -0.090 -0.091 0.004

50 0.9 10 -0.087 -0.088 0.002

100 0.9 10 -0.084 -0.085 0.000  
88



Table 2.2: 90% Confidence Intervals for Relative Efficiency (r2)

 

Infeasible Parametric

 

 

 

T 7* N Width P(<lb) P(>ub) cover

10 0.1 10 0.551 0.057 0.037 0.905

10 0.1 20 0.564 0.038 0.052 0.910

10 0.1 50 0.599 0.059 0.043 0.898

10 0.1 100 0.594 0.048 0.049 0.903

10 0.5 10 0.326 0.057 0.037 0.905

10 0.5 20 0.335 0.038 0.052 0.910

10 0.5 50 0.352 0.059 0.043 0.898

10 0.5 100 0.351 0.048 0.049 0.903

10 0.9 10 0.127 0.057 0.037 0.905

10 0.9 20 0.131 0.038 0.052 0.910

10 0.9 50 0.136 0.059 0.043 0.898

10 0.9 100 0.137 0.048 0.049 0.903

10 0.1 10 0.551 0.057 0.037 0.905

20 0.1 10 0.379 0.044 0.045 0.910

50 0.1 10 0.236 0.038 0.043 0.919

100 0.1 10 0.167 0.050 0.038 0.912

10 0.5 10 0.326 0.057 0.037 0.905

20 0.5 10 0.228 0.044 0.045 0.910

50 0.5 10 0.143 0.038 0.043 0.919

100 0.5 10 0.101 0.050 0.038 0.912

10 0.9 10 0.127 0.057 0.037 0.905

20 0.9 10 0.090 0.044 0.045 0.910

50 0.9 10 0.057 0.038 0.043 0.919

100 0.9 10 0.040 0.050 0.038 0.912
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Table 2.3: 90% Confidence Intervals for Relative Efficiency (r2)

 

Percentile Bootstrap
 

BCa Bootstrap
 

 

 

  

T 7* N Width P(<lb) P(>ub) COVCI‘ Width P(<lb) P(>ub) cover

10 0.1 10 0.354 0.001 0.289 0.709 0.336 0.015 0.130 0.855

10 0.1 20 0.346 0.000 0.447 0.553 0.328 0.015 0.164 0.821

10 0.1 50 0.323 0.000 0.676 0.324 0.320 0.008 0.275 0.717

10 0.1 100 0.305 0.000 0.805 0.195 0.306 0.007 0.341 0.652

10 0.5 10 0.248 0.015 0.157 0.829 0.252 0.044 0.092 0.864

10 0.5 20 0.245 0.003 0.235 0.762 0.243 0.041 0.108 0.851

10 0.5 50 0.230 0.001 0.448 0.552 0.232 0.023 0.184 0.794

10 0.5 100 0.219 0.000 0.603 0.397 0.221 0.018 0.229 0.753

10 0.9 10 0.111 0.040 0.084 0.876 0.115 0.057 0.081 0.861

10 0.9 20 0.112 0.018 0.116 0.867 0.113 0.061 0.084 0.855

10 0.9 50 0.108 0.005 0.234 0.761 0.108 0.048 0.115 0.837

10 0.9 100 0.105 0.002 0.363 0.636 0.104 0.037 0.150 0.813

10 0.1 10 0.354 0.001 0.289 0.709 0.336 0.015 0.130 0.855

20 0.1 10 0.282 0.002 0.225 0.773 0.267 0.027 0.099 0.874

50 0.1 10 0.197 0.005 0.152 0.843 0.190 0.036 0.079 0.885

100 0.1 10 0.145 0.008 0.131 0.861 0.144 0.034 0.072 0.895

10 0.5 10 0.248 0.015 0.157 0.829 0.252 0.044 0.092 0.864

20 0.5 10 0.192 0.014 0.113 0.872 0.196 0.044 0.088 0.868

50 0.5 10 0.131 0.018 0.085 0.897 0.136 0.044 0.074 0.882

100 0.5 10 0.094 0.028 0.070 0.902 0.097 0.061 0.074 0.866

10 0.9 10 0.111 0.040 0.084 0.876 0.115 0.057 0.081 0.861

20 0.9 10 0.083 0.031 0.068 0.901 0.085 0.059 0.083 0.858

50 0.9 10 0.055 0.031 0.063 0.906 0.056 0.044 0.076 0.880

100 0.9 10 0.039 0.045 0.047 0.908 0.040 0.053 0.069 0.878
 

Table 2.4: Bias Correction in the ECG Bootstrap Intervals

 

 

max, (1, max, (I, max, (12")

T 7* N (1) (2) (3) (2)-(1) (3)-(2)

10 0.1 10 0.972 1.103 1.175 0.132 0.072

50 0.1 10 0.970 1.006 1.034 0.036 0.029

10 0.1 50 0.994 1.234 1.342 0.240 0.108

10 0.5 10 0.937 0.991 1.027 0.054 0.037

50 0.5 10 0.933 0.946 0.957 0.013 0.011

10 0.5 50 0.988 1.119 1.183 0.131 0.064

10 0.9 10 0.915 0.924 0.933 0.009 0.008

50 0.9 10 0.910 0.913 0.915 0.003 0.002

10 0.9 50 0.983 1.018 1.039 0.035 0.021   
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Table 2.5: 90% Confidence Intervals for Relative Efficiency (if)

 

Feasible Parametric “Max-best” Bootstrap
 

 

 

  

T 7* N width P(<1131 P(>ub) cover width P(<lb) P(>ub) cover

10 0.1 10 0.463 0.071 0.113 0.816 0.433 0.072 0.138 0.790

10 0.1 20 0.471 0.039 0.144 0.817 0.444 0.039 0.173 0.787

10 0.1 50 0.455 0.018 0.258 0.724 0.429 0.018 0.295 0.687

10 0.1 100 0.445 0.010 0.327 0.663 0.420 0.010 0.374 0.617

10 0.5 10 0.301 0.058 0.070 0.872 0.282 0.060 0.089 0.852

10 0.5 20 0.308 0.033 0.085 0.881 0.290 0.035 0.107 0.858

10 0.5 50 0.301 0.017 0.163 0.820 0.285 0.017 0.190 0.793

10 0.5 100 0.298 0.009 0.215 0.776 0.281 0.009 0.248 0.743

10 0.9 10 0.124 0.055 0.049 0.896 0.117 0.059 0.061 0.880

10 0.9 20 0.129 0.032 0.061 0.907 0.122 0.039 0.075 0.886

10 0.9 50 0.130 0.019 0.096 0.885 0.123 0.021 0.116 0.864

10 0.9 100 0.130 0.010 0.132 0.857 0.123 0.011 0.156 0.833

10 0.1 10 0.463 0.071 0.113 0.816 0.433 0.072 0.138 0.790

20 0.1 10 0.344 0.067 0.090 0.844 0.333 0.067 0.099 0.834

50 0.1 10 0.227 0.053 0.073 0.874 0.224 0.053 0.078 0.869

100 0.1 10 0.162 0.053 0.067 0.880 0.161 0.053 0.068 0.879

10 0.5 10 0.301 0.058 0.070 0.872 0.282 0.060 0.089 0.852

20 0.5 10 0.219 0.051 0.065 0.884 0.212 0.053 0.070 0.877

50 0.5 10 0.141 0.042 0.055 0.904 0.139 0.042 0.058 0.900

100 0.5 10 0.100 0.050 0.049 0.901 0.100 0.052 0.051 0.897

10 0.9 10 0.124 0.055 0.049 0.896 0.117 0.059 0.061 0.880

20 0.9 10 0.089 0.048 0.051 0.901 0.087 0.052 0.056 0.893

50 0.9 10 0.057 0.038 0.048 0.914 0.056 0.041 0.052 0.907

100 0.9 10 0.040 0.052 0.041 0.908 0.040 0.055 0.043 0.901
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Table 2.6: Biases of Fixed Effects Estimates (Case that ui are fixed over replications)

 

 

 

biasl bz'a32 biasB

E(d — a) E(u’: — ui) E(fi: — 1%“)

T 7* N (1) (2) (3)

10 0.1 10 0.010 0.013 0.029

10 0.1 20 0.006 0.006 0.023

10 0.1 50 0.045 0.046 0.062

10 0.1 100 0.061 0.061 0.078

10 0.5 10 -0.035 —0.032 0.004

10 0.5 20 -0.049 -0.049 —0.012

10 0.5 50 -0.029 -0.028 0.008

10 0.5 100 -0.042 -0.041 -0.005

10 0.9 10 —0.048 -0.047 0.002

10 0.9 20 -0.055 -0.055 -0.006

10 0.9 50 -0.046 -0.046 0.004

10 0.9 100 -0.052 ~0.051 -0.002

10 0.1 10 0.010 0.013 0.029

20 0.1 10 -0.021 -0.021 -0.004

50 0.1 10 -0.019 -0.018 -0.001

100 0.1 10 -0.019 -0.019 -0.002

10 0.5 10 -0.035 -0.032 0.004

20 0.5 10 -0.042 -0.042 -0.005

50 0.5 10 -0.039 -0.038 -0.001

100 0.5 10 -0.039 -0.039 -0.002

10 0.9 10 -0.048 -0.047 0.002

20 0.9 10 -0.052 -0.052 -0.002

50 0.9 10 -0.050 -0.050 0.000

100 0.9 10 -0.050 -0.050 -0.001  
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Table 2.8: Estimated Efficiencies and 90% Confidence Intervals: Indonesian Rice

Farms

 

 

 

Fixed Effects MLE

Firm Point Point

No. Estimate LB UB Estimate LB UB

164 1.000 1.000 1.000 0.964 0.903 0.998

118 0.933 0.682 1.000 0.964 0.902 0.998

31 0.620 0.447 0.859 0.924 0.823 0.994

15 0.554 0.403 0.762 0.923 0.792 0.990

16 0.501 ' 0.362 0.694 0.845 0.725 0.969

117 0.380 0.275 0.524 0.773 0.658 0.907

45 0.366 0.266 0.504 0.774 0.659 0.908   
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Table 2.10: Estimated Efficiencies and 90% Confidence Intervals: Texas Utilities

 

 

 

—
_
_
_

(
‘
_
‘
n
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‘
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—

 
Fixed Effects MLE

Firm Point Point

N0. Estimate LB UB Estimate LB UB

5 1.000 1.000 1.000 0.987 0.971 0.999

3 0.916 0.823 1.000 0.978 0.959 0.996

10 0.861 0.786 0.943 0.908 0.889 0.927

1 0.835 0.784 0.889 0.864 0.846 0.882

8 0.820 0.773 0.869 0.846 0.828 0.864

9 0.806 0.766 0.848 0.826 0.809 0.843

2 0.801 0.749 0.855 0.831 0.814 0.848

7 0.786 0.732 0.844 0.817 0.800 0.834

6 0.785 0.730 0.845 0.820 0.803 0.837

4 0.762 0.719 0.808 0.786 0.770 0.801   
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Chapter 3

Indicator KPSS with a Time Trend

3. 1 Introduction

In this chapter, we propose a statistic to test whether a time series is stationary,

and we allow for a time trend. A standard test for stationarity is the KPSS test

by Kwiatkowski, Phillips, Schmidt, and Shin (1992). The KPSS test, 1‘7” uses the

scaled sum of squares of cumulations of demeaned data with a long-run variance

estimate in the denominator. A deterministic trend can be allowed in the test of

trend-stationarity in which the demeaned data in 1?” are replaced by the residuals

from the regression of the series on intercept and trend.

In the construction of the KPSS tests, conditions enough to imply Functional

Central Limit Theorems (FCLT) are assumed. One of these conditions is the finite

variance assumption. However, when the data have fat-tailed errors such as those from

the Cauchy distribution in which the moments do not exist, the limiting distributions

of the KPSS statistics are functionals of the Lévy process (Amsler and Schmidt 2000),

not a Wiener process. In the paper by de Jong, Amsler, and Schmidt (2002), the

authors relax the moment assumption and propose a modified version of KPSS test,

1‘7”. They call their test the “indicator KPSS” test which we will label Zp. The sample

data are transformed using an indicator which gives the value of 1, 0, or -1 depending

on whether or not the sample observation is above, on, or below the sample median.
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Under the null of level-stationarity, in is shown to have the same limiting distribution

as the KPSS test, ii”.

In this chapter, we use a similar indicator to transform the data, but allow for a

deterministic trend as well as a non-zero level for the data. Let the indicator KPSS

statistic with a time trend be denoted as £7. We show that the asymptotic distribution

of ET under the null of trend-stationarity is a function of the second-level Brownian

bridge, which is also the limiting distribution of the KPSS statistic with a time trend,

A

771-

3.2 Asymptotic Theory

3.2.1 Assumptions

Let {{:1:Tj};r:1}§9:1 be a triangular array of random variables such that

$Tj = 00 + flog: + 63'. (3.1)

Assumption 1. There exist unique £10,180 such that med(:ch) = (10 + Boj/T for all

T andj=1,-~ ,T.

Note that this implies that the unique median of ej = ij — a0 — 30j/T is zero.

The next assumption is a convergence condition on the average variance of the sum

of transformed ej with the finiteness of the long run variance, 02.

2

Assumption 2. Define 02 = limr_r_,ooE(T"1/2 Z$=1 sgn(ej)) , where the sgn

function takes three different values of 1, 0, or -1 depending the sign of an argu-

ment: sgn(a:) = 1 ifx > 0, sgn(:1:) = 0 ifa: = 0, and sgn(:r) = —1 ifx < 0. Then,

2
0<a <oo.

The next assumption is about the kernel function, k().
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Assumption 3. k() is continuous at 0 and at all but a finite number of points.

Ic(a:) = k(—$) for all a: E R. k(0) = 1. |k(z)| S l(:c) where 1(3) is nonincreasing and

f0°° |l(x)|da: < 00. Also, k() satisfies [3°00 |w(£)|d§ < 00, where

00

as) = (270—1 f k<x>exp<—z‘sx>dz. (3.2)
"'00

The Bartlett, Parzen, Quadratic Spectral, and Tukey-Hanning kernel functions

are some possible choices (de Jong and Davidson 2000). These kernel functions are

designed to lessen the effects of the longer lags smoothly to zero so that the kernel

function such as the uniform or the truncated kernel is excluded. The next set of

assumptions is about the ej, and will be used in deriving the asymptotic distribution

of the indicator KPSS statistic under the null of trend-stationarity.

Assumption 4. The ej are stationary random variables and strong (a—) mixing with

— r .—

mixing coefficients a(m) which satisfies a(m) S Cm :2 77 for some finite r > 2,

some 17 > 0 and a constant C. And ej has a continuous density f (e) in a neighborhood

{—7}, n] of 0 for some n > 0, and inf66[_,m] f(e) > 0.

Assumption 41is different from general conditions on the stationary errors used in

the derivation of the asymptotic distributions of the KPSS statistics (Phillips (1987)

or Phillips and Perron (1988)). The important difference is moment conditions on

ej. For example, in Phillips (1987), the moment condition like sup,- E lej|‘9 < 00 for

some 19 > 2 is assumed. However, in this chapter, we do not assume the existence of

moments of 53' under the null. This is made possible by the use of the indicators.

The next assumption is for the alternative of unit root.

Assumption 5. The 63- satisfy T_1/25[§T] => AW(§) for some /\ 6 (0,00) andé E

 

1In this chapter, Assumption 4 is stated in terms of 45,-, not :1sz as in de Jong, Amsler, and

Schmidt (2002). This is to emphasize that we are interested in the test of trend-stationarity.

That is, the assumptions for 61- in this chapter (or the detrended series, (BTJ' — ao — figj/T)

are the same as the Assumption 2 in de Jong, Amsler, and Schmidt (2002).
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[0,1], where W() is a Wiener process or Brownian motion.

Note that Assumption 5 also implies that T‘l/zxmm => AW(§) since T’l/2

$T,[gT] = T-1/2(ao + fiolETl/T) + T-l/zqgr] = 012(1) + T-l/qur] =¢ AW(El-

3.2.2 Indicator KPSS statistic

Using the least absolute deviations (LAD) estimators 6r, 3 which are solutions to

 

T

. .7

rain: 3T] — a — 5T , (3.3)

1:1

we define the cumulation of the indicator data

‘ «j
STt = :sgn(a:Tj — a — 6?). (3.4)

i=1

Then, the indicator KPSS statistic with a time trend, L, is defined as

T

6‘2T‘2Z 5%,. (3.5)

t=1

2 can be constructed from the “indicator” resid-A consistent estimator of 02, 6

uals, sgn(a:Tj — o} - flit/T). Using a weighting function, the heteroskedasticity-

autocorrelation consistent (HAC) estimator, 62 is obtained by

TT . . . .

A2 ---1 2 - J A A z A A J

0 = T 2.2—1:124 kf ”YT )sgn(:rT,- — 01 — fl?) 5811(ij “ a — 5?), (3'6)
 

where k() is the kernel function. ’YT is the lag truncation parameter which goes to

00 as T —> co and satisfies the condition of 7T/T —-) 0.

Note that ET is defined in a similar way as the KPSS statistic, 1‘77. The difference is

that we use the deviations from the median while 1‘77 is based on the deviations from
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the mean of the series. The indicator KPSS is based on the sample median which is

the generalization of the fit from a LAD regression.

As noted in de Jong, Amsler, and Schmidt (2002), the purpose of trimming the

data is to remove the effects of fat tails or make the variance finite. We use the sgn

function to bypass the problem of how to scale the data so that only the location of

the data is used to transform the data. This is because sgn(a:) = (I(a: Z 0) —I(:r S 0))

and |:c| = a: - (I(a: 2 0) — I(a: S 0)) = a: - sgn(a:), where I() takes the value of one if

the argument is true and zero otherwise.

3.2.3 Conjectures

Before stating theorems for the asymptotic distributions of £7, let us make conjectures

on c“: and 3 as the proofs for the following claims are only partially done.

Conjecture 1. Under Assumptions 1 and 4, T1/2(& — 00) = 0,,(1) and T1/2(B -—

50) = 0p(1)-

What we want to assert in this conjecture is, for an arbitrarily large K > 0,

limsupP( sup sup Y1T(¢1.¢>2) 2 0)
T-)00 ¢1>K ¢2>K (3 7)

=1imsupP( 811p sup Y2T(¢1.¢2) 2 0) = 0
T—ioo ¢1>K ¢2>K

so that the probability of having solutions (:51, (1)2 outside <I> = {(¢1, (152) 6 1R2 : —K _<_

4513 K,—K§ (152 g K} goes to zeroasT—+oowhere

T . .

Y1T(¢1,¢2) = ”FA/2 ngn(ij — <10 — 50% — T_1/2(¢>1+ ¢2%)).

jz‘ (3.8)
T .

Y2T(¢1.¢2) = T4” 2581“ij - a0 - 50;;- - T—1/2(¢1 + (152%))
2'.

. T'

1:1

However, there are the four possibilities for obtaining large values for 451 and/or 432:
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0 case [1]: (b1 > K and $2 > K,

0 case [2]: d1 < —K and (fig < —K,

o case[3]: ¢1< -—K and (b2 > K,

a case [4]: (b1 > K and (b2 < —K.

The proof of (3.7) corresponds to case [1]. The proof for case [1] and case [2] is shown

in an Appendix. However, the proof for case [3] and case [4] remains to be done. Also,

note that the case in which only one of |¢1| and |¢2| is larger than K is a special case

of either case [1] or case [2] and can be proved in a similar way as in the proof for the

first two cases.

The following conjecture makes a similar claim as Conjecture 1, but the difference

is that we assume ej is an I(l) process.

Conjecture 2. Under Assumptions 1 and 5, T’1/2(& — a0) = 019(1) and T-1/2(6 —

50) = Op(1)~

Here we also have to consider the four possibilities in which |T_1/2€r| and/or

IT‘1/26| are greater than K. In the Appendix, we prove two cases when both

[T—l/zé] and IT‘l/zfi] are either greater than K or less than K. The two other

cases would be proved in a similar way as in the unsolved cases of Conjecture 1.

3.2.4 The Asymptotic Distributions of the Indicator KPSS

Statistic

Theorem 1. Under Assumptions 1, 2, 3, and 4 and Conjecture 1,

T
l

T_2 23% —d> 02/0 V2(r)2dr, (3.9)

t=l
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where V2 (r) is the second-level Brownian bridge,

1

V2(r) = W(r) + (2r — 3r2)W(1) + (—6r + 6r2)/ W(r)dr. (3.10)

0

And

32 L 02. (3.11)

The limiting distribution of ET is fol V2(r)2dr, which is also the limiting distribution

of the KPSS test with time trend, 1?, so that the same critical values in the paper

by Kwiatkowski, Phillips, Schmidt, and Shin (1992, p.166) can be used. Under the

alternative in which an is an I(1) process, we have the following result.

Theorem 2. Under Assumptions 1 and 5 and Conjecture 2,

T 1 c 2

T"3 23%, —d+ A2 /0 (f0 sgn (W(g) - é - g5) 35) dc, (3.12)

t=1

where (T-1/2&,T‘1/ZB)’ —d> (A, B)’ for random variables A and B, and 62/7T —a—'—)

2ft?o k(§)d(.

Other than whether the underlying series is stationary or not, the important

difference between the assumptions used in deriving the results of Theorem 1 and

Theorem 2 is the moment condition on 63-. In Theorem 1, we do not impose a

condition for the existence of the moments. However, in Theorem 2, we need a finite

second moment of ej in order to apply FCLT.

Also, note that the limiting distribution under the alternative of unit root in

Theorem 2 is different from that of the KPSS statistic with a time trend which is

[01 U: W*(s)ds)2da/K (,1 W*(s)2ds (3.13)
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where W*(s) = W(s) + (63 — 4) fol W(r)dr + (—123 + 6) fol rW(r)dr. The differences

in the asymptotic distributions will turn into power differences as in de Jong, Amsler,

and Schmidt (2002). Under the alternative of unit root with the fat-tailed errors,

the indicator KPSS test with a time trend would be more powerful than the KPSS

test with trend, and less powerful when the errors are normally distributed. This is

because the indicator is only concerned with the location of the data.

3.3 Concluding remarks

In this chapter, we have extended the indicator KPSS test proposed by de Jong,

Amsler, and Schmidt (2002) to the case in which a time trend as well as non-zero

level is allowed. The indicator KPSS test with a time trend also does not require the

existence of the moments of the series, yet produce the same asymptotic results as

the KPSS test with a time trend, 177-. However, this result depends on our conjectures

on the estimators.

The indicator can be extended to unit root tests such as Dickey-Fuller, Phillips-

Perron, or Schmidt-Phillips tests. We expect that the use of the indicator would

produce more powerful results when the errors have sufficiently fat tails, which is

commonly associated with financial time series. However, the asymptotic results of

unit root tests with the indicator under the null of unit root might be different from

those without the indicator. As in our chapter and de Jong, Amsler, and Schmidt

(2002), the unit root tests with the indicator might produce the same asymptotic

results as the tests without the indicator under the alternative of stationarity.
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3.4 Appendix: Mathematical Proof

Here is the outline of proofs. Lemma 1 shows an inequality involving the Lp—norm

which will be used in Lemma 2. Lemma 2 states that GT(1,¢) — EGT(1,¢) =

T-l/2 E?=1(yTj (¢) - EyTj (45)) is stochastically equicontinuous. In Lemma 3, the

uniform convergences of GT(r,¢) and HT(1,7) over corresponding compact sets of

parameter values will be established. A partial proof of Conjecture 1 follows. In

Lemma 4, the asymptotic distributions of the estimators of the regression coefficients

are derived. Then, Theorem 1 proves the asymptotic distribution of the indicator

KPSS statistic along with the consistency of the long-run variance estimator. Con-

jecture 2 is partially proved. Finally, in Theorem 2, we show the limiting distribution

of the statistic when the ij have a unit root.

Lemma 4. For strong (a-) mixing random variables yTj E IR whose a-mixing coef-

— r _-

ficients satisfy a(m) S Cm :2 ’7 for some n > 0,

T T

E :(yTj - EyTj) ~ S E max E(yTj - EyTj) S 0'2 M 3m ”3

j=1 - - '=1 i=1

(3.14)

for constants C, C' .

Proof of Lemma 1. By Theorem 17.5 and Corollary 16.10 of Davidson (1994). El

Lemma 5. Let z = (Li/TY, 4’ = (¢1.¢2)' and 14 = (¢i.¢2)'- Let yTj(¢) =

sgn(:ch — ozo — floj/T — T'1/2Z’¢) — sgn(a:Tj - 0:0 — floj/T). Then, under Assumptions
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1 and 4, for all K,€ > 0,

lim lim sup P sup

57° T-*°° |¢1|SK,I¢2|SK.

|¢1|SK.I¢2|SK.

(|¢1-¢1|+l¢2-¢2|)<5

T

71““22 Iowa) — Emu» - (my-(w — Eye-(«pm < e) =1.

'=1

(3.15)

Proof of Lemma 2. For T large enough such that 2KT‘l/2 g n

T

SUD T_1/2 IEyT'(¢) - EyT'(¢)I

(Ida-1P1|+|<z52--1/22|)<<S Z J J

T

= 2 sup T‘1/2Z [F(T-1/2z’¢) — F(T-1/2z’¢)[

(|¢1-¢1l+|¢2-¢2|)<5

T

= 2 sup 1”: f(T‘1/2z’)T"1/2(¢1 — in)

(|¢1—¢1|+|¢2-¢2|)<5T j:1  

+ f(T"1/2Z'£) -T_1/2(¢>2 - 412%]

=2 SUP T4 f(T1/22'£))'¢[(1-¢1)+(¢2-¢2)i

(|¢1-¢1|+|¢2-¢2|)<5 Z( T

_<_2 - sup (ST-12“?"T1/2Z'f))||¢1- ¢1|+|¢2_¢2||

(|¢1-¢1l+|¢2-¢2|)<5

< 26T’12f(T‘1/2(€1+€2-T))

j:—1

S 26 _ sup f(§).

{El-77117]

where F() is the cdf of e and 5 E L(¢, 1b), a line segment from 4) to 11:. This establishes

the equicontinuity of T’l/2 ZleEyTjw) on (P = {(451,432) 6 R2 : —K S 451 s

K, —K S (252 S K} since 6 can be made arbitrarily small. Then, the stochastic
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equicontinuity of T‘l/2 2}]:1 gr, (4)) can be shown as follows. Let ii); = (i6, i5)’ and

i(i+2)5 = ((i + 2)5. (i + 2)5)'-

T

—1/2
sup T lyTj(¢) - yT '(¢)|

l¢1lSKJ¢2|SKa 1:2:1 J

WllSKJWlSK.

(|¢1-¢1|+|¢2-¢2|)<5

= sup sup

_[%]_15,S[%] (151,311 €[i6,(i+2)6]n[—K,K]

T

sup T_1/2 9T (¢) - yT ('1’)

¢2,w2€[i6,(i+2)6]n[—K,K] 122:1 l J J I

T

S SUP T-1/2 Z (yTj(ii6) - yTj(i(i+2)6))

Tam-s3]
T

3* sup T_1/2 Z (E yTj (ins) — EyTj (i(i+2)6))

Taxes]
T

S SUD T_1/2 IEyT'(¢) - EyT '(tl’) -

|¢1|SK.I¢2|SK. £31 3 J I
|¢1|SK.l1/)2|SK.

(|¢1-¢1|+|¢2-¢2|)<5

For the first inequality above, note that yTj is nonincreasing so that the maximum

distance between ¢ and 1/1 in sub-intervals of [-—K, K] will give rise to the supremum

of (yTj(i,:5) — yTj (i(,-+2)5)) for each sub-interval. For the last inequality, 43 and v are

now chosen all over the interval. The pointwise convergence for every i holds because,

for T large enough such that 2KT"1/2 S 77, by Lemma 1,

T

2

E (TI/2 2: [(yTj (its) - yTj (i(i+2)6)) " E (9T1 (it'd) ’ yr) (i(i+2)5))l)

i=1

T

g CENT—V2 (yTj (i215) - yTj (i(i+2)6)) H3

j=l
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T

= CT‘1 21]] (yTj (i115) — yTj (i(i+2)6))ll12-

J:

gCT'IZ supKllysj<¢>Il3

T . .

= CT 1 Z sup ||sgn<x1~j— ao — 51%— T‘1/2¢1 — T‘Wefi)
j=1 |¢1|SK,

|¢2ISK

j 2

- Sgn(-’13Tj — a0 - 1305:)“
1‘

F

g C’ 1 — 2F(—2T‘1/2K)
 

‘
I
l
w

= C’ 2T‘1/2K sup f(§)

lElSn

——>0,

  

as T —> 00 and for some positive constants C, C’. Note that F() is the cdf of e and

there are two cases to consider for the last inequality since (T’1/2gb1 + T‘1/2¢2j/T)

will be either nonpositive or nonnegative. In the below, we prove that the inequality

holds in either case;

. case [1]: T’1/2¢1 + T-l/Zszj/T g 0. This implies -—2T"1/2K g —T-1/2K —

T-l/ZKj/T g T-1/2¢1 + T‘l/qugj/T so that

SUP I] Sgn($Tj - ao - flog.- - T-1/2451— T'1/2¢2§J:)

 

|¢1|SK.

|¢2ISK

j 2

- 5811(ij - 00 - 5050]]?

2

- su (EI2I(T"1/2 _1/2 1 '— — l )1”),-— p ¢1+T 452 SICT) a0 50 SO

|¢1ISK. T T

|¢2|SK

)2.

. 3
= 4 (E1 (—2T"1/2K g (BTJ' — a0 —[30€l]; S 0))

g (E [21 (—2T"1/2K S JITJ‘ - an — 605],— S 0)
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~
i
l
k
:

4 (P (—2T‘1/2K 3 1T, — a0 — egg; 3 0))

22%[1—2F(—2T‘1/2K)]%

0 case [2]: 0 _<_ T-1/2q51 + T_1/2¢2j/T. Then,

j _ _ .

sup ”Sganj-ao-flof-T “211—7“ 1”12%)
|¢1|SK.

I¢2|SK

j 2

— sgn(a:Tj — a0 — BOT)|]1~

‘
N
N

- r

= sup (E[—2I(0<ij—a0—flo% <T—1/2¢ +T‘1/2¢2——)[)

|¢1|SK.

l¢2|SK

_. r ._ _ J; —1/2 r F
E El 2l I 031T, 010 fioTSZT K

 

= 22-; (2F (2T‘1/2K) —— 1);.

E]

Lemma 6. Let yTj(¢) be as in Lemma 2, and let

[7T] T—1/2ZT
:1 9T '(7)

cm«1): TWZyT)(1) HT(1,7) = _1/2 ,3 . ’ . (3.16)
1': T 23:1 Tyij’Y)

Then, under Assumptions 1 and 4, for any K > 0,

sup sup 161(1. «1) — EGT(1.«1)I i1 0. (3.17)

l¢llSK1 TE[0,1]

|¢2|SK

SUP IHT(1,7) - EHT(1.'7)| 33+ 0. (3-18)

l71|SK.

I72|SK
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Proof of Lemma 3. Let

JT(¢)= SUP [GT(T»¢)-EGT(T1¢)I- (3-19)

r6[0,1]

For each 41 with its elements in [—K, K] and T large enough such that 2KT‘l/2 S 17,

2

E (JT(¢))2 = E ( SUP IGT(7‘.¢) - EGT(T1¢)I)
rE[0,l]

2

= E sup

(r€[0,1] )

[7T]

T4”2 (yTj(¢) - E yTj(¢))

T 2

S 0T4 Elli/TM)”.
j=l

  j=1

(3.20)

‘
3
l
t
0

g C’ 1— 2F(—2T-1/2K)
 

‘
I
I
N

= C’ 2T—1/2K sup f(§)

|£|Sn

—>0,

  

as T —1 00 and for some positive constants C, C’. This implies JT(¢) = op(1). JT(¢)
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is also stochastically equicontinuous because, for if) E <I> and 41’ E <I>,

IJT(¢) - JT(¢')|

: sup IGT(T,¢) — EGT(T,¢)] — SUP IGT(T)¢’) — EGT(T1¢I)]

r6[0,1] r€[0,1]

S 33131] [GT(7°1¢) - E GT(7'1¢) - GT(7‘1¢’) + E GT(T1¢’)]

W] (3 21)
= SUP T_1/2 Z (yTj(¢) - E yTj(¢) — yTj(¢') + E yTj(¢')) '

TE[0,1] j-l

ITT]

S SUP T4”2 IyTj(¢) - E yTj(¢) - yTj(¢') + E yTj(¢')|

TE[0,I] j=1

T

S T.”2Z lyTj(¢) - EyTj(¢) - yTj(¢') + EyTj(¢')|-

j=1

Then, by applying Lemma 2 to (3.21) and together with pointwise convergence in

(3.20), uniform convergence of JT(¢) follows, which proves (3.17). Pointwise con-

vergence in probability of GT(r, 41) to EGT(r, 41) in d for every possible r has been

proved. In other words, JT(¢) is pointwise convergent in probability to zero and

stochastically equicontinuous. The uniform convergence in probability of JT(¢) to

zero or that of GT(r,¢) to EGT(r, 41) follows because, with compact sets and the

equicontinuity of E GT(r, 41), pointwise convergence with stochastic equicontinuity is

equivalent to uniform convergence. See Newey (1991).

For the uniform convergence of (HT(1,*y) — E HT(1,7)) to zero, note that

0110-17) - E GT(117)

HT(1,'y) — EHT(1.'1) = T -
T‘l/2 Zj=1i'(3/Tj(‘7)" EyTj(’Y))

where GT(1,7) — ECT(1,7) is uniformly convergent from (3.17), and T—l/2 2}]:1

(yTJ-(y) — E 3177(7)) j/T is also uniformly convergent which can be seen by comparing
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the following expressions to (3.20) and (3.21), respectively:

T j( 2

T”ZT (11.-(v 4111(7))

2

< EE(T_1/2TZ (yTj(’Y) -)EyTj(7)))

1:1

T

S CleyTj('Y)

1:1

 

and

T j( T j(

T’”2Z 5(yT1(’Y-EIIT1(7))T1/2Z 5): (yT1(7)- EyTjW»

i=1 1:1

T 1
S T—l/2:1]5:] (yTj('Y -EyTj(’Y) - yTj('Y’) + EyTj('Y'))]

T

S TV2;|(yTj('Y -Eyrj('7) - yrj(r') + Eyrj(’r'))l.

thereby proving (3.18). E]

Partial Proof of Conjecture 1. Here, we provide a partial proof of Conjecture 1 under

Assumptions 1 and 2: that is, T1/2(c31 — a0) and T1/2(B — B0) are Op(1). Let

T . .

Y1T(¢1.¢2) = T—1/2 ZSgIICETj - 010 - 50% - T_1/2(¢1+ ¢2%)).

j-1 (3.22)

Y2T(¢1, <12): 711/2 28814(ITj - CYo - 50% - T_1/2(¢1+ 92217.))
l

3‘:-1 T

In order to show T1/2(& — an) 2 0,,(1) and T1/2(fi — 60) = 0,,(1), four possibilities

for obtaining large values for 451 and/or (132 have to be considered;

0 case [1]: (151 >Kand ¢2>K,
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0 case [2]: (151 < —K and (£12 < —K,

0 case [3]: d1 < —K and (152 > K,

0 case [4]: $1 > K and (152 < —K.

However, we prove only first two cases in which both (151 and ([52 are either greater

than K or less than —K, which are done by showing that the probability of having

such solutions outside the compact set <I> = {(451,452) 6 R2 : —K S (131 S K, —K S

(152 S K} is arbitrarily small. Also, cases when only one of (151 and 452 is outside <I>

can be proved in the same way as in de Jong, Amsler, and Schmidt (2002).

Suppose that 451 > K and (:52 > K. Let’s start with Y1T(¢1,¢2). ForT Z 4K2n"2,

T . .

__ .7 — .7

sup sup 111121112) = T “2 Zssnorj - as - 10; — T mm + KT»
¢1>K¢2>K j=l

T .

P :r-ll/2 2(1— 2F(T-1/‘-’-(K + 1%)»

-T‘1/2:2(F( —F(T-1/2(K+K;)))

= 1-1/2 221(1><—T*1/2(K + 11%))
j=1

for some :1: E [0, T‘1/2K( 1 +40]]C [0,T—1/2K(1 + 1)] Q [0.77]

 

T+1
<—2 f TlK 1+—)=—2K 1+ inf :1:Ixilngflx)?‘ E::( ( 2T )ITISnf( )

T
< —2K 1 — f —3K 'f_ ( +2T)Iinsnf($): [(313an

so that

limsup P( sup sup Y1T(¢1,¢2) 2 0) S limsup P(——3K inf f(CII) _>_ 0) = , (3.23)

T—mo ¢1>K ¢2>K T—mo lxlsir
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since K > 0 and inflTlSn f(x) > 0. Next, in case of Y2T(¢1,¢2),

SUP SUP T1(zzSgn($Tj-Ozo-fio—-T 1(20151 +¢21T))
J'

¢1>K ¢2>K j__1 T

=T1/2ngn((sTj—e0—50—- T“1/2(K+K—
.7

j=1 TDT

T . . .

— -1 2 ._ _ i_ -1 2 l 2.
—T / EH?) 00 fioT T ((K+KT) 20)T

—12 —12 j
—T /TjéusTj—aO—so—— T /(K+KT)<0)T

T‘1/2(K+KT)

:2 d2:

__,T_1/22(/T°_°1/2HKKT))f(s)da:—/_oo f()

: T-1/2 Z(F(oo) — 2F(T-1/2(K + 11%)) + F(—oo))—%

j=1

T .

—_- :r-l/2 2(1 — 2F(T-1/2(K + K%))

fi
l
m
.

 

j=1

T

_ —1/2 -1/2 Z._T g2f(:c)(—T (K+KT))T forsomeTE[0,n]

1 T 1 11
_2T K|£|risfnf(x)1; (T + T5)

_ _ T(T + 1) T(T + 1)(2T + 1))

- 111.211.1111 (T2 «113

< —2K inf f(T) (1+1)—" —§K inf f(T)
_ [3'5" 2 3 3 ]x|<n

Therefore,

limsupP( sup sup

T—+oo ¢ >K¢ >K

1 2 (3.24)

Tl/zisgn (3t - 010 — EO— _ T—1/2(¢1 + 4527-1)) “517? O) = 0‘

j:-1
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The second case to consider is when 451 < —K and (1)2 < —K. The proofs in this

case are similar to the ones just done. Let’s start with Y1T(¢1,¢>2).

' f ' f Y ,¢11<11_K¢21<11_K 1T(¢1 (152)

T . .

_ —1 2 __ _ _~7_ _ —l 2 _ _ l
_T / Elsgncrfp] ao fiOT T / ( K KT))

7]:

T .

Jl+ T'1/2j;1(1 — 2F(T‘1/2(—K — K-JT»)

T
.

_ _ J
= T 1/2;:2(F(0) — F(T l/2(—K — KT)»

 

=T1/212:2f(x)(T1/2(K+K%)) forsomexE[-n,0]

T+1

_<_ 2 1nfT1K(1 +% K(+1 Inf

I:I=|<nf(x)T 2} 2T )lx|<nf(xx)

T

2<K(1 + ~27.) lar|n£flf(x)—- 3K|iln<f17 f(flI)

so that

limsup P( inf inf Y1T(¢1,¢2)_< O)_< lim sup P(3K inf f(a: )_<_ O)_— 0.

T—>oo ¢1<-K¢2<<-K T—mo |$|<Tl

(3.25)

In case of YgT(¢1, (1)2),

inf inf T—I/zzsgnm—ao—ao—-T—1/2(¢ +¢2—T»
.7

¢1<—-K¢2<-K j“-1 T

T . . .

_ —1/2 _ _ 1 —1/2 1 1
_T Elsgncrt 010 fi0T+T (K+KT))T

J:
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1» T"1/2JZ=:1(1 —— 2F(—T-1/2(K + K%)))%

1/2 T 1/2 J j
=T Emma“ (K+K ”T

T . .2

2 2T'"1K| iln<f f(x) 2 (l + L) for some a: E [—n,0]

3’ _77

5

> -K ' f .

—3 IglISnflx)

Therefore,

lim sup P inf inf

T—>oo ¢1<‘K¢2<-K

T . . .

T_1/2 :Sgn (ij - 010 - 50% - T_1/2(¢1 + 452%) “5% S 0) = 0-

i=1

The above two cases imply that lim suquoo P(T1/2(|& — (10] + If} — fiol) > K) can

be made arbitrarily small by choosing K large enough. C]

Lemma 7. Under Asaumptions 1 and 4,

 

—1

T1/2(& — a0) _ T T 1;; \

T1/2 * _ _ 2f(O) T+1 (T+1)(2T+1)

(5 fio) 2 6T / (3'27)

0WT(1) ‘ 0p(1)

X +

oWTm — oT-l 22-11 Warp opu)
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Proof of Lemma 4. Let2

. Tm“! - 00)

’Y = . -

TW- fio)

Note that

—1/2 1‘ ._ . _ “ '

T‘l/2 2:le {~Esgn(ij — d — 8f.)

: zcr-l/2 2$=1(F(0) — F(é + 85; — ao — 50%))

2T-1/2 )3le gm) — F(c‘r + 35'- — ao — 30%))

= -2T‘1/2 Zimo) — f(O) + f(0))(d + 8% — a0 - 30$)

-2T-1/2 2321 We» — W) + f(0))(d + 3;. — a0 _ 50;)

= —2f<0>T—1/22:}‘=1<é +Bl — ao - 50%)

—2f(0)T‘1/2 ELI {-(é + 3% - <10 — 30%)

+ —2T-1/2::,-T=1(f(ej) - f((»)(a +64} - ao - 50%)

—2:r-1/2 23%;] 71mg) — i<0>><a +3l~ — ao - Bel)

= -919 T Lid Tl/zm - 0°) + o
T 11%; (T+l%(r}2T+l) rIl/zw _ 50)

since max1gng|Ej| S maX1gng I(é — a0) + (3 - flolj/Tl S I51 - arol + IB - 50!

 

 

2so that

erl
. _ . «j '

GTUKY) = T ”2 j;(sgn($7‘j - 01 - Bf) - Sgn($Tj - a0 - 50%)),

[VT]
. _. . ~J'

EGT(r,7) = T 1/2j§_:lEsgn(m — a—fli).
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= 0p(T—l/2) by Conjecture 1, and “133(13ng |f(§j) — f(0)| -—) 0. Then,

oar-“2) = TM21:35ng — é _ 67;?
T4” 2}; i~ 89(ij — é — M»)

= (HT((1.7 -EHT(1

T‘l/2 __ _
Zj=1sgn($rj a0 flofl +EHT(1:’7)

T—l/2 Zj_1 fsgn:L'Tj - ao - flog»)

O'WT(1)

0WT(1)—0T"lzj_1WT(f)

 

_2__(__0) T 151—1 T1/2(c‘r - 00)

T 1%; (T+123(121T+1) T1/2(3 _ HO)

Therefore, we have

 

T1/2(5I-010)

T1/2(B-fio)

—1

T+1
W 1

~54— T 7; ”‘2 - weM) T;1 (+351, +2 aWT(1)—aT-1$,-=1WT(%)

-—l

1 1 .1, aW(1)
_._)._.___.

2f(0) % :1; 1)_af01Wrdr

C]

Proof of Theorem 1. First, we derive the asymptotic distribution of Tl/zSTt. Second,

we show the consistency of the long run variance estimator. Put together, we have
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the limiting distribution of the indicator KPSS statistic with a time trend, ET.

[rT]

Tl/zzsgneTj—a— 3—T)
j:—1

W]

=(GT(r ¢>— Earm- ¢>> +T1/2jzzfilsgnon — a0 —30T)

l

+ (T—l/ZJzlrlela53 (E sgn(:ch - Oz- 5%))) lazaoflzflo) ((5! _ (10))

 

 

T4” Zszllfi (E 8811(1‘Tj - a - [3%) lam,0 fizfio (3 - 30)

W]

=(GT(7‘ ¢)- EGT(7' ¢)) + T”22881“(IBTj - 00 - floT)

j:—1

[rT] ,

- 2fwwl/2ZM-ao)(0-2f)Cl’l/221T-(3- 30)

.7=-1 j:—1

[TT]

=(GT<r ¢)— EGT<r ¢>>> + T”2 ngn(n, — a0 — 3oT>
j:—1

- 2f(0)[-T-.-TT]T1/2(a —ao> — 2f(00)ererng + 1)T1/2(3 — 30)

= op(1>+ 0W1"(7")+(#1l — 3W? +1)T"”2 ngnej)

 

T .

+ (2%] _ dang] + 1))T—1/2Z% Sgn(ej) by (3.27)

 

 

  

 

'=1

= (To) + 0WT(r) + (#31 — 3["'T:§:Z]+ 1))0WT(1)

+ (9%:51 _ 6mg] + 1))0 TIZWTQF)>+ (W

= op(1)+ aww) + (”fl - 3["T](;;]+ 1))0WT(1)

(£13.73; + 6er1<331+ 1))T_1§:10WT(%)

J:

1+ 0(W(r) + (2r — 3r2)W(1) + (-6T + 6T2)/1 W(r)dr) = 0V2“),
0
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where the op(1) term is uniform in r. Note that for each j = 1, ..., T,

._ _ j _ _ ~ “ _ _ l
Esgn(a:TJ a fi—T=)a-ao,fi=30 —1 2F(a+fi ao éoT) (3.28)

=1 — 23(0) — 2<a+3T — a0 — 3oT)f<3+3T — a0 — 3oT>.

fi
r
»
.

where F is the cdf of ej. When 61 and B are consistent, f(6 + fiTv — a0 — BOT-v) would

be asymptotically equal to f (O)

0 J
a; ESEDCUTJ _ a ‘ 'BT)la=ao,fl=BO

__ 3- - i =-_ 2f(a + 3T (10 fiOT)!a=ao,fi:fi0 2f(0),
(3 29)

a__Esgn($ 0‘31”

.

6? TJ_ T a=aofi=fi0

__1 i_ — i --1— 2Tf(a+flT ao flOT)la=a0,fi=BO — 2Tf(0).

Also, note that

T t

——T”2gng) T“1(%)(:’1/2:: ngn(ei)) + 019(1) (3.30)

j=1i=1
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since

t

Z: Sgn(€i)

i=1

M
s

K
)
.

II
H

= sgn(€1)+(sgn(61)+ ssn(62)) + - ' ' + (8811051) + 8311(62) + ° ' ’ + 58’1“”)

T

(T- j+ 1) Sgn(€j)

:1

T T T

=TZISsgn(ej) -Z(J’ - sgn(ej)) + ngnkj),

j=1j=1 j:1

K
)
.

and

3 T t

T'Z ZZ sgn(e,)

j=li=1

T T J T

-T—1/2ngn(e )—T 1/2Zngn(e )+T lT ”2289(9)

1:1 j=l 321

T T

— T 1/2Z:sgn(e )- T 1/2§_:%sgn(csj) +op(1)

K
) H H

K
) II g
—
n

Since the sgn function is regular (Park and Phillips 1999, p. 272), we apply

Theorem 3.2 in Park and Phillips (1999) to derive the limiting distribution (3.5):

0271-2 2 STt

—d—>/01 (VI/(r) (2r - 37‘2)W(1) + (—6r + 6r2)/01W(r))2d'r

Next, we will prove the consistency of 62. First, note that for t = 1, - -- ,T,

(3.31)

, At

Sgn($t — a — fl?)

= (M7) — Eyt(’7)) + Esgnm " 5‘ ‘ 3%) + Sgnm _ a0 _ 50%)
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= (My) — 3mm) + (1 — 23(3 + 3T - 00 - 30%)) + Sgn($t - Cto - 50%)

= (My) — Eym» + (1 — 23(3 + 3T — ao — 30T)) + sgn<en

= on + th + Ct.

Then,

 

T T
A _ t— s

02 =T l E ,2 :k( 7T )(aTt+th+Ct)(aTs+st+Cs), (332)

which will be shown to be asymptotically equivalent to

 T422142;

t: 13:1

S)CtC3

so that

 

Then, by Theorem 2.1 of de Jong and Davidson (2000),

 

T T

71122quT)ctcs——>a2.

t=ls=

What is shown below is that all the cross products in the right hand side of (3.32)

except the term involving ctcs are 019(1) as T -—> 00. First, note that, for T large

enough,

sup Md = sup 1— 2F(a +BT— a0 — floT)

13th 13th

.t ~t t

= sup 2d+fl——ao-5o—)°f51+fi—‘T010‘30—)

lgth ( T T ( T T 
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s 2 sup m2) (Ia—a0: + IB—aol) = 0p(T’1/2),
lesrl

since for large T and consistent d and ,3, f (5: + ét/T - a0 — flot/T) converges

to f(O) uniformly in t so that the above inequality holds for |a:| g 17. Second,

T'l/2 2&1 laTtl = 0p(1) by Lemma 3. Then,

 

 

 

 

 

 

       

 

       

 

T—l Z 2: Mt; S)aTtaTs

t=13=1

=T’IZZ/_oo eXp<i€t;Ts)¢(€)d5'aTtaTs

t=13=1 °°

00 T

=T-1 :aTtZaTseprs“Dame
°°t=1

00 T

gT‘l Zlanl ZaTseXP(:Dam) d5
°°t=1

00 T

ST_1 ZlaTt|Z|aTsl WE)

t: 1 2

4 W(T-uiw)
~00 t=1

=0p(1)

Tdii t—s)

k( )aTths

t=13=1 7T

T

T_l§: —"s')st

t=1

<T<§ZT3 —)T1/2 811 lel
_ t=l l<sI<)T s

3 T 1/2 —1/2
ST221ml2‘:i-lrr ~0p<T >

t=1
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TT

=T-1-T‘1/2ZIaTtI- Z
t=l j=-T

 
14%)] -0p<1>

= 0100) - 2} 010(1) ——— 0pm,

T

T1232“;
t==131

——T‘l 2T3: /_°° exp (TC7Ts» «mm - aths
t=ls=1°°

= T-1 °° {hisexp (is (ti—D «mode
7T

 

s)aTtCs

 

 

  

 

<T"[:élanl Zesexp(i€ (JT))wodg

= T-1/2glaTt|£:T_1/2 sacs exp (T (tJT3)) T(é) dr

  

=Top<1) 010(1) = ope),

       

      

  
    

 

  

 

T_ st

t:13: l

T

ST_IZ

T T t—s

ST-l sup Ile SUP lel k( )
lgth t lgsST 3 gal; 7T

T T J

< sup um: supT IbT IT1 im—
1<t<<T l<3< 3 ,2;ng 7T

< sup lel sup lel )l
1<t<<T tlgs<T sngM]7—T

_ _ 7T

<0p(T ”2+0(0T 1/2>-7T=0p(—T—)=op(1),

T-
          
t==ls
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T

ST—IZ(1 8 Cs)t—3

t=1

T

< sup Ibnl T(Zlcsl2M

       

 

 

  1<t<T _1

 

  

Partial Proof of Conjecture 2. We provide a partial proof for (T‘l/zd,T‘1/2B)’ —d—)

(A, B)’ for some random variables A and B. In order to show that T'l/Zd and

T’l/ZB are 0,,(1), we need to consider four cases as in the proof of Conjecture 1.

However, we only provide two cases in which both T"1/261 and T‘l/Zfi are either

greater than K or less than —K. First, we show that the probability such that both

T"1/2& and. T‘l/zfi are greater than K goes to zero as K —> 00 and T —> 00. Note

that

1 T—1/2 j
sup sup T sgn(T xT- — a — b—)

a>K b>K :31 J T

T j_ -l -1 2 .
_ T :sgn(T MT] — K — K—T-)

d 1

—+ / sgn(AWoo — K — Koala
0

E T1(K)

and

sup supTlz:sgn(T1”2:513- —a—b-j-)J—

a>K b>K T T
j:-—1
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"
3
|
“

T .

_. _. J
=T 12 :sgn(T 1/2ij—K—K?)

i=1

1

—"+ f sgn(AWe) — K - Keats
0

E T2(K),

where the limiting distributions of T‘1 2121ng (T—1/2ij — K — Kj/T) and

T‘1 2L1 sgn(T‘1/2ij — K — Kj/T)j/T are obtained by applying Theorem 3.2 of

Park and Phillips (1999) because the sgn function is regular (Park and Phillips 1999,

p. 272).

Then, the probability with which T‘1/2c‘r and T-1/2B are not bounded in the

limit is calculated as follows:

P(T‘l/Zé > K and Two“ > K)

T .

= P( sup sup T‘123gn(T—1/2xTJ-— a — b-J—) 2 O)

G>K b>K j=l T

T .

-1 —1 2 .7 .7
+ P( sup sup T E sgn(T / xTJ- — a — of)? Z 0)

O>K b>K j=1

—* P(T1(K) Z 0) + P(T2(K) 2 0)-

Note that as K —> oo, sgn(AW(€) — K - K5) —-> sgn(—oo) = —1 so that T1(K) —p—->

f01(-1)d€ = _1 and T2(K) .1) f01(-§)d§ = —0.5. This implies that P(T1(K) _ O)

and P(T2(K) Z 0) will go to zero as K —> 00. Therefore,

lim sup lim sup P(T'l/zo‘z > K and T—l/zfi > K) = 0. (3.33)

K—+oo T—)oo.
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Similarly, it can be shown that

limsuplimsup P(T_1/2ci < —K and T—l/zfli < —K) = 0.

K—)oo T—>oo

(3.34)

Note that

'f le 1/2-— —b1
aimirix 2,3811” a T)

_ —1 —12 , j
—T éngT /$TJ+K+KT)

d l

—~>/0 sgn(AW(€) + K + K£)d§

E T3(K)

and

‘f le 1/2.— —b1
came 2333“” a T) H

I
“

= T“1 ngn(T—1/2TTJ- + K + K%)%

d l

—>/O sgn(AW(€) + K + K§)€d€

E T4(K).

As K —+ 00, T3(K) —p—> 1 since sgn(/\W(£)+K+K£) —+ sgn(oo) = 1 and T4(K) —p—>

0.5 since fol sgn(AW(€) + K + K§)§d§ —> fol gag = 0.5. Then,

P(T"1/2& < —K and TT—l/ZB < —K)

=P( ian inf TIngn(TT1/2ij—a—bl <0

a<—K b<—K T)_ )
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T .

- - -1 —1 2 J J
+ P(aén—fK b<1n_fKT jizlsgn(T / ij — a — bf)? g 0)

—> P(T3(K) S 0) + P(T4(K) S 0).

Since T3(K) 11> 1 and T4(K) 11) 0.5 as K —+ 00, P(T3(K) g 0) —> o and

P(T4(K) S O) —+ 0 which implies (3.34). Therefore, conditional on proof of the

other two cases, T-l/za and T‘1/2B are 0p(1). E]

Proof of Theorem 2. Let

. (3.35)

T-1 23,21 sgn(T-“2m — T'Wd — T—l/W)

T’1 ZT=1sgn(T"l/2$Tj - T’l/Zd ‘ ”Fl/23TH”

where d, = (a, B)’. We rely on Theorem 2.7 of Kim and Pollard (1990) to ensure

that (T’l/Zd,T‘1/23)’ converge to the solutions to the asymptotic version of (3.35),

Q((A, B)’ ) for some random variables A, B where

1s nAW —A-B d

Q<<A,B>'>= f” g ( (5) 5” . (3.36)

* fol sgn(AWe) - A — Bards

As noted in the proof of de Jong, Amsler, and Schmidt (2002), in order to use Theorem

2.7 in Kim and Pollard (1990), IQT(0)| has to go to 00 as |0| —+ 00, which does not

hold. But, this can be fixed by considering \II'1(|QT(-)|) where \I' is the cdf of normal

distribution as |QT()| is bound between zero and one.

Note that for any (a, B)’ E R2,

QT<(a, W) —"-’> QM BY). (33?)
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Although this does not follow directly from the continuous mapping theorem due to

the discontinuity of the sgn function, a continuous function arbitrarily close to the

sgn function can be used in the place of the sgn function, which is the argument used

in Park and Phillips (1999).

Now, we will prove the stochastic equicontinuity of QT(9) on <I> = {(61, 02)’ E R2 :

—K S 61 S K, —K _<_ 02 S K}, thereby establishing that QT(0) => Q((A, B)’) on <I>.

As the equations below get longer, we define some notation for substitution:

.. — - — j

=1,Tj = sgn(T 1/2131‘3' - T 1”0112‘ — T UzfllTT)

_ _ _ J

— sgn(T 1/21'Tj — T ”2le - T 1/2/62TT),

—~ —- _ _ J
=2,Tj = sgn(T 1/233Tj — T 1/2C¥1T - T l/zfizTT)

- sgn(T-main - T—1/2012T - T_1/252T%),

-1/233Tj - a2 - 52%)-

A1,Tj = sgn(T

A21]- : sgn(T—”23:17 — a1 — (22%) — sgn(T

First, for 0 E <I> and 0’ E <I>, we prove the stochastic equicontinuity of Q1T(-) by

showing that

(lirrblim supP SUP lQlTlo) — Q1T(9’)l > 6
—-> n—>oo

o,o’:|91—e’1|<5;|92-6§|<5 (3,38)

s 1imlimsupP(6(1 +6) sup |L(1,s)| > a) = 0.

6—>O 11.—+00 sE[—K,K]
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Note that

Q1T((01T:51T)I) - Q1T((0‘2Ta file')

= (Q1T((alTnBlT)’) - Q1T((0‘1Ta52T)I))

+ (owuam fim’) — Qwuaw.5sz (3°39)

T T

= T_1 Z 51,117+ T—1 252,77.

j=1 j=1

—1/2 —1/2
By Conjecture 2, we can replace T alT with a1 6 [—K, K]: similarly, T agT

with (12 e [—K, K], T-1/251T with b1 6 [—K, K], and T'1/2fl2T with by, e [—K, K].

Then, (3.39) becomes

T T

T-l Zth + T4 2?ij

i=1 i=1

< sup sup T‘12A11j (3.40)

b16[—K,K]b2-—|b2b1|<6 -

+ sup sup T-IZA2,Tj .

01€[-K,K] a2zla2—a1|<6 '

Now, by dividing an interval of [—K, K] into sub-intervals of an equal length of 6,

(3.40) can be written as

sup sup sup T"1 Z A1,Tj

K Kb6'6,°+16b:b—b <6{34-1547} 1[Z(z )] 2| 2 1|

+ su sup A

—[%-]-1:i<[K] 016[i5,(i+1)5]a2.|a:-I()11I<5 le; 2Tj

T

S sup sup sup T—1 Z |A1,Tj|

-[§]-13is[§r] b16[i6,(z'+1)6] b2:|b2—b1|<6
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T

+ sup sup sup T‘12 [112,17]

’[lg']-1.<_TS[K] 016[i5,(i+1)5]a2:]a2-all<6

S sup T121<a1+i6% <T1/2xT <a1+(z' +1)6-%)

{Ia-194%] ,=-1

+ sup T‘IZI (i6+b2% g T-1/2xT, g (i+1)6+b2%)

{ii-194i]
= sup ]/011(a1+i6£SWT([€TT———])<a1 +(z+1)6€)d{

161-194%
1

+ sup / I(i6+b2§<WT([£TT1) S(z’+1)6+b2§) d5

-[%l-lsz's[%] °
a1+(z'+1)6§ (i+1)6+621,r

su / L(1,s)ds +/ L(1,s)ds

_[K]_-l<i< [_Ig] al+i5§ i6+bg€

1$65 sup |L(,8)|+5 SUP lLllislli

sE[—K,K] sE[-K,K]

which can be made arbitrarily small as 6 —+ 0. This proves (3.38). That is, Q1T(-)

is stochastically equicontinuous on a compact set <I>. In the last equality, we use the

occupation times formula as in Park and Phillips (1999). L(1, s), a local time is a

continuous stochastic process of time spent by the Brownian motion at the spatial

point 3 over the interval [0,1], and sup36[_K,K] |L(1,s)| is a well-defined random

variable.

The stochastic equicontinuity of Q2T(-) can be proved along the same lines as in

the above.

Q2T((011T, 161T),) - Q2T((012Ti 5H),)

= (Q2T((alT: filT)') - Q2T((0‘1Ti32T)I))

+ (Q2T((011Ti Ble') - Q2T((012Ti 5%),»
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|
/
\ .. j

sup sup T 1 Z |A1,Tj| T

_b16[—K,K] b2 Ib2—b1I<5

T .

- .7
+ Sllp sup T 1 E IA2’le 7f;

016[-K,K] azzla2—01I<5 '=

T

T—l
< sup sup E |A1,le

bIE[—K,K]b2: Ib2—b1l<5 -

T

+ sup sup T”1 Z |A2,Tj|

016[-K,K] a2zla2—a1|<6 -

since (j/T) S 1 for all t = 1, - -- ,T. Then, the remaining lines of proof for the

stochastic equicontinuity of Q2T(-) follow from those in the proof of the stochastic

equicontinuity of Q1T(.).

Next, note that the finite-dimensional convergence of T"1 23531] sgn(ij — d —

Bj/T) for each 5 E [0, 1] holds because of a similar argument in (3.37) so that

[6T] . ,

T-lZsgn(T-l/ZxT,—T-1/2a—T—1/2Bl)—d>/ sgn(AW(§)—A—B§)d§. (3.41)
. T 0

From (3.41) and the stochastic equicontinuity implied by that of QT(-) in the

above, the limiting distribution of T‘3 25;] 5% is as follows:

T t . 2

T-3 J:1(; sgn (1‘1", - CY - 8%))

T
2

=T1 (TIngn (Tl/2m—T-1/26—T-1/23-%))

i=1
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Liz/01 (focsgn (W({)— é - gs) d§)2d(.

Finally, the estimate of long run variance, 62/77 is equal to

T .

7%1T—1 ngn (2377 — d — Bl)?

 

J=1 7‘

1 1 T j
+2 - T- k —

7T 2 (7T)

]—1

T'j , .z' . -z'+j

>< sgn(xTi-O-flffigflxmm)‘0‘5 T )

i=1

T+1 '

= 019(1) + MEI/l k(%)dj

_1 T—j+1 . .

X T A sgn(xmgT] — a — :66)

8(5 + 99)] dtX _ A _

sgn (xT.[(£+§;1)T1 a T

_T_ _1-

=o,,(1)+2/7T+7T [led—(111])
lW .L ’YT

1+1-C7 . .

x % (sgn(mnle — a -— flé)

. ~ (VT
X sgn (SET,[(£+ (72: )T] — a -' 3(6 + T)))d€] dc

oo 1

—+ 2/0 k(() ../0 sgn(TT,[€T] — a — B€)2d§d(

=2meoa.

where the substitutions (j/T) = 5 and (j/'yT) = C are made.
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